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Abstract The k-set agreement problem is a generalization of the consensus problem:
considering a system made up of n processes where each process proposes a value,
each non-faulty process has to decide a value such that a decided value is a proposed
value, and no more than k different values are decided. It has recently be shown that,
in the crash failure model, min(�f

k
� + 2, � t

k
� + 1) is a lower bound on the number

of rounds for the non-faulty processes to decide (where t is an upper bound on the
number of process crashes, and f , 0 ≤ f ≤ t , the actual number of crashes).

This paper considers the k-set agreement problem in synchronous systems where
up to t < n/2 processes can experience general omission failures (i.e., a process can
crash or omit sending or receiving messages). It first introduces a new property, called
strong termination. This property is on the processes that decide. It is satisfied if, not
only every non-faulty process, but any process that neither crashes nor commits re-
ceive omission failure decides. The paper then presents a k-set agreement protocol
that enjoys the following features. First, it is strongly terminating (to our knowledge,
it is the first agreement protocol to satisfy this property, whatever the failure model
considered). Then, it is early deciding and stopping in the sense that a process that ei-
ther is non-faulty or commits only send omission failures decides and halts by round
min(�f

k
� + 2, � t

k
� + 1). To our knowledge, this is the first early deciding k-set agree-

ment protocol for the general omission failure model. Moreover, the protocol pro-

An extended abstract of a preliminary version of this paper has appeared in the proceedings of
SIROCCO 2006 [31].
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vides also the following additional early stopping property: a process that commits
receive omission failures (and does not crash) executes at most min(�f

k
�+2, � t

k
�+1)

rounds. It is worth noticing that the protocol allows each property (strong termination
vs early deciding/stopping vs early stopping) not to be obtained at the detriment of
the two others.

The combination of the fact that min(�f
k
� + 2, � t

k
� + 1) is a lower bound on the

number of rounds in the crash failure model, and the very existence of the proposed
protocol has two noteworthy consequences. First, it shows that, although the general
omission failure model is more severe than the crash failure model, both models have
the same lower bound for the non-faulty processes to decide. Second, it shows that,
in the general omission failure model, this bound applies also the processes that do
not crash and commit only send omission failures.

Keywords Agreement problem · Crash failure · Strong Termination · Early
decision · Early stopping · Efficiency · k-set agreement · Message-passing system ·
Receive omission failure · Round-based computation · Send omission failure ·
Synchronous system

1 Introduction

Context of the Paper k-set and consensus problems. The k-set agreement problem
generalizes the uniform consensus problem (that corresponds to the case k = 1). It
has been introduced by S. Chaudhuri who, considering the crash failure model, in-
vestigated how the number of choices (k) allowed to the processes is related to the
maximum number (t) of processes that can be faulty (i.e., that can crash) [8]. The
problem can be defined as follows. Each of the n processes (processors) defining the
system starts with its own value (called “proposed value”). Each process that does
not crash has to decide a value (termination), in such a way that a decided value is
a proposed value (validity) and no more than k different values are decided (agree-
ment).1

A k-set protocol can be useful to allocate shared resources. As an example, let us
consider the allocation of broadcast frequencies in communication networks (this ex-
ample is taken from [22]). Such a protocol allows processes to agree on a small num-
ber of frequencies for broadcasting large data (e.g., a movie). As the communication
is broadcast-based, the processes can receive the data using the same frequency.

k-set agreement can trivially be solved in crash-prone asynchronous systems when
k > t [8]. A one communication step protocol is as follows: (1) t + 1 processes are
arbitrarily selected prior to the execution; (2) each of these processes sends its value
to all processes; (3) a process decides the first value it receives. Differently, it has been

1A process that decides and thereafter crashes is not allowed to decide one more value, in addition to the
k allowed values. This is why k-set agreement generalizes uniform consensus where no two processes (be
they faulty or not) can decide different values. Non-uniform consensus allows a faulty process to decide
a value different from the value decided by the correct processes. The non-uniform version of the k-set
agreement problem has not been investigated in the literature.
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shown that there is no solution in these systems as soon as k ≤ t [6, 19, 34].2 Several
approaches have been proposed to circumvent the impossibility to solve the k-set
agreement problem in process crash prone asynchronous systems (e.g., probabilistic
protocols [24], or unreliable failure detectors with limited scope accuracy [18, 23,
35]).

The situation is different in synchronous systems where processes are prone to
crash failures. In these systems, the k-set agreement problem can always be solved,
whatever the value of t with respect to k. It has also been shown that, in the worst
case, the lower bound on the number of rounds (time complexity measured in com-
munication steps) is �t/k� + 1 [9]. (This bound generalizes the t + 1 lower bound
associated with the consensus problem [1, 2, 11, 22]. See also [5] for the case t = 1.)

Early Decision Although failures do occur, they are rare in practice. For the uni-
form consensus problem (k = 1), this observation has motivated the design of early
deciding synchronous protocols [7, 10, 21, 32], i.e., protocols that can cope with up
to t process crashes, but decide in less than t + 1 rounds in favorable circumstances
(i.e., when there are few failures). More precisely, these protocols allow the processes
to decide in min(f + 2, t + 1) rounds, where f is the number of processes that crash
during a run, 0 ≤ f ≤ t , which has been shown to be optimal (the worst scenario
being when there is exactly one crash per round) [7, 20].3

In a very interesting way, it has very recently been shown that the early deciding
lower bound for the k-set agreement problem in the synchronous crash failure model
is �f/k�+2 for 0 ≤ �f/k� ≤ �t/k�−2, and �f/k�+1 otherwise [13, 14]. This lower
bound, not only generalizes the corresponding uniform consensus lower bound, but
also shows an “inescapable tradeoff” among the number t of crashes tolerated, the
number f of actual crashes, the degree k of coordination we want to achieve, and the
best running time achievable [9]. As far as the time/coordination degree tradeoff is
concerned, it is important to notice that, when compared to consensus, k-set agree-
ment divides the running time by k (e.g., allowing two values to be decided halves
the running time).

Related Work While non-early deciding k-set agreement protocols for the synchro-
nous crash failure model (i.e., protocols that always terminate in �t/k� + 1 rounds)
are now well understood [2, 9, 22], to our knowledge, so far only two early deciding
k-set agreement protocols have been proposed [15, 29] for that model. The proto-
col described in [15] assumes t < n − k, which means that the number of crashes t

that can be tolerated decreases as the coordination degree k increases. The protocol
described in [29], which imposes no constraint on t (i.e., t < n), is based on a mecha-
nism that allows the processes to take into account the actual pattern of crash failures
and not only their number, thereby allowing the processes to decide in much less than
�f/k� + 2 rounds in a lot of cases (the worst case being only when the crashes are
evenly distributed in the rounds with k crashes per round). We have recently designed

2The asynchronous consensus impossibility, case k = 1, was proved before [12]. A combinatorial charac-
terization of the tasks which are solvable in presence of one process crash is presented in [4].
3More precisely, the lower bound is f + 2 when f ≤ t − 2, and f + 1 when f = t − 1 or f = t .
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an early deciding k-set agreement protocol for the synchronous send (only) omission
failure model [30]. A survey of the k-set agreement problem in synchronous systems
prone to crash, send omission or general omission failures is presented in [33].

As noticed previously, the proposed protocol extends to the general omission fail-
ure model the k-set lower bound proved for the crash failure model. These proofs
appear in [13, 14] where the results presented have a subtle difference. The result
presented in [13] considers a model where n is not known and focuses on local de-
cision (i.e., the first round during which a process decides). It shows that, in such a
context, no single process decides within �f/k� + 1 rounds. Moreover, the proof of
that result relies on algorithmic reductions only. The result in [14] considers a system
model where n and t are known and is on global decision (i.e., the last round at which
a process decides). It shows that at least one process requires �f/k� + 2 rounds to
decide. The technique used to prove this result relies on topology. Moreover, these
two papers are on the rounds at which the process decide and not the round at which
they stop. (More information on the differences between these papers can be found
at the end of the “related work” section of [14].)

Content of the Paper This paper investigates the k-set agreement problem in syn-
chronous systems prone to general omission failures and presents a k-set protocol
suited to this model. The general omission failure model lies between the crash fail-
ure model and the Byzantine failure model [26]: a faulty process is a process that
crashes, or omits sending or receiving messages [16, 27]. The proposed protocol en-
joys several noteworthy properties.

• The usual termination property used to define an agreement problem concerns only
the correct processes: they all have to decide. Due to the very nature of crash fail-
ures, there is no way to force a faulty process to decide in the crash failure model.
It is the same in the Byzantine failure model where a faulty process that does not
crash can decide an arbitrary value.
The situation is different in the general omission failure model where a faulty
process that does not crash cannot have an arbitrary behavior. On one side, due
to the very nature of the receive omission failures committed by a process, there
are runs where that process can forever be prevented from learning that it can de-
cide a value without violating the agreement property (at most k different values
are decided).4 So, for such a process, the best that can be done in the general case
is either to decide a (correct) value, or halt without deciding because it does not
know whether it has a value that can be decided. On the other side, a process that
commits only send omission failures receives all the messages sent to it, and should
consequently be able to always decide a correct value.
We say that a protocol is strongly terminating if it forces to decide all the processes
that neither crash nor commit receive omission failures (we call them the good
processes; the other processes are called bad processes). This new termination
criterion is both theoretically and practically relevant: it extends the termination

4A process that commits receive omission failures has an “autism” behavior. If it receives no message, it
is isolated from the other processes and cannot learn values from its environment.



Theory Comput Syst

property to all the processes that are committing only “benign” faults. The pro-
posed protocol is strongly terminating.5

• Although, as discussed before, early decision be an interesting property, some
early-deciding (consensus) protocols make a difference between early decision and
early stopping: they allow a correct process to decide in min(f + 2, t + 1) but stop
only at a later round (e.g., [10]). The design of early stopping protocols is more
constraining that the design of early deciding protocols. This comes from the fact
that, as a process has to decide and stop in the very same round, it does no longer
participate in next rounds to help the other processes to decide correctly. Here we
are interested in early stopping protocols. More precisely, the proposed protocol
satisfies the following properties:
– A good process decides and halts by round min(�f

k
� + 2, � t

k
� + 1).

So, when �f
k
� ≤ � t

k
�− 2, the protocol has the noteworthy property to extend the

�f
k
� + 2 lower bound for a correct process to decide (1) from the crash failure

model to the general omission failure model, and (2) from the correct processes
to all the good processes.
As noticed before, it is not possible to force a bad process to decide. So, for
these processes the protocol “does its best”, namely it ensures the following
early stopping property:

– No process executes more than min(�f
k
� + 2, � t

k
� + 1) rounds.

Let us notice that it is possible that a bad process decides just before halting.
Moreover, when f = xk where x is an integer (which is always the case for
consensus), or when there is no fault (f = 0), a bad process executes no more
rounds than a good process. In the other cases, it executes at most one additional
round.

– Each message carries a proposed value and two boolean arrays of size n (sets
of process identities). This means that, if we do not consider the size of the
proposed values (that does not depend on the protocol), the bit complexity is
upper bounded by O(n2f/k) per process.

The design of a protocol that satisfies, simultaneously and despite process crashes
and general omission faults, the agreement property of the k-set problem, strong ter-
mination, early decision and stopping for the good processes and early stopping for
the bad processes is not entirely obvious, as these properties are partly antagonistic.
This is due to the fact that agreement requires that no more than k distinct values be
decided (be the deciding processes correct or not), strong termination requires that, in
addition to the correct processes, a well defined class of faulty processes decide, and
early stopping requires the processes to halt as soon as possible. Consequently the
protocol should not prevent processes from deciding at different rounds, and so, after
it has decided, a process can appear to the other processes as committing omission
failures, while it is actually correct. Finally, the strong termination property prevents
the elimination from the protocol of a faulty process that commits only send omission
failures as soon as it has been discovered faulty, as that process has to decide a value

5None of the uniform consensus protocols for the synchronous general omission failure model that we are
aware of (e.g., [27, 28]) is strongly terminating.
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if it does not crash later. A major difficulty in the design of the protocol consists in
obtaining simultaneously all these properties and not each one at the price of not sat-
isfying others. To emphasize the basic principles on which the strongly terminating
early stopping protocol is based, and allow for an easier understanding, the protocol
is presented in two steps. A strongly terminating (not early-stopping protocol) is first
presented. Then, this protocol is appropriately enriched in order to satisfy the early
stopping property.

General transformations from a synchronous failure model to another synchronous
failure model (e.g., from omission to crash) are presented in [25]. These transforma-
tions are general (they are not associated with particular problems) and have a cost
(simulating a round in the crash failure model requires two rounds in the more severe
omission failure model). So, they are not relevant for our purpose.

When instantiated with k = 1, the protocol provides a new uniform consensus
protocol for the synchronous general omission failure model. To our knowledge, this
is the first uniform consensus protocol that enjoys strong termination and directs all
the processes to terminate by round min(f + 2, t + 1).

Roadmap The paper consists of 7 sections. Section 2 presents the computation
model and gives a definition of the k-set agreement problem. As previously indi-
cated, in order to underline its basic design principles and make its understanding
easier, the strongly terminating early deciding protocol is presented incrementally.
Section 3 presents first a strongly terminating k-set agreement protocol that is en-
riched in Sect. 5 to satisfy the additional early stopping property. Formal statements
of the properties (lemmas and theorems) are stated in Sect. 4 and Sect. 6. Finally,
Sect. 7 concludes the paper. Moreover, in order not to overload the presentation, the
proof of the lemmas appear in a separate appendix.

2 Model and Problem Definition

2.1 Round-Based Synchronous System

The system model consists of a finite set of processes, namely, � = {p1, . . . , pn}, that
communicate and synchronize by sending and receiving messages through channels.
Every pair of processes pi and pj is connected by a channel denoted (pi,pj ). The
underlying communication system is assumed to be failure-free: there is no creation,
alteration, loss or duplication of message.

The system is synchronous. This means that each of its executions consists of a
sequence of rounds. Those are identified by the successive integers 1,2, etc. For the
processes, the current round number appears as a global variable r that they can read,
and whose progress is managed by the underlying system. A round is made up of
three consecutive phases:

• A send phase in which each process sends messages.
• A receive phase in which each process receives messages. The fundamental prop-

erty of the synchronous model lies in the fact that a message sent by a process pi

to a process pj at round r , is received by pj at the very same round r .
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• A computation phase during which each process processes the messages it received
during that round and executes local computation.

2.2 Process Failure Model

A process is faulty during an execution if its behavior deviates from that prescribed
by its algorithm, otherwise it is correct. A failure model defines how a faulty process
can deviate from its algorithm [17]. We consider here the following failure models:

• Crash failure. A faulty process stops its execution prematurely. After it has crashed,
a process does nothing. Let us observe that if a process crashes in the middle of
a sending phase, only an arbitrary subset of the messages it was supposed to send
might actually be sent.

• Send Omission failure. A faulty process crashes or omits sending messages it was
supposed to send [16].

• General Omission failure. A faulty process crashes, omits sending messages it was
supposed to send or omits receiving messages it was supposed to receive (receive
omission) [27].

It is easy to see that these failure models are of increasing “severity” in the sense
that any protocol that solves a problem in the General Omission (resp., Send Omis-
sion) failure model, also solves it in the (less severe) Send Omission (resp., Crash)
failure model [17]. This paper considers the General Omission failure model. As
already indicated, n, t and f denote the total number of processes, the maximum
number of processes that can be faulty, and the actual number of processes that are
faulty in a given run, respectively (0 ≤ f ≤ t < n/2).

As defined in the introduction, a good process is a process that neither crashes
nor commits receive omission failures. A bad process is a process that commits re-
ceive omission failures or crashes. So, given a run, each process is either good or
bad. A good process commits only “benign” failures, while a bad process commits
“severe” failures.

2.3 Strongly Terminating k-Set Agreement

The problem has been informally stated in the Introduction: every process pi pro-
poses a value vi and each correct process has to decide on a value in relation to the
set of proposed values. More precisely, the k-set agreement problem is defined by
the following three properties:

• Termination: Every correct process decides.
• Validity: If a process decides v, then v was proposed by some process.
• Agreement: No more than k different values are decided.

As we have seen 1-set agreement is the uniform consensus problem. In the follow-
ing, we implicitly assume k ≤ t (this is because, as we have seen in the introduction,
k-set agreement is trivial when k > t).

As already mentioned, we are interested here in protocols that direct all the good
processes to decide. So, we consider a stronger version of the k-set agreement prob-
lem, in which the termination property is replaced by the following property:

• Strong Termination: Every good process decides.
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3 A Strongly Terminating k-Set Agreement Protocol

As announced in the Introduction, the protocol is presented incrementally. This
section presents a strongly terminating k-set agreement protocol where the good
processes terminate in � t

k
� + 1 rounds. (This protocol will be enriched in Sect. 5

in order to obtain the early-stopping property. This enrichment will consist only in
adding new statements, without modifying the base protocol).

The strongly terminating protocol is described in Fig. 1. r is a global variable that
defines the current round number; the processes can only read it. A process pi starts
the protocol by invoking the function k-SET_AGREEMENT(vi) where vi is the value it
proposes. It terminates either by crashing, by returning the default value ⊥ at line 08,
or by returning a proposed value at line 12. As we will see, only a bad process can
exit at line 08 and return ⊥. That default value cannot be proposed by a process. So,
returning ⊥ means “no decision” from the k-set agreement point of view.

3.1 Local Variables

A process pi manages four local variables. The scope of the first two is the whole
execution, while the scope of the last two is limited to each round. Their meaning is
the following:

• esti is pi ’s current estimate of the decision value. Its initial value is vi (line 01).
• trustedi represents the set of processes that pi currently considers as being correct.

It initial value is � (the whole set of processes). So, i ∈ trustedi (line 04) means
that pi considers it is correct. If j ∈ trustedi we say “pi trusts pj ”; if j /∈ trustedi

we say “pi suspects pj ”.
• rec_ fromi is a round local variable used to contain the ids of the processes that

pi does not currently suspect and from which it has received messages during that
round (line 05).

• Wi(j) is a set of identities that represents the set of the processes p� that are cur-
rently trusted by pi and that (to pi ’s knowledge) trust pj (line 06).6

Function k-SET_AGREEMENT(vi )
(01) esti ← vi ; trustedi ← �; % r = 0 %
(02) for r = 1, . . . , � t

k
� + 1 do

(03) begin round
(04) if (i ∈ trustedi ) then for each j ∈ � do send(esti , trustedi ) to pj end do end if;
(05) let rec_ fromi = {j : (estj , trustj ) is received from pj during r ∧ j ∈ trustedi };
(06) for each j ∈ rec_ fromi let Wi(j) = {� : � ∈ rec_ fromi ∧ j ∈ trust�};
(07) trustedi ← rec_ fromi − {j : |Wi(j)| < n − t};
(08) if (|trustedi | < n − t) then return (⊥) end if;
(09) esti ← min(estj received during r and such that j ∈ trustedi )

(10) end round
(11) end do
(12) return (esti )

Fig. 1 Strongly terminating k-set protocol for general omission failures, code for pi , t < n
2

6Sets similar to the “witness” set Wi(j) are used in [3] to produce translations between failure models.
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3.2 Process Behavior

The aim is for a process to decide the smallest value it has seen. But, due to the
send and receive omission failures possibly committed by some processes, a process
cannot safely decide the smallest value it has ever seen, it can only decide safely the
smallest value in a subset of the values it has received. The crucial part of the protocol
consists in providing each process with correct rules that allow it to determine its
“safe subset”.

During each round r , these rules are implemented by the following process behav-
ior decomposed in three parts according to the synchronous round-based computation
model.

• If pi considers itself to be correct (i ∈ trustedi ), it first sends to all the processes
its current local state, namely, the current pair (esti , trustedi ) (line 04). Otherwise,
pi skips the sending phase.

• Then, pi executes the receive phase (line 05). As already indicated, when it con-
siders the messages it has received during the current round, pi considers only the
messages sent by the processes it trusts (here, the set trustedi can be seen as a
filter).

• Finally, pi executes the local computation phase that is the core of the protocol
(lines 06-09). This phase is made up of the following statements where the value
n − t constitutes a threshold that plays a fundamental role.
– First, pi determines the new value of trustedi (lines 06-07). It is equal to the

current set rec_ fromi from which are suppressed all the processes pj such that
|Wi(j)| < n − t . These processes pj are no longer trusted by pi because there
are “not enough” processes trusted by pi that trust them (pj is missing “Wit-
nesses” to remain trusted by pi , hence the name Wi(j)); “not enough” means
here less than n − t .

– Then, pi checks if it trusts enough processes, i.e., at least n − t (line 08). If
the answer is negative, as we will see in the proof, pi knows that it has com-
mitted receive omission failures and cannot safely decide. It consequently halts,
returning the default value ⊥.

– Finally, if it has not stopped at line 08, pi computes its new estimate of the
decision value (line 09) according to the estimate values it has received from the
processes it currently trusts.

4 Proof of the Strongly Terminating Protocol

The protocol proof assumes t < n/2. It uses the following notations.

• Given a set of process identities X = {i, j, . . .}, we sometimes use pi ∈ X for i ∈ X.
• C is the set of correct processes in a given execution.
• xi[r] denotes the value of pi ’s local variable x at the end of round r . By definition

trustedi[0] = �.
• Completing[r] = {i : pi proceeds to r + 1 }. By definition Completing[0] = �. (If

r = � t
k
� + 1, “pi proceeds to r + 1” means pi executes line 12.)
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• EST[r] = {esti[r] : i ∈ Completing[r]}. By definition EST[0] is the set of proposed
values. EST[r] contains the values that are present in the system at the end of
round r .

• Silent[r] = {i : ∀j ∈ Completing[r] : i /∈ trustedj [r]}. It is important to remark that
if i ∈ Silent[r], then no process pj (including pi itself) takes into account esti
sent by pi (if any) to update its local variables estj at line 09 of the round r .
(Silent[0] = ∅.)

The proof of the following relations are left to the reader:

Completing[r + 1] ⊆ Completing[r],
Silent[r] ⊆ Silent[r + 1],

∀i ∈ Completing[r] : Silent[r] ⊆ � − trustedi[r].

4.1 Basic Lemmas

As indicated at the end of the Introduction, in order not to overload the presentation,
the proofs of all the lemmas are given in Appendix A.

The first lemma that follows will be used to prove that a process that does not
commit receive omission failure decides.

Lemma 1 Let pi be a good process. ∀r : (1) C ⊆ trustedi[r] and (2) i ∈ Completing[r].

The next two lemmas show that n − t is a critical threshold related to the number
of processes (1) for a process to become silent or (2) for the process estimates to
become smaller or equal to some value. More explicitly, the first of these lemmas
states that if a process px is not trusted by “enough” processes (i.e., trusted by less
than n − t processes.) at the end of a round r − 1, then that process px is not trusted
by the processes that complete round r .

Lemma 2 ∀r ≥ 1 : ∀x : |{y : y ∈ Completing[r −1]∧x ∈ trustedy[r −1]}| < n− t ⇒
x ∈ Silent[r].

The next lemma shows that if “enough” (i.e., at least n − t) processes have an
estimate smaller than or equal to a value v at the end of a round r − 1, then no
process pi ∈ Completing[r] has a value greater than v at the end of r .

Lemma 3 Let v be an arbitrary value. ∀r ≥ 1 : |{x : estx[r − 1] ≤ v ∧ x ∈
Completing[r − 1]}| ≥ n − t ⇒ ∀i ∈ Completing[r] : esti[r] ≤ v.

Finally, the next lemma states that the sequence of set values EST[0], EST[1],. . .
is monotonic and never increases.

Lemma 4 ∀r ≥ 0 : EST[r + 1] ⊆ EST[r].
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4.2 Central Lemma

The lemma that follows is central to prove the agreement property, namely, at most
k distinct values are decided. Being general, this formulation allows using the same
lemma to prove both the non-early stopping version of the protocol (Theorem 3) and
its extension that provides an early stopping protocol (Theorem 4).

Lemma 5 Let r (1 ≤ r ≤ � t
k
� + 1) be a round such that (1) C ⊆ Completing[r − 1],

and (2) |EST[r]| > k (let vm denote the kth smallest value in EST[r], i.e., the greatest
value among the k smallest values of EST[r]). Let i ∈ Completing[r]. We have n −
kr < |trustedi[r]| ⇒ esti[r] ≤ vm.

4.3 Properties of the Protocol

Theorem 1 (Validity) A decided value is a proposed value.

Proof Let us first observe that a process pi decides at line 12 of the last round. It then
decides esti[� t

k
� + 1].

The proof is an easy induction on the round number. Initially (r = 0), each esti
local variable contains a proposed value (line 01). Let us assume this is true until
round r − 1. We show it is true at the end of round r . Let us notice that, due to the
test of line 08, pi updates esti at line 09 only if |trustedi | ≥ n− t (otherwise, pi stops
at line 08 without deciding). Due to line 07, trustedi is a set including only processes
pj whose value estj has been received during the current round r . As that value is
the value computed by pj during the previous round, it follows from the induction
assumption that esti contains a proposed value. �

Theorem 2 (Strong Termination) Every good process decides.

Proof Let pi be a good process (so, either pi is correct, or commits only send omis-
sion failures). Lemma 1 shows that ∀r : C ⊆ trustedi[r]. We conclude from that
lemma that ∀r : |trustedi[r]| ≥ |C| ≥ n − t . It follows that pi never exits at line 08.
Consequently, pi decides at line 12 of the last round r = � t

k
� + 1. �

As a correct process is a good process (it neither crashes not commits receive omis-
sion failures), the following corollary is an immediate consequence of the previous
theorem.

Corollary 1 (Termination) Every correct process decides.

Theorem 3 (Agreement) No more than k different values are decided.

Proof Let us consider the set EST[� t
k
� + 1] that contains the estimate values present

in the system at the end of the round � t
k
�+1. We claim |EST[� t

k
�+1]| ≤ k (claim C).

Due to very definition of the EST[r] sets, a process that decides a value that belongs
to EST[� t

k
� + 1]. This implies that at most k different values are decided.
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Proof of C. Let t = kx + y with y < k (hence � t
k
� = x). The proof is by contra-

diction. Let us assume that |EST[x + 1]| > k. Let vm be the kth smallest values in
EST[x + 1] and let i ∈ Completing[x + 1] such that esti[x + 1] > vm.

As each correct process decides (Corollary 1), there are at least n − t (correct)
processes in Completing[x + 1]. Moreover, as |EST[x + 1]| > k, the assumptions
of Lemma 5 are satisfied. Considering our assumption esti[x + 1] > vm, and apply-
ing the contrapositive of Lemma 5 to process pi , we obtain |trustedi[x + 1]| ≤ n −
k(x + 1) = n − (kx + k) < n − (kx + y) = n − t . This implies that pi re-
turns ⊥ at line 08 during the round x + 1: a contradiction with the fact that
i ∈ Completing[x + 1]. End of the proof of the claim C. �

5 A Strongly Terminating and Early Stopping k-Set Agreement Protocol

As announced, this section enriches the previous strongly terminating k-set agree-
ment protocol to obtain an early stopping protocol, namely, a protocol where a good
process decides and halts by round min(�f

k
� + 2, � t

k
� + 1), and a bad process exe-

cutes at most min(�f
k
� + 2, � t

k
� + 1) rounds. This incremental design (separation of

concerns) makes the protocol design modular (with respect to each property, strong
termination vs early stopping), and makes easier both the understanding of the proto-
col and its proof.

The protocol is described in Fig. 2. To make reading and understanding easier, all
the lines from the first protocol appears with the same number. The line number of
each of the 10 new lines that make the protocol early stopping are prefixed by “E”.
We explain here only the new parts of the protocol.

Function k-SET_AGREEMENT(vi )
(01) esti ← vi ; trustedi ← �; can_deci ← ∅; % r = 0 %
(02) for r = 1, . . . , � t

k
� + 1 do

(03) begin round
(04) if (i ∈ trustedi ) then for each j ∈ � do send(esti , trustedi , can_deci ) to pj end do end if;
(E01) let REC_FROMi = {i} ∪ {j : (estj , trustj , c_decj ) is received from pj during r};
(E02) let CAN_DECi = ∪(c_decj : j ∈ REC_FROMi );
(E03) if (i /∈ trustedi ∨ i ∈ can_deci ) then
(E04) if |CAN_DECi| > t then let ESTi = {estj : j ∈ REC_FROMi ∧ c_decj �= ∅};
(E05) return (min(ESTi ))

(E06) end if end if ;
(05) let rec_ fromi = {j : (estj , trustj , c_decj ) is received from pj during r ∧ j ∈ trustedi };
(06) for each j ∈ rec_ fromi let Wi(j) = {� : � ∈ rec_ fromi ∧ j ∈ trust�};
(07) trustedi ← rec_ fromi − {

j : |Wi(j)| < n − t
}
;

(08) if (|trustedi | < n − t) then return (⊥) end if;
(09) esti ← min(estj received during r and such that j ∈ trustedi );
(E07) can_deci ← ∪(c_decj received during r and such that j ∈ trustedi );
(E08) if (i ∈ trustedi ∧ i /∈ can_deci )

(E09) then if (n − k r < |trustedi |) ∨ (can_deci �= ∅) then can_deci ← can_deci ∪ {i} end if
(E10) end if
(10) end round
(11) end do;
(12) return (esti )

Fig. 2 k-set early-deciding protocol for general omission failures, code for pi , t < n
2



Theory Comput Syst

5.1 Additional Local Variables

A process pi manages three additional local variables, one (can_deci) whose scope
is the whole computation, and two (CAN_DECi and REC_FROMi ) whose scope is
limited to each round. Their meaning is the following.

• can_deci is a set of process identities that contains, to pi ’s knowledge, all the
processes that can decide a value without violating the agreement property. The
current value of can_deci is part of each message sent by pi . Its initial value is ∅.

• REC_FROMi is used by pi to store its id plus the ids of all the processes from
which it has received messages during the current round r (line E01). Differently
from the way rec_ fromi is computed (line 05), no filtering (with the set trustedi )
is used to compute REC_FROMi .

• CAN_DECi is used to store the union of all the can_decj sets that pi has received
during the current round r (line E02).

5.2 Process Behavior

It is important to notice that no variable used in the basic protocol is updated by the
10 new lines. These variables are only read in these lines. This means that, when
there is no early deciding/stopping at line E05, the enriched protocol behaves exactly
as the basic protocol.

Let us now examine the two parts of the protocol where the new statements appear.

• Let us first consider the lines E07-E10.
After it has updated its current estimate esti (line 09), pi updates similarly its set
can_deci, to learn the processes that can decide early. As we can see, esti and
can_deci constitute a pair that is sent (line 04) and updated “atomically”.
Then, if pi trusts itself (i ∈ trustedi ) and, up to now, was not allowed to decide
early and stop (i /∈ can_deci), it tests a predicate to know if it can decide early. If
it can, pi adds its identity to can_deci (line E09). The “early decision” predicate is
made up of two parts:
– If can_deci �= ∅, then pi learns that other processes can decide early. Conse-

quently, as it has received and processed their estimates values (line 09), it can
safely adds its identity to can_deci.

– If n − kr < |trustedi |, then pi discovers that the set of processes it trusts is “big
enough” for it to conclude that it knows one of the k smallest estimate values
currently present in the system. “Big enough” means here greater than n − kr .
(Let us notice that this threshold was used in Lemma 5 in the proof of the basic
protocol.)

• Let us now consider the lines E01-E06.
As already indicated REC_FROMi and CAN_DECi are updated in the receive
phase of the current round.

To use these values to decide during the current round (at line E05), pi

must either be faulty (predicate i /∈ trustedi ) or have previously sent its pair
(esti , can_deci ) to the other processes (predicate i /∈ trustedi ∨ i ∈ can_deci eval-
uated at line E03). But, when i ∈ trustedi , i ∈ can_deci is not a sufficiently strong



Theory Comput Syst

predicate for pi to decide safely. This is because it is possible that pi commit-
ted omission faults just during the current round. So, to allow pi to decide early,
we need to be sure that at least one correct process can decide (as it is correct
such a process pj can play a “pivot” role sending its (estj , can_decj ) pair to all
the processes). Hence, the intuition for the final early decision/stopping predicate,
namely |CAN_DECi| > t (line E04). That additional predicate guarantees that at
least one correct process can decide early and consequently has transmitted or will
transmit its (estj , can_decj ) pair to all.

So, the early decision/stopping predicate for a process pi spans actually two
rounds r and r ′ (r ′ > r). This is a “two phases” predicate split as follows:

• During r (lines E08–E09): (i ∈ trustedi ∧ i /∈ can_deci ) ∧ ((n − kr < |trustedi |) ∨
(can_deci �= ∅)), and

• During r ′ (lines E03–E04): (i /∈ trustedi ∨ i ∈ can_deci ) ∧ |CAN_DECi| > t .

Moreover, for a correct process pi , the assignment can_deci ← can_deci ∪ {i}
(lines E09) can be interpreted as a synchronization point separating the time instants
when they are evaluated to true.

6 Proof of the Strongly Terminating Early Stopping Protocol

6.1 Basic Lemmas

The next lemma extends Lemma 1 to the early stopping context.

Lemma 6 Let rd be the first round during which a correct process decides at line
E05 (If there is no such round, let rd = � t

k
� + 1). Let pi be a good process. ∀r ≤ rd :

if pi does not decide at line E05 of the round r , we have (1) C ⊆ trustedi[r] and (2)
i ∈ Completing[r].

Lemma 5 considers a round r such that C ⊆ Completing[r − 1] (i.e., a round ex-
ecuted by all the correct processes). Its proof relies on Lemma 1, but considers only
the rounds r ′ ≤ r . As, until a correct process decides, the Lemma 1 and the Lemma 6
are equivalent, it follows that the Lemma 1 can be replaced by Lemma 6 in the proof
of Lemma 5. Let us also observe that the proofs of the Lemmas 2, 3 and 4 are still
valid in the early stopping context (these proofs use the set Completing[r] and do not
rely on the set C ). We now state additional lemmas used to prove the early stopping
k-set agreement protocol.

Lemma 7 The set EST i[r] computed by pi during round r (line E04) is not empty.

Lemma 8 Assuming that a process decides at line E05 during round r , let px be
a process that proceeds to round r + 1 (if r = � t

k
� + 1, “proceed to round r + 1”

means “execute the return() statement at line 12”). We have: x /∈ trustedx[r] ∨ x ∈
can_decx[r].
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It follows from that lemma that (i) if px executes line E03 during round r + 1,
it then evaluates the predicate in the if statement to true. Moreover, (ii) if px sends
messages during round r + 1 (which implies that x ∈ trustedx[r], line 04), these
messages necessarily carry a can_decx set that contains x.

Lemma 9 Let i ∈ Completing[r] (1 ≤ r ≤ � t
k
� + 1). can_deci[r] �= ∅ ⇒ esti[r] is

one of the k smallest values in EST[r].

Lemma 10 Assuming that a process decides at line E05 during round r , let px be a
process that proceeds to round r +1 (if r = � t

k
�+1, “proceed to round r +1” means

“execute the return() statement at line 12”). We have: estx[r] is among the k smallest
values in EST[r − 1].

Lemma 11 Let r ≤ � t
k
� be the first round during which a process decides at line E05.

Then, (1) every good process decides at line E05 during round r or r + 1. Moreover,
(2) no process executes more than r + 1 rounds.

6.2 Properties of the Protocol

Theorem 4 (Agreement) No more than k different values are decided.

Proof To prove the lemma, we consider two cases according to the first round r

during which a process decides.

• Case 1: r ≤ � t
k
�.

In that case, any process that decides does it at line E05 during round r or r + 1
(Lemma 11). We show that any decided value is among the k smallest values in
EST[r − 1].

Let us first observe that if a process pi decides at line E05 during a round r ′,
there is a process px such that x ∈ REC_FROMi[r ′] and can_decx[r ′ − 1] �= ∅
(possibly x = i) (G). This follows from the fact that |CAN_DECi[r ′]| > t and the
way the CAN_DEC sets are computed. Moreover, the value estx[r − 1] belongs to
EST i[r] (by the definition of the EST i[r] set).
– Let pi be a process that decides during r .

Let px be a process that satisfies the assertion G. As px sends messages dur-
ing r , or pi = px (this is because x ∈ REC_FROMi[r]), x ∈ Completing[r − 1].
Since can_decx[r − 1] �= ∅, it follows from Lemma 9 that estx[r − 1] is among
the k smallest values in EST[r −1] (i). Moreover, estx[r −1] ∈ EST i[r] (ii) and,
EST i[r] ⊆ EST[r − 1] (i.e., the set EST i[r] contains only values computed dur-
ing r − 1) (iii). Due to the min() function used by pi to compute the value v that
it decides, combining (i), (ii) and (iii) allows us to conclude that v is among the
k smallest values in EST[r − 1].

– Let us now consider a process pi (if any) that decides during round r + 1.
As before, let us consider a process px as defined in assertion G. So we have

estx[r] ∈ EST i[r + 1]. Since a process has decided early at r and px proceeds to
round r +1 (this is because x = i or, as x ∈ REC_FROMi[r +1], px necessarily
sends a message during round r +1), the assumptions of Lemma 10 are satisfied.
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Consequently, estx[r] is among the k smallest values in EST[r −1]. As EST i[r +
1] ⊆ EST[r] and EST[r] ⊆ EST[r − 1] (Lemma 4), we have EST i[r + 1] ⊆
EST[r − 1]. Moreover, as estx[r] ∈ EST i[r + 1], we can conclude that the value
decided by pi is among the k smallest ones in EST[r − 1].

• Case 2: r = � t
k
� + 1. We consider two cases according to lines at which processes

decides.
– At least one process decides at line E05. We show that, in that case, any decided

value is among the k smallest values in EST[r − 1](= EST[� t
k
�]). Let pi be

a process that decides at line E05 during round r . The reasoning used in the
first item of Case 1 is still valid. Consequently, pi decides one of the k smallest
values in EST[r − 1]. Let now pj be a process that decides at line 12. As a
process decides at line E05 of round r(= � t

k
� + 1) and pj “proceeds to round

r + 1” (which means here that pj executes the return() statement at line 12), the
assumptions of Lemma 10 are satisfied, from which we conclude that estj [r] is
among the k smallest values in EST[r − 1]. To conclude, let us observe that pj

decides the value estj [r].
– No process decides at line E05. This means that the early decision machinery

(i.e., lines E01-E06 and E07-E10) is useless in the considered execution. Let
us observe that, if we suppress lines E01-E06 and E07-E10 in the protocol of
Fig. 2, the resulting protocol is exactly the protocol of Fig. 1. Differently said,
while no process decides, for all process pi , the management of variable trusti
and esti does not differ in the protocols of Figs. 1 and 2. This implies that, in
the particular execution considered here, we can safely apply Theorem 3 which
states that no more than k distinct values are decided.

�

Theorem 5 [(Strong Termination and Early Stopping)] (i) A good process decides
and halts by round min(�f

k
� + 2, � t

k
� + 1). (ii) No process halts after min(�f

k
� +

2, � t
k
� + 1) rounds.

Proof The fact that no process executes more than �t/k� + 1 rounds is an immedi-
ate consequence of the code of the protocol executed in a round-based synchronous
model. Moreover, let us observe that the theorem follows directly from Lemma 11
as soon as a process decides at round r such that r ≤ �f/k� + 1. So, to prove the
theorem we consider the case where no process decides during a round ≤ �f/k�+ 1.
Let f = xk + y ≤ t , where 0 ≤ y < k. (This means that x = �f/k�.)

Proof of item (i).
Assuming that no process has decided by round x + 1, we have to show that a

good process decides and halts by round �f
k
� + 2. To show it, let us consider the

consecutive rounds x + 1 and x + 2.

• Round x + 1.
Let pi be a good process. We first establish that pi proceeds to round x + 2. This
is a direct consequence of Lemma 6: as, by assumption, no correct process decides
by the end of round x + 1, we have C ⊆ trustedi[x + 1] (A). Then, as pi neither
decides nor crashes during x + 1, it proceeds to round x + 2.
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We now show that for every good process pi we have i ∈ trustedi[x + 1] ⇒ i ∈
can_deci[x + 1] (B). Let us assume that i ∈ trustedi[x + 1] and let us consider pi

when it executes lines E07-E10. If i ∈ can_deci[x] then, as i ∈ trustedi[x + 1], we
still have i ∈ can_deci[x + 1] (line E07). If i /∈ can_deci[x], as i ∈ trustedi[x +
1], pi evaluates the local predicate of line E09. Moreover, as C ⊆ trustedi[x + 1]
(assertion A), we have |trustedi[x + 1]| ≥ n − f = n − (kx + y) > n − k(x + 1).
Consequently, the predicate is evaluated by pi to true, from which we conclude
(line E09) that i ∈ can_deci[x + 1].

• Round x + 2.
Let us first observe that, due to assertion A, every correct process pc is such that
c ∈ trustedc[x + 1]. This implies that pc sends messages during x + 2 (line 04).
Moreover, due to the assertion B, these messages carry a can_decc set such that
c ∈ can_decc (C). Let pi be a good process. We have to show that pi decides. As
pi does not commit receive omission failures, it receives from every correct pc a
can_decc set such that c ∈ can_decc. Consequently, we have C ⊆ CAN_DECi[x +
2] (lines E01-E02) from which we obtain that CAN_DECi[x + 2] > t . As pi eval-
uates the predicate of line E03 to true (assertion B), pi decides at line E05. This
completes the proof of the first item of the theorem.

Proof of item (ii).
To prove the second item of the theorem (namely no process halts after the round

�f
k
�+ 2), we consider two cases. Let us first consider the case where f = xk + y and

y �= 0. We have then �f
k
� + 2 = x + 3. As all the correct processes decide by the end

of round x + 2, the item follows by Lemma 11. The rest of the proof addresses the
second case, i.e., y = 0.

Let us first observe that assertions A, B and C stated above do not depend on the
value of y. We partition the set of correct processes according to the fact they have or
not their id in their can_dec set at the end of round x. Let IC[r] denote the subset of
correct processes pc such that c ∈ can_decc[r] and IC[r], the complement of IC[r]
in C (i.e., IC[r] = C − IC[r]). We claim: |IC[x]| ≤ t (Claim C1), and ∀i ∈ IC[x] :
trustedi[x] = C (Claim C2).

Proof of the Claim C1. Claim C1 is obtained by contradiction. Suppose that
|IC[x]| > t . Let pi ∈ IC[x]. As no correct process decides by the end of round
x + 1, it follows from Lemma 6 that pi receives during round x + 1 a can_decc

such that c ∈ can_decc from every process pc that belongs to IC[x]. Consequently,
IC[x] ⊆ CAN_DECi[x+1] (line E01-E02) and then, t < |CAN_DECi[x+1]|. More-
over, as pi ∈ IC[x] (i.e., i ∈ can_deci[x]) and pi is correct (i.e., i ∈ trustedi[x]) pi

evaluates the predicate of line E03 to true, from which we obtain that pi decides at
line E05 during x + 1: a contradiction. End of the Proof of the Claim C1.

Proof of the Claim C2. Let us consider a process pi ∈ IC[x]. Due to Claim C1,
such a process exists. As pi does not add its id in can_deci[x] and i ∈ trustedi[x]
(because pi is a correct process), pi evaluates during round x the predicate of line
E09 to false. Therefore, n − kx = n − f ≥ |trustedi[x]|. As |C| = n − f , it follows
from the fact that C ⊆ trustedi[x] (assertion A) that C = trustedi[x]. End of the Proof
of the Claim C2.

We now establish that (when y = 0) ∀i ∈ Completing[x + 1] : i ∈ trustedi[x +
1] ⇒ i ∈ can_deci[x + 1] (B’). This property is true for a good process pi (asser-
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tion B). Let us consider a process pj that commits receive omission failures. Let us
assume that j ∈ trustj [x + 1]. Due to lines 06-07, it follows that pj receives at least
n− t sets trust[x] such that j ∈ trust[x]. This implies that pj receives and processes
at least one trustc[x] set such that j ∈ trustc[x] from a correct process pc. As pj

is not correct, we necessarily have C � trustedc[x]. Due to Claim C2, this process
pc necessarily belongs to IC[r]. Hence, pj also receives from pc can_decc[x] �= ∅
(by definition of IC[r]). Consequently, as j ∈ trustedj [x + 1], it follows from lines
E08-E10 that we necessarily have j ∈ can_decj [x + 1].

We now show that a process pj that commits receive omission failure decides or
halts by the end of round x + 2. In order to establish a contradiction, suppose that pj

proceeds to round x + 3(= �f
k
� + 3). In particular, pj does not return ⊥ at line 08

during round x +2, which means that |trustedj [x +2]| ≥ n− t . As trustedj [x +2] ⊆
REC_FROMj [x + 2], this implies that pj receives at least n − t messages during
round x + 2. Moreover, let us observe that, due to assertion B’ and the test of line 04,
every message sent during x + 2 carries a set can_deci such that i ∈ can_deci (where
pi is the sender). It follows that |CAN_DECj [x + 2]| ≥ n − t > t (line E01-E02).
As pj uses trustedj [x + 1] and can_decj [x + 1] when it executes line E03, due to
assertion B’, the test is satisfied. It follows that pj decides at line E05 during round
x + 2: a contradiction. �

The next corollary is an immediate consequence of the previous theorem.

Corollary 2 (Termination) Every correct process decides.

Theorem 6 (Validity) A decided value is a proposed value.

Proof For the processes that decide at line 12, the proof of Theorem 1 applies. So, let
us consider a process pi that decides at line E05. The validity property follows from
the fact that EST i[r] ⊆ EST[r − 1] (the values received by pi during a round r have
been determined during the round r − 1), and EST i[r] �= ∅ (Lemma 7). �

Theorem 7 (Bit Complexity) Let b be the number of bits required to represent a pro-
posed value. The bit complexity is upper bounded by O(n(b + 2n)f/k) per process.

Proof The theorem follows directly from the following observations: at most �f
k
�

rounds are executed, the sets of processes are encoded with bit array, the size of a
message sent by a process is b + 2n, and a process that sends a message sends it to
all the processes. �

7 Conclusion

The paper was on the k-set agreement problem in synchronous systems made up of
n processes, where up to t < n/2 might commit general omission failures (i.e., they
can crash, or omit to send or receive messages). The paper has first introduced a
new termination property called strong termination. That property requires that not
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only the correct processes, but also all the processes that commit only send omission
failures, do decide a value. These processes are called good processes. The processes
that crash or commit receive omission failures are called bad processes.

The paper has then presented a protocol in which the good processes decide and
halt by the round min(�f

k
� + 2, � t

k
� + 1), where f ≤ t is the actual number of fail-

ures, and no bad process executes more than min(�f
k
�+2, � t

k
�+1) rounds. The very

existence of the protocol extends the min(�f
k
�+ 2, � t

k
�+ 1) lower bound for the cor-

rect processes to decide from the crash failure model to the general omission failure
model.

The paper leaves open several problems for future research. One consists in prov-
ing or disproving that �f

k
� + 2 is a tight lower bound for a bad process to stop when

f = kx + y with x and y being integers and 0 < y < k (we think it is). Another one
concerns t : is t < n/2 a requirement to solve the strongly terminating early stopping
k-set problem? (Let us remark that the answer is “yes” for k = 1 [25, 32].)

When considering the traditional termination property (only the correct processes
are required to decide) in the synchronous model with general omission failures, it
is shown in [33] that t < k

k+1n is a necessary and sufficient condition for solving the
k-set agreement problem. A non-early deciding protocol is described in [33] where
the processes decide and stop by round t − k + 2. This leaves open the following
questions for systems where t < k

k+1 . (1) How to design a k-set early deciding pro-
tocol; (2) How to design a strongly terminating early deciding protocol (or prove it is
impossible); and (3) Is t − k + 2 a lower bound for the processes to decide in these
systems?
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Appendix A: Proof of the lemmas

Lemma 1 Let pi be a good process. We have ∀r : (1) C ⊆ trustedi[r] and (2) i ∈
Completing[r].

Proof The proof is by induction on the round number r . Let pi be a good process
(i.e., it is correct or commits only send omission failures).

• Base case. Let us first observe that we have initially ∀j : trustedj [0] = �. The set
rec_ fromi[1] computed by pi at line 05 of the first round includes all the processes
that did not commit send omission failure: it consequently includes (at least) all
the correct processes, i.e., at least n − t processes.

Let us consider any correct process pj . That process is such that j ∈ trust�,
for any pl from which pi receives a message, because trust� carries the value
trusted�[0] which is equal to �. As there are at least n − t correct processes, it
follows that the set Wi(j) (computed at line 06) contains at least n − t processes.
We can then conclude that all the correct processes pj belong to rec_ fromi[1]
and none of them is suppressed from it when the value trustedi[1] is computed
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at line 07. It follows that |trustedi[1]| ≥ n − t , from which we conclude that pi

does not stop at line 08. This establishes the base case r = 1: for all the processes
pi that do not commit receive omission failures during the first round we have
pi ∈ Completing[1] and C ⊆ trustedi[1].

• Induction step. Let us assume that the lemma is true from the first round until round
r −1. We show it remains true at round r . First of all, let us notice that each correct
process pj sends a message during r . This follows from the induction assumption:
as j ∈ Completing[r − 1] and j ∈ trustedj [r − 1], pj executes the broadcast at
line 04 of the round r .

The proof is then the same as the second paragraph of the base step, replac-
ing trusted�[0] (equal to �) by trusted�[r − 1] that contains (at least) the correct
processes (induction assumption) and the pair of round numbers (0,1) by the pair
(r − 1, r), respectively.

�

Lemma 2 ∀r ≥ 1 : ∀x : |{y : y ∈ Completing[r − 1] ∧ x ∈ trustedy[r − 1]}| < n −
t ⇒ x ∈ Silent[r].

Proof Given a round r − 1, let px be a process such that |{y : y ∈ Completing[r −
1] ∧ x ∈ trustedy[r − 1])}| < n − t . Let pi ∈ Completing[r]. We have to show that,
after pi has executed line 07, x /∈ trustedi[r].
• x /∈ trustedi[r − 1] or pi does not receive a message from px during round r . In

that case, we have x /∈ rec_ fromi[r]. It follows from the way pi updates its set
trustedi (line 07) that x /∈ trustedi[r].

• x ∈ trustedi[r − 1] and pi receives a message from px during round r (i.e. x ∈
rec_ fromi[r]). Let us consider the set Wi(x) computed by pi at line 06 during
round r . Let us observe that a process pj that does not trust px at the end of
round r − 1 sends a pair (estj , trustedj ) such that x /∈ trustedj . Consequently, due
to the lemma assumptions, pi receives at most t (est, trust) messages such that
x ∈ trust . As t < n/2, we have t < n − t , from which it follows that |{j : j ∈
rec_ fromi ∧ x ∈ trustj }| < n − t . As Wi(x) ⊆ {j : j ∈ rec_ fromi ∧ x ∈ trustj }
(line 06), x is removed from trustedi (line 07) and consequently x /∈ trustedi[r].

�

Lemma 3 Let v be an arbitrary value. ∀r ≥ 1 : |{x : estx[r − 1] ≤ v ∧ x ∈
Completing[r − 1]}| ≥ n − t ⇒ ∀i ∈ Completing[r] : esti[r] ≤ v.

Proof Let v be a value such that at least n− t processes pj are such that estj [r −1] ≤
v. Let pj be one of these (at least n − t) processes that belongs to Completing[r] and
sends a message during r . Let us observe that the pair (estj , trustedj ) sent during r

by pj is such that estj ≤ v.
Let pi ∈ Completing[r]. Due to the very definition of Completing[r], pi does not

stop by returning ⊥ at line 09, and consequently, |trustedi[r]| ≥ n − t . This implies
that the set of the estj values received by pi during round r and used to compute
its new estimate (at line 09) contains at least n − t values. Due to the “majority of
correct processes” assumption (n − t > t) and, to the fact that two majorities always
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intersect, at least one of these estj is such that estj ≤ v. The min() function used by
pi to update esti at line 09 allows concluding that esti[r] ≤ v. �

Lemma 4 ∀r ≥ 0 : EST[r + 1] ⊆ EST[r].

Proof The lemma follows directly from the fact that, during a round, values can only
disappear because (1) the new value of esti computed by a process is the smallest of
values it has received, and (2) some processes may stop sending or receiving mes-
sages. �

Lemma 5 Let r (1 ≤ r ≤ � t
k
� + 1) be a round such that (1) C ⊆ Completing[r − 1],

and (2) |EST[r]| > k (let vm denote the kth smallest value in EST[r], i.e., the greatest
value among the k smallest values of EST[r]). Let i ∈ Completing[r]. We have n −
kr < |trustedi[r]| ⇒ esti[r] ≤ vm.

Proof Let us first consider the case r = 1. As pi ∈ Completing[r] and n − k <

|trustedi[r]|, pi misses at most k − 1 values during the first round. It follows that
esti[1] ≤ vm.

The rest of the proof addresses the case r ≥ 2. To prove the lemma, we prove the
contrapositive, namely esti[r] > vm ⇒ |trustedi[r]| ≤ n− kr . In the following, r and
pi denote the round number and the processes introduced in the lemma statement.
Let us consider the following set of processes:

P(v, x) = {p� : ∃x′ ≤ x such that � ∈ Completing[x′] ∧ est�[x′] ≤ v}
where v is a proposed value and x, 0 ≤ x ≤ � t

k
�+ 1, a round number. (P(v, x), x > 0

is the set of processes that have processed a value v′ ≤ v during some round x′ ≤ x;
P(v,0) is the set of processes whose initial value is smaller than or equal to v.)

Let r ≥ 1. We claim kr ≤ |P(vm, r − 1)| (Claim C1) and P(vm, r − 1) ⊆
� − trustedi[r] (Claim C2). The lemma follows directly from these claims, as com-
bining C1 and C2 we obtain kr ≤ |P(vm, r − 1)| ≤ |�− trustedi[r]|, from which we
conclude that |trustedi[r]| ≤ n − kr .

The proofs of C1 and C2 are based on the following properties (implicitly defined
in the context of the assumptions of the lemma, for r ≥ 2):
Property P1: ∀r ′ ≤ r − 2 : P(vm, r ′) ⊆ Silent[r ′ + 2],
Property P2: ∀r ′ ≤ r − 2 : k ≤ |P(vm, r ′ + 1) − P(vm, r ′)|.
We first prove P1 and P2, and then prove the two claims.

Property P1: ∀r ′ ≤ r − 2 : P(vm, r ′) ⊆ Silent[r ′ + 2].
Proof of P1. Let r ′ ≤ r − 2. We consider two cases, namely r ′ < r − 2 and r ′ = r − 2.

• r ′ < r − 2. Let px ∈ P(vm, r ′). From the definition of the P(vm, r ′) set, there is a
round r ′′ ≤ r ′ such that estx[r ′′] ≤ vm. We claim that, at the end of round r ′′ + 1, at
least n − t processes do not trust px , which allows us to conclude from Lemma 2
that x ∈ Silent[r ′′ + 2]. The fact that Silent[r ′′ + 2] ⊆ Silent[r ′ + 2] completes the
proof.
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Proof of the Claim. Let pc be a correct process that has not decided by the end
of round r −1. Due to the lemma assumptions, such a correct process does exist. In
order to obtain a contradiction, let us suppose that pc trusts px at the end of round
r ′′ + 1 (i.e., x ∈ trustedc[r ′′ + 1]). This implies that pc receives and processes a
message (estx,−) from px during round r ′′ +1 and, due to the min() function used
to compute a new estimate, we have estc[r ′′ + 1] ≤ vm.

Let us observe that (O1) all the correct processes have started the round r (by
assumption), (O2) a correct process is trusted by every correct process (Lemma 1
and O1) and, (O3) a correct process py is such that ∀d, d ′ : d ′ < d ⇒ esty[d] ≤
esty[d ′] (this is because a correct process always receives and processes a message
from itself).

Let py a correct process. As py trusts pc at round r ′′ + 2 (Observation O2), pc

sends an estimate v ≤ vm during round r ′′ + 2 and, due to the min() function used
to compute a new estimate, we have esty[r ′′ + 2] ≤ vm. Moreover, until it decides,
py is then such that esty ≤ vm (Observation O3). In particular, at the end of the
round r − 1, every correct process py is such that esty[r − 1] ≤ vm.

Moreover, as there are at least n − t correct processes that belong to
Completing[r − 1] (lemma assumption), it follows from Lemma 3 that all the
processes py that belong to Completing[r] are such that esty[r] ≤ vm. As pi be-
longs to Completing[r] (lemma assumption) we have esti[r] ≤ vm: a contradiction
(remind that the proof assumes initially that esti[r] > vm). Thus, at the end of
round r ′′ + 1, for each correct process pc, x /∈ trustedc[r ′′ + 1]. As at least n − t

correct processes belong to Completing[r ′′ + 1], we conclude that n − t processes
do not trust px at the end of round r ′′ + 1. End of the proof of the Claim.

• r ′ = r −2. Let px ∈ P(vm, r ′)−P(vm, r ′ −1) (if px ∈ P(vm, r ′ −1), the previous
case applies). As i ∈ Completing[r] and esti[r] > vm, taking the contrapositive of
Lemma 3 we obtain |{y : y ∈ Completing[r − 1] ∧ esty[r − 1] ≤ vm}| < n − t . It
follows that, even if px sends estx[r − 2] ≤ vm during r − 1, strictly less than n− t

processes receive and process that message from px during r −1. This implies that
|{y : x ∈ trustedy[r −1]}| < n− t , from which we conclude by applying Lemma 2,
that x ∈ Silent[r]. End of the proof of the property P1.

Property P2: ∀0 ≤ r ′ ≤ r − 2 : k ≤ |P(vm, r ′ + 1) − P(vm, r ′)|.
Proof of P2. Let r ′ be a round number, 0 ≤ r ′ ≤ r − 2 and px ∈ P(vm, r ′). From
property P 1, we know that px ∈ Silent[r ′ + 2]. Thus, during r ′ + 2, any process pj ∈
Completing[r ′ + 2] (possibly including px itself) ignore the round r ′ + 1 estimate
of px (i.e., estx[r ′ + 1]) to compute estj [r ′ + 2]. It follows that, if all the processes
pj such that estj [r ′ + 1] ≤ vm were such that pj ∈ P(vm, r ′), then no value v ≤ vm

would belong to EST[r ′ + 2]. This means that the only possibility for such values to
belong to EST[r ′ + 2], is to be adopted during r ′ + 1 by some py /∈ P(vm, r ′).

As EST[r] ⊆ EST[r ′ + 2] (Lemma 4), and EST[r] contains k values smaller than
or equal to vm (lemma assumption), we can conclude that EST[r ′ + 2] contains at
least k values smaller than or equal to vm. It follows that, during round r ′ + 1, at least
k processes pj such that pj ∈ Completing[r ′ + 1]∧pj /∈ P(vm, r ′) adopt an estimate
smaller than or equal to vm. This implies that |P(vm, r ′ + 1) − P(vm, r ′)| ≥ k. End
of the proof of the property P2.
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Claim C1: kr ≤ |P(vm, r − 1)|.
Proof of C1. The proof is by induction on the round number r ′.
• Base case r ′ = 1: By assumption, there are k distinct values smaller than or equal

to vm in EST[r]. As no new value appears in a round, at least k distinct values
smaller than or equal to vm were initially proposed, it follows that k ≤ |P(vm,0)|.

• Induction case: kr ′ ≤ |P(vm, r ′ − 1)| is satisfied for 1 ≤ r ′ < r .
As k ≤ |P(vm, r ′)−P(vm, r ′ −1)| (Property P 2) and as P(vm, r ′ −1) ⊆ P(vm, r ′)
(from the definition of the P(v, x) sets), we have k +|P(vm, r ′ − 1)| ≤ |P(vm, r ′)|
(A).

Combining k(r −1) ≤ |P(vm, r −2)| (induction assumption) with A, we obtain
kr ≤ |P(vm, r − 1)|. End of the proof of the claim C1.

Claim C2: P(vm, r − 1) ⊆ � − trustedi[r].
Proof of C2. The claim is trivially satisfied if trustedi[r] = ∅. In the other case, let
us observe that, as pi ∈ Completing[r], we have Silent[r] ⊆ � − trustedi[r] (see
the notations defined at the beginning of Sect. 4). Combining this inclusion with
P(vm, r − 2) ⊆ Silent[r] (Property P 1), we obtain P(vm, r − 2) ⊆ � − senderi[r]
(B).

Due to the property P2, the set P(vm, r −1)−P(vm, r −2) has at least k elements.
Hence, it is not empty. Let px ∈ P(vm, r − 1) − P(vm, r − 2). We consider two
cases. If px does not send a message to pi or pi fails to receive the message of px

during r , we have x /∈ rec_ fromi[r] which implies x ∈ � − trustedi[r] (line 07). If
px sends a message to pi in round r , it sends v = estx[r − 1] ≤ vm. Due to the min()

function used to compute its new estimate (line 09) and the fact that pi is such that
esti[r] > vm, pi does not process v during r . It follows that x ∈ � − trustedi[r]. So,
for each process px such that px ∈ P(vm, r − 1)−P(vm, r − 2), we always have x ∈
� − trustedi[r] (C). Combining B and C, we obtain P(vm, r − 1) ⊆ � − trustedi[r]
which proves the claim. End of the proof of the claim C2. �

Lemma 6 Let rd be the first round during which a correct process decides at line
E05 (If there is no such round, let rd = � t

k
� + 1). Let pi be a good process. ∀r ≤ rd :

if pi does not decide at line E05 of the round r , we have (1) C ⊆ trustedi[r] and (2)
i ∈ Completing[r].

Proof The proof is a straightforward extension of the proof of Lemma 1. It is left to
the reader. �

Lemma 7 The set EST i[r] computed by pi during round r (line E04) is not empty.

Proof Let pi be a process and r be a round number such that pi computes EST i

during round r . Let us first observe that, due to the test of line E04, CAN_DECi �=
∅. As, from the protocol text (line E02), CAN_DECi = ⋃

j∈REC_FROMi
c_decj , it

necessarily exists x such that x ∈ REC_FROMi ∧ c_decx �= ∅. Moreover, due to the
definition of REC_FROMi[r], x = i or x �= i. In the first case, estx = esti[r − 1] is
associated with c_decx . In the second case, the estimate estx[r − 1] sent by px and
received by pi during r is associated with c_decx . In both cases, this estimate belongs
to EST i[r] (from the very definition of EST i[r] at line E04). �
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Lemma 8 Assuming that a process decides at line E05 during round r , let px be
a process that proceeds to round r + 1 (if r = � t

k
� + 1, “proceed to round r + 1”

means “execute the return() statement at line 12”). We have: x /∈ trustedx[r] ∨ x ∈
can_decx[r].

Proof Let us define I [r] = {y : ∃r ′
y < r such that y ∈ can_decy[r ′

y]}, where r is the
round number defined in the lemma statement. Let px a process that proceeds to
r + 1.

Let pi be a process that decides during round r . As pi decides at line E05, it
follows that |CAN_DECi[r]| > t . As process pj is the only process that can initially
add j in a can_dec set (line E09), it follows from the way the CAN_DEC sets are
computed (lines E01-E02) that at least t +1 processes py have executed can_decy ←
can_decy ∪ {y} by the end of round r − 1, i.e., |I [r]| > t (E). Moreover, since px

proceeds to round r + 1, |trustedx[r]| ≥ n − t (F) (otherwise, px would return ⊥ at
line 08). By combining E and F, we obtain that ∃y ∈ I [r] ∩ trustedx[r]. This means
that px receives and processes a message from a process py with y ∈ I [r] during
round r .

The fact that py sends messages during r implies that py trusts itself at least until
the end of round r − 1 (line 04). Consequently, py takes into account the can_dec
sets it has previously computed to update can_decy during round r − 1 (line E07). In
particular, as y ∈ I [r], y ∈ can_decy[ry] ⊆ can_decy[r −1]. Since can_decy[r −1] is
sent by py during r , it follows that px processes a non empty can_dec set at line E07.
Consequently, if x ∈ trustedx[r] then, after the lines E08-E10 have been executed by
px , we necessarily have x ∈ can_decx[r] and the lemma follows. �

Lemma 9 Let i ∈ Completing[r] (1 ≤ r ≤ � t
k
� + 1). can_deci[r] �= ∅ ⇒ esti[r] is

one of the k smallest values in EST[r].

Proof can_deci[r] �= ∅ means that n − kr < |trustedi[r]| (line E09), or pi has re-
ceived and processed a message carrying a non-empty can_decx set (line E07). We
consider each case separately.

• Case 1: n − kr < |trustedi[r]| and each pair (estx, can_decx) received and
processed (at lines 09 and E07) by pi during round r is such that can_decx = ∅.
We claim that, in that case, all the correct processes start round r (Claim C).

If EST[r] ≤ k, the lemma is trivially correct, so we suppose that EST[r] > k.
Thanks to Claim C, we can conclude that C ⊆ Completing[r − 1]. We can conse-
quently apply Lemma 5 and the lemma follows.
Proof of the Claim C. We first establish that (assertion A) ∀r ′ < r : i ∈ trustedi[r ′]∧
can_deci[r ′] = ∅. Let us first observe that, as pi executes can_deci ← can_deci ∪
{i} during round r (case assumption), i ∈ trustedi[r] (lines E08-E09). It follows
then from the management of the trustedi set (lines 05-07) that (1) ∀r ′ < r : i ∈
trustedi[r ′]. Moreover, as i ∈ trustedi[r], pi receives and processes during r the
can_dec set it has computed during r − 1. Due to the case assumption (i.e., each
pair (estx, can_decx) received and processed by pi during round r is such that
can_decx = ∅), can_deci[r − 1] = ∅. The same reasoning can be applied at round
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r − 1, . . . ,1, from which we conclude that (2) ∀r ′ < r : can_deci[r ′] = ∅. The
assertion follows by combining (1) and (2).

We have to show that C ⊆ Completing[r −1]. In order to obtain a contradiction,
let us suppose that there exists a correct process that stops before the end of round
r − 1. Let r0 (≤ r − 1) be the first round during which a correct process stops and
let pj be a correct process that stops during r0. This means that either pi returns
⊥ at line 08 or pi decides at line E05. As no correct process decides before r0 (by
the definition of the round r0), it follows from Lemma 6 that |trustedj [r0]| ≥ n− t ,
from which we conclude that pj cannot returns ⊥ (line 08). Consequently, the only
possibility for pj to stop during r0 is to decide at line E05. But, in that case, as pi

proceeds to round r0 + 1(≤ r) and, due to Lemma 8, we have i /∈ trustedi[r0] ∨ i ∈
can_deci[r0]. Since r0 < r , this contradicts the assertion A. End of the proof of the
Claim C.

• Case 2: pi receives and processes a pair (estx, can_decx) carrying a non-
empty can_decx set during round r . So, there is a chain of processes j =
ja, ja−1, . . . , j0 = i that has carried a non-empty can_dec set to pi . This chain
is such that a > 0, n − k(r − a) < |trustedj [r − a]| is satisfied, and dur-
ing round r − x,0 ≤ x ≤ a − 1, process jx receives and processes the pair
(vx+1, can_decx+1 �= ∅) sent by process jx+1. As each process in the chain com-
putes the minimum of the values it has received and processed, vx+1 ≥ vx and
v1 ≥ esti[r], where v1 is the value received by process j0 = i from process j1 dur-
ing r . Hence, va ≥ v1 where va is the value sent by process ja at round r − a + 1.
Moreover, at process j = ja , when the predicate n − k(r − a) < |trustedj [r − a]|
is satisfied at round r −a, Case 1 applies. Thus, va is one of the k smallest value of
EST[r − a]. Due to Lemma 4, EST[r] ⊆ EST[r − a]. Consequently, va ≥ esti[r]
implies that esti[r] is one of the k smallest values of EST[r], which proves the
lemma for Case 2.

�

Lemma 10 Assuming that a process decides at line E05 during round r , let px be a
process that proceeds to round r + 1 (if r = � t

k
�+ 1, “proceed to round r + 1” means

“execute the return() statement at line 12”). We have: estx[r] is among the k smallest
values in EST[r − 1].

Proof Let px be a process that proceeds to round r + 1. Let us observe that the
assumptions stated in this lemma and Lemma 8 are the same. Consequently, by using
the proof of Lemma 8, we have px receives and processes during the round r a pair
(esty, can_decy �= ∅) from a process py (this is established in the last paragraph of
the proof of Lemma 8).

Let us now consider the value esty[r − 1] sent by py to px during r . As y ∈
Completing[r −1] and can_decy[r −1] �= ∅, it follows from Lemma 9 that esty[r −1]
is among the k smallest values of EST[r − 1]. As esty[r − 1] is taken into account
by px to compute estx[r] at line 09, we have estx[r] ≤ esty[r − 1]. Finally, EST[r] ⊆
EST[r − 1] (Lemma 4) allows us to conclude that estx[r] is among the k smallest
values in EST[r − 1], and the lemma follows. �
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Lemma 11 Let r ≤ � t
k
� be the first round during which a process decides at line E05.

Then, (1) every good process decides at line E05 during round r or r + 1. Moreover,
(2) no process executes more than r + 1 rounds.

Proof We assume that a process decides before the end of round � t
k
�. Let r be the first

round during which a process decides. Let DC[r ′] denotes the set of correct processes
that decide at line E05 during round r ′. Let us notice that, due to the assumption on
round number r , ∀r ′ < r : DC[r ′] = ∅. We first state a claim that follows from the
protocol text and the fact that a process decides early at r .
Claim C: If a correct process pc decides during r then, pc sends messages during r

that carry a can_decc set such that c ∈ can_decc .
Proof of the Claim C: As C ⊆ Completing[r − 1] (i.e., no correct process decide
before the end of round r − 1), we can apply Lemma 1 from which we obtain
c ∈ trustedc[r − 1]. Hence, pc sends messages (that carry can_decc[r − 1]) at the
beginning of r . Moreover, as pc decides at line E05 and, due to the test of line E03,
we necessarily have c ∈ can_decc[r − 1]. End of the Proof of the Claim C.

We now prove the lemma by considering two cases.

• First case: every correct process decides during round r .
Let pi be a process that commits only send omission failures and does not de-

cide during round r . As C ⊆ Completing[r − 1], it follows from Lemma 6 that C ⊆
trustedi[r]. This implies that pi cannot returns ⊥ at line 08 and then, proceeds to
round r +1. We now show that can_deci[r]| > t . C ⊆ trustedi[r] means that pi re-
ceives and processes a message from every correct process during r . Consequently,
as every correct pc sends messages that carry a can_dec set that contains c during
round r (Claim C), C ⊆ can_deci[r] (line E07). Hence, |can_deci[r]| > t . Let us
now consider pi during round r + 1. Let us first notice that, as pi adds its identity
in the REC_FROMi[r + 1] set (line E01), C ⊆ can_deci[r] ⊆ CAN_DECi[r + 1]
(line E02), which implies that |CAN_DECi[r + 1]| > t . Moreover, pi evaluates at
r + 1 the predicate of line E03 to true (Lemma 8). As |CAN_DECi[r + 1]| > t ,
pi decides a value at line E05. This proves the first item of the lemma in the case
assumption.

Let now pi be a process that commits receive omission failure and does not
decide during round r . Suppose that pi does not decide at line E05 during round
r +1. Let us remark that, as every correct process decides during round r , at most t

processes send messages during round r +1. It follows that the set rec_ fromi[r +1]
computed by pi at line 05 contains at most t process ids, from which we conclude
that ∀j ∈ rec_ fromi : |Wi(j)| ≤ t < n − t (line 06). Therefore, trustedi[r + 1] = ∅
and pi returns ⊥ at line 08: the second item of the lemma follows.

• Second case: at least one correct process has not decided at the end of round r .
Let pi be a good process. Let us first observe that pi proceeds to round r +1. As

r is the first round during which a correct process decides, it follows from Lemma
6 that C ⊆ trustedi[r], from which we conclude that pi cannot returns ⊥ at line 08
during round r .

We first show that DC[r] ⊆ can_deci[r]. Let us consider a correct process
pc that decides during round r (i.e., c ∈ DC[r]). Due to the claim C, pc send a
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messages during r . Moreover, as C ⊆ trustedi[r], pi receives and processes the
message sent by pc during r . Since this message carries a can_dec set such that
c ∈ can_dec (claim C), pi adds c in its can_deci set at line E07. This is true for
any correct process pc that decides during round r , hence DC[r] ⊆ can_deci[r].

We now show that pi decides at line E05 during round r + 1. As pi does not
commit send omission failures, pi receives a message during r + 1 from every
correct process pc that has not decided during r . Such a message carries a can_decc

set such that {c} ∪ DC[r] ⊆ can_decc (the fact that c ∈ can_decc follows from
Lemma 8, as for a correct process pc we have c ∈ trustedc[r]). Consequently, it
follows from lines E01-E02 that C ⊆ CAN_DECi[r +1]. Moreover, as pi evaluates
the local predicate at line E03 to true (Lemma 8), pi decides at line E05.

This proves the item (1) of the lemma. As far as item (2) is concerned, let us now
consider a faulty process pi that does not crash but commits receive omission failures.
Suppose that pi does not decide early (at line E05) during rounds r and r + 1. We
show that pi has returned ⊥ by the end of round r + 1.

In order to establish a contradiction, suppose that pi proceeds to round r + 2.
As pi does not return ⊥ at line 08, |trustedi[r + 1]| ≥ n − t . As trustedi[r + 1] ⊆
rec_ fromi[r + 1] ⊆ REC_FROMi[r + 1], we have n − t ≤ |REC_FROMi[r + 1]|.
This means that pi receives messages from at least n − t processes during round
r + 1. Yet, every message sent during r + 1 carries a can_dec set that contains the id
of its sender (Lemma 8). Consequently, REC_FROMi[r + 1] ⊆ CAN_DECi[r + 1]
and then, |CAN_DECi[r + 1]| > t . Finally, as pi evaluates the predicate of line E03
to true (Lemma 8), pi decides at line E05: a contradiction. �

References

1. Aguilera, M.K., Toueg, S.: A simple bivalency proof that t -resilient consensus requires t + 1 rounds.
Inf. Process. Lett. 71, 155–178 (1999)

2. Attiya, H., Welch, J.: Distributed Computing, Fundamentals, Simulation and Advanced Topics (2nd
edn.). Wiley Series on Parallel and Distributed Computing. Wiley, New York (2004)

3. Bazzi, R.A., Neiger, G.: Simplifying fault-tolerance: providing the abstraction of crash failures.
J. ACM 48(3), 499–554 (2001)

4. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed 1-solvable tasks.
J. Algorithms 11(3), 420–440 (1990)

5. Biran, O., Moran, S., Zaks, S.: Tight bounds on the round complexity of distributed 1-solvable tasks.
Theor. Comput. Sci. 145(1-2), 271–290 (1995)

6. Borowsky, E., Gafni, E.: Generalized FLP impossibility results for t -resilient asynchronous compu-
tations. In: Proc. 25th ACM Symposium on Theory of Computation (STOC’93), California, USA,
pp. 91–100 (1993)

7. Charron-Bost, B., Schiper, A.: Uniform consensus is harder than consensus. J. Algorithms 51(1),
15–37 (2004)

8. Chaudhuri, S.: More Choices allow more faults: set consensus problems in totally asynchronous sys-
tems. Inf. Comput. 105, 132–158 (1993)

9. Chaudhuri, S., Herlihy, M., Lynch, N., Tuttle, M.: Tight bounds for k-set agreement. J. ACM 47(5),
912–943 (2000)

10. Dolev, D., Reischuk, R., Strong, R.: Early stopping in byzantine agreement. J. ACM 37(4), 720–741
(1990)

11. Fischer, M.J., Lynch, N.A.: A lower bound on the time to assure interactive consistency. Inf. Process.
Lett. 14(4), 183–186 (1982)



Theory Comput Syst

12. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty
process. J. ACM 32(2), 374–382 (1985)

13. Gafni, E., Guerraoui, R., Pochon, B.: From a static impossibility to an adaptive lower bound: the
complexity of early deciding set agreement. In: Proc. 37th ACM Symposium on Theory of Computing
(STOC’05), Baltimore, MD, pp. 714–722, May 2005

14. Guerraoui, R., Herlihy, M., Pochon, B.: A topological treatment of early-deciding set agreement.
In: Proc. 10th International Conference on Principles of Distributed Systems (OPODIS’06). Lecture
Notes in Computer Science, vol. 4305, pp. 20–35. Springer, Berlin (2006)

15. Guerraoui, R., Pochon, B.: The complexity of early deciding set agreement: how topology can help?
In: Proc. 4th Workshop in Geometry and Topology in Concurrency and Distributed Computing
(GETCO’04). BRICS Notes Series, NS-04-2, pp. 26-31, Amsterdam, NL (2004)

16. Hadzilacos, V.: Issues of fault tolerance in concurrent computations. PhD thesis, Tech. Report 11-84,
Harvard University, Cambridge, MA (1985)

17. Hadzilacos, V., Toueg, S.: Reliable broadcast and related problems. In: Mullender, S. (ed.) Distributed
Systems, pp. 97–145. ACM Press, New York (1993)

18. Herlihy, M.P., Penso, L.D.: Tight bounds for k-set agreement with limited scope accuracy failure
detectors. Distrib. Comput. 18(2), 157–166 (2005)

19. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6),
858–923 (1999)

20. Keidar, I., Rajsbaum, S.: A simple proof of the uniform consensus synchronous lower bound. Inf.
Process. Lett. 85, 47–52 (2003)

21. Lamport, L., Fischer, M.: Byzantine generals and transaction commit protocols. Unpublished manu-
script, 16 pages, April 1982

22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
23. Mostéfaoui, A., Raynal, M.: k-set agreement with limited accuracy failure detectors. In: Proc. 19th

ACM Symposium on Principles of Distributed Computing (PODC’00), Portland, pp. 143–152. ACM,
New York (2000)

24. Mostéfaoui, A., Raynal, M.: Randomized set agreement. In: Proc. 13th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’01), Hersonissos, Crete, pp. 291–297. ACM, New York (2001)

25. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed algorithms. J. Algo-
rithms 11, 374–419 (1990)

26. Pease, L., Shostak, R., Lamport, L.: Reaching agreement in presence of faults. J. ACM 27(2), 228–234
(1980)

27. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and communication faults.
IEEE Trans. Softw. Eng. SE-12(3), 477–482 (1986)

28. Raïpin Parvédy, Ph., Raynal, M.: Optimal early stopping uniform consensus in synchronous systems
with process omission failures. In: Proc. 16th ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA’04), Barcelona, pp. 302–310. ACM, New York (2004)

29. Raïpin Parvédy, Ph., Raynal, M., Travers, C.: Early-stopping k-set agreement in synchronous sys-
tems prone to any number of process crashes. In: 8th International Conference on Parallel Comput-
ing Technologies (PaCT’05), Krasnoyarsk, Russia. Lecture Notes in Computer Science, vol. 3606,
pp. 49–58. Springer, Berlin (2005)

30. Raïpin Parvédy, Ph., Raynal, M., Travers, C.: Decision optimal early-stopping k-set agreement in
synchronous systems prone to send omission failures. In: Proc. 11th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC’05), Changsha, pp. 23–30. IEEE Computer Press,
New York (2005)

31. Raïpin Parvédy, Ph., Raynal, M., Travers, C.: strongly terminating early-stopping k-set agreement
in synchronous systems with general omission failures. In: Proc. 13th Colloquium on Structural In-
formation and Communication Complexity (SIROCCO’06), Liverpool. Lecture Notes in Computer
Science, vol. 4056, pp. 182–196. Springer, Berlin (2006)

32. Raynal, M.: Consensus in synchronous systems: a concise guided tour. In: Proc. 9th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC’02), Tsukuba, Japan, pp. 221–228.
IEEE Computer Press, Berlin (2002)

33. Raynal, M., Travers, C.: Synchronous set agreement: a concise guided tour (including a new algorithm
and a list of open problems). In: Proc. 12th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC’05), Riverside, CA, pp. 267–274. IEEE Computer Press, Berlin (2006)



Theory Comput Syst

34. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge.
SIAM J. Comput. 29(5), 1449–1483 (2000)

35. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms for failure detectors.
In: Proc. 17th International ACM Symposium on Principles of Distributed Computing (PODC’98),
Puerto Vallarta, Mexico, pp. 297–308. ACM Press, New York (1998)


	Strongly Terminating Early-Stopping k-Set Agreement in Synchronous Systems with General Omission Failures
	Abstract
	Introduction
	Context of the Paper
	Early Decision
	Related Work
	Content of the Paper
	Roadmap

	Model and Problem Definition
	Round-Based Synchronous System
	Process Failure Model
	Strongly Terminating k-Set Agreement

	A Strongly Terminating k-Set Agreement Protocol
	Local Variables
	Process Behavior

	Proof of the Strongly Terminating Protocol
	Basic Lemmas
	Central Lemma
	Properties of the Protocol

	A Strongly Terminating and Early Stopping k-Set Agreement Protocol
	Additional Local Variables
	Process Behavior

	Proof of the Strongly Terminating Early Stopping Protocol
	Basic Lemmas
	Properties of the Protocol

	Conclusion
	Acknowledgements
	Appendix A: Proof of the lemmas
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


