
Test&Set, Adaptive Renaming and Set Agreement:
a Guided Visit to Asynchronous Computability

Eli GAFNI† Michel RAYNAL? Corentin TRAVERS?

†Department of Computer Science, UCLA, Los Angeles, CA 90095, USA
?IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

eli@cs.ucla.edu {raynal|ctravers}@irisa.fr

Abstract

An important issue in fault-tolerant asynchronous com-
puting is the respective power of an object type with respect
to another object type. This question has received a lot
of attention, mainly in the context of the consensus prob-
lem where a major advance has been the introduction of
the consensus number notion that allows ranking the syn-
chronization power of base object types (atomic registers,
queues, test&set objects, compare&swap objects, etc.) with
respect to the consensus problem. This has given rise to the
well-known Herlihy’s hierarchy.

Due to its very definition, the consensus number notion
is irrelevant for studying the respective power of object
types that are too weak to solve consensus for an arbitrary
number of processes (these objects are usually called
subconsensus objects). Considering an asynchonous
system made up of n processes prone to crash, this paper
addresses the power of such object types, namely, the
k-test&set object type, the k-set agreement object type, and
the adaptive M -renaming object type for M = 2p − d p

k
e

and M = min(2p − 1, p + k − 1), where p ≤ n is the
number of processes that want to acquire a new name. It
investigates their respective power stating the necessary
and sufficient conditions to build objects of any of these
types from objects of any of the other types. More precisely,
the paper shows that (1) these object types define a strict
hierarchy when k 6= 1, n − 1, (2) they all are equivalent
when k = n − 1, and (3) they all are equivalent except
k-set agreement that is stronger when k = 1 6= n − 1 (a
side effect of these results is that that the consensus number
of the renaming problem is 2.)

Keywords: Adaptive renaming, Asynchronous system,
Atomic register, Atomic snapshot, Process crash, Reduc-
tion, Set agreement, Shared memory, Test&set, t-Resilience,
Wait-free algorithm.

1 Introduction

1.1 Asynchronous distributed problems

Test&set, renaming and set agreement are among the
basic problems that lie at the core of wait-free computabil-
ity in asynchronous shared memory systems prone to
process crashes. Wait-free means that the algorithm that
solves the problem must allow each process (that does not
crash) to terminate all its operations in a finite number
of computation steps whatever the behavior of the other
processes (i.e., despite the fact that all the other processes
are very slow or even crash) [13].

The renaming problem has been introduced in [3] in the
context of asynchronous message-passing systems prone to
process crash failures. It consists in designing an algo-
rithm that allows processes (that do not crash) to obtain new
names from a name space of size M (such an algorithm is
called an M -renaming algorithm). It has been shown that
in an asynchronous system made up of n processes prone to
crash failures, that communicate through atomic read/write
registers only, the smallest size for the new name space that
a wait-free algorithm can produce is M = 2n − 1 [15].
(This result clearly shows the additional price that has to be
paided, namely n − 1 name slots, in order to cope with the
net effect of asynchrony and failures).

A renaming algorithm is adaptive if the size of the
new name space depends only on the number of processes
that ask for a new name, and not on the total number of
processes. Let p be the number of processes that participate
in the renaming algorithm. Several adaptive renaming
algorithms have been designed such that the size of the
new name space is M = 2p − 1 (e.g., [2, 4, 6, 7]). These
algorithms are consequently optimal with respect to the
size of the new name space when considering read/write
shared memory systems.

The test&set problem is an old and well-known problem
(a lot of shared memory multiprocessor machines provides

the processes with a test&set primitive that allows them
to coordinate and synchronize). It consists in providing
the processes with an operation that return 1 (winner) or
0 (loser) to the invoking process, in such a way that only
one process obtains the value 1. The k-test&set problem is
a simple generalization of the previous problem (that does
correspond to 1-test&set): at least one and at most k of the
invoking processes are winners.

The k-set agreement problem has been introduced in [9].
It is a paradigm of coordination problems encoutered in dis-
tributed computing, and is defined as follows. Each pro-
cess is assumed to propose a value. The problem consists
in designing an algorithm such that (1) each process that
does not crash decides a value (termination), (2) a decided
value is a proposed value (validity), and (3) no more than k

different values are decided (agreement). (The well-known
consensus problem is nothing else than the 1-set agreement
problem.) The parameter k can be seen as the coordination
degree (or the difficulty) associated with the corresponding
instance of the problem. The smaller k is, the more coor-
dination among the processes is imposed: k = 1 means
the strongest possible coordination, while k = n means no
coordination.

It has been shown in [8, 15, 20] that, in an asynchronous
system made up of processes that communicate through
atomic registers only, and where up to t processes may
crash, there is no wait-free k-set agreement algorithm for
k ≤ t. Differently, when k > t the problem can be trivially
solved (a predefined set of k processes write their proposal,
and a process decides the first proposal it reads).

The k-set agreement problem is on the values proposed
by the processes. In order that problem be non-trivial, the
number of values proposed has to be greater than k. That
problem defines a relation linking its inputs and its outputs.
Differently, the test&set problem is purely “syntactic” in
the sense there are no input values. In the following, we
consider that any number p ≤ n of processes participate in
the k-test&set problem or the k-set agreement. This means
that we implicilty consider their adaptive versions (as we
implicitly do for the underlying atomic registers).

1.2 The kind of questions addressed in the paper

An important and pretty natural question is the follow-
ing: While M = 2p − 1 is a lower bound for adaptive re-
naming when the processes communicate through atomic
registers only, is it possible to obtain a smaller name space
when the system is equipped with test&set objects, or with
k-set agreement objects? More generally, what are the rela-
tions linking these three problems?

These questions have been partially answered in [11],
[18] and [19]. A wait-free algorithm is presented in [18]

that solves the renaming problem from k-test&set objects1

for M = 2p − d p
k
e. Another wait-free algorithm is pre-

sented in [11] that solves the M -renaming problem from
k-set agreement objects for M = p+k−1. A t-resilient al-
gorithm is presented in [19] that solves the k-set agreement
problem from any adaptive min(2p−1, p+k−1)-renaming
algorithm for k = t.

Are all these algorithms optimal? Among M -renaming,
k-test&set, and k′-set agreement, are they values of M , k

and k′ for which these problems are equivalent? If yes,
which ones? Which are the values for which these prob-
lems are not equivalent? Etc. This is the type of questions
addressed in the paper, the aim of which is to capture the
computability power of each problem with respect to the
other ones. The ultimate goal is to relate all these problem
instances in a single hierarchy.

1.3 Content of the paper

Notation and definitions

• fk and gk denote the integer functions fk(p) = 2p −
d p

k
e and gk(p) = min(2p − 1, p + k − 1).

Let us notice that f1 = g1, for p ∈ [1..n]: fn−1 =
gn−1 and gk < fk when k ∈ [2..n − 2] (2).

• (n, k)-SA denotes the k-set agreement problem in a set
of n processes.

• (n, k)-TS denotes the k-test&set problem in a set of n

processes.

• (n, fk)-AR denotes the adaptive fk(p)-renaming prob-
lem in a set of n processes.

• (n, gk)-AR denotes the adaptive gk(p)-renaming prob-
lem in a set of n processes.

• Sometimes we say (x, y)-XX object instead of (x, y)-
XX problem.

• (x, y)-XX � (x′, y′)-YY means that there is a wait-
free algorithm that solves the (x′, y′)-YY problem
from (x, y)-XX objects and atomic registers.

• (x, y)-XX ' (x′, y′)-YY means that (x, y)-XX �
(x′, y′)-YY and (x′, y′)-YY � (x, y)-XX.

Global picture Each instance of any of the previous prob-
lems involves two parameters. The first is the maximal
number of processes (n) that can participate. For the adap-
tive renaming problem, the second is a function on the num-
ber of participating processes. That function defines the size
of the actual new name space. Here we consider two func-
tion families (fk and gk). For the two other problems, the

1Actually the algorithm presented in [18] is based on k-set agreement
objects, but a simple observation shows that these objects can be replaced
by k-test&set objects.

2hk < `k means that ∀k : 1 < k < n − 1, ∀p : 1 ≤ p ≤ n,
hk(p) ≤ `k(p) and there is a value of p such that hk(p) < `k(p).

(n, k)-SA

(n, gk)-AR

(n, fk)-AR ' (n, k)-TS ' (k + 1, k)-TS ' (k + 1, k)-SA

Level 3

Level 2

Level 1

Only when k = 1 or k = n − 1

(n + 1, k)-SA Level 4

(n, k + 1)-TS Level 0

Only when k = n − 1

Figure 1. A hierarchy of problems

second parameter is the coordination degree (k). In both
case, that parameter (fk or gk and k, respectively) character-
izes the difficulty of the corresponding instance: the smaller
that parameter is, the more difficult the problem is.

Although the renaming problem on one side, and the set
agreement and test&set problems on the other side, seem to
be of different nature, this paper shows that their instances
can be ranked in a single hierarchy. More specifically, the
results of the paper (combined with other results [10, 11,
14, 18, 19]) are depicted in Figure 1. Basically, they show
that these problems can be ranked in three distinct levels
(denoted 1, 2 and 3): (n, k)-SA is stronger than (n, gk)-AR
(this is denoted with a bold arrow), that in turn is stronger
than(n, fk)-AR, (n, k)-TS, (k + 1, k)-TS, and (k + 1, k)-
SA. Moroever, these four problems are always equivalent
for any value of the pair (n, k).

Interestingly, it is easy to see that, when n = k + 1,
the previous hierarchy collapses, and all the problems be-
come equivalent. It is also easy to see that, when k = 1 and
n > k+1, the last two lower levels merges (as we then have
fk = gk), while the (n, 1)-SA problem remains stronger
(this follows from the fact that (n, 1)-SA is the consensus
problem, while the consensus number3 of the (n, 1)-TS ob-
ject is 2 [13]. In the other cases, the hierarchy is strict.
Remark. A weaker version of the renaming problem
(namely, non-adaptive renaming) is considered in [12]
where the authors show that non-adaptive renaming is
strictly less powerful than set agreement. That work is

3The consensus number of an object defined by a sequential specifica-
tion is the maximum number of processes for which that object can wait-
free solve the consensus problem.

based on combinatorial topology and does not consider the
test&set problem. In addition to considering the adaptive
version of the renaming problem, the approach considered
here is totally different. It is entirely based on reductions.

Structure and content of the paper To establish the re-
lations described in Figure 1, the paper proceeds as follows.
It first presents the system model in Section 2. Then, each
section presents a particular point. More precisely we have
the following.

1. Section 3 shows that (n, k)-TS ' (k + 1, k)-TS.

2. Section 4 shows that (k + 1, k)-TS ' (k + 1, k)-SA.

3. Section 5 shows that (n, fk)-AR ' (n, k)-TS.

4. Section 6 shows that there is no construction of an
(n, gk−1)-AR object from (n, k)-SA objects.

Piecing these results (and other results) to obtain the
global picture We are now in order to justify the pres-
ence and the absence of arrows in the Figure 1. (As we can
see, as it aggregates new results with previous results, the
paper has also a “survey flavor”.)

• Equivalences. The previous items 1, 2 and 3 establish
the equivalences stated in level 1.

• Bold arrows (going down).

– From level 4 to level 3: trivial transformation
from (n + 1, k)-SA to (n, k)-SA.

– From level 3 to level 2: transformation (n, k)-SA
� (n, gk)-AR in [11].

– From level 2 to level 1: from the fact that
∀k : 1 ≤ k ≤ n − 1: gk ≤ fk.

– From level 1 to level 0: trivial transformation
from (n, k)-TS to (n, k + 1)-TS.

• Slim arrows (going up).

– From level 1 to level 2: follows from f1 = g1

(case k = 1) and fn−1 = gn−1 (case k = n− 1).

– From level 1/2 to level 3: when n = k+1 (n, k)-
SA is (k+1, k)-SA (and both are then equivalent
to (k + 1, gk)-AR).

• Impossibility.

– From level 3 (resp., 0) to level 4 (resp., 1): proved
in [14].

– From level 2 to level 3 for k 6= n − 1: proved in
[19].

– From level 1 to level 2 for k 6= 1, n − 1: follows
from ∀k : 1 < k < n − 1: gk < fk.

• Optimality.

– As fk < fk+1, the algorithm described in [18],
that builds an (n, fk)-AR object from (n, k)-TS
objects, is optimal in the sense that an (n, fk)-AR
object cannot be built from (n, k+1)-TS objects.

– Due to item 4, The algorithm described in [11],
that solves the (n, gk)-AR problem from (n, k)-
SA objects (bold arrow from level 3 to level 2)
is optimal in the sense that no new name space
smaller than gk can be obtained from (n, k)-SA
objects only.

2 Computing model, object types, and trans-
formation requirements

2.1 Process model and atomic registers

Process model The system consists of n processes that
we denote p1, . . . , pn. The integer i is the index of pi. Each
process pi has an initial name idi. A process does not know
the initial names of the other processes, it only knows that
no two processes have the same initial name. (The initial
name is a particular value defined in pi’s initial context.) A
process can crash. Given a run, a process that crashes is said
to be faulty, otherwise it is correct in that run. Each process
progresses at its own speed, which means that the system is
asynchronous.

While we are mainly interested in wait-free transforma-
tions, we sometimes consider a t-resilient transformation.
Such a transformation can cope with up to t process crashes,
where t is a system parameter known by all the processes.
A wait-free transformation is nothing else than an (n − 1)-
resilient transformation.

Atomic registers and snapshot operation The processes
cooperate by accessing atomic read/write registers. Atomic
means that each read or write operation appears as if it has
been executed instantaneously at some time between its be-
gin and end events [16, 17]. Each atomic register is a one-
writer/multi-readers (1WnR) register. This means that a
single process can write it. Atomic registers (and shared
objects) are denoted with uppercase letters. The atomic reg-
isters are structured into arrays. A process can have local
registers. Such registers are denoted with lowercase letters
with the process index appearing as a subscript (e.g., resi is
a local register of pi).

The processes are provided with an atomic snapshot op-
eration [1] denoted X.snapshot(), where X is an array
of atomic registers, each entry of which can be written
by at most one process. It allows a process pi to atomi-
cally read the whole array. This means that the execution
of a snapshot() operation appears as it has been executed
instantaneously at some point in time between its begin
event and its end event. Such an operation can be wait-
free implemented from 1WnR atomic registers [1]. (To,
our knowledge the best snapshot() implementation requires
O(n log(n)) read/write operations on base atomic registers
[5].)

Default value The value ⊥ denotes a default value that
can appear only in the algorithms described in the paper. It
always remains everywhere else unknown to the processes.

2.2 Base objects

The objects considered here are the objects associated
with the adaptive renaming, k-test&set and k-set agreement
problems as discussed in the Introduction. These objects are
considered in a system of n processes, and are consequently
accessed by at most n processes.

One-shot test&set object A (n, k)-TS object pro-
vides the processes with a single operation, denoted
TS competek(). “One-shot” means that, given such an ob-
ject,a process can invoke that operation at most once (there
is no reset operation). The invocations on such an object
satisfy the following properties:

• Termination. An invocation issued by a correct pro-
cess terminates.

• Validity. The value returned by an invocation is 1 (win-
ner), or 0 (loser).

• Agreement. At least one and at most k processes ob-
tain the value 1.

Set agreement object A (n, k)-SA object is an object
that allow processes to propose values and decide values.

To that end, it provides them with an operation denoted
SA proposek(). A process invokes that operation at most
once. When it invokes SA proposek(), the invoking process
supplies the value v it proposes (input parameter). That op-
eration returns a value w called “the value decided by the in-
voking process” (we also say “the process decides w”). The
invocations on such an object satisfy the following proper-
ties:
• Termination. An invocation issued by a correct pro-

cess terminates.
• Validity. A decided value is a value that has been pro-

posed by a process.
• Agreement. At most k distinct values are decided.

Adaptive renaming A renaming object allows the pro-
cesses to obtain new names from a new name space [1..M].
It provides the processes with a single operation denoted
AR renamek(). A renaming algorithm is adaptive with
respect to the size M of its new name space, if M de-
pends on the number p of processes that actually partici-
pate in the renaming algorithm (the processes that invoke
AR renamek()). We consider here two families of M -
adaptive renaming objects for 1 ≤ k ≤ n − 1, namely,
the family of (n, fk)-AR objects and the family of (n, gk)-
AR objects, where M = fk(p) = 2p − d p

k
e, and M =

gk(p) = min(2p − 1, p + k − 1), respectively. The in-
vocations on such an adaptive renaming object satisfy the
following properties:
• Termination. An invocation issued by a correct pro-

cess terminates.
• Validity. A new name belongs to the set [1..M].
• Agreement. No two invocations return the same new

name.

2.3 Transformation requirement

This paper focuses on transformations that satisfy the
following property:
• Index independence. The behavior of a process is in-

dependent of its index.

This property states that, if, in a run, a process whose in-
dex is i obtains a result v, that process would have obtained
the very same result if its index was j. From an operational
point of view, the indexes define an underlying communica-
tion infrastructure, namely, an addressing mechanism that
can only be used to access entries of shared arrays.

3 (n, k)-TS and (k + 1, k)-TS are equivalent

As n > k, building a (k+1, k)-TS object from an (n, k)-
TS object is trivial. So, the interesting construction is the
one in the other direction. This section presents such a con-
struction.

Principles and description of the construction The idea
of the construction is simple. It is based on the following
two principles.

First, in order to satisfy the index independence property,
the transformation first uses an underlying renaming object
that provides the processes with new names that they can
thereafter use “instead of” their indexes. Renaming algo-
rithms that satisfy the index independence property and use
only atomic registers do exist (e.g., see [6]). These algo-
rithms provide a new renaming space whose maximal size
is M = 2n − 1. So, the new name of a process pi is an
integer in the set {1, . . . , 2n − 1} that is independent of its
index i. This underlying base renaming object is denoted
BASE AR.

Let m = C(2n−1, k+1) (the number of distinct subsets
of (k + 1) elements in a set of 2n − 1 elements). Let us
order these m subsets in an array SET LIST [1..m] in such
a way that SET LIST [x] is the set of the k + 1 processes
that define the xth subset. Moreover, let BASE TS [1..m]
be an array of m base objects with type (k + 1, k)-TS.

The principle that underlie the second part of the con-
struction is the following. First, the (k + 1) processes
that define SET LIST [x] are the only ones that can access
BASE TS [x]. When a process pi invokes TS competek(),
starting from the first base object BASE TS [x] it belongs
to, it scans (one after the other and in the increasing or-
der on their indexes) all the sets BASE TS [x] it belongs
to. If BASE TS [x].TS competek() returns 0 (loser), pi

stops scanning and returns 0 as the result of its invocation
TS competek(). Otherwise, pi is a winner among the pro-
cesses that access BASE TS [x]; it then proceeds to the
next object of BASE TS [1..m] to which it belongs. If
there is no such object (pi has then “successfully” scanned
all the subsets it belongs to), it returns 1 as the result of
TS competek().

The construction is described in Figure 2. The local
variable posi keeps pi’s current scanning position in
SET LIST [1..m]. The function next(new namei, posi)
returns the first entry y (starting from posi + 1 and
in increasing order) of SET LIST [1..m] such that
new namei belongs to SET LIST [y]. Finally, the
predicate last(new namei) returns true iff posi = m or
new namei belongs to no set from SET LIST [posi + 1]
until SET LIST [m]. The statement return(v) terminates
pi’s invocation.

Remark. If a (2n− 1)-renaming algorithm was not initially
used (line 01), we would have to use next(i, posi) at line 04
(and last(i) at line 07). It would follow that the base objects
BASE TS [posi] that are accessed by a process pi at line
05 would depend on the index i. Consequently, the results
provided to pi by these objects would depend on that in-
dex, thereby making the transformation not index indepen-

dent. As we can see, using an underlying renaming algo-
rithm (that satisfy index independence) allows solving that
issue.

operation TS competek():
(01) new namei ← BASE AR.rename();
(02) posi ← 0;
(03) while (true) do
(04) posi ← next(new namei, posi);
(05) resi ← BASE TS [posi].TS competek();
(06) if (resi = 0) then return (0)
(07) else if

�
posi = last(new namei) �

(08) then return (1) end if
(09) end if
(10) end while

Figure 2. From (k+1, k)-TS objects to an (n, k)-
TS object (code for pi)

Theorem 1 The algorithm described in Figure 2 is a wait-
free construction of an (n, k)-TS object from a bounded
number of atomic registers and (k + 1, k)-TS objects.

Proof The validity property of the (n, k)-TS object is triv-
ial: the only values that can be returned are 0 and 1 (lines
06 and 07). As far as the the termination property is con-
cerned, let pi a correct process that invokes TS competek().
If pi executes return(0) at line 06, it terminates. So, let us
assume that pi never executes return(0) at line 06. It fol-
lows that it is a winner in each base object BASE TS [y] it
accesses. These objects define a list that has a last element
BASE TS [z]. When pi accesses that base object, we have
both posi = z and last(new namei) = z, from which it
follows that pi executes return(1) at line 07.

The proof of the agreement property is decomposed in
two steps.

• At most k processes are winners.
The proof is by contradiction. Let us assume that
(k + 1) processes are winners. Let S be the set of the
new names of these (k + 1) processes. There is a set
SET LIST [y] such that SET LIST [y] = S. Due to
the code of the construction, a process pj that is a win-
ner in the high level object CONST , has to be a win-
ner in all the base (k + 1, k)-TS objects BASE TS [x]
such that new namej ∈ SET LIST [x]. It follows
from that observation that all the processes of S in-
voke BASE TS [y].TS competek() and obtain 1 from
that base object. On another side, it follows from the
agreement property of that underlying (k + 1, k)-TS
base object, that at most k of these processes return
the value 1. A contradiction.

• At least one process is a winner.
Let BASE TS [y] be the “last” (k + 1, k)-TS base ob-
ject accessed during a run (“last” means here that this

base object is the one with the largest index y that is
accessed during a run). Due to the agreement prop-
erty of the base objects, there is at least one process pj

that is a winner with respect to the base object. As pj

does not access other (k + 1, k)-TS objects, it follows
that it returns the value 1 as the result of its invocation
TS competek(). 2Theorem 1

4 (k + 1, k)-TS and (k + 1, k)-SA are equiva-
lent

To show (k + 1, k)-TS ' (k + 1, k)-SA, we proceed in
two steps. A wait-free transformation is first presented that
builds an (n, k)-TS object from an (n, k)-SA object. Then,
a t-resilient transformation is described that builds an (n, t)-
SA object from an (n, t)-TS object. When instantiated with
t = k = n − 1, that transformation becomes a wait-free
transformation from (k + 1, k)-TS to (k + 1, k)-SA. The
two transformations imply (k + 1, k)-TS ' (k + 1, k)-SA.

4.1 From (k + 1, k)-SA to (k + 1, k)-TS

This section presents a simple wait-free transformation
that constructs an (n, k)-TS object from an (n, k)-SA ob-
ject.

Principles and description of the construction Its un-
derlying idea is the following: a process that decides the
value it has proposed is a winner. But, it is possible that
no process decides the value it has proposed. So, the trans-
formation consists in forcing at least one process to decide
its value. To attain this goal, the processes uses a shared
array, with one entry per process, that they can atomically
read using a snapshot operation. This construction (initially
introduced in [8]) is described in Figure 3. Its code is self-
explanatory. REG [1..n] is an array of atomic registers, ini-
tialized to [⊥, . . . ,⊥]. KS denotes the underlying (n, k)-
set object. In order that at least one and at most k processes
be winners, the processes are required to propose different
values to the underlying (n, k)-set object. A simple way
do that, without violating the index independence property,
consists in each process pi proposing its initial identity idi.

operation TS competek():
(01) REG [i]← KS .SA proposek(idi);
(02) regi[1..n]← REG .snapshot();
(03) if (∃x : reg i[x] = idi) then resi ← 1 else resi ← 0 end if;
(04) return (resi)

Figure 3. From an (n, k)-SA object to an (n, k)-
TS object (code for pi)

Theorem 2 The algorithm described in Figure 3 is a wait-
free construction of an (n, k)-TS object from an (n, k)-SA
object.

Proof The algorithm is trivially wait-free, which proves the
termination property. The validity property of the (n, k)-TS
object is also trivial as the only values that can be returned
are 0 and 1 (line 03). For the the agreement property, we
have to show that at least one and at most k processes are
winners.

• Due to the agreement property of the underlying
(n, k)-SA object, there are at most k processes that
obtain their index from that object. It follows that
the shared array REG [1..n] contains at most k differ-
ent non-⊥ values. Consequently, the predicate (∃x :
reg i[x] = i) (line 03) can be true for at most k pro-
cesses pi. It follows that at most k processes can return
the value 1 at line 03.

• Let us now prove that at least one process is a winner.
If there is a process pi that obtains its own index from
the invocation KS .SA proposek(i), that process is a
winner. So, let us assume that no process pi obtains
its own index from its invocation KS .SA proposek(i).
There is consequently a cycle j1, j2, . . . , jx, j1 on a
subset of processes defined as follows: j2 = REG [j1],
j3 = REG [j2], . . . , j1 = REG [jx]. Among the pro-
cesses of this cycle, let us consider the process pj that
is the last to update its entry REG [j], thereby creat-
ing the cycle. (Let us observe that, as the write and
snapshot operations that access the array REG are lin-
earizable, such a “last” process pj does exist.) But
then, when pj executes line 03, the predicate (∃x :
regj [x] = j) is necessarily true (as pj completes the
cycle and -due to the snapshot operation- sees that cy-
cle). It follows that pj returns 1, which completes the
proof of the theorem.

2Theorem 2

4.2 From (k + 1, k)-TS to (k + 1, k)-SA

This section presents a t-resilient construction of an
(n, t)-SA object from an (n, t)-TS object. Taking t = k =
n − 1 gives a wait-free construction.

Principles and description of the construction
This construction (described in Figure 4) uses two
arrays of atomic registers, denoted REG [1..n] and
COMPETING [1..n] (both initialized to [⊥, . . . ,⊥]). The
behavior of a process can be decomposed in two parts.

• Part 1: Write and read shared registers (lines 01-04).
When a process pi invokes SA proposek(vi) it first
deposits in REG [i] the value it proposes, in order to

make it visible to all the processes (line 01). Then,
it invokes KTS .TS competek() (where KTS is the
underlying (n, t)-TS object) and writes 1 or 0 into
COMPETING [i] according to the fact it is a winner
or not (line 02). Then, using the snapshot operation, pi

reads the whole array COMPETING until it sees that
at least n − t processes are competing to win (notice
that, in the wait-free case, a process executes only once
the loop body).

• Part 2: Determine a value (lines 05-11).
Then, pi computes the processes it sees as winners
(line 05). If it sees a winner, it decides the value pro-
posed by that process (line 07). If pi sees no winner
(lines 08-09), it decides the value proposed by a pro-
cess (pj) that does participate (REG [j] 6= ⊥) but not
seen as a competitor by pi (competingi [j] 6= ⊥). In
that case, as the underlying (n, k)-TS object is adap-
tive, the pj is one of the t processes that can be winners
(pj is not seen winner by pi because it is slow or it has
crashed).

It is easy to see that the indexes are used only as pointers,
thereby guaranteeing the index independence property.

operation SA proposet(vi);
(01) REG [i]← vi;
(02) COMPETING [i]← KTS .TS competet();
(03) repeat competingi ← COMPETING .snapshot()
(04) until

�
|{j : competingi[j] 6= ⊥}| ≥ (n− t) � ;

(05) let winnersi = {j : competingi[j] = 1};
(06) if winnersi 6= ∅
(07) then `i ← any value ∈ winnersi
(08) else let seti = {j : REG [j] 6= ⊥ ∧ competingi[j] = ⊥};
(09) `i ← any value ∈ seti
(10) end if;
(11) return (REG [`i])

Figure 4. From an (n, t)-TS object to an (n, t)-
SA object (code for pi)

Theorem 3 Let us assume that at least (n − t) correct
processes participate in the algorithm described in Figure
4. Then, that algorithm is a t-resilient construction of an
(n, t)-SA object from an (n, t)-TS object.

Proof As we are concerned by t-resilience, we assume that
at most t processes may crash, and at least n−t correct pro-
cesses participate in the algorithm. Let us first observe that,
as the underlying (n, t)-TS object is wait-free and at least
n− t correct processes participate, the termination property
is trivially satisfied.

The validity property follows from the two following
observations. First, if the value returned by a process pi

is determined from its set winnersi , it is a value proposed

by a winner, and any process (winner or loser) deposits its
value (line 01) before competing to be winner (line 02).
Second, if the returned value is not determined from the
set winnersi , it follows from the definition of seti that the
value REG [j] decided by pi has been previously deposited
by pj (the proof that seti is not empty is given below in the
proof of the agreement property).

The agreement property requires that at least one and at
most t different values are decided. Due to the underlying
(n, t)-TS object, there are at least one and at most t winner
processes, so at most t entries of COMPETING are equal
to 1. Consequently, any set winnersi computed at line 05 is
such that 0 ≤ |winnersi | ≤ t.

Let us consider the process px that (at line 05) obtains
the smallest set winnersx . Due to the total order on the
snapshot operations issued by the processes at line 03 (lin-
earization order due to the atomicity of these operations),
we can conclude that any process pi that executes line 05 is
such that winnersx ⊆ winnersi . We consider two cases.

• |winnersx | ≥ 1. In that case, it follows from the pre-
vious observation (winnersx ⊆ winnersi) that at least
one winner is seen by each processes pi that decides.
As we have 1 ≤ |winnersi | ≤ t, at least one and at
most t different values are decided.

• |winnersx | = 0. In that case, it follows from line
04 that px sees at least (n − t) processes that ob-
tained 0 from the underlying KTS object (loser pro-
cesses). This means that, when considering the last
value of the array COMPETING [1..n], there are at
most t processes pj such that (COMPETING [j] =
1) ∨ (REG [j] 6= ⊥ ∧ COMPETING [j] = ⊥). It
follows that, when |winnersx | = 0, at most t different
values can be decided.

We now show that at least one value is decided. Let pi

be a process that decides.

– |winnersi | ≥ 1. In that case, pi decides the value
of a winner process pj .

– |winnersi | = 0. As the underlying (n, t)-
TS object is adaptive, we conclude that there
is at least one process py that has invoked
KTS .TS competet() and is a winner (pi does
not see py as a winner because py crashed before
writing COMPETING [y], or has not yet writ-
ten 1 into COMPETING [y] because it is very
slow). The important point is that such a pro-
cess py has written its value into REG [y] before
invoking KTS .TS competet(). It follows that,
when pi computes seti, that set is not empty, and
pi decides a value, which completes the proof of
the theorem.

2Theorem 3

The next corollary is a rephrasing of the previous theorem
for t = k = n − 1.

Corollary 1 The algorithm described in Figure 4 is a wait-
free construction of a (k+1, k)-SA object from a (k+1, k)-
TS object.

5 (n, fk)-AR and (n, k)-TS are equivalent

A wait-free algorithm is presented in [18] that builds an
(n, fk)-AR object from (n, k)-TS objects. So, to show that
(n, fk)-AR ' (n, k)-TS, this section presents a wait-free
construction of an (n, k)-TS object from an (n, fk)-AR ob-
ject. This construction is done in two steps. A construction
of a (k+1, k)-TS object from a (k+1, fk)-AR object is first
presented. Then, this base construction is used to wait-free
construct an (n, k)-TS object from (n, fk)-AR objects.

5.1 From (k + 1, fk)-AR to (k + 1, k)-TS

Let ARF be a (k + 1, fk)-AR object. So, the maximal
size of the new name space is Mmax = fk(k + 1) = 2k.
The construction from (k + 1, fk)-AR to (k + 1, k)-TS is
described in Figure 5. It is very simple: a process pi first
acquires a new name, and then returns 1 (winner) if and only
its new name is comprised between 1 and k.

operation TS competek();
(01) new namei ← ARF .rename();
(02) if (new namei ≤ k) then return (1) else return (0) end if

Figure 5. From an (k + 1, fk)-AR object to an
(k + 1, t)-TS object (code for pi)

Theorem 4 The algorithm described in Figure 5 is a wait-
free construction of a (k+1, t)-TS object from a (k+1, fk)-
AR object.

Proof The proofs of the termination property, the validity
property and the fact that there are at most k processes are
trivial. So, it only remain to show that at least process re-
turns the value 1. We consider two cases according to the
number of participating processes.

• p = k + 1 processes invoke ARF .rename(). We then
have M = fk(k + 1) = 2(k + 1) − d k+1

k
e = 2k.

As the new name space is [1..2k], it trivially follows,
from the fact that no two processes obtain the same
new name, that at least one of the the (k + 1) partici-
pating processes has a new name smaller or equal to k.
Consequently, there is at least one winner.

• p ≤ k processes invoke ARF .rename(). We then have
M = fk(p) = 2p − d p

k
e = 2p − 1 = p + (p − 1).

It follows that at least one of the p processes obtains a
new name in the set [1..p]. As p ≤ k, it follows from
the algorithm that that process is a winner.

2Theorem 4

The next corollary follows from the previous theorem, The-
orem 1 and Corollary 1.

Corollary 2 (k+1, fk)-AR � (n, k)-TS and (k+1, fk)-AR
� (k + 1, k)-SA.

5.2 From (n, fk)-AR to (n, k)-TS

As we trivially have (n, fk)-AR � (k + 1, fk)-AR, we
can use the wait-free transformation from a (k + 1, fk)-
AR object to an (k + 1, k)-TS object, to obtain a wait-free
transformation from (n, fk)-AR objects to a (n, k)-TS ob-
ject. More precisely, the construction described in Figure
2 builds an (n, k)-TS object from (n, fk)-objects when the
underlying (2n−1)-renaming base object is replaced by an
(n, fk)-AR object. So now, in the transformation of Fig-
ure 2, a process first invokes the underlying (n, fk)-object
and obtains a new name in the interval [1..fk(p)] (let us no-
tice that the maximal size of the new name space is then
fk(n) ≤ 2n − 1). The rest of the transformation of Figure
2 remains unchanged. We consequently have the following
theorem (whose proof is the same as the one of Theorem 1).

Theorem 5 The algorithm described in Figure 2, in which
the base renaming object is an (n, fk)-AR object, is a wait-
free construction of an (n, t)-TS object from (n, fk)-AR ob-
jects.

6 (n, gk−1)-AR cannot be built from (n, k)-SA

This section shows that an (n, gk−1)-AR object cannot
be built from (n, k)-SA object. As gk(p) − gk−1(p) = 1, a
corollary of this result is that the algorithm described in [11]
(that wait-free builds an (n, gk)-AR object from (n, k)-SA
objects) is optimal (M = gk is the size of the smallest re-
naming space that can be obtained from (n, k)-SA objects).

Theorem 6 There is no wait-free construction of an
(n, gk−1)-AR object from (n, k)-SA objects.

Proof The proof is by contradiction. It considers two cases.

• k = 1. We have then gk−1(p) = p−1. It is trivially im-
possible to rename p processes in a name space smaller
than p.

• k > 1. Let us assume that there is a construction A1
from an (n, k)-SA object to an (n, gk−1)-AR object
(i.e., A1 is an adaptive (p+k−2)-renaming algorithm
based on (n, k)-SA objects and atomic registers).

The following simple construction A2 builds (n, k −
1)-TS object from A1. A2 is as follows: a process pi

first uses A1 to obtain a new name new namei, and
considers it is a winner if and only if new namei ≤
k − 1 (at most (k − 1) processes can be winners, and,
due to the adaptivity of A1, at least one process is a
winner).

Given the previous (n, k−1)-TS object, it is (trivially)
possible to build a (k, k− 1)-TS object, and from such
an object to build a (k, k− 1)-SA object (Corollary 1).

So the previous sequence of transformations builds a
(k, k − 1)-SA object from an (n, k)-SA object, which
has proven to be impossible [14].

2Theorem 6

7 Conclusion

The aim of this paper was an investigation of the rela-
tions linking the k-test&set problem, the k-set problem, and
two adaptive renaming problems, namely the (2p − d p

k
e)-

renaming problem and the min(2p−1, p+k−1)-renaming
problem. Three main points can be learnt from that study.
First, the k-test&set problem and the k-set problem are
equivalent in systems of (k + 1) processes. Second, what-
ever the number n of processes defining the system, the k-
test&set problem and the (2p−d p

k
e)-renaming problem are

always equivalent. Third, in systems of n processes such
that k 6= n − 1, the k-set problem is strictly stronger than
the other two problems; if additionally k 6= 1, then the
min(2p − 1, p + k − 1)-renaming problem lies exactly in
between k-set problem agreement problem (that is stronger)
and the k-test&set problem (that is weaker). All these rela-
tions are depicted in Figure 1. So, this paper adds some
unity and complements other papers that have investigated
the respective computability power of each of these prob-
lems with respect to the other ones [10, 11, 12, 14, 18, 19].

Let us finally notice that the hierarchy described in Fig-
ure 1 is far from being complete. More research remains
to be done in the area of problem equivalence and prob-
lem transformation. As an example, the relation linking the
(n, k)-SA problem and the (n − 2, k − 1)-SA problem still
remains an intriguing open problem.

Acknowledgments

The authors want to acknowledge the referees for their
constructive comments.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit
N., Atomic Snapshots of Shared Memory. Journal of the
ACM, 40(4):873-890, 1993.

[2] Afek Y. and Merritt M., Fast, Wait-Free (2k−1)-Renaming.
Proc. 18th ACM Symposium on Principles of Distributed
Computing (PODC’99), ACM Press, pp. 105-112, 1999.

[3] Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R.,
Renaming in an Asynchronous Environment. Journal of the
ACM, 37(3):524-548, 1990.

[4] Attiya H. and Fouren A., Polynomial and Adaptive Long-
lived (2k − 1)-Renaming. Proc. 14th Symposium on Dis-
tributed Computing (DISC’00), LNCS #1914, pp. 149-163,
2000.

[5] Attiya H. and Rachman O., Atomic Snapshots in O(n log n)
Operations. SIAM Journal on Computing, 27(2):319-340,
1998.

[6] Attiya H. and Welch J., Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics, (2d Edition), Wiley-
Interscience, 414 pages, 2004.

[7] Borowsky E. and Gafni E., Immediate Atomic Snapshots
and Fast Renaming. Proc. 12th ACM Symposium on Princi-
ples of Distributed Computing (PODC’93), pp. 41-51, 1993.

[8] Borowsky E. and Gafni E., Generalized FLP Impossibility
Results for t-Resilient Asynchronous Computations. Proc.
25th ACM Symposium on Theory of Distributed Computing
(STOC’93), ACM Press, pp. 91-100, 1993.

[9] Chaudhuri S., More Choices Allow More Faults: Set Con-
sensus Problems in Totally Asynchronous Systems. Infor-
mation and Computation, 105:132-158, 1993.

[10] Gafni E., Read-Write Reductions. Proc. 8th Int’l Conference
on Distributed Computing and Networking (ICDCN’06),
Springer Verlag LNCS #4308, pp. 349-354, 2006.

[11] Gafni E., Renaming with k-set Consensus: an Optimal Al-
gorithm in n + k − 1 Slots. Proc. 10th Int’l Conference On
Principles Of Distributed Systems (OPODIS’06), Springer
Verlag LNCS #4305, pp. 36-44, 2006.

[12] Gafni E., Rajsbaum S. and Herlihy M., Subconsensus Tasks:
Renaming is Weaker than Set Agreement. Proc. 20th Int’l
Symposium on Distributed Computing (DISC’06), Springer-
Verlag #4167, pp.329-338, 2006.

[13] Herlihy M.P., Wait-Free Synchronization. ACM Transac-
tions on Programming Languages and Systems, 13(1):124-
149, 1991.

[14] Herlihy M.P. and Rajsbaum S., Algebraic Spans. Mathemat-
ical Structures in Computer Science, 10(4): 549-573, 2000.

[15] Herlihy M.P. and Shavit N., The Topological Structure
of Asynchronous Computability. Journal of the ACM,
46(6):858-923,, 1999.

[16] Herlihy M.P. and Wing J.M., Linearizability: a Correct-
ness Condition for Concurrent Objects. ACM Transactions
on Programming Languages and Systems, 12(3):463-492,
1990.

[17] Lamport. L., On Interprocess Communication, Part II: Al-
gorithms. Distributed Computing, 1(2):86-101, 1986.

[18] Mostéfaoui A., Raynal M. and Travers C., Exploring Gafni’s
reduction land: from Ωk to wait-free adaptive (2p − d p

k
e)-

renaming via k-set agreement. Proc. 20th Symposium on
Distributed Computing (DISC’06), Springer Verlag LNCS
#4167, pp. 1-15, 2006.

[19] Mostéfaoui A., Raynal M. and Travers C., From Renam-
ing to Set Agreement. 14th Colloquium on Structural In-
formation and Communication Complexity (SIROCCO’07),
Springer Verlag LNCS #4474, pp. 62-76, 2007.

[20] Saks M. and Zaharoglou F., Wait-Free k-Set Agreement
is Impossible: The Topology of Public Knowledge. SIAM
Journal on Computing, 29(5):1449-1483, 2000.

