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Abstract—Leader-based protocols rest on a primitive able to provide the processes with the same unique leader. Such protocols are

very common in distributed computing to solve synchronization or coordination problems. Unfortunately, providing such a primitive is

far from being trivial in asynchronous distributed systems prone to process crashes. (It is even impossible in fault-prone purely

asynchronous systems.) To circumvent this difficulty, several protocols have been proposed that build a leader facility on top of an

asynchronous distributed system enriched with additional assumptions. The protocols proposed so far consider either additional

assumptions based on synchrony or additional assumptions on the pattern of the messages that are exchanged. Considering systems

with n processes and up to f process crashes, 1 � f < n, this paper investigates the combination of a time-free assumption on the

message pattern with a synchrony assumption on process speed and message delay. It shows that both types of assumptions can be

combined to obtain a hybrid eventual leader protocol benefiting from the best of both worlds. This combined assumption considers a

star communication structure involving f þ 1 processes. Its noteworthy feature lies in the level of combination of both types of

assumption that is “as fine as possible” in the sense that each of the f channels of the star has to satisfy a property independently of

the property satisfied by each of the f � 1 other channels (the f channels do not have to satisfy the same assumption). More precisely,

this combined assumption is the following: There is a correct process p (center of the star) and a set Q of f processes q (p =2 Q) such

that, eventually, either 1) each time it broadcasts a query, q receives a response from p among the ðn� fÞ first responses to that query,

or 2) the channel from p to q is timely. (The processes in the set Q can crash.) A surprisingly simple eventual leader protocol based on

this fine grain hybrid assumption is proposed and proved correct. An improvement is also presented.

Index Terms—Asynchronous system, distributed algorithm, fault tolerance, hybrid protocol, leader election, process crash, time-free

assumption, timer-based assumption.

�

1 INTRODUCTION

1.1 Context of the Study and Motivation

THE design and implementation of reliable applications
on top of asynchronous distributed systems prone to

process crashes is a difficult and complex task. A main issue
lies in the impossibility of correctly detecting crashes in the
presence of asynchrony. In such a context, some problems
become very difficult or even impossible to solve. The most
famous of those problems is the Consensus problem for
which there is no deterministic solution in asynchronous
distributed systems where processes (even only one) may
crash [9].

While consensus is considered as a “theoretical” pro-
blem, middleware designers are usually interested in the
more practical Atomic Broadcast problem. That problem is
both a communication problem and an agreement problem.
Its communication part specifies that the processes can
broadcast and deliver messages in such a way that each
correct1 process delivers at least the messages sent by the
correct processes. Its agreement part specifies that there is a
single delivery order (so, the correct processes deliver the

same sequence of messages, and a faulty process delivers a
prefix of this sequence of messages). It has been shown that
consensus and atomic broadcast are equivalent problems in
asynchronous systems prone to process crashes [4]: In such
a setting, any protocol solving one of them can be used as a
black box on top of which the other problem can be solved.
Consequently, in asynchronous distributed systems prone
to process crashes, the impossibility of solving consensus
extends to atomic broadcast.

When faced with processing crashes in an asynchronous
distributed system, the main problem comes from the fact
that it is impossible to safely distinguish a crashed process
from a process that is slow or with which communication is
very slow. To overcome this major difficulty, Chandra and
Toueg have introduced the concept of Unreliable Failure
Detector [4]. Among the different classes of failure detectors,
the class of leader oracles (denoted � and formally introduced
by Chandra et al. in [5]) is at the core of several distributed
agreement protocols. Such an oracle offers a leader()
primitive that satisfies the following leadership property: A
unique correct leader is eventually elected, but there is no
knowledge on when this common leader is elected and,
before this occurs, several distinct leaders (possibly conflict-
ing) can coexist. Interestingly, it is possible to solve consensus
(and related agreement problems) in asynchronous distrib-
uted systems equipped with such a “weak” oracle (as soon as
these systems have a majority of correct processes) [5], [13],
[17]. It has also been shown that � is the weakest failure
detector class for solving consensus in these systems [5].
Unfortunately, � cannot be implemented in pure (time-free)
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asynchronous systems (its implementation would contradict
the consensus impossibility result [9]).

Despite the impossibility to design leader protocols in
pure time-free asynchronous systems, the design of a leader
facility remains very attractive. More precisely, when we
look from a “protocol design” side, the class of leader
oracles has a noteworthy feature, namely, it allows the
protocols that use such an oracle to benefit from a very nice
property, namely, indulgence [10]. Let P be an oracle-based
protocol and SP be the safety property satisfied by its
outputs. P is indulgent with respect to its underlying oracle if,
whatever the behavior of the oracle, its outputs never
violate the safety property SP . This means that each time P
produces outputs, those are correct. (The periods during
which outputs are provided are sometimes called good or
stable periods [7].) Moreover, P always produces outputs
when the underlying oracle meets its specification. The only
case where P can be prevented from producing outputs is
when the underlying oracle does not meet its specification
(these periods are called bad or unstable periods).

Interestingly, � is a class of oracles that allows the design
of indulgent consensus protocols [11]. The fact that the
safety property SP of the �-based protocol P can never be
violated, and the fact that its liveness property (outputs are
produced) can be ensured in “good” periods, make
attractive the design of indulgent �-based protocols and
motivates the design of protocols that do “their best” to
implement � within the asynchronous distributed system
itself. A challenge is then to identify properties that, when
satisfied by the asynchronous system, ensure that it evolves
in a good period. This paper is on the design of protocols
doing their best to build an eventual leader facility.

1.2 Related Work

Two main approaches have been investigated to implement
leader oracles. The first, which we call “Timer-based,” relies
on the addition of timing assumptions [8]. Basically, this
approach assumes that there are bounds on process speeds
and message transfer delays, but these bounds are not
known and hold only after some finite but unknown time.
The protocols implementing an eventual leader facility in
such “augmented” systems are based on timeouts (e.g., [1],
[2], [14]). They use successive approximations to eventually
provide each process with an upper bound on transfer
delays and processing speed. They differ mainly in the
“quantity” of additional synchrony they consider, and in
the message cost they entail after a leader has been elected.

Among the protocols based on this approach, a protocol
presented in [2] is particularly attractive, as it considers a
very weak additional synchrony requirement. Let f be an
upper bound on the number of processes that may crash
(1 � f < n, where n is the total number of processes). This
assumption is the following: The underlying asynchronous
system, which can have fair lossy channels, is required to
have a correct process p that is a �f-source. This means that
p has f output channels that are eventually timely: There is
a time after which the transfer time of all the messages sent
on such a channel is bounded (let us notice that this is
trivially satisfied as soon as the receiver has crashed). Let us
notice that such a �f-source is not known in advance and
can never be explicitly known. It is also shown in [2] that

there is no leader protocol if the system has only
�ðf � 1Þ-sources. (Other important issues such as “commu-
nication optimality” when implementing � are also
investigated in [2].)

The second approach (introduced in [15] to implement the
Chandra and Toueg’s failure detectors defined in [4]) does
not assume eventual bounds on process and communication
delays. We call it “Message Pattern.” It considers that there is
a correct process p and a set Q of f processes (with p =2 Q,
moreover, Q can contain crashed processes) such that, each
time a process q 2 Qbroadcasts a query, it receives a response
from p among the first ðn� fÞ corresponding responses (such
a response is called a winning response). It is easy to see that
this assumption does not prevent message delays from
always increasing without bound. Hence, it is incomparable
with the synchrony-related �f-source assumption. This
approach has been applied to the construction of a leader
protocol in [18].

Let us observe that, when we address the problem from
an abstract point of view, what seems intuitively needed to
obtain an eventual leader protocol is the existence of a
correct process p that is eventually no longer suspected by a
set Q of f (correct or faulty) processes (with p =2 Q). When
this occurs, there are f þ 1 processes (p + the processes in Q,
forming a star centered at p) containing the information that
p has not crashed. As a set of f þ 1 processes always
includes at least one correct process, it becomes possible to
envisage a protocol that is able to extract this information
and make it visible to the whole set of processes. This tends
to make us think that any protocol implementing � requires
additional assumptions involving a set of f þ 1 processes.

1.3 Content of the Paper

When we look at the two previous approaches (�f-source
and Message Pattern), we observe that they are orthogonal
in the sense that one assumption cannot be used to simulate
the other. So, an interesting question is the following: Is it
possible to design an eventual leader protocol able to
benefit from the best of both worlds, i.e., a protocol such
that, as soon as one assumption is satisfied (regardless of
which one, and whether the other is or is not satisfied), a
leader is elected? Such a hybrid protocol would guarantee
convergence if any one of the alternative assumptions is
satisfied (�f-source or Message Pattern), thereby providing
increased overall assumption coverage [20].

Such a combination of the two types of assumptions
considers them separately in the sense that it considers that
either the �f-source assumption is satisfied or the Message
Pattern assumption is satisfied. So, a second and maybe
more interesting question is the following: Is it possible to
combine the two assumptions at a finer level, i.e., is it
possible to have one assumption satisfied by a part of a
system while another part of the system would satisfy the
other assumption?

The paper answers this question by first introducing a
hybrid assumption combining both types of assumption at a
level “as fine as possible,” and then presenting an eventual
leader protocol based on this fine grain assumption. This
combined assumption considers a star communication
structure involving f þ 1 processes (these f þ 1 processes
can differ from a run of the system to another run) and is such
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that each of its f channels can satisfy a property indepen-
dently of the property satisfied by the f � 1 other channels. It
is the following: There is a correct process p (center of the star)
and a set Q of f processes q (p =2 Q) such that, eventually,
either 1) each time it broadcasts a query, q receives a response
frompamong the ðn� fÞ first responses to that query, or 2) the
channel from p to q is timely. (The processes in the set Q can
crash.)

The fact that such a fine grain combination be possible is
noteworthy for several reasons. First, it was not a priori
evident that such a combination would be possible. It could
have been the case that a fine combination of these two
orthogonal types of assumption be incompatible. Second, at
a conceptual level, it shows that there is some hidden unity
in time-free and timer-based assumptions (as far as
eventual leader election is concerned). More precisely, 1) a
round trip corresponding to a query (from q to p) and the
corresponding winning response (from p to q) used in the
Message Pattern assumption type and 2) a timely message
sent by p to q used in the Timer-based assumption type are
both used to provide q with the same monitoring informa-
tion on p. (A formal statement of such a unity remains a
challenging open problem.) Finally, from a practical point
of view, the channel-wise combination of the two types of
assumption provides an assumption coverage better than
any of these assumptions taken separately.

1.4 Organization of the Paper

The paper is made up of six sections. Section 2 presents the
basic asynchronous computation model and the leader
problem. Then, Section 3 presents the additional assump-
tion (denoted H) combining, in a simple and powerful way,
a time-free assumption and a timer-based assumption.
Section 4 presents a protocol based on H, and Section 5
extends it to a more general context. Finally, Section 6
concludes the paper.

2 BASIC COMPUTATION MODEL AND LEADERSHIP

FACILITY

2.1 Asynchronous Distributed System with
Process Crash Failures

We consider a system consisting of a finite set � of n � 2
processes, namely, � ¼ fp1; p2; . . . ; png. A process executes
steps (a step is the reception of a set of messages with a local
state change or the sending of messages with a local state
change). It can fail by crashing, i.e., by prematurely halting.
It behaves correctly (i.e., according to its specification) until
it (possibly) crashes. By definition, a correct process is a
process that does not crash. A faulty process is a process that
is not correct. As previously indicated, f denotes the
maximum number of processes that can crash (1 � f < n).

Processes communicate and synchronize by sending and
receiving messages through channels. Every pair of
processes ðpi; pjÞ is connected by two directed channels,
denoted pi ! pj and pj ! pi. Channels are assumed to be
reliable: They do not create, alter, or lose messages. In
particular, if pi sends a message to pj, then, eventually, pj
receives that message unless it fails. There is no assumption
about the relative speed of processes or message transfer

delays (let us observe that channels are not required to be
FIFO).

In the following, ASn;f ½;� denotes an asynchronous
distributed system made up of n processes among which
up to f < n can crash. More generally, ASn;f ½P � denotes an
asynchronous system made up of n processes among which
up to f < n can crash and satisfying the additional
assumption P (so, P ¼ ; means that the system is a pure
asynchronous system).

We assume the existence of a global discrete clock. This
clock is a fictional device which is not known by the
processes; it is only used to state specifications or prove
protocol properties. The range T of clock values is the set of
natural numbers.

2.2 Leadership Facility

A leader oracle is a distributed entity that provides the
processes with a function leader() that returns a process name
each time it is invoked. A unique correct leader is eventually
elected, but there is no knowledge of when the leader is
elected. Several leaders can coexist during an arbitrarily long
period of time, and there is no way for the processes to learn
when this “anarchy” period is over. The leader oracle (usually
denoted � [5]) satisfies the following property:

. Eventual Leadership: There is a time t and a correct
process p such that, after t, every invocation of
leader() by any correct process returns p.

�-based consensus algorithms are described in [11], [13],
[17]2 for systems where a majority of processes are correct
(f < n=2). Such consensus algorithms can then be used as a
subroutine to implement upper layer protocols such as
atomic broadcast protocols (e.g., [4], [13], [16], [19]).

As consensus can be solved in an asynchronous system
with a majority of correct processes and equipped with a
leader oracle, and as consensus cannot be solved in purely
asynchronous systems [9], it follows that a leader oracle
cannot be implemented in an asynchronous system ASn;f ½;�
with f < n=2. Direct proofs of this impossibility that work
for f < n can be found in [2], [3], [18].3 So, we have the
following theorem:

Theorem 1 [2], [3], [18]. 8 f , 0 < f < n, there is no protocol
that implements a leader oracle in ASn;f ½;�.

3 CONSIDERING ADDITIONAL ASSUMPTIONS

3.1 A Time-Free Additional Assumption: Notion of
Winning Channel

3.1.1 Query-Response Mechanism

For our purpose (namely, the implementation of a leader
facility), we consider that each process is provided with a
query-response mechanism. Such a query-response mechan-
ism can easily be implemented in a time-free distributed
asynchronous systemASn;f ½;�. More specifically, any process
pi can broadcast a QUERY() message and then wait for
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2. The Paxos protocol [13] is leader-based and considers a more general
model where processes can crash and recover, and links are fair lossy. (Its
first version dates back to 1989, i.e., before the � formalism was introduced.)

3. These direct proofs do not rely on the impossibility to solve consensus
in ASn;f ½;� [9].



corresponding RESPONSE() messages from ðn� fÞ processes
(these are the winning responses for that query, and the
corresponding sender processes are the winning processes for
that query). The other RESPONSE() messages associated with a
query, if any, are systematically discarded (these are the losing
responses for that query). The notion of winning/losing
response is a time-free notion in the sense that its implemen-
tation does not require timers. (Of course, as the network
bandwidth, physical time is an underlying resource needed
to implement the query/response mechanism. But, these
resources are not explicitly managed by the protocol.)

We assume that a process issues a new query only when
it has received the ðn� fÞ winning responses correspond-
ing to its previous query. Moreover, QUERY() and RE-

SPONSE() messages are assumed to be implicitly tagged in
order not to confuse RESPONSE() messages corresponding to
different QUERY() messages.

Definition 1 (Eventually winning channel). Let pi and pj be
two processes. The directed channel pi ! pj is eventually
winning (denoted �WC) if there is a time t such that the
response from pi to each query issued by pj after t is a winning
response (t is finite but unknown).

Let us notice that, after pj has crashed (if it ever crashes), it
no longer issues queries. It follows that the channel pi ! pj is
then always winning, which means that a directed channel
whose receiver is faulty is eventually winning.

Definition 2 (Assumption x- �WC). There is a correct

process p‘ and a set Q of x processes pj such that p‘ =2 Q

and 8pj 2 Q, the channel p‘ ! pj is eventually winning.

Let ASn;f ½x- �WC� denote an asynchronous system
satisfying the property x- �WC. Such a system can be seen
as an asynchronous system in which there is a correct
process (p‘) that has x “favorite neighbors” (defining the set
Q) that can communicate with it faster than with the other
processes. When we consider the particular case x ¼ 1, the
1- �WC property boils down to a simple channel property,
namely, there is a channel that is never the slowest among
the channels connecting one of its endpoints to the other
processes. Let us observe that, if x processes crash, ASn;f ½;�
trivially satisfies the x- �WC assumption.

It is shown in [15] that, eventually, strong failure detectors
(denoted �S) can be implemented in ASn;f ½x- �WC� when
x � f . (�S and � have the same computational power as far as
process crash failures are concerned [5], [6].)

3.2 A Timer-Based Additional Assumption: Notion
of Timely Channel

Definition 3 (Eventually timely channel). Let pi and pj be
two processes. The directed channel pi ! pj is eventually
timely (denoted �TL) if there is a time t after which 1) pj has
crashed or 2) there is a bound � such that each message sent by

pi after t is received by pj within � units of time (t and � are
not known.)

The intent of this definition is that a recipient never
receives a late message. This is trivially the case for a

crashed recipient, hence the first item in the previous
definition.

Let us observe that, in order to be able to try determining
whether a directed channel pi ! pj is eventually timely, the
basic underlying asynchronous system has to be enriched
with additional assumptions and mechanisms to allow
realizing meaningful time measurements. So, to address the
eventual timer-based property of a channel pi ! pj, we
assume that 1) pi and pj have local clocks (that can
accurately measure time intervals4) and 2) there is a lower
and upper bound on the execution rate (number of steps
per time unit) of pi and pj.

Definition 4 (Assumption x- � TL).5 There is a correct process
p‘ and a set Q of x processes pj such that p‘ =2 Q and
8pj 2 Q, the channel p‘ ! pj is eventually timely.

As before, let ASn;f ½x- � TL� denote an asynchronous
system with synchronous processes6 and satisfying the
assumption x- � TL and where each process is equipped
with a local clock with which it can accurately measure time
intervals (local clocks are not required to be synchronized).
Such a system has a correct process (p‘) that has x “favorite
neighbors” (defining the set Q), “favorite” in the sense that
eventually these processes never timeout when waiting for
its messages. (Using the terminology of [2], p‘ is an eventual
x-source.) It is shown in [2] that the leader facility � can be
implemented in ASn;f ½x- � TL� when x � f . (It is important
to notice that, to benefit from the f- � TL assumption, the �
protocol described in [2] explicitly uses the parameters n
and f in its code.)

As discussed before, let us notice that, when we consider
the time free assumptions x- �WC, 0 � x � n� 1 (respec-
tively, the timer based assumptions x- � TL, 0 � x � n� 1),
f � x is a necessary requirement to implement a leader
facility � in ASn;f ½x- �WC� (respectively, in ASn;f ½x- � TL�).

3.3 Combining Time-Free and Timer-Based
Assumptions

Let us observe that a system ASn;f ½f- �WC� does not
prevent message delays from always increasing, from
which we conclude that ASn;f ½f- � TL� cannot be simulated
from ASn;f ½f- �WC�. Similarly, ASn;f ½f- �WC� cannot be
obtained from ASn;f ½f- � TL�, as it is possible that the
response from a correct process be always a losing
response. This means that, in the general case, the
assumptions f- �WC and f- � TL are not equivalent.

To benefit from the best of both worlds, an interesting
approach (investigated in [18]) consists in designing a
leader protocol that works in a system that satisfies any of
these assumptions f- �WC or f- � TL, i.e., in a system
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4. The clock of pi is used to periodically send messages. The clock of pj is
used to set timers. If several processes have local clocks, it is not required
that these clocks be synchronized. They only need to be accurate in
measuring time intervals.

5. Our x- � TL notion is the same as the �x-source notion that, as noticed
in Section 1, has been first proposed in [2], where a more general
communication model is considered (namely, a weaker model with fair
lossy channels).

6. This means that there is a lower and upper bound on the execution
rate (number of steps per time unit) of each nonfaulty process. This
synchrony assumption is necessary for the processes be able to exploit the
fact that some channels are timely [2].



ASn;f ½f- �WC _ f- � TL�. Surprisingly, as announced in
Section 1, it is possible to do much better: These assump-
tions can actually be combined in a finer way to build a
leadership facility. This combination is defined as an
assumption denoted f-ð�WC _ �TLÞ (in short H).

Definition 5 (Assumption H). There is a correct process p‘
and a set Q of f processes px such that p‘ =2 Q and 8px 2 Q,
the channel p‘ ! px is eventually timely or eventually
winning.

An asynchronous system that satisfies H will be denoted
ASn;f ½H� in the rest of the paper. As we can see, the
assumption H combines the time-free and timer-based
assumptions on a channel base: Some channels connecting a
correct process pc can be timely while others can be
winning. This is very interesting as the “granularity” of
the combined assumption is “weaker” than each assump-
tion taken separately:7 The output channels pc ! px of a
base correct process pc do not have to be simultaneously
either timely or winning; each of them can satisfy any
assumption. The next section shows howH can be exploited
to design a leader protocol. It is interesting to notice that H
is trivially satisfied in the runs where f processes crash.

3.3.1 Local Property versus Nonlocal Property

It is interesting to notice that the eventually timely channel
property is a local property in the sense that it characterizes
the behavior of a channel independently of the behavior of
the other channels. Expressed differently, the eventually
winning channel property is not a local property as the fact
that a channel is eventually winning involves other
channels (the eventually winning channel “wins” with
respect to other channels). The statement of this nonlocal
property involves n and f , which are global parameters
appearing in the definition of the system model, namely,
ASn;f ½;�.

3.3.2 The Case f ¼ 1

For the systems where at most one process may crash (an
interesting case, in practice), the assumption H becomes:
There is a pair of processes p and q such that, after some
unknown but finite time, 1) the channel p! q becomes
timely or 2) for each of its query, q receives the response
from p among the ðn� 1Þ first responses corresponding to
that query.

This assumption can be rephrased as follows: There is a
pair of processes p and q such that, eventually, 1) the channel
p! q is timely or 2) for each query issued by q, the round-trip
delay of the corresponding QUERY/RESPONSE messages
exchanged with p is never the largest among the n round-
trip delays of all the QUERY/RESPONSE messages associated
with that query. We have shown in [15] that the probability
that part 2) will be satisfied in practice is very close to 1. This
means that, when f ¼ 1, the probability that H will be
satisfied is practically equal to 1.

This suggests choosing a pair ðp; qÞ of processes (any pair
can be chosen) and connecting this pair with two channels
p! q and q! p whose communication speed is higher
than the communication speed of the other channels
connecting p or q to the other processes. This creates an
asymmetry within the system that allows implementing �
despite asynchrony and the crash of f ¼ 1 process. It
follows that consensus can be solved despite one crash in an
asynchronous distributed system equipped with such a pair
of channels.

4 A BASIC H-BASED ASYNCHRONOUS LEADER

PROTOCOL

4.1 Underlying Principles

The H-based protocol described in Fig. 1 is surprisingly
simple. It relies on the following principles: The aim is for
each process pi to manage an array counti½1 : n� such that
counti½j� will remain bounded if pj is correct and pi trusts it
(not to have crashed). Then (Task T3), given such an array,
pi considers as the current leader the process p‘ such that
counti½‘� has the smallest value (when two counters have the
smallest value, process ids are used to break ties).

To get a counti array with consistent values, each
process pi uses two distinct sets of data structures, one
addressing the “timely” part of the assumption H, the
other one addressing its “winning response” part. More
precisely, we have the following:

. On the “timely” side, the Boolean array timelyi½1 : n�
is the relevant data structure. It is managed as
follows:

First, each process pj sends periodically ALIVE()

messages (Task T2) to inform the others that it has
not crashed. Accordingly, each process pi manages a
timeout value (timeouti½j�) and a timer (timeri½j�)
with the hope that it will receive the next ALIVE()

message from pj before that timeout value has
elapsed. If a timeout occurs, pi sets timelyi½j� to
false (lines 17-18). When it receives an ALIVE()

message from pj, pi resets the timer and increases
the timeout value if the channel from pj was
considered as not being timely (with respect to the
previous timeout value). After pi has received a
message from pj, we always have timelyi½j� ¼ true.

So, the idea of the previous mechanism is to
obtain the following property: The processes pj such
that eventually timelyi½j� remains permanently equal
to true determine a set of timely channels pj ! pi.

. On the “query-response” side, the relevant data
structure is the Boolean array winningi½1 : n�.

Repeatedly (Task T1), each process pi sends a
QUERY() message to all the other processes and
waits for the first ðn� fÞ RESPONSE(). The processes
that sent these winning responses are defined as the
“winning processes” for that query (line 5).

So, the query-response mechanism is used to get
the following property: If a process pj is such that,
eventually, winningi½j� remains permanently equal
to true, then pj will no longer be suspected by pi.
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7. From a more operational perspective, we can say that an eventually
timely channel satisfies a push property, while an eventually winning
channel satisfies a pop property. Here, “pop” means that a process receives a
response message because it has first sent a query, while “push” means that
a process receives messages without before asking for them.



A key element of the protocol is the way the Boolean
arrays timelyi and winningi are combined and used by pi to
update counti½1 : n�. Their combination is done at line 6: pi
trusts the processes pj such that timelyi½j� _ winningi½j�. The
aim of the set trustedi is to include the processes that
eventually have timely channels towards pi or whose
responses to pi’s queries are eventually always winning.

When a process pj sends a response to pi (line 12), it uses

the current value of its set trustedj to inform pi that it (pj)

does not currently suspect these processes. When it has

received the ðn� fÞwinning responses it was waiting for, pi
trusts all the processes trusted by the winning processes

(line 3) and suspects the other processes by increasing their

counter accordingly (line 4).
Finally, in order for all the correct processes to have the

same bounded entries in their counti arrays (and, conse-

quently, be able to elect the same leader), each QUERY()

message piggybacks the countj array of its sender pj (line 1),

thereby allowing the receiver pi to update its array counti
(line 11).

Remark. It is important to observe that query-response
“challenges” issued by different processes are indepen-
dent one from the other. This has an interesting conse-
quence, namely, a process can introduce an arbitrary delay
before issuing a query-response challenge (at line 1).
Therefore, each process can, independently of the other
processes, dynamically define and set such a delay to
match the bandwidth that failure detector messages are
allowed to use.

4.2 Proof of the H-Based Protocol

With C denoting the set of processes that are correct in a

given run that satisfies H, let us consider the following set

definitions (PL stands for “Potential Leaders”):

PL ¼ fpx j 9pi 2 C : counti½x� is boundedg;
8 pi 2 C : PLi ¼ fpx j counti½x� is boundedg:

The proof is made up of three parts:

. We first show that, in any run that satisfiesH, the set
PL is not empty (Lemma 1).

. We then show that PL is a subset of C, the processes
that are correct in that run (Lemma 2).

. Finally, we show that PLi ¼ PL for any correct
process pi (Lemma 3).

Lemma 1. H ) ðPL 6¼ ;Þ.
Proof. Let p‘ be a correct process that satisfies the hybrid

assumptionH. This means that there is a time t and a setQ

of f processes px (not including p‘) such that, after t, 1) the

channel p‘ ! px is timely or 2) px receives only winning

responses from p‘ to its queries. Remember that Q can

contain crashed processes, as both the constraints 1) or 2)

are trivially satisfied for a crashed process px. As a crashed

process can trivially be a member ofQ, we consider, in the

following, that no process crashes to make easier the

formulation of the proof (without having to consider

particular cases).
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Fig. 1. Leader protocol module associated with pi.



LetQT be the subset of processes px ofQ, such that, after
t, the channel p‘ ! px is timely. Due to the definition of
“eventual timely channel” and to lines 13-18, there is a time
t1x � t after which timelyx½‘� remains continuously true.
Let t1 � maxpx2QT

ðt1xÞ.
Similarly, letQW be the subset of processes px ofQ, such

that, after t, px receives only winning responses from p‘ to
its queries. Due to the query-response mechanism and to
line 5, there is a time t2x � t after which winningx½‘�
remains continuously true. Let t2 � maxpx2QW

ðt2xÞ. Final-
ly, let t3 ¼ maxðt1; t2Þ.

After t3, there is a set of f processes px such that (for the
ones of them that have not crashed) p‘ 2 trustedx. More-
over, due to the protocol code, timely‘½‘� is always equal to
true (it is initialized to that value and never modified
thereafter, as no process sets a timer with respect to itself);
consequently, we always have p‘ 2 trusted‘. So, after t3,
considering the f processes of Q plus p‘, we have f þ 1
processes py such that p‘ 2 trustedy.

Let t4 � t3, a time after which all the faulty processes
have crashed. As no process blocks forever at line 2, each
correct processpi executes the lines 1-6 infinitely often and,
after t4, it always receives at least one RESPONSE (trusted)
message with p‘ 2 trusted (as it waits for ðn� fÞ RE-

SPONSE() messages and f þ 1 processes py are such that
p‘ 2 trustedy). Consequently, after t4 and for any correct
process pi, we have p‘ 2 TRUSTEDi at line 3, from which
we conclude that no correct process pi increments counti½‘�
at line 4. Let M‘ be the greatest value among the values of
the counti½‘� variables of the correct processes pi at time t4.

Finally, as after t4, there are only correct processes; the
only way for counti½‘� to be increased is at line 11. Due to the
gossiping of the counti arrays (line 1 and line 11), it follows
that the variable counti½‘� of each correct process pi
becomes equal to M‘ and then keeps that value forever. tu

The next corollary follows directly from the gossiping of
the counti arrays:

Corollary 1. Let pi and pj be any pair of correct processes. If,
after some time, counti½k� remains forever equal to some
constant value Mk, then there is a time after which countj½k�
remains forever equal to the same value Mk.

Lemma 2. PL � C.

Proof. We show the contrapositive, i.e., if pj is a faulty
process, then each correct process pi is such that counti½j�
increases forever.

Let t0 be a time after which all the faulty process have
crashed. As a crashed process does not send ALIVE()
messages, it follows, from the management of the
timelyi½j� Boolean variables at lines 13-18, that there is
a time t1 � t0 after which, 8pi 2 C and 8pj 2 �� C, we
continuously have timelyi½j� ¼ false. Similarly, as a
crashed process does not send RESPONSE() messages, it
follows, from the lines 1-6, that there is a time t2 � t0
after which, 8pi 2 C and 8pj 2 �� C we continuously
have winningi½j� ¼ false.

This means that there is a time t3 � maxðt1; t2Þ after
which, 8pi 2 C and 8pj 2 �� C, we have forever pj =2
trustedi (line 6). As, after t3, no RESPONSE() message
carries a set trustedi containing pj, it follows that there is a
time t � t3 after which no faulty process pj belongs to the

set TRUSTEDi of a correct process pi. Consequently, each
time after t at which a correct process pi executes line 4, it
increases counti½j�. As there are at most f faulty processes,
no correct process can block forever at line 2. Conse-
quently, a correct process executes line 2 infinitely often,
and counti½j� never stops increasing. tu

Lemma 3. pi 2 C ) PLi ¼ PL.

Proof. Let us first observe that PL ¼
S
pi2C PLi (this follows

immediately from the definition of PL). Consequently,

PLi � PL. The inclusion in the other direction is an

immediate consequence of Corollary 1. tu
Theorem 2. 8f > n, the protocol described in Fig. 1 implements

a leader facility in ASn;f ½H�.
Proof. The proof follows directly from Lemmas 1, 2, and 3,

which state that all the correct processes have the same

nonempty set of potential leaders, which includes only

correct processes. Moreover, due to Corollary 1, all the

correct processes have the same counter values for the

processes of PL (and those values are the only ones to be

bounded). It follows that the correct processes elect the

same leader that is the correct process with the smallest

counter value. tu

4.3 Discussion

As already noticed, H is always satisfied in the runs where

f processes do crash (as any of the assumptions f- �WC

and f- � TL is then satisfied).
Let us say “px is a process that makes satisfied the

assertion H” when px is a correct process such that, after

some time, there is a set of f processes that receive from px
only timely messages or winning responses. It is important

to notice that the process that is eventually elected is not

necessarily a process px that makes satisfied the assertionH.

Moreover, the star communication structures that make H
satisfied in different runs can be distinct.

The reader can check that the protocol works in more

runs than the ones caught by the assumption H. Let pk be a

process that, after some time, is trusted forever (i.e.,

countj½k� is bounded at any correct process pj), and let pi
be one of the f processes such that the directed channel

pk ! pi is either eventually timely or eventually winning.

As shown at line 6, it is sufficient for the protocol to work

that this channel be always trusted by pi (i.e., k 2 trustedi):
it can be timely during some periods and winning during

other periods. The important point is that the Boolean

formula timelyi½k� _ winningi½k� be equal to true each time it

is evaluated at line 6 (it is not required that the channel

pk ! pi eventually be always “timely” or always “winning,”

it is only required to eventually be always “timely OR

winning”).8 Providing a clean and formal statement of such

an assumption H0 (that is weaker than H) remains a

challenging problem.
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8. In more “engineering” terms, the quality of service offered by such a
channel is adaptive as it is not required to be—after some time—always
timely or always winning, it can only be forever alternating between timely
(detected with a push mechanism) and winning (detected with a pop
mechanism).



5 TOWARD A MORE GENERAL ASSUMPTION

5.1 From a Star to a “Tree”

It is, of course, possible for a system to have runs that do not

satisfyH, i.e., runs without a communication star made up of

f þ 1 processes, centered at a correct processp‘, and such that,

for each of its channels p‘ ! px, eventually, either 1) the

channel from p‘ to px is timely or 2) each time px broadcasts a

query, it receives a winning response from p‘.
Despite the fact that H cannot be satisfied, it is still

possible to implement � if the runs of the system satisfy a

weakened version ofH defined as follows. The star is now a

virtual star made up of f virtual channels p‘ ! px such that,

for each virtual channel, the abstract property that the

virtual channel p‘ ! px is supposed to satisfy (by being

eventually timely or eventually winning at the operational

level), is actually satisfied by a directed path connecting p‘
to px (e.g., the path p‘ ! q1 ! q2 ! � � � ! px). This observa-

tion brings us to the following definition of a weakened

version of H, that we call Hþ.9 (Instead of a star, Hþ
considers a tree whose inner nodes are correct processes.)

Definition 6 (Assumption Hþ). There is a correct process p‘
and a set Q of f processes px, such that p‘ =2 Q and 8px 2 Q,
there is directed path of processes p‘ ¼ q0 ! q1 ! q2 ! � � � !
qy�1 ! qy ¼ px such that the intermediary processes q1; q2; . . . ;
qy�1 are correct and each directed channel qz ! qzþ1, 0 � z > y,
is eventually timely or eventually winning.10

Hþ allows the design of a protocol implementing an
eventual leader facility. (If we denote Hd the instance of the
assumption Hþ in which the maximal length of a directed
path is limited to d, we have H1 ¼ H.)

5.2 An Improved Protocol

TheHþ-based protocol (Fig. 2) is the protocol of Fig. 1 with a
simple modification that concerns the set trustedi and the
way it is managed. In addition to a new line in the
initialization part, the lines that are modified are marked
with 0 in Fig. 2.

. trustedi is now a Boolean array whose dimensions
are ½0 : f; 1 : n�; so, it is made up of n	 ðf þ 1Þ bits. A
row is a distance d, while a column is a process
identity j. The only distances that are considered are
the distances from 0 to f , as, in the worst case, the

MOSTEFAOUI ET AL.: TIME-FREE AND TIMER-BASED ASSUMPTIONS CAN BE COMBINED TO OBTAIN EVENTUAL LEADERSHIP 663

Fig. 2. Hþ-based module associated with pi.

9. A similar weakening was proposed first in [2], where only the
“eventually timely channel” assumption is considered. No corresponding
protocol is explicitly given. A protocol based on a flooding technique is only
suggested.

10. Let us notice that it follows from this definition that the processes
q1; . . . ; qy�1 involved in a directed path can belong to Q.



f þ 1 processes involved in the Hþ assumption
define a single path connecting p‘ (the unknown
distinguished process) to pi.

The meaning of this array is the following:
trustedi½d; j� ¼ true means that, from pi point of
view, there is a directed path of length d connecting
pj to pi, and this path is made up of noncrashed
processes and timely or winning channels.

This Boolean matrix represents the knowledge
that pi has on the “good” paths connecting processes
to itself. Initially, only trustedi½0; i� is set to true, as pi
always “trusts” itself.

. When a process pj sends an ALIVE () message, that
message now carries the current value of the array
trustedj of its sender pj (line 9’).

Accordingly, when pi receives such a message
(line 13’), it keeps the Boolean array in an additional
local variable denoted trusted timelyi½j� (line 15’). In
that way, pi not only considers the channel pj ! pi as
timely, but also the paths that pj considers as “good”
paths.

The same is done when, after it has issued a
query, pi receives a winning response from pj. It
stores the paths that pj considers as “good” paths in
trusted winningi½j� (line 5’).

These additional data structures and their simple
management allow pi to know which the processes
and the paths trusted by each process pj that it trusts
are (because the channel pj ! pi is currently per-
ceived as timely or winning).

. After it has received all the winning responses
associated with a query, a process pi now defines
TRUSTEDi as the set of the processes pj that are
trusted by the processes pk that sent these winning
responses (line 3’). The processes trusted by such a
process pk are the processes pj such that trustedk½d; j�.

. Finally, the core of the modification appears at line 6’
where a process pi redefines the set of processes it
trusts, i.e., where the Boolean array trustedi½0 : f; 1 :
n� is recomputed. trustedi½d; j� is set to the value true if
and only if there is a trusted “immediate neighbor” pk
(i.e., a process pk such that timelyi½k� or winningi½k� is
true) that trusts pj at distance d� 1.

Remark. Let us notice that the protocol described in Fig. 2
can easily be adapted to systems whose communication
is provided by a sparse network. These systems are such
that each process pi is directly connected to only a set of
neighbors nbi. The underlying communication graph has
to be strongly k-connected with k > f , and the minimum
in-degree has to be � k [12].

5.3 Proof of the Hþ-Based Protocol

The proof that the protocol is correct is close to the previous
one. The proofs of Lemma 2, Corollary 1, and Theorem 2 are
still valid. The new proof of Lemma 2 is very close to the
previous one: It only has to take into account the new way
the set of trusted processes is computed. Lemma 1 has to be
reformulated to consider the premises Hþ instead of H. Its
new proof follows:

Lemma 4. Hþ ) ðPL 6¼ ;Þ.
Proof. Let p‘ be the correct process and Q be the set of

processes that make Hþ satisfied (see Definition 6). Let

Q0 ¼ Q [ fp‘g. Similarly to Lemma 1, as a crashed

process can trivially be a member of Q0, to make the

formulation of the proof easier (without having to

consider particular cases), we consider in the following

that no process crashes.
We claim (Claim C1) that, after some finite time, each

process px inQ0 is such that 9 d : trustedx½d; ‘� ¼ true. The
rest of the proof is similar to the one of Lemma 1. Indeed,
from the claim C1, we know that there is a time t after
which f þ 1 processes px are such that 9 d : trustedx
½d; ‘� ¼ true. As no process blocks forever at line 2, each
correct process pi executes the lines 1� 60 infinitely often,
and, after t, it always receives at least one RESPONSE

(trusted) message such that 9 d : trusted ½d; ‘� ¼ true.
Consequently, after t and for any correct process pi, we
have p‘ 2 TRUSTEDi at line 30, from which we conclude
that no correct process pi increments counti½‘� at line 4.

Let M‘ be the greatest value among the values of the
counti½‘� variables of the correct processes pi at time t.
Finally, as after t there are only correct processes, the
only way for counti½‘� to be increased is at line 11. Due to
the gossiping of the counti arrays (line 1 and line 11), it
follows that the variable counti½‘� of each correct process
pi becomes equal to M‘ and then keeps that value
forever. The theorem follows.

Claim C1: After some finite time, each process px in Q0

is such that 9 d : trustedx½d; ‘� ¼ true.
Proof of Claim C1. Let us first notice that, for any

process py, we initially have trustedy½0; y� ¼ true. More-
over, trustedy½0; y� is never updated at line 60. Taking
y ¼ ‘, we conclude that trusted‘½0; ‘� ¼ true is always
satisfied.

Let us now consider px 2 Q0 with px 6¼ p‘. As 1) there
is a finite path of correct processes from p‘ to px, e.g.,
p‘ ¼ q0 ! q1 ! q2 ! � � � ! qk ¼ px, 2) the length of this
path is at most d, 3) each directed channel of this path
qz ! qzþ1, 0 � z > k, is eventually timely or eventually
winning, and 4) the fact that, after each channel of the
finite path has become timely or winning, the Boolean
value trusted‘½0; ‘�—that is always equal to true—is
forwarded from process to process from p‘ to px via this
sequence of channels, we conclude from line 60 that there
is a time after which 9d such that trustedx½d; ‘� remains
permanently equal to true. End of the proof of Claim C1.tu

6 CONCLUSION

Leader-based protocols are common in distributed comput-

ing. They rely on an underlying primitive that provides the

same unique leader to the processes. Such a primitive is

usually used to solve synchronization or coordination

problems. While it is particularly easy to implement a

leader primitive in a fault-free system, its construction in an

asynchronous system prone to process crashes is impossible

if the underlying system is not enriched with additional

assumptions. While the traditional approach to build a

distributed leader facility in such crash-prone asynchronous
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systems considers a single type of additional assumption,

namely, either a synchrony assumption (timer-based

assumption) or an assumption on the message exchange

pattern (time-free assumption), this paper has shown that a

hybrid approach benefiting from the best of both kinds of

assumption is possible, meaningful, and attractive.
More precisely, considering systems with n processes and

up to f process crashes, 1 � f < n, this paper has proposed a

combination of a time-free assumption on the message

pattern with a synchrony assumption on process speed and

message delay. It has presented a very general hybrid

protocol benefiting from the best of both worlds. This

combined assumption considers a star communication

structure involving f þ 1 processes. Its noteworthy feature

lies in the level of combination of both types of assumption

that is “as fine as possible” in the sense that each of the

f channels of the star has to satisfy a property independently

of the property satisfied by each of the f � 1 other channels

(the f channels do not have to satisfy the same assumption).

More precisely, this combined assumption is the following:

There is a correct process p (center of the star) and a set Q of

f processes q (distinct from p) such that, eventually, either

1) each time it broadcasts a query, q receives a response from p

among the ðn� fÞ first responses to that query, or 2) the

channel from p to q is timely. (The processes in the set Q can

crash.)
Interestingly, the protocol based on the time-free/timely

hybrid assumption is not only particularly simple, but, due

to the fact that it combines several assumption types, it also

provides an assumption coverage better than the one

offered by any protocol based on a single of these

assumptions.
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