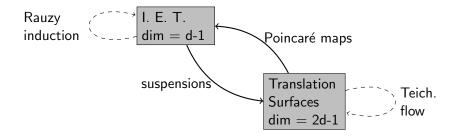
Interval exchange transformations Part IV: Generic properties

Vincent Delecroix

November 2015, Salta

Rauzy induction and Teichmüller flow



Rauzy(-Veech) induction = first return map of the Teichmüller flow

Correspondence

Let $X \subset \mathcal{A}^{\mathbb{Z}}$ be a minimal shift with an invariant measure μ . We define

$$\varepsilon_n(X,\mu) = \min_{u \in \mathcal{L}_{X,n}} \mu([u]).$$

(symbolic)		(geometric)	
$n\varepsilon_n(X,\mu)$	Rauzy	Teichmüller	best approximations
	induction	flow	
$\liminf > 0$	finite time	bounded	$\liminf q_n\{q_n\alpha\} > 0$
(LR)	positive-	g_t -orbit	
	ness		
$\limsup > 0$?	non-	$\limsup q_{n+1}\{q_n\alpha\} > 0$
(Bosh.		divergent	
cond.)		g _t -orbit	

Correspondence

Let $X \subset \mathcal{A}^{\mathbb{Z}}$ be a minimal shift with an invariant measure μ . We define

$$\varepsilon_n(X,\mu) = \min_{u \in \mathcal{L}_{X,n}} \mu([u]).$$

(symbolic)		(geometric)	
$n\varepsilon_n(X,\mu)$	Rauzy	Teichmüller	best approximations
	Rauzy induction	flow	
$\liminf > 0$	finite time	bounded	$\liminf q_n\{q_n\alpha\} > 0$
(LR)	positive-	g_t -orbit	
	ness		
$\limsup > 0$?	non-	$\limsup q_{n+1}\{q_n\alpha\} > 0$
(Bosh.		divergent	
cond.)		g _t -orbit	

open question 1: Exact conditions on $n\varepsilon_n$ (+ Rauzy graphs) for unique ergodicity?

Theorem

Let S be a translation surface and ϕ^{θ}_{t} its family of translation flows.

condition	parameters $ heta$	who
on the	that satisfies	
dynamics	the condition	
minimal	countable	Keane 1975
	complement	
uniquely	full Lebesgue	Kerckhoff-Masur-Smillie 1986
ergodic	measure	
linearly	thick but 0	Kleinbock-Weiss 2004, Chaika-
recurrent	measure	Cheung-Masur 2013

Big questions

Theorem

Let $\mathcal{H}(\alpha)$ be a stratum of translation surfaces. For almost every surfaces (S, ϕ_t^{θ}) in $\mathcal{H}(\alpha)$ we have the following

• $\#V(S,R) \sim c_s R^2$ (Eskin-Masur 2001)

If moreover $\mathcal{H}(\alpha)$ is not a stratum of tori (i.e. $\alpha \neq (2\pi, \dots, 2\pi)$)

weak-mixing for a.e. θ (Avila-Forni 2007)

Big questions

Theorem

Let $\mathcal{H}(\alpha)$ be a stratum of translation surfaces. For almost every surfaces (S, ϕ_t^{θ}) in $\mathcal{H}(\alpha)$ we have the following

• $\#V(S,R) \sim c_s R^2$ (Eskin-Masur 2001)

If moreover $\mathcal{H}(\alpha)$ is not a stratum of tori (i.e. $\alpha \neq (2\pi, \ldots, 2\pi)$)

weak-mixing for a.e. θ (Avila-Forni 2007)

open question 2: Is the asymptotic true for all surfaces? **open question 3 (4):** What is the set of surfaces for which the translation flow is weak-mixing (topologically mixing) in almost every direction?

Big questions

Theorem

Let $\mathcal{H}(\alpha)$ be a stratum of translation surfaces. For almost every surfaces (S, ϕ_t^{θ}) in $\mathcal{H}(\alpha)$ we have the following

• $\#V(S,R) \sim c_s R^2$ (Eskin-Masur 2001)

If moreover $\mathcal{H}(\alpha)$ is not a stratum of tori (i.e. $\alpha \neq (2\pi, \ldots, 2\pi)$)

weak-mixing for a.e. θ (Avila-Forni 2007)

open question 2: Is the asymptotic true for all surfaces? **open question 3 (4):** What is the set of surfaces for which the translation flow is weak-mixing (topologically mixing) in almost every direction?

Complete results for the so called Veech surfaces (Veech 1989, Avila-Delecroix 2014).

Some others...

open question 5: (Chaïka-Fickenscher 2015) Are almost every i.e.t. topologically mixing? (true for a residual set)

open question 5: (Chaïka-Fickenscher 2015) Are almost every i.e.t. topologically mixing? (true for a residual set)

open question 6: (Veech 1982) Are almost every i.e.t. prime?