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Preface

There are two basic ways of constructing dynamical systems. One approach
is to take an already existing system from the vast reserve arising in bio-
logy, physics, geometry, or probability; such systems are typically rather
complex and equipped with rigid structures (a “natural” system is gener-
ally a “smooth” system). Alternatively one can build a system by hand using
some basic tools like strings of letters on a finite alphabet; the latter system
will have a simple structure. Nevertheless, these “simple” systems prove to be
very useful in many mathematical fields (number theory, harmonic analysis,
combinatorics, ergodic theory, and so on), as well as in theoretical computer
science and physics. This category also includes various “classical” systems.

To make more precise this intuitive concept of “simple” systems, we can
use the combinatorial notion of complexity of a sequence of letters with values
in a finite alphabet, which counts the number of factors of given length of
this sequence, a factor being any string of consecutive letters appearing in
the sequence. This gives an indication of the degree of randomness of the
sequence: a periodic sequence has a bounded complexity, while the g-adic
expansion of a normal number in base g has an exponential complexity. There
are many examples of sequences having a reasonably low complexity function,
the most famous being automatic sequences and Sturmian sequences, and the
“reasonably simple” dynamical systems we like to consider are those which
are canonically associated with this kind of sequences.

Among them, substitutive sequences play an important role. Substitutions
are very simple combinatorial objects (roughly speaking, these are rules to
replace a letter by a word) which produce sequences by iteration. Let us note
that substitutions will be considered here as particular cases of free group
morphisms, the main simplification being that we have no problem of can-
cellations. Substitutive dynamical systems have a rich structure as shown by
the natural interactions with combinatorics on words, ergodic theory, linear
algebra, spectral theory, geometry of tilings, theoretical computer science,
Diophantine approximation, transcendence, graph theory, and so on.

Notice that the notion of substitution we consider here differs from that
used for self-similar tilings; in this framework, substitutions produce matching
rules acting on a finite set of prototiles and determining the ways in which
the tiles are allowed to fit together locally; the best known example is the
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Penrose tiling. Here, we consider substitutions acting on strings which are
more elementary in nature.

There exist several books in the literature on related subjects. For instance
[247, 265] consider symbolic dynamics, though mainly in the positive-entropy
case, while [18] deals with automatic sequences, and [271, 272] with combi-
natorics on words; all these works are generalist books covering rather wide
areas and decribing extensively the appropriate techniques. We decided to
focus on a well-delimited subject (namely, substitutive dynamical systems)
but try to give as many different viewpoints as possible, with emphasis on
interactions between different areas; for example, Sturmian sequences are pre-
sented in details in both [272] and our book, the former giving a complete
review on their combinatorial properties and the latter a description of their
links with dynamical systems. Also, our book deals with zero-entropy sym-
bolic dynamics, a subject where few such tools are available: the most famous
one at this time is [340], and our book may be seen first as its updating, and
then as a sequel together with an opening on wider perspectives.

The idea for this book stemmed from the collaboration between various
groups of mathematicians mainly from France, Japan and China. It is largely
based on courses performed by the authors in several universities and given
during various Summer Schools in the past five years.

We chose to use the pseudonym N. Pytheas Fogg for two reasons. First,
our work is the work of a group which is clearly more than the sum of its in-
dividual members, and a collective identity is a good way to stress this point.
Second, this group is still active, and willing to produce more mathematical
publications; though we do not claim to be a new Bourbaki, we do hope that
there will be at least a second book, papers in mathematical journals, and a
seminar bearing the name of Pytheas Fogg, so the present volume is just a
beginning, together with a motivation, for more to come.

The overall structure of this book reflects our purpose which is twofold. We
first want to provide an introduction to the theory of substitutive dynamical
systems by focusing on several topics including various aspects of mathe-
matics (as for instance geometry, combinatorics, ergodic theory and spectral
analysis, number theory, numeration systems, fractals and tilings) but also
computer science and theoretical physics. Secondly, we want to give a state of
the art on this field, spotlighting representative aspects of the theory. More
precisely, we focus on the following themes:

An introduction to elementary properties of combinatorics on words
is given in the first three chapters. In particular Chaps. 2 and 3 provide an
introduction to automatic sequences, which are produced by very natural
algorithms coming from theoretical computer science. Chapters 6 and 9 give
an analysis of the combinatorial properties of Sturmian words: these are the
sequences (or infinite words) which have the smallest complexity function
among non-ultimately periodic sequences.
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Numeration systems appear in a natural way in the study of low com-
plexity sequences. Beatty sequences and in particular the Fibonacci numer-
ation system are introduced in Chap. 2 and dealt with in detail in Chap. 4.
Chapter 6 introduces Ostrowski’s numeration system, while the numeration
systems defined in Chap. 8 are linked to the geometric properties of Pisot
substitutive sequences.

An interesting field of application of automatic sequences deals with the
transcendence of formal power series. Indeed, the study of automata pro-
vides a very fruitful combinatorial transcendence criterion for formal power
series with coefficients in a finite field, which can be considered as a natural
translation into algebraic terms of the properties of automatic sequences. This
criterion is known as Christol, Kamae, Mendès France, and Rauzy’s theorem.
Chapter 3 presents this criterion and surveys the most recent transcendence
results obtained via finite automata theory. Note that a real number whose
g-adic expansion is an automatic sequence is conjectured to be either tran-
scendental or rational, and has been proved to be transcendental when the
sequence is Sturmian. Hence this presentation emphasizes the following phi-
losophy: algebraicity strongly depends on the (generalized) “base” in which
one works. Some connected results of transcendence are studied in Chap. 4;
Chapter 8 reviews some Diophantine approximation properties issued from
the study of substitutive systems.

Tools from ergodic theory and spectral analysis are introduced in
Chap. 5, via a detailed study of systems associated with sequences having a
low complexity function. An elementary introduction to correlation proper-
ties, and some examples of computations of correlation measures, are given in
Chap. 2. Chapter 7 surveys the latest results in the spectral study of substi-
tutive dynamical systems. Chapter 11 gives a special account of the ergodic
properties of the Perron–Frobenius transfer operator.

The question of the geometric representation of substitutive sequences
and more generally of low complexity sequences has given birth to a great
amount of work. We give an account of the development and current state
of this problem in Chap. 7. The study of the Sturmian case is particularly
instructive (Chap. 6); it provides a well-known and fundamental interaction
between ergodic theory, number theory, and symbolic dynamics, which comes
from the study of irrational rotations on the one-dimensional torus T. With
an irrational real number α we associate a geometric dynamical system, the
rotation R : x �→ x+ α mod 1, an arithmetic algorithm, the usual continued
fraction approximation, and a set of Sturmian sequences which are codings
of trajectories under R by a canonical partition; the continued fraction al-
gorithm arises naturally as the link between the dynamical system and the
symbolic sequences, and the study of the arithmetic and symbolic objects
is very useful for the study of the dynamical system. Chapters 2 and 4 al-
lude to Beatty sequences, whereas Chap. 9 studies in detail the connections
between Sturmian and invertible substitutions over a two-letter alphabet.
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Chapter 8 gives a detailed introduction to the tools and techniques used in
this framework, in order to generalize this interaction to further systems and
sequences.

The notion of self-similarity is illustrated by symbolic objects, namely
substitutions, and by geometric objects, the fractal sets. Chapters 7 and 8
give examples of interactions between these two notions, as the most natu-
ral geometric representations of a substitutive sequence are sets with fractal
boundaries. See also Chap. 11 for the study of fractal sets associated in a
natural way with piecewise linear transformations of the unit interval.

We illustrate the connections between physics and low complexity se-
quences through the study of trace maps in Chaps. 8 and 9. Indeed free
monoids, groups and their morphisms occur in a natural way in physics: finite
automata and substitutive sequences are very useful to model and describe
certain situations in solid state physics. In particular, one important question
in quasicrystal theory is to compute the traces of matrices defined inductively
according to a substitutive process. Trace maps are effective algorithms for
constructing the recursion relations that the traces satisfy.

We have tried to allow the reader to read the different chapters as inde-
pendently as possible, and to make each chapter essentially self-contained.
Furthermore, the reader is not assumed to have a detailed knowledge in each
of the fields covered by this book; we rather try to provide the necessary infor-
mation, allowing it to be be used by graduate students. We describe hereafter
the necessary preliminary knowledge, and which chapters are required for a
better understanding of the following chapters.

Chapter 1 is needed as a prerequisite for all the other chapters. We recom-
mend the lecture of Chaps. 2 and 3 for getting used to combinatorial manip-
ulations on substitutions. Chapter 5 (as well as the spectral part of this book
covered in some sections of Chap. 1, and in Chaps. 7 and 11) requires some
basic knowledge on measure-theory and functional analysis, and is supposed
to be self-contained as far as ergodic theory is concerned. This chapter will be
needed for Chap. 7. We also recommend to read first Chaps. 6 and 7 before
Chap. 8. Chapter 6 is essentially self-contained and is a good introduction for
Chap. 9. Chapter 3 can be understood with no special algebraic knowledge
except some familiarity with the notion of finite fields.

The book divides naturally into three parts, and is organized as follows.
The introductory chapter unifies the notation and contains the neces-

sary background for the following chapters. Indeed we introduce in this chap-
ter the basic introductory material that we will use throughout the book:
words, languages, complexity function, substitutions, automatic sequences,
substitutive dynamical systems, introduction to discrete dynamical systems
and its spectral theory, group rotations, and so on.
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In the first part, we focus on the aspects of substitutions which do not re-
quire any background on measure theory: these include combinatorial esults,
but also deep problems of number theory.

• The aim of Chap. 2 is to focus on the notions of substitutions and au-
tomatic sequences by showing some typical examples of arithmetic situa-
tions in which they occur in a quite natural way. For example, the Morse
sequence was first introduce to answer a question in combinatorial number
theory and rediscovered by many people in various other circumstances (in-
cluding geometry, group theory, logic). The Rudin-Shapiro sequence, first
introduced to answer a question in harmonic analysis asked by Salem, is
nowadays a basic construction in number theory and ergodic theory. The
Fibonacci sequence, introduced as a natural example of a generator of a
symbolic dynamical system, is deeply connected with the continued frac-
tion algorithm and gives rise to many applications in theoretical computer
science (for example to obtain good algorithms for the drawing of a straight
line on a computer screen). We will consider the statistical properties of
these sequences through the study of their correlation measure. The tools
developed here are as simple as possible providing an elementary introduc-
tion to these classical examples. The following chapters will study them
with a heavier theoretic background.

• The aim of Chap. 3 is to investigate the connections between automatic
sequences and transcendence in fields of positive characteristic, based on
the following criterion due to Christol, Kamae, Mendès France, and Rauzy:
a formal power series is algebraic if and only if the sequence of its coeffi-
cients is automatic, that is it is the image by a letter-to-letter projection
of a fixed point of a substitution of constant length. We also allude to
the differences concerning transcendence between the real and the positive
characteristic case. We then introduce some functions defined by Carlitz
(exponential, logarithm, zeta) which are analogous to the corresponding
real functions, and review the results of transcendence involving automata
for these functions. We end this chapter by reviewing some techniques for
disproving the automaticity of a sequence.

• Chapter 4 is devoted to various partitions of the set of positive integers:
Beatty sequences and connections with Sturmian sequences, partitions gen-
erated by substitutions, and similis partitions illustrated by linguistic prop-
erties of the Hungarian and Japanese languages. Special attention is de-
voted to non-periodic words which are shown to be fixed points of some
combinatorial processes: above all the notion of log-fixed points is intro-
duced. This study is illustrated by the Kolakoski word, which is shown
to be not only a log-fixed point but also the unique fixed point of several
maps: a map based on the Minkowski question-mark map, or maps defined
by using the continued fraction expansion, the base-3 expansion, and so
on. We then generalize these situations and present some open problems.
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With any substitution, we can associate in a very natural way a dynamical
system. In the second part we study these so-called substitutive dynami-
cal systems, from the viewpoints of symbolic dynamics, ergodic theory and
geometry.

• In Chap. 5, we introduce the fundamental notions of ergodic theory, also
through the study of a few examples of symbolic dynamical systems, both
in the topological and measure-theoretic framework. These include substi-
tutions, which are maps on a finite alphabet, and which define naturally a
class of infinite sequences, and the shift on this set. We study four examples
of substitutions (Morse, Rudin-Shapiro, Fibonacci, already introduced in
Chap. 2, and Chacon) and use them, together with symbolic notions (lan-
guage, frequencies, complexity) to define basic ergodic notions (minimality,
ergodicity), and begin the study of elementary spectral properties, geomet-
ric representation of symbolic systems, and the vast problem of joinings
between systems.

• The main idea of Chap. 6 is to show how it is possible to recover all
the classical properties of rotations and continued fractions in a purely
combinatorial way; we only use the combinatorial definition of Sturmian
sequences, and obtain the existence of a combinatorial continued fraction
acting on the set of Sturmian sequences. Some proofs, and also some geo-
metric interpretations, become simpler and more natural in this setting; it
also suggests non-trivial ways to generalize the usual continued fraction.

• Chapter 7 presents an overview of the general spectral theory of substi-
tutive dynamical systems. After recalling the tools and concepts required
(including subshifts of finite type and adic systems, the notions of recog-
nizability, and Markov partitions), a complete description of the related
literature is given, including very recent work and some important conjec-
tures in this subject.

• The problem of the geometric representation of substitutive dynamical
systems is studied in detail in Chap. 8. Some basic tools and notions
are introduced: stepped surface, generation by generalized substitutions,
renormalization, study of the fractal boundary, and so on. Special attention
is devoted to some important applications, as the quasi-periodicity of the
tiling related to the stepped surface, the existence of Markov partitions of
group automorphisms on T3 or Diophantine approximation properties in
connection with the modified Jacobi-Perron algorithm.

In the third part, we extend the notion of substitution in two directions,
the automorphisms of the free group and the piecewise linear maps. We also
state a few of the many open problems related to substitutions.

• The purpose of Chap. 9 is to study the properties of factors of sequences
generated by invertible substitutions over a two-letter alphabet; this study
is based on the following important result: invertible substitutions over a
two-letter alphabet (that is, substitutions which are automorphisms of free
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groups) are shown to be exactly the Sturmian substitutions. We first discuss
the local isomorphism between two invertible substitutions, reducing the
problem to the study of some special classes of invertible substitutions. We
then study some elementary properties of factors (including palindrome
properties, powers of factors), which generalize some classical results for
the Fibonacci sequence. By introducing the notion of singular factors, we
establish a decomposition of the fixed points of invertible substitutions and
we discuss the factor properties associated with this decomposition.

• Chapter 10 investigates more deeply trace maps. Trace maps are dynam-
ical systems attached to endomorphisms of free groups, which occur in a
wide range of physical situations. By exploiting polynomial identities in
rings of matrices, recursion formulas are produced between the traces of
matrices defined by an induction using substitutions. We then study from
an algebraic point of view endomorphisms of free monoids and free groups.
Such endomorphisms are shown to induce a map of the ring of Fricke char-
acters into itself. Particular emphasis is given to the group structure of
trace maps and the Fricke-Vogt invariant.

• Chapter 11 deals with Cantor sets generated by expanding piecewise
linear maps. The main tool is the α-Fredholm matrix. This is the extension
of the Fredholm matrix which is introduced to study the spectral properties
of the Perron–Frobenius operator associated with one-dimensional maps.
Using this α-Fredholm matrix, the Hausdorff dimension of the Cantor sets
we consider is studied, as well as the ergodic properties of the dynamical
system on it.

• This book ends with a survey in Chap. 12 of some open problems in
the subject. The first is the S-adic conjecture, about the equivalence for
a minimal sequence of having sub-linear complexity and being generated
by a finite number of substitutions. Then we look at possible generaliza-
tions of the interaction between rotations and Sturmian sequences through
the usual continued fraction algorithm; these involve Arnoux-Rauzy se-
quences, interval exchanges and codings of the Z2-action of two rotations on
the one-dimensional torus. This approach induces various open questions
about geometric representations of substitutions, arithmetics in SL(3,Z)
and SL(3,N), and about the definition in the two-dimensional case of some
fundamental combinatorial objects as the complexity function or the no-
tion of substitution. In Appendix A, J. Rivat states that infinitely many
prime matrices exist in SL(3,Z), contrary to what happens in the two-
dimensional case.
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1. Basic notions on substitutions

The aim of this chapter is to introduce some concepts and to fix the notation
we will use throughout this book. We will first introduce some terminology
in combinatorics on words. These notions have their counterpart in terms of
symbolic dynamics. We shall illustrate these definitions through the example
of a particular sequence, the Morse sequence, generated by an algorithmic
process we shall study in details in this book, namely a substitution. After
recalling some basic notions on substitutions, we shall focus on the concept
of automatic sequences. We then introduce the first notions of ergodic theory
and focus on the spectral description of discrete dynamical systems.

Let us start by giving a short list of basic references concerning the con-
cepts developed here. Let us first mention the indispensable [340] on substitu-
tion dynamical systems. For detailed introductions to the symbolic dynamics,
see [59, 81, 247, 265]. More generally, there are a number of excellent books
on dynamical systems and ergodic theory [61, 80, 122, 140, 185, 194, 234, 241,
308, 309, 324, 326, 335, 376, 445], and topological dynamics [50, 145, 161, 160].
For references on word combinatorics, automata and formal languages, see
[18, 158, 212, 271, 272, 312, 325, 368] and the references therein. See also
[55, 162] for an approach to fractals, and [113, 127, 381, 383] for connections
with number theory and Diophantine approximation.

We shall use the following usual notation: R denotes the set of real num-
bers; Q denotes the set of rational numbers; Z denotes the set of integer
numbers; C denotes the set of complex numbers; N denotes the set of non-
negative integers (0 ∈ N); N+ denotes the set of positive integers (0 �∈ N+).
By x positive we mean x > 0, and by x nonnegative, we mean x ≥ 0. The
one-dimensional torus R/Z is denoted by T, the d-dimensional torus by Td,
and the unit circle, that is, the set of complex numbers of modulus one, is
denoted by U. The cardinality of a set S shall be denoted by Card S.

Within each section, results (theorems, propositions, lemmas, formulas,
exercises, and so on) are labelled by the section and then the order of occur-
rence.
1 This chapter has been written by V. Berthé and A. Siegel

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 1–32, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 1. Basic notions on substitutions

1.1 Word combinatorics

Let us first introduce some terminology in word combinatorics.

1.1.1 Sequences, words, languages

Letters. Let A be a finite set that shall be called alphabet. Throughout
this book the letters (also called symbols) of the alphabet A shall either be
denoted as digits (A = {0, 1, . . . , d− 1}) or as letters (A = {a1, . . . , ad}).
Monoid of finite words. A word or block is a finite string of elements in
A. The set of all finite words over A is denoted by A�. We denote by ε the
empty word.

The concatenation of two words V = v1...vr and W = w1...ws is the word
VW = v1...vrw1...ws. This operation is associative and has a unit element,
the empty word ε.

The set A� is thus endowed with the structure of a monoid, and is called
the free monoid generated by A. The set A� − {ε} is endowed with the
structure of a free semi-group.

If W = w1...ws, s is called the length of W and denoted by |W |. We
denote by |W |a the number of occurrences of a letter a ∈ A appearing in a
word W ∈ A�.
Sequences. A (one-sided) sequence of elements of A, also called (right) in-
finite word on A, shall be here an element u = (un)n∈N in AN.

A two-sided sequence in A, also called biinfinite word, shall be here an
element u = (un)n∈Z in AZ. It is also denoted by u = . . . u−2u−1.u0u1 . . . .
Language. A word v1...vr is said to occur at position (or index, or rank) m
in a sequence u = (un) or in a finite word u1...us, if there exists a rank m
such that um = v1, . . . , um+r−1 = vr.

We say also that the word v1...vr is a factor of the sequence u.
The language (respectively the language of length n) of the sequence u,

denoted by L(u) (respectively Ln(u)), is the set of all words (respectively of
length n) in A� which occur in u.

subsubsection*Specific properties of sequences.
A sequence u is said to be recurrent if every factor occurs infinitely often.
A sequence u is periodic (respectively ultimately periodic) if there exists

a positive integer T such that

∀n, un = un+T (respectively ∃n0 ∈ N, ∀ |n| ≥ n0, un = un+T ).

We will use in both cases the terminology shift-periodic.

1.1.2 Complexity function

There is a classical measure of disorder for sequences taking their values in
a finite alphabet, the so-called complexity function (see [31, 174] for many
results linked to the notion of complexity).
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Complexity. Let u be a sequence; we call complexity function of u, and
denote by pu(n), the function which with each positive integer n associates
Card Ln(u), that is, the number of different words of length n occurring in
u.

In other words, the complexity function counts the number of distinct
factors that occur through a sliding window. The complexity function is
obviously non-decreasing. For any positive integer n, one has furthermore
1 ≤ pu(n) ≤ dn, where d denotes the cardinality of the alphabet A. Note
that the complexity function can be considered as a good measure of the dis-
order of a sequence as it is smallest for periodic sequences. Namely, a basic
result of [123] is the following.

Proposition 1.1.1. If u is a periodic or ultimately periodic sequence, pu(n)
is a bounded function. If there exists an integer n such that pu(n) ≤ n, u is
an ultimately periodic sequence.

Proof. The first part is trivial. In the other direction, we have pu(1) ≥ 2
otherwise u is constant, so pu(n) ≤ n implies that pu(k + 1) = pu(k) for
some k. For each word W of length k occurring in u, there exists at least one
word of the form Wa occurring in u, for some letter a ∈ A. As pu(k + 1) =
pu(k), there can be only one such word. Hence, if ui...ui+k−1 = uj ...uj+k−1,
then ui+k = uj+k. As the set Lk(u) is finite, there exist j > i such that
ui...ui+k−1 = uj ...uj+k−1, and hence ui+p = uj+p for every p ≥ 0, one period
being j − i.
Special word. Let W be a factor of the sequence u ∈ AN. A right extension
(respectively left extension) of the factor W is a word Wx (respectively xW ),
where x ∈ A, such that Wx (respectively xW ) is also a factor of the sequence
u.

A factor is said to be a left special factor (respectively right special factor)
if it has more than one left (respectively right) extension.

Let W+ (respectively W−) denote the number of right (respectively left)
extensions of W . We have

pu(n+ 1)− pu(n) =
∑

W∈Ln(u)

(W+ − 1) =
∑

W∈Ln(u)

(W− − 1).

This equality is a very useful tool for the computation of the complexity: see
for instance Exercise 5.4.11 in Chap. 5, and also Chap. 6.

Remark. One can also introduce the notion of bispecial factors: these are
the factors which are simultaneously right and left special factors (for a more
detailed exposition, see [110]).
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Topological entropy. There is a natural notion of entropy associated with
the complexity function. The topological entropy of the sequence u is defined
as the exponential growth rate of the complexity of u as the length increases:

Htop(u) = lim
n→+∞

logd(pu(n))
n

,

where d denotes the cardinality of the alphabet A. The existence of the limit
follows from the subadditivity of the function n �→ logd(pu(n)) :

∀m,n, logd(pu(n+m)) ≤ logd(pu(m)) + logd(pu(n)).

This notion of topological entropy comes from topological dynamics. One
can associate in a natural way (see Sec. 1.1.3 below) a topological dynamical
system with a sequence. The topological entropy of a sequence is nothing
else than the topological entropy of its associated dynamical system. For
more details on the entropy of dynamical systems, see for instance [393, 445].

1.1.3 Symbolic dynamical systems

Let us introduce some basic notions in symbolic dynamics. For expository
books on the subject, see [59, 81, 247, 265, 340]. A more detailed exposition
of this subject shall be made in Chap. 5.

The set AN shall be equipped with the product topology of the discrete
topology on each copy of A. Thus, this set is a compact space. The topology
defined on AN is the topology defined by the following distance:

for u �= v ∈ AN, d(u, v) = 2−min{n∈N; un �=vn},

Thus, two sequences are close to each other if their first terms coincide. Note
that the space AN is complete as a metric compact space. Furthermore, it
is a Cantor set, that is, a totally disconnected compact set without isolated
points.

Let S denote the following map defined on AN, called the one-sided shift:

S((un)n∈N) = (un+1)n∈N.

The map S is uniformly continuous, onto but not one-to-one on AN.
All these notions extend in a natural way to AZ, the distance on AZ being

defined as:

for u �= v ∈ AZ, d(u, v) = 2−min{n∈N; u|n| �=v|n|}.

Here the shift S is one-to-one.
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System associated with a sequence. The symbolic dynamical system as-
sociated with a one-sided (respectively two-sided) sequence u with values in
A is the system (O(u), S), where O(u) ⊂ AN (respectively AZ) is the closure
of the orbit of the sequence u under the action of the shift S; the orbit is the
set {Snu, n ∈ N} (respectively {Snu, n ∈ Z}). Note that O(u) is finite if and
only if u is shift-periodic.

The set Xu := O(u) is a compact space and S is a continuous map from
Xu to Xu. Indeed, the set Xu is a closed subset of the compact set AN, and
hence compact; d(Sx, Sy) ≤ 2d(x, y), therefore the continuity. This implies
that if x = limn→+∞ Sknu, then Sx = limn→+∞ Skn+1u and Sx ∈ Xu.

Lemma 1.1.2. For every sequence w ∈ AN, the following statements are
equivalent:

1. the sequence w ∈ Xu;
2. there exists a sequence (kn)n∈N such that w0...wn = ukn ...ukn+n for every
n ≥ 0;

3. Ln(w) ⊂ Ln(u) for all n.

Proof. Statement 1. is equivalent to d(w, Sknu) < 2−n for some sequence
kn, and that is exactly 2.; 2. implies 3. as any word occurring in w must occur
in some w0...wn, and 3. implies 2. because w0...wn is in Ln+1(u).

Exercise 1.1.3. Prove that a sequence u is recurrent if and only if there
exists a strictly increasing sequence (nk)k∈N such that u = limk→+∞ Snku
(that is, u is a cluster point of Xu). Deduce that the sequence u is recurrent
if and only if S is onto on O(u) (see also Lemma 5.1.11).

Cylinders. For a word W = w0...wr, the cylinder set [W ] is the set {v ∈
Xu; v0 = w0, ..., vr = wr}.

The cylinder sets are clopen (open and closed) sets and form a basis of
open sets for the topology of Xu. Indeed, if the cylinder [W ] is nonempty and
v is a point in it, [W ] is identified with both the open ball {v′; d(v, v′) < 2−n}
and the closed ball {v′; d(v, v′) ≤ 2−n−1}.
Exercise 1.1.4. Prove that a clopen set is a finite union of cylinders.

Remark. Note that the topology extends in a natural way to AN ∪ A�.
Indeed, let B be a new alphabet obtained by adding a further letter to the
alphabet A; words in A� can be considered as sequences in BN, by extending
them by the new letter in B. The set AN ∪ A� is thus metric and compact,
as a closed subset of BN. This will be needed in particular in Section 1.2.1.

The cylinders are defined over AZ as the following clopen sets, where
W1,W2 ∈ A�:

[W1.W2] = {(vi)i ∈ Xu|v−|W1| . . . v−1.v0 . . . v|W2|−1 = W1W2}.

Depending on the chapter, we will work either with AN or with AZ.

Consider now the notion of minimal sequence (also called uniform recur-
rence):
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Minimality. A sequence u = (un) is minimal (or uniformly recurrent) if
every word occurring in u occurs in an infinite number of positions with
bounded gaps, that is, if for every factor W , there exists s such that for every
n, W is a factor of un . . . un+s−1.

Exercise 1.1.5. Build an example of a sequence which is recurrent but not
minimal.

Let us note that the term “minimality” comes from symbolic dynamics: a se-
quence u is minimal if and only if the dynamical system (O(u), S) is minimal.
For more details, see Sec. 1.4.1, Sec. 5.1.4, and for instance, [340].

1.1.4 Sturmian sequences

Let us illustrate the preceding section by evoking an important family of
sequences, the so-called Sturmian sequences.

Sturmian sequences. A Sturmian sequence is defined as a (one-sided) se-
quence u the complexity function pu of which satisfies:

∀n ∈ N, pu(n) = n+ 1.

In particular, a Sturmian sequence is defined over a two-letter alphabet.
Chaps. 6 and 9 shall study in detail the properties of Sturmian sequences.
The more classical example of a Sturmian sequence is the Fibonacci sequence,
defined in Sec. 1.2.1 below; a proof of the fact that the Fibonacci sequence is
Sturmian is given in Exercise 5.4.11.

Exercise 1.1.6. For any s ≥ 1, construct an example of a sequence u with
complexity pu(n) = s + n. (Hint: start from a Sturmian sequence and add
new letters.)

Remark. One can define Sturmian sequences over a larger size alphabet
as recurrent sequences of complexity n+ s: see [111, 147, 201] and Chap. 4.

Arnoux-Rauzy sequences. One can also consider a generalization of Stur-
mian sequences over a three-letter alphabet, namely the Arnoux-Rauzy se-
quences introduced in [45]. These are recurrent sequences defined over a three-
letter alphabet with complexity 2n+1 with the following extra combinatorial
property: for every n, there is exactly one right special factor and one left
special factor of length n, and these special factors can be extended in three
different ways. This condition is called the * condition in the seminal paper
[45], and more generally in the literature on the subject. A further general-
ization of this notion is given in [149].

Exercise 1.1.7. Prove that the Arnoux-Rauzy sequences are uniformly re-
current. (Hint: prove that the right special factors appear with bounded gaps.)

One shall consider these sequences in Chap. 12.
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1.2 Substitutions

Substitutions are maps defined over the set of words A�, which generate in
a natural way infinite sequences with low complexity function.

1.2.1 Definition

Substitution. A substitution σ is an application from an alphabet A into
the set A�−{ε} of nonempty finite words on A; it extends to a morphism of
A� by concatenation, that is, σ(WW ′) = σ(W )σ(W ′) and σ(ε) = ε. It also
extends in a natural way to a map defined over AN or AZ.

It is called of constant length k if σ(a) is of length k for any a ∈ A.

Fixed point. A fixed point of the substitution σ is an infinite sequence u
with σ(u) = u.

A periodic point of σ is an infinite sequence u with σk(u) = u for some
k > 0.

An n-word for σ is any one of the words σn(a) for a ∈ A.

Remark. Substitutions are very efficient tools for producing sequences.
Let σ be a substitution over the alphabet A, and a be a letter such that σ(a)
begins with a and |σ(a)| ≥ 2. Then there exists a unique fixed point u of σ
beginning with a. This sequence is obtained as the limit in A� ∪AN (when n
tends toward infinity) of the sequence of n-words σn(a), which is easily seen
to converge.

Exercise 1.2.1. Prove that every substitution σ such that |σn(a)| tends to
infinity with n, for every a ∈ A, has at least one periodic point.

Let us consider a classical example of a substitution of constant length,
namely the Morse substitution. For a nice survey of the many properties of
this substitution, see [17]; see also [285]. This sequence will be studied in
detail in Chaps. 2 and 5.

The Morse sequence. The Morse sequence u is the fixed point beginning
with a of the Morse substitution σ1 defined over the alphabet {a, b} by
σ1(a) = ab and σ1(b) = ba.

u = abbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaabab...

Another classical example, namely the Fibonacci substitution, provides
the more natural example of Sturmian sequence (see Chaps. 2, 6, 8 and 9).

The Fibonacci sequence. The Fibonacci sequence is the fixed point v be-
ginning with a of the the Fibonacci substitution σ2 defined over the two-letter
alphabet {a, b} by σ2(a) = ab and σ2(b) = a.

v = abaababaabaababaababaabaababaabaababaababaabaababaababaaba...
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Invertible substitution. Let Γd denote the free group over d-letters. A
substitution over a d-letter alphabet can be naturally extended to Γd by
defining σ(s−1) = (σ(s))−1. It is said to be invertible if there exists a map
η : Γd → Γd such that ση(a) = ησ(a) = a for every a ∈ Γd.

The Fibonacci substitution is invertible: its inverse is a �→ b, b �→ b−1a.
For a nice introduction to the free groups and invertible substitutions, see
[66]. See also [275, 277, 416].

1.2.2 Abelianization

There is a convenient way to associate with a substitution a matrix, namely
the incidence matrix of the substitution σ.

Incidence matrix. Let σ be a substitution defined over the alphabet A =
{a1, . . . , ad} of cardinality d. The incidence matrix of the substitution σ is, by
definition, the d× d matrix Mσ the entry of index (i, j) of which is |σ(aj)|ai ,
that is, the number of occurrences of ai in σ(aj).

Let us note that for every (i, j) ∈ {1, 2, . . . , d}2 and for every n ∈ N,
|σn(aj)|ai is equal to the coefficient of index (i, j) of the matrix Mn

σ.

Example 1.2.2. The incidence matrices of the Morse substitution σ1 and the
Fibonacci substitution σ2 are respectively the matrices:

Mσ1 =
(

1 1
1 1

)
, Mσ2 =

(
1 1
1 0

)
.

Unimodular substitution. A substitution is said to be unimodular if the
determinant of its incidence matrix is ±1. The Fibonacci substitution is uni-
modular. The Morse substitution is not.

Canonical homomorphism. Let σ be a substitution defined over the al-
phabet A = {a1, . . . , ad} of cardinality d. Let l : A� → Zd denote the canon-
ical homomorphism, also called homomorphism of abelianization, defined as
follows:

∀W ∈ A�, l(W ) = (|w|ai)1≤i≤d ∈ Nd.

As a consequence, the incidence matrix Mσ satisfies:

Mσ = (l(σ(a1)), . . . , l(σ(ad))) .

Furthermore, we have the following commutative relation:

∀W ∈ A�, l(σ(W )) = Mσl(W ).

This notion will be needed in Chaps. 7, 8 and 10.

1.2.3 Primitivity

Let us introduce the notion of primitivity.
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Definition. A substitution σ over the alphabet A is primitive if there exists
a positive integer k such that, for every a and b in A, the letter a occurs in
σk(b).

Proposition 1.2.3. If σ is primitive, any of its periodic points is a minimal
sequence.

Proof. Let u = σp(u) be a periodic point of σ. We have u = (σp)k(u) =
(σp)k(u0)(σp)k(u1)...; for any b ∈ A, a occurs in (σp)k(b), hence a occurs
in u infinitely often with bounded gaps; but then so does every (σp)n(a) in
u = (σp)n(u), hence so does any word occurring in u.

Remark. The following substitution is not primitive but its fixed point
beginning by 0 is a minimal infinite sequence:

0 �→ 0010, 1 �→ 1.

This sequence is called the Chacon sequence. Indeed, it is not difficult to
check that Chacon’s sequence begins with the following sequence of words
(bn):

b0 = 0, and ∀n ∈ N, bn+1 = bnbn1bn.

One thus can deduce from this that Chacon’s sequence is minimal; for more
details, see Chap. 5. Notice that a rule of the form bn+1 = bnbn1bn is called
a catenative rule (see [365] for introducing the notion of locally catenative
rules and [390] for a generalization of this notion).

A characterization of primitivity. Let us add now the following extra
assumptions on substitutions:

1. there exists a letter a ∈ A such that σ(a) begins with a (this condition
guarantees the existence of a fixed point);

2. lim
n→∞ |σ

n(b)| =∞, for every letter b ∈ A.

Let us note that these two conditions imply the existence of an (infinite) fixed
point beginning with a. We will furthermore suppose:

3. all the letters in A actually occur in this fixed point.

Let us note that, given a primitive substitution, then there exists a power of
this substitution for which these three conditions hold.

Under these assumptions, we have the following equivalence:

Proposition 1.2.4. Let σ be a substitution satisfying the above conditions.
The substitution σ is primitive if and only if the fixed point of σ beginning by
a is minimal.

The proof is left as an exercise (see also [340]).
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1.2.4 The Perron–Frobenius theorem

The primitivity of a substitution can easily be expressed in terms of its inci-
dence matrix. Indeed the substitution σ is primitive if and only if there exists
an integer k such that the k-th power of its incidence matrix Mσ has positive
entries. We thus say that a matrix is primitive if its entries are nonnega-
tive and if there exists an integer k such that the k-th power of the matrix
has positive entries. A matrix Mσ is said irreducible if it has no nontrivial
invariant space of coordinates.

Exercise 1.2.5 ([189]).
Let M be an irreducible matrix (of size n).

1. Prove that (I + M)n−1 > 0. (Hint: prove that for any nonnegative vector
y, the vector (I + M)y has a number of zero coordinates which is strictly
smaller than that of y.)

2. Deduce that M satisfies the following: for any (i, j), there exists a positive
integer k such that the entry of index (i, j) of Mk is positive. (Hint:
consider the binomial expansion of (I + M)n−1.)

Primitive matrices are also called irreducible and aperiodic matrices. See
[63, 189, 387] for more details on matrices with nonnegative coefficients.

Irreducible matrices (and hence primitive matrices) satisfy the Perron–
Frobenius theorem:

Theorem 1.2.6 (Perron–Frobenius’ theorem). Let M be a nonnega-
tive irreducible matrix. Then M admits a strictly positive eigenvalue α which
dominates in modulus the other eigenvalues λ: α ≥ |λ|. The eigenvalue α
is a simple eigenvalue and there exists an eigenvector with positive entries
associated with α.

Furthermore, if M is primitive, then the eigenvalue α dominates strictly
in modulus the other eigenvalues λ: α > |λ|.

This important property of primitive matrices implies the existence of fre-
quencies for every factor of a fixed point of a primitive substitution.

Frequencies. Let u be a sequence. The frequency fW of a factor W of u is
defined as the limit (when n tends towards infinity), if it exists, of the number
of occurrences of the factor W in u0u1 . . . un−1 divided by n.

Theorem 1.2.7. Let σ be a primitive substitution satisfying the conditions
mentioned in Sec. 1.2.3. Let u be a fixed point of σ. Then every factor of u has
a frequency. Furthermore, all the frequencies are positive. The frequencies of
the letters are given by the coordinates of the positive eigenvector associated
with the dominating eigenvalue, renormalized in such a way that the sum of
its coordinates equals 1.

For a proof of this result, see Chap. 5 or [340].
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1.2.5 Substitutions of Pisot type

The case where the dominant eigenvalue is a Pisot number is of particular
interest.

Pisot-Vijayaraghavan number. Let us recall that an algebraic integer
α > 1 is a Pisot-Vijayaraghavan number or a Pisot number if all its algebraic
conjugates λ other than α itself satisfy |λ| < 1. This class of numbers has
been intensively studied and has some special Diophantine properties (see for
instance [113]).

Pisot type substitution. A substitution is of Pisot type if the eigenvalues of
the incidence matrix satisfy the following: there exists a dominant eigenvalue
α such that for every other eigenvalue λ, one gets

α > 1 > |λ| > 0.

Proposition 1.2.8 ([101]). Let σ be a Pisot substitution of Pisot type. Then
the characteristic polynomial χσ of the incidence matrix Mσ is irreducible
over Q. Hence, the dominant eigenvalue α is a Pisot number and the matrix
Mσ is diagonalizable (over C), the eigenvalues being simple. Furthermore, σ
cannot be of constant length.

Proof. Suppose there are two polynomials Q and R with integer coeffi-
cients such that QR = χσ. As 0 is not a root, each of the polynomials Q and
R has a root in C with modulus larger than or equal to 1, which implies that
at least two eigenvalues have a modulus larger than or equal to 1, hence the
irreducibility over Q. We deduce from this that the roots in C are simple. If σ
is of constant length l, then l is an eigenvalue for the eigenvector (1, 1, · · · , 1),
which is a contradiction for the irreducibility of the characteristic polynomial.

Remark. Following the previous definition, 0 cannot be an eigenvalue of
the incidence matrix of a Pisot substitution. Hence, the Morse substitution
is not Pisot.

It is worth noticing the following result which is a direct consequence of
the theory of irreducible matrices:

Theorem 1.2.9 ([101]). Any Pisot type substitution is primitive.

Proof. We deduce from the irreducibility of χσ, that the matrix Mσ is
irreducible. The proof of the theorem is thus a direct consequence of the
following result (see for instance [63]): let M be a matrix with nonnegative
entries; M is primitive if and only if M is irreducible and the spectral radius
of M is greater in magnitude than any other eigenvalue.

We shall focus on substitutions of Pisot type in Chaps. 7, 8 and 12.
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1.2.6 Substitutive dynamical systems

We deduce from Proposition 1.2.3, that if σ is primitive, then all its periodic
points have the same language. In other words, all the symbolic dynamical
systems associated with all its periodic points do coincide.
Substitutive system. Hence, we can associate in a natural way with a
primitive substitution a symbolic dynamical system following Sec. 1.1.3. In-
deed, if σ is primitive, the symbolic dynamical system associated with σ is
that, denoted by (Xσ, S), generated by any of its periodic points. It is finite
if and only if there is a periodic point for σ which is also shift-periodic. In this
case, the substitution is also called shift-periodic. We are mainly interested
in primitive and not shift-periodic substitutions.

Note that C. Holton and L. Q. Zamboni prove that a substitution of Pisot
type cannot be shift-periodic:

Proposition 1.2.10 ([207]). If σ is a primitive substitution the matrix of
which has a nonzero eigenvalue of modulus less than 1, then no fixed point u
of σ is shift-periodic.

In particular, all the usual hypotheses (primitivity, non-periodicity) are
satisfied by Pisot type substitutions. In Chaps. 7 and 8, we will see that
Pisot type substitutive systems have very special spectral and geometrical
properties.
Topological properties. The dynamical system associated with a primitive
substitution can be endowed with a Borel probability measure µ. Furthermore
this measure is invariant under the action of the shift S, that is, µ(S−1B) =
µ(B), for every Borel set B. Indeed, this measure is uniquely defined by
its values on the cylinders. The measure of the cylinder [W ] is defined as
the frequency of the finite word W in any element of Xσ, which does exist
following Theorem. 1.2.7.

Let us note that the system (Xσ, S) is uniquely ergodic: there exists a
unique shift-invariant measure. For a proof, see [340], and see also Chap. 5.
We will come back to this notion later in this chapter.

1.3 Automata

Among substitutions, substitutions of constant length play an important role.
The aim of this section is to prove that they are connected in a fundamental
way with automatic sequences.

1.3.1 Definition

Let k be an integer greater than or equal to 2. Let us introduce the notion of k-
automaton: such an automaton is a finite complete deterministic automaton
(also called 2-tape automaton or transducer). For more details, the reader is
referred to Chaps. 2 and 5; see also [121, 158, 212] and the surveys [26, 12].
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Definition of a k-automaton. A k-automaton is represented by a directed
graph defined by:

• a finite set S of vertices called states. One of these states is called the initial
state and is denoted by i;

• k oriented edges called transition maps from the set of states S into itself,
labelled by integers between 0 and k − 1;

• a set Y and a map ϕ from S into Y , called output function or exit map.

Automaticity. A sequence (u(n))n∈N with values in Y is called k-automatic
if it is generated by a k-automaton as follows: let

∑j
i=0 nik

i (nj �= 0) be the
base k expansion of the integer n; starting from the initial state one feeds the
automaton with the sequence n0, n1 . . . nj (the digits being read in increasing
order of powers); after doing this the automaton is in the state a(n); then
put u(n) := ϕ(a(n)). The automaton is then said to generate the k-automatic
sequence in reverse reading.

One can similarly give another definition of k-automaticity by reading the
digits in the reverse order, i.e., by starting with the most significant digit (that
is, starting with nj), but these two notions are easily seen to be equivalent
(see Proposition 1.3.4 below). The automaton is then said to generate the k-
automatic sequence in direct reading. We will use the terminology k-automatic
in direct reading or in reverse reading, until Proposition 1.3.4 will be proved.

Remark. An automaton is considered here as a machine producing a se-
quence, and not as usual as a machine recognizing a language.

1.3.2 Cobham’s theorem

There is an important connection between automatic sequences and fixed
points of substitutions of constant length. The following characterization of
automatic sequences is due to Cobham (see [121]).

Letter-to-letter projection. Consider a map from a finite alphabet A to
a finite alphabet, say B. This map extends in a natural way by concatenation
to a map from A� ∪ AN to B� ∪ BN. Such a map is called a letter-to-letter
projection.

Proposition 1.3.1. A sequence u is k-automatic in direct reading if and
only if u is the image by a letter-to-letter projection of a fixed point of a
substitution of constant length k.

Proof. Let us give a constructive proof of this equivalence by showing that
the image by a letter-to-letter projection of the fixed point of a substitution
of constant length is generated by an automaton in direct reading with as set
of states the alphabet of the substitution, with transition maps given by the
substitution, and with as output function, the projection p.
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• Let us first start with the fixed point u = (u(n))n∈N of the substitution
σ of constant length k defined over the alphabet A. Define σi : A → A,
which sends the letter a to the (i + 1)-th letter of σ(a). We then have
σ(a) = σ0(a) · · ·σk−1(a). Furthermore, for any integer n,

σ(un) = uknukn+1 . . . ukn+k−1 = σ0(un) · · ·σk−1(un),

that is, σi(u(n)) = u(kn+ i), for any integer n and for any i ∈ [0, k − 1].
Let us construct a k-automaton A in direct reading which recognizes the
sequence u: consider as set of states the alphabet A, and as set of edges
the maps σi. There is an edge from a to b if b occurs in σ(a), labelled by
i if b is the i+ 1-th letter of σ(a). Put as initial state u0 the first letter of
u. Define as output function the identity.
It is easily seen that the k-automaton A generates in direct reading the
sequence u. Indeed, write n =

∑j
i=0 nik

i: we start from u(0), then go to
the nt + 1-th letter of σ(u(0)), denoted by a1, then go to the nt−1 + 1-th
letter of σ(a1), which is also the knt + nt−1 + 1-th letter of σ2(u(0)), and,
after n steps, we arrive to the n+ 1-th letter of σt+1(u(0)), which is u(n).
If now, v is the image by a letter-to-letter projection p : A → B of the fixed
point u = (u(n))n∈N ∈ AN of a substitution σ of constant length k defined
on the alphabetA, then v is generated by the automaton previously defined
for u, but with output function the projection p.

• Conversely, let u be a sequence generated by a k-automaton A in direct
reading. Let S be the set of states of the automaton A and let f0, · · · , fk−1
be the transition maps. Define the substitution of constant length σ =
f0 · · · fk−1 over S. Let v be the fixed point of σ beginning with the initial
state i (note that the edge f0 maps i onto itself by definition, hence the
existence of a fixed point). It is easily checked that the sequence u is the
image by the output function ϕ of the fixed point v.

Remark. Following Prop. 1.3.1, k-automatic sequences are also called k-
uniform tag sequences in [121].

Example 1.3.2. One deduces from the proposition above that the 2-automa-
ton (Fig. 1.1) with initial state a and exit map Id{a,b} generates the Morse
sequence in direct reading.

ba0

1

0

1

Fig. 1.1. Automaton associated with the Morse sequence.
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1.3.3 The kernel of a sequence

The aim of this section is to give a further characterization of automaticity
in terms of a family of subsequences.

Proposition 1.3.3. A sequence u ∈ AN is k-automatic in reverse reading if
and only if the k-kernel Nk(u) of the sequence u is finite, where Nk(u) is the
set of subsequences of the sequence (u(n))n∈N defined by

Nk(u) = {(u(kln+ r))n∈N; l ≥ 0; 0 ≤ r ≤ kl − 1}.

Proof.
Let us first suppose that the k-kernel Nk(u) of the sequence u is finite.

We denote by u = u1, u2, · · · , ud the sequences of Nk(u). Consider a finite
set of d states S = {a1, · · · , ad} in bijection with Nk(u) (aj denotes the state
in bijection with the sequence uj). Define, for any r in [0, k − 1], the map
r : S → S which associates with any state ai the state r.ai in bijection with
the sequence of the k-kernel (ui(kn+ r))n∈N. Let n =

∑j
i=0 nik

i be the base
k expansion of the integer n, with ni ∈ [0, k − 1] and nj �= 0. We define
the map n from S into itself by n(ai) = nj(nj−1(· · · (n0(ai)))), if n �= 0,
otherwise the map 0 equals the identity. It is easily seen that n.a1 is the state
in bijection with (u(kj+1l+n))l∈N. Hence if n.a1 = m.a1, then u(n) = u(m),
by considering the first term of the two corresponding subsequences. We
thus can define as output function the map ϕ (which is well defined) which
associates with a state ai the value u(n) for any integer such that n.a1 = ai
(such an integer always exists by construction). The sequence u is hence
generated by the automaton in reverse reading with states S, initial state a1,
transition maps 0, 1, · · · , k − 1 and output function ϕ.

Let us show that a k-automatic sequence u in reverse reading has a finite
k-kernel. Let A be a finite automaton which generates the sequence u of initial
state i. The subsequence (u(kln + r))n≥0, where l ≥ 0 and 0 ≤ r ≤ kl − 1,
is generated by A with the initial state r.i, where r is the word of k letters
obtained by concatenating in front of the base q expansion of r as many
zeros as necessary. As the automaton A has a finite number of states, we
hence obtain a finite number of subsequences.

Proposition 1.3.4. A sequence is k-automatic in direct reading if and only
if it is k-automatic in reverse reading.

Proof. Following Proposition 1.3.1 and Proposition 1.3.3, it is sufficient to
prove the equivalence between being the image by a letter-to-letter projection
of the fixed point of a substitution of constant length k and having a finite
k-kernel.

Let us prove that the image by a letter-to-letter projection of the fixed
point of a substitution of constant length k has a finite k-kernel. It suffices to
prove this result for the fixed point (u(n))n∈N of a substitution σ of constant
length k defined over the alphabet A. For 0 ≤ i ≤ k − 1, define as in the
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preceding proof σi : A → A which associates with a letter x the (i + 1)-th
letter in its image under σ. We have σi(u(n)) = u(kn+ i), for any integer n
and for any i ∈ [0, k − 1]. Let l ≥ 0, 0 ≤ r ≤ kl − 1. Write r =

∑l−1
i=0 rik

i,
where 0 ≤ ri ≤ k− 1. We thus have u(kln+ r) = σr0 ◦ σr1 ◦ · · · ◦ σrl−1(u(n)).
As there are at most (Card(A))Card(A) such maps, this concludes the proof.

Conversely, suppose that the k-kernel Nk(u) of the sequence u is finite.
We denote by u = u1, u2, · · · , ud the sequences of Nk(u). Let U = (U(n))n∈N

be the sequence with values in Ad defined by U(n) = (u1(n), · · · , ud(n)).
Let us construct a substitution σ of constant length k defined on Ad with U
as a fixed point. As Nk(u) is stable by the maps Ar, where Ar(v(n))n∈N =
v(kn + r))n∈N, then, for any 0 ≤ r ≤ k − 1, U(kn + r) = U(km + r), if
U(n) = U(m). Let us define, for 0 ≤ r ≤ k − 1, σr: Ad → Ad, U(n) �→
U(kn + r) if there exists n such that (a1, · · · , ar) = U(n), and otherwise
(a1, · · · , ar) �→ (0, · · · , 0). The sequence U is thus the fixed point of the
substitution of constant length σ : x �→ σ0(x) · · ·σk−1(x) and the sequence u
is the image of U by the projection on the first coordinate from Ad into A.

Remark. These proofs are constructive, i.e., given the k-kernel of a se-
quence, then one can compute a k-automaton in reverse reading, generating
the sequence u, the states of which are in bijection with the subsequences
of the k-kernel. Furthermore a k-automaton in direct reading can be derived
from a substitution of constant length generating u from the proof of Proposi-
tion 1.3.1. We give other characterizations of automaticity in Chap. 3, known
as the Christol, Kamae, Mendès France and Rauzy theorem (see [119] and
also [118]).

Exercise 1.3.5. Give a description of the 2-kernel of the Thue-Morse se-
quence. Prove that the automaton in Fig. 1.1 also generates the Thue-Morse
sequence in reverse reading.

1.4 An introduction to topological dynamics and
measure-theoretic dynamical systems

We have introduced the notion of a symbolic dynamical system associated
with an infinite sequence. Such a discrete system belongs to the larger class
of topological dynamical systems, which have been intensively studied (for
instance, see [122]).

The aim of this section is to provide a brief introduction to basic notions in
topological and measure-theoretic dynamics, that may be useful for a better
understanding of Part 2. Note that most of the notions introduced here will
be studied in more details through the study of representative examples in
Chap. 5.
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1.4.1 Topological dynamical systems: basic examples

Definition. A topological dynamical system is defined as a compact metric
space X together with a continuous map T defined onto the set X.

Remark. Note that topological systems may also be defined without as-
suming that the map T is onto. In all the examples we consider here, the
maps are onto.

Minimality. A topological dynamical system (X,T ) is minimal if for all x
in X, the orbit of x (that is, the set {Tnx; n ∈ N}) is dense in X.

Exercise 1.4.1. 1. Prove that minimality is equivalent to each of the fol-
lowing assertions:
a) X does not contain a nontrivial closed subset E such that T (E) ⊂ E;
b) for every non-empty subset U of X, then

⋃
n≥0 T

−n(U) = X.
2. A Borel function f on X is said T -invariant if ∀x ∈ X, f(Tx) = f(x).

Suppose that (X,T ) is minimal. Prove that if f : X → X is continuous,
then f is T -invariant implies that f is constant.

Existence of an invariant measure. Let X be a compact metrizable
space. Recall that the set MX of Borel probability measures on X is identi-
fied with a convex subset of the unit ball of the dual space of the set C(X)
of the continuous complex-valued functions on X for the weak-star topology.
The set MX is metrizable, and compact. In the weak-star topology, one gets

µn → µ⇐⇒ ∀f ∈ C(X),
∫
fdµn →

∫
fdµ.

Recall that a Borel measure µ defined over X is said T -invariant if
µ(T−1(B)) = µ(B), for every Borel set B. This is equivalent to the fact that
for any continuous function f ∈ C(X), then

∫
f(Tx)dµ(x) =

∫
f(x)dµ(x).

Lemma 1.4.2. A topological system (X,T ) always has an invariant proba-
bility measure.

Proof. Indeed, given a point x ∈ X, any cluster point for the weak-star
topology of the sequence of probability measures:

1
N

∑
n<N

δTnx

is a T -invariant probability measure, where δy denotes the Dirac measure at
point y.

Since the space C(X) is metrizable, it is equivalent to say that there exists
an increasing sequence of integers (Nk)k∈N such that

∀f ∈ C(X),
1
Nk

∑
n<Nk

f(Tnx)→
∫
fdµ.
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Unique ergodicity. The case where there exists only one T -invariant mea-
sure is of particular interest. A topological dynamical system (X,T ) is
uniquely ergodic if there exists one and only one T -invariant Borel proba-
bility measure over X.
Conjugacy. A natural question is to try to “compare” two dynamical sys-
tems. Two dynamical systems (X,S) and (Y, T ) are said to be topologically
conjugate (or topologically isomorphic) if there exists an homeomorphism f
from X onto Y which conjugates S and T , that is:

f ◦ S = T ◦ f.

Semi-conjugacy. Two dynamical systems (X,S) and (Y, T ) are said to be
semi-topologically conjugate if there exist two sets X1 and Y1 which are at
most countable such that B1 = X \X1, B2 = Y \Y1, and f is a bicontinuous
bijection from B1 onto B2 which conjugates S and T . The map f is said to be
a semi-topological conjugacy. For an example of semi-topological conjugacy,
see Sec. 5.2.3.
Topological factor. A topological dynamical system (Y, T ) is a topological
factor of (X,S) if there exists a continuous map from X onto Y which con-
jugates the maps S and T . The system (X,T ) is then called an extension of
(Y, S).

Exercise 1.4.3. Let u, v be two sequences with values in finite alphabets,
and let Xu, Xv denote respectively the associated symbolic dynamical sys-
tems.

1. Suppose that (Xv, S) is a topological factor of (Xu, S), where S denotes
the shift. Let φ denote the conjugation map from Xu onto Xv. Prove
that the map φ satisfies the following: there exists a positive integer q
such that for every i, the coordinate of index i of φ(x) depends only on
(xi, . . . xi+q). (Hint: let φ0 : Xu → B, x = (xn) �→ |φ(x)|0, where B
denotes the alphabet of v; prove that φ−1

0 ([a]) is a clopen set, for every
letter a; see also Lemma 5.1.14.)

2. Deduce that if (Xu, S) and (Xv, S) are topologically conjugate, then they
have the same topological entropy (see Sec. 1.1.2), and if (Xv, S) is a
topological factor of (Xu, S), then Htop(v) ≤ Htop(u).

Rotations. The simplest example of a topological dynamical system consists
of toral translations. Toral translations belong to a larger class of dynami-
cal systems, namely, the translations over a compact group G, the invariant
probability measure being the Haar measure. These are usually called rota-
tions of the group G. This class contains in particular all the toral rotations,
the additions over a finite group, translations over p-adic integer groups or
translations over p-adic solenoids (see Sec. 1.6.2).

Exercise 1.4.4. Let G be a compact metric group. Let T : G→ G, x �→ ax
be a rotation of G. Prove that (G,T ) is minimal if and only if {an, n ∈ N}
is dense in X.
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Following Kronecker’s theorem, the minimality of toral rotations can be
expressed as follows (for a proof, see for instance [234]):

Proposition 1.4.5. The rotation by the vector α = (α1, . . . , αd) ∈ Rd on
the d-dimensional torus Td = Rd/Zd is minimal if and only if α1, . . . , αd and
1 are rationally independent.

Remark. Note that the minimality of a rotation (G,T ) (G being a com-
pact metric group) is equivalent to its unique ergodicity. For a proof, see
for instance [445]. In particular, a rotation with irrational angle on the one-
dimensional torus T = R/Z is minimal and uniquely ergodic, the invariant
measure being the Haar measure.

1.4.2 Measure-theoretic dynamical systems

We have considered here the notion of dynamical system, that is, a map
acting on a given set, in a topological context. This notion can be extended
to measurable spaces: we thus get measure-theoretic dynamical systems. For
more details about all of the notions defined in this section, one can refer to
[122, 194, 445].
Definition. A measure-theoretic dynamical system is defined as a system
(X,T, µ,B), where µ is a probability measure defined on the σ-algebra B of
subsets of X, and T : X → X is a measurable map which preserves the
measure µ.
Remark. Despite unique ergodicity is a concept from topological dynam-
ics, one should note that any uniquely ergodic topological dynamical system
(X,T ) is a measure-theoretic dynamical system with respect to the unique
probability measure which is invariant under T on the σ-algebra of Borel sets
of X.

Example 1.4.6. A uniquely ergodic rotation on a compact metric abelian
group or a primitive substitutive dynamical system are measure-theoretic
dynamical systems.

Ergodicity. A measure-theoretic dynamical system (X,T, µ) is ergodic if
every Borel subset B of X such that T−1(B) = B has zero measure or full
measure.

Exercise 1.4.7. Prove that ergodicity is equivalent to each of the following
assertions:

• every Borel set B such that µ(T−1B∆B) = 0 has zero or full measure;
• every Borel set B with µ(B) > 0 satisfies µ(∪∞n=0T

−nB) = 1.

Let us recall that a Borel function f on X is said T -invariant if f ◦T = f .
If the system (X,T, µ) is ergodic, then every Borel function which is T -
invariant is almost everywhere constant. Otherwise, if f is not constant almost
everywhere, then one can cut its image into two disjoint sets, whose inverse
images have a nontrivial measure and are invariant sets.
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Remark. The T -invariant measure of a uniquely ergodic system (X,T )
is ergodic. Otherwise, if E satisfies T−1(E) = E and µ(E) > 0, then the
measure defined over the Borel sets by: µ(B) = µ(B∩E)

µ(E) is another T -invariant
probability measure.

Ergodic transformations have the following interesting property, which is
a measure-theoretical counter-part of the property stated in Exercise 1.4.1
(for a proof, see for instance [445], Sec. 1.5):

Theorem 1.4.8. Let (X,T, µ,B) be a measure-theoretic dynamical system.
The map T is ergodic if and only if every T -invariant measurable function
f : X → X is constant almost everywhere.

Exercise 1.4.9. Prove that if f : X → R is measurable and f(Tx) ≥ f(x)
for almost every x ∈ X, then f is almost everywhere constant. (Hint: intro-
duce sets of the form {x ∈ X, f(x) ≥ c}, with c ∈ R.)

Group rotations. In the case of rotations on compact metric groups, one
has furthermore the following equivalence (for a proof, see for instance [445]):

Theorem 1.4.10. Let G be a compact metric group, and let T : G → G,
x �→ ax be a rotation of G. The following properties are equivalent:

1. T is minimal;
2. T is ergodic;
3. T is uniquely ergodic;
4. {an, n ∈ N} is dense in G.

Remark. We thus deduce by using the density of {an, n ∈ N} that the
ergodicity of T implies that G is abelian.
Isomorphism. Let us introduce an equivalent of the notion of topological
conjugacy for measure-theoretic dynamical systems. The idea here is to re-
move sets of measure zero in order to conjugate the spaces via an invertible
measurable transformation. For a nice exposition of connected notions of
isomorphism, see [445].

Two measure-theoretic dynamical systems (X1, T1, µ1,B1) and (X2, T2, µ2,
B2) are said to be measure-theoretically isomorphic if there exist two sets of
full measure B1 ∈ B1, B2 ∈ B2, a measurable map f : B1 → B2 called
conjugacy map such that

• the map f is one-to-one,
• the reciprocal map of f is measurable,
• f conjugates T1 and T2 over B1 and B2,
• µ2 is the image f∗µ1 of the measure µ1 with respect to f , that is,

∀B ∈ B2, µ1(f−1(B)) = µ2(B).

If the map is f is only onto, then (X2, T2, µ2,B2) is said to be a measure-
theoretic factor of (X1, T1, µ1, B1).

A nice way to obtain explicit factors is to study the spectral properties of
the system. The aim of the next section is to introduce this spectral aspect.
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1.5 Spectral theory

With any measure-theoretic dynamical system (X,T, µ), one can associate a
Hilbert space: the space L2(X,µ). The aim of this section is to introduce a
unitary operator acting on this Hilbert space and show how to use spectral
theory to give us insight into the dynamics of (X,T, µ). Good references on
the subject are [122, 194, 309, 340, 445]. See also for more details, Sec. 5.2.2
in Chap. 5.

1.5.1 First properties

Unitary operator. Let (X,T, µ) be a measure-theoretic dynamical sys-
tem, where T is invertible (that is, T−1 is also measurable and measure-
preserving). One can associate with it in a natural way an operator U acting
on the Hilbert space L2(X,µ) defined as the following map:

U : L2(X,µ) → L2(X,µ)
f �→ f ◦ T. (1.1)

Since T preserves the measure, the operator U is easily seen to be a uni-
tary operator. Note that the surjectivity of the operator U comes from the
invertibility of the map T .

The eigenvalues of (X,T, µ) are defined as being those of the map U . By
abuse of language, we will call spectrum the set of eigenvalues of the operator
U . It is a subgroup of the unit circle. The eigenfunctions of (X,T, µ) are
defined to be the eigenvectors of U . Let us note that the map U always has
1 as an eigenvalue and any non-zero constant function is a corresponding
eigenfunction.

The spectrum is said to be irrational (respectively rational) if it is included
in exp(2iπR \Q) (respectively in exp(2iπQ)).

Eigenvalues and ergodicity. One can deduce ergodic information from
the spectral study of the operator U .

In particular, T is ergodic if and only if the eigenvalue one is a simple
eigenvalue, that is, if all eigenfunctions associated with 1 are constant almost
everywhere. Indeed, this follows from Theorem 1.4.8 and from the following
remark: if a Borel set E of nontrivial measure satisfies T−1E = E, then 1E
is a nonconstant eigenfunction associated with one.

Furthermore, if T is ergodic, every eigenfunction is simple and every eigen-
function is of constant modulus. Indeed, if f is an eigenfunction for the
eigenvalue β, |f | is an eigenfunction for the eigenvalue |β| = 1 and hence
is a constant. If f1 and f2 are eigenfunctions for β, |f2| is a nonzero constant,
and f1/f2 is an eigenfunction for 1 and hence a constant (see also Chap. 5,
Sec. 5.2.2).
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Structure of the spectrum. The spectrum is said to be discrete if L2(X,µ)
admits an Hilbert basis of eigenfunctions, that is, if the eigenfunctions span
L2(X,µ). Hence, if L2(X,µ) is separable (this is the case for instance if
X is a compact metric set), then there are at most a countable number of
eigenvalues.

If the spectrum contains only the eigenvalue 1, with multiplicity 1, the
system is said to be weakly mixing or to have a continuous spectrum. This
implies in particular that T is ergodic. We will see in Sec. 1.5.2 where the
terminology “continuous spectrum” comes from.

We say that the system has a partially continuous spectrum if the system
neither has discrete spectrum, nor is weakly mixing.
Spectrum of group rotations. Consider a rotation T : x �→ ax on a com-
pact abelian group G equipped with the Haar measure µ. Let Ĝ denote the
group of characters of the group G, that is, the continuous group morphisms
γ : G→ C∗. Note that a character γ takes its values in a compact set of the
unit circle U := {z ∈ C, |z| = 1} of the complex plane.

Example 1.5.1. We have Û = {z �→ zn, n ∈ Z} and Û is isomorphic to Z.
The group T̂d = {(α1, . . . , αd) �→

∑d
j=1 kjαj , (k1, . . . , kd) ∈ Zd} and T̂d is

isomorphic to Zd. For a proof, see [445].

Note that if G is a compact metric space (this is the situation we will be in
throughout this book), then L2(G,µ) is separable, and Ĝ is at most count-
able. One thus can prove that the set of characters form an Hilbert basis of
L2(G,µ). We deduce that λ is an eigenvalue for U if and only if there exists
γ ∈ Ĝ such that λ = γ(a) (recall that a denotes the translation vector).
Hence, any group rotation (G,T, µ) has discrete spectrum.

Exercise 1.5.2. Show that (see also Chap. 5 Prop. 5.2.18):

1. the spectrum of the rotation Rα on the one-dimensional torus T with
irrational angle α is exp(2iπZα) = {e2iπ kα; k ∈ Z};

2. the spectrum of the addition of 1 on the group Z/rZ (r ≥ 1), is
exp(2iπ Z

r ) = {e2iπ k/r; k ∈ Z};
3. the spectrum of the rotation of angle (α1, . . . αd) on the d-dimensional

torus Td is exp(2iπ
∑
j Zαj) = {e2iπ

∑
j kjαj ; kj ∈ Z}.

An invariant for measure-theoretical isomorphism. One of the main
questions in ergodic theory is to decide when two dynamical systems are
isomorphic. A first answer to this problem can be provided by looking at
some natural conjugacy invariants. A property of a topological (respectively
measure-theoretic) dynamical system is a topological (respectively measure-
theoretic) invariant if given (X1, T1) which has this property and (X2, T2)
which is topologically conjugate (respectively measure-theoretically isomor-
phic) to (X1, T1), then (X2, T2) has this property. An invariant is said com-
plete if (X1, T1) and (X2, T2) are conjugate if and only if they have this same
invariant.
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Exercise 1.5.3. Which of the following properties is a topological invariant
or a measure-theoretic invariant: unique ergodicity, minimality, weak-mixing,
ergodicity?

It is usually difficult to find complete invariants. Nevertheless, Von Neu-
mann proved that, restricting to invertible ergodic system with discrete spec-
trum, the spectrum is a complete measure-theoretic invariant (see a proof in
[194]).

Theorem 1.5.4 (Von Neumann). Two invertible and ergodic transforma-
tions with identical discrete spectrum are measure-theoretically isomorphic.

Any invertible and ergodic system with discrete spectrum is measure the-
oretically isomorphic to a rotation on a compact abelian group, equiped with
the Haar measure.

The proof of the second assertion of the theorem is based on the following
idea: consider the group Λ of eigenvalues of U endowed with the discrete
topology; the group of the rotation will be the character group of Λ, which
is compact and abelian.

Topological discrete spectrum. This theorem has its counterpart in topo-
logical terms. Let (X,T ) be a topological dynamical system, where T is an
homeomorphism. A nonzero complex-valued continuous in C(X) is an eigen-
function for T if there exists λ ∈ C such that ∀x ∈ X, f(Tx) = λf(x).
The set of the eigenvalues corresponding to those eigenfunctions is called the
topological spectrum of the operator U . If two systems are topologically con-
jugate they have the same group of eigenvalues. The operator U is said to
have topological discrete spectrum if the eigenfunctions span C(X).

Example 1.5.5. An ergodic rotation on a compact metric abelian group has
topological discrete spectrum.

The theorem of Von Neumann becomes (see for instance [445]):

Theorem 1.5.6. Two minimal topological dynamical systems (X1, T1) and
(X2, T2) with discrete spectrum, where T1 and T2 are homeomorphisms, are
topologically conjugate if and only if they have the same eigenvalues.

Any invertible and minimal topological dynamical system with topologi-
cal discrete spectrum is topologically conjugate to a minimal rotation on a
compact abelian metric group.

1.5.2 Spectral type

For systems which do not have a discrete spectrum, more precise invariants
solve the problem of isomorphism: the most important of them are the spec-
tral type introduced below and the spectral multiplicity. These notions are
illustrated in Sec. 5.2.2.
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Fourier coefficients. Let µ be a probability measure defined over T. The
Fourier coefficients (µ̂(n))n∈Z ∈ CZ of µ are defined by:

∀n ∈ Z, µ̂(n) =
∫

T

exp(2iπnt)dµ(t).

Positive definite sequence. A sequence (an)n∈Z ∈ CZ is positive definite
if for any complex sequence (zi)i≥1, we have:

∀n ≥ 1,
∑

1≤i,j≤n
zizjai−j ≥ 0.

In particular, the sequence (µ̂(n))n∈Z is positive definite. Conversely, one can
associate with any positive definite sequence a positive Borel measure on the
torus (see for instance [235]).

Theorem 1.5.7 (Bochner-Herglotz theorem). Any positive definite se-
quence (an)n∈Z ∈ CZ is the Fourier transform of a finite positive Borel mea-
sure on T.

Consider now a measure-theoretical dynamical system (X,T, µ) and let
U be the unitary operator associated with it.

Exercise 1.5.8. Let f ∈ L2(X,µ). Prove that the sequence (Unf, f)n∈Z is
positive definite (where (Unf, f) =

∫
X
Unf.fdµ).

Spectral type. Let f ∈ L2(X,µ). The spectral type �f of f is the finite
positive Borel measure �f on the torus T defined by

∀n ∈ Z, �̂f (n) = (Unf, f) =
∫
X

f ◦ Tn.fdµ.

Its total mass is �̂f (0) = ||f ||2. For examples of methods of computation of
spectral types, see Chap. 5.

Exercise 1.5.9. Let f be an eigenfunction with norm 1 associated with the
eigenvalue e2iπλ. Prove that �f = δλ.

Remark. Let us recall that the spectrum is said continuous if 1 is the
only eigenvalue of T and the only eigenfunctions are the (almost everywhere)
constants. In this case if f ∈ L2(X,µ) is orthogonal to the constant function
1, then �f is continuous.

Maximal spectral type. Let µ, ν be two Borel measures. Recall that µ is
said absolutely continuous with respect to ν (µ << ν) if ν(E) = 0 implies
µ(E) = 0, for any Borel set E. Two measures µ and ν are said to be equivalent
if µ << ν and ν << µ.
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Theorem 1.5.10. Let (X,T, µ) be a measure-theoretic dynamical system.
There exists a probability measure � defined over T characterized by the fol-
lowing property:

∀f, �f << �.

Let ν be a positive measure on T, if ν << �, then there exists f such that
ν = �f .

By definition, this measure � is unique up to equivalence. The measure �
is called the maximal spectral type of U .

Remark. We thus have that e2iπλ is an eigenvalue of U if and only if
�{λ} �= 0. For more details, see [194, 340, 445]. Note that �{1} �= 0.

The above theorem comes from a more general theorem stating that the
Hilbert space L2(X,µ) can be uniquely decomposed as an orthogonal sum of
cyclic spacesHi, where the spacesHi are stable under the action of U . A cyclic
space is the closure of a set {Un(f), n ∈ Z}, for an element f in L2(X,µ). We
say that U has a spectrum of multiplicity at most k if L2(X,µ) is the direct
sum of k cyclic spaces; if k = 1, we say that the spectrum is simple. For more
details, see [340] or Sec. 5.2.2. In particular, Proposition 5.2.21 deals with the
spectrum of the Morse system which is proved to be nondiscrete and simple.
An example of system having a spectrum with multiplicity at most four, and
functions having a spectral type equivalent to the Lebesgue measure is given
in Sec. 5.3.2.

1.5.3 Correlation measures of a sequence

There is an interesting way to associate with an infinite sequence u with
values in a finite alphabet, a family of finite positive measures on T. We will
see that such measures can be considered as spectral types of the associated
dynamical system (Xu, S).

Correlation measure. Let u be a sequence with values in the finite alpha-
bet A ⊂ C. Let us note that the following definitions and results also hold
for bounded complex sequences.

A correlation sequence of u is any cluster point of the sequence (γN )N≥1
with values in CN, where γN is defined as follows for a fixed N :

γN : N→ C, k �→ 1
N

∑
n<N

un+kun.

By compacity, if γ is a correlation sequence of u, there exists a sequence
(Nj)j≥1 such that

∀k ∈ N, γk = lim
j→+∞

1
Nj

∑
n<Nj

un+kun.
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Let us extend the definition of γ to the negative numbers by introducing
γ̃ defined over Z as follows: ∀k ∈ N, γ̃−k = γk. The sequence γ is positive
definite.

A correlation measure of u associated with the correlation sequence γ is
the finite positive measure defined on T, the Fourier transform of which is
given by the positive definite sequence γ.

Let us note that a correlation measure µ is not necessarily a probability
measure. Its total mass is equal to limj→+∞ 1

Nj

∑
n<Nj

|un|2.

Remark. If ∀k ∈ N, limN→+∞ 1
N

∑
n<N unun+k exists, then the sequence

u admits a unique correlation measure.

Exercise 1.5.11. Consider the dynamical system (Xu, S) associated with
the sequence u. Let µ be an S-invariant measure which is a cluster point for
the weak-star topology of the sequence of probability ( 1

N

∑
n<N δSnu)N≥1.

Consider, for a fixed m ∈ N, the map πm : Xu → C, x �→ xm. Prove that the
spectral type of πm is a correlation measure, and that it does not depend on
m.

For examples of correlation measures, see Chap. 2, where the correlation
measure for the Morse (Sec. 2.1.3) and the Rudin-Shapiro (Sec. 2.2.2) se-
quence are explicitly computed. See also [79, 340, 348] and the nice surveys
[12, 342].

1.6 Factors of substitutive dynamical systems

In this section, we illustrate the important connection between the eigenvalues
of a measure theoretical dynamical system and its translation factors. We will
then apply these results to substitutive dynamical systems, by alluding to the
fact that the spectrum of a dynamical system appears to be an efficient way
to determine the largest rotation component. These results will be needed in
particular in Chap. 7.

1.6.1 Translation factors on a torus or on a finite group

First, let us present the relationship between the eigenvalues of a measure-
theoretical dynamical system and its translation factors on a torus or a finite
group. We will next study in the following section examples of factor rotations
on inverse limit groups, such as the group of p-adic numbers or the 2-adic
solenoid.

Lemma 1.6.1. The spectrum of a measure-theoretic dynamical system con-
tains the spectrum of any of its measure-theoretic factors.
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Proof. Let (X1, T1, µ1) be a factor of (X,T, µ). Let f be the conjugacy
map. Let g1 be an eigenfunction of (X1, T1, µ1) for the eigenvalue λ. We have
g1◦T1 = λ g1. Let g = g1◦f . Then g◦T = g1◦f◦T = g1◦T1◦f = λ g1◦f = λ g.
Thus, g is an eigenfunction of (X,T, µ) for λ.

In the other direction, the following lemmas state that the knowledge on
the existence of some eigenvalues of a dynamical system allows the determi-
nation of some rotation factors:

Lemma 1.6.2. A rotation Rα of irrational angle α on the one-dimensional
torus T, that we denote (T, Rα), is a measure-theoretic factor of an ergodic
dynamical system (X,T, µ) if and only if e2iπ α is an eigenvalue of (X,T, µ).

Proof. The necessary condition is a consequence of Lemma 1.6.1.
Let g be an eigenfunction of (X,T, µ) for the eigenvalue e2iπ α. We will

prove that the rotation Tα : U→ U, x �→ e2iπ αx is a measure-theoretic factor
of (X,T, µ). This is equivalent (since (U, Tα) and (T, Rα) are conjugate) to
the fact that (T, Rα) is a factor of (X,T, µ).

By ergodicity, g is of constant modulus, which can be chosen equal to 1.
We thus have g : X → U, with g ◦ T = e2iπ αg = Tα ◦ g. It remains to prove
that g is onto.

We have µ(g−1U) = µ(X) = 1 �= 0, and the measure µ∗g on U is nonzero
and invariant under Tα. By unique ergodicity of Tα, this measure is nothing
else than the Haar measure. Since g(X) is invariant under Tα and of nonzero
measure, we get g(X) = U, by ergodicity of Tα, and (U, Tα) is a measure-
theoretic factor of (X,T, µ).

Exercise 1.6.3. Prove that a minimal rotation Rα on the torus Td, with α =
(α1, . . . , αd), is a measure-theoretic factor of an ergodic dynamical system
(X,T, µ) if and only if for every 1 ≤ i ≤ d, e2iπαi is an eigenvalue of (X,T, µ).

Similar results are obtained for the addition of 1 on the finite group Z/rZ,
where r is a positive integer, this map being uniquely ergodic.

Lemma 1.6.4. The addition of 1 on the finite group Z/rZ, that we de-
note (Z/rZ, 1), is a measure-theoretic factor of the ergodic dynamical system
(X,T, µ) if and only if e2iπ/r is an eigenvalue of (X,T, µ).

Proof. The necessary condition comes from Lemma 1.6.1.
Suppose that g is an eigenfunction of (X,T, µ) for exp(2iπ/r), normal-

ized so that it is of modulus 1. For all 0 ≤ ε ≤ 1/pn, the set Xε =
g−1(∪k∈Z exp{2iπ(k/r + [0, ε[)}) is measurable and invariant through the
action of T . Consequently, the measure of this set is either 0 or 1. More-
over, the sequence (Xε)0≤ε≤r is an increasing sequence of sets, X0 has mea-
sure 0, and X1/r has measure 1. Thus, there exists a lowerbound for the
set of the reals ε such that Xε has measure 1. This real is denoted by ε0.
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Then ∪ε<ε0Xε = g−1(∪k∈Z exp{2iπ(k/r + [0, ε0[)}) has measure 0, whereas
∪ε>ε0Xε = g−1(∪k∈Z exp{2iπ(k/r+ [0, ε0])}) has measure 1. Let z0 = e2iπε0 .
Then g−1{z0e2iπ(k/r), k ∈ Z} has measure 1.

This implies that there exists a unique function f : X → Z/rZ such that
g = z0 exp(2iπ/r f) in L2(X,µ). This map satisfies f ◦ T = 1 + f . By unique
ergodicity of Z/pnZ, we prove as in the preceding lemma that f preserves
the measure and is onto.
Remark. Let (X,T, µ) be an ergodic dynamical system, and let β be an
eigenvalue of the operator U . According to the fact that the argument of β
is rational or not, we deduce that the system (X,T, µ) admits as a factor
a rotation on a finite group or on the torus T. Let us consider in the next
section, the case of a p-adic or of a solenoidal factor.

1.6.2 Solenoidal and p-adic translation factors

The aim of this section is to introduce two classes of translations over a com-
pact abelian group which totally differ from that of the translations studied
in the previous section, that is, translations over p-adic groups and p-adic
solenoids. Such objects appear in a natural way in the study of the spec-
tral properties of substitutive dynamical systems: for instance, for a precise
study of the Morse system, see Chap. 5; we also refer to p-adic rotations and
geometric representation of substitutive dynamical systems in Chap. 7. Nev-
ertheless, the reader may consider the following as a digression more than a
fundamental notion on substitutions.
p-adic translations. Let us first consider additions on p-adic groups. We
will suppose that the reader is already familiar with the notion of p-adic
numbers. One can refer to [34, 83, 192, 360] for more details on this notion.
See also Chaps. 3 and 5.

Let us recall that the ring of p-adic integers Zp can be realized as the
inverse limit of the finite groups Z/pnZ. More precisely, for i ≥ 1, let pii+1
denote the canonical projection from Z/pi+1Z onto Z/piZ. Then we have

Zp = lim←− Z/pnZ = {(ai)i≥1; ai ∈ Z/piZ, ∀i ≥ 1, pii+1(ai+1) = ai}.

We get an expansion of the elements of Zp with respect to the reference
sequence (pi)i∈Z, which tends to zero in Qp. This expansion, similar to the
decimal expansion in R, is called Hensel expansion:

∀ z ∈ Zp, z �= 0, ∃ (bi)i≥0 ∈ {0, . . . , p− 1}, z =
∑
i≥1

bi p
i.

The field of p-adic numbers Qp, that is, the fraction field Qp of Zp is the
completion of Q for the p-adic absolute value defined on Q as |z|p = p−vp(z),
where vp(z) is the largest power of p which appears in the decomposition of
p in prime factors. This absolute value is non-Archimedean, that is, for any
two elements x, y with |x| �= |y|, then |x+ y| = max(|x|, |y|).
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Symbolic representation as an odometer. From a symbolic point of
view, the Hensel expansion means that the addition of 1 on Zp is topologi-
cally conjugate to the following symbolic system called p-odometer (see Chap.
5 and [193] for a definition of a generalized odometer associated with a nu-
meration system).

Definition 1.6.5. The p-odometer is the topological dynamical system ({0
, . . . , p− 1}N, χ) where χ is defined by:

χ : {0, . . . , p− 1}N → {0, . . . , p− 1}N

w = w0w1 . . . �→ v = v0v1 . . .

with
if ∀ i ≥ 0, wi = p− 1, then ∀ i ≥ 0, vi = 0;

if
{
∀ i < i0, wi = p− 1
wi0 �= p− 1, then



∀ i < i0, vi = 0
vi0 = wi0 + 1,
∀ i > i0, vi = wi.

By Theorem 1.4.10, we obtain that the addition of 1 on the group Zp, that
we denote (Zp, 1) is a minimal and uniquely ergodic topological dynamical
system.

A basis for the topology of Qp consists in the clopen balls z+pkZp, where
k ∈ N and z ∈ Qp (Zp is the closed unit ball of Qp). In particular, one can
note that the Hensel map sends the clopen sets z + pkZp in Zp onto the
cylinders in {0, . . . , p−1}N. On this space, the Bernoulli measure is invariant
under the action of the odometer. A consequence is that the Haar measure
µp on Zp is explicit; it is defined on the clopen sets by:

∀ z ∈ Zp, ∀ k ≥ 0, µp(z + kn Zp) = 1/pk.

Spectral theory. The determination of the spectrum of the addition of 1
on Zp can be realized as a generalization of that of the eigenvalues of the
addition of 1 on a finite group. We left it as an exercise:

Exercise 1.6.6. The spectrum of the addition of 1 on the p-adic group Zp
is the group generated by⋃

n≥1

exp(2iπ
Z

pn
) = {e2iπ k/pn ; n ≥ 1, k ∈ Z}.

Conversely, the following lemma states that having the elements {e2iπ k/pn ;
n ≥ 1, k ∈ Z} as eigenvalues is equivalent with having Zp as a factor. See
also the proof of Proposition 5.2.18.

Lemma 1.6.7. The addition of 1 on the p-adic group Zp is a measure-
theoretic factor of the ergodic dynamical system (X,T, µ) if and only if, for
every n ≥ 1, e2iπ/p

n

is an eigenvalue of (X,T, µ).
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Proof. The condition is necessary from Lemma 1.6.1.
From Lemma 1.6.4, if e2iπ/p

n

is an eigenvalue of (X,T, µ), there exists an
eigenfunction gn : X → C (of constant modulus 1) for the eigenvalue e2iπ/p

n

,
and a constant zn ∈ C such that gn = zn exp(2iπ/pn fn), with fn : X →
Z/pnZ and fn ◦ T = 1 + fn.

Since gn+1 is an eigenfunction for e2iπ/p
n+1

, the map (gn+1)p is also an
eigenfunction for e2iπ/p

n

. By ergodicity of (X,T, µ) , the eigenvalues are sim-
ple, and (gn+1)p and gn are proportional. So that we get zn exp(2iπ/pn fn) =
zn+1

p exp(2iπ/pn fn+1). In particular, fn − fn+1 is constant modulo pn.
It will be recalled that pii+1 is the canonical projection of Z/pi+1Z onto

Z/piZ. Modifying the map fn+1 by subtracting the constant (we thus get
fn = fn+1 modulo pn), we obtain a sequence of maps fn : X → Z/pnZ such
that fn ◦ T = 1 + fn and pnn+1 ◦ fn+1 = fn, for every positive integer n.

Let f : X →
∏
n≥1 Z/pnZ be the map defined by f(x) = (fn(x))n≥1.

According to what precedes, we have for all i ≥ 1, pii+1(fi+1(x)) = fi(x).
Thus, f(X) is included in the inverse limit of Z/pnZ, that is, Zp. Moreover,
we have f ◦ T = 1 + f . By unique ergodicity of the addition of 1 on Zp,
we conclude just as in Lemma 1.6.2 that Zp is a measure-theoretic factor of
(X,T, µ).

The 2-adic solenoid. Solenoids usually appear in dynamical systems as
examples of attractors (see for instance the Smale attractor in [234], or [140]).
See also [247] for a purely symbolic approach in connection with the notion
of dimension group. We will study some properties of the 2-adic solenoid
solenoid through an exercise. Everything extends in a natural way to the
p-adic solenoid.

The 2-adic solenoid S2 can be realized as the following inverse limit space:

S2 = {x = (xk)k≥1| ∀k ≥ 1, xk ∈ T, xk = 2xk+1 mod 1} .

Exercise 1.6.8. Let us first prove some basic properties of the 2-adic
solenoid:

1. Prove that S2 is nonempty by giving one of its elements.
2. Give two elements a and b in S2 such that a2 = b2 and a3 �= b3.
3. Prove that the projections πk : S2 → T, x �→ xk are onto.
4. Prove that S2 is a compact abelian group.

Let us study now the minimality of translations on S2. Let a ∈ S2 such
that the addition of a1 on T is minimal, that is, any real number representing
a1 is irrational.

1. Prove that the addition of any coordinate ak on T is also minimal.
2. Prove that the addition of a on S2 is onto.
3. Prove that the addition of a on S2 is minimal.
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Let us finally study some spectral properties of the minimal addition of
a on the 2-adic solenoid.

1. Prove that the spectrum of the addition of a on S2 contains all the num-
bers e2iπak , k ∈≥ 1, and that it is exactly equal to the group generated
by

∪k≥1 exp(2iπZ[α/2k]) = {e2iπ
mα

2k , k ≥ 1,m ∈ Z}.

(Hint: a description of the characters of S2 is given in [247].)
2. Let α be an irrational number. Let a = (α, α/2, . . . , α/2k, . . . ). Prove that

the addition of a on S2, that we denote (S2, Ra), is a measure-theoretic
factor of the ergodic dynamical system (X,T, µ) if and only if for every
k ≥ 1, e2iπ

α

2k is an eigenvalue of (X,T, µ).

Example. The spectrum of the addition of (
√

2/2k)k≥1 on S2 is the group
generated by ∪k≥1 exp(2iπZ[

√
2/2k]).

1.6.3 Application to the spectrum.

Let (X,T, µ) be an invertible ergodic dynamical system with discrete spec-
trum. From Theorem 1.5.4, this system is a compact group rotation. Let us
collect the results we have obtained on the existence of translation factors in
order to describe this rotation:

• if exp(2iπα), with α irrational, is an eigenvalue of (X,T, µ), then the system
(T, Rα) is a factor of (X,T, µ); its spectrum contains exp(2iπZα);

• let Rα be a minimal rotation on the torus Td, with α = (α1, . . . , αd); if for
every 1 ≤ i ≤ d, exp(2iπαi) is an eigenvalue of (X,T, µ), then the system
(Td, Rα) is a factor of (X,T, µ); its spectrum contains exp(2iπ

∑
Zαi);

• if exp(2iπ/r), with r ∈ N+ is an eigenvalue of (X,T, µ), then the system
(Z/rZ, 1) is a factor of (X,T, µ); its spectrum contains exp(2iπ Z

r );
• if all the elements of ∪k≥1 exp(2iπZ[α/pk]), with α irrational and p prime,

are eigenvalues of (X,T, µ), then the system (Sp, Ra), where a = (α,
α/p, . . . , α/pk, . . . ) ∈ Sp, is a factor of (X,T, µ);

• if all the elements of ∪k≥1 exp(2iπ Z

pk
), with p prime, are eigenvalues of

(X,T, µ), then the system (Zp, 1) is a factor of (X,T, µ).

Let us partition now the spectrum into disjoint components which are ra-
tionally independent; note that we have lost no information in restricting
ourselves in the above enumeration to prime integers, since we require ra-
tional independence between the components. By using the results stated in
this enumeration, one can construct a minimal compact group rotation which
admits exactly the same spectrum: this group will be built as a direct product
of tori, finite groups, p-adic groups or solenoids.
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1.6.4 Maximal equicontinuous factor

Theorem 1.5.6 has numerous consequences in topological dynamics. Indeed,
for any topological dynamical system, one can look at a specific set of topolog-
ical factors, which contains all the rotation factors, that is, the equicontinuous
factors.

Equicontinuity. A topological dynamical system (X,T ) is said to be equi-
continuous if the set of maps {Tn, n ∈ Z} is uniformly equicontinuous, that
is:

(∀ ε > 0) (∃α > 0) (∀x, y ∈ X) ( d(x, y) < α =⇒
(∀n ∈ Z), d(Tn(x), Tn(y)) < ε ).

In particular, any rotation on a compact abelian metric group is equicon-
tinuous. For more details on this notion, see [50, 161, 160, 145].

One interest of this notion is that equicontinuous factors can be compared:

Maximal equicontinuous factor. Every topological dynamical system
(X,T ) admits a largest equicontinuous factor, (Y, T1), in the sense that any
topological equicontinuous factor of (X,T ) is a topological factor of (Y, T1).
This largest equicontinuous factor is called maximal equicontinuous factor
[160].

Application to the spectrum of substitutive dynamical systems.
One interesting point in the spectral study of substitutive dynamical sys-
tems is that we do not need to distinguish between topological and measure-
theoretic eigenfunctions, and thus between topological and measure-theoretic
factors (see also Exercise 7.3.12 in Chap. 7).

Theorem 1.6.9 (B. Host [215]). Let σ be a primitive and not shift-periodic
substitution, and let (Xσ, S) denote the uniquely ergodic topological dynamical
system associated with it. Then, any class (in L2) of eigenfunctions contains
a continuous eigenfunction.

An invertible and uniquely ergodic equicontinuous topological dynamical
system has a discrete spectrum [183]. Furthermore every rotation factor of
(Xσ, S) is a factor of its maximal equicontinuous factor. As a consequence, the
maximal equicontinuous factor of the dynamical system (Xσ, S) is nothing
else but a rotation on a compact abelian group, determined by the discrete
part of its spectrum.

An important literature is devoted to the determination of the maximal
equicontinuous factor of a substitutive dynamical system, with a special em-
phasis on the discrete spectrum case. A review of these results is given in
Chap. 7. The description of the spectrum of some representative examples of
substitutions is detailed in Chap. 5.



2. Substitutions, arithmetic and finite
automata: an introduction

The aim of this chapter is to introduce substitutions by showing some typical
and important examples of situations in number theory where they appear.
Special stress will be given to the statistical properties of these sequences.
We first recall some properties of the Morse sequence, then we introduce the
Rudin-Shapiro sequence and focus on its spectral properties. We also evoke
the Baum-Sweet sequence, the Cantor sequence and the Fibonacci sequence.

For all the definitions related to words, substitutions and automata, we
refer the reader to Chap. 1 (see also [158] and [340]).

2.1 The Morse sequence

As mentioned in Chap. 1, the Morse sequence u is defined as the fixed point
beginning by a of the Morse substitution σ defined over the alphabet {a, b}
by σ(a) = ab and σ(b) = ba:

u = abbabaabbaababbabaababbaabbabaab . . .

Let us insist on the importance of the order of the letters in the defini-
tion of a substitution. For example the substitution over the alphabet {a, b}
defined by σ(a) = ab and σ(b) = ab has only one (non-empty) fixed point,
that is, the periodic sequence abababababab . . . .

We can deduce from the equality

σr+1(a) = σ(σr(a)) = σr(σ(a)),

the following combinatorial properties of the Morse sequence u:

• ∀n ∈ N, u2n = un and u2n+1 = 1− un;
• at position k2n of the sequence occurs σn(a), if uk = 0, and σn(b) if uk = 1.

Let Ur = σr(a) and U ′r = σr(b). These sequences of words over the
alphabet {a, b} are uniquely defined by the following relation:
1 This chapter has been written by C. Mauduit

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 35–52, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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{
U0 = a
U ′0 = b

and ∀ r ≥ 0
{
Ur+1 = UrU

′
r

U ′r+1 = U ′rUr
.

By construction, we have u = limr→+∞ Ur. Since the word Ur is equal
to the word U ′r modulo the exchange of the letters a and b, the other fixed
point of the Morse substitution is equal to limr→+∞ U ′r. This provides an
alternative construction of the Morse sequence by catenative rules of the
form Ur+1 = UrU

′
r.

2.1.1 Arithmetic definition of the Morse sequence

The Morse sequence can be defined by a property of the dyadic development
of the integers. As shown in Chap. 1, this is a special case of a general property
of sequences obtained as a fixed point of a constant length substitution: if the
sequence v is a fixed point of a substitution of constant length q, then v can be
defined by a property of the q-adic development of the integers (Proposition
1.3.1). Moreover this property is simple enough to be recognizable by a finite
automaton.

Consider the Morse sequence. Let us denote by Na (respectively Nb ) the
set of integers n such that the (n+ 1)-th letter of the Morse sequence is a
(respectively b ):

Na = {0, 3, 5, 6, 9, 10, 12, 15, . . . },

Nb = {1, 2, 4, 7, 8, 11, 13, 14, . . . }.

For any integer n , we denote by S2(n) the sum of the dyadic digits of
n, i.e.,

S2(n) =
∑
i≥0

ni, if n =
∑
i≥0

ni2i, ni ∈ {0, 1},

is the dyadic development of n.

Proposition 2.1.1. We have

Na = {n ∈ N, S2(n) is even },

Nb = {n ∈ N, S2(n) is odd }.

Proof. Obviously Na and Nb form a partition of N. It is thus enough to
show by induction over r the following property:

(Pr)
{
n ∈ Na and n < 2r =⇒ S2(n) is even ,
n ∈ Nb and n < 2r =⇒ S2(n) is odd.

Note that (P0) is obvious. Suppose that (Pr) is true and consider n ∈ Na
(respectively Nb) such that 2r ≤ n < 2r+1. Then n = 2r + n′ with n′ ∈ Nb
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(respectively Na) and n′ < 2r . As S2(n) = S2(2r +n′) = S2(n′) + 1 , (Pr+1)
follows.

Let us recall that if we consider integers as words over the alphabet {0, 1}
(via their dyadic development), then it is clear that the 2-automaton shown
in Fig. 2.1.1 with initial state a and exit map Id{a,b} recognizes the Morse
sequence (either in direct reading or in reverse reading).

ba0

1

0

1

Fig. 2.1. Automaton associated with the Morse sequence.

2.1.2 The problem of Prouhet

In fact, it seems that the first mathematician who introduced the Morse
sequence was E. Prouhet. In 1851 he solved in [339] the following problem
(also known as the Tarry-Escott problem): given the positive integers q and
r , find an infinite number of sequences of qr numbers that can be cut in
q sets of qr−1 elements such that, for any k < r, the sum of all the k-th
powers of the elements of each set is the same.

If q = 2, the solution to Prouhet’s problem is given by the Morse sequence
in the following sense:

Proposition 2.1.2. For any nonnegative integers k, r and n0 such that k <
r, we have ∑

n∈n0+Na
n<n0+2r

nk =
∑

n∈n0+Nb
n<n0+2r

nk .

Proof. As for α ∈ {a, b}

∑
n∈n0+Nα
n<n0+2r

nk =
∑
n∈ Nα
n< 2r

(n0 + n)k =
∑
i≤k

(
k

i

)
nk−i0

∑
n∈ Nα
n< 2r

ni,

it is enough to prove the property in the case n0 = 0. This is equivalent to
saying that for any nonnegative integers k and r such that k < r, we have∑
n<2r (−1)S2(n)nk = 0.
Let us introduce the polynomial Fr ∈ Z[X] defined by

Fr(X) =
∑
n<2r

(−1)S2(n)Xn =
∏
k<r

(1−X2k).
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One checks that Fr(X) = (1−X)rGr(X) with Gr ∈ Z[X], so that F (k)
r (1) =∑

n<2r (−1)S2(n)n(n− 1) . . . (n− k+ 1) = 0 for k < r, from which we deduce
that
∑
n<2r (−1)S2(n)nk = 0 for k < r.

For more details, see for instance [462, 463] and the survey [84].

2.1.3 A statistical property of the Morse sequence

By a theorem of Fréchet, any monotone function f can be decomposed as
f = f1 + f2 + f3, where f1 is a monotone step-function, f2 a monotone
function which is the integral of its derivative, and f3 a monotone continuous
function which has almost everywhere a derivative equal to zero.

In [458] Wiener extended the spectrum theory to the harmonic analysis
of functions defined for a countable set of arguments (that he called arrays).

As an application of some theorems proved in [458], Mahler gives in [279]
a construction based on the array (−1)S2(n) for which f3 �= 0 in the Fréchet
decomposition. The crucial point is the following property:

Proposition 2.1.3. For any positive integer k and any positive integer N ,
if

γN (k) =
1
N

∑
n<N

(−1)S2(n)(−1)S2(n+k) ,

then for any k the sequence (γN (k))N>0 converges and its limit is non-zero
for infinitely many k.

The convergence of the sequence ( γN (k) )N≥1 can be understood as a
consequence of the unique ergodicity of the symbolic dynamical system as-
sociated with the infinite word u (see [340, 342] for this approach). It follows
also from [237] that limN→+∞ γN (k) is equal to the k-th Fourier coefficient
of the correlation measure associated with the Morse sequence, which is the
Riesz product

∏
n≥0(1− cos 2nt). See also Sec. 1.5.3 in Chap. 1.

Let us present here a proof of Proposition 2.1.3 independent of these
results.

Proof.
• For k = 0, we have for any positive integer N, γN (0) = 1.
• For k = 1, we have for any positive integer N ,
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γ2N (1) =
1

2N

∑
n<2N

(−1)S2(n)(−1)S2(n+1)

=
1

2N

∑
2n<2N

(−1)S2(2n)(−1)S2(2n+1)

+
1

2N

∑
2n+1<2N

(−1)S2(2n+1)(−1)S2(2n+2)

=
1

2N

∑
n<N

− (−1)S2(n)(−1)S2(n) +
1

2N

∑
n<N

− (−1)S2(n)(−1)S2(n+1)

= −1
2
− 1

2
γN (1),

and for any nonnegative integer N

γ2N+1(1) =
1

2N + 1

∑
n<2N+1

(−1)S2(n)(−1)S2(n+1)

=
1

2N + 1

∑
2n<2N+1

(−1)S2(2n)(−1)S2(2n+1)

+
1

2N + 1

∑
2n+1<2N+1

(−1)S2(2n+1)(−1)S2(2n+2)

γ2N+1(1) =
1

2N + 1

∑
n<N+1

− (−1)S2(n)(−1)S2(n)

+
1

2N + 1

∑
n<N

− (−1)S2(n)(−1)S2(n+1)

= − N + 1
2N + 1

− N

2N + 1
γN (1).

If we put δN = γN (1)+ 1
3 for any strictly positive integerN , these relations

become 

δ1 = γ1(1) +

1
3

= −2
3

δ2N = −1
2
δN

δ2N+1 = − N

2N + 1
δN −

2
3(2N + 1)

.

It is easy to check by induction over N that

∀N ≥ 2 | δN |≤
2
3

log2N

N
.

Indeed, this is true for N = 2 and N = 3 (δ2 = 1
3 and δ3 = 0); for 2N ≥ 4

we have
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| δ2N |=
1
2
| δN |≤

1
2

2
3

log2N

N
≤ 2

3
log2 2N

2N
,

and for 2N + 1 ≥ 5 we have

| δ2N+1 | ≤
N

2N + 1
2
3

log2N

N
+

2
3(2N + 1)

≤ 2
3(2N + 1)

(log2N + 1) ≤ 2
3

log2(2N + 1)
2N + 1

.

This computation shows that γN (1) = − 1
3 + O(logN/N) so that the

sequence ( γN (1) )N>0 converges to − 1
3 .

It is now easy to deduce by induction over k the convergence of the
sequences ( γN (k) )N>0 for k ≥ 2 from the convergence of the sequences
( γN (0) )N>0 and ( γN (1) )N>0 :

• If 2k ≥ 2, we have for any positive integer N ,

γ2N (2k) =
1

2N

∑
n<2N

(−1)S2(n)(−1)S2(n+2k)

=
1

2N

∑
2n<2N

(−1)S2(2n)(−1)S2(2n+2k)

+
1

2N

∑
2n+1<2N

(−1)S2(2n+1)(−1)S2(2n+2k+1)

= γN (k),

and for any nonnegative integer N ,

γ2N+1(2k) =
1

2N + 1

∑
n<2N+1

(−1)S2(n)(−1)S2(n+2k)

=
∑

2n<2N+1

(−1)S2(2n)(−1)S2(2n+2k)

+
1

2N + 1

∑
2n+1<2N+1

(−1)S2(2n+1)(−1)S2(2n+2k+1)

=
N + 1
2N + 1

γN+1(k) +
N

2N + 1
γN (k).

It follows that if γ(k) = limN→+∞γN (k), both sequences ( γ2N (2k) )N>0
and ( γ2N+1(2k) )N≥0 converge to γ(k), so that the sequence ( γN (2k) )N>0
converges and γ(2k) = limN→+∞γN (2k) = γ(k).

• If 2k + 1 ≥ 3, we have for any positive integer N ,
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γ2N (2k + 1) =
1

2N

∑
n<2N

(−1)S2(n)(−1)S2(n+2k+1)

=
1

2N

∑
2n<2N

(−1)S2(2n)(−1)S2(2n+2k+1)

+
1

2N

∑
2n+1<2N

(−1)S2(2n+1)(−1)S2(2n+2k+2)

= −1
2
γN (k)− 1

2
γN (k + 1),

and for any nonnegative integer N ,

γ2N+1(2k + 1) =
1

2N + 1

∑
n<2N+1

(−1)S2(n)(−1)S2(n+2k+1)

=
1

2N + 1

∑
2n<2N+1

(−1)S2(2n)(−1)S2(2n+2k+1)

+
1

2N + 1

∑
2n+1<2N+1

(−1)S2(2n+1)(−1)S2(2n+2k+2)

=
N + 1
2N + 1

γN+1(k)− N

2N + 1
γN (k + 1).

It follows that if γ(k) = limN→∞γN (k) and γ(k + 1) = limN→∞γN (k +
1), both sequences ( γ2N (2k + 1) )N>0 and ( γ2N+1(2k + 1) )N≥0 converge to
− 1

2γ(k) − 1
2γ(k + 1), so that the sequence ( γN (2k + 1) )N>0 converges and

γ(2k + 1) = limN→∞γN (2k + 1) = − 1
2γ(k)− 1

2γ(k + 1).

• It is now easy to deduce from the relations

γ(0) = 1
γ(2k) = γ(k)

γ(2k + 1) = −1
2
γ(k)− 1

2
γ(k + 1)

the values of γ(k) for any nonnegative integer k.
In particular for any integer i we have γ(2i) = − 1

3 , which ends the proof
of Proposition 2.1.3.

2.2 The Rudin-Shapiro sequence

2.2.1 Definition

For any sequence ε = (εn)n∈N ∈ {−1,+1}N we have

∫ 1

0

∣∣∣∣∣∑
n<N

εne (nθ)

∣∣∣∣∣
2

dθ =
∫ 1

0

∑
n<N
n′<N

εnεn′e ((n− n′)θ) dθ = N,
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because ∫ 1

0
e (kθ) dθ =

{
1 if k = 0
0 if k ∈ Z \ {0}

(with the notation e(x) = e2iπx).
We hence have

sup
θ∈[0,1]

∣∣∣∣∣∑
n<N

εne (nθ)

∣∣∣∣∣ ≥

∫ 1

0

∣∣∣∣∣∑
n<N

εne (nθ)

∣∣∣∣∣
2

dθ




1
2

=
√
N .

R. Salem asked in 1950 the following question, linked to several problems
in harmonic analysis (see Chap. X from [228]) : is it possible to find a sequence
ε ∈ {−1,+1}N such that there is a constant c > 0 for which

√
N ≤ sup

θ∈[0,1]

∣∣∣∣∣∑
n<N

εne (nθ)

∣∣∣∣∣ ≤ c√N
holds for any positive integer N?

H.S. Shapiro in 1951 and then W. Rudin in 1959 gave a positive answer
to this question in [394] and [366].

Definition 2.2.1. The Rudin-Shapiro sequence ε over the alphabet {−1,+1}
is defined by the relation ε0 = 1 and for any nonnegative integer n{

ε2n = εn
ε2n+1 = (−1)nεn.

Remark. The relations u0 = 1, u2n = un, and u2n+1 = −un, for any
nonnegative integer n define the Morse sequence over the alphabet {+1,−1}.

By analogy with the fact that un gives the parity of the sum of digits of
n , i.e., the parity of the number of one’s in the dyadic development of n , it
is easy to verify that εn gives the parity of the number of words 11 in the
dyadic development of n .

Proposition 2.2.2. For any nonnegative integer n with dyadic development
n =
∑
i≥0 ni2

i (ni ∈ {0, 1}) we have

εn = (−1)
∑
i≥0 nini+1 .

Furthermore for any nonnegative integers a, b and n such that b < 2n, we
have

ε2n+1a+b = εaεb.
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b c da0 0

110

1 1 0

Fig. 2.2. Automaton associated with the the Rudin-Shapiro substitution.

Proof. The proof can be deduced by induction from the relations ε2n = εn
and ε2n+1 = (−1)nεn.

If we consider again integers as words over the alphabet {0, 1}, it is clear
that the 2-automaton on Fig. 2.2 (in reverse reading or direct reading) with
initial state a and exit map ϕ defined by ϕ(a) = ϕ(b) = +1 and ϕ(c) =
ϕ(d) = −1 recognizes the Rudin-Shapiro sequence.

Proposition 2.2.3. For any nonnegative integer N

sup
θ∈[0,1]

∣∣∣∣∣∑
n<N

εne (nθ)

∣∣∣∣∣ ≤ (2 +
√

2)
√
N .

Proof. For any nonnegative integer n , put

Sn(θ) =
∑
k<2n

εk e(kθ), S′n(θ) =
∑
k<2n

(−1)kεk e(kθ), M(θ) =
(

1 e (θ)
1 −e (θ)

)
.

As Sn+1(θ) = Sn(2θ) + e(θ)S′n(2θ) and S′n+1(θ) = Sn(2θ) − e(θ)S′n(2θ), we
have (

Sn(θ)
S′n(θ)

)
=
∏
k<n

M
(
2kθ
)( 1

1

)
and

|Sn(θ)| ≤
√
|Sn(θ)|2 + |S′n(θ)|2 ≤

√
2
∏
k<n

∥∥M (2kθ)∥∥2 =
√

2 2n/2 .

Now, if N = 2n1 + 2n2 + · · ·+ 2nk , with n1 > n2 > · · · > nk , we have∑
k<N

εk e(kθ) = Sn1(θ)+e(2n1θ)Sn2(θ)+ · · ·+e ((2n1 + · · ·+ 2nk−1) θ) Snk(θ),

since it follows from Proposition 2.2.2 that for any nonnegative integers k, n,
we have ε2n+k = εk as soon as k < 2n−1.

We deduce from this equality that∣∣∣∣∣∑
k<N

εke (kθ)

∣∣∣∣∣ ≤ √2
(

2n1/2 + 2n2/2 + · · ·+ 2nk/2
)

and Proposition 2.2.3 follows from the following lemma:
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Lemma 2.2.4. For any nonnegative integers n1, n2, · · · , nk with n1 > n2 >
· · · > nk , we have

2n1/2 + 2n2/2 + · · ·+ 2nk/2 ≤ (1 +
√

2)
√

2n1 + · · ·+ 2nk .

Proof. The proof works by induction over k. The property is obvious in
the case k = 1 . Suppose that for any nonnegative integers n1, n2, · · · , nk
with n1 > n2 > · · · > nk , we have

2n1/2 + 2n2/2 + · · ·+ 2nk/2 ≤ (1 +
√

2)
√

2n1 + · · ·+ 2nk .

Then for any nonnegative integers n1, n2, · · · , nk+1 with n1 > n2 > · · · >
nk+1 , we get

2n1/2 + 2n2/2 + · · ·+ 2nk+1/2 ≤ 2n1/2 + (1 +
√

2)
√

2n2 + · · ·+ 2nk+1

by induction.
But as 2n2 + · · · + 2nk+1 ≤ 2n1 , we have 2n1/2

√
2n2 + · · ·+ 2nk+1 ≤ 2n1

and

2n1 + 2(1 +
√

2) 2n1/2
√

2n2 + · · ·+ 2nk+1 + (3 + 2
√

2) (2n2 + · · ·+ 2nk+1)

≤ (3 + 2
√

2) (2n1 + 2n2 + · · ·+ 2nk+1)

i.e.,

2n1/2 + (1 +
√

2)
√

2n2 + · · ·+ 2nk+1 ≤ (1 +
√

2)
√

2n1 + 2n2 + · · ·+ 2nk+1 ,

which ends the proof.

2.2.2 Statistical properties of the Rudin-Shapiro sequence

As the Rudin-Shapiro sequence is defined by a very simple algorithm, one
should expect its behavior to be very far from that of a “random” sequence.
In particular, one should expect, as in the case of the Morse sequence (see
Proposition 2.1.3) that the Rudin-Shapiro sequence has positive correlations.
See also Sec. 1.5.3 in Chap. 1.

Nevertheless the following proposition shows a result in the opposite di-
rection:

Proposition 2.2.5. For any nonnegative integers k and N , define

γN (k) =
1
N

∑
n<N

εn εn+k.

Then for any nonnegative integer k the sequence (γN (k))N>0 converges and

lim
N→∞

γN (k) = 0 for every k ≥ 1 .
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Proposition 2.2.5 is a corollary of the more precise following result, due
to C. Mauduit and A. Sárközy [283]:

Proposition 2.2.6. For any positive integers k and N , we have

|
∑
n<N

εn εn+k |< 2k + 4k log2
2N
k
.

Proof.
• Let us first consider the case where N is a power of 2, N = 2M with M

a nonnegative integer.
If we put for any positive integers k and M

SM (k) =
∑
n<2M

εn εn+k and S′M (k) =
∑
n<2M

= (−1)nεnεn+k,

then we have

SM+1(2k) =
∑

n<2M+1

εnεn+2k =
∑
n<2M

ε2nε2n+2k +
∑
n<2M

ε2n+1ε2n+2k+1

=
∑
n<2M

εnεn+k + (−1)k
∑
n<2M

εnεn+k

= (1 + (−1)k)SM (k),

and

SM+1(2k + 1) =
∑

n<2M+1

εnεn+2k+1

=
∑
n<2M

ε2nε2n+2k+1 +
∑
n<2M

ε2n+1ε2n+2k+2

=
∑
n<2M

(−1)n+kεnεn+k +
∑
n<2M

(−1)nεnεn+k+1

= (−1)k)S′M (k) + S′M (k + 1).

By a similar computation, we get

S′M+1(2k) = (1− (−1)k)SM (k)

and
S′M+1(2k + 1) = (−1)kS′M (k)− S′M (k + 1).

In particular we have S
′
M (0) = S

′
M (1) = δ0(M) and SM (1) = δ0(M) +

2δ1(M), where δ0 and δ1 are Dirac measures.
It is now easy to deduce by induction over k from these four relations

that for any positive integer k and any nonnegative integer M , we have
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|SM (k)| ≤ 2k and |S′M (k)| ≤ 2k.

Now, if N =
∑l
i=1 2Mi is the dyadic expansion of the positive integer N ,

it is easy to check that

∑
n<N

εnεn+k =
l∑
i=1

∑
n<2Mi

ε(
n+

∑
1≤j<i 2Mj

) ε(
n+k+

∑
1≤j<i 2Mj

).
Let us define the integer ν by

2ν ≤ k < 2ν+1.

If i ∈ I+ = {j ∈ {1, . . . , l},Mj > ν} we have

∑
n<2Mi

ε(
n+

∑
1≤j<i 2Mj

) ε(
n+k+

∑
1≤j<i 2Mj

)

= SMi(k) +
∑

n<2Mi


ε(

n+
∑

1≤j<i 2Mj
) ε(

n+k+
∑

1≤j<i 2Mj
) − εnεn+k


 ,

because it follows from Proposition 2.2.3 that∑
n<2Mi−k

ε(
n+

∑
1≤j<i 2Mj

) ε(
n+k+

∑
1≤j<i 2Mj

)

=
∑

n<2Mi−k


ε(∑

1≤j<i 2Mj
)

2

εn εn+k =
∑

n<2Mi−k
εnεn+k.

This shows that∣∣∣∣∣∣
∑
i∈I+

∑
n<2Mi

ε(
n+

∑
1≤j<iMj

) ε(
n+k+

∑
1≤j<i 2Mj

)
∣∣∣∣∣∣ ≤
∑
i∈I+

(|SMi(k)|+ 2k)

≤ 4k Card I+.

Now

Card I+ = M1 − ν = [log2N ]− [log2 k] ≤ log2N − log2 k + 1,

which gives∣∣∣∣∣∣
∑
i∈I+

∑
n<2Mi

ε(
n+

∑
1≤j<i 2Mj

) ε(
+k+

∑
1≤j<i 2Mj

)
∣∣∣∣∣∣ ≤ 4k log2

2N
k
.

If we put I− = {i ∈ {1, . . . , l},Mi ≤ ν}, then we have
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∣∣∣∣∣∣
∑
i∈I−

∑
n<2Mi

ε(
n+

∑
1≤j<i 2Mj

) ε(
n+k+

∑
1≤j<i 2Mj

)
∣∣∣∣∣∣ ≤
∑
i∈İ−

2Mi

≤ 2ν+1 − 1 < 2k.

Finally we proved that∣∣∣∣∣∑
n<N

εnεn+k

∣∣∣∣∣ ≤ 2k + 4k log2
2N
k
.

Exercise 2.2.7. What can be said about the multiple correlations of the
Rudin-Shapiro sequence defined for nonnegative integers k1, k2, · · · , kp and
N by

γN (k1, k2, . . . , kp) =
1
N

∑
n<N

εnεn+k1εn+k2 . . . εn+kp ?

2.3 The Baum-Sweet sequence

It is well known that the continued fraction expansion of an irrational al-
gebraic number x is ultimately periodic if and only if x is quadratic (this
result is known as Lagrange’s theorem). But we know almost nothing about
the expansion of nonquadratic irrational algebraic numbers. In particular, the
following question seems to be of the highest difficulty: is there any algebraic
number of degree at least 3 with a bounded continued fraction expansion
(i.e., such that the partial quotients in the expansion are bounded)? If we re-
place R by the field F2((X−1)) of formal power series in X−1 on F2 (where
F2 = Z/2Z denotes the finite field with two elements), the analogous problem
was solved in 1976 by L. E. Baum and M. M. Sweet. Indeed they give in [57]
an example of an algebraic element of degree 3 with a bounded continued
fraction expansion (i.e., with partial quotients in F2[X] of bounded degree).

Definition 2.3.1. The Baum-Sweet sequence (fn)n∈N with values in the
alphabet F2 is defined by

fn = 0 if the dyadic development of n contains
at least one odd string of 0′s ,

= 1 if not .

It is clear from this definition that the Baum-Sweet sequence is recognized
by the 2-automaton (in direct reading) shown in Fig. 2.3, with initial state
a and exit map ϕ defined by ϕ(a) = ϕ(b) = 1 and ϕ(c) = ϕ(d) = 0.



48 2. Substitutions, arithmetic and finite automata

c da b0 0,1

0

0
1

1

1

Fig. 2.3. Automaton associated with the the Baum-Sweet sequence.

The following proposition illustrates a typical property of sequences gen-
erated by an automaton. It is an illustration of a classical theorem on q-
automata (for q power of a prime) due to G. Christol, T. Kamae, M. Mendès
France and G. Rauzy that will be discussed in Chap. 3 (see also [118]).

A formal power series f is said to be algebraic over F2(X) if there exists
a nontrivial polynomial P with coefficients in F2(X) such that P (f) = 0.

Proposition 2.3.2. Let f =
∑
n≥0 fnX

−n be the formal power series with
coefficients given by the Baum-Sweet sequence. Then

1. f is an algebraic element of degree 3 over F2(X);
2. furthermore, the continued fraction expansion of f is bounded and con-

sists of elements of the set {1, X,X + 1, X2, X2 + 1}.

Proof. Let us give a proof of the first assertion. We do not give here a
proof of the second one which is rather a special and surprising property of the
Baum-Sweet sequence than a general property of automata. Note that there
is no characterization of algebraic elements over Fq(X) (q power of a prime)
the continued fraction expansion of which is bounded, and this problem seems
to be hopelessly difficult.

It follows from the definition that for any nonnegative integer n we have


f2n+1 = fn

f4n = fn

f4n+2 = 0
, with f0 = 1.

Now if we write

f =
∑
n≥0

fnX
−n =

∑
n≥0

f2n+1X
−(2n+1) +

∑
n≥0

f4n+2X
−(4n+2) +

∑
n≥0

f4nX
−4n ,

we see that

f = X−1
∑
n≥0

fnX
−2n +

∑
n≥0

fnX
−4n = X−1f2 + f4

and f is solution of the algebraic equation of degree 3

Xf3 + f +X = 0 .
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For more details on continued fraction expansions of formal power series,
see the surveys [71, 259, 378]. For transcendence results for Laurent formal
power series with coefficients in a finite field, see Chap. 3.

2.4 The Cantor sequence

The Cantor substitution τ is defined over the alphabet {a, b} by

τ(a) = aba
τ(b) = bbb .

Definition 2.4.1. The sequence of words (τn(a))n∈N
converges to the fixed

point C of the Cantor substitution beginning with a. This sequence is called
the Cantor sequence. Its first terms are:

aba bbb aba bbb bbb bbb aba bbb aba . . .

Let us denote by Ca the set of integers n such that the (n+ 1)-th letter of
the Cantor sequence is a.

It follows from Proposition 1.3.1 that the Cantor sequence v is recognized
by the 3-automaton in Fig. 2.4 in direct reading with initial state a and exit
map Id{a,b}:

ba
1

0,1,20,2

Fig. 2.4. Automaton associated with the Cantor sequence.

This proves the following proposition:

Proposition 2.4.2.

Ca =


n ∈ N; n =

∑
i≥0

ni3i, with ∀ i ≥ 0 ni ∈ {0, 2}


 .

2.5 An application of substitutions to criteria of
divisibility

The four examples of sequences we have seen (Morse, Rudin-Shapiro, Baum-
Sweet and Cantor) are fixed points of substitutions of constant length 2 or
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3. As we pointed out several times, this means that they can be defined by
an automatic property of the q-adic development of the integers.

We want to give now an application of Proposition 1.3.1 to the resolution
of the following problem: given integers d and q greater or equal to 2, is it
possible to decide only from its q-adic development whether a given positive
integer is divisible by d or not? From an algebraic point of view, this corre-
sponds to consider the powers of q in Z/dZ. Let us give an interpretation of
this, in terms of automata.

Let v be the periodic sequence with values in the alphabet {0, 1, . . . , d−
1}:

01 . . . (d− 1)01 . . . (d− 1)01 . . . (d− 1) . . . .

To solve our problem, we need to construct a q-automaton which recog-
nizes the sequence v .

To obtain this q-automaton, it is enough to find a substitution � of con-
stant length q such that v is a fixed point of �.

This can be easily done by cutting v into words of length q and rewriting
v as v = �(0)�(1) . . . �(d− 1) �(0)�(1) . . . �(d− 1) . . . .

To avoid heavy notations we will give explicitly the final automaton only
in the case q = 2 and d = 5:

v = 01234012340123401234012340123401234012340123401234 . . . .

�(0) = 01
�(1) = 23
�(2) = 40
�(3) = 12
�(4) = 34

Clearly v is fixed point of �, and it follows from Proposition 1.3.1 that v
is recognized by the 2-automaton shown in Fig. 2.5 (in direct reading) with
initial state 0 and exit map Id{0,1,2,3,4}.

1 3

0

101 0

01
10 0 2 4

1

Fig. 2.5. Automaton associated with the substitution �.
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2.6 The Fibonacci sequence

2.6.1 Definition

After all these examples of sequences obtained as a fixed point of a constant
length substitution and their arithmetic description, it is natural to look for
non-constant length substitutions and to ask whether their fixed point can
be defined by some simple arithmetic property of the integers.

This leads us to associate some generalized systems of numeration with
substitutions. In the most general context, this problem is still linked to
several open questions : we do not yet understand all the connections between
the arithmetics and the geometry of the substitution dynamical systems (see
[340]). A detailed survey of the literature on this subject is given in Chap. 7.

This fifth and last introductory example shows what happens in a case
where both the arithmetics and the geometry are well understood. It is the
“simplest” sequence among Sturmian sequences introduced in the 1940’s by
G. A. Hedlund and M. Morse in [303] and [304]. More details on the Fibonacci
sequence will be found in Chaps. 5, 6, and 9.

Definition 2.6.1. The Fibonacci sequence w is the unique non-empty fixed
point w of the Fibonacci substitution ϕ defined over the alphabet {a, b} by{

ϕ(a) = ab
ϕ(b) = a.

The first terms of w are

abaababaabaababaababaabaababaabaab . . . .

2.6.2 The Fibonacci system of numeration

Let (Fn)n∈N be the sequence of integers defined by F0 = 1, F1 = 2 and for
any integer n ≥ 1 , Fn+1 = Fn + Fn−1.

Proposition 2.6.2. Every nonnegative integer n can be written in a unique
way as n =

∑
i≥0 niFi with ni ∈ {0, 1} and nini+1 = 0 for any i ≥ 0. This

numeration system is called the Zeckendorff numeration system [469].

Proof.

• Let us first prove the existence of the decomposition. It is true for n = 0,
n = 1 and n = 2. Let us suppose that the property is true for any integer
n < Fk (with k ≥ 2).
Then if Fk ≤ n < Fk+1 = Fk + Fk−1, we have n − Fk < Fk−1 and by
hypothesis, n − Fk =

∑k−2
i=0 niFi , hence n = Fk +

∑k−2
i=0 niFi , and the

property is true by induction over k.
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• Let us prove now the unicity of the expansion. Let us remark that if
(n0, n1, . . . , nk) ∈ {0, 1}k+1 and nini+1 = 0 for any i < k, then∑k
i=0 niFi < Fk+1.

This can be easily be proved by induction. Indeed if nk = 1, then nk−1 = 0
and
∑k
i=0 niFi = Fk+

∑k−2
i=0 niFi. Hence if we suppose that

∑k−2
i=0 niFi <

Fk−1 we get that
∑k
i=0 niFi < Fk + Fk−1 = Fk+1.

It is now easy to prove the unicity of the decomposition : let us suppose that∑
i≥0 niFi =

∑
i≥0 n

′
iFi with ni, n′i ∈ {0, 1} and nini+1 = n′in

′
i+1 = 0

for any i ≥ 0.
Only to simplify the terms of higher indices, we can suppose that nk = 1,
n′k = 0 and ni = n′i = 0 for i > k. This would imply that

∑
i≥0 niFi ≥ Fk

and, because of our previous remark, that
∑
i≥0 n

′
iFi < Fk , which is a

contradiction.

Definition 2.6.3. If n =
∑k
i=0 niFi with nk = 1, ni ∈ {0, 1} and nini+1 =

0 for any i < k, we say that Fib(n) = nknk−1 . . . n0 ∈ {0, 1}k+1 is the
Fibonacci expansion of the positive integer n.

Let us denote by Fa (respectively Fb) the sets of integers n such that the
(n+ 1)-th letter of the Fibonacci sequence is a (respectively b):

Fa = {0, 2, 3, 5, 7, 8, 10, 11, 13, 15, . . . },

Fb = {1, 4, 6, 9, 12, 14, 17, 19, 22, 25, . . . }.

Proposition 2.6.4. We have

Fa = {n ∈ N, Fib(n) ∈ {0, 1}�0},

Fb = {n ∈ N, Fib(n) ∈ {0, 1}�1}.

Proof. It follows from Definition 2.6.1 that F = limn→∞ ϕr(a) , |ϕr(a)| =
Fr, and ϕr+1(a) = ϕr(a)ϕr−1(a) , for any r ≥ 1.

This last relation shows that if Fib(n) = nknk−1 . . . n0 , then n ∈ Fa if
and only if n − Fk ∈ Fa. As 0 ∈ Fa and 1 ∈ Fb we deduce from this that
n ∈ Fa (respectively n ∈ Fb ) if and only if n0 = 0 (respectively n0 = 1).

Remark. For more results on numeration systems, see the nice survey
[181].

Chapter 4 develops this approach in a more systematic way by associating
partitions of the set of positive integers first with Sturmian sequences (these
are the so-called Beatty partitions) and second, to fixed points of substitu-
tions.



3. Automatic sequences and transcendence

The aim of this chapter is to investigate the connections between automatic
sequences and transcendence in fields of positive characteristic. In the real
case, it is well known that the expansion in a given integer basis of a rational
number is ultimately periodic, which implies that its complexity function is
bounded. More generally, the expansion of an algebraic irrational number in
a given integer basis is supposed to be normal, whereas real numbers having
as expansion a sequence with a low complexity function are conjectured to
be either rational, or transcendental. In particular, real numbers having as
binary expansion a Sturmian sequence, or a fixed point of a substitution
over a two-letter alphabet which is either of constant length or primitive, are
transcendental. The situation is much simpler in the case of formal power
series with coefficients in a finite field. Indeed it is possible to characterize
algebraicity in a simple way: a formal power series is algebraic if and only if
the sequence of its coefficients is automatic; this criterion is known as Christol,
Kamae, Mendès France, and Rauzy’s theorem. In a similar vein, the continued
fraction expansion of an algebraic number is supposed to be unbounded if
this number is neither quadratic nor irrational; here again much more is
known in the case of formal power series with coefficients in a finite field. For
instance, examples of algebraic series with unbounded partial quotients can
be produced. For more details, see Sec. 3.3.

This chapter is organized as follows. We first recall in Sec. 3.1 some def-
initions concerning the transcendence of Laurent formal power series with
coefficients in a finite field and then state in Sec. 3.2 the main theorem of
transcendence of this chapter, that is, the Christol, Kamae, Mendès France,
and Rauzy theorem. We also consider some generalizations of this theorem,
to the multidimensional case and to general fields of positive characteristic.
Section 3.3 alludes to transcendence results for real numbers with expan-
sion in a given integer basis having a low complexity sequence. We introduce
in Sec. 3.4 some functions defined by Carlitz (exponential, logarithm, zeta)
which are analogous to the corresponding real functions and which give us
examples of application of the Christol, Kamae, Mendès France, and Rauzy
theorem. For this purpose, we will recall the notions of absolute value and
valuation. We then briefly review transcendence results for these functions as
1 This chapter has been written by V. Berthé

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 53–80, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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well as proof methods, and emphasize the results involving automata. We end
this chapter by going into the details of the most representative automaton
proofs of transcendence.

3.1 Introduction

The first results of classical transcendence theory concerned special values
of the exponential and logarithm functions. Analogous results in the field of
p-adic numbers or in fields of positive characteristic have been introduced
later, as for instance the Carlitz functions, that we define in Sec. 3.4.

Let us first recall some basic definitions concerning transcendence. A com-
plex number α is called algebraic over Q if there exists a nontrivial polyno-
mial P with coefficients in Q such that P (α) = 0. Otherwise, α is called
transcendental over Q. For instance the real number π is transcendental over
Q whereas

√
2 is algebraic.

We can similarly extend these notions to Laurent formal power series
with values in a finite field. For this purpose, let us define the sets which
play respectively the role of Z, Q, R and C. Let Fq be the finite field with q
elements, and let p denote its characteristic. We thus have p prime and q = ps,
where s is a positive integer. If the reader is not familiar with these notions,
he can suppose in all that follows that s = 1, i.e., that Fq is the field Z/pZ of
the integers reduced modulo p. The analogue of Z will then be the ring Fq[X]
of polynomials with coefficients in Fq, the analogue of Q will be its fraction
field Fq(X) and the analogue of R will be the field Fq((1/X)) of formal power
series defined below. Note that the coefficients in Fq play the role of “digits”
in the numeration basis given by the powers of the indeterminate X.

Definition 3.1.1. The field Fq((1/X)) of Laurent formal power series with
coefficients in Fq is the field of series of the form

u−dXd + · · ·+ u0 + u1X
−1 + · · · ,

We furthermore denote by Fq[[1/X]] the ring of series of the form

u0 + u1X
−1 + u2X

−2 + · · · ,

where ui belongs to Fq.
We similarly denote by Fq((X)) the field of formal power series of the

form u−dX−d+ · · ·+u0 +u1X+ · · · , and by Fq[[X]] the ring of formal power
series of the form u0 + u1X + u2X

2 + · · · , where the coefficients ui belongs
to Fq.

We work in Secs. 3.1 and 3.2 with series of Fq((X)), for simplicity of
notations, whereas Carlitz functions are defined in Sec. 3.4 with respect to
series of Fq((1/X)).

We can now define the notion of transcendence on Fq(X) for formal power
series of Fq((1/X)) or Fq((X)).
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Definition 3.1.2. A formal power series F is algebraic over Fq(X) if there
exists a nontrivial polynomial P with coefficients in Fq(X) such that P (F ) =
0. Otherwise, F is called transcendental over Fq(X).

This definition holds for series of Fq((X)) as well as for series belonging to
Fq((1/X)).

In fact, we can restrict ourselves in the definition of algebraicity to lin-
ear polynomials, i.e., to polynomials with coefficients in Fq(X) of the form∑k−1
j=0 ajT

qj , as stated in the following lemma, called Ore’s lemma. Note that
the q-power of a series with coefficients in Fq has a very simple expression.
Recall that the Frobenius map x �→ xp is a morphism over any field of char-
acteristic p, i.e., (u+ v)p = up + vp, for any two elements u, v of such a field.
We have furthermore aq = a, for any a ∈ Fq. Hence (

∑
uiX

i)q =
∑
uiX

qi,
where the coefficients ui belong to Fq.

Lemma 3.1.3 (Ore). Every nontrivial polynomial P of Fq[X][T ] divides a
nontrivial linear polynomial of Fq[X][T ] of the form

∑k
j=0 ajT

qj , where the
coefficients aj belong to Fq[X]. In particular, if a series F is algebraic over
Fq(X) then there exists a0, . . . , ak in Fq[X] such that a0F + a2F

q + . . . +
akF

qk = 0, and ak �= 0.

Proof. Consider the Euclidean division of T q
i

by P , for 0 ≤ i ≤ d =
degP . There exist Qi and Ri in Fq(X)[T ], with degT Ri < d such that
T q

i

= PQi + Ri. We can eliminate the powers T q
i

, for 0 ≤ i ≤ d − 1, in
these d+ 1 equations. Indeed, there exists a nontrivial choice of a0, a1, . . . , ad
in Fq[X] (after multiplication by a suitable polynomial in Fq[X]) such that
a0R0 +a1R1 + . . .+adRd = 0. We thus have

∑d
i=0 aiT

qi = P ×(
∑d
i=0 aiQi).

Example 3.1.4. Consider the Morse sequence u = (un)n∈N: recall that u is
defined over F2 as un = S2(n), where S2(n) is the sum modulo 2 of the
digits in the base 2 expansion of the integer n (for more details, see Chap. 2).
We thus have u0 = 0, u2n = un and u2n+1 = 1 + un, for every integer n.
Recall that in F2[[X]], we have (

∑
n≥0 unX

n)2 =
∑
n≥0 unX

2n. Let F (X) =∑
n≥0 unX

n. We have

F (X) =
∑
n≥0 unX

n =
∑
n≥0 u2nX

2n +
∑
u2n+1X

2n+1

=
∑
n≥0 unX

2n +
∑

(1 + un)X2n+1

= (
∑
n≥0 unX

n)2 +X(
∑
unX

n)2 + X
1+X2

= F (X)2(1 +X) + X
1+X2 .

Hence the series F (X) is algebraic over F2(X) and satisfies

(1 +X)3F (X)2 + F (X)(1 +X)2 +X = 0,

by using (1 +X)2 = 1 +X2.
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Exercise 3.1.5. Prove that if v = (vn)n∈N denotes the Rudin-Shapiro se-
quence (see Chap. 2), then G(X) =

∑
n≥0 vnX

n satisfies in F2((X))

(1 +X)5G2(X) + (1 +X)4G(X) +X3 = 0.

3.2 The Christol, Kamae, Mendès France, and Rauzy
theorem

The automaton proofs of transcendence are based on the following theorem
due to Christol, Kamae, Mendès France, and Rauzy (see [119] and also [118])
which gives a necessary and sufficient condition of algebraicity for a formal
power series with coefficients in a finite field. For more references on automatic
sequences, see [26] and the impressive [18].

Theorem 3.2.1 (Christol, Kamae, Mendès France, and Rauzy).

Let u = (u(n))n∈N be a sequence with values in Fq. The following condi-
tions are equivalent:

1. the formal power series
∑
n≥0 u(n)Xn is algebraic over the field Fq(X),

2. the q-kernel Nq(u) of the sequence u is finite, where Nq(u) is the set of
subsequences of the sequence (u(n))n∈N defined by

Nq(u) = {(u(qkn+ r))n∈N; k ≥ 0; 0 ≤ r ≤ qk − 1},

3. the sequence u is q-automatic,
4. the sequence u is the image by a letter-to-letter projection of a fixed point

of a substitution of constant length q.

Remarks.

• The last equivalence is actually due to Cobham (see [121]) and the equiv-
alence between statements 2. and 3. dates back to Eilenberg in [158] (for a
proof of both equivalences, see Chap. 1). This theorem is also called Chris-
tol’s theorem since the equivalence between statements 1. and 2. can be
found in [119].

• We consider here, except otherwise stated, automata in reverse reading
since we will focus on the notion of q-kernel. Let us recall that there is
equivalence between reverse and direct reading automaticity for a sequence
(see Chap. 1, Proposition 1.3.4).

• We easily deduce from the Christol, Kamae, Mendès France, and Rauzy
theorem the following facts. The notion of k-automaticity is stable by finite
modification (as for instance changing a finite number of terms, see [121]) or
by applying the shift S((un)n∈N) = (un+1)n∈N. Furthermore a ultimately
periodic sequence is k-automatic.
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• The notion of p-automaticity can also be expressed as follows in terms of
first-order logic: a sequence is generated by a p-substitution if and only
if it is p-definable (it can be defined in the theory (N,+, Vp), where Vp is
the function “valuation” that associates with x the highest power of p that
divides x (or 1 if x = 0)). For more details, the reader is referred to the
survey [97].

• The same theorem holds by considering a series
∑
unX

−n in Fq((1/X))
with the same definition for the q-kernel. Indeed,

∑
unX

−n is transcen-
dental over Fq(X) if and only if

∑
unX

n is transcendental over Fq(X).

Exercise 3.2.2. 1. Show that a sequence is p-automatic if and only if it is
pk-automatic for any positive power of the prime p.

2. Build a d-automaton generating the characteristic sequence of the set of
powers of a fixed positive integer d.

3. Build a d-automaton generating the characteristic sequence of the set of
integers divisible by d.

4. Build a 2-automaton generating the characteristic sequence of the set of
integers with base 2-expansion of the form 1n0m1, for n,m > 0 and n+m
odd.

5. Prove that the characteristic sequence of the set of integers with base
2-expansion of the form 1n0n+11, for n > 0, is not 2-automatic.

3.2.1 Proof of the theorem

The proof of Theorem 3.2.1 we give here is exactly the proof of [26]. We also
refer the reader to the original proof in [118].

• Let us first prove that the q-kernel of an algebraic series is finite.
The idea of the proof is the following. Suppose we have a finite set N of
subsequences of a given sequence u such that u belongs to this set and such
that N is stable under the maps Ar (0 ≤ r ≤ q − 1), where Ar associates
with a subsequence (v(n))n∈N the subsequence (v(qn+ r))n∈N. As this set
contains the q-kernel of u, hence the q-kernel is finite.
Let us work here on the (algebraic) formal power series

∑
u(n)Xn and let

us introduce the corresponding maps Ar. Let r be an integer in [0, q − 1].
Let Ar : Fq[[X]]→ Fq[[X]] defined by:

Ar(
∑
n≥0

v(n)Xn) =
∑
n≥0

v(qn+ r)Xn,

where v(n) belongs to Fq, for all n. Let F =
∑
n≥0 v(n)Xn; we have F =∑q−1

r=0 Ar(F )qXr. Moreover, if F =
∑q−1
r=0B

q
rX

r, with Br ∈ Fq[[X]] for
r ∈ [0, q − 1], then Ar(F ) = Br, for every 0 ≤ r ≤ q − 1. We deduce
from this that for any polynomial P in Fq[X] and for any formal power
series F : Ar(PF q) = Ar(P )F. Namely, P =

∑q−1
r=0 Ar(P )qXr and PF q =
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∑q−1
r=0(Ar(P )F )qXr. Note furthermore that Ar(P ) is a polynomial and

that degAr(P ) ≤ degP/q.
Let F =

∑
u(n)Xn be an algebraic formal power series. From Ore’s lemma

(Lemma 3.1.3), there exists an integer j and polynomials a0, a1,· · · ,ak in
Fq[X], not all equal to 0, such that

k∑
i=j

aiF
qi = 0. (3.1)

We can furthermore suppose a0 �= 0. Indeed, let j be the smallest index
such that a relation of type (3.1) holds with aj �= 0. Let us show that j = 0.
We have aj =

∑q−1
r=0 Ar(aj)

qXr. As aj �= 0, there exists an integer r such
that Ar(aj) �= 0. Suppose j �= 0. We have

0 = Ar(
k∑
i=j

aiF
qi) =

k∑
i=j

Ar(ai)F q
i−1
,

which is of type (3.1) and which contradicts the minimality of j.
Suppose now that F satisfies equality (3.1) with a0 �= 0. Let G = F/a0.
We thus have:

G =
k∑
i=1

biG
qi ,

with bi = −aiaq
i−2

0 . We want to show that there exists a finite set of formal
power series H stable under the maps Ar and containing the series F .
Let H denote the set of formal power series of the form

k∑
i=0

ciG
qi , (3.2)

with ci ∈ Fq[X] and deg ci ≤ sup(deg a0,deg b1, · · · ,deg bk).

Let H be a series of type (3.2). For any integer r in [0, q − 1], we have

Ar(H) = Ar(c0G+
∑k
i=1 ciG

qi)
= Ar(

∑k
i=1(c0bi + ci)Gq

i

)
=
∑k
i=1Ar(c0bi + ci)Gq

i−1
.

As
deg(c0bi + ci) ≤ 2 sup(deg a0,deg b1, · · · ,deg bk),

which implies that

degAr(c0bi + ci) ≤ 2 sup(deg a0,deg b1, · · · ,deg bk)/q,

the set H is stable under the action of the maps Ar. We conclude the proof
by noticing that H is finite and that H contains F = a0G.
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• Let us prove now the converse implication. Suppose that the q-kernel
Nq(u) of the sequence u = (u(n))n∈N with values in Fq is finite. Let
F =

∑
u(n)Xn. Note u = u1, u2, · · · , ud the sequences of Nq(u) and for

any integer j in [1, d], put Fj =
∑
uj(n)Xn. We have, for any integer r in

[0, q − 1] :

Fj =
q−1∑
r=0

Ar(Fj)qXr,

and
Ar(Fj)q =

∑
uj(qn+ r)Xqn =

∑
(uj(qn+ r)Xn)q.

Let i (i = i(j, r)) be such that (uj(qn + r))n∈N = ui. We thus have
Ar(Fj)q = F qi . Hence, for any j, the series Fj belongs to the vector space
spanned over Fq(X) by F1(X)q, · · · , Fd(X)q.
Similarly, for any j, the series F qj , and hence the series Fj , belong to the
vector space spanned over Fq(X) by F1(X)q

2
, · · · , Fd(X)q

2
.

We thus prove by induction that the (d+1) series F, F q, · · · , F qd belong to
the vector space spanned over Fq(X) by F1(X)q

d+1
, · · · , Fd(X)q

d+1
. This

vector space has dimension less than or equal to d. We deduce from this
the algebraicity of F .

Remarks.

• The equivalence between statements 2., 3., and 4. is true whatever the
cardinality of the alphabet: we have seen in Chap. 1 that the field structure
is not required in the proof of this equivalence.

• Several results of k-automaticity (see for instance [22]) or more generally
of k-regularity [15] appear in the literature, with proofs in a similar vein
to that of the proof of equivalence between statements 1. and 2..

3.2.2 Applications

The aim of this section is to give some applications of Theorem 3.2.1. The
first two are easy consequences of the theorem.

• Let
∑
n≥0 u(n)Xn be an algebraic formal power series. Let a and b be two

natural integers. The series
∑
n≥0 u(an+ b)Xn is algebraic.

• Let p ≥ 2 be a prime. Let Sp(n) be the sum modulo p of the digits of n in
base p. The series

∑
n≥0 Sp(n)Xn is algebraic.

Remark. It can be proved that the series
∑
n≥0 Sp(n

2)Xn is transcenden-
tal. More generally, let R be a polynomial with coefficients in Q such that
R(N) ⊂ N. The formal power series

∑
n≥0 Sp(R(n))Xn is algebraic over Fp

if and only if the degree of R is less than or equal to 1 (see [24]).
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Note that the following theorem, due to Cobham (see [120]), produces
more examples of transcendental series. We do not give here the proof of this
theorem, which is rather difficult.

Theorem 3.2.3 (Cobham). Let u be a sequence which is both k-automatic
and k′-automatic. If k and k′ are multiplicatively independent (i.e., if log(k)

log(k′)
is irrational), then the sequence u is ultimately periodic.

Remark. This theorem has received numerous generalizations and has
given rise to much literature. See for instance the survey [97], see also [98, 334].

Exercise 3.2.4. Give an example of a 6-automatic sequence which is neither
3-automatic nor 2-automatic.

We deduce from Cobham’s theorem the following result of transcendence,
which resembles an open question of Mahler: let (un)n∈N be a binary sequence
such that the real numbers

∑
n≥0 un2−n and

∑
n≥0 un3−n are algebraic over

Q; is this sequence ultimately periodic?

Proposition 3.2.5. Let (un)n∈N be a binary sequence such that
∑
unX

n

considered as an element of F2[[X]] and
∑
unX

n considered as an element
of F3[[X]] are algebraic. Then, this sequence is ultimately periodic, i.e., both
series are rational.

The Hadamard product of two series
∑
unX

n and
∑
vnX

n is defined as
the series

∑
unvnX

n. In particular, the Hadamard product of the characteris-
tic series of a subset A of N (defined as

∑
n∈AX

n) by the characteristic series
of a subset B is equal to the characteristic series of A ∩ B. By considering
the notion of q-kernel, we easily deduce the following.

Theorem 3.2.6. The Hadamard product of two algebraic formal power se-
ries with coefficients in a finite field is algebraic.

Another application of Cobham’s theorem (Theorem 3.2.3) is the follow-
ing. We give here the proof of [29].

Theorem 3.2.7. Let r be an integer greater than or equal to 2. The series∑+∞
k=0X

rk is algebraic over Fq(X) if and only if r is a power of p.

Proof. Write
+∞∑
k=0

Xrk =
∑
n≥1

unX
n,

where u = (un)n∈N is the characteristic sequence of the set of powers of r.
The series

∑+∞
k=0X

rk is algebraic over Fq(X) if and only if the sequence u is
p-automatic. But it is easily seen that the sequence u is r-automatic (Exercise
3.2.2) and not ultimately periodic. Hence the series

∑+∞
k=0X

rk is algebraic
over Fq(X) if and only if r is a power of p.
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Remark. The formal power series
∑
unX

n belongs to Fq(X) if and only if
the sequence (un)n∈N is ultimately periodic. Note that in the real case we just
have the following implication: if the sequence (un)n∈N is ultimately periodic,
then the series

∑
unX

n belongs to Q(X). The rational series
∑
nXn shows

that the converse is not true.

3.2.3 The multidimensional case

Christol, Kamae, Mendès France, and Rauzy’s theorem was generalized by
Salon to the multidimensional case, i.e., to the case of a formal power series
with a finite number of indeterminates and with coordinates in a finite field,
say
∑
ni≥0 u(n1, n2, · · · , nd)Xn1

1 · · ·Xnd
d (see for instance [369] and [370]).

The generalized q-kernel is given in this case by:

Nq(u(n1, n2, · · · , nd)) = {u(qkn1 + r1, qkn2 + r2, · · · , qknd + rd),

k ≥ 0, 0 ≤ ri ≤ qk − 1, for i = 1 to d}.
Recall that a formal power series F =

∑
ni≥0 u(n1, n2, · · · , nd)Xn1

1 · · ·Xnd
d is

called algebraic over Fq(X1, X2, · · · , Xd) if there exists a nontrivial polyno-
mial P with coefficients in Fq(X1, X2, · · · , Xd) such that P (F ) = 0. We thus
have the following theorem due to Salon (see [369] and [370]).

Theorem 3.2.8. The power series
∑
u(n1, n2, · · · , nd)Xn1

1 · · ·Xnd
d is alge-

braic over Fq(X1, X2, · · · , Xd) if and only if the q-kernel of the sequence u is
finite.

The following results are easy applications of this theorem.

• Let
∑
u(n)Xn be an algebraic formal power series. The double formal

power series
∑
u(n+m)XnY m is algebraic.

• Let
∑
u(n,m)XnY m be algebraic. Let a, b, c, d be four integers. The series∑

u(an+ b, cm+ d)XnY m is algebraic.

The notions of automaton and substitution can also be generalized
into two dimensions. A two-dimensional substitution of constant length
k associates with each letter a square array of letters of size (k, k). A
two-dimensional k-automaton is defined similarly as a one-dimensional k-
automaton but in this case the edges are labelled by pairs of integers in
[0, k − 1]2. A sequence (u(n,m)) is generated by the automaton by reading
simultaneously the digits of the base k expansions of n and m, the shortest
expansion being completed with leading zeroes to get two strings of symbols
of the length of the longest expansion (without leading zeroes).

Exercise 3.2.9. Consider the substitution σ : {0, 1} → {0, 1}2×2 defined by

σ(0) =
00
00 ,
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σ(1) =
11
10 .

Prove that the two-dimensional sequence defined over N2 as the fixed point of
this substitution generated by the successive images of 1 is equal to Pascal’s
triangle reduced modulo 2. Find the substitution generating Pascal’s triangle
modulo p, where p is a prime integer.

Remarks.

• More generally, the two-dimensional sequence corresponding to Pascal’s
triangle modulo an integer d is automatic if and only if d is a power of
a prime (for more details, see [20, 21, 22]). See also [9] for an expression
of the rectangular complexity of the two-dimensional sequence associated
with Pascal’s triangle modulo 2.

• Note that it seems more difficult to generalize to the multidimensional case
the notion of substitution of non-constant length. For a discussion of such
generalized substitutions, see Chaps. 8 and 12.

3.2.4 Diagonals

Another interesting consequence of this generalization to the multidimen-
sional case is given by the following results. The diagonal of a double formal
power series

∑
um,nX

nY m is defined as the series
∑
un,nX

n.

Theorem 3.2.10. The diagonal of an algebraic formal power series with
coefficients in a finite field is algebraic.

Proof. Consider either the notion of q-kernel or the one-dimensional sub-
stitution defined by associating with each letter the “diagonal” of the square
array of letters associated through the initial substitution.

Theorem 3.2.10 was first proved by Furstenberg in [184] and can be com-
pared to the following theorem, also due to Furstenberg.

Theorem 3.2.11. A series with coefficients in a finite field is algebraic if
and only if there exists a rational double formal power series such that the
initial series is the diagonal of this double series.

For more details, the reader is referred to [28].

Exercise 3.2.12. 1. Let (un)n∈N be the Morse sequence. Prove that the
series

∑
unX

n is the diagonal of the rational function in F2(X,Y ) defined
by Y (1 + Y (1 +XY ) +X(1 +XY )−2)−1 (for details, see [26]).

2. Let (vn)n∈N be a sequence with values in the finite field Fq. Prove that
if
∑
vnX

n is algebraic, then, for any a ∈ Fq,
∑
vn=aX

n is algebraic.
3. Let (vn)n∈N be the characteristic sequence of the set of powers of the

prime p. Prove that the series
∑
vnX

n is the diagonal of the rational
function G(X) = X/(1− (Xp−1 + Y )) in Fp(X,Y ).
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4. Let (wn)n∈N be the characteristic sequence of the set of integers with base
2-expansion of the form 1i0j1, for i, j > 0 and i+ j odd. Let (xn)n∈N be
the characteristic sequence of the set of integers with base 2-expansion
of the form 1i0i+11, for i > 0. Let (yn)n∈N be the characteristic sequence
of the set of squares. Prove that the Hadamard product of the series∑
n≥0 wnX

n and
∑
n≥0 ynX

n is equal to
∑
n≥0 xnX

n. Deduce from Ex-
ercise 3.2.2 that the sequence (yn)n∈N is not 2-automatic (for more de-
tails, see [359] and the survey [425]).

3.2.5 Fields of positive characteristic

Christol, Kamae, Mendès France, and Rauzy’s theorem can also be extended
to a general field of positive characteristic, which is not necessarily finite.
Such a generalization is due to Sharif and Woodcock (see [28]) and Harase
(see [196]).

Theorem 3.2.13. Let u be a sequence with values in a field K of positive
characteristic p. Let s be any positive integer, q = ps, and let K be a perfect
field (i.e., a field in which the map x �→ xp is onto) containing K. The series∑
unX

n is algebraic over K(X) if and only if the vector space spanned over
K by the following set of subsequences

Nq(u) = {(u1/qk(qkn+ r))n∈N, k ≥ 0, 0 ≤ r ≤ qk − 1}

has a finite dimension.

Remarks.

• The set Nq(u), which plays here the role of a generalized q-kernel, is exactly
the q-kernel of the sequence u when the field K is finite, and this theorem
reduces in this case to the theorem of Christol, Kamae, Mendès France,
and Rauzy.

• We have seen that the notions of substitution and finite automaton can
also be extended to the multidimensional case when the ground field is
finite. In the general case of a field with nonzero characteristic, only the
notion of substitution can be extended (for more details, see the survey
[28]).

• The results for the Hadamard product and for the diagonal still hold in
this context as consequences of Theorem 3.2.13. In fact we can deduce the
following corollary first proved by Deligne in [135].

Corollary 3.2.14. The Hadamard product of two algebraic formal power
series with coefficients in a field of positive characteristic is algebraic. The
diagonal of an algebraic formal power series with coefficients in a field of
positive characteristic is algebraic.
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• Fresnel, Koskas, and de Mathan give a quantitative version of Christol,
Kamae, Mendès France, and Rauzy’s theorem in the case of an infinite
ground field (see [178]), by giving an effective upper bound for the rank of
the q-kernel of an algebraic element with respect to the height and to the
degree of this element.

3.3 Transcendence in the real case and continued
fractions

3.3.1 Some transcendence results in the real case

It is natural to look for connections between transcendence in the real case
and transcendence for formal power series with coefficients in a finite field.
Indeed, a formal power series is algebraic in positive characteristic if the
sequence of its coefficients has some kind of order, whereas irrational algebraic
real numbers cannot have an expansion which is too regular. Loxton and
van der Poorten [273] have partially proved the following conjecture (this
conjecture is often quoted as a theorem, but there seems to be a gap in the
proof):

Conjecture 3.3.1. If the sequence of the coefficients in the base q-expansion
of a real number is automatic, then this number is either rational or tran-
scendental.

This conjecture illustrates, like Cobham’s theorem, the fact that transcen-
dence deeply depends on the frame in which it is considered. Some partial
results in the direction of this conjecture have been obtained in [23, 169] (see
also Chap. 4). The proof of the first assertion in the next theorem is given in
[23], and the proof of the second one is given in [169].

Theorem 3.3.2. Let α be a positive real number whose base k digit expan-
sion is a fixed point of a substitution over a two-letter alphabet. If the mor-
phism is either of constant length greater than or equal to 2, or primitive,
then α is either rational or transcendental [23].

If there exists k such that the expansion in base k of a positive real number
α is a Sturmian sequence, then α is a transcendental number.

These proofs involve a clever use of Ridout’s theorem [357] which is an
improvement of Roth’s theorem [364]. The underlying idea is to exhibit in-
finitely many (2 + ε)-powers of blocks (that is, V V V ′ for a nonempty word
V and a prefix V ′ of V with |V ′| ≥ ε|V | (ε > 0)) that occur at ranks which
are not too much larger than |V |.

Theorem 3.3.3. Let α ∈ [0, 1] such that its base k-expansion (k ≥ 2) satis-
fies the following: there exist blocks Un, Vn, V ′n ∈ {0, 1, . . . , k − 1}∗ such that
α has base k-expansion
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α = 0, UnVnVnV ′n . . . ,

V ′n is a prefix of Vn, lim inf |V
′
n|
|Vn| > 0, lim sup |Un||Vn| < ∞. Then the number α

is either rational or transcendental.

In the particular case of a primitive substitution, it is sufficient to get the
following:

Proposition 3.3.4 (([169], Proposition 5)). If the expansion of α in
some base k is a non-ultimately periodic fixed point of a primitive substi-
tution, and does contain at least one word of the form V 2+ε, then α is tran-
scendental.

3.3.2 Continued fraction expansions and automaticity

In a similar vein, transcendence results concerning those real numbers whose
sequence of partial quotients in their continued fraction expansion is au-
tomatic are obtained in [129, 343, 344, 11]. The theorem corresponding to
Ridout’s theorem in this framework is due to Schmidt [377]: if an irrational
positive number is too well approximated by quadratic numbers, then it is
either quadratic or transcendental. For a nice survey of these results, see [33].

Let us end this section by surveying related results of automaticity con-
cerning the “digits” in the continued fraction expansion of formal power series
with coefficients in a finite field.

In the real case very few explicit examples of continued fraction expansions
are known; one can mostly expand power series or roots of some particular
equations. Furthermore, it is a still open problem to determine if the set of
partial quotients in the expansion of an algebraic number of degree greater
than 2 can be bounded. Only a few examples of such expansions are known
(for more references see the survey [391]). The situation is drastically different
for formal power series with coefficients in a finite field. Indeed Baum and
Sweet [57] have produced a cubic series the continued fraction expansion of
which has partial quotients with bounded degree (see also Chap. 2 and [58]).
Mills and Robbins have extended Baum and Sweet’s approach to produce
in [298] explicit expansions of algebraic elements in characteristic p > 2 for
which the degrees of the partial quotients are bounded.

The algebraic series with bounded partial quotients produced respectively
by Baum and Sweet [57], and by Mills and Robbins [298], have raised many
interrogations, in particular concerning the automaticity of their coefficients.
In the case where the partial quotients in the continued fraction expansion of
an algebraic Laurent formal power series take finitely many values, Mendès
France asked whether this sequence is itself p-automatic. A positive answer
to this question has been given in [27, 10] in the case of Mills and Robbins ex-
amples [298] in characteristic > 2. But Mkaouar [299] (see also [464]) showed
that the Baum and Sweet series [57] provides a negative answer to the ques-
tion asked by Mendès France. Note also Thakur’s results on the continued
fraction expansion of the Carlitz analogue of the exponential [426, 427, 428].
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3.4 Some functions defined by Carlitz

In the preceding pages we used the following notion of transcendence: a formal
power series F is algebraic over Fq(X) if there exists a nontrivial polynomial
P with coefficients in Fq(X) such that P (F ) = 0. By analogy with the real
case, we have seen that the set which plays here the role of Z is the ring Fq[X]
of polynomials with coefficients in Fq and the analogue of Q is the fraction
field of Fq[X], i.e., the field Fq(X) of fractions with coefficients in Fq. We will
use in all that follows the notation Z := Fq[X].

Let us see in what respect the field Fq((1/X)) is an analogue of R. Let
us recall that the field R is the completion of Q with respect to the usual
absolute value. Hence our next step will be to define an absolute value over
Fq(X). For more details on valuations, see [34, 468].

3.4.1 Absolute value and valuation

Definition 3.4.1. An absolute value over a field K is a map (that we denote
by | |) from K to R+ which satisfies the following properties:

• |x| = 0 if and only if x = 0;
• |xy| = |x||y|;
• |x+ y| ≤ |x|+ |y|.

The classical absolute value over R or the function which associates with a
complex number its modulus are examples of absolute values.

It is easily seen that the function which associates with a fraction R in
Fq(X) the number adegR (denoted by |R|), where a > 1 and where degR
denotes the degree of R (with the convention that the degree of the zero
fraction is equal to −∞), is an absolute value over Fq(X). But this absolute
value does not have the same properties as the classical real absolute value.
In particular, this absolute value satisfies for any two fractions R and S:

|R+ S| ≤ max(|R|, |S|),

|R+ S| = max(|R|, |S|), if |R| �= |S|.
The degree obviously satisfies the same property.

Definition 3.4.2. An absolute value over a field K is called non-Archime-
dean if for any two elements x, y of K, we have:

|x+ y| ≤ max(|x|, |y|).

Lemma 3.4.3. A non-Archimedean absolute value satisfies for any two ele-
ments x, y of K with |x| �= |y|:

|x+ y| = max(|x|, |y|).
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Proof. Let us suppose |x| < |y|. We have |x+y| ≤ max(|x|, |y|) = |y|. But
|y| ≤ max(| − x|, |x+ y|). Since | − 1|2 = |1|2 = |1|, we have | − 1| = |1| and
| − x| = |x|. As |x| < |y|, we thus have max(| − x|, |x + y|) = |x + y|, from
which the lemma follows.

Lemma 3.4.4. An absolute value is non-Archimedean if and only if the set
of values

{|n.1K|, n ∈ Z},
where 1K denotes the unit of the field K, is bounded.

Proof. Let M be such that |n.1K| ≤ M , for any n ∈ Z. Let x, y be in K
with |x| ≤ |y|. We have:

|x+ y|n = |(x+ y)n| = |xn +
(
n

1

)
xn−1y + · · ·+

(
n

n− 1

)
xyn−1 + yn|.

Thus
|x+ y|n ≤ (n+ 1)M |y|n,

i.e.,
|x+ y| ≤ |y|((n+ 1)M)1/n.

Letting n tend towards +∞, we obtain the desired property:

|x+ y| ≤ |y| = max(|x|, |y|).

The converse is immediate.

Remark. An absolute value defined over a field of positive characteristic
is non-Archimedean. Namely, the set of values {|n.1K|, n ∈ Z} is finite in
this case.

Definition 3.4.5. A valuation over a field K is a map (that we denote by
v) from K to R ∪ {+∞} which satisfies the following properties:

• v(x) = +∞ if and only if x = 0;
• v(xy) = v(x) + v(y);
• v(x+ y) ≥ min(v(x), v(y)).

For instance, the function v : Fq(X) → Fq(X), R �→ −degR, is a valuation
over Fq(X). This valuation is called the 1/X-adic valuation, by analogy with
the p-adic valuation vp which is defined as follows over Z: vp(x) is the expo-
nent of the greatest power of p which divides x. The completion of Z with
respect to this valuation is called the ring of p-adic integers.

Proposition 3.4.6. Let v be a valuation defined over the field K. Let 0 <
a < 1. The function av is a non-Archimedean absolute value over K. Con-
versely, if | | is an non-Archimedean absolute value defined over the field
K and if b > 0, then the function v defined over K by v(0) = +∞ and
v(x) = − logb(|x|), if x �= 0, is a valuation.
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Recall that the field Fq((1/X)) of Laurent formal power series with coef-
ficients in Fq is the set of series of the form

a−dXd + · · ·+ a0 + a1X
−1 + · · · ,

where ai belongs to Fq(X). The notion of degree can be easily extended to
this field: we define the degree of a−dXd + · · · + a0 + a1X

−1 + · · · , with
a−d �= 0, as d. The function v, which associates the quantity v(z) = −deg z
with a formal power series z, is still a valuation over Fq((1/X)).

In fact, the field Fq((1/X)) is the completion of Fq(X) with respect to
this valuation. For more details, the reader is referred to [34, 468].

The question now is to define an analogue of C. The field C is alge-
braically closed and complete. Let R be the field Fq((1/X); this field is com-
plete but not algebraically closed; let C be the completion of an algebraic
closure of R; a fundamental property here is that C is still algebraically
closed (see [34]). This field will be an analogue of C. The valuation v extends
to C, and we extend the definition of the degree by deg = −v.

3.4.2 Convergence

One particular point of the non-Archimedean nature of the absolute value in
C is the following:

Proposition 3.4.7. A series
∑
n≥0 un with coefficients in Fq((1/X)) (re-

spectively C) converges in Fq((1/X)) (respectively C) if and only if its general
term un tends to 0, i.e., if and only if the degree of un tends to −∞.

Proof. The field Fq((1/X)) (respectively C) is complete. We thus have to
check that if un tends to 0, then the series

∑
un is a Cauchy sequence, which

is an easy consequence of the non-Archimedean nature of the valuation.

Example 3.4.8. For instance, the series
+∞∑
k=1

1
Xqk −X

converges in Fq((1/X)). Indeed, the degree of its general term is equal to
−qk. We will see in the following that this series, called the bracket series, is
transcendental over Fq(X).

Proposition 3.4.9. A product
∏
n≥0(1 +un) is convergent if and only if un

tends to 0, i.e., if and only if the degree of un tends to −∞.

Proof. It is easily seen that the condition is necessary. Suppose now that
un tends to 0. Let PN =

∏N
n=0(1+un). We have PN+1−PN = PNuN+1. There

exists an integer n0 such that for n ≥ n0, we have |un| ≤ 1, |1+un| ≤ 1 (since
the absolute value is non-Archimedean) and thus |Pn| ≤ |Pn0 |. We deduce
from this that |PN+1 − PN | ≤ |uN+1||Pn0 |, for N ≥ n0, which implies that
the sequence (PN+1 − PN )N∈IN tends towards 0 and thus the convergence of
PN , from Proposition 3.4.7.
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Application. The series
+∞∏
j=1

(1− Xqj −X
Xqj+1 −X )

is convergent. This product is called Π and was introduced by Carlitz in
[105]. We will see in the sequel in what respect this product is the analogue
of the real number π.

3.4.3 The Carlitz functions

In 1935 Carlitz defined two functions ψ and λ analogous respectively to the
exponential and to the logarithm (see [105]). These functions are defined as
follows:

ψ(t) =
+∞∑
k=0

(−1)ktq
k

Fk
for all t in C,

λ(t) =
+∞∑
k=0

tq
k

Lk
for every t such that deg t <

q

q − 1
,

with [k] = Xqk −X,
Fk = [k][k − 1]q...[1]q

k−1
and F0 = 1,

Lk = [k][k − 1]...[1] and L0 = 1.

It is easily seen that ψ(t) is convergent for all t. Indeed deg( 1
Fj
tq
j

) =
qj(deg t−j), which tends to −∞, when j tends to +∞. But λ(t) is convergent
if and only if deg t < q

q−1 . Indeed, deg( 1
Lj
tq
j

) = qj(deg t− q
q−1 ) + q

q−1 .

Theorem 3.4.10 ([105]). The function ψ satisfies the following properties.

• It is Fq-linear, i.e., ψ(t+ u) = ψ(t) + ψ(u) and ψ(ct) = cψ(t), for any t, u
in C and c in Fq.

• For any t in C, ψ(t) = 0 if and only if t = Eξ, with E in Fq[X].
• We deduce by linearity that it is periodic, i.e.,

∀t ∈ C, ∀E ∈ Z(= Fq[X]), ψ(t+ Eξ) = ψ(t),

with ξ = (Xq −X)1/(q−1)Π and Π =
+∞∏
j=0

(1− Xqj −X
Xqj+1 −X ).

• For any t in C, ψ(t) = t
∏
E∈Fq [X], E �=0(1− t

Eξ ).
• The function ψ satisfies the following functional equation for any t in C:

ψ(Xt) = Xψ(t)− ψ(t)q.
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The formal power series Π is of course the analogue of the real number π and
ξ (which is defined up to multiplication by an element of F�q as a (q − 1)-th
root) is the analogue of 2iπ.

Theorem 3.4.11 ([105]). The function λ satisfies the following properties.

• The function λ is Fq-linear.
• For any t in C such that deg t < q

q−1 , ψλ(t) = t.
• The function λ satisfies the following functional equation for any t in C

such that deg t < 1
q−1 :

λ(Xt)−Xλ(t) = λ(tq).

Carlitz showed in [105] that the definition of λ can be extended to C, by
defining modulo Zξ a function λ with values in C, which is an inverse of the
function ψ.

Carlitz also introduces in [105] an analogue of the Riemann zeta function.
The Carlitz zeta function is defined as follows:

ζ(m) =
∑

G∈Fq [x] and G unitary

1/Gm , m ∈ N, m ≥ 1.

It is easily seen that ζ(m) is convergent for any m ≥ 1.

3.4.4 Some results of transcendence

Most of the “classical” transcendence properties analogous to the real case
as, for instance, the Hermite-Lindemann theorem and the Gelfond-Schneider
theorem, were stated in the 40’s by Wade (see [442] and [443]).

Theorem 3.4.12. If α is a nonzero element of Fq((1/X)) algebraic over
Fq(X), then ψ(α) and λ(α) are transcendental.

We deduce from this theorem the transcendence of Π.

Theorem 3.4.13. Suppose that α is nonzero and β is an irrational element
of Fq((1/X)). Then one of the three numbers α, β, ψ(βλ(α)) is transcenden-
tal.

Carlitz showed in [105] that ζ(s)/Πs ∈ Fq(X), for any s multiple of (q − 1).
This property is analogous to Euler’s result on the even values of the Riemann
ζ function, i.e., ζ(2n)/π2n is rational for every nonzero integer n. Note that
the group of units of Fq[X] is F�q and has cardinality q − 1, whereas the
multiplicative group of Z is {+1,−1} and has cardinality 2. The congruences
modulo 2 in the complex case are replaced here by congruences modulo q−1.
For more details, see the survey [444].

There are essentially four methods to prove transcendence results for these
functions: the “classical” method which imitates the real case (see for instance
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[443, 128] and Sec. 3.4.5), the use of Drinfeld modules [148, 466, 423, 444, 190],
the Diophantine approximation method [144] and the finite-automata method
[29, 30, 32, 19, 75, 74, 255, 178, 288, 424, 425].

The first automaton result states the transcendence of the period ξ =
(Xq−X)

1
q−1Π of the exponential. More precisely, Allouche shows in [29] the

transcendence of α
Π , where α is an algebraic series. Indeed the formal power

series expansion of α
Π is particularly interesting, in the sense that the terms

of this expansion are computable in an explicit way. Furthermore most of its
coefficients are zero. We expose the proof of [29] of this result in Sec. 3.5.2.

Allouche and Shallit introduce in [15] the notion of regular sequences
which generalizes the concept of automatic sequences. Becker shows in [60]
an analogue of the theorem of Christol, Kamae, Mendès France, and Rauzy:
namely, regular power series satisfy Mahler-type functional equations; the
reciprocal is true under extra hypotheses. For regular sequences with values
in a finite field, these Mahler-type functional equations lead naturally to
transcendence results. In particular, Becker shows in [60] the transcendence
of the series

∑
k≥0 α

rk , where α is a power series in Fq[[X−1
1 , . . . , X−1

d ]] with
nonzero constant term, which is algebraic over Fq(X1, . . . , Xd), and where r
is not a power of the characteristic p. This result generalizes Theorem 3.2.7.
See also [150, 345].

Results of transcendence concerning the Carlitz-Goss gamma function
(see for instance [32] and [288]), the transcendence of the period of the Tate
elliptic curve (see [424] and [19]) were also recently proved via automata (see
also the surveys [30, 425]).

3.4.5 Proof of the transcendence of ψ(1) by Wade’s method

The aim of this section is to prove the transcendence of ψ(1) by Wade’s
method [443]. This proof can be considered as classical in the sense that it is
close to the real-case method.

Theorem 3.4.14. The series ψ(1) is transcendental over Fq(X).

Proof. Suppose that ψ(1) is algebraic over Fq(X). From Ore’s lemma,
there exist al, · · · , ad in Fq[X], with ad �= 0 and al �= 0, such that

d∑
i=l

aiψ(1)q
i

= 0.

We thus have
+∞∑
k=0

d∑
i=l

ai(−1)k
1

F q
i

k

= 0.

Multiply this equality by Fj , where j will be chosen large enough. Let I =∑
k+i≤j

Fjai(−1)k

F q
i

k

and Q =
∑
k+i≥j+1

Fjai(−1)k

F q
i

k

. We have for j large enough
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I +Q = 0, I ∈ Fq[X] and deg(Q) < 0.

Let us prove that I �= 0, in order to get the desired contradiction.
Consider modulo [j − l] the quantity

Fj

F q
i

k

=
[j][j − 1]q . . . [k]q

j−k
. . . [1]q

j−1

[k]qi . . . [1]qi+k−1 ,

for k + i ≤ j. Recall that ai = 0, if i < l. If k + i < j or if k + i = j, with
i �= l, then k < j − l and [j − l] divides Fj

F q
i

k

. If i = l and k = j − l, then

Fj

F q
i

k

= [j][j − 1]q . . . [j − l + 1]q
l−1 ≡ [l][l − 1]q . . . [1]q

l−1
= Fl mod [j − l].

For j large enough, deg alFl < deg[j − l]. Thus

I ≡ al
Fj

F q
l

j−l
�≡ 0 mod [j − l],

hence the theorem.

3.5 Some examples of automaton proofs

3.5.1 Transcendence and q-kernel

Let us first illustrate how to use Christol, Kamae, Mendès France, and
Rauzy’s theorem by showing that the q-kernel is infinite. Indeed one can
distinguish in some cases the subsequences of the q-kernel by considering
their first terms.

Suppose we have the following situation. Let (vk)k∈N = (vk(n))k∈N be
subsequences in the q-kernel of the sequence v satisfying the following three
conditions:

1. there exists an integer m(k) such that, for any n < m(k) : vk(n) = 0;
2. the sequence (m(k))k∈N tends to +∞;
3. the sequences vk are not identically equal to 0 for infinitely many k.

Then the set {vk; k ∈ N} (and hence the q-kernel of v) is infinite.
Let us consider an example of formal power series for which one can

exhibit subsequences of the q-kernel fulfilling Conditions 1, 2 and 3.

3.5.2 Transcendence of Π

Let us give here an automaton proof of the following theorem:
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Theorem 3.5.1. The series Π is transcendental over Fq(X).

This proof is strongly inspired by the proof of [29]. Consider the series

α =
+∞∏
j=0

(1− Xqj

Xqj+1 ).

It is easily seen that α is algebraic over Fq(X) (consider αq). Hence the
transcendence of α

Π will imply the transcendence of Π.
We have

Π =
+∞∏
j=0

(1− Xqj −X
Xqj+1 −X ).

We thus obtain
α

Π
=

+∞∏
j=1

(1− (
1
X

)q
j−1).

Note that if

n =
+∞∑
k=1

εk(qk − 1) with εk = 0 or 1, εk = 0 for k large enough,

then such a decomposition is unique.
Let (v(n))n∈N be the sequence defined by

∑
n≥0 v(n)X−n = α

Π . If

n =
+∞∑
k=1

εk(qk − 1) with εk = 0 or 1, εk = 0 for k large enough,

then
v(n) = (−1)

∑+∞
k=1 εk , otherwise v(n) = 0.

Let (vk(n))n∈N be the sequence defined by:

∀n ∈ N, vk(n) = v(qkn+ qk − k).

Let k ≥ 2. Let n ∈ N such that vk(n) �= 0. Thus

∃ (εj)j∈N with εj = 0 or 1, εj = 0 for j large enough, such that

qkn+ qk − k =
+∞∑
j=1

εj(qj − 1).

We set σ =
∑
j≥k εj . We have

qkn+ qk − k =
∑

1≤j≤k−1

εj(qj − 1) +
∑
j≥k

εjq
j − σ.
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Hence
σ ≡

∑
1≤j≤k−1

εj(qj − 1) + k mod qk.

Since
2 ≤

∑
1≤j≤k−1

εj(qj − 1) + k < qk,

necessarily
σ ≥

∑
1≤j≤k−1

εj(qj − 1) + k ≥ k.

On the other hand,

qkn+ qk− k ≥
∑
j≥k

εj(qj − 1) ≥
k+σ−1∑
j=k

(qj − 1) ≥
2k−1∑
j=k

(qj − 1) =
qk − 1
q − 1

qk− k.

Hence n ≥ qk−q
q−1 .

Conversely, if n = qk−q
q−1 , q

kn+qk−k is indeed of the form
∑
j≥1 εj(q

j−1),
with εj = 1, for k ≤ j ≤ 2k − 1, εj = 0 otherwise.

Setting m(k) = qk−q
q−1 , the sequences vk satisfy Conditions 1, 2, and 3,

which ends the proof.

Remark. Hellegouarch has defined in [203] an exponential function asso-
ciated with a periodic sequence of endomorphisms generalizing the Carlitz
exponential. Inspired by the previous proof, Recher has shown in [355] the
transcendence of the period of this generalized exponential for a certain choice
of endomorphisms.

3.5.3 General case

Let us come back to Conditions 1, 2, and 3 of Sec. 3.5.1. In the examples we
consider here (as illustrated by the previous example), the sequence v is equal
(modulo p) to the number u(n) of expansions of the integer n under a given
form. But it is often a difficult combinatorial problem to give an expression
of u(n). It is easier to work with zero elements of the sequence (u(n)) (i.e.,
with integers n which cannot be expanded in the desired form). This explains
why we consider zero elements in Conditions 1, 2, and 3. The method can
be applied when the sequence u, and thus the sequence v, has long ranges
of consecutive zero elements. But this method cannot be used in the case
where the sequence u = (un)n∈N takes nonzero values for n large enough, as
illustrated by the following example.

Consider λ(1). We have

λ(1) =
+∞∑
k=0

1
Lk
, with [k] = Xqk −X, Lk = [k][k − 1]...[1].
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We thus get

λ(1) = 1 +
∑
k≥1

k∏
j=1

(
1

Xqj −X )

= 1 +
∑
k≥1

(1/X)(q+...+qk)
k∏
j=1

1
(1− ( 1

X )qj−1)

= 1 +
∑
k≥1

(1/X)(q+...+qk)
k∏
j=1

∑
nj≥0

(1/X)nj(q
j−1)

= 1 +
∑
n≥0

v(n)X−n,

where v(n) equals the value modulo p of the cardinality u(n) of the set

{(k, n1, ..., nk) such that k ≥ 1, nj ≥ 0 for 1 ≤ j ≤ k and

n = q + ...+ qk +
k∑
j=1

nj(qj − 1)}. (3.3)

It seems difficult to give an evaluation of this cardinality. Furthermore, every
integer large enough is easily seen to have a decomposition under the form
(3.3); namely, there is no limitation on the size of the coefficients nj . The
sequence u eventually takes only non-zero values. Let us introduce now a
limitation on the size of the coefficients nj . Let us multiply λ(1) − 1 by the
product P =

∏+∞
j=1(1− ( 1

X )q
j−1). We thus obtain

P(λ(1)− 1) =
∑
k≥1

(1/X)(q+...+qk)
+∞∏
j=k+1

(1− (
1
X

)q
j−1)

=
∑
n≥0

w(n)X−n,

with (w(n))n∈N defined as follows: if n = q + ... + qk +
∑+∞
j=k+1 εj(q

j −
1), with k ≥ 1, εj = 0 or 1, εj = 0 for k large enough, then w(n) =
(−1)

∑+∞
j=k+1 εj , otherwise w(n) = 0.

One can check that the family of subsequences of the q-kernel (w(qkn +
1+q+· · ·+qk−1)n∈N satisfies Conditions 1, 2, and 3 (see for instance [74, 75]).
The quantity P is furthermore equal to the quotient α

Π . We thus deduce the
transcendence of λ(1)−1

Π .

Remarks.

• Using the same methods, one can also obtain the transcendence of α
Πλ(1).

More generally, automaton methods seem to suit particularly sums and
products of transcendental formal power series.
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• The transcendence of every linear combination over Fq(X) of ζ(s)
Πs , for

1 ≤ s ≤ q − 2, can be shown in a similar way (see [75]), as well as the
transcendence of the quotients λ(P )

Πs , with 1 ≤ s ≤ q − 2 and P = XQ,
with Q ∈ Fq[1/X] (see [74]). Here again, the idea is to exhibit an infinite
family of subsequences of the q-kernel and also to work on these quantities
multiplied by a suitable power of the algebraic series α. Let us note that
the restriction s ≤ q − 2 is a combinatorial limitation due to the fact that
the properties of uniqueness in the expansions used (when explicitly ex-
panding in formal power series) do not hold for s > q. More generally the
transcendence of ζ(s)

Πs for s �≡ 0 modulo q − 2 was proved by Yu in [466],
by using Drinfeld modules.

3.5.4 Transcendence of the bracket series

The purpose of this section is to prove the following result, which gives us an
example of an application of the Christol, Kamae, Mendès France, and Rauzy
theorem. This result was first proved by Wade in [442]; the proof below is
due to Allouche (see [29] and also [288]).

Theorem 3.5.2. The series
∑+∞
k=1

1
[k] is transcendental over Fq(X).

This proof makes use of the following consequence of the Christol, Kamae,
Mendès France, and Rauzy theorem.

Proposition 3.5.3. Let (u(n))n∈N be a sequence with values in Fq. If the se-
ries
∑
n≥0 u(n)X−n is algebraic over Fq(X), then the sequence (u(qn − 1))n∈N

is ultimately periodic, that is,
∑
n≥0 u(qn − 1)X−n is rational.

Proof. Suppose that the series
∑
n≥0 unX

−n is algebraic; the sequence
u = (u(n))n∈N is thus q-automatic. Let A denote a finite q-automaton which
generates the sequence u. The subsequence (u(qn − 1))n∈N is obtained by
reading in the automaton A strings of digits all equal to q−1. As the number
of states of A is finite, a long enough string of identical digits meets the same
state twice. The sequence of states met is thus eventually periodic, which
implies that (u(qn − 1))n∈N is also eventually periodic.

Remark. Let UTnV denote, for any natural integer n, the integer of base-
q expansion UTnV , where U, T, V are words defined over {0, 1, . . . , q − 1}.
We can similarly prove that if the series

∑
n≥0 unX

−n is algebraic, then the
sequence (u(UTnV ))n∈N is eventually periodic. This result corresponds to
the classical pumping lemma in automata theory.
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Proof of Theorem 3.5.2. We have:∑
k≥1

1
[k]

=
∑
k≥1

1
(Xqk −X)

=
∑
k≥1

1
Xqk(1− ( 1

X )qk−1)

=
∑
k≥1

1
Xqk

∑
j≥0

(
1
X

)j(q
k−1) =

1
X

∑
k≥1, j≥0

(
1
X

)(j+1)(qk−1)

=
1
X

∑
k≥1, j≥1

1
Xj(qk−1)

=
1
X

∑
n≥1

a(n)X−n,

where a(n) is the number (modulo the characteristic p) of decompositions of
the integer n as n = j(qk − 1), with k ≥ 1 and j ≥ 1, i.e.,

a(n) =
∑

k≥1, (qk−1)|n
1.

Clearly the series
∑
k≥1

1
[k] is transcendental over Fq(X) if and only if the

seriesX
∑
k≥1

1
[k] is transcendental. Suppose that the series

∑
n≥1 a(n)X−n is

algebraic over Fq(X). This implies that the sequence (a(n))n∈N is q-automatic
and in particular that the subsequence a((qn−1))n∈IN is ultimately periodic.
This assertion leads to a contradiction.

Indeed, it is easily seen that qk − 1 divides qn − 1 if and only if k divides
n. We thus have

a(qn − 1) =
∑

k≥1, (qk−1)|(qn−1)

1 =
∑

k≥1, k|n
1.

The subsequence a((qn− 1))n∈IN is supposed to be ultimately periodic. Thus
there exist n0 ≥ 1 and T ≥ 1 such that:

∀n ≥ n0,
∑

k≥1, k|n
1 =

∑
k≥1, k|n+T

1 mod p.

Then let N ≥ n0 such that T divides N ; we have∑
k≥1, k|Np

1 =
∑

k≥1, k|(2Np)

1 mod p.

By considering the decomposition of Np into a product of prime factors, it is
easily seen that

∑
k≥1, k|Np 1 = 1 mod p, whereas

∑
k≥1, k|(2Np) 1 = 2 mod p,

which is the desired contradiction.

Remark. By using the same kind of arguments it can be proved that the
series 1

Π

∑
k≥1

1
[k][k+i] , where i ≥ 1, is transcendental over Fq(X).
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Exercise 3.5.4. The aim of this exercise is first, to give another proof of
this result, and second, to prove Theorem 3.5.5 below. This very satisfactory
proof is due to Mendès France and Yao [288].

1. Prove that for any positive integers u, v, w, the number qw − 1 divides
qu(qv − 2) + 1 if and only if w divides the greatest common divisor of u
and v.

2. Define the sequence au = (a(qun+ 1))n∈N, for a fixed positive integer u.
Let u, v be two distinct positive integers. Let h be the smallest integer
such that h divides u and h does not divide v. Prove that au(qh − 2) −
av(qh − 2) ≡ 1.

3. Deduce from this the transcendence of
∑
n≥1 a(n)X−n.

4. Prove in the same way the following theorem ([288]).

Theorem 3.5.5. Let (nk)k∈N be a sequence of elements of Fq which is not
eventually equal to zero. Then the formal power series∑

k≥1

nk
[k]

is transcendental over Fq(X).

3.5.5 Derivation and transcendence of Π

We will see in this section how to infer from the transcendence of the bracket
series the transcendence of the series Π, by using the derivation of formal
power series following the method of [30]; see also [423] or [139].

Definition 3.5.6. The derivative of the series
∑
n≥0 unX

−n, where un be-
longs to Fq, is the series (

∑
n≥0 unX

−n)′ = −
∑
n≥0 nunX

−n−1.

Proposition 3.5.7. The derivative of an algebraic series is algebraic.

The proof is immediate and left as an exercise.

Remark. The converse is generally not true. For instance, if
∑
unX

−n is
transcendental then (

∑
unX

−n)q =
∑
unX

−qn is also transcendental but its
derivative is equal to 0 (in Fq((1/X))).

Let us prove that the transcendence of the bracket series implies the
transcendence of Π. We have

Π =
+∞∏
j=1

(1− [j]
[j + 1]

),

i.e.,
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Π =
+∞∏
j=1

(1− Xqj −X
Xqj+1 −X ) =

+∞∏
j=1

Xqj+1 −Xqj

Xqj+1 −X .

The derivative of Xq
j+1−Xqj

Xq
j+1−X is equal to Xq

j+1−Xqj
(Xqj+1−X)2 . The logarithmic deriva-

tive of Π, Π′
Π , is thus equal to

Π ′

Π
=
∑
j≥1

1
Xqj+1 −X ,

i.e.,
Π ′

Π
=
∑
j≥2

1
[j]
.

The series Π is hence transcendental. Otherwise the series Π′
Π would be al-

gebraic and so would be the bracket series.

3.6 Conclusion

How can one recognize that a sequence is not k-automatic, or in other words,
that a formal power series with coefficients in a finite field is transcenden-
tal? Let us review some more techniques to disprove the automaticity of a
sequence.

• An automatic sequence has a low complexity function, due to its strong
underlying structure: the complexity of a fixed point of a substitution of
constant length satisfies [121]

∃C, ∀n, p(n) ≤ Cn.

This disproves the automaticity of a high complexity sequence. More gener-
ally, the complexity of a fixed point of a substitution satisfies (see [157, 320])

∃C, ∀n, p(n) ≤ Cn2,

but if the substitution is primitive, then we get (see Proposition 5.4.6)

∃C, ∀n, p(n) ≤ Cn.

• If the frequencies of the factors of an automatic sequence exist, then they
are rational numbers (for more precise results on frequencies of automatic
sequences, see [121]). Let us recall that if the corresponding substitution is
primitive, then the frequencies exist (see Chap. 1). In particular, a Stur-
mian sequence cannot be automatic.
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• Shallit introduces in [392] a measure of automaticity of a sequence u =
(u(n))n∈N over a finite alphabet: the k-automaticity of a sequence is de-
fined as the smallest possible number of states in any deterministic finite
automaton which generates the prefix of size n of this sequence. This mea-
sure tells quantitatively how “close” a sequence is to being k-automatic.

• Yao gives in [464] non-automaticity criteria motivated by a transcendence
criterion due to de Mathan (see [144]). Originally the work of de Mathan
used Diophantine approximation but Koskas gave a proof using automata
of this criterion in [255]. In particular, Yao gives a simple proof of a result
due to Mkaouar: the sequence of partial quotients in the continued fraction
expansion of the Baum-Sweet series (see Chap. 2) is not p-automatic, for
any integer k ≥ 2.

• Durand has generalized in [154, 153] Christol, Kamae, Mendès France, and
Rauzy’s theorem to uniformly recurrent sequences that are letter-to-letter
projections of fixed points of primitive substitutions. This characterization
is based on the notion of return words and derived sequence. A return word
over the factor W is a word separating two successive occurrences of W ; a
derived sequence of a given minimal sequence u is a sequence obtained by
coding u by return words over a non-empty prefix of the sequence u (see
also Definition 7.3.21 in Chap. 7). The characterization is the following: a
uniformly recurrent sequence is a letter-to-letter projection of a fixed point
of a primitive substitution if and only if the set of its derived sequences is
finite. This result was proved independently by Holton and Zamboni [208].
It has been extended to substitutive tilings by Priebe [337]. Note that the
notion of return words has many applications in arithmetics with general-
izations of Cobham’s theorem [155], or in dynamics with a description of
minimal stationary Bratteli-Vershik diagrams [152]. See also Chap. 12.



4. Substitutions and partitions of the set of
positive integers

There is a natural duality between the symbolic sequences, as they are studied
throughout this book, and the partitions of the set of positive integers N+.
Any right infinite word ω = ω1ω2ω3 . . . strictly with values in the alphabet

As := {a0, a1, . . . , as},

(i.e., every symbol ai eventually occurs in ω), gives rise to a partition of N+

into s+ 1 parts:
◦⋃

0≤i≤s
χ(ω; ai) = N+, (4.1)

where χ(ω; a) is the characteristic set of ω with respect to a ∈ As

χ(ω; a) := {n ∈ N+;ωn = a}.

This partition will be referred to as the partition corresponding to ω (through-

out this chapter
◦
∪ indicates a disjoint union). Conversely, any partition of N+

into nonempty sets χ1, . . . , χs gives rise to a word w = w1w2w3 . . . strictly
over As defined by ωn = i whenever n ∈ χi.

We say that the partition (4.1) is nonperiodic (respectively totally non-
periodic) if ω (respectively ∂χ(ω; ai) for all i) is not an ultimately periodic
word (or sequence), and vice versa, where we mean by ∂C the sequence
(cn+1 − cn)n≥1 for a given sequence C := (cn)n≥1.

Throughout this chapter, we also identify a set {sn;n ∈ N+} ⊂ N+ such
that s1 < s2 < s3 < . . . with a sequence (sn)n≥1.

In what follows, we shall give some examples of classes of nonperiodic
partitions of N+ (or some classes of nonperiodic infinite words). We also
state some results and problems related to transcendence and complexity.
1 This chapter has been written by J. -I. Tamura

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 81–98, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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4.1 Beatty and Sturmian sequences, and associated
partitions

4.1.1 Partitions associated with Beatty sequences

We denote by [x] (x ∈ R) the largest integer not exceeding x, by {x} the frac-
tional part of x ∈ R, i.e., {x} := x− [x], and by R (respectively Z,Q,R+) the
set of real numbers (respectively integers, rational numbers, positive num-
bers).

Let us recall that a Beatty sequence is a sequence of the form ([αn+β])n≥1.
It is well-known that for positive numbers α and β, two Beatty sequences (or
sets) ([αn])n≥1 and ([βn])n≥1 make a partition of the set N+ into two parts
if and only if α, β are irrationals numbers satisfying 1/α+ 1/β = 1. This fact
can be written in an equivalent form as follows:

◦⋃
(γ0,γ1)∈A

{
[γ0n] + [γ1n];n ∈ N+} = N+ (4.2)

holds if and only if α > 0 is an irrational number, where

A := {(1, α), α−1(1, α)}.

We thus get a partition of N+ into two parts.
Proposition 4.1.1 below is a generalization of (4.2), which gives a partition

of N into s+1 parts by specific sums of Beatty sequences (see [419], Theorem
1).

We denote by αS, S + α, S + T, and ST the sets {αs; s ∈ S}, {s+ α; s ∈
S}, {s + t; s ∈ S, t ∈ T}, and {st; s ∈ S, t ∈ T}, respectively, for given sets
S, T ⊂ R, and for a given number α ∈ R.

Proposition 4.1.1. Let s be a positive integer, and αi > 0, βi (0 ≤ i ≤ s)
be real numbers. Then the condition

(α−1
i Z− α−1

i βi) ∩ (α−1
j Z− α−1

j βj) ∩ R+ = ∅ for all i �= j (4.3)

is necessary and sufficient to have a partition

◦⋃
(γ,δ)∈B


 ∑

(0≤j≤s)
[γjn+ δj ] ;n ∈ N+


 = N+ (4.4)

where (γ, δ) = γ0, γ1, . . . , γs, δ0, δ1, . . . , δs), and

B := { (α, β); α = α−1
i (α0, α1, . . . , αs),

β = −α−1
i {βi}(α0, α1, . . . , αs)

+({β0}, {β1}, . . . , {βs}), 0 ≤ i ≤ s }.
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We denote by ω(B) the word corresponding to the partition. Setting α0 =
1, βi = 0 for all i, we have

Corollary 4.1.2. Let s ∈ N+, α0 = 1, αi ∈ R+ (1 ≤ i ≤ s). Then the
condition αi /∈ Q, and αi/αj /∈ Q for all 1 ≤ i < j ≤ s is necessary and
sufficient to have a partition

◦⋃
(γ0,...,γs)∈C


 ∑

0≤j≤s
[γjn];n ∈ N+


 = N+,

where C := {α−1
i (α0, . . . , αs), 0 ≤ i ≤ s}.

Remark. If we take s = 1 in Corollary 4.1.2, we obtain (4.2). We remark
that we can choose α0 = 1, β0 = 0 in Proposition 4.1.1 without changing
the form of the components of the partition. If α0 = 1, the partition (4.4) is
nonperiodic if one of the αi (1 ≤ i ≤ s) is irrational, since the irrationality of
fai/fa0 implies the nonperiodicity of ω(B), where fai is the frequency, in the
asymptotic sense (see Chap. 1), of a symbol ai appearing in the word ω(B)
corresponding to the partition (4.4).

Related to the condition (4.3), we can show the implications (4.8) ⇒
(4.7)⇒ (4.6)⇒ (4.3)⇒ (4.5) in the case of α0 = 1, β0 = 0, where (4.5)−(4.8)
are the following conditions:

• −βi /∈ αiN+ + Z for all 1 ≤ i ≤ s; (4.5)
• αiβj − αjβi /∈ αiZ + αjZ for all 1 ≤ i < j ≤ s; (4.6)
• 1, αi, βi are linearly independent over Q for each 1 ≤ i ≤ s , and

(αi(Z + βi)Q) ∩ (αj(Z + βj)Q) = {0} for all 1 ≤ i < j ≤ s; (4.7)
• the 2s+ 1 numbers 1, and αi, αiβi(1 ≤ i ≤ s)

are linearly independent over Q. (4.8)

We remark that a result obtained by J. V. Uspensky [436] says the impos-
sibility of having a partition into t parts by Beatty sequences for t ≥ 3.
Proposition 4.1.3 is a generalization of Proposition 4.1.1 (see [419], Theorem
3).

Proposition 4.1.3. Let fi : R+ ∪ {0} → R (0 ≤ i ≤ s, 1 ≤ s ∈ N+) be
a continuous, strictly monotone increasing function with limx→∞ fi(x) = ∞
for all i. Then the condition

f−1
i (Z) ∩ f−1

j (Z) ∩ R+ = ∅ for all i �= j (4.9)

is necessary and sufficient to have a partition

◦⋃
0≤i≤s


 ∑

0≤j≤s
([fj(f−1

j (n+ [fi(0)]))]− [fj(0)]);n ∈ N+


 = N+. (4.10)
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The condition limx→∞ fi(x) =∞ can be omitted from Proposition 4.1.3,
at most, for s indices i. In that case, some of the components of the partition
(4.10) turn out to be a finite set. We remark that in this sense, any partition
of N+ into s + 1 parts can be given by (4.10) under a suitable choice of the
functions fi (without loss of generality, we may assume that all the fi are of
C∞ class with f0(x) = x), that will be clear from the following argument.

Proof. The idea of the proof of the proposition is very simple. We denote
by Πi, Πi ⊂ Rs+1(respectively K ⊂ Rs+1) the set of hyperplanes (respec-
tively the curve) defined by

Πi := {(x0, . . . , xi, . . . , xs); xj ∈ R (j �= i), xi ∈ Z} (0 ≤ i ≤ s),

Π :=
⋃

0≤i≤s
Πi ; K := {f(x) = (f0(x), . . . , fs(x));x ∈ R+}.

We consider an infinite word ω = ω(K) = ω1ω2ω3 . . . given by

ωn = ai if f(xn) ∈ Πi ,

where the sequence (xn)n≥1 is defined by

{f(xn) ; 0 < x1 < x2 < · · · < xn < . . . } := K ∩Π .

Note that the sequence (xn)n≥1 is well-defined, since the set K ∩ Π is a
discrete one in Rs+1 if the functions fi are continuous, and strictly monotone
increasing; and the word ω is well-defined by (4.9).

Under the assumption that the functions fi are continuous, strictly mono-
tone increasing, we can calculate the n-th term of the sequence (or the set)
χ(ω; ai) by using the intermediate value theorem, and we can obtain Propo-
sition 4.1.3. Taking K to be a half-line L := {αt+β; t ∈ R}, and considering
the word w = w(L), we get Proposition 4.1.1. For further details of the proof,
see [419].

4.1.2 Billiards and Sturmian sequences

Proposition 4.1.1 has some connection with higher dimensional billiards (see
also Chap. 6). Let Is+1(I := [0, 1]) be the unit cube of dimension s+ 1 with
the faces

{(x0, . . . , xi, . . . , xs);xj ∈ I (∀j �= i), xi = 0, or 1}, 0 ≤ i ≤ s

labelled by ai. Let a particle start at a point β ∈ [0, 1)s+1 along a vector
α ∈ Rs+1 with the condition for αi, βj stated in Proposition 4.1.1, and be
reflected at each face of Is+1 specularly. We note L the set called B in the
proposition. Then the word ω(L) coincides with a word obtained by writing
down the label ai of the faces which the particle hits in order of collision.



4.2 Partitions given by substitutions 85

Let us recall that the complexity p = pw of an infinite word w is the
function pw : N → N defined as the number of factors of length n of w (see
Chap. 1). An infinite word w (or a sequence) is called Sturmian(over s + 1
letters) if there exists a positive integer s such that pw(n) = n+ s for every
n.

If w is a word defined strictly over the alphabet As which is not ultimately
periodic, then pw(n) ≥ n+ s, see [169, 304] and Proposition 1.1.1. For s = 1,
ω(L) is Sturmian over 2 letters provided that ω is not periodic.

G. Rauzy has conjectured that pω(L)(n) = n2 + n + 1 for s = 2, when
α1, α2, α3 are linearly independent over Q, which was proved affirmatively in
[41], see also [351, 352, 42]. An exact formula for pω(L)(n) = pω(L)(n, s) as
a function of n and s in the case where α0, . . . , αs are linearly independent
over Q was conjectured in [41]:

pω(L)(n, s) =
∑

0≤i≤min{n,s}

n! s!
(n− i)! i! (s− i)!

and proved affirmatively by Y. Baryshnikov [56]. Consequently, we have for
every n, s:

pω(L)(n, s) = pω(L)(s, n) and pω(L)(n; 3) = n3 + 2n+ 1.

This astonishing symmetry property was a major conjecture made by J.-
I. Tamura; P. Arnoux and C. Mauduit derived from it the exact formula by
adding some minor hypotheses. It is an interesting question (posed by C.
Mauduit), to ask for a direct (or combinatorial) proof of the symmetry; it
still remains mysterious why p(n, s) is a symmetric function.

Quite recently, S. Ferenczi and C. Mauduit [169] have obtained the follow-
ing remarkable result: the numbers having a Sturmian sequence (with values
in the set {0, . . . , h}) as base g(≥ h+ 1) expansion are transcendental. They
gave further results on transcendence of numbers having an infinite word with
low complexity as base g expansion.

4.2 Partitions given by substitutions

4.2.1 Existence theorem

By A = As we mean the alphabet {a0, a1, . . . , as, }(s ≥ 1) as in Sec. 4.1.
We denote by |W | the length of a finite word w, and by |W |a the number

of occurrences of a symbol a ∈ A appearing in a word W ∈ A∗. For a given
sequence C = (cn)n≥1,

∫
i
C indicates the sequence

∫
i

C :=


i+

∑
1≤m≤n−1

cm



n≥1

.

Then we can show the following
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Proposition 4.2.1. Let σ be the substitution over the alphabet A defined by

σ(aj) := a0
ks−jaj+1 (1 ≤ j ≤ s− 1), σ(as) := a0,

where ki (1 ≤ i ≤ s) are integers satisfying ks ≥ ks−1 ≥ · · · ≥ k0 = 1.
Let Lj be the set {|σj(a0)|, |σj(a0)|+ |σj(a1)|, . . . , |σj(a0)|+ |σj(as)|}(1 ≤

j ≤ s), and let τj : A∗ → Lj
∗ be the monoid morphism defined by

τj(ai) := (|σj(a0)|)ks−i−1(|σj(a0)|+ |σj(ai+1)|) (0 ≤ i ≤ s− 1),

τj(as) := |σj(a0)|, 0 ≤ j ≤ s.
Then ◦⋃

0≤j≤s

∫
|σj(a0)|

τj(ω) = N+ (4.11)

where ω is the fixed point of σ.

It is clear that (4.11) follows from χ(ω; aj) =
∫
|σj(a0)| τj(ω), which is

Theorem 4 of [418].
Note that the partition (4.11) is a totally nonperiodic one for all s ≥ 1,

and all ki ∈ Z satisfying ks ≥ ks−1 ≥ · · · ≥ k0 = 1; this follows from [418],
Lemma 11:

lim
n→∞ |σ

n(a0)|ai/|σn(a0)| = αs−i/(αs + αs−1 + · · ·+ α+ 1), (4.12)

where α > 1 is an algebraic number with minimal polynomial f(x) := xs+1−∑
0≤i≤s kix

i; the minimality follows from [418], Lemma 10.
We remark that in general, the partition (4.11) cannot be a partition of

the form (4.4). For instance, suppose that (4.11) with s = 2, k1 = k2 = 1
coincides with (4.4) corresponding to some infinite word ω = ω(L), where
L = {t(1, α1, α2) + β; t ∈ R+}. Then (4.12) implies that αi = α−i(i = 1, 2).
The minimality of f(x) implies that 1, α1, α2 are linearly independent over
Q. Hence, pω(n) = n2 + n+ 1, which contradicts that pω(n) = 2n+ 1 is the
complexity of the fixed point of the substitution σ with s = 2, k1 = k2 = 1
(the fixed point is an Arnoux-Rauzy sequence, see [45], [169]).

On the other hand, in the case s = 1, the partition (4.11) turns out to be
the partition (4.2); that will be seen by the following argument : Proposition
4.2.1 with s = 1 implies f(x) = x2− kx− 1 (k := k1), so that α = (k+ (k2 +
4))1/2/2. Setting χ(ω; ai) = {t1(i) < t2

(i) < · · · < tn(i) < . . . }, for i = 0, 1,
we get by Proposition 4.2.1

tn
(1) = kn+ tn(0), χ(ω; a0)

◦⋃
χ(ω; a1) = N+. (4.13)

Noting that the sets χ(ω; ai) are uniquely determined by (4.13), and

[η1n] = kn+ [η0n], 1/η0 + 1/η1 = 1 (η0 := 1 + 1/α, η1 := 1 + α),

we obtain χ(ω; ai) = {[ηin]; n ∈ N+}, for i = 0, 1.



4.3 Similis partitions 87

4.2.2 Some transcendence results

Definition 4.2.2. Let G = Gg := {0, 1, . . . , g − 1}, where 2 ≤ g ∈ N+.
Let τ : A → G� be a monoid morphism such that τ(a) �= ε for all a ∈ A.
We denote by (0.τ(w))g the number defined by

∑
i≥1 wi/g

i, where τ(w) =
w1w2w3 · · · ∈ G∞, wi ∈ G, w ∈ AN.
We say w is transcendental if (0.τ(w))g is transcendental for an integer g
and a morphism τ .

The fixed point ω of the substitution σ given in Proposition 4.2.1 is not only
totally nonperiodic, but also transcendental:

Proposition 4.2.3. ([418], Theorem 3) Let ω be as in Proposition 4.2.1,
g ≥ 2 an integer, τ a monoid morphism such that τ(a) �= ε for all a ∈ A,
satisfying

rank (|τ(ai)|j)0≤i≤s, 0≤j≤g−1 > 1.

Then the number (0.τ(w))g is transcendental.

The key for the proof of Proposition 4.2.3 is to show that the infinite word
ω has a prefix which is a (2+ε)-power of w for infinitely many prefixes w (see
Proposition 3.3.4, and [418], Lemma 13); that can be connected with Roth’s
theorem (see also Sec. 3.3). A stronger argument works in [169], where S.
Ferenczi and C. Mauduit make use of a theorem of Ridout ([280], pp. 147-
148) instead of Roth’s theorem. We shall mention their results in the following
section.

4.3 Similis partitions

4.3.1 A linguistic problem

Let D be a subset of N+, with 1 ∈ D. In some cases, we can show that there
exists a subset Γ such that

◦⋃
d∈D

dΓ = N+ (D �= ∅, {1}). (4.14)

Such a partition will be referred to as a similis partition (of N+ with respect to
D). Some results on similis partitions are given in [417]. A higher-dimensional
version of similis partitions are considered in [421, 420]. Let us mention that
a simple example of similis partitions comes from a linguistic phenomenon in
Hungarian and Japanese language that is probably well-known to linguists,
see [422, 432]: Numerals one, two, three, four, . . . in Hungarian (respectively
Japanese) are egy, kettő, három, négy, . . . (hi, fu, mi, yo, . . . ). We thus can
make the following diagram, where in each language, underlined consonants



88 4. Partitions of the set of positive integers

of two numerals in each row are common, or they have a resemblance (e.g., n
and ny= palatalized n in the 3rd stage of the diagram); and simultaneously,
in each row, the number corresponding to the right group is exactly twice
the left:

Γ 2Γ
1): 1 egy (hi←fi←pi) 2 kettő (fu←pu)
2): 3 három (mi) 6 hat (mu)
3): 4 négy (yo) 8 nyolc (ya)
4): 5 öt (itsu←itu) 10 t́ız (to)

Here, among the numerals in Japanese language that are written in paren-
theses, for instance, itsu←itu indicates that the contemporary Japanese word
itsu comes from the old Japanese word itu, that is, a kind of palatalization.
If we look at the numerals of older Japanese in parentheses, the consonants
correspondence turns out to be an exact one. (Related to vowels, see, e.g.,
[200]; vowel harmony is also common in Hungarian and old Japanese.)

Considering what will happen, apart from numerals in natural language,
when we formally extend the diagram downwards, we get a similis partition
(4.14) with D = {1, 2}, which is uniquely determined. In fact, it is clear that
γ1 := 1 ∈ Γ , so that 2γ1 ∈ 2Γ , which gives the first stage 1) of the diagram.
Now, consider the smallest positive integer γ2 among the numbers that have
not appeared in the stage 1). Then the minimality of γ2 implies γ2 ∈ Γ ,
otherwise γ2 ∈ 2Γ , so that γ2 > γ2/2 ∈ 2Γ , i.e., the second stage is of the
form γ2/2 ∈ Γ , γ2 ∈ Γ , which contradicts the minimality of γ2. (Forget that
γ2 ∈ Γ follows from γ2 = 3 is odd; we shall see that γ3(= 4) is even in the
following argument.) Suppose that we have obtained a diagram with stages
1)-n). Consider the number γn+1 defined to be the smallest positive integer
that differs from all the numbers appearing in the stages 1)-n). Then γn+1 ∈ Γ
follows from its minimality. We can continue the process in general, and we
must have Γ = {γ1, γ2, γ3, . . .} as far as all the numbers dγn+1 (d ∈ D) are
different from the numbers dγm (d ∈ D, 1 ≤ m ≤ n). Hence, noting that the
argument given above is valid for any nonempty, finite or infinite, subset D
of N, we obtain

Proposition 4.3.1. If there exists a similis partition (4.14) for a given
nonempty subset D of N+, then the partition is uniquely determined by the
set D.

4.3.2 The Hungarian-Japanese partition

On the other hand, it is clear that a similis partition (4.14) for D = {1, 2}
exists, since Γ = {22jm; j ≥ 0,m ≥ 1,m is odd } satisfies (4.14). This
partition will be referred to as the H.-J. (Hungarian-Japanese) partition.
The H.-J. partition can be easily generalized as
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Proposition 4.3.2. Let D = D(k; q1, . . . , qk; e1, . . . , ek) be a set defined by

D := {
∏

1≤i≤k q
ji
i ; 0 ≤ ji ≤ ei (1 ≤ i ≤ k)},

(4.15)
k ≥ 1, qi ≥ 2, ei ≥ 1 (1 ≤ i ≤ k), G.C.D.(qi, qj) = 1 for all i �= j.

Then

Γ := {
∏

1≤i≤k
q

(ei+1)ji
i m ; ji ≥ 0,m ≥ 1, m �≡ 0 modulo qej+1

j , 1 ≤ j ≤ k}

satisfies (4.14).

We conjectured that if a similis partition (4.14) is a partition of N+ into
finite components, then there exist numbers k, and q1, . . . , qk, e1, . . . , ek
satisfying (4.15); that is probably still open. It is easily seen that there are
no partitions (4.14) for some explicitly given D which are not of the form
(4.15), see [417], Theorem 12. For example, if we take D = {1, 2, 3}, and trace
the uniqueness proof of the uniqueness of (4.14) above, we see 2γ4 = 12 = 3γ2,
which contradicts the fact that (4.14) is a disjoint union. Proposition 4.3.2
can be extended to partitions into infinite parts with respect to D given by
(4.15) with 0 ≤ ji for some indices i instead of 0 ≤ ji ≤ ei (1 ≤ i ≤ k):

D := {
∏

1≤i≤k−h
qjii .

∏
k−h+1≤i≤k

qjii ;

0 ≤ ji ≤ ei (1 ≤ i ≤ k − h), 0 ≤ ji (k − h+ 1 ≤ i ≤ k) }
k ≥ 1, k ≥ h ≥ 1,
qi ≥ 2, ei ≥ 1 (1 ≤ i ≤ k − h), G.C.D.(qi, qj) = 1 for all i �= j.

For D given as above, we can show

Γ = {
∏

1≤i≤k−h
q

(ei+1)ji
i m ;

ji ≥ 0, m ≥ 1, m �≡ 0 mod qei+1
i , 1 ≤ i ≤ k − h,

G.C.D.(m, qk−h+1 . . . qk) = 1 } (k ≥ 2).

If k = h = 1, then Γ = N+\q1N+, and the partition (4.14) is periodic
(this case is not interesting). We remark that for some partitions (4.14) into
infinite parts, D is not always of the form above. For instance, if we take D =
{pjii ; ji ≥ 0, (0 ≤ i ≤ s)} with prime numbers pi (p0 > p1 > · · · > ps, s ≤ 1),
then

Γ = {(p0 . . . ps)im}; i ≥ 0, m ≥ 1, G.C.D.(m, p0 . . . ps) = 1 }

satisfies (4.14). By the way, we remark that a sequence ω = ω1ω2 . . . ωn . . .
over As defined by
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ωn := ai if mn ∈ {pji ; j ≥ 0}
({1 < m1 < m2 < · · · < mn < . . . } := D = {pjii ; ji ≥ 0, 1 ≤ i ≤ s})

coincides with a word ω(L) defined by the billiards in Is+1 with α =
(α0 . . . αs), β = 0, αi = log pi/ log p0, see [352].

4.3.3 Some properties of the H.-J. partition

We return to to the first example of (4.14), the H.-J. partition. Let us show
the following:

Proposition 4.3.3. The word ω = ω1ω2ω3 . . . (ωn ∈ A1) corresponding to
the H.-J. partition is a totally nonperiodic word, which is a fixed point of a
substitution.

Proof. We mean by UV the set {uv;u ∈ U, v ∈ V }, by U∗ the set
{u1 . . . un;ui ∈ U (1 ≤ i ≤ n), n ≥ 0} for subsets U, V of a monoid, and
by Γ (with 1 ∈ Γ ) the component of the H.-J. partition. Let Eg denote the
base-g expansion of γ ∈ N (Eg(0) := ε), and Wn (W ∈ G∗g) be the word
obtained by concatenating n copies of W .

We have γ ∈ Γ if and only if E2(γ) = u02n, where n ≥ 0, and u ∈ {0, 1}∗
is a word having 1 as a prefix and a suffix. Hence γ ∈ Γ if and only if
E2(γ − 1) = v12n (n ≥ 0), where v ∈ G∗2 = {0, 1}∗ is a word such that 1 is
not a suffix of v. Consequently the set {0∗E2(γ − 1); γ ∈ Γ} coincides with
the language accepted by the automaton M defined by

M := (A1, G1, δ, a0, {a0})

with the transition function δ

δ(a0, i) := ai, δ(a1, i) := a0, (i = 0, 1).

For the definitions and notation related to automata, see [212]. Therefore,
noting that ω = δ(a0, E2(0)) . . . δ(a0, E2(n − 1)) . . . , we see that ω is the
fixed point of the substitution over A1 defined by

σ(a0) := a0a1, σ(a1) := a0a0. (4.16)

Using this fact shown above, we can prove that ω is a totally nonperiodic
word in the following manner. We remark that so far as similis partition are
concerned, nonperiodicity implies total nonperiodicity. Hence it suffices to
show the nonperiodicity of ω.

Suppose that ω is an ultimately periodic word, then θ := (0.τ(ω))2 ∈
Q (τ(ai) := i). We put a = a0, b = a1, θn = (0.τ(un)∗)2 (un = σn(a)), where
u∗ denotes the periodic word uuu . . . for a nonempty word u.
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We write u¬v if v is a prefix of u. The binary relation ¬ is transitive.
In view of (4.16), we get u2 = abaa = u1u

2
0, so that un+2 = un+1u

2
n for all

n ≥ 0, |un| = 2n, and ω¬un+1¬unun−1. Hence, we obtain |θ−θn| ≤ 2−3·2n−1
.

For any n ≥ 1, we can put θn = E−1
2 (u)/(2n− 1) with a certain u ∈ 1G∗2.

Let θn equal Pn/Qn, G.C.D.(Pn, Qn) = 1. Then |θ − Pn/Qn| ≤ Q
−3/2
n ,

which together with θ ∈ Q implies that {Pn/Qn;n ≥ 0} is a finite set.
Therefore θi = θi+j for some i ≥ 0 and j ≥ 1, so that ui+j = u2j

i . Since
ui+j = ui+j−1u

2
i+j−2, we get ui+j−1 = u2j−1

i , and inductively, ui+1 = u2
i . By

ui+1 = uiu
2
i−1, we get ui = u2

i−1. Repeating the argument, we obtain u1 = u2
0

which contradicts u1 = ab �= aa = u2
0.

Remark. By direct computation, we see that ∂Γ = 2112221121121122 . . .
for the H.-J. partition. We can show that the sequence (or word) ∂Γ is the
fixed point of a substitution over {1, 2} in the following manner. Let ω be
the fixed point of the substitution σ (4.16). Noting that bb does not occur in
ω, we can factorize ω into two words A := ab and B := a, and we get a new
word ω̃ over {A,B}:

ω = ab a a ab ab ab a a ab a a ab . . . ,
ω̃ = A B B A A A B B A B B A . . . ,

and noting that ω is the fixed point of σ, we see that ω̃ is the fixed point of
a substitution τ over {A,B}:

A = ab �→ σ(ab) = abaa = ABB
τ :

B = a �→ σ(a) = ab = A.
Since ∂Γ = ζ(ω̃) with ζ(A) = 2, ζ(B) = 1, ∂Γ becomes the fixed point of a
substitution 2 �→ 211, 1 �→ 2.

4.3.4 General case

We can generalize all the statements given above for the H.-J. partition to
those for the partition with D = {qi; 0 ≤ i ≤ e} (q ≥ 2) as in Propositions
4.3.4-4.3.5, by considering the automaton

Me,q := (Ae, Gq, δ, a0, {a0})

with a transition function δ=δe,q defined by

δ(ai, j) := a0, δ(ai, q − 1) := ai+1 (0 ≤ i ≤ e− 1, 0 ≤ j ≤ q − 2),
δ(ae, j) := a0 (0 ≤ j ≤ q − 1).

Proposition 4.3.4. Let ω be the word corresponding to a similis partition
(4.14) with respect to D = {qi; 0 ≤ i ≤ e} (e ≥ 1, q ≥ 2). Then ω is a totally
nonperiodic word over Ae, which is the fixed point of a substitution over Ae
defined by

σ(ai) := aq−1
0 ai+1 (0 ≤ i ≤ e− 1), σ(ae) := aq0. (4.17)
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Proposition 4.3.5. Let (4.14) be a similis partition with respect to D as
in Proposition 4.3.4. Let τ : A∗e → A∗e, κ : A∗e → {1, 2}∗ be the morphisms
defined by

for q = 2,



τ(ai) := a0ai+1 (0 ≤ i ≤ e− 2),
τ(ae−1) := a0a

2
e,

τ(ae) := a0,
,

{
κ(ai) = 2 (0 ≤ i < e),
κ(ae) = 1, ,

for q > 2,



τ(a0) := aq−2

0 a1,

τ(ai) := aq−2
0 a1a

q−2
0 ai+1 (0 ≤ i < e),

τ(ae) := aq−2
0 a1a

q
0,

,

{
κ(ai) = 1 (0 ≤ i < e),
κ(ae) = 2.

Then ∂Γ is a nonperiodic word over {1, 2}, which is given by

∂Γ = κ(ω′),

where ω′ is the fixed point of τ .

Remark. Let ω be as in Proposition 4.3.4. Then, in view of the locally
catenative formula σn+e(a0) = (σn+e−1(a0))q−1 . . . (σn+1(a0))q−1(σn(a0))q,
we can easily find that the frequency of ai appearing in ω is rational for
all i. This fact together with the nonperiodicity of ω implies that a similis
partition with respect to D given by (4.15) can neither be a partition (4.4)
nor a partition (4.11).

Using Proposition 4.3.4, we can show the total nonperiodicity of the parti-
tion given by Proposition 4.3.2. For instance, let us consider a similis partition
(4.14) with respect to D = {1, 2, 3, 6}. Then Γ = {22i32jk; i ≥ 0, j ≥ 0, k ≥
1, G.C.D.(2 · 3, k) = 1} which equals {22ik; i ≥ 0, (2, k) = 1} ∩ {32ik; i ≥
0, (3, k) = 1} . It is clear that

Γ = χ(ω(1, 2); a0) ∩ χ(ω(1, 3); a0),

where ω(e, q) is the fixed point of a substitution over Ae defined by (4.17). In
general, we can show, considering the languages accepted by the automata
Mei,qi,ji := (Sei , Gqi , δei,qi , a0, {aji}) (0 ≤ ji ≤ ei (1 ≤ i ≤ k)), that

qj11 . . . q
jk
k Γ =

⋂
1≤i≤k

χ(ω(ei, qi); aji) (0 ≤ ji ≤ ei (1 ≤ i ≤ k)) (4.18)

holds for any finite similis partition with respect to D given by (4.15). We
denote by Ω the word (strictly over

∏
1≤i≤k (ei + 1) letters) corresponding

to a partition given by Proposition 4.3.2. Then, it follows from (4.18) that Ω
is an interpretation of ω(ei, qi) (i.e., whenever the i-th symbol counted from
the beginning differs from the j-th symbol in ω, then the same happens in
Ω, see [368]). Hence, Ω is not an ultimately periodic word by Proposition
4.3.4. Therefore, any similis partition given according to Proposition 4.3.2 is
totally nonperiodic.
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Related to the transcendence of the word ∂Γ and the word correspond-
ing to a finite similis partition, Proposition 3.3.4 due to S. Ferenczi and C.
Mauduit [169] is useful. Indeed, if we apply Proposition 3.3.4 to the word ω
in Proposition 4.3.4, and note that the transcendence of ω implies the tran-
scendence of Ω, we obtain Proposition 4.3.6 (respectively Proposition 4.3.7)
by Proposition 4.3.4 (respectively Proposition 4.3.5) as follows:

Proposition 4.3.6. Let (4.14) be a similis partition into finite parts with
respect to D given by (4.15) with the word Ω corresponding to (4.14). Then
Ω is transcendental.

Proposition 4.3.7. Let Γ be as in Proposition 4.3.5. Then ∂Γ is transcen-
dental.

4.4 Log-fixed points and Kolakoski words

4.4.1 Definition

A word (or a sequence) ξ′ over {1, 2} is referred to as a Kolakoski word if the
word defined by its run-lengths is equal to ξ′ itself:

ξ′ = 22 11 2 1 22 1 22 11 2 11 22 1 2 11 2 1 22 . . .
2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 · · · = ξ′,

where we mean by a run a maximal subword consisting of identical letters
(for more details, see [250], and [134] with the references therein). The word
ξ := 1ξ′ is the only other word having this property. It can be easily seen
that ξ is not an ultimately periodic word, see [435]. Related to the complexity
p(n) := pξ(n), F. M. Dekking has shown that

n+ 1 ≤ p(n) ≤ n7.2 (∀n ≥ 0).

Furthermore, he has conjectured (see [132, 134]) that

p(n) � nlog2/log(3/2).

Let A be an alphabet with Card A ≥ 2. We denote by A× the set

A× := (A∗ ∪ A∞)\(
⋃
a∈A

A∗{a∗}),

i.e., A× is the set of all finite or infinite words that are different from the
words of the form ua∗ (u ∈ A∗, a ∈ A). We shall write A∗w instead of A∗{w}.
For any word ω = ω1ω2 . . . ωn · · · ∈ A×, we can define two words log ω, and
base ω by
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log ω := e1e2e3 . . . , base ω := b1b2b3 . . . ,

if ω = be11 b
e2
2 b

e3
3 . . . (ei ≥ 1, bi ∈ A, bi �= bi+1, for all i ≥ 1).

In what follows, we take A ⊂ N+.

Definition 4.4.1. A word ω ∈ A× satisfying ω = log ω will be referred to
as a log-fixed point. The Kolakoski word ξ is defined to be a log-fixed point
with base ξ = (12)∗.

If Card A = 2, then Card {ω ∈ A∞;ω = log ω} = 2; if Card A ≥ 3, then
the set {ω ∈ A∞;ω = log ω} has continuum cardinality, since so does the set
{base ω}. It can be easily seen by a similar manner to that given by [435]
that all the log-fixed points are not ultimately periodic.

Consider, for instance, a log-fixed point ω with base ω = (26)∗, and fac-
torize it into the words of length 2:

ω = 22 66 22 22 22 66 66 66 22 66 . . .
= A B A A A B B B A B . . .
= W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 . . . .

Then it is clear that Wi is A := 22 or B := 66 (since the length of the
period of base ω is 2, which divides 2, 6 ∈ A), and ω as a word over {A,B}
is invariant under the morphism

A = 22 �→ 2266 = AB

B = 66 �→ 222222666666 = AAABBB.

Note that such an argument does not work at all for the Kolakoski words,
but it can be applied to some general cases:

Proposition 4.4.2. Let s ≥ 1 be an integer, A = {a0, . . . , as} ⊂ N+ such
that s divides ai for all 1 ≤ i ≤ s. Let σ be a substitution over {A0, . . . , As}
defined by σ(Ai) = A

ai/s
0 . . . A

ai/s
s (0 ≤ i ≤ s), and let Ω be its fixed point.

Then the log-fixed point ω with base ω = (a0 . . . as)∗ can be given by ω =
τ(Ω), where τ is the morphism defined by τ(Ai) = as+1

i (0 ≤ i ≤ s).

4.4.2 Generalized substitutions

Return now to the Kolakoski word ξ′. Consider what could be the substitution
σ in Proposition 4.4.2 for the infinite word ξ′ in a formal sense. It would
become a “substitution” defined by

σ(A0) = A0A1, σ(A1) = A
1/2
0 A

1/2
1 ,

where we mean by A1/2 a half of a symbol. Define (W1W2 . . .Wn)1/2 (each
Wi is a symbol, or a half-symbol) to be a “word” W1 . . .W[n/2] (respectively,
W1 . . .W[n/2]W

1/2
[n/2]+1, which is possibly a “word” containing a fourth of a
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symbol) for even n (respectively, odd n), and define σ(W 1/2) to be a “word”
σ(W )1/2. Consider an infinite word Ω = limσn(A0), then

A0
σ→ A0A1

σ→ A0A1A
1/2
0 A

1/2
1

σ→ A0A1A
1/2
0 A

1/2
1 A0A

1/2
0

σ→ . . .

−→ Ω = A0A1A
1/2
0 A

1/2
1 A0A

1/2
0 A0A1A

1/2
0 A0A1A

1/2
0 A

1/2
1 A0 . . . .

We can define the sequence Ω to be the fixed point of a substitution over
an alphabet {a, b, c, d} in the usual sense, where we identify a = A0, b =
A1, c = A

1/2
0 , d = A

1/2
1 . The following question is thus natural: can we find

any relation between ξ′ and Ω ? (Probably, not!; and then, we must find a
better treatment for half-symbols.) It will be remarkable that the word ξ is
a fixed point of the map

Ψ : (N+)∞ ∪ ((N+)∗\N∗1)→ {1, 2, 3}∞,
Ψ(ω) := B3(B2→3(ϕ(c(ω))) + 1/2),

where c, ϕ, B2→3, B3 are maps defined as follows:

1. c : (N+)∞∪(N+∗\(N+)∗1)→ I = [0, 1], c(a1a2a3 . . . ) := [0; a1, a2, a3, . . . ]
for a1a2a3 · · · ∈ (N+)∞ ∪ ((N+)∗\(N+)∗1), where the right-hand side
denotes the usual continued fraction expansion;

2. ϕ : I → I is the so called question-mark-function introduced by
Minkowski determined by the following conditions:
a) the map ϕ is continuous with ϕ(0) = 0, ϕ(1) = 1,
b) ϕ((p+ p′)/(q + q′)) = (ϕ(p/q) + ϕ(p′/q′))/2 for all
p, q, p′, q′ ∈ N+ ∪ {0} such that p/q, p′/q′ ∈ I, p′q − pq′ = ±1;

3. B2→3 : I → [0, 1/2], B2→3((0.b1b2b3 . . . )2) := (0.b1b2b3 . . . )3 for
b1b2b3 · · · ∈ {0, 1}∞\{0, 1}∗0∗ (B2→3(0) := 0);

4. B3 : I → {0, 1, 2}∞, B3(x) = c1c2c3 . . . for x = (0.c1c2c3 . . . )3
with c1c2c3 · · · ∈ {0, 1, 2}∞\{0, 1, 2}∗0∗ (B3(0) := 0∗).

We can see that ξ is uniquely determined by Ψ(ξ) = ξ and by the fact that

ϕ([0; a1, a2, a3, . . . ]) = (0. 0a1 1a2 0a3 1a4 0a5 . . . )2, (4.19)

see [322].
The problem of the existence of frequencies in the Kolakoski word is known

as Keane’s problem: the question is whether the frequency of 1 in ξ exists,
and whether it equals 1/2 [236]. This is still open. If the frequency does not
exist, or if it equals 1/2 (it probably does!), then it is easy to see that the
words ω corresponding to the one of the partitions defined at (4.4), (4.12)
and (4.15) cannot be the word ξ.

Remark. Note that this notion of generalized substitution has nothing to
do with the generalized substitutions discussed in Chaps. 8 and 12. This later
generalization is a higher-dimensional one.
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4.4.3 Some connections with continued fraction expansions

Instead of (4.19), we may ask about the existence of a number x ∈ I satisfying

x = [0; a1, a2, a3, . . . ] = (0.a1a2a3 . . . )g, (4.20)

where
an ∈ Z, 1 ≤ an ≤ g − 1 (i ≥ 1). (4.21)

Such a number x exists for a square number g = h2, for 2 ≤ h ∈ Z, since
[0;h] = 1/h = h/g = (0.h)g; this is not interesting. Now, we ask for an
irrational number x ∈ I satisfying (4.20) with (4.21). If we take g = 10, then
by simple computations, we can show that such a number does not exist. If
we consider (4.20) with

a1a2a3 · · · ∈ ({0, . . . , g − 1}∞\{0, . . . , g − 1}∗0∗ (4.22)

instead of (4.21), then it seems very likely that a number x ∈ I satisfying
(4.20) exists; a computation says that

[0; 3, 3, 5, 8, 3, 4, 7, . . . ] = (0.3358347 . . . )11,

where we mean, for example,

[0; 3, 3, 5, . . . , 1, 1, 9, 10, 0, . . . , 0︸ ︷︷ ︸
odd number of 0s

, 2, 9, . . . ]

= [0; 3, 3, 5, . . . , 1, 1, 9, 10 + 2, 9, . . . ],

[0; 3, 3, 5, . . . , 1, 1, 9, 10, 0, . . . , 0︸ ︷︷ ︸
even number of 0s

, 2, 9, . . . ]

= [0; 3, 3, 5, . . . , 1, 1, 9, 10, 2, 9, . . . ].

The difficulty in showing the existence of a number x satisfying (4.20)
for g = 11 comes from the possibility of a long run of 0’s. Probably,
the length of a run of 0’s which begins with the n-th symbol counted
from the beginning is bounded by a function of n taking sufficiently small
values; and probably, such an irrational number x, satisfying (4.20) with
(4.22) exists for infinitely many g. It is clear that if an irrational number
x, satisfying (4.20) with (4.21) exists, then x is an irrational number be-
ing different from all the quadratic irrationals. Note that a periodic, or a
nonperiodic infinite continued fraction with (4.22) can be a rational num-
ber, for instance [0; 3, 1, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0, 7, . . . ] = [0; 3,∞] = 1/3 ,
[0; 3, 1, 0, 7, 0, 7, 0, 7, . . . ] = 1/3.
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4.5 Problems

Let us end this chapter by evoking some open problems.

1. We denote by ψi(z) the analytic function on the unit disc defined by

ψi(z) = ψi(z;ω) :=
∑

n∈χ(ω;ai)

zn (0 ≤ i ≤ s)

for ω ∈ A∞, where A = {a0, . . . , as}, and we take ω to be the word ω(L)
defined by the billiard as in Sec. 4.1 with {tα+ β; t ∈ R+}. Then

ψi(z) =
∑

1≤n<∞
z

∑
0≤j≤s [α−1

i αjn−α−1
i {βi}αj+{βj}]

follows from Proposition 4.1.1. We suppose that α0, . . . , αs are linearly
independent over Q.
Question. Is the number

∑
0≤i≤s ci · ψi(g−1) (ci, g ∈ Z, g ≥ 2) always

transcendental except for the case where ci = c for all i?

It follows from Proposition 2 in [169], that for s = 1,
∑

0≤i≤s ci ·
ψi(g−1) (c0 �= c1) is transcendental since ω is Sturmian for s = 1,
as we have mentioned in Sec. 4.1. For a proof of the transcendence of
ω = ω(L), it suffices to show the transcendence of ψi(g−1; s) for some i.
Taking s = 2, α0 = 1, β0 = 0, 0 < βi < 1, we have

ψ0(z) =
∑

1≤n<∞
z[(α1+1)n+β1]+[α2n+β2]. (4.23)

Question. Can we show the transcendence of the value ψ0(g−1) ? (Prob-
ably, yes; (4.23) is a simple expression similar to that in the case s = 1.)
For problems related to linear independence and transcendence for ψi(z),
see [419], (i)-(v), pp.213.

2. It is difficult to show that there is no number x satisfying (4.20) with
(4.22) for g = 10. The difficulty comes from that, for example,

[0; 2, 0, 2, 1, 0, 0, 9, 0, 8, . . . ] = 0.202100908 . . . (in base 10)

may be a solution for (4.20).
We may ask about the existence of a number x satisfying (4.20) for
irrational g; for example, such a number may be:

[0; 3, 2, 4, 6, 9, 8, 2, . . . ] = 0.3246982 . . . (in base β = ((1 + 51/2)/2)5).
It is easy to show that there exists a number β = β(ω) satisfying

[0; a1, a2, a3, . . . ] = 0.a1a2a3 . . . (in base β) (4.24)

for any given ω = a1a2a3 · · · ∈ {0, 1, . . . , h}∞\{0, 1, . . . , h}∗0∗. For in-
stance, for the Kolakoski sequence ξ,

[0; 1, 2, 2, 1, 1, 2, 1, 2, 2, . . . ] = (0.122112122 . . . )β , β = 2.837559 . . . ;
for the fixed point of a substitution 1 �→ 10, 0 �→ 1,

[0; 1, 0, 1, 1, 0, 1, 0, 1, 1, . . . ] = (0.101101011 . . . )β , β = 2.729451 . . . .
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Question. Can we show the transcendence of such a number β(ω) for a
nonperiodic fixed point ω of a substitution?

Let us mention two conjectures.

Conjecture 4.5.1. For any integer g = h2 + h + i (i = 0, 1, h ≥ 3),
there exists an irrational number satisfying (4.20) with (4.22); such an
irrational number is always transcendental.

Conjecture 4.5.2. The number β(ω) defined by (4.24) is transcendental
for any nonperiodic word ω.

3. Let ω be the word corresponding to the partition (4.10), i.e., ω = ω(K)
for a curve K = {f0(x), . . . , fs(x); x ∈ R+} for fi as in Proposition 4.1.3.
Suppose that fi(x) ∈ Q(x) for all i.

Question. Can we show that pω(K)(n) is bounded by a polynomial in n
(respectively s) for fixed s (respectively n) (see [419], (vi,vii), p.214)?



5. Substitutions and symbolic dynamical
systems

The aim of this chapter is to introduce the fundamental notions of ergodic
theory, through the study of a few examples of symbolic dynamical systems.

To improve lisibility, some of the definitions and propositions stated in
Chap. 1 are repeated in the present chapter.

In the course of this chapter, we shall use at some points notions of mea-
sure theory and spectral theory; when there is no explanation in the text,
the reader is referred to any standard book, such as [122] and [340]; however,
we have tried to isolate these places, and the reader can skip them without
damage to his general understanding.

5.1 The Morse sequence: elementary properties

5.1.1 A geometrical problem

In 1920, M. Morse was studying geodesics, that is, the curves realizing the
minimum distance between two points, on connected surfaces with constant
negative curvature; he was looking at infinite geodesics which stay in a small
part of the space; more precisely:

Definition 5.1.1. A geodesic G is uniformly recurrent if for every ε > 0
there exists L such that for every segment S in G of length bigger than L,
every point in G is at a distance smaller than ε from some point in S.

Of course, a closed geodesic is a recurrent geodesic; but are there non-
closed recurrent geodesics?

To answer this question, in [302], using a method initiated by Hadamard,
Morse did a coding of geodesics, by infinite sequences of 0 and 1, according
to which boundary of the surface they meet: thus, we arrive in the space
{0, 1}N of infinite symbolic sequences (or, more properly, in the space {0, 1}Z

of biinfinite symbolic sequences, but we shall consider only their positive
coordinates), and to advance along a geodesic translates into looking at the
next element of the sequence. The coding sends under suitable conditions the
topology of the surface onto the product topology in {0, 1}N.
1 This chapter has been written by S. Ferenczi

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 101–142, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Under these conditions, a closed geodesic corresponds to a periodic se-
quence. In the same way, by replacing points by elementary segments, the
reader shall be able to check that a recurrent geodesic corresponds to what is
now called a minimal sequence: as defined in Chap. 1, a sequence u = (un)n∈N

is said to be minimal if for every i < j, there exists s such that for every n,
there exists n < m < n+ s such that um = ui, ..., um−i+j = uj .

It was stated in Chap. 1 that this definition can also be read by using
language terminology: the sequence u is minimal if every word occurring in
u occurs in an infinite number of positions with bounded gaps.

Hence what we need is a minimal non-periodic sequence, and the ex-
ample Morse gave is the sequence that bears his name, though it had al-
ready been discovered by Prouhet in 1851 [339] and Thue [430] in 1907:
we consider the map σ from {0, 1} to {0, 1}� defined by σ(0) = 01 and
σ(1) = 10. We extend σ into a morphism of {0, 1}� for the concatenation by
σ(abcd...) = σ(a)σ(b)σ(c)σ(d) . . . We can then iterate σ: σ2(0) = σ(0)σ(1) =
0110, σn(0) = σn−1(0)σn−1(1), and the nested words σn(0) (called n-words)
converge (in {0, 1}N∪{0, 1}�) to the only infinite sequence which begins with
σn(0) for every n, the Morse sequence (also called the Prouhet-Thue-Morse
sequence):

u = u0u1... = 0110100110010110...

This sequence satisfies the fundamental equality

u = σ(u).

Some properties of this sequence were stated in Chap. 2. A consequence
is the following:

Proposition 5.1.2. The Morse sequence u is minimal and neither periodic
nor ultimately periodic.

Proof. Any word W occurring in u must occur at a position between 0
and 2m−|W | for some m, hence must occur in some σm(0); but σm(0) occurs
in every m+1-word, hence infinitely often in u with gaps bounded by 2.2m+1,
and so does W . Hence u is minimal.

As u2n+1 is always different from un, n + 1 cannot be a period; and for
any p and n0, there exists n ≥ n0 such that n+ 1 is a multiple of p, hence u
is not ultimately periodic.

5.1.2 Combinatorial properties

For the study of the dynamics of the Morse sequence, the following lemma,
due to Del Junco ([138]), will be useful. It is a simple example of the notion of
recognizability: for the Morse sequence, we know where a given word should
occur, or even occur approximately.
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Definition 5.1.3. The Hamming distance between two words of equal length
is

d((v1 . . . vn), (w1 . . . wn)) =
1
n

Card {1 ≤ i ≤ n; vi �= wi}.

Proposition 5.1.4. If U and V are two n-words, if W is a word of length
2n+1 occurring in u at position i, and such that d(UV,W ) < 1

4 , then W = UV
and i is a multiple of 2n.

Proof. The result is empty for n = 0; we suppose it is true at stage
n − 1; if U, V,W, i are as above, W = W1W2, with either d(U,W1) < 1

4
or d(V,W2) < 1

4 ; as U and V are each made with two (n − 1)-words, the
induction hypothesis implies that there exists an integer k with i = k2n−1;
hence, writing W1 = W11W12, W2 = W21W22, U = U1U2, V = V1V2, the
words W11, W12, W21, W22 must be (n − 1)-words, and are at a distance
d < 1

2 of the corresponding (n − 1)-words U1, U2, V1, V2; as the distance
between two (n− 1)-words can only be 0 and 1, we must have W1 = U and
W2 = V .

It remains to be proved that k is even; if it is odd, let W = abb′c, U =
U1U

′
1, V = V1V

′
1 their expressions as concatenation of (n− 1)-words, where,

for every word M = m1 . . .mq, M ′ denotes the word made with the letters
(1−m1) . . . (1−mq). Then we must have a′ = b = c, and a′abb′cc′ = bb′bb′bb′

must occur, which is impossible as 000 and 111 do not occur.

Recognizability will be used several times in the sequel (see Lemmas
5.1.23, 5.2.4, 5.2.5 below), and it is an important notion for the general study
of substitutions [306]. For more details on recognizability, see Chap. 7.

The same techniques allow us to prove an interesting combinatorial prop-
erty which has opened a wide field of investigation in word combinatorics.

Indeed, the Morse sequence has been also studied at the beginning of this
century by A. Thue. In 1906 and 1912 he wrote two papers that he considered
as an attempt to open new ways to number theory the purpose of which was
to construct sequences over finite alphabets containing no square or no cube
(see [429, 430]). In 1938, G. A. Hedlund and M. Morse used the same property
to link the Morse sequence to the problem of unending chess [305].

Definition 5.1.5. A sequence is called square-free if no word of the form
UU occurs in it, for any nonempty word U .

It is not difficult to see that there is no infinite square-free sequence on
two letters; but, as was shown in [429] (see also Corollary 2.2.4 from [271]),
the Morse sequence can be said to be free of powers 2 + ε for any ε > 0, in
the following sense:

Proposition 5.1.6. In the Morse sequence no word of the form UUv occurs,
where U is any nonempty word and v is the first letter of U .
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Proof. Let l be the length of U ; suppose for example that l is odd, and
that UUv occurs at an odd position. Let U = va1b1 . . . apbp. If we put bars
to indicate the separations between the 1-words occurring at positions 2k
in u, the word UUv = v|a1b1| . . . |apbp|va1| . . . |bpv| must occur in the Morse
sequence, with the indicated position of the bars. Hence a0 + v = a1 + b1 =
· · · = ap + bp = v + a1 = b1 + a2 = · · · = bp + v = 1. We thus get ai + bi =
bi + ai+1 = ai+1 + bi+1, for i = 1, 2, . . . , p − 1. Hence, a1 = a2 = · · · = ap,
a0 = a1 = bp, b1 = b2 = · · · = bp, and 1 − v = a0 = · · · = ap = 1 − v, which
is impossible as v = 0 or 1. The same reasoning applies if l is odd and UUv
appears in an even position. In particular, if U is of length one, we check
immediately that 000 and 111 do not occur.

If the length l is even and UUv occurs at the even position 2k, then
U = |vb1|a2b2| . . . |apbp|, and if U ′ = va2..ap, σ(U ′U ′v) occurs in the Morse
sequence at position 2k, and then U ′U ′v must occur at position k, v is the
first letter of U ′, and the length of U ′ is strictly smaller than l. The same
reasoning applies to the case where l is even and UUv occurs in an odd
position.

An immediate consequence of this result is that two occurrences of the
same word in the Morse sequence have to be disjoint; another one is that the
Morse sequence does indeed provide a square-free sequence on a three-letter
alphabet (see also Sec. 2.3 from [271]):

Proposition 5.1.7. If u is the Morse sequence, and v is the sequence over
the alphabet {−1, 0, 1} defined by: ∀n ∈ N, vn = un+1 − un, v is an infinite
square-free sequence.

Proof. If the word a1 . . . aka1 . . . ak occurs at position i in v, then a1 +
· · ·+ ak = 0, as u2k+i−ui = 2(a1 + · · ·+ ak) is in {−1, 0, 1}; but this implies
that for some e = 0 or 1, the word e(e + a1) . . . (e + a1 + .. + ak−1)e(e +
a1) . . . (e+ a1 + ..+ ak−1)e occurs in u, which is impossible.

In 1902 W. Burnside submitted the following problem: if G is a group of
finite type such that there is an integer n such that gn = 1 for any g in G, is G
finite? W. Burnside gave a positive answer to this question in the case n ≤ 3,
Sanov in the case n = 4 in 1940, followed by M. Hall for the case n = 6 in
1957. In 1968, S. I. Adian and P. S. Novikov showed that the general answer
to Burnside’s problem is negative: there are counter-examples at least for any
odd integer greater than or equal to 665. It is interesting to point out that
their method uses fundamentally the construction of square-free sequences
(see [5]).

5.1.3 Complexity

Let us recall the definition of the complexity function (for more details, see
Chap. 1): we call complexity function of a sequence u, and denote by pu(n),
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the function which with each integer n ≥ 1 associates Card Ln(u), that is,
the number of different words of length n occurring in u.

Let us recall that an n-word is σn(a) for any letter a.

Lemma 5.1.8. In the Morse sequence, every word of length at least five has
a unique decomposition into 1-words, possibly beginning with the last letter of
a 1-word and possibly ending with the first letter of a 1-word.

Proof. In other words, there is only one way to put the bars; it is true if
our word contains 00 or 11, as they cannot occur between bars, so there must
be a bar in the middle; if not, the word must contain 01010 or 10101; but
01010 is either 0|10|10 or 01|01|0, which do not occur as 010101 and 101010
do not occur, and 10101 does not occur for the same reason.

Proposition 5.1.9 ([91, 141]). For the Morse sequence, pu(1) = 2, pu(2) =
4, and, for n ≥ 3, if n = 2r+q+1, r ≥ 0, 0 < q ≤ 2r, then pu(n) = 6.2r−1+4q
if 0 < q ≤ 2r−1 and pu(n) = 8.2r−1 + 2q if 2r−1 < q ≤ 2r.

Proof. If n ≥ 4, our lemma implies that pu(n) = p0(n) + p1(n), where
p0(n) is the number of words of length n beginning just after a bar, and
p1(n) just before. Let n = 2k + 1 and W a word of length n; if W is in the
first category, W = |a1b1| . . . |akbk|ak+1, ai + bi = 1, and there are as many
such words as words a1..ak+1, hence p0(2k+ 1) = pu(k+ 1). In the same way
p1(2k + 1) = pu(k + 1), p0(2k) = pu(k), p1(2k) = pu(k + 1). The first values
can be computed by hand, and we check that the proposed expression pu(n)
has the same initial values and satisfies the induction relations pu(2k) =
pu(k) + pu(k + 1), pu(2k + 1) = 2pu(k + 1).

Note that pu(n) is smaller than 4n and that the differences pu(n + 1) −
pu(n) take only two values.

5.1.4 The associated topological dynamical system

Recall that the topological dynamical system associated with a sequence u
with values in the finite alphabet A is the system (Xu, S), where

• AN equipped with the product topology of the discrete topology on each
copy of A, or equivalently with the distance

d(w,w′) = 2−min{n∈N;wn �=w′n},

• S(w0, w1, w2, . . . ) = (w1, w2, . . . ),
• Xu ⊂ AN is the closure of the set {Snu, n ∈ N}.

We have seen in Chap. 1 (Lemma 1.1.2) that w ∈ Xu if and only if there
exists a sequence kn such that w0 . . . wn = ukn . . . ukn+n for every n ≥ 0,
which is also equivalent to Ln(w) ⊂ Ln(u) for all n.

Proposition 5.1.10. If u is minimal, w ∈ Xu implies u ∈ Xw and Xu is
the set of all sequences having the same language as u.
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Proof. If u is minimal and w ∈ Xu, u0 . . . up occurs in every long enough
word occurring in u, hence in every possible ukn . . . ukn+n for n large enough,
and it occurs in w0 . . . wn; hence u0 . . . up = wlp . . . wlp+p and u ∈ Xw; and
consequently Ln(u) = Ln(w) for all n; and if Ln(u) = Ln(w) for all n, then
w ∈ Xu because of Lemma 1.1.2.

Lemma 5.1.11. If u is recurrent, then the shift S is surjective onto Xu.

Proof. If w = w0w1 . . . is in Xu, then w0 . . . wn occurs in u, and not only
in position 0; hence for each n there exists a ∈ A such that aw0 . . . wn occurs
in u; and there exists at least one a such that aw0 . . . wn occurs in u for
infinitely many values of n; but that implies that aw0w1 . . . is in Xu, and it
is an antecedent of w.

Most sequences we shall consider have an at most linear complexity func-
tion (∀n ∈ N, pu(n) ≤ Cn). In this case, even if the shift is not injective, the
following proposition shows that it can be made invertible up to a set which
is at most countable.

Proposition 5.1.12. Let u be a recurrent sequence the complexity of which
satisfies pu(n) ≤ Cn for all n and some constant C; then there exists a
finite set F such that, if D is the (at most countable, and S-invariant) set⋃
n∈Z

SnF , S and all its iterates Sn, n ≥ 0, are one-to-one from Xu \D to
Xu \D.

Proof. We suppose first pu(n+1)−pu(n) ≤ C for all n; since u is recurrent,
every word w of length n has at least one left extension (that is, a word aw
occurring in u for some a ∈ A); hence there can be no more than C words
of length n which have two or more left extensions. Let F be the set of
sequences w in Xu such that S−1w has at least two elements; if the sequence
w = (wn)n∈N ∈ F , then there exists a �= b such that the sequences aw0w1 . . .
and bw0w1 . . . belongs to Xu, and hence the word w0 . . . wn has at least two
left extensions for every n; so F has at most C elements.
This is still true if pu(n) ≤ Cn as then pu(n+1)−pu(n) ≤ C on a subsequence
tending to infinity.

Suppose that u is recurrent and not eventually periodic. The set Xu is
not countable, hence Xu \D is not empty. In the sequel, we may use the map
S−1, tacitly assuming that we use it only on Xu \D.

Let us come back now to the notion of minimality. The minimality of a
sequence is equivalent to that of the associated dynamical system: a topo-
logical dynamical system (X,S) is said to be minimal if the only closed sets
E ⊂ X such that S(E) ⊂ E are ∅ and E, or, equivalently, if for every point
x ∈ X, the orbit of x, that is, {Snx, x ∈ N}, is dense in X.

Proposition 5.1.13. The system (Xu, S) is minimal if and only if the se-
quence u is minimal.
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Proof. If u is minimal, we saw that for every w ∈ Xu, u, and hence its
closed orbit, must be in Xw, the closed orbit of w, hence Xw = Xu.
If (Xu, S) is minimal; then, for any w ∈ Xu, the closed orbit Xw is equal to
Xu, hence u is in Xw and Ln(u) ⊂ Ln(w) for all n. Now, if W occurs in u,
then W must occur in every w ∈ Xu, which implies Xu = ∪+∞

n=0S
−n[W ];

hence, by compacity, Xu = ∪pi=1S
−ni [W ] and hence for every k ≥ 0,

Sku ∈ ∪pi=1S
−ni [W ]; this means that W occurs in u infinitely often with

gaps bounded by maxi ni.

Let us recall that a topological dynamical system (X,T ) is usually defined
as a compact set X together with a continuous map T acting on the set
X. Two topological dynamical systems (X,T ) and (Y, T ′) are topologically
conjugate if there exists a bicontinuous bijection φ from X to Y such that
φT = T ′ ◦ φ.

Lemma 5.1.14. If u and v are sequences on finite alphabets and if (Xu, S)
is topologically conjugate to (Xv, S), then there exists a finite integer q such
that for every i ∈ N (φ(w))i depends only on (wi, . . . wi+q).

Proof. The idea of the proof is the following : φ associates with a sequence
(wn) a sequence (w′n); for p ∈ Z, the map φp : Xu → A, (wn)n∈N �→ w′p is
continuous because of the product topology; we deduce that φ−1

p [a] is open
and closed; hence by compacity it must be a finite union of cylinders; therefore
there exists a finite integer q such that φ0(w) depends only on w0 . . . wq, and
the φp, for p �= 0, depend also only on w0 . . . wq, as φ commutes with the
shift S.

Corollary 5.1.15. Under the same hypothesis, if pu(n + 1) − pu(n) is
bounded, so is pv(n + 1) − pv(n); and if pu(n) ≤ Cn + C ′, then pv(n) ≤
Cn+ C ′′.

Proof. We have pu(n− q′) ≤ pv(n) ≤ pu(n+ q) for constants q and q′.

Exercise 5.1.16. Prove that the topological entropy (see Chap. 1) is invari-
ant under topological conjugacy.

5.1.5 Unique ergodicity

A topological dynamical system (X,T ) always has an invariant probability
measure that is, a measure µ such that

µ(X) = 1 and
∫
f(Tx)dµ(x) =

∫
f(x)dµ(x)

for any integrable Borel function f . We can take for µ any cluster point for
the weak-star topology of the sequence of probability measures
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µn =
1
n

n−1∑
k=0

δTkx

for any point x ∈ X.

Definition 5.1.17. A topological dynamical system is uniquely ergodic if
and only if it has only one invariant probability measure.

Proposition 5.1.18. Topological conjugacy preserves unique ergodicity.

Proof. The proof is left as an exercise.

Lemma 5.1.19. Let σ be the Morse substitution, and N(W,V ) be the num-
ber of occurrences of the word W in the word V ; then, for any factor W , when
n tends to infinity, N(W,σn(e))

2n tends to a limit fW , independent of e = 0 or
1.

Proof. As σn+1(0) = σn(0)σn(1) and σn+1(1) = σn(1)σn(0), we have

N(W,σn+1(0)) +N(W,σn+1(1)) ≥ 2N(W,σn(0)) + 2N(W,σn(1))

as we may have forgotten occurrences at the junction of two n-words. So the
quantity

N(W,σn(0)) +N(W,σn(1))
2n+1 ,

which is smaller than 1, has a limit, denoted by fW . But the quantity
2−n−1N(W,σn+1(0)) differs from the preceding one only because of the oc-
currences at the junction between n-words, and their contribution is smaller
than 2−(n+1)|W |, so it has the same limit; and the same is true if we replace
0 by 1.

Lemma 5.1.20. Let u be the Morse sequence. For any factor W ,

N(W,uk . . . uk+n)
n+ 1

→ fW , uniformly in k.

Proof. Let V = uk . . . uk+n. We write V = Aσp(uj . . . uj+l−1)B, for some
p much smaller than n, with |A| < 2p and |B| < 2p. We have n+ 1 = |A|+
|B| + l2p, and, because of the previous result, |N(W,σp(ui)) − 2pfW | < ε2p
for n and p large enough. And

N(W,V ) ≤ N(W,A) +N(W,B) +
j+l−1∑
i=j

N(W,σp(ui)) + (l + 1)|W |,

the last term, which is necessary because of occurrences at the junctions
between p-words, satisfying (l + 1)|W | ≤ n+1

2p |W |, while
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N(W,V ) ≥
j+l−1∑
i=j

N(W,σp(ui)),

which yields the conclusion by dividing the inequalities by n+ 1 and taking
first p then n large enough; note that p and n can be chosen independently
of k, hence the uniform convergence.

Proposition 5.1.21. Let v be a sequence such that, for any factor W , the
sequence N(W,vk...vk+n)

n+1 tends to a limit fW , uniformly in k. Then, the system
(Xv, S) is uniquely ergodic.

Proof. For every wordW , we define the measure of the associated cylinder
by µ([W ]) = µ(S−n[W ]) = fW , for every n ∈ N. This measure extends to all
Borel sets and is an S-invariant probability measure. By hypothesis, when N
tends to infinity,

1
N

N−1∑
n=0

1[W ](Sn+ju)→ µ(W ) =
∫

1[W ]dµ

uniformly in j for every cylinder [W ] (because N(W, vj . . . vj+n) =
∑N−|W |
n=0

1[W ](Sn+ju), and the limit does not change if we replace N −|W | by N − 1);
hence

1
N

N−1∑
n=0

g(Sn+ju)→
∫
g dµ

uniformly in j for every continuous function g; hence for any sequence of
integers nk,

1
N

N−1∑
n=0

g(Sn+nku)→
∫
g dµ

uniformly in k for every continuous function g; hence

1
N

N−1∑
n=0

g(Snw)→
∫
g dµ (5.1)

for every w ∈ Xu and for every continuous function g.
But if there exists another S-invariant probability measure ν, then the last

result and the dominated convergence theorem applied to 1
N

∫ ∑N−1
n=0 g(S

nw)
implies that

∫
f dµ =

∫
f dν for every continuous function, hence µ = ν.

Proposition 5.1.22. If the topological dynamical system (X,T ) is uniquely
ergodic, and µ is its unique invariant probability measure, then the measure-
theoretic dynamical system (X,T, µ) is ergodic.
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Proof. Otherwise, the measure ν defined over the Borel sets by: ν(H) =
µ(H∩E)
µ(E) is another T -invariant probability.

Lemma 5.1.23. If W is a word of length l occurring in the Morse sequence,
µ([W ]) ≤ 6

l .

Proof. Because of Proposition 5.1.4, N(σn(e)σn(f), σp(0)) ≤ 2−n|σp(0)|
if p > n and hence µ([σn(e)σn(f)]) ≤ 2−n for any n ∈ N, e ∈ A, f ∈ A.
If 3.2n ≤ l < 6.2n, then W must contain some σn(e)σn(f), hence µ([W ]) ≤
µ([σn(e)σn(f)]) ≤ 2−n < 6

l .

Corollary 5.1.24. For the system associated with the Morse sequence, the
measure µ is a non-atomic measure: for any point w, µ({w}) = 0.

Proof. For every point w, µ({w}) ≤ µ([w0 . . . wn]).

Hence, because of Proposition 5.1.9, Proposition 5.1.12 and Corollary
5.1.24, the shift S is bijective on a subset of Xu of measure one.

5.1.6 Digression: the ergodic theorem

Proposition 5.1.25. If (X,T ) is uniquely ergodic, µ being its invariant
probability measure, if g is a continuous function on X, then

(1/N)
N−1∑
n=0

g ◦ Tn →
∫
g dµ

uniformly.

Proof. Otherwise, there exists δ > 0, a continuous function f , a sequence
of integers nk → +∞ and a sequence of points xk such that∣∣∣∣∣(1/nk)

nk−1∑
n=0

g(Tnxk)− µ(g)

∣∣∣∣∣ > δ.
By compacity, we may extract a subsequence mk of nk such that for every
continuous function g, limk→+∞(1/mk)

∑mk−1
n=0 g ◦ Tn exists, and defines a

measure ν. Then this measure must be a T -invariant probability, hence is µ;
this contradicts the hypothesis.

Formula (5.1) is also the conclusion of the primordial ergodic theorem,
known as Birkhoff’s theorem (1931) though the Russian school prefers to
attribute it to Khinchin. Indeed, what we have already proved is that the
result holds for every x provided g is continuous. We shall now see that
it holds for almost every x under the (much weaker) hypothesis that f is
integrable. The proof is slightly outside the scope of this chapter (though we
do use the Theorem in Sec. 5.5.3), as it uses techniques of measure-theoretic
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ergodic theory; but we thought convenient to give here what is believed to
be the shortest proof at this date of the ergodic theorem, due to Petersen
(private communication, 1998). To skip the remainder of this section would
not prevent the reader to understand the sequel.

In the remainder of this section, we take a measure-theoretic system
(X,T, µ), where µ is a T -invariant probability; we do not require the trans-
formation T to be invertible. For f ∈ L1(X,µ), we define

Akf =
1
k

k−1∑
j=0

f ◦ T j , A(f) = lim sup
k→+∞

Akf, f
�
N = sup

1≤k≤N
Akf, f

� = sup
N
f�N .

The following proposition is generally known as Hopf’s maximal lemma.

Proposition 5.1.26. Let h be an invariant (h(Tx) = x for almost all x)
function on X such that h+ = h ∨ 0 ∈ L1(X,µ). Then∫

{f�>h}
(f − h) ≥ 0.

Proof. We may suppose ∫
{f�>h}

|h| < +∞,

as otherwise, because h+ ∈ L1, we would have∫
{f�>h}

(f − h) = +∞ ≥ 0.

And hence h ∈ L1(X,µ), as on the set {f� ≤ h} we have also f ≤ h, and
hence on this set h− ≤ −f + h+, an integrable function.

We suppose first that f ∈ L∞(X,µ), and we fix N . Let

EN = {f�N > h}.

We remark that if x �∈ EN , (f − h)(x) ≤ 0, and hence

(f − h)1EN ≥ (f − h).

For an m much bigger than N , we consider

m−1∑
k=0

(f − h)1EN (T kx).

The term (f − h)1EN (T kx) is zero if T kx �∈ EN ; if T kx ∈ EN , by definition
there exists 1 ≤ l ≤ N such that
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Alf(T kx) =
1
l

k+l−1∑
j=k

f ◦ T jx ≥ h(x).

As h is invariant, we deduce

1
l

k+l−1∑
j=k

(f − h) ◦ T j(x) ≥ 0

and then
k+l−1∑
j=k

(f − h)1EN ◦ T j(x) ≥
k+l−1∑
j=k

(f − h) ◦ T j(x) ≥ 0.

Thus we can cut this sum into two kinds of parts: some of these parts are
made with terms all equal to zero, while the others have at most N terms
and the sum of these terms is positive. The last part of the sum is itself of
one of these two types, hence either

∑m−1
k=0 (f − h)1EN (T kx) ≥ 0, or for one

m−N + 1 ≤ j ≤ m,
m−1∑
k=0

(f − h)1EN (T kx) ≥
m−1∑
k=j

(f − h)1EN (T kx).

And then
m−1∑
k=0

(f − h)1EN (T kx) ≥ −N(||f ||∞ + h+(x)).

We take the integral and divide by m, thence∫
EN

(f − h) ≥ −N
m

(||f ||∞ + ||h+||1).

Hence, by taking the limit when m goes to infinity,∫
EN

(f − h) ≥ 0.

By making N go to infinity, the dominated convergence theorem implies our
proposition.

In the case f ∈ L1(X,µ), we approximate f by gs = f1|f |≤s ; gs ∈
L∞(X,µ), and gs → f in L1(X,µ) and almost everywhere. Hence for fixed
N , (gs)�N → f�N in L1 and almost everywhere, and µ({(gs)�N > h}δ{f�N >
h})→ 0. Hence

0 ≤
∫
{(gs)�N>h}

(gs − h)→
∫
{f�N>h}

(f − h)

by the dominated convergence theorem. Then N goes to infinity as in the
previous case.
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Corollary 5.1.27. If f ∈ L1,∫
A(f) ≤

∫
f.

Proof. We consider first f+ ; for fixed n, h = − 1
n + (A(f+) ∧ n) is an

invariant function such that {(f+)� > h} = X, hence by last proposition∫
f+ ≥

∫
h

and, n going to infinity ∫
f+ ≥

∫
A(f+).

Hence (A(f))+ ≤ A(f+) is integrable.
Now we take an arbitrary ε > 0 and we apply the previous proposition to

h = A(f)− ε, which gives ∫
f ≥
∫
h

and, with ε going to 0, the claimed results.

Theorem 5.1.28 (Birkhoff, 1931). The sequence Akf converges almost
everywhere.

Proof. We define
A(f) = lim inf

k→+∞
Akf.

The above corollary gives ∫
A(f) ≤

∫
f

and, by taking −f , ∫
−A(f) ≤

∫
−f.

We get ∫
A(f) ≤

∫
f ≤
∫
A(f) ≤

∫
A(f)

and hence A(f) = A(f) almost everywhere.

This theorem is the foundation of ergodic theory, and is called the ergodic
theorem. The physical meaning of the ergodic theorem is that, under the
(relatively mild) condition of ergodicity, the time and space averages coincide,
as is stated in the following corollary

Corollary 5.1.29. Let (X,T, µ) be a measure-theoretic system. If T is er-
godic, and if f ∈ L1(X,µ), then

Akf =
1
k

k−1∑
j=0

f ◦ T j → µ(f), µ almost everywhere.
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Proof. If T is ergodic, every invariant function h is a constant almost
everywhere as the sets {h ≥ c} are invariant. This is true in particular for
the function h = limk→+∞Akf . And this constant is

∫
hdµ =

∫
fdµ.

We give now a spectacular application of the ergodic theorem to normal
numbers.

Example 5.1.30. The system Ω = ({0, 1}N, S), where S is the shift, is not
uniquely ergodic.

Proof. Among the many measures we can define (including for example
the one defined by the Morse sequence) there is the measure δ0 giving measure
1 to the constant sequence 000 . . ., and 0 to its complement, and also the
measure ν giving to each cylinder [w1 . . . wn] measure 2−n.

Lemma 5.1.31. The system (Ω,S, ν) defined above is ergodic.

Proof. Let A be the cylinder [w0, . . . , wr]; if n > r, we have

ν(A ∩ S−nA) = ν(A)2.

By a standard approximation argument, we deduce that for every Borel set
A,

lim
n→+∞ ν(A ∩ S−nA) = ν(A)2.

Hence an invariant set has to satisfy ν(A) = ν(A)2.

Definition 5.1.32. A sequence u is the expansion in base 2 of a normal
number if for every word W of length n on {0, 1}, we have

lim
m→+∞

1
m
N(W,u0...um−1)→ 2−n.

Proposition 5.1.33. Almost every number 0 < x < 1 (for the Lebesgue
measure) is normal.

Proof. We apply the ergodic theorem in the system (Ω,S, ν) to the in-
dicator function of each cylinder [w0 . . . wn−1]. We check that the mapping
associating with u the number

∑+∞
j=O

uj
2j+1 sends the measure ν onto the

Lebesgue measure on [0, 1], as a cylinder of length n maps onto an interval
of length 2−n.

5.2 The Morse sequence: advanced properties

5.2.1 Representation by Rokhlin stacks

The aim of this section is to give a geometric representation by Rokhlin
stacks of the Morse system (Xu, S). We give first a general, though slightly
unpalatable, definition:
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Definition 5.2.1. A sequence of partitions Pn = {Pn1 , . . . , Pnkn} generates
a measure-theoretic dynamical system (X,T, µ) if there exists a set E with
µ(E) = 0 such that for every pair (x, x′) ∈ (X/E)2, if x and x′ are in the
same set of the partition Pn for every n ≥ 0, then x = x′.

Definition 5.2.2. A system (X,T, µ) is of rank one if

1. there exist sequences of positive integers (qn)n∈N, and (an,i)n∈N,1≤i≤qn−1,
such that the sequence of integers hn defined by the recurrence h0 = 1,
hn+1 = qnhn +

∑qn−1
j=1 an,i satisfies

+∞∑
n=0

hn+1 − qnhn
hn+1

< +∞;

2. there exist subsets of X, denoted by (Fn)n∈N, by (Fn,i)n∈N,1≤i≤qn , and
by (Cn,i,j)n∈N,1≤i≤qn−1,1≤j≤an,i such that for every fixed n
a) (Fn,i)1≤i≤qn is a partition of Fn,
b) the sets (T kFn)1≤k≤hn−1 are disjoint,
c) ThnFn,i = Cn,i,1 if an,i �= 0 and i < qn,
d) ThnFn,i = Fn,i+1 if an,i = 0 and i < qn,
e) TCn,i,j = Cn,i,j+1 if j < an,i,
f) TCn,i,an,i = Fn,i+1 if i < qn,
g) Fn+1 = Fn,1;

3. the sequence of partitions {Fn, TFn, ..., Thn−1Fn, X \ ∪hn−1
k=0 T

kFn} gen-
erates the system (X,T, µ).

The union of the disjoint (T kFn)1≤k≤hn−1 is called a Rokhlin stack of base
Fn. We say also that the system is generated by the sequence of Rokhlin
stacks with bases Fn.

More generally, if we replace the sequence of partitions {Fn, TFn, ...,
Thn−1Fn, X \ ∪hn−1

k=0 T
kFn} by partitions of the type {F 1

n , TF
1
n , ..., T

h1
n−1F 1

n ,

. . . , F rn , TF
r
n , ..., T

hrn−1F rn , X \ ∪rp=1 ∪
hpn−1
k=0 T kF pn}, built in a similar way, we

say the system is of rank at most r. The general formulas are quite tedious,
but happily in the cases of the systems we study they are much simpler,
and the reader should not feel obliged to remember the general definitions.
In particular, the sets Cn,i,j will not appear before Sec. 5.5.1, where they
correspond to letters called spacers in the associated symbolic sequences.
Other definitions of the rank, together with a survey of many examples and
properties of finite rank systems can be found in [173].

Lemma 5.2.3. Every substitution σ defines a continuous map from Xu to
Xu.
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Proof. The proof is left as an exercise.

We are now back to the particular case of the Morse sequence.

Lemma 5.2.4. Let u be the Morse sequence and n ∈ N. We have

Xu =
⋃
e=0,1

2n−1⋃
k=0

Skσn[e],

and this union is disjoint.

Proof. The set on the right is closed, so we have only to prove that Smu is
in it, for every m ∈ N. But if m = 2na+ b, with 0 ≤ b < 2n, Smu = SbSa2nu
and Sa2nu = ua2nua2n+1 · · · = σn(uaua+1 . . . .) ∈ σn([ua]).

Suppose that Spσn[a]∩Sqσn[b] �= ∅, with q ≥ p; then σn(w) = Sq−pσn(w′)
for a point w in [a] and a point w′ in [b]; we have w′ = limSmiu and
w = limSpiu; hence for a fixed i large enough, Sq−p(σn(umi . . . umi+i)) is
a prefix of σn(upi . . . upi+i). Hence, for i large enough, a word of the form
σn(ur)σn(us) occurs in u at a position j2n + q − p and, because of the rec-
ognizability (Proposition 5.1.4), q − p is a multiple of 2n, and so must be 0;
from which we deduce a = b.

Lemma 5.2.5. We have

σn[e] = [σn(e)σn(0)] ∪ [σn(e)σn(1)]

for e = 0 or 1. For every n ≥ 0,

σn[e] = σn+1[e] ∪ S2nσn+1[e′],

where e + e′ = 1. The measure of the cylinder [0] is µ([0]) = 1/2, and
µ(σn[e′]) = µ(σn[e]), if e+ e′ = 1.

Proof. If w ∈ σn[e], we have w = σn(w′), with w′0 = e, and so
w ∈ [σn(e)σn(w′1)]. Conversely, if w ∈ [σn(e)σn(f)] and w = limp→+∞ Skpu,
then for every large enough element M of the sequence kp, w0 . . . w2n+1−1 =
σn(e)σn(f) = uM . . . uM+2n+1−1, and, because of Proposition 5.1.4, M is a
multiple of 2n. Hence kp = lp2n, and w = σn(w′), where w′ = limSlp(u), the
sequence converging because Skpu converges, and w′ ∈ [e].

The second assertion comes easily from the first, while the third and
fourth ones are immediate by symmetry.

We may build the sets Fn,e = σn[e] and their images (SkFn,e)0≤k≤2n−1
in the following way:

• conventionally, for fixed e and n, we denote the set SkFn,e by dots drawn
one above the other as k increases.
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• At stage n, we have two Rokhlin stacks (each n-stack being ∪2n−1
k=0 S

kFn,e,
e = 0 or 1), with bases Fn,0 and Fn,1, with height 2n, whose levels SkFn,e
are disjoint sets of measure 2−n−1.

• The shift map S sends each level of each stack, except the top ones, onto
the level immediately above; S is not explicit on the top levels.

• In the beginning, F0,0 and F0,1 are two disjoint sets of measure 1/2.
• At stage n, we cut Fn,e into two subsets of equal measure Fn+1,e and
Hn+1,e. The shift map S becomes explicit on part of the levels where it
was not yet so, as it sends S2n−1Fn+1,0 onto Hn+1,1 and S2n−1Fn+1,1 onto
Hn+1,0. This defines the (n+ 1)-stacks, which will have height 2n+1.

An illustration is given on Fig. 5.1.

n,1F

n,1F

F n+1,0 F n+1,1

F n+1,1

n,0F

S

S

S

S

n,0F

F n+1,0 n+1,1 HH n+1,0

S

S

S 2 n −1 S 2 n −1

n,0F n,1F

S 2 n −1 S 2 n −1

F n+1,0 n+1,1 F

n+1 ,1FS 2 n+1 −1F n+1,0S 2 n+1 −1

Fig. 5.1. Rokhlin stacks representation for the Morse sequence: steps n and n+ 1.

Proposition 5.2.6. There exists a countable set E such that for every pair
(w,w′) ∈ (Xu/E)2, if w and w′ are in the same stack and the same level
SkFn,e, for all n ≥ 0, 0 ≤ k ≤ 2n − 1 and e = 0, 1, then w = w′.

Proof. If w and w′ are always in the same level of the same stack, they are
in the same Sknσn[en] for all n; and hence the sequences w and w′ coincide
between the indices 0 and 2n−1−kn; this implies w = w′ if 2n−1−kn → +∞.
If not, there exists p such that (Smw)0 = (Smw′)0 for 0 ≤ m ≤ 2n − p for
every n, hence for every positive m. Now, the Morse sequence has an at
most linear complexity (Proposition 5.1.9), and the reasoning of Proposition
5.1.12, applied to right instead of left extensions, implies that there exists a
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countable set E on the complement of which (Smw)0 = (Smw′)0 for every
positive m implies w = w′.

Remark. As an exercise, the reader can check that E is made with two
(non-closed, of course) orbits under S: the orbit of u and the orbit of the
sequence u′ = (1− un)n∈N.

Hence, we have proved that the stacks of bases Fn,e generate the system
(Xu, T, µ) in the sense of Definition 5.2.2 (we have even proved more, as E is
countable, and the stacks fill the whole space) and we have generated S by
Rokhlin stacks. We need two stacks at each stage, so S of rank at most two.
In fact, it is shown in [138] that S is not of rank one, and thus we say that
S is of rank two.

Definition 5.2.7. Let Q be a partition of Xu in two sets Q1 and Q2. For
every point w ∈ Xu, its (positive) Q-name (or itinerary with respect to Q) is
the sequence Q(w) such that Q(w)n = i whenever Snw ∈ Qi, n ≥ 0.

For example, if Qi = F0,i for i = 0, 1, then by definition Q(w)n = i
whenever wn = i, and Q(w) = w for all w.

5.2.2 Spectral properties

Given a measure-theoretic dynamical system (X,T, µ), we can define a
Hilbert space: the space L2(X,µ), and a unitary operator Uf = f ◦ T . The
interest of focusing the study on this category of systems (unitary operators
acting on Hilbert space) is that we can use the powerful results of spectral
theory to give us insight on the dynamics of (X,T, µ). Indeed, in the spec-
tral category, the problem of isomorphism is solved – for the natural notion,
(H,U) is spectrally isomorphic to (H ′, U ′) if there exists an isomorphism of
Hilbert spaces V : H → H ′ such that U ′V = V U – through a set of invari-
ants, the most important of them being the spectral type and the spectral
multiplicity (see [235], Chap. 1 and definitions below). Hence, we compute
these invariants for the present system, that is, the Morse system.

Lemma 5.2.8. The eigenvalues of the unitary operator U are of modulus
one; S is ergodic if and only if the eigenvalue one is a simple eigenvalue
for U ; in that case, every eigenvalue is simple and every eigenfunction is of
constant modulus.

Proof. The eigenvalues have modulus one because U is unitary.
If E is an invariant set of nontrivial measure, 1E is a nonconstant invariant

function; if f is a nonconstant invariant function, we can cut its image into
two disjoint sets, whose inverse images have a nontrivial measure and are
invariant sets.

If f is an eigenfunction for the eigenvalue β, |f | is an eigenfunction for the
eigenvalue |β| = 1 and hence is a constant. If f1 and f2 are eigenfunctions for
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β, |f2| is a nonzero constant, and f1/f2 is an eigenfunction for 1 and hence
a constant.

Definition 5.2.9. Given a unitary operator U on a Hilbert space H, a cyclic
space is the closure of the subspace generated by the set {Un(f), n ∈ Z} for
an element f in H.

The spectral type of f , or of the generated cyclic space, is the finite pos-
itive measure � on the torus T1 defined by �̂(n) = (Unf, f). Its total mass is
||f ||2H .

We say that U has a spectrum of multiplicity at most k if H is the direct
sum of k cyclic spaces; if k = 1, we say the spectrum is simple.

We say that U has a discrete spectrum, if the vector space generated by
its eigenfunctions is dense in L2(X,µ).

A useful criterion to show that a space is cyclic is the following:

Lemma 5.2.10. If L is a separable Hilbert space approximated by an in-
creasing sequence of cyclic spaces, L itself is a cyclic space.

Proof. We denote by H(f) the cyclic space generated by the function
f . Then we have L = ∪(H(fn)), and we want to find g such that L =
H(g). It suffices to show that for a dense sequence of functions gn in L,
∩n,p{g; d(gn, H(g)) < 1/p} is nonempty. Because of Baire’s theorem, it is
enough to show that for given f and ε, {g; d(f,H(g)) < ε} is dense. So we
take a function h, which we may choose of norm one, as well as f . For some
m, d(f,H(fm)) < ε and d(h,H(fm)) < ε. Hence d(h, P (U)fm) < ε for some
polynomial P ; hence we can find a polynomial Q, nonzero on the unit circle,
such that d(h,Q(U)fm) < 2ε. Then Q(U) is invertible and its inverse is
approximated by polynomials in U , hence g = Q(U)fm satisfies d(h, g) < 2ε
and d(f,H(g)) < 2ε.

We have to admit the following result of spectral theory, as its proof would
need too many prerequisites:

Lemma 5.2.11. If H and H’ are cyclic spaces whose spectral types � and
�′ are mutually singular, that is, T1 = E ∪ E′, �(E) = �′(E′) = 1, �′(E) =
�(E′) = 0, then H⊥H ′ and H +H ′ is a cyclic space, of spectral type �+�′

2 .
This lemma is still valid for a countable sum of subspaces.

Corollary 5.2.12. If U defined on a Hilbert space H has a discrete spectrum
and all its eigenvalues βi, i ∈ I, are simple, then U has simple spectrum and
the spectral type of the cyclic space H is equivalent to the weighted sum over
i of the Dirac masses δβi ∑

i

αiδβi ,

where αi > 0, for all i, and
∑
i αi = 1.
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Proof. We write L2(X,µ) as the sum of the cyclic spaces generated by
the eigenfunctions fβ , whose spectral types δβ are mutually singular.

5.2.3 The dyadic rotation

The aim of the remainder of our study of the Morse system is to compare it
with other “classical” systems, and particularly to geometric systems, living
on manifolds, or, in the most elementary cases, on intervals.

First, we need to define new notions of isomorphism, as the topological
conjugacy of Sec. 5.1.4 is too strong to be really useful.

Definition 5.2.13. Two measure-theoretic dynamical systems (X,T, µ) and
(Z,R, �) are measure-theoretically isomorphic if there exist X1 ⊂ X, Z1 ⊂ Z,
and φ a (bimeasurable) bijection from X1 to Z1 such that µ(X1) = �(Z1) = 1,
φµ = � and Rφ = φT .

Note that if two uniquely ergodic topological dynamical systems (X,T )
and (Z,R) are topologically conjugate, then the corresponding measure-
theoretic dynamical systems (X,T, µ) and (Z,R, �) are measure-theoretically
isomorphic. But in this case, the latter notion is in fact much weaker than
the topological one, as the sets X1 and Z1 may be very wild. An intermediate
notion is the following:

Definition 5.2.14. Two systems (X,T ) and (Z,R) are semi-topologically
conjugate if if there exist X1 ⊂ X, Z1 ⊂ Z, and φ a bicontinuous bijection
from X1 to Z1 such that X \X1 and Z \Z1 are countable, and R ◦φ = φ ◦T .

In that case, if (X,T ) is a symbolic system, we say that it is a coding of
(Z,R).

Proposition 5.2.15. Semi-topological conjugacy preserves unique ergodic-
ity, and, for uniquely ergodic systems, the semi-topological conjugacy of
(X,T ) and (Z,R) implies the measure-theoretic isomorphism of (X,T, µ) and
(Z,R, �).

Proof. The proof is left as an exercise.

The first classical systems we know are the rotations.

Definition 5.2.16. We call rotation the dynamical system made with a
compact group G, a translation R of G and the Haar measure λ on G.

The most famous case is when G is the torus T1, and Rx = x+αmodulo 1,
for an irrational α. We now introduce another important kind of rotation.

Let R0 be the map from Y0 = [0, 1] to itself defined by

R0(1− 1
2n

+ x) =
1

2n+1 + x, for 0 ≤ x < 1
2n+1 , n ∈ N,
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0 1

1/2

1

1/2 3/4

1/4

1/8

7/8

Fig. 5.2. The Van der Corput map.

and R0(1) = 0; under this form it is called the Van der Corput map. It
preserves the Lebesgue measure λ0. A representation is given on Fig. 5.2.

We now send [0, 1] onto Y = {0, 1}N by the mapping χ(x) = (ω0ω1 . . . )
whenever x =

∑
ωj2−j−1 (there may be ambiguities at dyadic points, but still

the coding is well-defined outside a countable set). We see how the intervals
of continuity of R0 are coded, and notice that

R := χR0χ
−1

sends points of the form 0abc . . . to 1abc . . . , 10abc . . . to 01abc . . . ., 110abc . . .
to 001abc . . . , and hence S is the addition of 1 in base two of 100 . . . 0 . . .
with infinite carry. The Lebesgue measure is sent to the infinite product
of measures 1/2(δ0 + δ1), denoted by λ (δ0 and δ1 denote here the Dirac
measures).

The set Y , equipped with the addition in base two, is a compact group.
It contains a copy of N by φ(1) = 10 . . . 0 . . . , φ(2) = φ(1) + φ(1), . . . and a
copy of Z as we check that 10 . . . 0 . . . .+ 11111 . . . . = 0000 . . . ., hence we can
define φ(−1) = 111 . . . . And we see that the integers are dense in Y equipped
with the usual topology; we call (Y,+) the group of 2-adic integers. Then,
R is the rotation w �→ w + 1. It is immediate that (Y0, R0) and (Y,R) are
semi-topologically conjugate, and we treat them as the same system: we call
it the dyadic rotation or the dyadic odometer.

Proposition 5.2.17. The system (Y,R) is uniquely ergodic, and hence the
system (Y,R, λ) is ergodic.

Proof. The characters, that is, the continuous homomorphisms of Y to
the torus T1, define for each measure ν on Y , a Fourier transform ν̂(γ) =



122 5. Substitutions and symbolic dynamical systems

∫
g∈Y γ(g)dν. If µ is invariant by R, µ̂(γ) =

∫
g∈Y γ(Rg)dµ = γ(1)µ̂(γ), hence

if µ̂(γ) �= 0, γ(1) = 1, hence γ(n) = 1 for every integer, hence γ is identically
1. So µ̂ is zero on the characters which are not identically 1, and one on the
character 1, hence µ is the Haar measure λ. The ergodicity of (Y,R, λ) is a
consequence of Proposition 5.1.22.

For the measure-theoretic dynamical system (Y,R, λ), there is an under-
lying spectral structure: we consider the action on the space L2(Y, λ) of the
operator U : L2(Y, λ)→ L2(Y, λ), defined by Uf(w) = f(Rw).

Proposition 5.2.18. The system (Y,R) has a discrete spectrum. Its eigen-
values are all the e2iπα for the dyadic rationals, i.e., the rationals of the form
α = p2−k, for p, k ∈ Z.

Proof. As Y is a compact group and λ is the Haar measure, we know that
the characters generate a dense subspace of L2(Y, λ). But if γ is a character,
γ(Rg) = γ(1)γ(g). Hence all the characters are eigenfunctions, we get thus
all the eigenfunctions, and the eigenvalues are all the γ(1).

Hence we have to find all the characters of Y . Such a character γ must
be also a character of Z, hence γ(n) = e2πinα for an α in [0, 1]; if γ can
be extended in a continuous way to Y , it will remain a character. But ω =
ω0ω1 · · · = limk→+∞ ω0 . . . ωk00 . . . 0 · · · = limk→+∞ nk(ω), where nk(ω) =∑k
j=0 ωj2

j . Hence we have to find all the α such that ∀ω, e2πiαnk(ω) converges
when k → +∞.

We write α =
∑+∞
k=0 αk2−k−1; if the αi are ultimately equal to 1, the

expansion is improper; otherwise, either they are ultimately equal to 0,
or for infinitely many k, αk = 1, αk+1 = 0. We choose an ω such that
ωk = 1 for all these values of k. Then we have, for this ω, γ(nk(ω)) =
γ(nk−1(ω))e2πiωk2kα = γ(nk−1(ω))e2πi2

kα, and 2kα = m + 1/2 + 1/8 + . . . ,
where m is an integer, and hence 2kα falls between 1/2 and 3/4, modulo 1
and the sequence γ(nk(ω)) cannot converge.

Hence α must have a dyadic expansion consisting ultimately of zeros,
hence it must be a dyadic rational number; conversely, it is clear that every
dyadic rational number α yields an eigenvalue e2πiα.

Proposition 5.2.19. The system (Y,R) is of rank one.

Proof. Let G0 be the interval [0, 1[, Gn the interval [0, 2−n[. We see that
S sends in an affine way RiGn onto Ri+1Gn for i = 0, 1, . . . 2n − 1. We can
write these intervals one above the other, and this makes a stack filling all
the space; the action of R is to climb up one level in the n-stack and is not
defined on the top level. The (n + 1)-stack is built by cutting the n-stack
vertically into two equal halves and stacking the right half on the left half;
this operation defines R on a greater part of the space, and allows us to know
eventually R on the whole space. As the RkGn are arbitrarily small intervals,
outside a countable set (the set of all the endpoints of the RkGn), a point w
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is determined by the sequence 0 ≤ kn(w) ≤ 2n − 1 such that w ∈ Rkn(w)Gn,
n ∈ N. Hence R is generated by the stacks of bases Gn.

Under that form, R is known as the Von Neumann–Kakutani map.

5.2.4 Geometric representation of the Morse system

In the Morse system (Xu, S) we introduce the following equivalence relation:
w ∼ w if either w = w or wn + wn = 1 for every n ∈ N. Each equivalence
class has two elements, and we check that on the quotient space Xu, the
shift and the measure define naturally a measure µ and a shift S; we say that
(Xu, S, µ) is a factor with fiber two of (Xu, S, µ).

To come back from Xu to Xu, we associate with w ∈ X the two elements
of the class w: we denote by (w, 0) the one whose first coordinate is 0, by (w, 1)
the other one. So we have Xu = Xu×{0, 1}, as topological spaces too, and µ
is the tensor product of µ by 1/2(δ0 +δ1). And S(w, e) = (Sw, z(e, w)), where
z(0, w) + z(1, w) = 1; hence we can write, in Z/2Z, that z(e, w) = e+ψ0(w),
where ψ0 is a measurable map from Xu to Z/2Z. We say that (Xu, S, µ) is
a skew product of (Xu, S, µ) by Z/2Z built with the map φ, or a two-point
extension of (Xu, S, µ).

For fixed k, n, both levels SkFn,e project into Xu on the same level S
k
Fn;

because of Proposition 5.2.6, the stacks Fn generate the system (Xu, S),
which is of rank one. And, from the construction of the stacks with bases
Fn,e, we deduce that the stacks with base Fn are built in the same way as
the stacks for the dyadic rotation (Y,R): the n + 1-stack is built by cutting
the n-stack vertically into two equal halves and stacking the right half on the
left half, starting from F0 = X.

Proposition 5.2.20. The Morse system is a coding of a two-point extension
of the dyadic rotation.

Proof. Let (Y ′, S′, λ) be the following system: Y ′ is the interval [0, 1[, λ
the Lebesgue measure; for n ≥ 0 and 0 ≤ k ≤ 2n − 1, we define inductively
intervals (closed on the left, open on the right) Gn,0,k and Gn,1,k of length
2−n−1 such that for n ≥ 0, 0 ≤ k ≤ 2n−1, e ∈ {0, 1{, Gn,0,k∪Gn,1,k = RkGn
and Gn,e,k = Gn+1,e,k ∪ Gn+1,1−e,2n+k. The intervals Gn,e,k, e ∈ {0, 1},
0 ≤ k ≤ 2n − 1, constitute for fixed n a partition of Y ′ into sets of measure
2−n−1. We define S′ by sending by a translation each Gn,e,k onto Gn,e,k+1,
if k ≤ 2n − 1; S′ is not explicitly defined on the Gn,e,2n−1. We check that
these definitions are compatible, and that S′ becomes explicit on part of the
levels where it was not yet so, in the same way as for the stacks of the Morse
system (Sec. 5.2.1), Gn,e,k playing the role of SkFn,e and Gn+1,1−e,2n the
role of the auxiliary Hn+1,e. The system (Y ′, S′) has rank at most two, and
is generated by stacks whose levels are the sets Gn,e,k = S′kGn,e,0: except on
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a countable set E′ (which is just the set of all endpoints of the Gn,e,k), if x
and x′ are in the same Gn,e(n),k(n) for all n, then x = x′.

We define now a bijection φ between Xu\E (of Proposition 5.2.6) and the
corresponding Y ′ \E′ by associating with a point w such that w ∈ Sk(n)Fe(n)

for all n the unique point x such that x ∈ S′k(n)
Gn,e(n),0 for all n, and

conversely from Y ′ to Xu; that is possible as, the stacks being defined by the
same recursion formulas, the possible sequences k(n), e(n) are the same, and
we check from the structure of E and E′ that by this process all points in
X \E are indeed sent to points in Y ′\E′, and conversely. The construction of
S and definition of S′ ensure also that φ(Sw) = S′(φw); and φ is bicontinuous
because all the SkFn,e ∩ Xu \ E and the S′kGn,e,0 ∩ X ′ \ E′ are open sets.
Hence φ is a coding (in the sense of Definition 5.2.14).

And, by construction, φ associates the factor of S generated by the stacks
with base Fn with the factor of S′ generated by the stacks with base Gn, and
provides a semi-topological conjugacy between the dyadic rotation (Y,R) and
the factor (Xu, S) in (Xu, S). Hence we can carry the map ψ0 to Y : (Y ′, S′, λ)
is a skew product of (Y,R, λ) by Z/2Z built with the map ψ = ψ0 ◦ φ−1, or
a two-point extension of the dyadic rotation.

Note that for a point x ∈ Y ′ \ E′, φ−1(x) is simply its Q′-name, where
Q′e = G0,e,0, e = 0, 1.

Thus we have a geometric model for the Morse system. Note that (Xu, S)
and (Y ′, S′) cannot be topologically conjugate, as S′ is not continuous while
S is.

Note also that for the dyadic rotation R, we do not know any simple cod-
ing, for example using one sequence of words corresponding to the sequence
of stacks (partitions into levels give periodic sequences, while R is ergodic
and hence aperiodic); it can be shown that a coding of R is given by the
system associated with the period-doubling sequence, the fixed point of the
substitution 0 �→ 11, 1 �→ 10, sometimes called the Toeplitz substitution.

Proposition 5.2.21 ([138]). The Morse system has a nondiscrete simple
spectrum; its eigenvalues are all the e2πiα where α is a dyadic rational num-
ber.

Proof. Let τ be the map on Xu which associates with (wn)n∈N the point
(1−wn)n∈N. The map τ sends each SjFi,n onto SjFi′,n where i+ i′ = 1, and
commutes with S (τ is called the flip). Let V be the operator on L2(Xu, µ)
defined by V f = f ◦ τ , H the space of functions f such that V f = f , K the
space of functions such that V f = −f . The setsH andK are U -invariant. The
action of U on H is also the action of the spectral operator associated with S
on L2(X,µ); as measure-theoretic isomorphism implies spectral isomorphism,
it is isomorphic to the action of the spectral operator associated with R on
L2(Y ), hence the restriction VH of U to H has a discrete spectrum, and
simple spectrum, as S is ergodic; the eigenvalues are the the e2πiα where α
is a dyadic rational number.
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Let fn = 1F1,n −1F0,n , K(fn) the cyclic space it generates under U ; these
increase to K, hence K is cyclic.

Let g be an eigenfunction for the restriction VK of U to H; then g ∈
K,VKg = βg, hence g2 ∈ H,β2g2 = VHg

2. But then the argument of β2 is a
dyadic rational, and so is the argument of β, but then U has two orthogonal
eigenfunctions for the eigenvalue β, which contradicts ergodicity. Hence VK
has a continuous spectrum, and the spectral type of K is singular with every
discrete measure.

But L2(X,µ) = H +K, by writing 2f = (f + V f) + (f − V f), hence U
has a simple spectrum; its eigenvalues and eigenvectors are those of VH , and
the eigenvectors are not dense.

For a precise description of the spectrum of the Morse system in terms of
Riesz products, see [340].

5.3 The Rudin-Shapiro sequence

For all the definitions concerning automata and automatic sequences, see
Chap. 1. Recall that if σ is a substitution of length q over the alphabet A
and u a fixed point of σ, then u is recognized by a q-automaton (Proposition
1.3.1).

5.3.1 The Rudin-Shapiro substitution

The Rudin-Shapiro sequence was first introduced in [394] and then in [366] for
some estimations in harmonic analysis (see Chap. 2 and Sec. 5.3.2 below); it is
defined over the four-letter alphabet {a, b, c, d} as the fixed point u beginning
with a of the substitution

a �→ ab b �→ ac c �→ db d �→ dc.

The associated 2-automaton is given on Fig. 5.3.

ba c d0 0

110

1 1 0

Fig. 5.3. Automaton associated with the Rudin-Shapiro substitution.

Lemma 5.3.1. We have un = a or b if and only if there is an even number
of words 11 in the expansion of n in base 2.
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This lemma was already proved in Chap. 2 (see Proposition 2.1.1).

Let v be the sequence deduced from u by the letter-to-letter projection
φ, which replaces a and b by 1, c and d by −1. The sequence v is then
the limit in the usual sense of the words φ(σn(a)). We check by induction
that φ(σn(c)) = −φ(σnb); hence if An = φ(σn(a)) and Bn = φ(σn(b)), the
sequence v is the limit An given by the recursion formula An+1 = AnBn,
Bn+1 = An(−Bn). We remark that v is a 2-automatic sequence (i.e., recog-
nized by a 2-automaton) though it is not a priori a fixed point of a substitu-
tion.

Like the Morse sequence, u is minimal. Its complexity is 8n − 8 for ev-
ery n ≥ 2, and is easy to compute by the same method as for Morse. The
complexity of v is also 8n − 8 ultimately, and Xu and Xv are topologically
conjugate ([16]). The same methods as for Morse (see Sec. 5.2.4, but see also
Sec. 5.3.2 below for the general setting) allow us also to prove that the dy-
namical system (X,S) generated by the Rudin-Shapiro sequence u (or v) is
uniquely ergodic, with a non-atomic invariant probability measure µ.

A similar construction also shows that the associated shift transformation
S has rank at most four, and is an (at most) four-point extension of the dyadic
rotation: after the same kind of isomorphism as in Sec. 5.2.4,X is the product
of Y by the set (a, b, c, d), and S(w, e) = (Sw, φ(w)e) for a map φ of Y into
the group of permutations on four points. Note that we do not prove that
this extension is non-trivial; (X,S) might be isomorphic to an extension of
(Y,R) with less than four points, and actually is a two-point extension of the
dyadic rotation (this is a particular case of a result in [261]).

5.3.2 Spectral properties

Though we do not want to give a complete description of the spectral struc-
ture of (X,S, µ), it has a remarkable property: the question whether the
Lebesgue spectrum (that is: some function f has a spectral type equivalent
to the Lebesgue measure) and finite multiplicity (see Definition 5.2.9), could
co-exist stayed open for a long time, and this system solved it.

Lemma 5.3.2. Let f be the function defined over Xv taking the value 1
whenever w0 = 1, 0 otherwise; its spectral type is the weak-star limit of the
measures with density 1

N |fN |2 with respect to the Lebesgue measure λ, where
fN (x) =

∑N−1
n=0 zne

2πinx, with zn = 1 whenever vn = 1, 0 otherwise.

Proof. We use a standard method to compute this spectral type �f . The
measure �f is defined by

�̂f (p) = (f, Upf) = µ({w;w0 = 1, wp = 1}).

By unique ergodicity, we read this measure on the sequence v as a correlation
measure (see Chap. 1), that is, as the sum of the frequencies of the words
a0 . . . ap, where a0 = 1, ap = 1; we deduce that it is exactly
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lim
N→+∞

1
N

N−1∑
n=0

1vn=vn+p=1.

Let then fN be the function defined on the torus T1 by

fN (x) =
N−1∑
n=0

zn e
2πinx,

where zn = (vn + 1)/2; and let d�N = 1
N |fN |2dλ . We check immediately

that �̂N (p) = 1
N

∑N−p−1
n=0 znzn+p; but znzn+p = 1 if vn = vn+p = 1, 0

otherwise. The convergence of Fourier coefficients is by definition equivalent
to the weak-star topology convergence of measures, hence we have identified
�f as the weak-star topology limit of the �N .

Proposition 5.3.3. The associated operator U has a spectrum with mul-
tiplicity at most four; all the dyadic rationals are eigenvalues; there exist
functions the spectral type of which is equivalent to the Lebesgue measure.

Proof. Because (X,S) is a four-point extension of a system with a simple
spectrum, the Hilbert space L2(X,µ) is a limit of H1

n + H2
n + H3

n + H4
n,

where the Hi
n are (not necessarily nonempty or orthogonal) cyclic space, and

a generalization of Lemma 5.2.10 shows that L2(X,µ) is generated by at
most four cyclic spaces. One of them, as for the Morse system, contains the
eigenvectors of the dyadic rotation, hence the dyadic rationals are eigenvalues.

We normalize f to get a function which is orthogonal to the constants: it
is immediate that

∫
fdµ = 1/2, hence we take g = 2f−1. We deduce from the

previous lemma that �g is the vague limit of �′n = 2−n|gn|2λ, where gn(x) =∑2n−1
k=0 vke

2πikx. IfBn = wn,0 . . . wn,2n−1, we take hn(x) =
∑2n−1
k=0 wn,ke

2πikx.
From the structure of v, we deduce that gn+1(x) = gn(x) + e2iπ2nxhn(x) and
hn+1(x) = gn(x) − e2iπ2nxhn(x), hence |g2

n+1(x)| + |h2
n+1(x)| = 2(|g2

n(x)| +
|h2
n(x)|), and, going back to n = 0, this quantity is equal to 2n+1 for all x. So

2−n−1|gn|2 ≤ 1, for all n; by dominated convergence, the densities of the �′n
must converge in L2(T1, λ); hence �g has a density with respect to Lebesgue
measure. Furthermore, if 2−n|gn|2(x) → 0, then 2−n−1|hn|2(x) → 1, which
is incompatible with the recursion formula, so the density of �g is strictly
positive, and �g is equivalent to Lebesgue measure.

In particular, this implies that there exists a function f ′, of norm one, such
that (Unf ′, f ′) = 0 if n �= 0; on some (but not all!) functions S is strongly
mixing (see Definition 5.5.3 below), and even more. The complete analysis
[341] shows that the system is generated by two cyclic spaces with spectral
types λ and λ+δ, λ being the Lebesgue measure and δ the sum of the atomic
measures on the dyadic rationals. By the way, let us recall (see Chap. 2) that
the original Rudin-Shapiro sequence, v, was precisely introduced to minimize
supx∈[0,1] |

∑N−1
n=0 εne

2πinx|, when εn is a sequence taking values +1 and −1.
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For the sequence vn, there is a bound (2 +
√

2)
√
N , and v is the sequence

which gives the lowest bound.

5.4 The Fibonacci sequence

5.4.1 Unique ergodicity of primitive substitutions

Let us recall some properties of primitive substitutions; see also Chap. 1.

Definition 5.4.1. The substitution σ over the alphabet A is primitive if
there exists k such that, for every a and b in A, the letter a occurs in σk(b).

Let us recall the statement of Proposition 1.2.3: if σ is primitive, any of
its fixed points is a minimal sequence.

Lemma 5.4.2. With the notations of Sec. 5.1.5, if σ is primitive, then if
N(e, σn(a)) = |σn(a)|e denotes the number of occurrences of the letter e in
the word σn(a), N(e,σn(a))

|σn(a)| tends to a positive limit fe independent of a when
n tends to infinity, for every a ∈ A and every letter e ∈ A.

Proof. Let l(V ) be the vector (|V |e, e ∈ A) for any word V , and let Mσ

be the matrix of the substitution σ (also called incidence matrix) defined
by Mσ = ((mi,j))i∈A,j∈A, where mi,j = N(j, σ(i)). For any V we have
l(σ(V )) = Mσl(V ).

Primitivity implies that all coefficients of the matrix Mk
σ are positive, and

by Perron-Frobenius theorem (see Chap. 1 and [340] for example) the matrix
Mσ has a real positive eigenvalue α, which is bigger than 1 as Mσ has integer
coefficients, simple, corresponding to a positive eigenvector u, and such that
α > |λ| for any other eigenvalue λ; we thus deduce that Mn

σ l(a)
αn converges to

a positive multiple ua of u for every a ∈ A.
Thus, |σn(a)| is the scalar product of l(σn(a)) with the vector e =

(1, . . . , 1), hence N(σn(a))
|σn(a)| →

ua

<ua,e> , which is the multiple of u whose sum
of coordinates equals 1, and hence is independent of a.

Lemma 5.4.3. If σ is primitive, then N(W,σn(a))
|σn(a)| tends to a positive limit

fW independent of a when n tends to infinity, for every a ∈ A and every
word W .

Proof. We write each V = v1 . . . vl as a one-letter word for a new primitive
substitution ζl over the alphabet Al whose letters are the words of length l
occurring in u: ifW = w1 . . . wl, σ(W ) = w′1 . . . w

′
m and q = |σ(w1)|, we define

ζl(W ) = (w′1 . . . w
′
l)(w

′
2 . . . w

′
l+1) . . . (w′q . . . w

′
q+l−1) which is well defined as

q+l−1 ≤ m. We check that Ul = (u0 . . . ul−1)(u1 . . . ul) . . . (un . . . un+l−1) . . .
is a fixed point for ζl.
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The substitution ζl is primitive: by definition of u and finiteness of Al,
there exists a positive integer p such that every W in Al is a factor of σp(a),
and, by primitivity of σ, there exists a positive integer m such for any letter
b, a occurs in σmb; then if V and W are in Al, W is a letter of ζm+p

l (V ).
Then we check that |σn(v1)| = |ζnl (V )| and that N(W, ζnl (V )), which tends to
infinity, is close to N(W,σn(v1)) when n is large. Hence the previous lemma
applies.

Proposition 5.4.4. If u is a fixed point of a primitive substitution, then the
system (Xu, T ) is uniquely ergodic.

Proof. We can prove again Lemma 5.1.20 in the same way, except that
σp(ui) is no longer equal to 2p; but, by Perron–Frobenius, if p is large enough,

c αp < inf
a∈A

|σp(a)| < sup
a∈A

|σp(a)| < dαp,

which is enough to reach the same conclusion. Then we apply Proposition
5.1.21.

Proposition 5.4.5. If u is a non-periodic fixed point of a primitive substi-
tution, then the unique invariant probability measure of the system (Xu, T )
is non-atomic.

Proof. If µ({w}) = ν > 0, then µ([Wn]) ≥ ν for all n, where Wn =
w0 . . . wn. Hence, because µ([Wn]) = fWn , for every n there must exist jn > in
such that jn − in < 1

ν and Wn occurs in u at positions in and jn; if n > 2
ν ,

this implies that w0 . . . w[n2 ] = wjn−in . . . w[n2 ]+jn−in ; as jn − in takes only a
finite number of values, there exists k such that w0 . . . w[n2 ] = wk . . . w[n2 ]+k
for infinitely many n, hence for every n. Hence w is periodic, and so is u
which has the same language.

The following result is proved in [320], using the results in [157], or [121]
in the particular case of constant length:

Proposition 5.4.6. If σ is primitive, then its fixed points have an at most
linear complexity.

Proof. For every n, we find p such that

inf
a∈A

|σp−1(a)| ≤ n ≤ inf
a∈A

|σp(a)|.

Every word of length n has to be included either in a σp(a) or in a σp(ab);
for fixed a and b, there are at most |σp(ab)| such words, according to the
position of the first letter; and there are at most K = (CardA)2 possible
choices for a and b. Hence for n large enough

pu(n) < 2Kdαp < 2K
d

c
αn

with c and d as in Proposition 5.4.4.
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5.4.2 A trajectory of a rotation

We are interested here in a problem which has, at first sight, no connection
with substitutions: given an irrational rotation of the torus T1, of angle α,
and a particular partition (corresponding to the point of discontinuity of the
rotation when it is considered as acting on the fundamental domain [0, 1[),
we want to find explicitly the name of a point x under that partition. This
problem is solved for any α and x in [253], using formal power series, and
in [37], using the dynamical notion of Rauzy induction ([349] and see also
Chap. 6). We shall make here this computation for a particular value of
α and x. About the general case, and its link with the continued fraction
approximation of α, more information can be found in Chap. 6.

We will define first what is the induction:

Definition 5.4.7. For a transformation T on X, a set A ⊂ X, and a point
x ∈ A, we call first return time of x in A and denote by nA(x) the (possibly
infinite) smallest integer m > 0 such that Tmx ∈ A. The induced map of T
on A is the map TnA(x)x defined on A ∩ {x;nA(x) < +∞}.

Each time we use these notions in this course, nA(x) will be finite and
the induced map defined everywhere.

We look at the irrational rotation of angle α = 1
2 (
√

5− 1), defined on the
torus T1 by Rx = x + α mod 1, and, after an immediate semi-topological
conjugacy, on the interval [0, 1[ by

Rx = x+ α if x ∈ [0, 1− α[,
Rx = x+ α− 1 if x ∈ [1− α, 1[.

Let P0 be the set [0, 1 − α[ and P1 the set [1 − α, 1[; let v be the P -name
of the point α under R (see Definition 5.2.7 above). We shall now prove the
following result:

Proposition 5.4.8. The sequence v is the image by Sτ0 of the fixed point
of the substitution τ , where S is the shift, τ0(0) = 10, τ0(1) = 0, τ(0) =
001, τ(1) = 01.

Proof. We first write v = Sv′′, where v′′n = 0 if Rn0 ∈ [1− α, 1[, v′′n = 1 if
Rn0 ∈ [0, 1−α[, S being the shift. We make now an induction on a particular
interval, which is the so-called Rauzy induction; let I be the interval [0, α[
and R′ the induced map of R on I, n(x) being the first return time of x in
I; we compute easily that:

if x ∈ [0, 1− α[, n(x) = 2, R′x = x+ 2α− 1
if x ∈ [1− α, α[, n(x) = 1, R′x = x+ α− 1.

Let v′ be the sequence defined by v′n = 0 if R′n0 ∈ [0, 1 − α[, v′n = 1 if
R′n0 ∈ [1− α, α[.
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We compare v′ with v′′. If n(x) is the first return time of x in I, n2(x) =
n(x) + n(R′x) is the second return time, ni(x) = ni−1(x) + n(R′i−1

x) is the
i-th return time of x in I. Suppose v′i = 0; then R′i0 is in [0, 1 − α[; hence
Rni(0)0, which is the same point, is in [0, 1−α[,Rni(0)+10 is in [α, 1[⊂ [1−α, 1[,
and Rni(0)+2 is again in [0, α[, hence must be R′i+10; hence we can write that
ni+1(0) − ni(0) = 2, v′′ni(0) = 1, and v′′ni(0)+1 = 0. Suppose on the contrary

that v′i = 1; then R′i0 is in [1−α, α[, hence Rni(0)0 is in [1−α, α[⊂ [1−α, 1[
and Rni(0)+1 is still in [0, α[. Hence we can write that ni+1(0) − ni(0) = 1
and v′′ni(0) = 0. The previous analysis allows us, from the knowledge of v′, to
determine v′′ between two consecutive ni(0): we have proved that v′′ = τ0(v′),
where τ0 is the substitution τ0(0) = 10, τ0(1) = 0. Hence the initial v is
Sτ0(v′).

We do not change v′ if we make a homothety of ratio 1/α; R′ becomes a
rotation of 2− 1/α = 1−α on the interval [0, 1[. And v′n = 1 if R′n0 ∈ [α, 1[,
v′n = 0 if R′n0 ∈ [0, α[.

Let Q be the induced transformation of R′ on [0, α[, m(x) being the first
return time; we have:

if x ∈ x ∈ [0, 2α− 1[, m(x) = 1, Qx = x+ 1− α
if x ∈ [2α− 1, α[, m(x) = 2, Qx = x+ 1− 2α.

Let w be the sequence defined by wn = 0 if Qn0 ∈ [0, 2α − 1[, wn = 1 if
Qn0 ∈ [2α− 1, α[. By the same method as above, we check that v′ = τ1(w),
where τ1(0) = 0, τ1(1) = 01.

We normalize again, dividing by α. We see that Q becomes the rotation
R itself, and that wn = 1 if Rn0 ∈ [1− α, 1[, wn = 0 if Rn0 ∈ [0, 1− α[.

By a new Rauzy induction, we come back to R′ and v′, and show that
w = τ2(v′), where τ2(0) = 01, τ2(1) = 1.

Hence v′ = τ(v′), where τ(0) = 001, τ(1) = 01, i.e. τ = τ1τ2; and v =
Sτ0(v′), which proves our proposition.

5.4.3 The Fibonacci substitution: geometric representation

In this section, σ is the Fibonacci substitution

0 �→ 01 1 �→ 0.

Its unique fixed point u is the Fibonacci sequence 0100101 . . . Note that
the length of σn(0) is the n-th Fibonacci number fn, given by the recursion
formulas f0 = 1, f1 = 2, fn+1 = fn + fn−1.

The substitution σ is primitive, hence the system (Xu, S) is uniquely
ergodic. The dominant eigenvalue of the matrix is the golden ratio number
α0 = 1+

√
5

2 = 1 + α.
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Let R and R be the irrational rotation of angle α defined respectively
on the interval [0, 1[ and on the torus T1 as in Sec. 5.4.2. The irrational
rotation R is a translation on a compact group; hence, by the same proof as
in Sec. 5.2.3, it is uniquely ergodic; as the invariant measure, which is the
Lebesgue measure, gives a strictly positive measure to every open set, unique
ergodicity implies by a standard argument [340] that R is minimal (which is
also a consequence of Kronecker’s theorem). We check that these properties
are shared by R.

Proposition 5.4.9. We have un = 0 whenever Rnα ∈ [1 − α, 1[, un = 1
whenever Rnα ∈ [0, 1− α[.

Proof. We just have to identify the sequence u with the sequence v in
the previous proposition. But τ0τ(0) = 10100 , τ0τ(1) = 100; we check
that τ0τn(0) is made with a 1 followed by σ2n+1(0) (minus its last let-
ter), and that τ0τn(1) is made by the f2n+1 last letters of τ0τn(1); this is
achieved by using the reverse decomposition of u: σn(0) = σn−1(0)σn−2(0) =
σn−2(0)(σn−3(0)σn−2(0)); hence v begins with σ2n+1(0), and v = u.

Corollary 5.4.10. The complexity function of the Fibonacci sequence is

pu(n) = n+ 1 for every n.

Proof. A word w0 . . . wn−1 occurs in u if and only if ∩n−1
i=0 R

−iPwi �= ∅ (by
minimality). The sets ∩n−1

i=0 R
−iPwi , when w ranges over Ln(u), are intervals,

and the partition of the interval [0, 1[ by them is the partition of the interval
by the points R−i0, 1 ≤ i ≤ n; hence there are n+ 1 nonempty intervals.

As an exercise, we propose a direct and combinatorial proof of this result.

Exercise 5.4.11. 1. Prove that every factor W of the Fibonacci sequence
can be uniquely written as follows:

W = Aσ(V )B,

where V is a factor of the Fibonacci sequence, A ∈ {ε, 1}, and B = 0, if
the last letter of W is 0, and B = ε, otherwise.

2. Prove that if W is a left special factor distinct from the empty word,
then there exists a unique left special factor V such that W = σ(V )B,
where B = 0, if the last letter of W is 0, and B = ε, otherwise. Deduce
the general form of the left special factors.

3. Prove that the Fibonacci sequence is not ultimately periodic.
4. Prove that the complexity function of the Fibonacci sequence is pu(n) =
n+ 1 for every n.

We say that the Fibonacci sequence is a Sturmian sequence; it has the
lowest possible complexity for a nonperiodic sequence.

Proposition 5.4.12. The system (Xu, S, µ) associated with the Fibonacci
sequence is a coding of the rotation R on the interval, or R on the torus,
preserving the Lebesgue measure λ.
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Proof. Let P be the partition (P1 = [0, 1 − α[, P0 = [1 − α, 1[) and P (x)
be the P -name of x. We have P (α) = u, P (Rnα) = Snu; we check that when
Rnkα → x, we have P (Rnkα) → P (x), for the product topology on {0, 1}N,
except if x is in the orbit of α (because P0 and P1 are semi-closed); and
P (x) = limSnku is then a point of Xu; as the set {nα, n ∈ N} is dense in
[0, 1[, we see that P ([0, 1[/D) ⊂ X, where D is a countable set.

Conversely, two points with the same P -name are not separated by ar-
bitrarily small intervals, hence are identical; and, after deleting a count-
able number of points, every point in Xu, written under the form limSnku,
may be written, after taking a subsequence such that Rn

′
kα converges, as

P (limRn
′
kα); hence P (x) is a bicontinuous bijection, except on a countable

set, and PR = SP , while P sends the only invariant measure λ for R to the
only invariant measure for S.

As for R, it is semi-topologically conjugate to R.

Remark 5.4.13. The systems (Xu, S), ([0, 1[, R) and (T1, R) are not mutually
topologically conjugate: R and S are continuous while R is not; and between
S and R, the topology of Xu is generated by clopen sets while the topology
of T1 is not.

The system (T1, R) has a discrete spectrum and the eigenvalues are all
the e2iπnα, n ∈ Z (see Chap. 1, Lemma 1.6.2). Also, R has rank one (see
for example [173]), though we do not know any explicit sequence of stacks
generating the system (of course, the Fibonacci substitution can be used to
produce a sequence of stacks, but this would only give R a rank at most 2).

5.5 The Chacon sequence

5.5.1 Elementary properties

The Chacon substitution

0 �→ 0012 1 �→ 12 2 �→ 012

defines a primitive substitution, hence the system (X0, S) associated with the
fixed point v beginning with 0 is uniquely ergodic.

This system is a new form [171] of an historical system, which we shall
study in its traditional form: we remark that v begins with the word wn
defined by

• w0 = 0,
• wn+1 = wnwn1w′n,
• w′n is deduced from wn by changing the first letter from 0 to 2.
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Let now u be the sequence beginning with bn, where

b0 = 0, bn+1 = bnbn1bn, ∀n ∈ N,

and (X,S) the dynamical system associated with u; it is called Chacon’s map
([115]). Note that u is also a fixed point of a substitution (0 �→ 0010, 1 �→ 1)
but a non-primitive one.

We send X0 onto X by replacing every 2 by 0 in every point; to come
back from a point in X to its pre-image in X0, we replace 0 by 2 whenever
there is a 1 just before. So the two systems are topologically conjugate, and
in particular (X,S) also is uniquely ergodic. Let µ be the invariant measure
given by the frequencies of words in u.

The system (X,S) is a rank one system, with the following construction,
illustrated in Fig. 5.4:

• we cut the interval [0, 1[ into two intervals P0 and P1, of respective lengths
2/3 and 1/3; we take F0 = P0;

• we cut F0 into three intervals of equal length, and send by a translation
defining S the first one onto the second one, the second one onto a sub-
interval a1 of P1, beginning at the left end of P1 and of corresponding
length, namely 2/9, and this sub-interval of P1 is sent onto the third piece
of P0;

• at stage n, we cut the n-stack vertically into three equal columns, and
send (by a translation) the top of the first one onto the bottom of the
second one, the top of the second one onto a sub-interval an+1 of P1 of
corresponding length, beginning at the left end of the yet unused part of
P1, and this sub-interval onto the bottom of the first column.

We check that by associating with a point its P -name, we send Fn, the basis of
the n-stack, onto the cylinder [u0, . . . , uhn−1], where h0 = 1, hn+1 = 3hn+ 1,
which gives

hn =
3n+1 − 1

2
.

Note that the parameters we have chosen ensure that ∪∞1 an = P1, and
that the Lebesgue measure of the n-th stack ∪hn−1

i=0 SiFn tends to 1.

The word bn = u0 . . . uhn−1 is called the n-block; every point in X is a
concatenation of n-blocks (that is, copies of bn) and letters 1; the 1’s are
called spacers, or n-spacers if they are between two n-blocks.

Lemma 5.5.1. Chacon’s system is weakly mixing : there are no eigenfunc-
tions in L2(X,µ) except the constants, which are simple.

Proof. Let f be an eigenfunction for the eigenvalue λ, of norm 1; we
approximate f in L2(X,µ) by a sequence of functions fn of norm 1 constant
on the levels of the n-stack. Let C1 and C2 be the first and second column of
the n-stack, their measure is close to 1/3 and bigger than 1/4, and
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a 1

F 1

4/9 2/3

2/9 4/9

0 2/9

stack 1

a 1 a 20 2/3 1

2/9 2/27

F P0 = 0 P 1

stack 0

a n+1

F n+1

stack n+1

2/3 n+2
F n+1

a n+1

0

building stack n+1 

F n

TF n

T h n -1 F n

2/3 n+10

stack n

Fig. 5.4. Chacon’s map is a rank one system.

∫
C1

|fn(Shn)−λhnfn|2 ≤
∫
C1

|fn(Shn)−f(Shn)|2+
∫
C1

|λhnf−λhnfn|2 < 2ε,

if n is large enough. But, as fn is constant on the levels of the n-stack,
Shnfn = fn on C1 and so |λhn − 1|2 < 8ε if n is large enough.

In the same way Shn+1fn = fn on C2 implies that |λhn+1−1|2 < 8ε if n is
large enough. We conclude that λ = 1, and it is a simple eigenvalue because
unique ergodicity implies ergodicity.

Weak mixing and ergodicity can be expressed also as convergences of
Cesaro averages; the following lemma is proved for example in [122] or [340]:
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Lemma 5.5.2. A transformation T is ergodic if and only if, for every pair
of measurable sets A and B,

lim
n→∞(1/n)

n−1∑
k=0

µ(A ∩ T kB) = µ(A)µ(B).

A transformation T is weakly mixing if and only if, for every pair of
measurable sets A and B

lim
n→∞(1/n)

n−1∑
k=0

|µ(A ∩ T kB)− µ(A)µ(B)| = 0.

Definition 5.5.3. A transformation T is strongly mixing if and only if, for
every pair of measurable sets A and B,

lim
n→∞µ(A ∩ TnB) = µ(A)µ(B).

Lemma 5.5.4. Chacon’s map is not strongly mixing.

Proof. We have µ(ShpFn ∩Fn) > (1/4)µ(Fn) if p ≥ n, while µ(Fn) < 1/4
if n ≥ 2.

5.5.2 Complexity and geometric representation

Proposition 5.5.5. The complexity of the sequence u is pu(n) = 2n − 1 if
n ≥ 2.

Proof. Let n ≥ hk + 1; every word W of length n occurring in u begins
somewhere in the k-block, and then meets k-blocks and k-spacers, or else
begins with a k-spacer; with such an occurrence of W we associate its initial
position 0 ≤ a ≤ hk− 1, the number d of holes (between two k-blocks) which
it crosses, and for the i-th hole the number si = 0 or 1 of k-spacers inside it,
or else, if the occurrence of W begins with a k-spacer, we write that a = −1
and there is a hole at the beginning, with s1 = 1 (in the same way, if the
occurrence ends with a spacer, we write that there is a hole at the end). We
can rebuild W from n, d, a, s1,. . . , sd; these parameters, which we call the
k-configuration, depend a priori on the particular occurrence and not only
on the word W ; we define the hypothesis H(k, n) by: each word of length n
occurring in u has only one k-configuration.

For n = hk + 1, for each initial position between 0 and hk − 1 there are
two possible k-configurations, according to whether after the k-block we see
another k-block or a spacer; there is also a configuration beginning with a
k-spacer. This makes 2hk + 1 possible configurations. Hence the hypothesis
H(k, hk + 1) is equivalent to pu(hk + 1) = 2hk + 1.
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Let hk + 1 ≤ n ≤ hk+1 = 3hk + 1, and suppose H(k, n) is satisfied; a
word of length n corresponds to one configuration, with 1 ≤ d ≤ 3, we call
(s1, . . . , sd) its spacer configuration; we check that every spacer configuration
is allowed, with zero or one spacer in each hole, except that there cannot be
three consecutive holes without a spacer nor three consecutive holes with one
spacer.

We say a spacer configuration with c holes is bi-extendable if, by adding at
its end another hole with either zero or one spacer, we get two allowed spacer
configurations with c + 1 holes. For c = 1, 2, there are two bi-extendable
spacer configurations with c holes.

Because of H(k, n), a word W of length n is bi-extendable (that is: has
two right extensions W0 and W1 occurring in u) if and only if it ends with a
k-block, and its spacer configuration is bi-extendable. So, if n is such that all
the words of length n ending with a k-block have the same number of holes,
this number is 1 or 2 (not 3) and there are two bi-extendable words of length
n. Otherwise, there remain the case n = 2hk+1, where the only words ending
with a k-block have two holes if they do not contain any spacer and one hole
if they contain one spacer, and there are still two bi-extendable words, and
the case n = 3hk + 1 where 1bkbkbk has 3 holes and is not bi-extendable,
and bk1bkbk and bkbk1bk have 2 holes and are bi-extendable. The two right
extensions of a bi-extendable word are two different words by definition; hence
H(k, n) implies simultaneouslyH(k, n+1) and pu(n+1)−pu(n) = 2 as long as
n ≤ hk+1. And so, starting from H(k, hk+1), we deduce that pu(hk+1 +1) =
2hk+1+1, which impliesH(k+1, hk+1+1) and we may continue the recursion;
we check that for n = 2 = h0 + 1, pu(n) = 2n− 1.

We check that the complexity of the sequence v is 2n+ 1 (for each n, two
words of length n of u correspond each to two words of v, and every other one
corresponds to one word); this provides an example of a complexity function
changed by a topological conjugacy.

Proposition 5.5.6. The induced map of Chacon’s transformation on the
cylinder w0 = 0 is semi-topologically conjugate to the triadic rotation.

Proof. We consider the substitution τ defined by a �→ aab, b �→ bab, and
u′, its fixed point beginning with a;

u′ = aabaabbabaabaabbabbabaabbab . . . ,

is deduced from u by 0 �→ a, 10 �→ b. Let T be the induced map (see Definition
5.4.7 above) of S on the cylinder [0] ⊂ X; we see that Tw = Sw if w0 =
w1 = 0, Tw = S2w if w0 = 0, w1 = 1. Let (Y, T ) denote this dynamical
system. We call Qa and Qb these cylinders, and we code the trajectory of a
point w′ under T by w′n = a if Tnw′ ∈ Qa, and w′n = b if Tnw′ ∈ Qb. We
check that if w is a point in the cylinder {w0 = 0} and the sequence v(w)
its Q-name (under T ), we deduce Sw from v(w) by a �→ 0, b �→ 10. By the
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same reasoning as in Proposition 5.4.12, we check that the dynamical system
associated with τ is topologically conjugate with the system (Y, S).

The structure of the system associated with τ can be analyzed in the
same way as for the Morse system: we get two stacks, with bases Fn,0 and
Fn,1, and, if we identify corresponding levels of the two stacks, we get the
sequence of stacks with bases Fn associated with the triadic rotation (which
is a straightforward generalization of the dyadic one). But here τn(0) and
τn(1) differ only by the first letter; the reasoning of Proposition 5.2.6 shows
then that, except on a countable set, a point is determined by the sequence
of levels of Fn to which it belongs (the knowledge that w is in the 0 or 1 stack
does not provide extra information). Hence the system associated with τ is
a coding of the triadic rotation.

Thus we have a geometric representation of Chacon’s map:

Definition 5.5.7. A system (X,T ) is a Rokhlin-Kakutani exduction of the
system (X ′, T ′) if there exists a finite partition (X ′1, . . . , X

′
p) of X ′ and pos-

itive integers n1, . . . , np such that X = ∪pi=1(X ′i × {0, . . . , ni − 1}), and for
w ∈ X ′i T (w, j) = (w, j + 1) if 0 ≤ j < ni − 1, T (w, ni − 1) = (T ′w, 0).

We have proved that, up to topological conjugacy, Chacon’s map is a
Rokhlin-Kakutani exduction of the triadic rotation. The setX ′1 is the cylinder
[a] in the system associated with τ , p = 2, n1 = 1, n2 = 2.

However, being an exduction is a much weaker property than being a two
(or more)-point extension, as many properties are lost; for example, the tri-
adic rotation has a discrete spectrum, while Chacon’s transformation has no
eigenvalue. If the only condition we ask from the sets X ′i is to be measurable,
the theory of Kakutani equivalence ([317]) says we can get, from the triadic
rotation, many different systems, such as (up to measure-theoretic isomor-
phism) any ergodic substitution or even the horocycle flow (see [346]); the
interest of the above construction is that the exduction is on an explicit and,
after a coding, clopen set.

The study of Morse, Rudin-Shapiro and τ show us particular cases of the
following theorem [131], which we state without proof. For more details, see
Chap. 7.

Proposition 5.5.8. If ζ is a primitive substitution of constant length q, that
is, if ∀a ∈ A, |ζ(a)| = q, then the associated system has a discrete spectrum
if and only if there exist k and i such that the i-th letter of ζk(a) is the same
letter for every a in A.

The Fibonacci substitution, on the other side, is a Pisot substitution, as
the dominant eigenvalue is a Pisot number (it is strictly larger than 1 and
all the other eigenvalues have nonzero modulus strictly smaller than 1); the
existence of an analogous theorem for this family of substitutions is an open
question, that we discuss in Chap. 7. The general study of eigenvalues for
any substitution can be found in [168], see also Chap. 7.
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5.5.3 Joinings

Our aim is now to find every joining of S with itself.

Definition 5.5.9. For a system (X,T, µ), a self-joining is an ergodic prob-
ability measure on X × X, invariant by T × T , and whose marginals on X
are µ

Even if T has only one invariant probability measure, µ, T × T preserves
already the measure µ× µ (A×B) = µ(A)µ(B) (it is ergodic whenever T is
weakly mixing - this is a nontrivial result), but also ν(A × B) = µ(A ∩ B)
and others.

Definition 5.5.10. A system (X,T, µ) has minimal self-joinings of order
two if its joinings with itself are the product measure µ× µ and the diagonal
measures ν(A×B) = µ(A ∩ SiB) for an integer i.

The joinings of Chacon’s map have been studied in [137], and we shall now
expose their beautiful results and proofs; we need first to recall a classical
ergodic result:

Definition 5.5.11. For a transformation S, defined as the shift over a space
of sequences, and an invariant measure ν, a point w is generic if for every
cylinder A, (1/N)

∑N
n=1 1A(Snw)→ ν(A) if N → +∞.

Lemma 5.5.12. If (T, ν) is ergodic, ν-almost every point is generic.

Proof. Apply the ergodic theorem (Theorem 5.1.28) to the indicator func-
tion of each cylinder. Thus for every cylinder A, there exists a set XA of
measure one such that

1
N

N∑
1

1A(Tnw)→ ν(A)

for every w ∈ XA.
Hence every point in

⋂
A cylinderXA is generic, and this intersection has

measure one as there are only countably many cylinders.

Note that in the same way Propositions 5.4.4 and 5.1.25 imply that if σ
is a primitive substitution, every point of the associated Xu is generic for the
invariant probability measure.

We shall use Lemma 5.5.12 for the Cartesian powers of Chacon’s map; in
fact, there is a deep result ([136]) showing that for S×S, all but a countable
set of points are generic.

In Chacon’s system (X,S), let R(k, n) be the set of w such that w0 is in
the k-th n-block inside its n+ 1-block, k = 1, 2, 3.

Lemma 5.5.13. The sets R(k, n) and R(k′, n + 1) are, for fixed k and k′,
independent sets for all n. Almost every point w of X is in R(k, n)∩R(k′, n+
1) for n in a set of integers of density at least 1/10. Every point w with these
properties is called admissible.
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Proof. The first assertion is immediate. The second comes from the strong
law of large numbers applied to the variables

Xn(k, k′) = 1R(k,2n)1R(k′,2n+1)/µ(∪2n−1
i=0 SiF2n)µ(∪2n

i=0S
iF2n+1),

which are independent and equidistributed, and the same after exchanging
2n and 2n+ 1.

Lemma 5.5.14. If w and w′ are admissible points belonging to different
orbits, then, for infinitely many values of n, w0 and w′0 are in different n-
blocks inside their n + 1-block, and, if w−a . . . wb and w′−c . . . w

′
d are these

n-blocks, their overlap length (a ∧ c) + (b ∧ d) is at least hn/10.

Proof. We take m such that w0 is in the second m-block. If, for every
n > m, w0 and w′0 are in the same n-block, they are always in the same
column of the n-stack, and their difference of level i(w,w′) is constant: then
w and Siw′ are not separated by the partition into levels of the stacks and
w and w′ are on the same orbit. We take the first n > m such that w0 and
w′0 are in different n-blocks. Then , either w0 is in the second n− 1-block (if
n = m + 1) or w0 and w′0 are in the same n − 1-block, which guarantees an
overlap length of at least hn−1 to the left or to the right of (w0, w

′
0).

Lemma 5.5.15. If (Y, T, �) is an ergodic transformation, ν an ergodic mea-
sure on Y × Y , with marginals � on each copy of Y , invariant under T × I,
where I is the identity, then ν = �× �.

Proof. Let B ⊂ Y measurable, and PB(x) a conditional probability of
Y × B relatively to the product of the Borel σ-algebra Y by the σ-algebra
{Y, ∅}). We have ν(A × B) =

∫
A
PB(x)d�(x). But ν(TA × B) = ν(A ×

B), hence
∫
A
PB(x)d�(x) =

∫
TA
PB(x)d�(x) =

∫
A
PB(T−1x)d�(x),and, by

unicity of the conditional expectation, PB is T -invariant, and hence constant
by ergodicity. Its value can only be �(B) and hence �(A×B) = �(A)�(B).

Proposition 5.5.16. Chacon’s system (X,S, µ) has minimal self-joinings of
order 2.

Proof. Let ν be a joining; we choose a point (w,w′) generic for ν, such
that w and w′ are admissible (it is possible because the marginals are µ ).
If w and w′ are on the same orbit under S, we check that ν is diagonal.
Henceforth we suppose w and w′ are not on the same orbit.

Let P (k) = (P1(k), . . . , Phk(k), Ps(k)) be the partition into levels of the
k-stack and the complement of the whole k-stack. We shall show that for all
k , and all 1 < i ≤ hk, 1 ≤ j ≤ hk, ν(Pi × Pj) = ν(Pi−1 × Pj). As unions
of these atoms approximate every measurable set, we shall deduce that ν is
S × I-invariant, and so is the product measure.

We fix a k, P = P (k), and an ε.
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We choose n such that w0 and w′0 are in different n-blocks, with overlap
on at least hn/10 indices. If n is large enough, genericity ensures that on every
segment (w,w′)0, . . . , (w,w′)l or (w,w′)−l, . . . , (w,w′)0, where l > εhn/1000,
the pairs (i, j) appear with a frequency ε/100-close to ν(Pi×Pj). We deduce
that these pairs appear with a frequency ε/50-close to ν(Pi × Pj) in every
segment of (w,w′) of length at least hn/10 containing the origin.

Suppose for example that w is in the second and w′ in the first n-block,
and that the overlap between the n-blocks of w and w′ goes from −q to r,
with q + r + 1 ≥ hn/10. Let Qi,j be the density of l in (−q, r) for which
Slw ∈ Pi, Slw′ ∈ Pj ; we have |Qi,j − ν(Pi × Pj)| < ε/50. Let Ri,j be the
density of l in (−q + hn, r + hn) for which Slw ∈ Pi, Slw′ ∈ Pj : we have
|Ri,j − ν(Pi × Pj)| < ε/2, for otherwise there would be a proportion bigger
than ε/(2 × 11) − ε/50 of errors on the segment (−q, r + hn). But for l ∈
(−q, r), because of the position of w and w′ in their n+ 1-block, if Slw ∈ Pi
and Slw′ ∈ Pj , then Sl+hnw ∈ Pi−1 and Sl+hnw′ ∈ Pj . Hence, if i �= 1,
Ri−1,j = Qi,j and |ν(Pi × Pj)− ν(Pi−1 × Pj)| < ε. We conclude in the same
way for other positions of w and w′, possibly replacing the translation of hn
by −hn or 2hn.

It is worth mentioning that, while the above proof uses the presence of
isolated spacers between n-blocks, a similar property, called the R-property,
was used in [346] to compute the joinings of the horocycle flows, and was
the basis of the famous papers of Ratner which culminate in the proof of
Ragunathan’s conjecture [347].

The interest of minimal self-joinings, as well as the notion itself, appear
in [367]:

Proposition 5.5.17. Let (X,T, µ) be a system with minimal self-joinings of
order two and such that Tn is ergodic for all n. Then every transformation
T ′ preserving µ and commuting with T is a power Tn, and every Borel sub-
σ-algebra invariant by T is trivial.

Proof. Suppose that T ′ is measure-preserving and commutes with T ;
then µ(T ′−1

A) = µ(A) for every Borel set. If T ′ is invertible, we have also
µ(T ′A) = µ(A) and ν(A× B) = µ(A ∩ T ′B) is a joining, and so T ′ = Tn; if
T ′ is not invertible, and if ξ is the full Borel σ-algebra, T ′−1

ξ is a non-trivial
invariant sub-σ-algebra and the second assertion will imply the first.

Let H be an invariant sub-σ-algebra for T ; we write x ≡ y if x and y
are not separated by H; the set Z of equivalence classes is equipped with
the trace measure of µ, and the dynamical system (Z, T, µ) is called a factor
of (X,T, µ) (as in Sec. 5.2.4, but here not necessarily with a finite fiber);
by abuse of language, we speak of the factor H. We define ν(A × B) =∫
X
EH(1A)(x)EH(1B)(x)dµ(x). We check that a set A is measurable for H

if and only if A × X = X × A, ν-almost everywhere: ν(A × X∆X × A) =
ν(A × Ac) + ν(Ac × A) = 0 if and only if EH(1A) takes only values 0 or 1,
that is, A ∈ H.
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The measure ν is an invariant measure for T ×T , not necessarily ergodic,
but it admits a decomposition into ergodic components, and these are joinings.
Hence ν = aµ× µ+ (1− a)

∑
j∈Z bj∆j , where ∆j(A′ ×B) = µ(A ∩ T jB).

Suppose there exists a set A0 ⊂ Z of non-trivial measure, and let A ⊂ X
be the union of all elements in A0, which has the same measure. We have
µ(A) =′ ν(A × A) = a(µ(A)2) + (1 − a)

∑
bjµ(A ∩ T jA). Because of the

ergodicity of every T j , we have a convex combination of terms < µ(A), except
the term for j = 0; hence only this last one can have a nonzero coefficient,
and ν = ∆0. Hence ν(A×B) = µ(A ∩B), and by the above criterion, every
set is H-measurable.

Corollary 5.5.18. Such a transformation has no measure-preserving roots.

Proof. Suppose T ′n = T ; then T ′T = TT ′ = T ′n+1 and we conclude.
Even if we know only that T ′n is measure-theoretically isomorphic to T , T ′n

still has minimal self-joinings and we can conclude.

Furthermore, it can be shown also [137] that Chacon’s map S has minimal
self-joinings of all orders: for every p-uple of nonzero integers (k1, . . . , kp),
the ergodic measures invariant by Sk1 × · · · × Skp , and with marginals µ,
are all the products of diagonal measures, defined here by ν(A1 × . . . An) =
µ(Sl1A1 ∩ . . . SlnAn); these include the product measure µ× · · · × µ.

A transformation having minimal self-joinings of all orders can be used in
the so-called counter-example machine ([367]): by using Cartesian products
of the Skn , we can build a large family of transformations with surprising
properties, for example a transformation with a continuum of non-isomorphic
square roots, or two non-isomorphic systems where each one is a factor of the
other.
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In this chapter, we will study symbolic sequences generated by an irrational
rotation. Such sequences appear each time a dynamical system has two ratio-
nally independent periods; this is a very typical situation, arising for example
in astronomy (with the rotation of the moon around the earth, and of the
earth around the sun), or in music (with the building of musical scales, re-
lated to the properties of log 3/ log 2), and such sequences have been studied
for a long time. These sequences, or related objects, appear in the mathe-
matical literature under many different names: rotation sequences, cutting
sequences, Christoffel words, Beatty sequences, characteristic sequences, bal-
anced sequences, Sturmian sequences, and so on.

It is easy to obtain such sequences; the most intuitive way is to consider a
line with irrational slope in the plane, and to build a sequence by considering
its intersections with an integer grid, counting 0 when the line intersects an
horizontal, and 1 when it intersects a vertical, see Fig. 6.1. All Sturmian se-
quences can in fact be obtained in this way (there is a problem of definition if
the line meets an integral point: there are then 2 possible sequences). We will
see along the chapter several other ways to obtain these sequences; however,
this figure often shows immediately the reason of some properties.
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Fig. 6.1. A typical Sturmian sequence.
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The term “Sturmian sequence” was coined by Hedlund and Morse in 1943;
they showed that, in a sense, they are the simplest non-trivial sequences, and
gave two simple combinatorial characterizations of these sequences. The name
comes from a relation with the Sturm comparison theorem (see for example
[415], p. 104). In elementary terms, for an irrational number α ∈ [0, 1], the
position of the sequence of zeroes of sin(απx+βπ) with respect to the integers
(zeroes of sin(πx)) gives a sequence u, defining un as the number of zeroes in
the interval [n, n+ 1[; every Sturmian sequence is of this type.

In Sec. 6.1, we define three types of sequences: Sturmian sequences, bal-
anced sequences and rotation sequences. We prove that Sturmian sequences
are exactly the non-eventually periodic balanced sequences, and that all rota-
tions sequences are Sturmian sequences. We also discuss dynamical systems
generated by Sturmian sequences, in the sense of Chap. 5, and prove that
each such system contains a sequence with peculiar properties, the so-called
“special sequence”.

In. Sec. 6.2, we generalize these notions to biinfinite sequences; this is
technically easier for the following discussion.

In Sec. 6.3, we discuss another way to present Sturmian sequences, us-
ing a special encoding process related to an expanding map on the set of all
Sturmian sequences, with a simple Markov partition, and derive various con-
sequences; we give several variations of the encoding process, and establish
their properties.

In Sec. 6.4, we show how these coding sequences translate to arithmetic;
in particular, we use this to prove that all Sturmian sequences are rotation
sequences, and give explicit expression for the angle and initial point of the
rotation sequence in term of the coding sequence.

In Sec. 6.5, we study the case of periodic coding sequences. We obtain var-
ious consequences, algebraic and geometric, among them an explicit expres-
sion of the Markov coding for the toral automorphism canonically associated
with a periodic coding sequence.

In Sec. 6.6, we enlarge this geometric picture to represent all Sturmian
sequences, thus giving a natural extension for the recoding of Sturmian se-
quences, and an associated flow, the scenery flow.

In Sec. 6.7, we comment on various questions arising in this chapter.

The main theme of this chapter is the use of the combinatorial properties
of Sturmian sequences and their coding sequences; hence, we tried, as much
as possible, to rely on these combinatorial properties to derive from them
arithmetic and geometric properties. Other viewpoints are clearly possible,
and we provide in the exercises alternative proofs for a number of results. In
particular, the exercises of Sec. 6.1 give the original proof that all Sturmian
sequences are rotation sequences, a result which is obtained in Sec. 6.4. The
combinatorial properties of Sturmian sequences are often easier to understand
if one remembers that these are rotation sequences, and especially the link
with continued fractions which arises in the recoding process.
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The present chapter is deeply linked with Chap. 9, which studies the
properties of the substitutions that preserve Sturmian words and the combi-
natorial properties of their fixed words, and in particular the simplest of these
substitutions, the Fibonacci substitution. It is also linked in a less obvious
way with Chap. 10, which gives, among other things, a non-trivial character-
ization of invertible substitutions in terms of matrices.

For more references on the subject, the reader is referred to [66], in partic-
ular the very complete chapter on Sturmian sequences, and to its impressive
bibliography; see also [8, 38, 67, 76, 95, 296, 297].

6.1 Sturmian sequences. Basic properties

We begin this section with giving two equivalent definitions of Sturmian se-
quences: as sequences of minimal unbounded complexity, and as balanced
non-ultimately periodic sequences. In the second part, we give a typical ex-
ample of Sturmian sequence: the so-called rotation sequences; we will later
prove that all Sturmian sequences are of this type (an alternative proof is
found in the exercises of the present section). In the last part, we investigate
properties of the dynamical system defined by a Sturmian sequence.

6.1.1 Two definitions of Sturmian sequences

Let u be a sequence, with values in a finite set (alphabet) A; we recall from
Chap. 1 the following:

• The language of u is the set L(u) of finite words that occur in u; we denote
by Ln(u) the set of words of length n that occur in u. The complexity
function of u is the function pu which, to each integer n, associates the
number Card Ln(u) of distinct words of length n that occur in u.

• The complexity pu is an increasing function. If u is eventually periodic,
then pu is bounded. If there is an n such that pu(n+ 1) = pu(n), then u is
eventually periodic.

We deduce that, if u is not eventually periodic, we must have pu(n) ≥
n+1, because pu has strictly increasing integral values, and pu(1) must be at
least 2, otherwise there would be only one letter and u would be constant. In
this chapter, we will be interested in non-periodic sequences with the smallest
complexity:

Definition 6.1.1. A sequence u is called Sturmian if it has complexity
pu(n) = n+ 1. We will denote by Σ′ the set of Sturmian sequences.

We will define, in Sec. 6.2 (Definition 6.2.6), the related set Σ of biinfinite
Sturmian sequences; as we will see, this set is slightly more complicated to
define, but it is technically easier to use in many proofs.

These sequences are also called sequences of minimal complexity, or se-
quences with minimal block growth.
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Historical remark. The original definition of Hedlund and Morse (see
[304]) was slightly different: first, they considered biinfinite sequences such
that all 1’s are separated by strings of 0’s. For such a sequence, they de-
fined a n-chain as a word occuring in the sequence, starting and ending in 1,
and containing exactly n + 1 1’s (and hence exactly n strings of 0’s). They
defined Sturmian sequences as sequences such that the length of 2 n-chains
differ at most by 1. This definition comes naturally for cutting sequences (see
Exercise 6.1.16). They proved that this definition, which includes some peri-
odic sequences, is equivalent to “balanced”, to be defined below. The present
simpler definition was only given 30 years later, by Coven and Hedlund (see
[123], [125]).

The words that occur in a Sturmian sequence cannot disappear:

Proposition 6.1.2. A Sturmian sequence is recurrent, that is, every word
that occurs in the sequence occurs an infinite number of times.

Proof. Suppose that a word U , of length n, occurs in a Sturmian sequence
u a finite number of times, and does not occur after rank N . Let v be the
sequence defined by vk = uk+N . It is clear that the language of v is contained
in that of u, and does not contain U . Hence we must have pv(n) ≤ n. This
implies that v is eventually periodic, and hence so is u; this is a contradiction.

Since we have pu(1) = 2, Sturmian sequences are sequences over two
letters; in this chapter, we fix the alphabet A = {0,1}. The definition of
Sturmian sequences implies a very easy consequence, which we will use several
times:

Lemma 6.1.3. If u is Sturmian, then exactly one of the words 00, 11 does
not occur in u.

Proof. We have pu(2) = 3, so there are exactly three words of length 2
occurring in u. By the previous proposition, 0 and 1 each occur an infinite
number of times in u, which implies that 01 and 10 both occur in u. But 00
and 11 are the two other words of length 2, and exactly one of them must
occur.

Definition 6.1.4. We say that a Sturmian sequence is of type 0 if 1 is
isolated, that is, if 11 does not occur in the sequence. This is equivalent to
saying that 0 occurs more frequently than 1. We say that the sequence is of
type 1 if 00 does not occur. We denote by Σ′0 (respectively Σ′1) the set of
Sturmian sequences of type 0 (respectively of type 1).

Every element of Σ′ is either of type 0 or of type 1; it is not immediately
clear that Sturmian sequences exist at all, Chap. 5 gives the simplest example:
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Example 6.1.5. The Fibonacci sequence u = 010010100 . . ., fixed point of
the Fibonacci substitution

σ : 0 �→ 01

1 �→ 0

is a Sturmian sequence. For a proof, see Exercise 5.4.11 and the preceding
corollary, in Chap. 5.

There is another useful characterization of Sturmian words, for which we
shall need the following notation and definition:

Notation 6.1.1 If U is a finite word over the alphabet A, we denote by |U |
the length of U , and |U |a the number of occurrences of the letter a in U .

Definition 6.1.6. A sequence u over the alphabet {0,1} is balanced if,
for any pair of words U , V of the same length occurring in u, we have
||U |1 − |V |1| ≤ 1.

This means that, for words of Ln(u), the number of occurrences of 1 can
take at most two consecutive values; we note that this property is very strong:
this is the smallest possible number of values for non-periodic sequences. As
we show below, in that case, this property is equivalent to Sturmian. We will
often use the following technical lemma:

Lemma 6.1.7. If the sequence u is not balanced, there is a (possibly empty)
word W such that 0W0 and 1W1 occur in u.

Proof. If u is not balanced, we can find two words A and B of length n
such that |A|1−|B|1 > 1. We first prove that we can suppose |A|1−|B|1 = 2.
Call Ak (respectively Bk) the suffix of length k of A (respectively B), and
dk = |Ak|1 − |Bk|1. We have dn > 1, d0 = 0, and a short case study proves
that |dk+1 − dk| is 0 or 1. But then, an intermediate value argument for
integer valued functions shows that there is k such that dk = 2. Suppose
now that A and B are words of minimal length with this property. Write
A = a0a1 . . .an−1 and B = b0b1 . . .bn−1. We must have a0 = an−1 = 1 and
b0 = bn−1 = 0, otherwise we could find a shorter pair by removing some
prefix (the first letter if the two initial letters are the same, a longer prefix
if a0 = 0 and b0 = 1). It is then easy to prove by induction that for all the
remaining letters, we have ak = bk, which proves the lemma.

Theorem 6.1.8. A sequence u is Sturmian if and only if it is a non-
eventually periodic balanced sequence over two letters.
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Proof. We first prove the “if” part, by contradiction. Suppose that u is
not Sturmian, we will show it is not balanced. Let n0 be the smallest integer
such that pu(n0 + 1) ≥ n0 + 3. We have n0 ≥ 1, since pu(1) = 2. Because
pu(n0) = n0 + 1, there are at least two words U and V of length n0 that can
be extended on the right in two ways. Since n0 is the smallest integer with
this property, U and V differ only in the first letter; hence there is a word
W such that U = 0W and V = 1W . We have proved that 0W0 and 1W1
occur in u, hence this sequence is not balanced.

We now prove the converse: suppose that u belongs to Σ′; this implies,
by definition, that it is a non-eventually periodic sequence on two letters. We
do a proof by contradiction, and suppose that it is not balanced. By Lemma
6.1.7, there is a word W such that 1W1 and 0W0 occur in u. We consider
such a word of minimal length n+ 1, and we write W = w0w1 . . . wn.

Remark that, under this assumption, if we have a pair of words U , V
of the same length such that ||U |1 − |V |1| ≥ 2, then their length is at least
n + 3, that is, 0W0 and 1W1 is a pair of non-balanced words of minimal
length; for we can apply the same argument as in the proof of Lemma 6.1.7
to show that such a pair contains a pair 0W ′0 and 1W ′1.

The word W cannot be empty, otherwise 00 and 11 occur in u, which is
impossible by Lemma 6.1.3. For the same reason, we must have w0 = wn;
more generally, we must have wk = wn−k, that is, W is a palindrome,
otherwise, letting wk = 0, wn−k = 1, we see that 0w0 . . . wk−10 and
1wn−k+1 . . . wn1 is a non-balanced pair of smaller length, which is impos-
sible. Recall that a palindrome is a word that stays the same when it is
read backwards; for example, in girum imus nocte et consumimur igni is a
classical palindrome in Latin, a man, a plan, a canal: Panama! a classical
palindrome in English.

But now, we know that there are n+ 2 words of length n+ 1; W can be
extended in two ways on the right and on the left, and all the others can be
extended in only one way. Exactly one of 0W and 1W (suppose it is 0W )
can be extended in two ways on the right (if a word can be extended in two
ways on the right, all its suffixes can also). So, the words 0W0, 0W1 and
1W1 occur in u, but not 1W0. Let i be the rank of an occurrence of 1W1
in u. We prove:

Lemma 6.1.9. The word 0W cannot occur in uiui+1 . . . ui+2n+3.

Proof of Lemma 6.1.9. The length of uiui+1 . . . ui+2n+3 is 2n + 4, the
length of 1W1 is n + 3, and the length of 0W is n + 2. Hence this lemma
exactly means that the first letter of an occurrence of 0W cannot occur in
an occurrence of 1W1 in u. Suppose the beginning of 0W overlaps 1W1: 0
can obviously not be the first or last letter in 1W1; if it is wk, the overlap
means that 0w0 . . . wn−k = wkwk+1 . . . wn1; but this implies that wk = 0
and wn−k = 1, and we get a contradiction, since W is a palindrome.
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End of the proof of Theorem 6.1.8. It is immediate that there are exactly
n+3 words of length n+2 occurring in uiui+1 . . . ui+2n+3; but there are n+3
words of length n+ 2, and 0W does not occur, as we just proved, so at least
one word occurs twice. But all these words can be extended in a unique way
on the right (only 0W can be extended in two ways on the right), hence u is
eventually periodic: this is a contradiction.

From this characterization of Sturmian sequences as balanced sequences,
we get the following proposition.

Proposition 6.1.10. The frequency of 1 in a Sturmian sequence u, defined
as the limit of |u0u1...un−1|1

n when n tends to infinity, is well defined, and is
irrational.

Proof. Let an be the minimum number of 1 that occur in a word of length
n occurring in u. Since |u0u1 . . . un−1|1 is either an or an + 1, it is enough to
prove that the limit of an/n exists and is irrational.

A word of length kq+ r can be split in k words of length q and one word
of length r, and we get the inequality kaq ≤ akq+r ≤ k(aq + 1) + r. If we
consider n > q2, we can write n = kq + r, with k ≥ q and 0 ≤ r < q; since
r < k, we check that r

n <
k
n ≤

1
q , hence the second part of the inequality

gives an
n ≤

aq
q + 2

q . One checks also immediately that the quantity raq − n
is negative, since n ≥ an ≥ kaq > raq; hence the first part of the inequality
above implies that n

q (aq − 1) = kaq + 1
q (raq −n) ≤ an, and, after dividing by

n, we get:
aq
q
− 1
q
≤ an
n
≤ aq
q

+
2
q
.

It follows that the sequence (an/n)n∈N is a Cauchy sequence, and hence
converges to some limit α.

Suppose that this limit is rational, equal to p
q . From the inequality kan ≤

akn < akn + 1 ≤ k(an + 1), we deduce that, if n divides n′, then an
n ≤

an′
n′ <

an′+1
n′ ≤ an+1

n . In particular, the sequence
(
a2nq
2nq

)
n∈N

is increasing, and the

sequence
(
a2nq+1

2nq

)
n∈N

is decreasing; we get the inequality:

aq
q
≤ a2nq

2nq
<
a2nq + 1

2nq
≤ aq + 1

q
.

But this sequence must converge to p
q ; this is only possible if aq = p and

a2nq = 2np for all n, or aq + 1 = p, and a2nq + 1 = 2np for all n.
We prove that it is impossible to have a2nq = 2naq for all n: since the

sequence is not periodic, there is at least one word U of length q in the
language of u such |U |1 = aq + 1. Since u is recurrent, this word occurs an
infinite number of times, so that it must occur in two positions congruent
mod q. Hence, we can find a word of length 2nq that can be split in words of
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length q, with at least two occurrences of U ; the number of 1 in this word is
at least 2naq + 2, so that a2nq > 2naq. A similar proof shows that a2nq + 1
cannot be equal to 2n(aq + 1) for all n, and we get a contradiction.

From this theorem, it follows that the language of u is not so easy to
compute:

Corollary 6.1.11. If u is a Sturmian sequence, the language L(u) is not
regular (or equivalently, it cannot be recognized by a finite automaton).

Proof. Suppose that L(u) is regular; we can apply the pumping lemma
(see also Chap. 3); this lemma says the following: for any regular language,
there is an integer N such that any word U of length larger than N can be
split as AWB, where W is a nonempty word with the following property:
for any n, AWnB belongs to L(u). Hence Wn also belongs to L(u); the
frequency of 1 in Wn is equal to |W |1/|W |, which is rational, and it tends to
the frequency of 1 in the sequence u. By the preceding proposition, we get a
contradiction.

It is possible to define the balance property for sets of finite words; the
following easy result, proved in [304] (see also Chap. 3), will be used in later
exercises:

Exercise 6.1.12. We will say that a set E of finite words is balanced if, for
any pair of words U, V in E, and for any words U ′, V ′ of same length that
occur in U, V , we have ||U ′|1 − |V ′|1| ≤ 1. Prove that a balanced set of words
of length n contains at most n+ 1 distinct words. (Hint: induction.)

Exercise 6.1.13. As a consequence, prove that if u and v are two Sturmian
sequences with the same frequency, they have the same language.(Hint: show
that the minimum number of 1 in a word of length n is the same for sequences
u and v. Deduce that Ln(u) ∪ Ln(v) is a balanced set.)

Exercise 6.1.14. Prove the converse: the frequency of 1 in a Sturmian se-
quence depends only on the language, not on the sequence itself, and explain
how one can compute the frequency, knowing only the language. Deduce that
every Sturmian sequence is minimal, that is, every word that occurs in the
sequence occurs with bounded gaps (see Chaps. 1 and 5). (Hint: suppose that
U occurs in u with arbitrarily large gaps. Prove that there exists in the orbit
closure of u a sequence v where U does not occur. Deduce that v is eventually
periodic, and get a contradiction.)

We will give another proof of the minimality in Proposition 6.3.16.

6.1.2 Rotation sequences

We now generalize the example of the Fibonacci sequence. We first need some
definitions.
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Notation 6.1.2 Let x be a real number. The integral part of x is the integer
[x] = sup{n ∈ Z|n ≤ x}. The fractional part of x is the real number {x} =
x− [x]. The ceiling of x is the integer �x� = inf{n ∈ Z|n ≥ x}.

Definition 6.1.15. A rotation sequence is a sequence u such that there is
an irrational number α ∈ [0, 1] and a real number β such that:

(∀n ∈ N) (un = [(n+ 1)α+ β]− [nα+ β]) (6.1)
or (∀n ∈ N) (un = �(n+ 1)α+ β� − �nα+ β�) (6.2)

The number α will be called the angle associated with the rotation sequence,
and β the initial point.

Rotation sequences occur in a number of classical situations. The simplest
one is the natural coding associated with a rotation. Consider the rotation:

R : T1 → T1 x �→ x+ α mod 1

where T1 is the circle, identified to R/Z, or to the interval [0, 1[, by the
function e2iπx. We consider the two intervals I0, I1 on T1 delimited by 0 and
1 − α. We denote by ν the coding function defined by ν(x) = 0 if x ∈ I0,
ν(x) = 1 otherwise; then the rotation sequence defined by α and β is just
the sequence ν(Rn(β)), that is, the coding of the positive orbit of β under
the rotation R, see Fig. 6.2 below.

0

1-a

b

b+a b+2a

b+3a

b+4a

b+5a

I 0

I 1

Fig. 6.2. The orbit of β for the rotation of angle α.

Remark. Of course, this definition is not precise enough: to properly define
ν, we need to state what happens at the endpoints of the two intervals. We
will always take the intervals closed on one side and open on the other. If we
take I0 = [0, 1− α[, I1 = [1− α, 1[, this corresponds to choosing the integral
part in the definition of the rotation sequence. If we take the other choice
I0 =]0, 1 − α] and I1 =]1 − α, 1], it corresponds to the choice of the ceiling
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function. This choice is irrelevant, except if there is a nonnegative integer n
such that β + nα is an integer, that is, if β is congruent to −nα mod. 1. In
that case, α and β define two possible rotation sequences, depending on this
choice. We will see later that the rotation sequence defined by the angle α
and the initial point α, and the two rotation sequences defined by the angle
α and the initial point 1− α, play an important role.

In most proofs, we will only consider rotation sequences defined using [x];
it is usually immediate to check each time that the proof works also for �x�.
Exercise 6.1.16. Prove the following alternative characterization: consider
the line y = αx + β on the plane, with α irrational. This line cuts all the
horizontal lines y = n, and all the vertical lines x = n. This defines a so-called
“cutting sequence”: write 0 each time the line cuts a vertical line, and 1 each
time it cuts a horizontal line. Prove that the cutting sequence is a rotation
sequence associated with the angle α

1+α and the initial point β
1+α (we need

to be more precise in the case where the line goes through an integral point,
but this happens at most once; in this case, we write 01 or 10 as we like).

We recover here the way to obtain a Sturmian sequence that was given
at the very beginning of the chapter, in Fig. 6.1. This figure explains many
things: it is clear that it is essentially invariant under a central symmetry,
proving that the associated language is palindromic. It shows that it is com-
pletely natural to consider biinfinite sequences, since the line extends in both
directions. It shows that, for a given direction, there are exactly two se-
quences that are invariant if we exchange un and u−n, given by the lines
through (0, 1/2) and through (1/2, 0), and one sequence that is invariant if
we exchange un and u−1−n, given by the line through (1/2, 1/2). It also shows
that the line through the origin enjoys very special properties, since it de-
fines two sequences that differ in their two first terms. All these properties
will occur later in this chapter, (see Example 6.4.3, and also in Chap. 9).

Remark. In the case α < 1, we can also define a Sturmian sequence by
defining un = 1 if the line crosses a horizontal y = p for x between n and n+1,
un = 0 otherwise. We recover in this way the sequence of the definition. In
this setting, the number α is also sometimes called the slope of the sequence,
and β the intercept.

An other classical example is the square billiards: we shoot a ball in a
square billiards, with initial irrational slope a. The ball bounces on the sides of
the billiards according to the laws of elastic shock, and we write 0 for a vertical
side, and 1 for a horizontal side. This can be reduced in a straightforward
way to a cutting sequence.

Since we will prove later that all Sturmian sequences are of this type, it
is important to keep these examples in mind, as they can give intuition on
the properties of Sturmian sequences.

Proposition 6.1.17. Every rotation sequence is a Sturmian sequence.
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Proof. Because they are simple and instructive, we will give two proofs.
We first prove that a rotation sequence is balanced. From the definition

of the sequence, we can compute the number of 1 in uk . . . uk + n:

|uk . . . uk+n|1 = [(n+ k + 1)α+ β]− [kα+ β].

And it is easy to check that, for a fixed n, this number can take only two
values, [nα] or [nα] + 1, therefore the sequence is balanced.

It is a little more subtle to prove that the sequence is Sturmian. Consider
the sequence as defined by the coding of the orbit of β for the rotation R
with respect to the partition P in two intervals. The letter un tells us in
which element of the partition P is Rnβ, or equivalently in which element
of R−nP is β. The first n letters will give the position of β with respect to
the partition intersection of P, . . . R1−nP. In the same way, words of length
n in the sequence will give the position of iterates of β with respect to this
partition. But an easy computation shows that this partition is defined on
the circle by the n + 1 points 0,−α, . . . ,−nα, so that it consists of n + 1
intervals (since α is irrational, the n + 1 points are distinct). Hence, there
can be no more than n + 1 different words of length n. This proof is less
straightforward than the first, but it can be generalized to more complicated
cases (cf. [47, 43, 41]).

We can build in this way a large number of Sturmian sequences. In fact,
we get in this way all Sturmian sequences: the converse of the proposition is
true, and it is one of the main points of Secs. 6.3 and 6.4 to prove this result
and to determine explicitly the angle and initial point of a given Sturmian
sequence.

Exercise 6.1.18. It is possible to prove that Sturmian sequences are rota-
tion sequences in an elementary way, as it is done in the original paper of
Hedlund and Morse [304], by using the results of Exercise 6.1.12 and 6.1.13,
along the following lines.

1. The sequence v of angle α and initial point 0 is Sturmian, with frequency
α.

2. If u is an arbitrary Sturmian sequence of frequency α, there is a sequence
nk such that Snkv tends to u. (Hint: use Exercise 6.1.13.)

3. There is a real number β such u is the rotation sequence (or one of the
two rotation sequences) with angle α and initial point β.

Our approach will give us a more complete information on α and β.

Exercise 6.1.19. Prove that the language associated with a Sturmian se-
quence is palindromic, that is, the reverse word of any word in Lu also belongs
to Lu; this property is very easy for a rotation sequence (for example, one
can use the obvious symmetry on the cutting sequence starting from the ori-
gin), but there is a purely combinatorial proof using Exercise 6.1.12. (Hint:
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if we consider a balanced set of words, and add to it one of these words read
backwards, it stays balanced; but a balanced set of words of length n contains
at most n+ 1 words.)

6.1.3 Dynamical systems associated with Sturmian sequences

We have defined in Chap. 1 the dynamical system associated with a sequence.
Let us recall the main points: we consider the set of all sequences on {0,1},
with the product topology (this is a compact set, as product of finite sets),
and the shift S on this set: the image v = Su of a sequence u is the sequence v
defined by vi = ui+1. In other words, v is u, with first letter u0 deleted. With
a sequence u, we associate the set Xu which is the closure of {Snu|n ∈ N},
the orbit of u for the shift. The set Xu is by construction shift-invariant, and
(Xu, S) is the dynamical system associated with the shift. It is easy to show
that the language of any sequence in Xu is included in the language of u, but
in general it could be strictly smaller. The dynamical system associated with
a Sturmian sequence has special properties:

Theorem 6.1.20. The system associated with a Sturmian sequence is one-
to-one, except one point that has two preimages.

Proof. We first prove that the system is onto. Let v be a point in Xu; if v
is of the form Snu, with n > 0, then it is the image of Sn−1u. If it is not in
the orbit of u, then there is a sequence nk, with limk→∞ nk = ∞, such that
Snku tends to v; from Snk−1u, we can, by compacity, extract a sequence that
has a limit w, and this sequence w satisfies Sw = v. The only difficult point
is to prove that u has a preimage. But we have seen that the sequence u is
recurrent, that is, every word that occurs in u occurs an infinite number of
times. Hence, the initial word of length k of u occurs again at some position
nk of u, with nk > 0, and the sequence Snku tends to u. For the same reason
as before, u also has a preimage in Xu.

We now prove that there is exactly one point with two preimages. The
proof we just gave shows that any word in Ln(u) can be extended on the
left, since it appears past the initial position. Since there are n+ 1 words of
length n, exactly one of them can be extended in two different ways; we call
this word Ln. It is clear that any prefix of Ln+1 can be extended on the left
in two ways, so Ln is the prefix of length n of Ln+1. If a sequence u has two
preimages, all its prefixes are the Ln; but there is exactly one such sequence
in Xu.

Definition 6.1.21. We call the Ln’s the left special words of Ln(u), and the
sequence l which has the Ln’s as prefixes is called the left special sequence of
Xu.

Exercise 6.1.22. Define the right special word Rn, and prove that Rn is the
reverse word of Ln. Prove that, if an is the minimum number of 1 in a word
of length n occurring in the Sturmian sequence u, then |0Ln|1 = an+1.



6.1 Sturmian sequences. Basic properties 155

We can find explicitly all the preimages of l, and this will be useful later:

Proposition 6.1.23. The sequence l has two preimages 0l and 1l, and two
preimages of order 2, 10l and 01l.

In other words, the preimages of l differ only on two letters.

Proof. The preimages of l are of course 0l and 1l. Suppose now that 1 is
isolated in l (that is, 11 does not occur). Then the only preimage of 1l has
to be 01l. Because 1 is isolated, we can suppose that l starts with a string
of n 0’s followed by a 1. If the preimage of 0l is 00l, then the language of u
contains a string of n + 2 0’s, in 00l, and a string of n 0’s surrounded by 1
in 1l, which is impossible since u is balanced.

Exercise 6.1.24. For each n,m, prove by induction that the words Rn01Lm
and Rn10Lm belong to the language of u. (Hint: prove that if an is the
minimum number of 1 in a word of length n in u, we have ai+j = ai + aj or
ai+j = ai + aj + 1; then use Exercise 6.1.13.)

Prove that, for each n ≥ 3, the special sequence has two preimages of
order n, Rn−210l and Rn−201l.

When we consider cutting sequences, the meaning of the proposition be-
comes clear: the special sequence corresponds to the line through (0, 0), which
can be coded in two ways at this point; in all the other points, the coding
is unique, and when we establish that all Sturmian sequences are cutting
sequences, we have an immediate proof of the proposition and the exercise.

Remark. The special words have many other combinatorial properties.
Some of them, the bispecial words, are at the same time left special and right
special, hence they are palindromes; one can prove that any word of L(u) is
contained in a bispecial word, and give rules to generate them (the so-called
Rauzy rules): this is another way to obtain the results of Sec. 6.3.

Exercise 6.1.25. Find the special word of the Fibonacci substitution. Con-
sider now the substitution σ defined by σ(0) = 010 and σ(1) = 10. Find
its special word, in terms of the fixed words of the substitution. How is σ
related to the Fibonacci substitution? (Hint: show that, for any sequence u,
the image by σ of 01u and 10u differ only on the first two letters; show that
σ has 2 fixed points that differ only in the first 2 letters.)

Exercise 6.1.26. Prove that the set Σ′ is not closed in the space of all
sequences, and that its closure is the set of balanced sequences. Prove that
the complement of Σ′ in its closure is countable. (Hint: the set of balanced
sequences is closed, and the set of periodic balanced sequences is countable.)
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6.2 Biinfinite Sturmian sequences

In this section, we consider biinfinite sequences; this will allow some sim-
plifications in the following sections. We will in a first part define balanced
biinfinite sequences, and Sturmian biinfinite sequences. In the second part,
we will show that, for a definition in terms of complexity, we need to take
some precautions in the case of biinfinite sequences. In a third part, we will
consider dynamical systems generated by biinfinite sequences, and their re-
lations with the systems considered in the previous section.

6.2.1 Balanced biinfinite sequences

We consider now sequences u = (un)n∈Z ∈ {0,1}Z. For such a sequence, we
need to define a special position to differentiate shifted sequences: the initial
letter of a biinfinite sequence u is u0.

We can define, in the same way as before, the words occurring in the
sequence, and the definition of balanced words still makes sense:

Definition 6.2.1. A biinfinite sequence u over the alphabet {0,1} is bal-
anced if and only if, for any pair of words U, V of the same length occurring
in u, we have ||U |1 − |V |1| ≤ 1.

The definition of periodicity is the same for infinite or biinfinite sequences;
however, there is a difference for eventual periodicity. We say that a sequence
u is positively eventually periodic if there exist an integer p > 0 and an
integer N ∈ Z such that, for all i > N , ui+p = ui. The sequence is negatively
eventually periodic if, for all i < N , ui−p = ui.

Lemma 6.2.2. A balanced sequence is positively eventually periodic if and
only if it is negatively eventually periodic.

Proof. As we saw in the preceding section, if we consider a sequence Un of
words occurring in u, such that |Un| = n, then the frequency |Un|1n of 1 in Un
converges to some limit α. If we take another sequence of words Vn occurring
in u, since the sequence u is balanced, the limit is the same; in particular, in
that case, limn→∞

|u0u1...un−1|
n = limn→∞

|u−n+1...u−1u0|
n = α.

As we proved in the preceding section, α is rational if and only if the
sequence u is positively eventually periodic (in that case, if W is a word
corresponding to the period, the sequence |u0u1...un−1|

n converges to |W |1|W | ). But
the symmetric proof, using the sequence (u−n)n∈N, shows that α is rational
if and only if the sequence u is negatively eventually periodic. This proves
the result.

As a consequence, it suffices to say that a balanced sequence is eventually
periodic, in which case, it must be simultaneously positively and negatively
eventually periodic.
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Exercise 6.2.3. Prove that, if u is balanced and eventually periodic, the
period, and the words that occur infinitely often, are the same in the positive
and the negative direction.

Definition 6.2.4. A biinfinite sequence over the alphabet {0,1} is Sturmian
if and only if it is balanced and not eventually periodic.

Remark. In the original paper [304], Sturmian biinfinite sequences are
defined as balanced sequences; however, we do not need two different words
for the same concept, and eventually periodic balanced sequences turn out to
give some problems in the framework of the next section; this is the reason
of the present definition.

6.2.2 Complexity of biinfinite sequences

We can as before define the complexity pu(n) of a biinfinite sequence u as the
number of distinct words of length n that occur in u. The function pu is still
increasing; however, the basic property is no more true: there are eventually
periodic biinfinite sequences of unbounded complexity. The simplest such
sequence is 0∞10∞, that is, the biinfinite sequence u defined by u0 = 1 and
un = 0 if n �= 0.

It is nevertheless possible to define Sturmian biinfinite sequences in terms
of complexity.

Proposition 6.2.5. A biinfinite sequence u is Sturmian if and only if it is
a sequence of complexity n+ 1 that is not eventually periodic.

Remark. The statement can seem ambiguous; when we say that the bi-
infinite sequence u is not eventually periodic, this can have two different
meanings for a general sequence: we can require, either that the sequence
is not eventually periodic in one direction, or that it is not eventually peri-
odic in both directions. In this case however, there is no ambiguity, since we
proved that, for a balanced sequence, or for a sequence of complexity n+ 1,
positive eventual periodicity is equivalent to negative eventual periodicity.

Proof. Suppose that u is not positively eventually periodic and of com-
plexity n+ 1; then the restricted sequence (un)n∈N is an infinite sequence of
complexity at most n+ 1 (some words could have disappeared), that is, not
eventually periodic. Hence it is of complexity exactly n+1, so it is Sturmian,
and balanced, by the results in Sec. 6.1. But then, since all the words that oc-
cur in the biinfinite sequence also occur in the positive infinite sequence, the
original sequence u is balanced, and not eventually periodic, so it is Sturmian.
The symmetric proof works if u is not negatively eventually periodic.

Conversely, suppose that the biinfinite sequence u is Sturmian. Then, the
positive infinite sequence is balanced and not eventually periodic, so that it
is of complexity n+ 1. The same is true for all sequences (uN+n)n∈N, for all
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N ∈ Z; hence all these sequences have the same language, and the union of
all these languages is the language of the biinfinite sequence u. Hence this
biinfinite sequence has complexity n+ 1.

Definition 6.2.6. We denote by Σ the set of biinfinite Sturmian sequences.

Exercise 6.2.7. Prove that there are infinitely many eventually periodic
biinfinite sequences of complexity n+ 1, and that this set is countable.

Exercise 6.2.8. Prove that there are sequences of complexity n+1 that are
not balanced. (Hint: 0∞1∞.)

The methods of the next section will allow us to describe completely the
set of biinfinite sequences of complexity n+ 1; we can then show that, if they
are not Sturmian, then they are ultimately periodic in both directions, and
that the frequencies of 1 in the future and the past are either equal (and
the sequence is balanced), or Farey neighbors, that is, rational numbers p

q ,
p′

q′

such that |pq′ − p′q| = 1 (and the sequence is not balanced); we have given
above examples of both types.

6.2.3 Dynamical systems generated by Sturmian biinfinite
sequences

We consider the shift S on {0,1}Z, defined by Su = v, where vn = un+1
for all n ∈ Z. The difference with the preceding section is that this shift is
invertible, since S−1u = w, where wn = un−1.

As in the preceding section, we can associate with a Sturmian sequence u
its orbit closure Xu, that is, Xu = {Snu|n ∈ Z}. The set Xu is invariant by
S, and the shift on Xu is one-to-one, because it is on the total space {0,1}Z.
But Xu is also S−1-invariant, and this implies that the shift on Xu is onto.

The set {0,1}Z has a natural product topology, given by the metric de-
fined d(u, v) = 1/2k, where k = inf {n ∈ N|un �= vn or u−n �= v−n}. Hence
we can consider (Xu, S) as a topological dynamical system for the induced
topology.

Definition 6.2.9. A Sturmian system is a dynamical system (Xu, S), where
Xu is the orbit closure of a Sturmian biinfinite sequence.

Exercise 6.2.10. Prove that a Sturmian dynamical system is recurrent and
minimal.

There is a natural projection Π from {0,1}Z to {0,1}N. This projec-
tion sends a biinfinite Sturmian system Xu to an infinite Sturmian system
(Xu)′. While the projection from the total space is highly non-injective, its
restriction to Xu is almost one-to-one, as we show in the next exercise.
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Exercise 6.2.11. Prove that the projection Π : Xu → (Xu)′ is at most 2-
to-one; prove that it is one-to-one except on a countable set, and describe
this set.

We can define a different pseudo-metric on Xu in the following way:

Definition 6.2.12. We set δ(u, v) = lim supn→∞
#{i∈Z|−n≤i≤n,ui �=vi}

2n+1

This pseudo-metric turns out to have nice properties.

Exercise 6.2.13. 1. Prove that the superior limit in the preceding defini-
tion is in fact a limit.

2. Prove that, if δ(u, v) = 0, then either u = v, or u and v differ in exactly
two positions.

3. Prove that, in the last case, u and v project to the orbit of the special
point.

4. Prove that δ is shift invariant.
5. Prove that the quotient space of Xu by the relation δ(u, v) = 0 is iso-

metric to a circle, and the shift is semi-conjugate to a rotation on that
circle.

In the language of ergodic theory, this shift is a 2-to-1 extension of a
circle rotation, which is 1-to-1 except on a countable set. In particular, it is
measurably isomorphic to a rotation.

Remark. We know that the properties in Exercise 6.2.13 must be true,
because every Sturmian sequence is a rotation sequence, and it is easy in
that case to compute δ; however, we do not know a direct combinatorial
proof of the last question (that is, the combinatorial proof asked for in this
exercise!); such a proof could be interesting, since it could extend to other
symbolic systems, such as the systems generated by some substitution.

We see that pairs of biinfinite sequences that differ only in two points
play a particular role; they are preimages of the orbit of the special sequence
used in the last section. It is not difficult to show that, for each n ∈ Z, there
are exactly two sequences that differ exactly in n and n+ 1.

Definition 6.2.14. The fixed sequences of a Sturmian system Xu are the
two sequences that differ exactly at indices 0 and 1.

These two sequences play an important role in the next section; they
project to the preimages of order two of the special sequence.

In the next section, we will define a renormalization procedure for Stur-
mian sequences, and show that fixed sequences renormalize to fixed sequences;
we will then be able to produce these sequences as fixed points for an infinite
product of substitutions, hence the name.
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6.3 Coding sequences for Sturmian sequences and
Sturmian systems

A Sturmian sequence contains very little information: among the 2n possible
words of length n, it uses only n + 1 words (in particular, this proves that
the topological entropy of this sequence is zero). For example, if the sequence
is of type 0, every 1 is isolated, so the next letter must be a 0, and gives
no new information. Hence, it must be possible to recode this sequence in a
more compact way. The basic idea is to group, in a sequence of type 0, any
1 with an adjacent 0, to obtain a new sequence. It turns out that a small
miracle occurs: this new sequence is again Sturmian, and the procedure can
be iterated; with the given Sturmian sequence, we can associate an infinite
coding sequence, and the initial word of length n of the Sturmian sequence
is, for a typical Sturmian sequence, defined by an initial word of the coding
sequence of length of order logn.

The procedure is simple, but there are difficulties: first of all, the coding
procedure is not canonical: for a sequence of type 0, we can group every 1 with
the preceding or the next 0, that is, we can use two different substitutions,
and similarly for sequences of type 1. We will see below that there is also
a problem for the coding of the initial letter, and that we can recode using
a suffix or a prefix; this gives a total of 16 possible coding procedures. The
choice of the procedure is arbitrary, and several of them can be convenient
for different purposes, as we shall see.

A second problem is that, if we consider one-sided infinite sequences,
the coding is not well defined for all sequences. We will see in exercises
that the sequences in the positive orbit of the special sequence admit two
possible codings. However, this is not really a serious problem: for a given
Sturmian system, it arises only on a countable set; but, this makes exact
proofs and statement quite cumbersome. This difficulty disappears for biinfi-
nite sequences; for that reason, from now on, we will only consider biinfinite
sequences, except in exercises.

A third problem is that, even for biinfinite sequences, there are pairs of
sequences (the fixed sequences of the system and their negative orbit) that
admit the same coding. The underlying reason is that these pairs of sequences
correspond to the same point for the associated circle rotation.

An important question is then to identify all possible coding sequences for
Sturmian sequences. It turns out that the admissible coding sequences form
a sofic system, defined by a simple automaton, and even a shift of finite type
for a well-chosen coding procedure. (We recall that a sofic system is a set
of sequences that are given as labels of infinite paths on a finite graph with
labelled edges, while a subshift of finite type is a set of sequences defined by
a finite number of forbidden words. Is is easy to check that a subshift of finite
type is sofic, while the converse is not true: for example, the set of sequences
that contain only runs of 0’s of even length is a sofic system, given by a very
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simple graph, and it is not of finite type. More details shall be found in Chap.
7.)

A last remark: it is possible to code a given sequence, or the language
associated with this sequence; coding the language is the same thing as asso-
ciating a coding sequence with the dynamical system generated by the given
sequence. We will first, since it is easier, recode Sturmian systems; a system
is completely defined by its frequency α, and in Sec. 6.4, we will see that the
coding we get is closely related to the continued fraction expansion of α. The
coding sequence for a rotation sequence defines the angle α and the initial
point β, and we will give arithmetical interpretations of these codings in Sec.
6.4.

6.3.1 Recoding a Sturmian sequence

From now on, and for the rest of this chapter, unless specifically
stated, we consider only biinfinite Sturmian sequences: some basic
propositions in the sequel are false for one-sided sequences, and the recoding
process is more delicate to define for such sequences (although this is possible,
as indicated in exercises).

As we remarked at the beginning, in a Sturmian sequence, one of the
letters is always isolated. We recall that the sequence is of type 0 if 1 is
isolated, of type 1 otherwise. It is clear that any Sturmian sequence of type
0 can be written using only the words 0 and 10. We will make this formal:

Definition 6.3.1. We denote by σ0 the substitution defined by σ0(0) = 0,
σ0(1) = 10, and by σ1 the substitution defined by σ1(0) = 01, σ1(1) = 1.
We will also later use the substitutions τ0 and τ1 defined in a symmetric way
by τ0(0) = 0, τ0(1) = 01, and τ1(0) = 10, τ1(1) = 1.

These substitutions extend in a natural way to finite words (as morphism
of the free monoid), to infinite sequences, and to biinfinite sequences:

Definition 6.3.2. Let σ be a substitution, and let v be a biinfinite se-
quence; the image u = σ(v) of v by σ is the only biinfinite sequence such
that, for all positive integers n, σ(v0v1 . . . vn) is a prefix of u0u1 . . ., and
σ(v−n . . . v−2 . . . v−1) is a suffix of . . . u−2u−1.

Lemma 6.3.3. If u is Sturmian of type 0 (respectively type 1), then there
exists a unique v such that either u = σ0(v), or u = Sσ0(v) (respectively
u = σ1(v) or u = Sσ1(v)).

Exercise 6.3.4. Give a formal proof of this lemma; remark that an image
u = σ0(v) can never satisfy u−1u0 = 10, hence the shift Sσ0(v) is necessary
in that case; remark also that the lemma is false for infinite sequences: a
sequence u of type 0 whose first letter is 0 can be written both as σ0(v), with
v0 = 0, and as Sσ0(v), with v0 = 1. This is the main advantage of working
with biinfinite sequences.
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The remarkable fact is that v is Sturmian:

Lemma 6.3.5. A biinfinite sequence v is Sturmian, if and only if σ0(v) is
Sturmian.

Proof. It is easy to prove that v is positively eventually periodic if and
only if σ0(v) is positively eventually periodic. Hence we can restrict to the
case where both v and σ0(v) are not eventually periodic.

Suppose that v is Sturmian. If σ0(v) is not Sturmian, by Lemma 6.1.7,
there is a (possibly empty) word W such that 1W1 and 0W0 occur in σ0(v).
But σ0(v), by construction, contains only isolated 1’s. Hence we can write
W = 0V 0, and V 0 = σ0(V ′). Then, taking inverse images, v must contain
1V ′1 and 0V ′0, which is impossible.

Suppose that v is not Sturmian; again, there is a (possibly empty) word
W such that 0W0 and 1W1 occur in v. Since the sequence v is biinfinite, it
contains the word a0W0, where a is an arbitrary letter. Then σ0(v) contains
the words σ0(1)σ0(W )σ0(1) = 10σ0(W )10 and σ0(a)σ0(0)σ0(W )σ0(0) =
σ0(a)0σ0(W )0. Because, in any case, σ0(a) ends with 0, we see that σ0(v)
contains the words 10σ0(W )1 and 00σ0(W )0: therefore, it is not balanced.

Using Lemma 6.3.5, we can define a “recoding map” on Sturmian se-
quences:

Definition 6.3.6. We denote by Φ : Σ → Σ the map defined by Φ(u) = v,
where v is the unique sequence such that u = σi(v), if it exists, or else the
unique sequence such that u = Sσi(v), with i = 0 or 1.

Note that a similar definition for one-sided sequence would be more dif-
ficult, since we loose in that case the unicity of the recoded sequence; see
Exercise 6.3.11 at the end of this section.

Definition 6.3.7. We denote by Σ0 (respectively Σ1) the set of Sturmian
sequences of type 0 (respectively 1).

We denote by Σ0
0 (respectively Σ1

0 , Σ0
1 , Σ1

1 ) the set of Sturmian sequences
of type 0 such that the initial letter is 0 (respectively of sequences of type 0
with initial letter 1, of type 1 with initial letter 0, of type 1 with initial letter
1).

This partition is nicely related to the map Φ:

Exercise 6.3.8. Prove the following properties:

1. u = σ0(Φ(u)) if and only if u ∈ Σ0 and u and Φ(u) have the same initial
letter.

2. u = Sσ0(Φ(u)) if and only if u ∈ Σ0 and u and Φ(u) have a different
initial letter, in which case u0 = 0 and Φ(u)0 = 1.
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3. Φ(Σ0
0 ) = Φ(Σ1

1 ) = Σ, and Φ restricted to Σ0
0 (respectively Σ1

1 ) is one-
to-one.

4. Φ(Σ1
0 ) = Σ1

0 ∪Σ1
1 , and Φ restricted to Σ1

0 is one-to-one.

This exercise proves, among other things, that the partition by the four
sets Σa

ε is a Markov partition for the map Φ (see Chap. 7 for a precise
definition of Markov partitions).

Associated with these partitions, we can define maps that will be useful
in the next subsections:

Definition 6.3.9. We denote by τ (for “type”) the map τ : Σ → {0, 1}
defined by τ(u) = 0 if u is of type 0, τ(u) = 1 if u is of type 1.

We denote by η the map η : Σ → {0,1}, u �→ u0 that sends u to its initial
letter.

We denote by γ the map defined by γ(u) = (τ(u), η(u)). This map tells
us in which of the sets Σj

i is the sequence u.

It is easy to prove that the fixed sequences, as defined in the previous
section, behave nicely under the map Φ.

Exercise 6.3.10. Prove that, if u and u′ are a pair of fixed sequences that
differ exactly at indices 0 and 1, the same is true for the recoded sequences
Φ(u) and Φ(u′).

It is also possible to define a recoding map for one-sided infinite sequences,
but there are some technical problems, as shown in the following exercise.

Exercise 6.3.11. 1. Prove that, for any one-sided sequence u of type 0,
there exists a unique sequence v such that u = σ0(v), and that Sv is
Sturmian.

2. Prove that v is not always Sturmian.
3. Prove that, if u, of type 0, is not a special sequence, there exists a unique

Sturmian sequence v such either u = σ0(v) or u = Sσ0(v).
4. Prove that if u is a special sequence of type 0, there exists a special

sequences v such that u = σ0(0v) = Sσ0(1v).

It is now possible, by iterating the map Φ and coding with respect to a
partition (that is, by using maps τ or γ), to associate a coding sequence with
any biinfinite Sturmian sequence. We will do so in the next subsection for
the fixed sequences, giving a very simple rule for their generation, and for
Sturmian systems; we consider general Sturmian sequences in the following
subsection.

6.3.2 Coding sequences for Sturmian systems

We can recode Sturmian systems, by using the following lemma:

Lemma 6.3.12. Let u and u′ two Sturmian sequences in the same Sturmian
system X; if u and u′ are recoded respectively to v and v′, v and v′ belong to
the same Sturmian system. In particular, v and v′ have the same type.
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Proof. We can suppose that u and u′ are of type 0. It is enough to prove
that, if V is the initial word of v of length n, it occurs in v′. But V must occur
infinitely often in v, otherwise Skv should be of complexity at most P (n) = n
for some k, and should be eventually periodic. Hence we can suppose that
V is included in some word W , occurring in v, that starts with 1; the word
σ0(W ) occurs in u, so it occurs in u′, and, because it begins with 1 and ends
with 0, it can be recoded in only one way by σ0, as W . This proves that W ,
and V , occur in v′.

This lemma shows that, for any Sturmian sequence, u, the coding sequence
(τ(Φn(u)))n∈N only depends on the Sturmian system Xu.

Definition 6.3.13. The (additive) coding sequence of a Sturmian system
X, is the sequence τ(Φn(u)))n∈N, for any sequence u ∈ X.

This definition raises two natural questions: what are the admissible se-
quences, that is, the sequences that can occur as coding sequence for a Stur-
mian system? Is a Sturmian system completely defined by its additive coding
sequence? We have a complete and constructive answer for the latter ques-
tion:

Proposition 6.3.14. A Sturmian system is completely defined by its addi-
tive coding sequence.

Proof. We will be a little more precise, and prove that at least one (in fact
both) of the fixed points of the system is completely defined by the additive
coding sequence.

Let (in)n∈N be the coding sequence, with in = 0 or 1. Using Exercise
6.3.10, we see that the two fixed points u, u′ (with u0 = 0, u′0 = 1) of
the system can be written u = σi0σi1 . . . σin(v) and u′ = σi0σi1 . . . σin(v′),
where v (respectively v′) is the fixed point of the recoded system that has
same initial letter as u (respectively u′). It is then enough to prove that an
arbitrarily long initial word of one of the 2 sequences u or u′ is determined,
independently of v and v′.

Indeed, define the sequences of finite words Un+1 = σi0σi1 . . . σin(0) and
U ′n+1 = σi0σi1 . . . σin(1). It is immediate that the words Un (respectively U ′n)
are prefix of u (respectively u′), and it is easy to prove that the sequence |Un|+
|U ′n| is strictly increasing; hence at least one of these sequences of words has a
length that tends to infinite, so that it completely defines the corresponding
fixed word. The other one is obtained from the first by exchanging the initial
0 and 1. But then the language, hence the system, is completely determined.

Exercise 6.3.15 (Rauzy rules). There is a very simple way to compute
these initial words: let in be a sequence of 0’s and 1’s which is not eventually
constant, and let Un and U ′n be the sequence of words defined by:
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• U0 = 0, U ′0 = 1;
• Un+1 = Un, U ′n+1 = U ′nUn if in = 0,
• Un+1 = UnU

′
n, U ′n+1 = U ′n if in = 1.

1. Prove that Un (respectively U ′n) are initial words of the fixed point that
has 0 (respectively 1) as initial letter in the Sturmian system with coding
sequence (in).

2. Prove that, except for U0 or U ′0, all the words Un and U ′n are suffixes of
the same infinite negative sequence, and that this sequence is a Sturmian
sequence with two right extensions.

3. Prove that if we remove from Un or U ′n a prefix of length 2, the remain-
ing part is a palindrome; the words that we obtain in this way are the
bispecial factors.

A first application of this coding is the following:

Proposition 6.3.16. The system generated by a Sturmian sequence is min-
imal.

Proof. Recall that a system is minimal if it does not contain a nonempty
closed invariant subset, or equivalently, if the orbit of any element is dense.

If the system generated by u is not minimal, it contains a sequence v
whose orbit is not dense. Then, there is a word U that occurs in u, but not
in v. This implies that pv(n) < n + 1 for some n, so that v is eventually
periodic. Because the language of v is contained in that of u, there is a finite
nonempty word W such that Wn occurs in u for all n. We will prove that
this is impossible.

Since the sequence u is balanced, it cannot contain sequences of 0 or 1
of arbitrary length. Hence, W cannot be constant. Suppose that u is of type
0; after a cyclic permutation, we can suppose that the word W begins with
1 and ends with 0, and W can be recoded in a unique way in a word W ′

which is strictly shorter. Consider the sequence u′ obtained by recoding u: its
language contains all the powers of W ′. We can iterate the procedure, and
at each step we reduce the length of the word whose powers all belong to the
language. After a finite number of steps, we get a word of length 1, so that
the corresponding Sturmian sequence contains arbitrarily long sequences of
0 or 1: we just saw that this is impossible (we recover here the results of
Exercise 6.1.14).

Exercise 6.3.17. Prove directly, using Exercise 6.1.12, that a Sturmian dy-
namical system is minimal, and deduce that every point in this system is a
Sturmian sequence, with the same frequency.

It is now easy to find the admissibility condition for additive coding se-
quences, thus solving the question above:

Proposition 6.3.18. A sequence with value in {0, 1} is an admissible coding
sequence for a Sturmian system if and only if 0 and 1 occur an infinite number
of times, or equivalently if and only if it is not eventually constant.
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Proof. Consider a Sturmian sequence of type 0; let k be the minimum
number of 0’s between two 1’s occurring in the sequence. Then the sequence
can be recoded exactly k times using σ0, to a sequence of type 1. By the
same argument, any string of 0 or 1 in the additive coding sequence must be
of finite length, and the sequence cannot be eventually constant.

Conversely, given a not eventually constant sequence, consider the set of
words Un = σi0(σi1(· · · (σin(0)) · · · )) of Exercise 6.3.15; it is easy to prove
that these words are prefix of each other, and define a Sturmian sequence.
The associated system has the given sequence (in)n∈N as coding sequence.

We can rewrite in another way the additive coding of X. If we group
strings of 0 and 1, we can write the sequence as 0a01a1 . . . 0a2n1a2n+1 . . ..

Definition 6.3.19. This sequence (an) of integers, all strictly positive except
maybe a0, is called the multiplicative coding sequence for the system.

We will see in the next part that this sequence is closely related to the
frequency α: it is in fact the continued fraction expansion of 1−α

α . The first
sequence is related to the additive algorithm for the continued fraction ex-
pansion of the same number, this is the reason for the name.

The following is an immediate consequence of the previous proposition:

Proposition 6.3.20. A sequence (an) of integers is an admissible multi-
plicative coding sequences if and only if a0 ≥ 0 and an > 0 for n ≥ 1.

The first integer can be 0, because of our convention that a0 is the number
of leading 0’s, and the sequence could be of type 1.

Exercise 6.3.21. It is also possible to consider balanced eventually periodic
sequences. Prove that the associated dynamical system is countable, with
one finite orbit and one or two countable orbits asymptotic to the finite
orbit in both directions, and that, with this system, one can associate an
additive coding sequence that is eventually constant; prove that the frequency
of such a system is rational. (Hint: you can start by considering the sequences
defined in a self-evident notation by: 0∞, 0∞10∞, and (01)∞, (01)∞(10)∞,
(10)∞(01)∞.)

6.3.3 Coding sequences for Sturmian sequences

We saw in the preceding subsection that any Sturmian system can be defined
in a unique way by its additive coding sequence, related to a sequence of
substitutions. We would like to do the same thing with a Sturmian sequence,
that is, to associate with it a coding sequence that defines it in a unique way.

Definition 6.3.22. Let u be a Sturmian sequence. The additive coding se-
quence of u is the sequence (γ(Φn(u)))n∈N.
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The two usual questions arise: does the additive coding sequence com-
pletely define the Sturmian sequence? What are the admissible coding se-
quences?

Proposition 6.3.23. The additive coding sequence completely defines the
Sturmian sequence, except if it is in the negative orbit of the fixed points;
pairs of preimages of same rank of the two fixed points of a system have the
same coding.

The admissible sequences are the non-eventually constant sequences of
vertices for infinite paths in the graph of Fig. 6.3, where we have represented
all the possible transitions, labeling each edge by the corresponding transfor-
mation (we have given each vertex the name of the set Σa

ε instead of (ε,a)).
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Fig. 6.3. The transition graph for additive coding.

Proof. Let us first examine the admissibility condition.
It is clear that if a sequence u is equal to Sσ0Φ(u), then γ(u) = (0,0) (it

is of type 0, because we use substitution σ0, and it begins with Sσ0(1) = 0),
and we have γ(Φ(u)) = (0,1) or (1,1). A similar study for the other cases
proves that the possible arrows must be as indicated on Fig. 6.3. Hence, all
admissible coding sequences must correspond to paths in the graph.

As we saw above, there must be an infinite number of changes of type
in the sequence (Φn(u)); this is equivalent to saying that the path must not
be eventually constant, since any path staying on the upper or lower level is
eventually constant.

It remains to prove that any non-eventually constant path in the graph
is admissible.

Consider now an infinite path in the graph, and the corresponding se-
quence (εn,an). From this sequence, we deduce a sequence cn, with cn = σεn
or Sσεn (if there exists a sequence u with coding sequence (εn,an), we must
have Φn(u) = cnΦ

n+1(u)).
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The sequence of words c0c1 . . . cn(an+1) defines an increasingly large part
uin . . . u0 . . . ujn of u. If both in and jn are unbounded, the Sturmian se-
quence u is completely defined by (εn,an); hence it exists, and the sequence
is admissible.

If in is bounded, then after a finite time there are no more shifts, and cn
is eventually of the form σ0 or σ1. Without loss of generality, we can suppose
that all the cn are of this form, or equivalently, that all the Φn(u) have same
initial letter, and (an) is constant. But then, it is clear that u must be one
of the two fixed points (the choice of the fixed point is given by the letter).
Remark that, formally, only the positive part of the sequence is defined by
the coding; however, the fixed point has a unique left extension, since it is
in the negative orbit of the special sequence, and so it cannot be also in its
positive orbit. Hence in that case also, the sequence is admissible.

There remains to check the case of a bounded sequence (jn). It is then
constant after a finite time, and we can suppose, replacing u by a suitable
Φn(u), that jn = 0 for all n. But then, the path on the graph must be
restricted to the diagonal, since σ0(1) and σ1(0) cannot occur. It is easy to
check that this diagonal path is the additive coding sequence of the preimages
of the two special points. Hence, this sequence also is admissible, but it does
not completely define the Sturmian sequence.

We have proved that all non-eventually constant paths are admissible,
and that they define a unique Sturmian sequence, except in the case when
they restrict eventually to the diagonal; such paths define a pair of preimages
of same order of the two fixed points of some Sturmian system.

Remark. The basic idea of the theorem is that, in a Sturmian system,
there is a one-to-one correspondence between Sturmian sequences and coding
sequences, except on a countable set (negative orbit of the special sequence),
but the precise details can seem puzzling. We will make the picture more
clear in the next section: with a Sturmian system, we will associate a rotation
on the circle. With any point of the circle, we associate a unique Sturmian
sequence and a unique coding sequence, except for the orbit of 0; each point
of the positive orbit of 0 corresponds to a pair of Sturmian sequences, and to
a pair of coding sequences that are eventually, one of the form (εn,0) and the
other one of the form (εn,1); each point of the negative orbit of 0 corresponds
to a pair of Sturmian sequences and a unique coding sequence.

Exercise 6.3.24. We had to exclude from consideration eventually constant
coding sequences; it would be nicer to allow also these sequences, so that the
set of admissible sequences should be defined by an automaton. Explain how
this could be done, by allowing all balanced sequences, including eventually
periodic sequences.

Remark. Let (εn,an) be an additive coding sequence for a Sturmian se-
quence u, and consider the natural projection of this sequence to (εn); the
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latter sequence is an additive coding sequence for a Sturmian system X, and
it is immediate to check that u belongs to X.

It is also possible to characterize an orbit of the Sturmian system in this
way:

Lemma 6.3.25. Let u be a Sturmian sequence, and v = Sku. Then there
exists k′ ≤ k such that Φ(v) = Sk

′
Φ(u) is a recoded sequence for u. Moreover,

if u is of type 0 (respectively 1), we have k′ = k if and only if u0 . . . uk−1 =
0 . . .0 (respectively u0 . . . uk−1 = 1 . . .1).

Proof. Suppose that u is of type 0. Then there is a unique k′ such that
σ0(Sk

′
Φ(u)) = v or Sσ0(Sk

′
Φ(u)) = v, so that Sk

′
Φ(u) is Φ(v). A simple case

study shows that k′ < k, except if all the first letters of u are 0.

Proposition 6.3.26. Let u be a Sturmian sequence, and v = Sku. Then
Φn(u) coincides eventually with Φn(v), except if u is in the negative orbit of
a fixed point, and v in the positive orbit of this fixed point.

Proof. By the preceding lemma, we have Φn(v) = SknΦn(u), where kn
is a decreasing sequence of integers. If it tends to 0, the proof is finished.
Otherwise, it is constant, equal to k after a rank N . This means that, for
n > N , un begins with k 0’s if it is of type 0, and with k 1’s if it is of type
1. It suffices to consider the case of a sequence of type 0 that recodes to a
sequence of type 1 (this must occur infinitely often in the family) to check
that we must have k = 1. We must then have Φn(v) = σiΦ

n+1(v) for n ≥ N ,
hence ΦN (v) is a fixed point of its system. We conclude that v must be in the
positive orbit of a fixed point, and u in the negative orbit of the same fixed
point.

6.3.4 Multiplicative coding sequences for Sturmian sequences

As in Sec. 6.3.2, we can rearrange the additive coding sequence in blocks of
symbols of same type 0 or 1. The idea is to “accelerate” the coding map Φ.

Definition 6.3.27. We define the map Ψ : Σ → Σ by Ψ(u) = Φnu(u), where
nu is the smallest strictly positive integer such that Φn(u) is not of the same
type as u.

It is clear from the graph in Fig. 6.3 that, if u is of type 0, we have
u = σa0Ψ(u) if u and Ψ(u) have same initial letter, and u = σn0Sσ0σ

p
0 if they

have different initial letter; in the latter case, the initial letter of u is 0, and
the initial letter of Ψ(u) is 1.

We can simplify this expression, using the following exercise:

Exercise 6.3.28. Prove that, if v is a sequence with initial letter 1, we have
the equality σn0 (Su) = Sn+1σn0 (u).



170 6. Sturmian Sequences

Hence, if u is of type 0, we can always write u = Skσa0Ψ(u), with 0 ≤ k ≤
a, and a similar property for Sturmian sequences of type 1; this is a more
convenient way to denote the blocks.

Definition 6.3.29. The first multiplicative coding sequence of a Sturmian
sequence u is the unique sequence (an, kn) such that:

• if u is of type 0, Ψn(u) = Sknσanεn Ψ
n+1(u), with εn = n mod 2;

• if u is of type 1, (a0, k0) = (0, 0) and Ψn(u) = Skn+1σ
an+1
εn Ψn+1(u), with

εn = n+ 1 mod 2.

This expression gives a different role to sequences of type 0 and 1; the
reason is that the sequence (an, kn) does not indicate the type of the initial
substitution. If one insists on keeping the symmetry, it is possible to add to
the coding sequence the type of the Sturmian sequence, and we can then
suppose a0 > 0.

The properties of this multiplicative coding sequences are summarized in
the following theorem:

Theorem 6.3.30. The admissible multiplicative coding sequences are the
double sequences of integer (an, kn), with a0 ≥ 0, an > 0 if n > 0, and
0 ≤ kn ≤ an, that are labels of paths in the infinite graph of Fig. 6.4.
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Fig. 6.4. The transition graph for multiplicative coding.

Each Sturmian sequence admits a unique multiplicative coding sequence.
Each coding sequence defines a unique Sturmian sequence, except the se-

quences that satisfy kn = 0 for all n, which define the two fixed points of a
system, and the sequences that satisfy eventually kn = an, which define two
preimages of the same order of the two fixed points.

Proof. The admissibility condition is immediate by looking at the graph
for additive coding sequence: it suffices to consider all finite paths that stay
on one level, except for the last state. The unicity condition is then just a
reformulation of the additive case.
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Exercise 6.3.31. Reformulate the definition of the coding sequence by
defining a Markov partition for the map Ψ (it may be convenient to change
slightly the definition to make it more symmetric with respect to type).

We can reformulate the admissibility condition:

Proposition 6.3.32. A sequence (an, kn) is an admissible multiplicative
coding sequence if it satisfies a0 ≥ 0, an > 0 if n > 0, 0 ≤ kn ≤ an,
and the additional condition: in the sequence (kn), any maximal block of 0,
except maybe the initial block, is of even length.

Proof. After coding by Skσa0 , with k > 0, we must be in state (1, 1). If
we recode by σb1, we get to the state (0, 1), and it is clear on the graph that
the next coding symbol can only be of the type σc0; the proof is then clear by
induction.

The set of admissible coding sequences forms what we call a sofic system
(on an infinite alphabet), since it is defined by the set of admissible paths
on a graph with a finite number of vertices; it is however not a finite type
system (that is, a symbolic system where we can check whether a sequence
is admissible by looking at subwords of bounded lengths), since we might
need to consider arbitrarily long words to check whether a given sequence is
admissible. We will make a small modification to improve this.

As we remarked at the beginning of this section, when we recode a se-
quence u of type 0, it is not always possible to write u = σ0(v); we have
then the choice to write u = Sσ0(v), or u = S−1σ0(w), where v0 = 1 and
w = Sv. If we recode n times, and if we call σ the product of the n substi-
tutions involved, the first viewpoint leads to u = Skσ(v), and the second to
u = S−bσ(w), where (if k > 0) w = Sv. If v0 = a, we check that k+b = |σ(a)|.

We can build another coding, the second multiplicative coding sequence,
using this idea; we just state the theorem, and explain the relation to the
first coding sequence:

Theorem 6.3.33. For any Sturmian sequence u, we can define a sequence
(an, bn), with bn ≤ an, and a family of recoded Sturmian sequences w(n),
such that w(2n) = S−b2nσ0(w(2n+1)) and w(2n+1) = S−b2n+1σ1(w(2n+2)). The
coding sequence (an, bn) is uniquely defined. The sequence (an, bn) uniquely
defines the sequence u, except if bn is eventually 0, in which case it defines
two preimages of the same order of the two fixed points.

The set of admissible sequences is completely characterized by the follow-
ing properties:

• all the an are strictly positive integers, except maybe the first one;
• the integers bn satisfy bn ≤ an;
• if bn+1 = an+1, then bn = 0.

These admissibility conditions are summarized in the graph of Fig. 6.5.
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Fig. 6.5. The transition graph for the second multiplicative coding.

We leave the proof as an exercise, since it is completely similar to the
preceding one, the basic idea being to study precisely the first step of the
coding process.

Definition 6.3.34. The sequence (an, bn) is called the second multiplicative
coding of u.

The interest of this second coding is that the admissibility condition is
now of finite type; we see that, as for the first multiplicative coding, there
is a one-to-one relation between Sturmian sequences and coding sequences,
except on the orbit of the fixed sequences. It is in fact easy to compute one
of the coding sequences, knowing the other, by the next proposition:

Proposition 6.3.35. Let u be a Sturmian sequence not in the positive orbit
of the fixed sequences, and let (an, kn) and (an, bn) be the first and second
multiplicative coding sequence of u. Let N = inf{n ∈ N|kn �= 0}.

• For n < N , we have bn = kn = 0.
• bN = 1 + aN − kN �= 0.
• For n > N and kn �= 0, we have bn = an − kn.
• For n > N and kn = 0, if kn−1 = bn−1 = 0, then bn = an; otherwise,
bn = 0.

Proof. The idea is to consider the family of recoded sequences v(n) and
w(n) associated with the two coding processes; it is easy to prove that w(n) =
v(n) for n < N , and w(n) = Sv(n) for n ≥ N . The condition then follows, by
studying the first letter of vn.

Exercise 6.3.36. Define a map and a partition associated with this coding;
prove that the map is infinite-to-one.

Exercise 6.3.37. Explain how one could define a similar coding for infinite
(one-sided) Sturmian sequences. (Hint: it does not make sense in this setting
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to write u = S−bσ(w); however, it is possible to write, in a unique way under
suitable conditions, u = Xσ(w), where X = 0b or X = 1b, depending on the
type of u. One obtains in this way what is sometime called a prefix coding of
u.)

6.3.5 The dual additive coding for Sturmian sequences

In this section, we will define another coding that will be useful in Secs. 6.4
and 6.6. We leave the proofs to the reader.

As we stated at the beginning of this part, the choice of the two substi-
tutions σ0, σ1 is somewhat arbitrary. We could use the substitutions τ0, such
that τ0(0) = 0, and τ0(1) = 01, and τ1, such that τ1(0) = 10, and τ1(1) = 1
(this last one amounts to grouping any isolated 0 in a sequence of type 1
with the preceding 1, instead of the following 1). We can then recode any
sequence of type 1 as τ1(v) or Sτ1(v).

It is then possible to associate with each Sturmian sequence a dual coding
sequence, using now (σ0, Sσ0, τ1, Sτ1), as we did before.

It is now possible to associate with the pair (σ0, τ1) a dual multiplicative
coding: first group the substitutions in blocks τan1 and σan0 ; then recode the
given sequence as u = Sknσan0 (v) or u = Sknτan1 (v), depending on the case.
Now, define a sequence bn in the following way (this will be justified by the
geometry in Sec. 6.6):

First consider the case when u is of type 0, so that u = Skσa0 (v):

• if v0 = 0 (hence u0 = 0 and k = 0) we define b = a;
• if v0 = 1 then b = sup(0, k − 1).

Then consider the case when u is of type 1, so that u = Skτa1 (v):

• if v0 = 1 (hence u0 = 1 and k = 0) we define b = a;
• if v0 = 0 then b = sup(0, a− 1− k).

Exercise 6.3.38. Prove that, in this way, one can associate with any Stur-
mian sequence a double sequence of integers (an, bn), where (an) is the coding
sequence for the Sturmian system, and bn satisfies 0 ≤ bn ≤ an, and bn = an
implies bn+1 = 0.

Remark. For this coding, the admissibility condition is a condition of finite
type, which is exactly similar to the condition we obtained in the last section,
except that the direction is reversed; this is why we call this the dual coding.
The next section gives an arithmetic and dynamic natural interpretation to
this strange coding.

Exercise 6.3.39 (Review Exercise). The reader may feel confused by this
variety of recoding sequences; we can organize them in a more systematic way.
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We saw before that any coding map will use, for sequences of type 0, one
of the two substitutions σ0, τ0, and the shift S or its inverse, and similarly
for sequences of type 1. This gives 16 elementary coding maps.

We will denote Φε0,δ0,ε1,δ1 , with all subscripts equal +1 or −1, the coding
map given, on sequences of type 0, by the use of σ0 if ε0 = 1 and τ0 if ε0 = −1,
and Sσ0 or Sτ0 if δ0 = 1, or S−1σ0 or S−1τ0 if δ0 = −1, and similarly for
sequences of type 1, so that, for example, the map Φ defined above is equal
to Φ1,1,1,1.

It is quite obvious that these coding are not all completely different, and
we can make this more precise.

Let E be the flip that exchanges 0 and 1 (it is the trivial substitution
0 �→ 1, 1 �→ 0).

1. Prove that E is a one-to-one map on the set of all Sturmian sequences,
and that it conjugates Φε0,δ0,ε1,δ1 to Φε1,δ1,ε0,δ0 .
Let R be the retrogression map, that is, the map that takes u the the
retrograde sequence defined by vn = u−1−n (this map reads u backwards,
and exchange the positive and the strictly negative part of the sequence;
for many reasons, it turns out to be useful to have no fixed letter, as one
would get by the natural definition vn = u−n).

2. Prove that R is a one-to-one map on the set of Sturmian sequences, and
that it preserves all Sturmian systems.

3. Prove that R conjugates Φε0,δ0,ε1,δ1 and Φ−ε0,−δ0,−ε1,−δ1 .
4. Prove that we obtain in this way 6 classes of coding maps globally in-

variant by flip and exchange, 2 of them with 4 members, and 4 of them
with 2 members.

5. Prove that the coding sequence of a Sturmian system does not depend
on the choice of the coding map.

Remark. See [211], where an expansion of Sturmian sequences of the same
type as above is used to get an explicit formula which computes the supremum
of all real numbers p > 0 for which there exist arbitrarily long prefixes which
are pth-powers.

6.3.6 Dynamical systems on coding sequences

The set of additive or multiplicative coding sequences is invariant by the shift;
in this way, we can define a dynamical system, by shifting coding sequences.
It is important to note that this new dynamical system is completely different
from the Sturmian dynamical systems we considered in previous sections.

Let us denote by Γ the set of additive coding sequences; there is an almost
one-to-one map from the set Σ of biinfinite Sturmian sequences to γ. This
map conjugates the map Φ on Σ to the shift on Γ . It is easy to check that Φ
is at least 2-to-1, and one can prove that it is of strictly positive topological
entropy, and ergodic for a suitable measure (this is clear on Γ , since it is an
irreducible shift of finite type).
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One can also consider the shift on the set of all Sturmian sequences; we
saw above that it is a union of disjoint Sturmian systems. To each Sturmian
system, we can associate the coding sequences with a given sequence of sub-
stitutions; it is then possible to write explicitly the map corresponding on
coding sequences to the Sturmian shift. This is what is called an adic system,
and it is somewhat similar to an odometer; in particular, it satisfies a kind
of commutation relation with the shift on coding sequences.

Exercise 6.3.40. Let (an, kn) be the first multiplicative coding sequence
of a Sturmian sequence u; write down explicitly the multiplicative coding
sequence for Su. Do the same for the second multiplicative coding sequence,
and for the dual multiplicative coding.

6.4 Sturmian sequences. Arithmetic properties and
continued fractions

The main purpose of this section is to make effective the coding sequence we
defined above.

More precisely, if we are given a Sturmian sequence, we have explained
how to obtain, using the map Φ, its coding sequence. We now associate with
a given multiplicative coding sequence (an, bn), a rotation sequence whose
angle and initial point are defined by explicit arithmetic formulas in term of
an and bn, using continued fraction expansion and Ostrowski expansion.

This proves in a constructive way that every Sturmian sequence is a ro-
tation sequence.

In the first subsection, we study the induction of a rotation on a subinter-
val, and show that it is directly related to the recoding of Sturmian sequences.
We show that there are several possibilities for induction, in one-to-one re-
lation with the different recoding processes we already explained. We give
explicit arithmetic formulas for a particular induction, obtained by iteration
of the induction on the image of the largest continuity interval.

In Secs. 6.4.2 and 6.4.3, we give without proofs the basic facts on continued
fractions and Ostrowski expansion; we apply these formulas in Sec. 6.4.4 to
recover the angle and initial point of a rotation sequence from its coding
sequence. We pay particular attention there to the possibility of multiple
coding, and its geometric and arithmetic meaning.

We survey in Sec. 6.4.5 some other possibilities of induction algorithm,
and in particular Rauzy induction and its link with the dual multiplicative
algorithm.

6.4.1 Induction of rotations and recoding of rotation sequences

To make the following computations easier, we make a slight change of nota-
tion; we consider a rotation as an exchange of two intervals, and we renormal-
ize these intervals so that the larger interval has length one. We can suppose
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without loss of generality that the largest interval is on the left (that is, the
sequence is of type 0), and we denote by θ the length of the smallest one.

To be more formal, we are now studying the map R:

R : [−1, θ[→ [−1, θ[
x �→ x+ θ if x < 0
x �→ x− 1 if x ≥ 0.

For the corresponding standard rotation, defined on [0, 1[, the angle α is given
by α = θ

1+θ .
The map R has two continuity intervals, which we will denote by I0 =

[−1, 0[ and I1 = [0, θ[; we also give names to their images J0 = R(I0) =
[θ − 1, θ[ and J1 = R(I1) = [−1, θ − 1[.

Definition 6.4.1. The induced map of R on J0, denoted by R|J0 , is the map
defined on J0 by R|J0(x) = Rnx(x), where nx is the first return time of x to
J0, nx = inf{n > 0|Rn(x) ∈ J0}.

This map is directly related to the previous section; to make this relation
explicit, we first define itineraries with respect to a partition.

Definition 6.4.2. Let T : X → X be a map, and (Xi)i∈A be a partition of
X.

For any point x ∈ X, the itinerary of x under T with respect to the
partition (Xi)i∈A is the sequence u, with values in the set A of indices of the
partition, defined by un = i if Tn(x) ∈ Xi.

Remark. It is immediate to show that the itinerary of any point under R
with respect to the partition (I0, I1) (or J0, J1) is a rotation sequence, in the
sense of Sec. 6.1.2.

Exercise 6.4.3. Explain how the angle and initial point are changed when
we apply to the sequence the flip E and the retrogression R defined in the
previous section.

Use this to prove that, in any Sturmian system generated by a rotation
sequence, there are exactly two sequences that are invariant under retrogres-
sion (these are the biinfinite equivalent of the palindromes of even length;
there is also one sequence that is invariant by the map that takes u to v
defined by vn = u−n, it is the biinfinite equivalent of palindromes of odd
length).

Give another characterization of these sequences: they are the coding of an
orbit of the square billiards that hits the middle of a side; the other invariant
sequence, generated by odd palindromes, is the coding of an orbit through
the center of the square, and the fixed sequences are the two possible coding
of an orbit through a corner; it is almost a palindrome, up to the two initial
letters.
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Lemma 6.4.4. The map R|J0 is again a rotation (or an exchange of 2 in-
tervals).

If x is a point of J0, let u be the itinerary of x under the map R with
respect to the partition I0, I1, and v be the itinerary of x under the induced
map R|J0 with respect to the partition (I0 ∩ J0, I1 ∩ J0).

We have u = σ0(v).
If x is in J1, then both R(x) and R−1(x) are in J0; in that case, let u be

the itinerary of x with respect to the partition (I0, I1), and v (respectively w)
be the itinerary of R−1(x) (respectively R(x)) under the induced map R|J0

with respect to the partition (I0 ∩ J0, I1 ∩ J0).
We have u = Sσ0(v) = S−1σ0(w).

Exercise 6.4.5. Prove the lemma.

Remark. We see that the induction is the exact analogue of the recoding
process defined in Sec. 6.3.1. Sequences of type 0 correspond to rotations
where the interval on the left (I0) is the longest (this is the case we considered
above), and sequences of type 1 to rotations for which the interval on the right
is the largest. When we iterate the induction, we alternate between sequences
of type 0 and sequences of type 1.

We have the choice for the induction interval; we described above the
induction on J0, but we could also induce on I0, using substitution τ0.

We see also that we have the choice of images or preimages for points out
of the induction interval; this corresponds to recoding using either the shift,
or its inverse.

Exercise 6.4.6. Give a geometric model for the coding maps Φε0,δ0,ε1,δ1
defined in the previous section, in terms of induction; characterize in each
case the unique point that is in the intersection of all the induction domains.
In the case under study, it is, in the convention of this section, the point 0, and
this is the reason for choosing this convention. In other cases, like Φ1,1,−1,1,
it is the left extremity of the interval, and it would be more convenient to
keep the initial convention of defining the rotation on [0, 1[.

It is now natural to iterate this induction operation as many times as
possible.

Theorem 6.4.7. let R be, as above, the rotation of parameter θ on [−1, θ[.
Let a =

[ 1
θ

]
. Let R′ be the map defined by

R′ : [−{ 1
θ}, 1[→ [−{ 1

θ}, 1[
x �→ x+ 1 if x < 0
x �→ x− { 1

θ} if x ≥ 0.

For any y ∈ [−{ 1
θ}, 1[, and any integer b such that 0 ≤ b ≤ a, with b = 0

if y > 1− { 1
θ}, define x = θ(y − b).



178 6. Sturmian Sequences

If u is the itinerary of x under R with respect to the partition (I0, I1),
and if v is the itinerary of y under R′ with respect to the natural partition
([−{ 1

θ}, 0[ , [0, 1[), we have:

u = S−bσa0 (v).

Proof. The proof is an immediate consequence of the previous lemma,
once the proposition is rewritten in the good order: x should be given first,
and y computed from x.

First remark that we can induce on the image of the left continuity interval
a times; each time, the left interval decreases by θ, until it becomes of length
1 − aθ < θ; we can then no more use the same induction (the return time
would be larger than 2). If x is in the induction interval, and if u, v are its
itineraries with respect to R and its induced map, iteration of the previous
proposition shows that u = σa0 (v). Otherwise, let b be the return time of x
to the induction interval, and z = x + bθ its first image; it is easy to prove
that z < (a + 1)θ − 1 (See Fig. 6.6), and that, for the itinerary u, v of x, y,
we have u = S−bσa0 (v).

It remains to remark that, to renormalize, we must divide by θ, and we
recover the formulas of the theorem.

Fig. 6.6. Two steps of induction.

Exercise 6.4.8. Explain what happens in the variants, when we use preim-
ages instead of images for those points that are out of the induction interval,
or when we iterate induction on I0.

Exercise 6.4.9. Explain how we can iterate the construction of the previous
theorem. (Hint: we can either change the type of induction, inducing now as
many times as possible on J1, or conjugate the induced map by x �→ −x, so
that we recover the initial situation. This translates to symbolic dynamics by
exchanging 0 and 1.)

6.4.2 Continued fractions

We are interested here only in the combinatorics of the usual continued frac-
tion, not in its approximation and diophantine property. We will give a very
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brief exposition, without proofs, to recall the arithmetic expressions we need.
For more details, see for instance [198, 246].

First of all, we recall that, for any sequence (an)n>0 of strictly positive
integers, the sequence (xn)n>0 defined by

x1 =
1
a1

x2 =
1

a1 +
1
a2

xn =
1

a1 +
1

a2 +
1

. . .+
1
an

converges to a real number x.
Reciprocally, to any irrational number x ∈ [0, 1], there exists a unique

sequence (an)n>0 of strictly positive integers such that x is the limit of the
sequence defined above. We denote this by:

x =
1

a1 +
1

a2 +
1

. . .+
1

an + . . .

.

It is also customary to note: x = [0; a1, . . . , an, . . .]. We can generalize
this expansion to all irrational numbers by replacing the initial 0 by a0 = [x],
hence the presence of the initial 0; as we will only consider numbers in the
interval [0, 1], we always have a0 = 0.

Definition 6.4.10. Let x = [0; a1, . . . , an, . . .]. The integers an are called the
partial quotients of x.

The rational numbers
pn

qn
=

1

a1 +
1

a2 +
1

. . .+
1
an

are called the convergents of

x.

Exercise 6.4.11. Prove that the convergents satisfy the following relation:
pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 for n > 2.

Exercise 6.4.12. Prove that any rational number can be also written as
a continued fraction, but now the sequence is finite, and it is not uniquely
defined: to each rational number correspond exactly two continued fraction
expansions, of the form [0; a1, . . . , an, 1] and [0; a1, . . . , an + 1].

We will use the following facts:
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Proposition 6.4.13. Let T :]0, 1[→ [0, 1[, x �→ { 1
x}, and F :]0, 1[→ N, x→[ 1

x

]
.
For any irrational number x ∈]0, 1[, the partial quotients of x are given

by an = F (Tn−1(x)).
Define βn = (−1)nT (x)T 2(x) . . . Tn(x). We have:

∀n ∈ N, qnα− pn = βn.

Remark. There is a nice way to explain the continued fraction algorithm,
which is directly related to the previous subsection. Consider two intervals,
of respective length α and β; we suppose that α < β, and that the ratio is
x = α

β . Now subtract α from β as many times (that is, a1 = [βα ] times) as
you can. The remaining interval is now smaller than α; subtract it from α,
obtaining a new integer a2, and iterate. It is not difficult to check that we
obtain in this way the continued fraction expansion of x. If we start with a
normalized interval β = 1, we can check that the successive lengths are the
absolute values of the numbers qnα− pn = βn defined above.

In the rational case, the algorithms terminates after a finite number of
steps; we can suppose that both intervals are of integer length, and in that
case this is exactly Euclid’s algorithm.

This algorithm, however, gives information only on the lengths of the
intervals; the induction process gives also information on orbits of particular
points, and we will see that we can account for that by a small change in
this algorithm: instead of deleting some intervals, we stack them over other
intervals, thus building what is called “Rokhlin towers” (see Chap. 5).

6.4.3 The Ostrowski numeration system

We first define the Ostrowski numeration system on the integers. For more
details, see [197, 224, 238, 239, 310, 319, 414, 439] and see also the survey
[78].

Let (an)n>0 be a sequence of strictly positive integers, and let qn be
the sequence recursively defined by q0 = 1, q1 = a1, qn = anqn−1 + qn−2
for n ≥ 2 (the qn are the denominators of the convergents of the number
θ = [0; a1, . . . , an, . . .]). We have the following proposition:

Proposition 6.4.14 (The Ostrowski numeration system on the in-
tegers). Any integer k ≥ 0 can be written as k =

∑N
n=1 bnqn−1, where the

coefficients bn are integers such that 0 ≤ bn ≤ an, and bn = an implies
bn−1 = 0.

Proof. It is clear from definition that the sequence qn is strictly increasing.
We apply the greedy algorithm: let N be the largest integer such that qN−1 ≤
k. Let bN = [ k

qN−1
]. It is clear that bN ≤ aN , otherwise we should have

qN < (aN + 1)qN ≤ k. The integer k− aNqN−1 is strictly smaller than qN−1,
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and if bN = aN , it must be strictly smaller than qN−2, otherwise we should
have qN = aNqN−1 + qN−2 ≤ k. The result is then clear by induction.

Exercise 6.4.15. Prove that the expansion is unique, and that all possible
expansions are completely characterized by the nonstationary Markov condi-
tion 0 ≤ bn ≤ an, and bn = an implies bn−1 = 0.

This numeration system translates to a numeration system on the real
numbers in the following way. We fix as above a sequence (an)n>0 of partial
quotients corresponding to a real irrational number θ. We define θ0 = θ, θn =
Tn(θ), where T is the Gauss map T (x) = { 1

x}, and βn = (−1)n+1θ0θ1 . . . θn.

Theorem 6.4.16 (The Ostrowski numeration system on real num-
bers). Any real number x ∈ [−1, θ] can be written as x =

∑∞
n=1 bnβn, where

the coefficients bn are integers such that 0 ≤ bn ≤ an, and bn = an implies
bn−1 = 0.

Exercise 6.4.17. Prove the theorem; examine the unicity of the expansion,
and the characterization of admissible expansions. (Hint: it can be useful to
prove first the recurrence relation βn = anβn−1 + βn−2.)

Remark. Note that there are infinitely many Ostrowski systems, one for
each sequence of partial quotients.

It is also possible to define a dual Ostrowski numeration system:

Theorem 6.4.18 (The dual Ostrowski numeration system on real
numbers). Any real number x ∈ [0, 1 + θ] can be written x =

∑∞
n=1 bn|βn|,

where the coefficients bn are integers such that 0 ≤ bn ≤ an, and bn = an
implies bn+1 = 0.

Proof. The proof here is simpler than in the preceding theorem; the se-
quence |βn| is a strictly decreasing sequence of positive real numbers. Hence,
we can apply a kind of greedy algorithm: we consider the smallest n such that
|βn| < x, and we subtract |βn| from x as many times as possible. The num-
bers |βn| satisfy a recurrence relation that immediately implies the Markov
condition.

This dual numeration system, as the preceding one, is associated with a
numeration system on the integers, but this time on negative and positive
integers:

Proposition 6.4.19. Any integer k ∈ Z can be written in a unique way
k =
∑N
n=1 bn(−1)nqn−1, where the coefficients bn are integers such that 0 ≤

bn ≤ an, and bn = an implies bn+1 = 0.

Exercise 6.4.20. Prove this proposition.
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Remark. It is important for the sequel, particularly for Sec. 6.6, to remark
that, in the dual numeration system, the Markov condition, compared to that
of the original numeration system, has changed direction: when bn = an, we
obtain a condition on the next coefficient, and not the previous coefficient.

6.4.4 Sturmian sequences and arithmetic

Consider now, in the notation defined at the beginning of this section (ro-
tation on the interval [−1, θ[), a rotation sequence u of type 0, of unknown
angle θ and initial point x; that is, the sequence is given as the itinerary of
the point x under the rotation with respect to the partition (I0, I1). We want
to recover the angle and initial point from the symbolic sequence u.

We associate with the sequence u its second multiplicative coding (an, bn)
as defined in Sec. 6.3.4. We can then recover θ and x as follows:

Theorem 6.4.21. Let u be a rotation sequence which is the itinerary of a
point x under the rotation of angle θ on [−1, θ[. Let (an, bn) be the second
multiplicative coding of u. We have:

θ = [0; a1, a2, . . . , an, . . .],

that is, (an) is the continued fraction expansion of θ.
Moreover, if we define as above θ0 = θ, θn = Tn(θ), where T is the Gauss

map T (x) = { 1
x}, and βn = (−1)n+1θ0θ1 . . . θn, we have:

x =
∞∑
n=1

bnβn,

that is, the sequence (bn) is the Ostrowski expansion of x with respect to the
sequence (an).

Proof. We know by hypothesis that u is a rotation sequence. The sec-
ond multiplicative coding process gives a family u(n) of sequences, such that
u(n) = S−bn+1σ

an+1
0 (u(n+1)) or u(n) = S−bn+1σ

an+1
1 (u(n+1)), depending on

the parity of n. With each of these sequences are associated an angle θn and
an initial point xn; but Theorem 6.4.7 gives us the relation between these
quantities, namely θn = 1

an+1+θn+1
and xn = θn(xn+1 − bn+1); the proof of

the theorem follows.

We obtain now a constructive proof that any Sturmian sequence is a
rotation sequence (for more details, see [37], and also [316, 439]):

Theorem 6.4.22. Every Sturmian sequence is a rotation sequence, whose
angle and initial point are explicitly determined by the second multiplicative
coding.
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Proof. Let u be a Sturmian sequence, and let (an, bn) be its second mul-
tiplicative coding.

Consider the numbers θ whose continued fraction is (an), and x whose
Ostrowski expansion with respect to (an) is (bn). These define a rotation
sequence, whose second multiplicative coding is, by construction, the same
as that of u. Hence this rotation sequence is equal to u.

Remark. Strictly speaking, we should have discussed the orbit of the fixed
point, since for these sequences, the additive or multiplicative coding does not
completely define the sequence; however, the two sequences obtained differ
only in two positions, and if one is a rotation sequence, so does the other, the
only difference being whether one uses right-closed or left closed intervals.

6.4.5 Arithmetic of the dual coding

We defined in the end of the previous section a dual multiplicative coding;
this can be interpreted in term of the dual Ostrowski expansion.

Theorem 6.4.23. Let u be a Sturmian sequence of type 0, and let (an, bn) be
its dual arithmetic coding. Let θ = [0; a1, . . . , an, . . .], and let y be the positive
real number whose dual Ostrowski expansion, with respect to the sequence
(an), is (bn). The sequence u can be obtained as the coding, under the rotation
of angle θ on [0, 1+θ[, of the point x defined by x = y if u0 = 0, and x = 1+y
if u0 = 1.

Exercise 6.4.24. Prove this theorem; we must use here a different kind of
induction, called Rauzy induction, where we always induce on the longest of
I0 and J1. A geometric proof of this fact will be given in Sec. 6.6

Exercise 6.4.25. Work out the arithmetic formulas associated with the var-
ious coding maps we defined in the previous section, and their multiplicative
counterpart. It might be useful to determine first the point whose expansion
is 0: this is the intersection point of the successive induction domains that
was the subject of Exercise 6.4.6.

6.5 Sturmian substitutions. Dynamical interpretations

6.5.1 Some classical theorems on periodic continued fractions

The numbers whose continued fraction expansion is periodic are specially
interesting, and we have two classical theorems:

Theorem 6.5.1 (Lagrange’s theorem). The continued fraction expansion
of x is eventually periodic if and only if x is a quadratic number.
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The “only if” part is easy, and analogues of it are easily proved for all
known generalized continued fraction algorithms; one way to prove it is that,
if the expansion is periodic, one can write x = R(x), where R is a rational
fraction with integer coefficients; one can also write a matrix form of the con-
tinued fraction expansion, and look at eigenvectors of a matrix in SL(2,Z);
the “if” part is more difficult, and does not generalize easily to multidimen-
sional algorithms, although some cases are known.

Theorem 6.5.2 (Galois’ theorem). The continued fraction of x is purely
periodic if and only if x is a quadratic integer in [0, 1] whose conjugate is
smaller than -1.

6.5.2 Sturmian systems with periodic coding

We are interested in Sturmian systems and sequences whose coding is peri-
odic; these are linked with quadratic numbers, by the two previous theorems.

Let X be a Sturmian system with periodic coding; we can suppose that
its multiplicative coding is given by a sequence (an)n>0 of period d, that is,
an+d = an. We can suppose that d is even (otherwise, just consider the double
of the period). In that case, it is easy to check that the map Ψd, defined in
Sec. 6.3 preserves Ω. (If d were odd, the map Ψd would send X on the flipped
system E(X).)

Another way to explain that is to remark that, for any element of X, we
can consider the second multiplicative coding (an, bn)n∈N; the sequence (an)
depends only on the system, and it is periodic of period d. The sequence (bn)
satisfies a Markov condition, and it is immediate to check that the set of
coding sequences for elements of X is not invariant by S, but it is invariant
by Sd; grouping the coding sequence in blocks of length d, we obtain a shift
of finite type.

We can be more explicit: let us denote by σ the composed substitution
σ = σa1

0 σ
a1
1 σ

a3
0 . . . σad1 . Then the fixed points of the system X are the fixed

points of σ; the system X is the substitutive dynamical system associated
with σ. Any element u ∈ X can be written in a unique way u = Skσ(v), with
k < |σ(v0)|; we have of course v = Ψd(u), and the map Ψd can be seen as
some kind of inverse of σ on X.

Exercise 6.5.3. Prove that the sequence (kn)n∈N obtained by iteration com-
pletely defines the initial Sturmian sequence u, except if kn is ultimately zero,
in which case we obtain points in the positive orbits of the two fixed points.

Exercise 6.5.4. Instead of giving just numbers kn, one could give the cor-
responding prefixes of σ(v0).

1. Explain what kind of prefixes can arise.
2. Characterize admissible sequences of prefixes.
3. Explain how one could code with suffixes.
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6.5.3 One-dimensional dynamical systems associated with
Sturmian substitutions

We just explained how, on a Sturmian system with periodic coding, one can
define two dynamics: the shift, and the map Ψd, inverse of the substitution
σ.

We have seen in previous sections, and proved in Sec. 6.4, that there is
a nice geometric model for the shift on a Sturmian system: a rotation on
an interval, coded by the two continuity intervals. It is natural to look for a
geometric model for the map Ψd in this framework. In fact, Sec. 6.4.1 hints
at the possible model: we showed in this section that a variant of the coding
map can be given as a map on an interval, of the form x �→ x

θ + b, where b is
an integer. The problem here is that the domain and the image of this map
are different intervals, the domain corresponding to the initial rotation, and
the image corresponding to the induced rotation.

If however the system has periodic coding of even period d, after inducing
d times we recover the initial rotation, and the composed map is now from
an interval to itself. We see that this composed map is locally an homothety
of constant factor λ = θ0θ1 . . . θd−1, where θ0 = θ, the angle of the system,
and θn+1 =

{
1
θn

}
.

Exercise 6.5.5. Prove that λ is the smallest eigenvalue of the matrix asso-
ciated with the substitution σ, and that it is a quadratic integer.

The map Ψd, reduced to the Sturmian system, is in fact associated with
a generalized λ-shift, and we leave to the reader the proof of the following
theorem, which is the essential result of this subsection:

Theorem 6.5.6. Let X be a Sturmian system of type 0, with periodic coding
of even period d. Let R : [−1, θ[→ [−1, θ[ be the corresponding rotation of an-
gle θ, as defined in Sec. 6.4.1. Let σ = σa1

0 σ
a1
1 σ

a3
0 . . . σad1 be the corresponding

substitution, and λ its smallest eigenvalue.
There is a finite partition of the domain of R in intervals K1, . . . ,Kn a

finite set of quadratic numbers d1, . . . , dn in Q[λ], and a map F : [−1, θ[→
[−1, θ[, x �→ x

λ+di if x ∈ Ki such that the rotation sequence u (respectively v)
associated with x (respectively F (x)) under R satisfy v = Ψd(u). Furthermore,
the image of any of the intervals Ki under F is either I0 or I1.

Exercise 6.5.7. Characterize explicitly the set of digits di. (Hint: it is inter-
esting to use here the prefixes of images of the letters under the substitution
σ.)

Exercise 6.5.8. Prove in this setting that the Ostrowski system reduces to
an expansion in powers of λ, with digits in a finite set of quadratic integers;
characterize the set of admissible expansions (it satisfies a Markov condition).
This can be another way to answer the preceding exercise.
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Exercise 6.5.9. Explain what happens if we change the type of the induc-
tion, and how the corresponding map F is changed.

The most simple example is of course the golden number. This does not
fall exactly under the framework of this section, since the minimal period is
1, so it is not even. It is however interesting to work out this case.

Exercise 6.5.10. We consider the Fibonacci substitution defined by σ(0) =
01, σ(1) = 0.

1. Show that the corresponding dynamical system is the rotation by φ, the
golden number.

2. Show that it can be coded by the set of sequences (εn) ∈ {0, 1} such that
εiεi+1 = 0 (that is, the word 11 is not allowed).

3. Show that the induction map admits as geometric model the map [0, 1[→
[0, 1[ x �→ {φx}.

4. Show that this map admits a unique invariant measure absolutely con-
tinuous with respect to Lebesgue measure, and compute this invariant
measure. (Hint: the density is constant on intervals.)

5. Prove that all real numbers in [0,1[ can be written in exactly one way as
x =
∑∞
n=1 εnφ

−n, with (εn) ∈ {0, 1} such that εiεi+1 = 0; explain the
relation with preceding questions.

6. Prove that all real numbers in [−1, φ[ can be written in exactly one way
as x =

∑∞
n=0 εn(−1)nφ−n, with (εn) ∈ {0, 1} such that εiεi+1 = 0; what

is the associated dynamical system?

6.5.4 Two-dimensional dynamical systems related to Sturmian
substitutions

The coding sequences are infinite sequences, with admissibility conditions of
finite type. The shift on these sequences is not a one-to-one map, and the
geometric model we just gave is far from being injective.

It is natural to try to extend the coding sequences to biinfinite sequences,
and to look for a one-to-one system that projects on the given one. This is a
very simple example of what is called natural extension , see [362]; there is
a general abstract way to define the natural extension as an inductive limit,
but we would like to obtain more concrete models.

For a system of finite type, it is natural to consider biinfinite sequences
subject to the same finite type condition. This gives us a first model, as a
two-sided shift of finite type.

We will see in Sec. 6.6 how we can associate with this biinfinite coding
sequence a pair of Sturmian sequences (u+, u−) with same initial letter, by
considering the negative part of the coding as the dual coding for the sequence
u−. The shifted coding sequences is then associated with (Ψd(u+), Skτ(u−))
for a suitable k and τ .
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Another way, more geometric, to understand two-sided coding sequences
is the following: since the coding sequence describes what occurs under induc-
tion, extending this sequence on the left means that we are trying to “exduce”
the given system, that is, to find a larger system of which it is induced on a
suitable set. There is in general no clear way to do this; however, it is possible
in the present case to find a nice representation of this natural extension as
a toral automorphism.

We just give here the idea of the construction, since the details are quite
involved. More details can be found in Sec. 6.6, where we work out the non-
periodic case, and where the combinatorics is simpler, since we use the addi-
tive map Φ.

With a Sturmian system X, one can associate a rotation R on two inter-
vals I0, I1; if X has periodic coding, we can find two intervals I ′0, I

′
1 such that

the induced map of R on these smaller intervals is conjugate by an homoth-
ety to the initial map. The map Ψd corresponds to stacking subintervals over
I ′0, I

′
1; if we know at which level in the stack is the corresponding point, we

can recover the initial point, and “exduce” the transformation. However, if
we have a finite stack, we can exduce only a finite number of times.

The idea is then to consider two rectangles, of respective basis I0, I1,
to cut these rectangles in slices and to stack these slices over I ′0, I

′
1. If we

take for heights the coordinates of an appropriate eigenvector, the final pair
of rectangles will be the image of the initial one by a measure-preserving
dilation.

We show below the figure corresponding to the simplest example, period 2,

continued fraction expansion (1, 1), matrix
(

2 1
1 1

)
, substitution σ(0) = 010,

σ(1) = 10. The figure represents three pairs of rectangle; at each step, we
cut out a part of the largest rectangle, and stack it on the smaller. The initial
figure is made of two squares, of respective side 1 and the golden number.
It is then easy to compute that it is the image of the third by a dilation. If
we compose with this dilation, we obtain a map from a pair of rectangles to
itself, and one can prove that, after suitable identification on the boundary,
this map becomes a toral automorphism corresponding to the matrix of the
substitution σ.

Fig. 6.7. The Fibonacci automorphism.
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Exercise 6.5.11. (sequel of Exercise 6.5.10) We consider the set Ω of biin-
finite sequence (εn)n∈Z, taking values in {0, 1}, and such that there are no
two consecutive ones.

1. let F : Ω → R2 defined by F (ε) = (
∑∞

0 εn(−1)nφ−n,
∑−∞
−1 εnφ

n. What
is the image of F?

2. Prove that the image of F is a fundamental domain for a plane lattice.
Deduce an almost one-to-one map G : Ω → T2.

3. Prove that the shift on Omega is conjugate by G to an hyperbolic toral
automorphism. (This is just an arithmetic reformulation of the geometric
fact shown by Fig. 6.7.)

6.5.5 Similarity of toral automorphisms: the Adler-Weiss theorem

We can recover in this way the Markov coding that was the basis of Adler-
Weiss theorem on similarity of toral automorphism with the same entropy.
For more details, see [6, 7]. It is based on a few simple lemmas:

Lemma 6.5.12. Any hyperbolic matrix in SL(2,Z) is conjugate, in SL(2,Z),
to a matrix with nonnegative coefficients.

Proof. Since the matrix is hyperbolic, it has a contracting and an expand-
ing direction, which both have irrational slope.

But it is easy to prove that, for any two independent vectors U, V with
irrational slope which form an oriented basis, it is possible to find a basis of
Z2 such that U is in the positive cone, and V is in the second quadrant.

Let us do this for a basis formed of an expanding and a contracting vector;
it is clear that, after the change of basis, the image of the positive cone by
the map is included in the positive cone, hence the matrix in the new basis
is nonnegative.

But nonnegative matrix in SL(2,Z) have quite special properties.

Definition 6.5.13. We denote by SL(2,N) the set of nonnegative matrices
in SL(2,Z), that is, the set of matrices with nonnegative integral coefficients
and determinant 1.

Lemma 6.5.14. The set SL(2,N), endowed with the multiplication on ma-

trices, is a free monoid on the two matrices M0 =
(

1 1
0 1

)
and M1 =

(
1 0
1 1

)
.

Exercise 6.5.15. Prove this. (Hint: prove that, unless it is the identity, for

any element
(
a b
c d

)
, one column is bigger than the other, i.e., a ≥ b and

c ≥ d, or a ≤ b and c ≤ d; deduce that this matrix can be decomposed in a
unique way as a product of the two given matrices.)
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We can now associate with that matrix a substitution: with the matrix
M decomposed as

M = Ma1
0 Ma2

1 . . .Mad
1 ,

we associate the substitution σ defined as σa1
0 σ

a2
1 . . . σad1 .

Exercise 6.5.16. Prove that we can now define a fundamental domain for
the torus, made of a pair of rectangles with sides parallels to the eigendirec-
tions; the substitution dynamical system associated with σ corresponds to
the rotation, first return map on the basis of the rectangles of the flow along
the unstable direction; the natural extension of the shift on coding sequences
is the initial toral automorphism.

Show how one can define a dual substitution, associated with the flow
along the stable direction.

In this way, one can associate in a canonical way a Markov coding for
any hyperbolic automorphism of the two-dimensional torus. Adler and Weiss
then proceeded to prove, using this coding, that any two automorphisms with
same entropy are measurably isomorphic (see for instance [7, 6]).

Note that this is a much deeper part: the following exercise shows
that there are automorphisms with same entropy that are not conjugate
in SL(2,Z), and one can prove that these automorphisms cannot be topo-
logically conjugate (one must know that, for an automorphism of the two-
dimensional torus, the entropy is the logarithm of the dominant eigenvalue,
and remark that this only depends on the trace).

Exercise 6.5.17. Give an example of 2 elements of SL(2,N) with same trace
that are not conjugate in SL(2,Z). (Hint: if they are conjugate, they are

conjugate mod 2; consider the matrices
(

1 2
2 5

)
and
(

2 7
1 4

)
.)

6.6 Natural extension for the recoding of Sturmian
sequences

In the preceding section, we worked out a natural extension for the map Ψd

on a Sturmian system with periodic coding of period d.
It is tempting to work out a similar result for the map Φ on the set Σ of

all Sturmian sequences.
From the formal viewpoint, there is no difficulty: in Sec. 6.3.3, we showed

that the sequences (γ(Φn(u)))n∈N give a symbolic model of Φ as a one-sided
shift of finite type on a finite alphabet; to obtain the natural extension, it
suffices to consider the two-sided shift satisfying the same condition.

This abstract version of the natural extension is not very satisfying; we
will give below, first a geometric model, then a symbolic model as a map on
the set of pairs of Sturmian sequences with same initial. For more details, see
for instance [389, 48, 38], and also [44].
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6.6.1 Geometric model for the natural extension: the pairs of
rectangles

We use here the idea of Sec. 6.4. We showed there that, with any Sturmian
sequence, one can associate first a rotation, on a normalized interval [−1, α]
or [−α, 1] depending on the type of the sequence, and a point in this interval,
such that the given Sturmian sequence is the orbit of the given point under
the rotation of angle α or −α.

We showed also that the map Φ amounts to an inducing and stacking
operation; if one can remember the height of stacking, and not only the
resulting induced map, it is possible to recover from the sequence Φ(u) the
initial sequence u. However, if one considers only stacks of integer heights,
one can only recover a finite number of preimages.

It works better if one considers real heights for the stacks.
Let us now consider pairs of rectangles, such that:

• one rectangle has width 1, and the other irrational width α < 1;
• the total area is 1;
• both rectangles have a common lower vertex in (0, 0), and empty intersec-

tion;
• there is a distinguished point (x, y).

We can now define a map on the set of all these pairs of marked rectangles,
by cutting a slice of width α of the larger rectangle, stacking it on the narrower
rectangle, and renormalizing by a measure-preserving dilation so that the size
of the new larger rectangle becomes 1 (see Fig. 6.8).

Fig. 6.8. The stacking map.

It is clear, for geometric reasons, that this map is one-to-one (one can now
“unstack”, using the rectangle of larger height), and it obviously projects to
Φ, just by forgetting the heights.
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Definition 6.6.1. We denote by ∆a the set of 6-tuples (a, b, c, d, x, y) ∈ R6

such that: a, b, c, d are all nonnegative, sup(a, b) = 1, ad+bc = 1, −a ≤ x ≤ b,
and 0 ≤ y < d if x < 0, O ≤ y < c if x ≥ 0.

We denote by ∆a,0 the set of elements of ∆a such that a = 1 > b, and
∆a,1 its complement (elements of ∆a such that a < b = 1).

Of course, these equations just define the set of marked rectangles, with
four variables for the shape of the rectangles, and two variables for the marked
point; this set is really of dimension 4, because of the two relations sup(a, b) =
1 and ad + bc = 1 (the total area is 1); remark that, to recover traditional
notations, d is the height of the rectangle of width a, not of the rectangle
of width b. Hence, in each of the two sets ∆a,0, ∆a,1, we can reduce to four
coordinates, namely, the width and height of the narrower rectangle, and the
coordinates of the marked points. We leave it as an exercise to prove that, in
these coordinates, the analytic form of the map is given as follows:

Definition 6.6.2. We denote by Φ̃ the map defined on ∆a,1 by:

• if a < 1/2;

(a, d, x, y) �→
(

a

1− a, (d+ 1− ad)(1− a), x

1− a, y(1− a)
)

if x < 1− a;

(a, d, x, y) �→
(

a

1− a, (d+ 1− ad)(1− a), x− 1
1− a , (y + d)(1− a)

)
if x≥ 1− a;

• if a > 1/2;

(a, d, x, y) �→
(

1− a
a
, (1− ad)a, x

a
, ya

)
if x < 1− a;

(a, d, x, y) �→
(

1− a
a
, (1− ad)a, x− 1

a
, (y + d)a

)
if x ≥ 1− a;

• the case a = 1/2 is degenerate.

The map Φ̃ is defined by similar formulas on ∆a,0.

Remark that it is very easy to prove that the map preserves the Lebesgue
measure (for the coordinates (a, d, x, y) on ∆a,1), since the Jacobian is 1; the
total mass of this measure is infinite.

Exercise 6.6.3. Strictly speaking, this definition is correct only on a set
of measure one; explain what should be done, in term of strict and large
inequality and of irrational numbers, so that the map be defined everywhere.

We can of course iterate this map; we can define pair of rectangles of type
0 (if the widest rectangle is on the left), and of type 1 (if it is on the right),
and we can define a “multiplicative map” Ψ̃ by iterating until we change type.
It is easy to compute this iterated map:
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Definition 6.6.4. We denote by ∆m the set of marked pairs of rectangles
such that the widest rectangle is also the highest one (that is, in the above
notations, a > b is equivalent to d > c); we denote by ∆m,0 the subset such
a = 1, ∆m,1 the subset such that b = 1.

Definition 6.6.5. The map Ψ̃ is defined on ∆m,1 by:

(a, d, x, y) �→
({

1
a

}
, a− da2,

x

a
, ya

)
if x < a

{
1
a

}
;

(a, d, x, y) �→
({

1
a

}
, a− da2,−

{
1− x
a

}
, ya+ da+ (a− da2)

⌊
1− x
a

⌋)

if x ≥ l
{

1
l

}
,

and similarly on ∆m,0.

Exercise 6.6.6. Prove that this map preserves Lebesgue measure, and that
this invariant measure in finite, of measure 2 ln 2. (Hint: by definition of ∆m,1,
one has d < c, hence d(a+ 1) < 1.)

Exercise 6.6.7. Prove that this map factors over the classical continued
fraction map, and also over a two-dimensional continued fraction, and over a
natural extension of the usual continued fraction.

Exercise 6.6.8. Prove that the maps Φ̃ and Ψ̃ are one-to-one (except on a
set of measure zero, as explained in Exercise 6.6.3 above), and compute the
reciprocal maps.

Exercise 6.6.9. Explain how one can obtain, using map Ψ̃ , a two-sided se-
quence (an, kn) of nonnegative integers, and how one can recover the initial
coordinates from this two-sided sequence. (Hint: difficult; this sequence is
related to, but not equal to, the Ostrowski expansion considered in Sec. 6.4.)

6.6.2 Symbolic model for the natural extension: pairs of Sturmian
sequences

We can at this point recover the initial Sturmian sequence. The idea is to
identify, by a rotation, the upper and lower sides of the pair of rectangles,
and also the free left and right sides. The quotient space is easily seen to be
a torus (a more formal way to see it is proposed in the next exercise).

Exercise 6.6.10. Prove that any pair of rectangles that share a lower vertex
at (0, 0) and whose interior do not intersect tile the plane periodically, and
express the group Γ of the tiling as a function of the height and width of the
rectangles.

Deduce that there is a natural identification on the boundary such that,
modulo this identification, the pair of rectangles becomes isomorphic to the
torus R2/Γ .
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This torus comes with two natural flows: a vertical flow ((x, y) �→ (x, y+t))
and a horizontal flow ((x, y) �→ (x + t, y); any vertical trajectory cuts the
two rectangles, and we obtain in this way a sequence un, itinerary of this
trajectory with respect to the two rectangles; it is an easy exercise to prove
that this sequence is in fact a rotation sequence.

One can do the same with the horizontal flow, and obtain in this way
another Sturmian sequence v; remark that we have, by definition, u0 = v0.

We can then give another symbolic model for the natural extension of the
map Φ, as a map on the set of pairs of Sturmian sequences (u, v) with same
initial, that takes (u, v) to (u′, v′), where (u′, v′) are the Sturmian sequences
that correspond to the marked point (x, y) in the new “stacked” domain; one
has clearly u′ = Φ(u).

Exercise 6.6.11. Explain how one can compute v′ from u and v. (Hint: use
Fig.6.8.)

It is obviously possible to iterate this map, and we obtain in this way a
natural extension of the map Ψ .

Exercise 6.6.12. Explain how one can give Markov symbolic dynamics for
the maps Φ̃ and Ψ̃ , and their symbolic counterparts.

Show that u (respectively v) determines the future (respectively the past)
of this symbolic dynamics.

Make explicit the dual algorithm that determines v as a function of the
past symbolic dynamics.

Remark. This is the origin of the dual coding exposed in Sec. 6.3.5. It
seems quite difficult to find this dual coding in a purely combinatorial way,
without any geometric insight.

6.6.3 The geodesic flow on the modular surface

It is clear that, if we do not know exactly the sequence u, but only the
corresponding Sturmian system, we cannot determine the abscissa of the
marked point x, but only the width of the rectangles, and similarly for the
sequence v.

This amounts to forgetting (x, y) in the above formulas for maps Φ and
Ψ ; we thus obtain a map on a subset of the plane that is a natural extension
of the continued fraction map.

There is a nice way to represent this: we consider the space of lattices of co-
volume one of the plane; this set is naturally isomorphic to SL(2,Z)\SL(2,R).

Exercise 6.6.13. Prove that SL(2,R) is isomorphic to the set of oriented
basis of R2 such that the unit square has area 1.

Prove that SL(2,Z) is the group of automorphisms of Z2.
Deduce that SL(2,Z)\SL(2,R) is the space of lattices of the plane of

covolume 1.
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There is a natural action on this set of lattices, by diagonal matrices

gt =
(
e
t
2 0

0 e−
t
2

)
.

It is possible to prove that each lattice admits a fundamental domain
shaped as a pair of rectangles; those lattices for which one of the rectangles
has area 1 form a section of the flow, and the map Φ̃ is in fact, if we forget
the marked point, a first return map to this section.

Exercise 6.6.14. Work out the section corresponding to the map Ψ , find
the return time to this section and prove that the space SL(2,Z)\SL(2,R)
has finite volume.

Exercise 6.6.15. The flow gt is usually called the geodesic flow on the
modular surface, for a reason explained in this exercise.

One consider the set H = {x + iy ∈ C|y > 0} (Poincaré half plane),
endowed with the metric dx2+dy2

y2

1. Prove that the group SL(2,R) acts on H by:(
a b
c d

)
.z =

az + b
cz + d

.

2. Prove that it is an action by isometries (that is, z �→M.z is an isometry).
3. Prove that SL(2,R) acts transitively on H and on T 1H, deduce that
T 1H is isomorphic to PSL(2,R) = SL(2,R)/{Id,−Id} (remark that the
action of −Id is trivial).
We will fix the isomorphism by associating the identity matrix and the
vertical unit vector at i.

4. Prove that the curve iet is a geodesic.
5. Prove that the right action of the group {gt|t ∈ R} defined above on
SL(2,R) is the geodesic flow on the Poincaré half plane.

6. Prove that the quotient of H by the action of SL(2,Z) is a surface with
one cusp and two singular points (conic points of angle π

2 and Pi
3 ). This

surface is called the modular surface.
Hence the action of the one-parameter group gt turns out to be exactly
the geodesic flow on the unit tangent bundle of the modular surface.
Another model of the map Φ could be given in this context.

For more details, see also [48, 61, 388, 389].

6.6.4 The scenery flow

It is possible to find a similar model for the maps Φ and Ψ . The idea is to
consider, not only lattices in the plane, but also cosets of these lattices.

This can be formalized by taking, not linear groups, but affine groups; we
define the group SA(2,R) of measure preserving affine maps of the plane, of
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the form (x, y) �→ (x, y).M+v, where M is a matrix of determinant 1, and v
is an element of R2. It is easy to check that the subset SA(2,Z) of elements
with integral coefficients is a subgroup, and we can consider the left quotient
SA(2,Z)\SA(2,R).

Exercise 6.6.16. Compute the product of the elements (M,v) and (M′,v′)
of SL(2,R) (we use the same convention as in the preceding paragraph).

Show that SA(2,R) is isomorphic to a subgroup of SL(3,R), by

(M,v) �→


M

0
0

v 1


 .

The group SA(2,R) acts on the right on the quotient SA(2,Z)\SA(2,R).
In particular, one can study the action of the flow gt, or scenery flow.

The maps Φ̃ and Ψ̃ turn out to be the first return map of the scenery flow
to a suitable section. For more details, see [49, 38].

We will just remark here that this flow is Anosov, and that it admits a
number of different interpretations (Teichmüller flow on the twice punctured
torus, renormalizations on Sturmian quasi-crystals, see [49]).

6.7 Miscellaneous remarks

6.7.1 Problems of orientation

A recurrent problem in the theory of continued fractions or Sturmian systems
is whether one should use any invertible maps, or only orientation preserving
invertible maps.

For example, the flip substitution E: 0 �→ 1, 1 �→ 0 reverses orientation,
as does the Fibonacci substitution 0 �→ 01, 1 �→ 0.

In this chapter, we have chosen to work only in the orientation preserving
case, that is, with substitutions whose abelianization belongs to SL(2,Z).
This is the reason why, for example, we consider only continued fractions
with even periods.

It is perfectly possible to work with orientation reversing maps, and this
can simplify some results. For example, it is known that two numbers are
equivalent modulo maps z �→ az+b

cz+d , with ad − bc = ±1, if and only if their
continued fraction expansion coincide eventually, up to a power of the shift,
and that they are equivalent modulo SL(2,Z) if and only if their continued
fraction expansion coincide eventually, up to an even power of the shift.

In the same way, one could use only the maps σ0, τ0 and E, and consider
only Sturmian sequences of type 0; each time one obtains sequences of type
1, we just need to apply E to recover a sequence of type 0.
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6.7.2 The circle as completion of N for an adic distance

In Sec. 6.4, we defined the Ostrowski expansion of integers and of real num-
bers; the relation between these two expansions might have seemed unclear
to the reader, and we can give here a nice explanation.

Suppose that a sequence (an)n∈N of strictly positive integers is given, and
consider the associated Ostrowski expansion of the integers.

We define an adic distance on the set of integers in the following way:
let n =

∑
εiqi and m =

∑
δiqi be two integers, we define d(n,m) = 0 if

n = m, and otherwise d(n,m) = 2−k, where k is the smallest integer such
that εk �= δk.

Exercise 6.7.1. Prove that, for this distance, we have limi→∞qi = 0; prove
that N is not a complete space for this distance.

Exercise 6.7.2. Prove that the map n �→ n+1 is continuous for the topology
induced by this distance.

The space N is not complete, but it can be completed:

Exercise 6.7.3. Prove that the completion of N for the Ostrowski distance
is a circle, and that the addition of 1 on N extends to a rotation on this circle.

In fact, this Ostrowski topology on N is none else than the topology
induced by the embedding of N on the circle as the orbit of 0; the fact
that the sequence qn tends to 0 is related to the fact that, if the qn are the
denominators of the convergents of α, |qnα− pn| tends to 0, that is, Rqnα (x)
tends to x for any point x on the circle.

6.7.3 The 16 possible additive codings and their relations

As we explained in Sec. 6.3.5, there are exactly 16 possible additive algo-
rithms. We determined in Exercise 6.3.39 some relations between these algo-
rithms, due to the diverse symmetries given by the flip and the retrogression.

There is another relation: it seems that each algorithm has a dual algo-
rithm, that can be used to build a natural extension. However, the correct
formalism to compute this is at the moment unclear.

The best way seems to be to obtain a suitable fundamental domain,
adapted to the algorithm under study. We show in Fig. 6.9 several possi-
bilities; each one determine an algorithm and a dual algorithm.

When one tries to compute the dual algorithm, a strange difficulty ap-
pears: for some algorithms, the convention of Definition 6.3.2, that is, if
u = σ(v), then u0 is the first letter of σ(v0 is not convenient, and it is
better to define u0 as the last letter of σ(v0; there is no particular reason to
prefer one of these conventions.

The problems are obviously more difficult for the many possible multi-
plicative algorithms; the dual multiplicative algorithm related to Ostrowski
expansion and its dual is the only one for which, guided by arithmetics, we
have succeeded to find explicitly the dual algorithm.
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Fig. 6.9. Some examples of fundamental domains.

6.7.4 Sturmian substitutions and automorphisms of free groups

In Sec. 6.5, we could have raised a more general question: what are the substi-
tutions whose fixed points are Sturmian? These substitutions are completely
known. For more details, see [65, 69, 66] and Chap. 9. They have very re-
markable properties.

Definition 6.7.4. A substitution σ is Sturmian if the image by σ of any
Sturmian sequence is a Sturmian sequence.

Exercise 6.7.5. Prove that the fixed point of a primitive substitution is
Sturmian if and only if this substitution is Sturmian.

Exercise 6.7.6. Prove that the composition of two Sturmian substitutions
is a Sturmian substitution.

Hence, the Sturmian substitutions form a monoid, the Sturm monoid,
which is very well understood. One knows a presentation by generators and
relations (see for instance [66]; a proof of this result is given in Chap. 9).

In particular, σ0, τ0 and the flip E generate the Sturm monoid.
The submonoid generated by τ0 and E is called the monoid of standard

morphisms; it preserves all infinite special words. The submonoid generated
by σ0 and E preserves all fixed words; it contains, as a submonoid of order
2, the monoid generated by σ0 and σ1 = Eσ0E; these are the particular
morphisms we considered in the preceding sections. They have the advantage
to have determinant 1, and to preserve the fixed words.

Note that there are easy tests to check whether a substitution is Sturmian:

Proposition 6.7.7 (see [65]). A primitive substitution σ is Sturmian if
and only if the word σ(10010010100101) is a balanced word.

Proposition 6.7.8 (see [447]). A substitution σ over a two-letter alphabet
is Sturmian if and only if the words σ(01) and σ(10), which have the same
length, differ only in 2 consecutive indices, where 01 is replaced by 10.

This last property has a nice geometric interpretation: with a word on two
letters, one can associate a path in the plane, starting from 0, and going one
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step up for each 1 and one step to the right for each 0. Then the morphism
is Sturmian if and only if the paths corresponding to σ(01) and σ(10) differ
exactly on the boundary of a unit square (see [159]).

Another remarkable fact is that a substitution is Sturmian if and only if
it extends to an isomorphism of the free group on two generators (see [447]
and Chap. 9).

It is not immediately clear whether a word is a fixed word of some substi-
tution; for example, we proved in Exercise 6.1.25 that, if we denote by u the
Fibonacci word, fixed point of the Fibonacci substitution, its two preimages
of order two, 01u and 10u, are also fixed points of a substitution.

It is easy to prove that there can be only a countable number of fixed
points of primitive substitutions, since there is only a countable number of
substitutions, and a primitive substitution has a finite number of fixed points.
One can also prove that, in the case of Sturmian substitutions, the fixed point
of a substitution belongs to a system corresponding to a periodic continued
fraction expansion (i.e., a system with a particular quadratic slope). The
following question is thus natural: what are the Sturmian sequences that are
fixed points of a substitution? For an answer, see [126, 465].

6.7.5 The problem of the Gauss measure

When we work on the set Σ of all biinfinite Sturmian sequences, we would like
to speak of sets of measure 0 (for example, to say that almost all sequences
are completely defined by their coding sequence, or that the union of orbits
of the fixed points is of measure 0).

The problem is that there is no obvious natural measure on Σ.
One could use the map Φ, and look for an invariant measure for this map,

using the fact that it can be coded as a shift of finite type.
However, the most interesting measure should be the pullback of the

Gauss measure, and this can probably be obtained as a Gibbs measure for
the shift of finite type associated with Φ.



7. Spectral theory and geometric
representation of substitutions

From geometry to symbolic dynamics. As explained in Chap. 5, sym-
bolic dynamical systems were first introduced to better understand the dy-
namics of geometric maps. Indeed, by coding the orbits of a dynamical system
with respect to a cleverly chosen finite partition indexed by the alphabet A,
one can replace the initial dynamical system, which may be difficult to un-
derstand, by a simpler dynamical system, that is, the shift map on a subset
of AN.

This old idea was used intensively, up to these days, particularly to study
dynamical systems for which past and future are disjoint, such as toral au-
tomorphisms or pseudo-Anosov diffeomorphisms of surfaces. These systems
with no memory, whose entropy is strictly positive, are coded by subshifts
of finite type, defined by a finite number of forbidden words. Some very
important literature has been devoted to their many properties (see [265]).
The partitions which provide a good description for a topological dynamical
system, leading to a subshift of finite type, are called Markov partitions (a
precise definition will be given in Sec. 7.1).

Self-Similar dynamics: where substitutions naturally appear. For
a dynamical system, it is a usual problem to try to understand the local
structure of its orbits. A classical method to study this problem is to consider
the first return map (Poincaré map) over an appropriate neighborhood of
a given point. For some systems such as toral quadratic rotations or some
interval exchanges with parameters living in a quadratic extension, the system
defined by the first return map on some subset is topologically conjugated to
the original system. One can say that the original dynamical system has a
self-similar structure. A basic idea is that, in general, as soon as self-similarity
appears, a substitution is hidden behind the original dynamical system.

A significant example is the addition ϕ of the golden ratio α on the one-
dimensional torus T: the first return map of this map on the interval [1 −
α, 1[ is the addition of α over T, up to a reversal of the orientation and a
renormalization (see Chap. 6).

Indeed, let us choose the natural partition of T by intervals of continuity
T = I2 ∪ I1, with I2 = [0, 1 − α[ and I1 = [1 − α, 1[. The first return map
1 This chapter has been written by A. Siegel

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 199–252, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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over I1, denoted by ϕ1, is conjugate to the initial map. The conjugacy maps
the initial partition onto a partition J1∪J2 of I1. An easy computation gives
J1 = [1− α, 2− 2α[ and J2 = [2− 2α, 1[. It is immediate to check that J1 is
included in I1, its image is I2 and its second image is included in I1, whereas
J2 is included in I1 and is immediately mapped into the return subset I1.
The Fibonacci substitution 1 �→ 12 and 2 �→ 1 naturally appears here.

More precisely, for any point x ∈ J1, if we denote by w the symbolic
sequence given by the orbit of x with respect to the partition I1 ∪ I2, and by
v the symbolic sequence for the induced map with respect to the partition
J1 ∪ J2, it is clear that w is the image of v by the Fibonacci substitution. In
particular, the symbolic sequence of the unique fixed point of the conjugacy
is the fixed point of the Fibonacci substitution. It is then easy to prove that
all the symbolic sequences associated with points in T belong to the symbolic
dynamical system generated by the substitution (see also Chap. 6).

This situation is quite general: in case of self-similarity, under suitable
hypotheses, the trajectories (with respect to the partition) of points in the
return subset, before they come back into the subset, define a substitution.
In that case, the codings of the trajectories of points of the full system belong
to the symbolic system associated with this substitution (see Chaps. 1 and
5).

Is this a good representation? We have defined a coding map from the
geometric system onto the substitutive system. The question is: how far is
this map from being a bijection?

For the example of the toral addition of the golden ratio, we can define an
inverse map, from the symbolic system onto the torus. It is proved that this
map is continuous, 2-to-1, and 1-to-1 except on a countable set (see Chap. 6);
this is the best possible result, given the fact that one of the sets is connected
and the other one a Cantor set.

For other examples, the question can be much more difficult.
It is natural then to focus on the reverse question: given a substitution,

which self-similar actions are coded by this substitution?
For the Morse substitution, it was proved that the symbolic dynamical

system associated with this substitution is a two-point extension of the dyadic
odometer, that is, the group Z2 of 2-adic integers (see Chap. 5).

The three-letter equivalent of the Fibonacci substitution is the Tribonacci
substitution 1 �→ 12, 2 �→ 13, 3 �→ 1. G. Rauzy, with methods taken from
number theory, proved in 1981 that the symbolic dynamical system asso-
ciated with this substitution is measure-theoretically isomorphic, by a con-
tinuous map, to a domain exchange on a self-similar compact subset of R2

called the Rauzy fractal [350]. Tiling properties of the Rauzy fractal bring
an isomorphism between the substitutive system and a translation on the
two-dimensional torus.

Considering these examples, we see the connection between the search for
a geometric interpretation of symbolic dynamical systems and understanding
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whether substitutive dynamical systems are isomorphic to already known
dynamical systems or if they are new. Since substitutive dynamical systems
are deterministic, i.e., of zero entropy, they are very different from a subshift
of finite type. Hence, the following question is natural: which substitutive
dynamical systems are isomorphic to a rotation on a compact group? More
generally, what is their maximal equicontinuous factor ?

Some history. A precise answer was obtained for substitutions of constant
length during the seventies [230, 231, 281, 131]. We know that the maximal
equicontinuous factor of a substitutive system of constant length l is a trans-
lation on the direct product of the adic group Zl and a finite group. There
exists a measure-theoretic isomorphism between such a substitutive system
and its maximal equicontinuous factor, if and only if the substitution satisfies
a combinatorial condition called the coincidence condition.

It is natural but more difficult to study substitutions of nonconstant
length. G. Rauzy first tackled this question with a complete study of the sys-
tem associated with the Tribonacci substitution [350]. Then, B. Host made a
significant advance by proving that all eigenfunctions of primitive substitu-
tive dynamical systems are continuous [215]. Thus, the two main dynamical
classifications (up to measure-theoretic isomorphism and topological conju-
gacy) are equivalent for primitive substitutive systems. In the continuation of
this, it was proved that the spectrum of a substitutive system can be divided
into two parts. The first part has an arithmetic origin, and depends only on
the incidence matrix of the substitution. The second part has a combinatorial
origin, and is related to the return words associated with the fixed point of
the substitution [168].

Many papers deal with conditions for a substitutive dynamical system to
have a purely discrete spectrum [215, 216, 266, 267, 268, 437, 292, 411, 412,
413, 206]. Some are necessary conditions, others are sufficient conditions.
In particular, P. Michel, B. Host and independently A. N. Livshits, whose
work was restated and generalized by M. Hollander, defined a combinato-
rial condition on two-letter substitutions called coincidence condition, which
generalizes the condition of F. M. Dekking for constant length substitutions,
for two-letter primitive substitutions. This condition is equivalent with the
purely discrete spectrum property.

Except for the Tribonacci substitution [350] and some examples developed
by B. Solomyak [411, 412], these works do not give an explicit realization
of the maximal equicontinuous factor. For every unimodular substitution of
Pisot type on d letters, P. Arnoux and S. Ito build explicitly a self-similar
compact subset of Rd−1 called generalized Rauzy fractal [40]. They generalize
the coincidence condition to all nonconstant length substitutions, and prove
that this condition is sufficient for the system first to be semi-topologically
conjugate to a domain exchange on the Rauzy fractal of the substitution,
second to admit as a topological factor a minimal translation on the (d −
1)-dimensional torus. The techniques they use do not provide results for a
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measure-theoretic isomorphism between the substitutive system and its toral
topological translation factor, as is the case for a two-letter alphabet.

An alternative construction of the Rauzy fractal associated with a substi-
tution of Pisot type can be obtained by generalizing the techniques used by
G. Rauzy [350, 353], as developed by V. Canterini and A. Siegel [100, 101].
This construction is based on the use of formal power series, and provides
new proofs for the results of P. Arnoux and S. Ito in [40]. Moreover, this
point of view allows one to give a combinatorial necessary and sufficient
condition for a substitutive unimodular system of Pisot type to be measure-
theoretically isomorphic to its toral topological translation factor [397]. This
has consequences for the construction of explicit Markov partitions for toral
automorphisms, the main eigenvalue of which is a Pisot number [396]. An
interesting feature of those Markov partitions is that their topological and
geometrical properties can be studied, such as connectedness [102], fractal
boundary [289, 291, 290, 39, 207] or simple connectedness [220].

Description of the chapter. The aim of this chapter is to provide a more
precise description of the above results. We have no claim to be exhaustive
in our exposition since each of the notions we refer to requires a lot of related
material to be exposed in detail.

The aim of Sec. 7.1 is to provide a brief introduction to subshifts of finite
type, related to Markov partitions and self-similarity. The aim of Sec. 7.2 is
to illustrate the deep relationship between substitutive dynamical systems
and shifts of finite type, via the tool of adic transformations.

The entire Sec. 7.3 is devoted to the spectral theory of substitutive dy-
namical systems. Section 7.3.2 presents an overview of the general spectral
theory of substitutive systems of nonconstant length. In Sec. 7.3.3 the main
attention is devoted to the spectral properties of systems associated with the
extensively studied class of substitutions of Pisot type.

In Sec. 7.4 we expose in details the construction and the properties of the
Rauzy fractal defined by G. Rauzy to get a geometric realization of the sys-
tem associated with the Tribonacci substitution. As a fifth part, in Sec. 7.5
we explore in details the construction and properties of the Rauzy fractal for
any substitution of Pisot type. A special attention is devoted to their tiling
properties. Finally, the aim of Sec. 7.6 is to explain how a geometrical rep-
resentation of substitutions of Pisot type provides explicit Markov partitions
for some Pisot toral automorphisms.

7.1 Shifts of finite type: introduction

Our investigation of the properties of substitutive dynamical systems will
need the use of the most well known class of symbolic dynamical systems, that
is, shifts of finite type. These shifts are introduced in Sec. 7.1.1. Geometrically,
shifts of finite type are related to Markov partitions. Section 7.1.2 is devoted
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to them. These Markov partitions can be seen as a generalization of self-
similar tilings, defined in Sec. 7.1.3.

7.1.1 Shifts of finite type

While they have been around implicitly for a long time, the systematic study
of shifts of finite type began with Parry [323], Smale [410] and R. Williams
[460]. A complete presentation can be found in [265].

Definition. Let A be a finite set. Endowed with the shift map, a subset X
of AZ is a bilateral shift of finite type if and only if there exists a finite set
F ⊂ A� of finite words over A such that X is the set of biinfinite words in
AZ which have no factor in F . The subshift X is also denoted XF .

Equipped with the topology on AZ, a shift of finite type is a symbolic
dynamical system, since it is compact and invariant under the shift. One
defines similarly the notion of unilateral shift of finite type.

Example 7.1.1. The bilateral fullshift {1, . . . , d}Z over a d-letter alphabet is
a shift of finite type with no forbidden word.

Example 7.1.2. The golden mean shift of finite type is the set of all binary
sequences with no consecutive 1’s. The associated set of forbidden words is
F = {11}.

Example 7.1.3. The even shift, that is, the set of all binary sequences (that is
sequences over {0, 1}) so that between any two 1’s there are an even number
of 0’s, is not a shift of finite type: it cannot be described by a finite number
of constraints.

Higher presentation. Let (X,S) be a symbolic dynamical system over the
alphabet A. A basic construction defines a new system by looking at the
blocks of consecutive letters in the language of X, and by considering them
as letters from a new alphabet.

Indeed, let n be an integer. The new alphabet is A[n] = Ln(X), that is,
the set of blocks of length n that appear in at least one element of X. Define
the mapping βn : X → (A[n])

Z

by βn(w)i = wi . . . wi+n−1 for all w ∈ X. Let
X [n] = βn(X) and let S[n] denote the shift map over (A[n])

Z

.
Then (X [n], S[n]) is a symbolic dynamical system, called the n-th higher

presentation of (X,S). If (X,S) is a shift of finite type, (X [n], S[n]) is also a
shift of finite type.

Example 7.1.4. The 2-th higher presentation of the golden mean shift of finite
type (Example 7.1.2) is the shift of finite type over the alphabet A[2] = {a =
10, b = 01, c = 00}, associated with the following set of forbidden words:
F [2] = {aa, bb, bc, ca}.
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Graphs. A finite graph G consists of a finite set of vertices or states V to-
gether with a finite set of edges E . If e is an edge, i(e) ∈ V is the initial vertex
and t(e) ∈ V is the terminal vertex. Two vertices can be connected by more
than one edge.

The adjacency matrix of a finite graph G has size the cardinality of V. If
(i, t) ∈ V2, its coefficient of index (i, t) is equal to the number of edges in
E with initial state i and terminal state t. A finite graph is thus uniquely
determined by its adjacency matrix (up to graph isomorphism).

Shift associated with a graph. Let A be a matrix with coefficients in
{0, 1}; the bilateral shift associated with the finite graph G of adjacency matrix
A is defined as the following set of biinfinite paths in the graph G, endowed
with the shift map:

XG = XA = {((en)n∈Z ∈ EZ; ∀n ∈ Z, t(en) = i(en+1)}.

One can easily check that this set is closed and hence compact, and in-
variant under the shift map in VZ.

The unilateral shift is defined as the set of right paths in G, that is, as the
set of paths indexed by N.

Example 7.1.5. The shift associated with the matrix
(

1 1
1 0

)
is the subset of

{a, b, c}N that contains all the labels of walks in the graph shown in Fig. 7.1.

Example 7.1.6. The bilateral full-shift {1, . . . , d}Z over a d-letter alphabet is
the shift associated with the matrix A = [d] of size 1 associated with the
graph shown in Fig. 7.2.

a

b

c

Fig. 7.1. Graph for Example 7.1.5.

d321

Fig. 7.2. Graph for the fullshift over d
letters.

Relationship between the two categories of subshifts. One should
remark that any shift associated with a graph is a shift of finite type: the set
of forbidden words simply consists of pairs of edges ef such that t(e) �= i(f).
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On the contrary, not every shift of finite type is the shift associated with
a graph: for instance, the golden mean shift (Example 7.1.2) cannot be de-
scribed by a graph.

However, any shift of finite type can be recoded, using a higher block
presentation, to be the shift associated with a graph:

Theorem 7.1.7 (see [265]). Let (XF , S) be a shift of finite type. Let M
denotes the maximum of the lengths in F . Then there exists a graph G such
that the shift associated with G is the M -th higher presentation of (X,S).

Example 7.1.8. Up to a recoding of the labels (a = 10, b = 01, c = 00), the
2-th higher presentation of the golden mean shift described in Example 7.1.4,

is the shift associated with the matrix
(

1 1
1 0

)
, given in Example 7.1.5.

This results means that shifts of finite type are essentially the same as
shifts associated with graphs (up to a recoding). From now on, we identify
shifts of finite type and shifts associated with a graph.

Labelled graphs. An automaton (G, t) (also called labelled graph by the set
A) consists of a finite graph G = (V, E) together with a labeling map of the
edges t : E → A.
Sofic systems. Endowed with the shift map, a subset of AZ or AN is called
a (unilateral or bilateral) sofic system if it is defined as the labeling of infinite
(unilateral or bilateral) paths of an automaton. Endowed with the topology
over AZ or AN, such a system is still a symbolic dynamical system.

Example 7.1.9. The set of all binary sequences so that between any two 1’s
there is an even number of 0’s is a sofic system, associated with the automaton
shown in Fig. 7.3. We recall that it is not a shift of finite type.

0

0

1

Fig. 7.3. The graph of Example 7.1.9.

Connection between shifts of finite type and sofic systems. A shift
of finite type is nothing else that a sofic system associated with an automa-
ton whose all edges have different labels. If so, the automaton is said to be
deterministic.

These two categories of symbolic dynamical systems are fundamentally
connected:

Theorem 7.1.10 (see [265]). Any sofic system is a topological factor of a
shift of finite type, and conversely.
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7.1.2 Markov partitions

As we already explained, one of the main sources of interest in symbolic dy-
namics is its use in representing other dynamical systems. Indeed, to describe
the orbits of an invertible map f on a space E , one may divide the space X
into a finite number d of pieces Ei, and then track the orbit of a point z ∈ E
by keeping a record of which of these pieces fn(z) lands in. This defines a
symbolic sequence x ∈ {1 . . . d}Z defined by xn = i, if fn(z) ∈ Ei. In short,
the pieces are said to be a Markov partition of E if, first the set of all sym-
bolic sequences associated with the points of E is a shift of finite type, and,
secondly, the mapping from E onto the subshift which maps any point on its
coding is precise enough. We refer the reader to [265, 243, 244, 395] for more
details on the concepts introduced in this section.

Precise definitions. A topological partition of a metric space E is a finite
collection Λ = {E1, . . . , Ed} of disjoint open sets whose closure covers E , that
is, E = ∪Ei.

Let (E , f) be a dynamical system. If f is invertible, the bilateral symbolic
dynamical system associated with a topological partition Λ is the set XE
endowed with the shift map:

XE = {(xn)n∈Z ∈ {1, . . . , d}Z; ∃z ∈ E , ∀n ∈ Z, fn(z) ∈ Exn}.

If f is non-invertible, the one-sided symbolic dynamical system associated
with a topological partition Λ consists of sequences indexed by N, corre-
sponding to the nonnegative orbits.

Definition 7.1.11. Let (E , f) be an invertible (respectively non-invertible)
dynamical system. A topological partition Λ = {E1, . . . , Ed} of E is said to be
a Markov partition of E if

• the bilateral (respectively one-sided) symbolic dynamical system (XE , S) as-
sociated with Λ is a shift of finite type;

• for every symbolic sequence x ∈ XE , the intersection

+∞⋂
−∞

f−k(Exk)

(
respectively

+∞⋂
k=0

f−k(Exk)

)

consists of exactly one point.

Remarks.

• By definition of the dynamical system XE , the intersection above is never
empty. The fact that it consists of exactly one point means that the coding
mapping from E onto XE is one-to-one.

• There are number of variants on the definition of Markov partition in the
literature, many involving geometry of the pieces Ei. This one is simple to
state but is somewhat weaker than other variants.
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Proposition 7.1.12 (see [265]). Let Λ = {E1, . . . , Ed} be a Markov par-
tition of the invertible (respectively non-invertible) dynamical system (E , f).
Let XE be the bilateral (respectively one-sided) symbolic dynamical system
associated with Λ.

Then the inverse map ϕ : XE → E of the coding mapping is well-defined
as follows:

∀x ∈ XE , {ϕ(x)} =
+∞⋂
−∞

f−k(Exk)

(
respectively

+∞⋂
k=0

f−k(Exk)

)
.

The map ϕ is continuous, onto, and realizes a commutative diagram be-
tween the shift map on XE and f on E, that is, ϕ ◦ S = f ◦ ϕ.

Example. The most simple example of a Markov partition is the doubling
map on the circle: the torus T = R/Z is provided with the non-invertible
action f(z) = 2z mod 1. Subdivide T into two equal subintervals I1 = [0, 1/2)
and I2 = [1/2, 1). The alphabet here shall be A = {1, 2}. For every z ∈ T we
define xn ∈ {1, 2} by fn(z) ∈ Ixn . The sequence x = (xn)n≥0 is an element of
the full-shift {1, 2}N. Notice that x is nothing else that the sequence of digits
of z in its binary expansion. The action of f corresponds to the shift map:
the action of multiplying by 2 an element of T, and taking the rest modulo
1 simply shifts the binary digits to the left and delete the first digit. Hence,
T = I1 ∪ I2 realizes a Markov partition for f .

More generally, Markov partitions can be seen as generalizations of the
binary system (see [245]).

General interest of Markov partitions. Markov partitions allow a good
combinatorial understanding of symbolic dynamical systems. They are par-
titions of a space E which describe by means of a shift of finite type, the
dynamics of a map acting on E , this description preserving properties such
as density of periodic points, transitivity or mixing. The existence of Markov
partitions allows one to deduce from the properties of the shift of finite type a
“quasi-immediate” description of certain dynamical properties of the system.

For instance, Adler and Weiss show in [7] that topological entropy is a
complete invariant for the measure-theoretic isomorphism of continuous er-
godic automorphisms of the torus T2. Their proof is based on the construction
of an explicit Markov partition of the torus T2 with respect to the automor-
phism.

The intersection property. More precisely, Adler and Weiss define a par-
tition of T2 which is natural relatively to a linear automorphism f . The key
to prove that this partition is a Markov partition is the following intersection
property:

• the image under f of the intersection of a cylinder Ei with an affine subspace
directed with the stable direction of f is included in a intersection of the
same type,
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• the image under f−1 of the intersection of a cylinder Ei with an affine sub-
space directed with the unstable direction of f is included in a intersection
of the same type.

In other variants on the definition of Markov partition, this property
appears to be a hypothesis in the definition.

Existence of Markov partitions. R. Bowen in [87] shows that for every
hyperbolic diffeomorphism of a manifold E , there exists a Markov partition
of E . His proof is not constructive.

One should remark that, except for the one and two dimensional-cases,
Markov partitions for toral automorphisms are made of pieces that cannot be
simple parallelograms. Indeed, R. Bowen proved in [89] that for hyperbolic
automorphisms of T3, the boundary of the elements of the Markov partition
are typically fractals: their Haussdorf dimension is not an integer.

Explicit Markov partitions. Markov partitions remained abstract objects
for a long time: except for linear automorphisms of the two-dimensional torus
and some automorphisms of T3 [46, 62, 289, 291, 290], explicit constructions
of Markov partitions for toral hyperbolic automorphisms were obtained only
recently. For precise details about results on this subject, see [245].

Making use of β-developments defined by A. Bertrand-Mathis (see [181]
for a general reference), B. Praggastis [336] builds tilings which induce
Markov partitions for toral hyperbolic automorphisms whose dominant eigen-
value is a unimodular Pisot number. These constructions are particularly
simple and explicit for the automorphisms associated with the compan-
ion matrix of a polynomial of the type xn − d1x

n−1 − · · · − dn, with
d1 ≥ d2 ≥ · · · ≥ dn = 1. Indeed, the β-development associated with the
Pisot roots of such polynomials admits very special properties [180] that are
intensively used by B. Praggastis.

More generally, on the one hand, S. Leborgne [264, 263], on the other
hand, R. Kenyon and A. Vershik [242], study the case of hyperbolic automor-
phisms of Tn, using algebraic properties of the eigenvalues of the automor-
phism to code its action. Just as with B. Praggastis, those codings are based
on a numeration system with a non-integral basis.

Thus, with an equivalent of β-developments, S. Leborgne represents hy-
perbolic automorphisms by sofic systems. Independently, choosing particular
digits in expansions with a non-integral basis, R. Kenyon et A. Vershik con-
struct a representation by a shift of finite type. This representation is not
totally explicit, since the digits are chosen at random.

Relation with substitutions. We will see in Sec. 7.6 how a geometrical
representation of substitutive systems of Pisot type provides a Markov parti-
tion for the incidence matrix of the substitution, the Markov partition being
described by the combinatorial representation in terms of subshifts exposed
in Sec. 7.2.2.
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7.1.3 Self-similarity

Markov partitions usually generate tilings with a specific property: self-
similarity. Let us set up precise definitions about this notion.

Tilings. A collection Λ of compact subsets of Rn is a tiling of a set E which
is the closure of its interior if and only if:

• E = ∪C∈ΛC,
• every element of Λ is the closure of its interior,
• every compact subset of E intersects a finite number of elements of Λ,
• elements of Λ have disjoint interior.

Periodic tilings. The tiling is said to be a periodic tiling of Rn modulo L,
where L is a lattice, if and only if

• Rn = ∪C∈Λ, z∈L (C + z),
• for all z ∈ L, (C + z) ∩ Int C ′ �= ∅ implies z = 0 and C = C ′.

Self-similar sets. A tiling is said to be self-similar if it is invariant under
the action of a given expanding diagonal map in Rn, the image of each tile
under the mapping being an exact union of original tiles. More precise and
general definitions can be found in [243, 244, 431].

A self-similar tiling can be seen as a Markov partition for the expanding
map associated with the tiling, and can be seen as a generalization of the
decimal system, through the theory of the representation of numbers in non-
standard bases (for more details, see [245]).

A compact subset E of Rn is said to be self-similar if there exists a finite
partition of E whose translates under a given lattice generate a self-similar
and periodic tiling of Rn.

7.2 Substitutive dynamical systems and shifts of finite
type

The spectral theory of substitutive systems of constant length was developed
during the seventies (see Sec. 7.3). One of the main problems raised by the
generalization of this theory to substitutions of nonconstant length was to
find a general way to decide positions in which any factor of the fixed point
appears, that is, to “desubstitute” the substitutive system. The important
notion of recognizability deals with this problem. As it will be explained in
Sec. 7.2.1, it took quite a long time to be correctly defined and to get general
results about it.

The problem of recognizability being solved, an important part of the
results on spectral theory of nonconstant length substitutive systems was
obtained by using a deep relationship between substitutive dynamical systems
and an other important class of symbolic dynamical systems, that is, shifts
of finite type. In Sec. 7.2.2 we focus on this relationship.
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In Sec. 7.2.3, we expose how the notion of recognizability allows one to
make explicit the results of Sec. 7.2.2, thanks to the useful tool of prefix-suffix
expansion.

7.2.1 Recognizability

Let σ be a primitive substitution over the alphabet A, and let u be a biinfinite
fixed point of σ. We thus have u = σ(u). Let E1 be the following set of lengths

E1 = {0} ∪ {|σ(u0 . . . up−1)|, |σ(u−p . . . u−1)|; p > 0}.

Since u = σ(u), for every factor W = ui . . . ui+|W |−1 of u, there exists a
rank j, a length l, a suffix S of σ(uj) and a prefix P of σ(uj+l+1) such that

W = Sσ(uj+1) . . . σ(uj+l)P,

and such that E1 ∩ {i, . . . , i+ |W | − 1} = (i− k) +E1 ∩ {k, . . . , k+ |W | − 1},
with k = |σ(u0 . . . uj)| − |S|, which means that it is equivalent to cut u with
respect to σ at the ranks i and k.

We say that [S, σ(uj+1), . . . , σ(uj+l), P ] is the 1-cutting at the rank i of
W , and that W comes from the word uj . . . uj+l+1, which will be called the
ancestor word of W .

By minimality, the factorW appears infinitely many times in the sequence
u. The question of the unicity of the 1-cutting of W is thus natural. Let us
briefly survey the existing literature on this question.

In [282], J. C. Martin calls rank one determined substitutions for which
every long enough factor of a fixed point admits a 1-cutting and an ancestor
word independent from the rank of apparition of the factor. The author claims
that any substitution on a two-letter alphabet which is not shift-periodic is
rank one determined. His proof is not convincing.

Later, B. Host [215] and M. Queffélec [340] introduce the notion of recog-
nizable substitution, that is, substitutions for which the 1-cutting of any long
enough factor is independent of the rank of occurrence of the factor, except
maybe for a suffix of the word, the length of this suffix being bounded. More
precisely, a substitution σ is said to be unilaterally recognizable if there exists
L > 0 such that ui . . . ui+L−1 = uj . . . uj+L−1, with i ∈ E1 implies j ∈ E1.

B. Host proves in [215] that this property is equivalent to the fact that
the image σ(Xσ) under σ of the substitutive dynamical system Xσ associated
with σ is an open set. G. Rauzy announced that he had a short proof of
the fact that a constant length substitution which is one-to-one on the set
of letters and which is not shift-periodic is unilaterally recognizable [340].
Nobody could check this proof. However, a new short proof in this case was
recently obtained in [35]. Concerning substitutions of nonconstant length, the
question remained unsettled.
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In [306], B. Mossé studies the question of unilateral recognizability. She
proves that a substitution is not necessarily unilaterally recognizable: a suf-
ficient condition for a substitution not to be unilaterally recognizable is that
for every couple of distinct letters (a, b), σ(a) is a strict suffix of σ(b), or
conversely.

Example 7.2.1. The substitution 1 �→ 1112 and 2 �→ 12 is not unilaterally
recognizable.

To get a general result of recognizability, B. Mossé introduces a new notion
of recognizable substitution, for which the 1-cutting of any long enough factor
is independent from the rank of apparition of the factor, except maybe for a
suffix and a prefix of the factor, the lengths of those prefixes and suffixes being
bounded. More precisely, a substitution σ is said to be bilaterally recognizable
if there exists L > 0 such that ui−L . . . ui+L = uj−L . . . uj+L, with i ∈ E1
implies j ∈ E1.

The following theorem shows that this notion of recognizability is the
right one:

Theorem 7.2.2 (Mossé [306, 307]). Let σ be a primitive substitution with
a non-periodic fixed point u. Then the substitution σ is bilaterally recognizable,
and the ancestor word of every factor of u is unique except on the end of the
factor: there exists L > 0 such that if ui−L . . . uj+L = ui′−L . . . uj′+L, then
ui . . . uj and ui′ . . . uj′ have the same 1-cutting and the same ancestor word
at ranks i and i′.

Thus, if a substitution is primitive and not shift-periodic, then one can
always desubstitute any factor of the fixed point, except possibly on the ends
of the factor.

Remark. There exist nontrivial substitutions which are shift-periodic, for
instance 1 �→ 121, 2 �→ 21212. It is not so easy to recognize if a substitution
is not shift-periodic. However, this problem is solved thanks to an algorithm
(see [199, 321]).

If we just suppose from now on that σ is a primitive substitution which
is not shift-periodic, σ has not necessarily a fixed point but has at least a
periodic point. Consequently, a power of σ is bilaterally recognizable. Since
the dynamical systems associated with a substitution or with any of its it-
erations are identical, we deduce from Theorem 7.2.2 that any word of the
bilateral symbolic dynamical system Xσ associated with the substitution σ
can be desubstituted in a unique biinfinite word:

Corollary 7.2.3. Let σ be a primitive substitution which is not shift-periodic.
Let Xσ be the substitutive dynamical system associated with σ. Then we have

∀w ∈ Xσ, ∃ v ∈ Xσ, v unique ; w = Skσ(v), and 0 ≤ k < |σ(v0)| .(7.1)
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This corollary means that any word w in Xσ can by cut or desubstituted
in a unique way in the following form:

w = . . . | . . .︸︷︷︸
σ(v−1)

| w−k . . . w−1.w0 . . . wl︸ ︷︷ ︸
σ(v0)

| . . .︸︷︷︸
σ(v1)

| . . .︸︷︷︸
σ(v2)

| . . . (7.2)

where the word v = . . . v−n . . . v−1v0v1 . . . vn . . . belongs to Xσ.

Note that this property is satisfied only by two-sided substitutive dynami-
cal systems, and is not satisfied by a one-sided substitutive dynamical system.
A counter-example is again given by the substitution defined by 1 �→ 1112
and 2 �→ 12.

This notion of recognizability is an important hypothesis used by most
of the authors to get results about the spectrum of substitutive systems of
nonconstant length. Before B. Mossé’s work, most authors had to suppose
that the substitutions they considered were recognizable.

7.2.2 Markov compactum and adic transformation

The object of this section is to focus on a deep relationship between shifts
of finite type and substitutive dynamical systems, which allows one to trans-
pose some of the properties of shifts of finite type to substitutive dynamical
systems. The results of this section will be explicitly illustrated in Sec. 7.2.3,
by using the notion of recognizability exposed in Sec. 7.2.1.

Markov compactum. At the beginning of the eighties, A. M. Vershik de-
fined a new type of dynamical systems, called adic systems, their support
being called Markov compacta [438]. In short, a Markov compactum is the
set of paths in an infinite labeled graph. One can define arbitrary a partial
order between the labels of the edges of the graph, and deduce a partial
order between the elements of the Markov compactum. The choice of the
successor with respect to this partial order is a continuous map called adic
transformation.

A motivation for the introduction of this new family of systems is the ques-
tion of the approximation of ergodic systems. Indeed, every automorphism of
a Lebesgue space with an ergodic invariant measure is measure-theoretically
isomorphic to an adic transformation. One can refer to [438] for more details
about these systems.

Stationary Markov compactum. As a particular case of Markov com-
pactum one can define the notion of stationary Markov compactum. A Markov
compactum is said to be stationary if its graph is a tree and each level of
the tree has the same structure. This implies that a stationary Markov com-
pactum can be defined as a shift of finite type. More precisely, let M be a
d× d matrix, with entries 0 or 1. The stationary Markov compactum associ-
ated with M is the set of the infinite paths in the infinite graph with levels
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indexed by 0, 1, 2 . . . , and having d vertices on each level. The edges connect
vertices of the i-th level with vertices of the i + 1-th level according to the
adjacency matrix M. Thus, the Markov compactum is the following set:

XM = {(xi)i≥0 ∈ {1 . . . d}N; ∀i ≥ 0, Xxi,xi+1 = 1}.

There exists a canonical map which acts on this compactum: the one-
sided shift map defined by T ((xi)i≥0) = (xi)i≥1. This map is a dynamical
system with positive entropy, the properties of which are quite well known.

Partial ordering on the Markov compactum. The edges issued from
a vertex i are totally ordered by the number of the exit vertex of the edge.
From this partial order on vertices can be deduced the following partial order
on the paths XM:

(xi)i≥0 ≺ (yi)i≥0 if there exists i0 such that
{
xi = yi, ∀ i > i0,
xn < yn.

In other words, a path x = (xi)i≥0 is said to precede a path y = (yi)i≥0
if they differ in finitely many terms and in the last such term the edge of x
precedes the edges of y.

The Markov compactum is said to be proper if XM contains exactly one
maximal point and one minimal point with respect to the partial ordering.

Adic transformation. One may check that any non-maximal path x ∈
XM admits an immediate successor τ(x), that is, the minimum of y in XM

preceded by x. This defines the adic transformation τ on XM, except on the
set of the maximal elements which is finite when M is primitive.

Theorem 7.2.4 ([438, 437]). The adic transformation associated with a
primitive matrix is minimal and uniquely ergodic. The unique invariant mea-
sure is equivalent to the probability measure on XM which is of maximal
entropy for the shift map.

Note that the probability measure which is of maximal entropy for the
shift map is well-known: by primitivity, the matrix M admits a dominant
eigenvalue α, and right and left eigenvectors u = (ui)i, and v = (vi)i respec-
tively, with positive coefficients.

One can normalize these vectors so that < v,u >= 1. One sets pi = vi ui
and pi,j = ai,juj/(αui). The matrix P defined by P = (pi,j) is thus stochastic,
and (pi) is a right eigenvector associated with the eigenvalue 1.

The probability measure µ defined as follows over the cylinders of the shift
of finite type is easily seen to be shift invariant, and is of maximal entropy
(see for instance [445]):

µ([a0, a1, . . . , an]) = pa0pa0,a1pa1,a2 . . . pan−1,an .
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Remark. Though the unique invariant measure for the adic transforma-
tion on XM is equivalent to the probability measure on XM which is of
maximal entropy for the shift map, these maps do not have the same en-
tropy: the maximal entropy of the shift map is strictly positive, though the
entropy of the adic transformation is equal to zero.

Stationary Markov compactum and adic transformations. A. N.
Livshits proves in [267] that the stationary adic transformation associated
with a primitive d × d matrix M is measure-theoretically isomorphic to the
dynamical system associated with the substitution defined on {1, . . . , d} by
i �→ 1M1,i2M2,i . . . dMd,i , as soon as the substitution σ is recognizable. More
generally, a proof of the fact that every primitive substitutive dynamical sys-
tem is isomorphic to an adic transformation is sketched in [437], the definition
of adic transformation being adapted to a slightly more general context than
stationary Markov compactum.

These results were completed by A. Forrest [175], who proved the following
result in terms of Bratteli diagrams, which is a slightly different version of
Markov compactum: he proves that the measure-theoretic isomorphism of
Theorem 7.2.4 turns to be a topological conjugacy.

Theorem 7.2.5 (Forrest [175, 152]). Each adic transformation on a sta-
tionary proper Markov compactum is topologically conjugate either to a prim-
itive substitutive dynamical system or to an odometer. Conversely, each prim-
itive substitutive dynamical system or odometer is topologically conjugate to
an adic transformation on a stationary proper Markov compactum.

The proof of A. Forrest is not constructive. It was completed and restated
in the above terms by F. Durand, B. Host and C. F. Skau in [152]. In these
papers, the authors give a new proof using substitutions, return words, and
more precisely results about recognizability stated in Sec. 7.2.1 (for a defini-
tion of return words, see Chap. 3 and Sec. 7.3.2). Their approach provides
an algorithm which computes for any substitutive dynamical system an adic
transformation on a Markov compactum which is conjugate to a substitutive
system. One can also refer to [217] for more details.

7.2.3 Desubstitution and prefix-suffix expansion

The computation of an adic transformation conjugated to a given substitutive
dynamical system in [152] is not very natural and not very easy. Using the
properties of recognizability, G. Rauzy initiated in [350] and [353] the idea of
representing a substitutive dynamical system directly thanks to (7.1) and its
interpretation given in (7.2). Let us illustrate this approach in more detail.

Desubstitution. It will be recalled that a consequence of the works of B.
Mossé is that every word in Xσ can be expanded in the following form:
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w = . . . | . . .︸︷︷︸
σ(y−1)

| w−k . . . w−1.w0 . . . wl︸ ︷︷ ︸
σ(y0)

| . . .︸︷︷︸
σ(y1)

| . . .︸︷︷︸
σ(y2)

| . . .

with . . . y−n . . . y−1y0y1 . . . yn . . . in Xσ.
Let p = w−k . . . w−1 denote the prefix of σ(y0) of length k and s =

w1 . . . wl the suffix of length l. The word w is completely determined by the
word y and the decomposition of σ(y0) as σ(y0) = pw0s. Let P be the finite
set of all such decompositions:

P = {(p, a, s) ∈ A� ×A×A�; ∃ b ∈ A and σ(b) = pas} .

Example 7.2.6. For the Fibonacci substitution 1 �→ 12 and 2 �→ 1, one gets:

P = {(ε, 1, 2), (1, 2, ε), (ε, 1, ε)}.

For the substitution 1 �→ 1112 and 2 �→ 12, one gets:

P = {(ε, 1, 112), (1, 1, 12), (11, 1, 2), (111, 2, ε), (ε, 1, 2), (1, 2, ε)}.

Thus, Theorem 7.2.2 implies that we can define, on the one hand, a con-
tinuous desubstitution map on Xσ (which sends w to y), on the other hand,
a partition corresponding to the decomposition of σ(y0).

Theorem 7.2.7. For any primitive substitution σ the following desubstitu-
tion map θ and the prefix-suffix coding map γ are well defined and continuous
on Xσ:

θ :
{
Xσ → Xσ
w �→ y

such that w = Skσ(y) and 0 ≤ k < |σ(y0)|,

γ :
{
Xσ → P
w �→ (p, w0, s)

such that σ(y0) = pw0s and |p| = k .

Prefix-suffix expansion. In [100] and independently in [210], the itineraries
of the points ofXσ under the desubstitution according to the partition defined
by γ are studied. More precisely, the prefix-suffix expansion is the map Γ
defined on Xσ by:

∀w ∈ Xσ, Γ (w) = (γ ( θiw) )i≥0 = (pi, ai, si)i≥0 ∈ PN .

Exercise 7.2.8. Let w ∈ Xσ and Γ (w) = (pi, ai, si)i≥0 be its prefix-suffix
development. Suppose that nor all the prefixes pi neither all the suffixes si
are empty from a certain rank. Prove that w and Γ (w) satisfy the following
relationship:

w = . . . σn(pn) . . . σ(p1)p0ȧ0s0σ(s1) . . . σn(sn) . . .

Important questions are

• the identification of the image of Γ ,
• the injectivity of Γ ,
• the identification of an action on Γ (Xσ) such that Γ is a measure-theoretic

isomorphism between that action and the shift map S on Xσ.
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The image and the injectivity of Γ : prefix-suffix shift of finite type.
The definition of Γ leads us to define the shift of finite type described by the
automaton, called prefix-suffix automaton of the substitution σ, which has A
as a set of vertices and P as a set of label edges: there is an edge labeled by
e = (p, a, s) from a to b if and only if pas = σ(b).

The prefix-suffix shift of finite type is the set D of labels of infinite walks
in this automaton. By definition, it is the support of a shift of finite type.

Example 7.2.9. The prefix-suffix automaton of the Fibonacci substitution
1 �→ 12, 2 �→ 1 is shown in Fig. 7.4.

ε(  ,1,2) 1 2

(  ,1,  )

(1,2,  )

ε ε

ε

Fig. 7.4. Prefix-suffix automaton for the Fibonacci substitution.

The prefix-suffix of finite type for the Fibonacci substitution is the subset
of {(ε, 1, 2), (1, 2, ε), (ε, 1, ε)}N which consists of the labels of paths of the
automaton.

It is proved in [100] and [210] that Γ is onto D and almost everywhere
one-to-one on Xσ.

Prefix-suffix partial order. We explained before that a stationary Markov
compactum is nothing else than the support of a shift of finite type, provided
with a partial order deduced from a partial order on the labels of the edges
of the subshift.

The preceding construction associates with a substitution the support of
a shift of finite type, that is, the prefix-suffix shift of finite type D. Thus,
to define a Markov compactum on this set, we only need a partial order on
the set P of labels of D. However, the substitution σ provides a very natural
partial order: two labels (p, a, s) and (q, b, r) are comparable for this order
if they issue from the same letter, i.e., pas = qbr = σ(c) for a letter c. The
order of comparison comes from the length of the prefix p. More precisely, let
us define

(p, a, s) ≺ (q, b, r) if there exists c ∈ A such that
{
pas = qbr = σ(c),
|p| < |q|.

(7.4)
As explained is Sec. 7.2.2, this order on the set of labels P induces an

order on the support D of a shift of finite type, obtained as a lexicographical
order from the right: a path e = (ei)i≥0 ∈ D is said to precede a path
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f = (fi)i≥0 ∈ D if they differ in finitely many terms and in the last such
term i0, ei0 precedes fi0 for the partial order defined at (7.4):

(ei)i≥0 ≺ (fi)i≥0 if there exists a rank i0 such that
{
∀ i > i0, ei = fi
ei0 ≺ fi0

.

(7.5)

Remark. Denote ei0 = (pi0 , ai0 , si0) and fi0 = (qi0 , bi0 , ri0). As ei0+1 =
fi0+1, we have pi0ai0si0 = qi0bi0ri0 , and ei0 is comparable with fi0 for the
prefix-suffix partial order. The condition ei0 ≺ fi0 means that the length of
the prefix pi0 is less than the length of the prefix qi0 .

Prefix-suffix adic transformation. Following the construction described
in Sec. 7.2.2, the prefix-suffix partial order on the support D of a shift of finite
type provides an adic transformation, called prefix-suffix adic transformation
and denoted by τ . This map is an immediate successor transformation on the
set of non-maximal points of D.

Exercise 7.2.10. 1. Prove that a point e = (pi, ai, si)i≥0 ∈ D is maximal
for the prefix-suffix partial order if and only if all the suffixes si are empty.

2. Let e = (pi, ai, si)i≥0 ∈ D be a non-maximal point in D. Let i0 be the
smallest integer such that si0 �= ε. Prove that τ(e) is the unique path
f = (qi, bi, ti)i≥0 ∈ D defined by:

∀i > i0, (qi, bi, ti) = (pi, ai, si),
i = i0 qibiti = piaisi and |qi| = |pi|+ 1,
i < i0 qi = ε and biti = σ(bi+1).

Exercise 7.2.11. Consider the substitution 1 �→ 21, 2 �→ 13, 3 �→ 1.
Let u be the periodic point defined by

u = lim
n→∞σ

2n(1.1) = . . . 1321212111321.1321212111 . . . .

1. Prove that the prefix-suffix expansion of u is:

Γ (u) = m = (ε, 2, 1)(ε, 1, 3)(ε, 2, 1)(ε, 1, 3) . . . .

2. Prove that

τ(m) = (2, 1, ε)(ε, 1, 3)(ε, 2, 1)(ε, 1, 3) . . .
τ2(m) = (ε, 1, ε)(1, 3, ε) − − . . .

τ3(m) = (ε, 1, 3)(ε, 2, 1)(2, 1, ε) − . . . .

3. Prove that

τ7(m) = (ε, 1, 3)(ε, 2, 1)(ε, 1, ε)(1, 3, ε)[(ε, 2, 1)(ε, 1, 3)]∞.
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The prefix-suffix adic transformation on the set D provides an exam-
ple of Markov compactum as defined in Sec. 7.2.2. The following theorem
means that this explicit Markov compactum realizes explicitly the main re-
sult in [437] which states that any primitive substitutive dynamical system
is measure-theoretically isomorphic to an adic transformation on a Markov
compactum.

The conjugacy map is not a topological conjugacy map but a semi-
conjugacy, contrary to the one obtained in [152]. But this conjugacy map
can be deduced in a simple, natural and explicit way from the substitution.

Theorem 7.2.12 ([100, 210]). Let σ be a primitive substitution which is
not shift-periodic and (Xσ, S) the dynamical system generated by σ. The
prefix-suffix expansion is a continuous mapping onto the shift of finite type
D. This map is one-to-one except on the orbit of periodic points of σ.

This prefix-suffix expansion is a semi-topological conjugacy between the
shift map S on Xσ and an adic transformation on D, considered as a Markov
compactum when the set P of edges is provided with the natural prefix-suffix
partial ordering coming from the substitution.

It can be noted that the prefix-suffix automaton which has allowed us to
define the Markov compactum D is the most complete form of a large class
of automata appearing in literature.

It was introduced in [100] in order to extend and to make more precise
the prefix automaton (sometimes also called “automate à la provençale”),
and its dual suffix automaton, defined by G. Rauzy in the seminal papers
[350, 353] with the final goal to represent substitutive dynamical systems
of Pisot type by domain exchanges in the Euclidean space. The difference
between the prefix automaton and the prefix-suffix automaton is that the
subshift generated by the second one is of finite type, while the one generated
by the first automaton is only sofic. This has important consequences for the
injectivity of geometric representations of substitutive dynamical systems
defined thanks to the subshifts (see [350, 353, 101] and Sec. 7.4).

Moreover, the prefix-suffix automaton can be found in a coded form
among the number theory works which followed [350]: first in a work by
J.-M. Dumont and A. Thomas [151] about numeration scales associated with
certain substitutions; then among their development by V. Sirvent [405] who
proves some properties of the Rauzy fractal (see also Sec. 7.4). We can also
mention the definition by T. Kamae [232] of colored tilings associated with
a weighted substitution, the layout of the tiles following rules being close to
the transition rules of the prefix automaton, but in a non-explicit way.

To finish this brief survey, the prefix-suffix automaton also appears in
the context of language theory: the prefix-suffix automaton projects, on the
one hand, onto the automaton defined by A. Maes [276] in his works about
decidability of arithmetical theory, on the other hand, onto the automaton
defined by P. Narbel [311] to study the boundary of a language using the
description with trees of the set of paths in his automaton.



7.3 Spectral theory of substitutive dynamical systems 219

7.3 Spectral theory of substitutive dynamical systems

Substitutive dynamical systems were introduced by W. H. Gottschalk [191],
as examples of symbolic dynamical systems, the study of which was initial-
ized in [303, 304]. The attention first focused on systems associated with a
substitution of constant length. Let us recall that a substitution is said to
be of constant length if the image of any letter of the alphabet under the
substitution contains the same number of letters. We give in Sec. 7.3.1 some
results about these substitutions.

At the end of the seventies, the spectral theory of constant length substi-
tutive dynamical systems was quite well known, and people started to focus
on spectral theory of nonconstant length substitutive dynamical systems. We
will give in the next section the main results about this theory. Thanks to
recognizability and Markov compactum, they got the results on the spectral
theory of substitutive systems presented in Sec. 7.3.2. A special attention was
devoted to the class of substitutions of Pisot type. This will be the object of
Sec. 7.3.3.

7.3.1 Constant length substitutions

First topological and ergodic properties. They were obtained at the
beginning of the seventies: T. Kamae proves in [230] that the condition of
primitivity is sufficient for the minimality of the system. Then he gives a
sufficient condition for the system to have a purely discrete spectrum [231].
B. G. Klein shows that primitive substitutive systems of constant length are
uniquely ergodic and that their topological entropy equals zero [249].

Partial results about the maximal equicontinuous factor. In [124],
E. M. Coven and M. S. Keane focus on a class of constant length substitu-
tions over a two-letter alphabet which generate a minimal system, related to
Toeplitz substitutions. They prove that the maximal equicontinuous factor
of these systems is the n-adic group Zn, where n is the length of the substi-
tution. If n is not prime, Zn is defined to be the product of the p-adic groups
Zp, for all primes p that divide n .

J. C. Martin generalizes this to substitutions of constant length n over
a finite alphabet [281]: if the substitution is one-to-one on the set of letters,
the maximal equicontinuous factor of the substitutive dynamical system is
the addition of (1, 1) on Zn × Z/mZ, where m in an integer depending on
the substitution. J. C. Martin then gives some conditions for the factor to
be isomorphic to the system: some are necessary conditions, the others are
sufficient.

Determining the maximal equicontinuous factor. Finally, F. M. De-
kking generalizes these results for the constant length case, by introducing
new methods:
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Theorem 7.3.1 (Dekking [131]). Let σ be a non-periodic substitution of
constant length n. Let u be a periodic point for σ. We call height of the
substitution the greatest integer m which is coprime with n and divides all
the strictly positive ranks of occurrence of the letter u0 in u. The height is
less that the cardinality of the alphabet.

The maximal equicontinuous factor of the substitutive dynamical system
associated with σ is the addition of (1, 1) on the abelian group Zn × Z/mZ.

F. M. Dekking gives an algorithmic method for computing the height of
a substitution.

Exercise 7.3.2. Show that the Morse substitution has height 1. Deduce the
maximal equicontinuous factor of the system associated with this substitu-
tion.

Exercise 7.3.3. 1. Give the height of the substitution 1 �→ 121, 2 �→ 312,
3 �→ 213.

2. Prove that the spectrum (defined in Chap. 1) of the system associated
with this substitution is{

e2inπ/3
m+2ikπ/2; n, k ∈ Z, m ∈ N,

}
.

The question of isomorphism for substitutions of height 1. F. M.
Dekking also introduces the combinatorial condition which later will be called
coincidence condition: a constant length substitution σ satisfies this condition
if there exist two integers k, n such that the images of any letter of the
alphabet under σk has the same n-th letter. Generalizing [231], F. M. Dekking
proves that a substitution of height 1 satisfies this condition if and only if the
associated substitutive dynamical system is measure-theoretically isomorphic
to its maximal equicontinuous factor, that is, if the system has a purely
discrete spectrum:

Theorem 7.3.4 (Dekking [131]). Let σ be a substitution of constant length
and of height 1. The substitutive dynamical system associated with σ has a
purely discrete spectrum if and only if the substitution σ satisfies the condition
of coincidence.

Exercise 7.3.5. Prove that the substitutive dynamical system associated
with the Morse substitution is not isomorphic to a translation on Z2.

Note that this result was already shown in Chap. 5.

Pure base of a substitution. If the height h of a primitive substitution σ
of constant length n is different from 1, the pure base of σ is the substitution
η defined as follows:

• The alphabet A1 of η is the collection of all blocks of length h appearing
at position kh in a periodic point u for σ.
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• For every block W ∈ A1 of length h, η(W ) = W1W2 . . .Wn, with Wi ∈ A1
and W1W2 . . .Wn = σ(W ).

One should notice that η is primitive, of constant length n, and that its
height is 1. Up to this tool, the result of Dekking can be generalized to all
substitutions of constant length.

Theorem 7.3.6 (Dekking [131]). Let σ be a substitution of constant
length. The substitutive dynamical system associated with σ has a purely
discrete spectrum if and only if its pure base satisfies the condition of co-
incidence.

Exercise 7.3.7. Prove that the pure base of 1 �→ 121, 2 �→ 312, 3 �→ 213 is
given by the substitution a �→ aab, b �→ aba. Has this substitution a purely
discrete spectrum?

7.3.2 Nonconstant length substitutions

The first partial results about the spectrum of substitutions of nonconstant
length were obtained by studying a class of nonconstant length substitutive
systems which are measure-theoretically isomorphic to constant length sub-
stitutive systems [124, 131]. Later, F. M. Dekking et M. S. Keane proved
that strongly mixing substitutive dynamical systems do not exist, but weak-
mixing is possible [130]. P. Michel proved in [292] that the dynamical system
associated with a primitive substitution of nonconstant length is uniquely
ergodic, see also 1. M. Queffélec studies in detail the spectral type of substi-
tutive systems in [340, 342]. Most of the results cited above appear in this
last reference.

These general topological and ergodic properties having been studied,
authors focused on the explicit description of the spectrum of a substitu-
tive dynamical system. They also took interest in obtaining conditions for a
substitutive system to have a purely discrete spectrum, partially continuous
spectrum, or continuous spectrum. The description of the known results is
the aim of this section.

Rational eigenvalues and the characteristic polynomial of the inci-
dence matrix. J. C. Martin obtains a partial result about the spectrum of
nonconstant length substitutions on a two-letter alphabet in [282]. His work
suffers from a too weak definition of the property of recognizability (see Sec.
7.2.1). If we take into account the results about recognizability proved later,
his results become:

Theorem 7.3.8 (Martin [282]). Let σ be a not shift-periodic and primitive
substitution on a two-letter alphabet. Let X2 − tX + d be the characteristic
polynomial of the incidence matrix of σ and let r ∈ Q. Let i0 be the greatest
positive integer such that:
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• the prime factors of i0 divide both |σ(1)| and |σ(2)|,
• i0 is prime with r,
• i0 divides |σ(1)| − |σ(2)|.
Then exp(2πir) is an eigenvalue of the dynamical system associated with σ if
and only if there exist integers k,m, n such that r = k/i0 +m/(pgcd(d, t))n.

A consequence of this theorem is the characterization of p-adic measure-
theoretic factors of substitutive systems over a two-letter alphabet:

Exercise 7.3.9. 1. Let σ be a not shift-periodic and primitive substitution
over a two-letter alphabet. Let p be a prime number. Show that the addi-
tion of 1 on Zp is a measure-theoretic factor of the substitutive dynamical
system associated with σ if and only if p divides the determinant and the
trace of the characteristic polynomial of the incidence matrix of σ.

2. Find the p-adic factors of the systems defined by the substitutions 1 �→
1112, 2 �→ 12, and 1 �→ 11222, 2 �→ 1222.

In particular, there exist non-unimodular substitutive systems which do
not admit any p-adic factor. Such a behavior is totally different from the
case of constant length substitutions. This result has been generalized by F.
Durand:

Theorem 7.3.10 (Durand [156]). Let σ be a primitive substitution, the
incidence matrix Mσ of which has an irreducible characteristic polynomial
χMσ . Let p be a prime number. The addition of 1 over Zp is a measure-
theoretic factor of the substitutive dynamical system associated with σ if and
only if p divides all the coefficients of χMσ except the dominant one, that is,
if and only if Mσ is nilpotent modulo p.

A new proof of this result is given in [398] by studying the ramifications
of the determinant of the incidence matrix of σ in the Galois extension of its
dominant eigenvalue.

Coboundaries: a full description of the spectrum. In [215], B. Host
introduces a good notion of recognizability and thanks to this notion proves
the following important result.

Theorem 7.3.11 (Host [215]). Let σ be a not shift-periodic and primitive
substitution. Each eigenfunction of the substitutive dynamical system associ-
ated with σ is continuous.

To be more precise, since we deal with functions in L2, Theorem 7.3.11
means that any class of eigenfunctions contains a continuous eigenfunction.

Exercise 7.3.12. Let σ be a not shift-periodic and primitive substitution.
Show that a minimal toral rotation or the addition of 1 in the p-adic integer
set Zp is a topological factor of the substitutive dynamical system associated
with σ if and only if it is a measure-theoretic factor of this system.
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B. Host deduces from Theorem 7.3.11 a complete description of the spec-
trum of the nonconstant length substitutions, which are recognizable, and
one-to-one on the letters. This description is a generalization of [131] and
[282]. Here, U ⊂ C denotes the unit circle.

Definition 7.3.13. A coboundary of a substitution σ is defined as a map
h : A → U such that there exists a map f : A → U with f(b) = f(a)h(a), for
every word ab of length 2 which belongs to the language of the substitution.

In the most simplest cases the only coboundary is the trivial one, that
is, the constant function equal to 1. However, there exist some substitutions
with nontrivial coboundaries:

Exercise 7.3.14. 1. Prove that the substitution 1 �→ 12, 2 �→ 13, 3 �→
1 has no nontrivial coboundary. (Hint: note that the language of this
substitution contains 12, 21 and 11.)

2. Prove that any primitive and not shift-periodic substitution over two
letters has no nontrivial coboundary.

3. Find a nontrivial coboundary for the substitution 1 �→ 1231, 2 �→ 232,
3 �→ 3123.

In Sec. 7.5.3 we give a method to construct substitutions with nontrivial
coboundaries.

Theorem 7.3.15 (Host [215]). Let σ be a not shift-periodic and primitive
substitution over the alphabet A. A complex number λ ⊂ U is an eigenvalue
of (Xσ, S) if and only if there exists p > 0 such that for every a ∈ A, the
limit h(a) = limn→∞ λ|σ

pn(a)| is well defined, and h is a coboundary of σ.

Exercise 7.3.16. Let σ be the substitution defined by 1 �→ 12121 and 2 �→
122.

1. Prove that |σn+2(a)| = 5|σn+1(a)|+ 4|σn(a)|, for a = 1, 2.
2. Deduce that 2|σn(2)| − |σn(1)| = 1, for every nonnegative n.
3. Conclude that the system associated with σ is weakly mixing (that is, 1

is its only eigenvalue; see Chap. 1).

Since the constant function equal to one 1 is always a coboundary, a
sufficient condition for λ to be an eigenvalue is the following:

Corollary 7.3.17. Let σ be a not shift-periodic and primitive substitution.
If there exists p such that λ ∈ C satisfies limλ|σ

pn(a)| = 1 for every letter a
of the alphabet, then λ is an eigenvalue of the substitutive dynamical system
associated with σ. We say that λ is an eigenvalue associated with the trivial
coboundary.

Let 1 be the column vector whose all coordinates are equal to 1.
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Exercise 7.3.18. Let λ = exp(2iπβ) of modulus 1. Prove that limλ|σ
n(a)| =

1 for every letter a, if and only if βtMσ
n1 tends to zero modulo Zd.

B. Host provides a method to identify the set of eigenvalues associated
with the trivial coboundary.

Proposition 7.3.19 (Host [215]). Let σ be a primitive d-letter substitu-
tion. Let Xσ be the substitutive system associated with σ and Mσ be its inci-
dence matrix.

The complex exp(2iπβ) is an eigenvalue for Xσ associated with the trivial
coboundary if and only if β1 = x1 + x2, where there exist two integers p and
q such that tMσ

pnx1 tends to zero in Rd and x2 ∈ tM−q
σ Zd.

An important example of application can be found among substitutions
of Pisot type, which will be treated in Sec. 7.3.3.

In [168], S. Ferenczi, C. Mauduit et A. Nogueira give a new simplified
version of the proofs of Theorems 7.3.11 and 7.3.15. They deduce from these
new proofs a more explicit characterization of the spectrum of primitive sub-
stitutive dynamical systems, in terms of polynomials (see Theorem 7.3.27).

Combinatorial conditions: a mix of coincidences and return words.
The parallel between substitutive systems and adic systems presented in the
preceding section, and the ideas developed by B. Host in [215], led many
authors to give some necessary and sufficient conditions for a substitutive
dynamical system to have a purely discrete spectrum, a partially continuous
spectrum or to be weakly mixing (see the survey in [437]).

For instance, A. N. Livshits stated a relationship between the fact that
a substitutive system has a purely discrete spectrum and the existence of a
code of the system made of modified return words on one side, coincidences
on letters on the other side. To precise this, let us introduce the following
notions:

Definition 7.3.20. Let σ be a primitive and not shift-periodic substitution
defined over the alphabet A.

For any letter a, the a-blocks are the elements of the set ∆a:

∆a =


 (a1 . . . ar−1, a2 . . . ar) with



a1 . . . ar ∈ L(Xσ)
i = 1, r, ∀n > 0, |σn(ai)| = |σn(a)|
i �= 1, r, ∃n > 0, |σn(ai)| �= |σn(a)|




Note that if the substitution is of constant length, then ∆a = {(b, b), bb ∈
L(Xσ)}. Moreover, the set ∆a contains the return words of the substitution,
as introduced by F. Durand in [154, 153].

Definition 7.3.21. Let σ be a primitive and not shift-periodic substitution.
A return word is a word W = a1 . . . ak−1 ∈ L(Xσ) such that there exists a
letter ak with
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• a1 . . . ak−1ak ∈ L(Xσ),

• for every large enough n,
{
σn(ak) = σn(a1),
∀ j �= 1, k, σn(aj) �= σn(a1).

The associated return time is defined to be rn(W ) = |σn(a1 . . . ak−1)|.

A. N. Livshits gives the following characterization of substitutive systems
with a purely discrete spectrum. This characterization was announced in [266]
and [437], and proved in [268]. As defined in Chap. 1, l : A → Nd denotes the
abelianization map.

Theorem 7.3.22 (Livshits [266]). Let σ be a primitive and not shift-
periodic substitution defined over the alphabet A.

Suppose that there exists a letter a and a finite set ∆ of pairs (Wik ,Wjk)
with l(Wik) = l(Wjk), which satisfy

∀ (V1, V2) ∈ ∆ ∪∆a, ∃m > 0,

such that
{
σm(V1) = Wl1 . . .Wls

σm(V2) = Wj1 . . .Wjs
with

{
∀ r, (Wlr ,Wjr ) ∈ ∆ ∪∆a
∃ r, Wlr = Wjr

.

Then the substitutive dynamical system associated with σ has a purely
discrete spectrum.

As before, examples of application of this theorem can be found among
substitutions of Pisot type, which will be treated in detail in the next section
(see in particular Theorem 7.3.35).

The converse of Theorem 7.3.22 can be expressed under the following
form.

Theorem 7.3.23 (Livshits [266]). Let σ be a primitive and not shift-
periodic substitution. Let c �= d and a be letters such that ac, ad ∈ L(Xσ).

Suppose that there exist a finite set of words {Wi} and an increasing
sequence of integers mi satisfying for all i:

{
σmi(c) = Wl1 . . .WlsA
σmi(d) = Wk1 . . .WksB

with



A = ε or B = ε,
∀ r, l(Wlt) = l(Wkt),
∀ r, Wlt �= Wkt .

Then the substitutive dynamical system associated with σ has a partially con-
tinuous spectrum.

For instance the system associated with the substitution 1 �→ 23, 2 �→ 12
and 3 �→ 23 admits a continuous spectral component. However, the substitu-
tion is of constant length, so that the system admits Z2 as a factor (Theorem
7.3.1) and is not weakly mixing.

Another consequence of this theorem is that the Morse substitution sys-
tem has a partially continuous spectrum, which has been studied: the max-
imal spectral type is known to be a Riesz product (see the bibliography of
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[340]). Finally, the substitutive system associated with the Morse substitution
is measure-theoretically isomorphic to a two-point extension of its maximal
equicontinuous factor, that is, the addition of 1 on Z2 (see also Chap. 5).

Finally, A. N. Livshits gives a sufficient condition for a substitutive dy-
namical system to be weakly mixing, that is, to have no nontrivial eigenvalue.

Theorem 7.3.24 (Livshits [267]). Let σ be a not shift-periodic and prim-
itive substitution.

If every eigenvalue of the incidence matrix of σ has a modulus greater
than or equal to 1, then the substitutive dynamical system associated with σ
has no irrational eigenvalue.

If there exists an element of the language of σ, denoted W = a1 . . . ak =
a1V with a1 = ak, such that for all integers n, the lengths |σn(V )| are coprime
to each other for n > N , then the substitutive dynamical system associated
with σ has no rational eigenvalue (except 1).

Note that in the previous theorem, W is a return word as soon as a1
does not appear is V before the last rank. As an application, the substitution
1 �→ 112 and 2 �→ 12222 introduced in [130] is weakly mixing [266].

Polynomial conditions. B. Solomyak makes the above theorem somewhat
more precise by giving a characterization of irrational eigenvalues of substi-
tutive systems in a more explicit way than Host’s one.

Theorem 7.3.25 (B. Solomyak [411]). Let σ be a primitive substitution
such that its incidence matrix Mσ admits an irreducible characteristic poly-
nomial. Let αk, k = 1 . . .m, be the eigenvalues of Mσ such that |αk| ≥ 1.

The substitutive system associated with σ admits at least one irrational
eigenvalue if and only if there exists a polynomial P ∈ Z[X] such that P (αj) =
P (αk) for every j, k ≤ m.

If so, exp(2πiP (α1)) and exp(2πiP (α1)n) are eigenvalues of the substitu-
tive system.

Remark.

• Note that the numbers exp(2iπnP (α1)) are eigenvalues as soon as the
number exp(2πiP (α1)) is an eigenvalue.

• Theorem 7.3.25 does not state that any irrational eigenvalue is of the form
exp(2πiP (α1)).

For instance, the spectrum of the system associated with the substitution
1 �→ 1244, 2 �→ 23, 3 �→ 4, 4 �→ 1 contains the set exp(2πiZ

√
2).

Theorem 7.3.25 produces other sufficient conditions for a substitutive sys-
tem to have nontrivial rational spectrum, in particular in the Pisot case (see
Sec. 7.3.3).

Exercise 7.3.26 ([411]).
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• Let s denotes the smallest prime divisor of the cardinality d of the alphabet
of a primitive substitution σ. Suppose that the number of eigenvalues of
Mσ greater than 1 is strictly greater that d/s. Show that the substitutive
dynamical system associated with σ has no irrational eigenvalue.

• For any prime p, any substitutive dynamical system with irrational eigen-
values over a p-letter alphabet is of Pisot type.

In [168], S. Ferenczi, C. Mauduit and A. Nogueira got interested in the
relationship between coboundaries and return words.

Proposition 7.3.27 (Ferenczi, Mauduit, Nogueira [168]). Let σ be a
not shift-periodic and primitive substitution and (Xσ, S) be the substitutive
dynamical system associated with σ.

A complex number λ with modulus 1 is an eigenvalue of the substitutive
dynamical system (Xσ, S) if and only if limn→∞ λrn(W ) = 1 for every return
word W .

This proposition is illustrated for the Chacon sequence in Chap. 5.
Using techniques from the study of substitutive normal sets [284], the

authors give a constructive version of the proofs of B. Host [215]. They get
a characterization of eigenvalues which generalizes (no more hypothesis of
irreducibility) and gives a partial converse to Theorem 7.3.25. This charac-
terization is too long to be cited here. A consequence of it is the following:

Theorem 7.3.28 (Ferenczi, Mauduit, Nogueira [168]). Let σ be a
primitive and not shift-periodic substitution and αk, k = 1 . . . r, be the eigen-
values of Mσ such that |αk| ≥ 1. Let β be irrational.

• If λ = exp(2πiβ) is an eigenvalue of Xσ associated with the trivial cobound-
ary – that is, limλ|σ

n(a)| = 1 for every letter a – then there exists a poly-
nomial P ∈ Z[X] such that P (αi) = β for every i.

• If P ∈ Z[X] is a polynomial with P (αi) = β for every i, then there exists
an integer k such that exp(2πikP (αi)) is an eigenvalue of the substitutive
system.

Thus, an integer polynomial which is constant over the set of eigenvalues
of Mσ of modulus greater than one, does not provide directly an eigenvalue
for the system: the constant may have to be multiplied by an integer to
become the argument of an eigenvalue.

As an application, the spectrum of the system associated with the substi-
tution considered above 1 �→ 1244, 2 �→ 23, 3 �→ 4, 4 �→ 1, is exactly the set
exp(2πiZ

√
2): Theorem 7.3.25 implied that the spectrum contains this set.

The converse is stated by Theorem 7.3.28.
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Conclusion. The spectrum of a primitive dynamical system can be divided
into two parts. The first part is the set of complex numbers associated with
the trivial coboundary; according to Theorem 7.3.28, these eigenvalues de-
pend only on the incidence matrix of the substitution, and, more precisely,
for the irrational eigenvalues, on the matrix eigenvalues which are greater
than 1. In this sense, this class of eigenvalues is quite natural.

In a more exotic and surprising way, the substitutive system can have
some eigenvalues which are associated with a nontrivial coboundary, and not
associated with the trivial coboundary. Such eigenvalues are not described
by Theorem 7.3.28. These eigenvalues depend heavily on the return times
and more generally on the combinatorics of the substitution, which in other
words gives them a non-commutative aspect.

There exist some unpublished partial results about a substitution with
rational noncommutative eigenvalues. We do not know any example of sub-
stitution with irrational noncommutative eigenvalue.

7.3.3 Substitutions of Pisot type

Some of the general results of Sec. 7.3.2 have special consequences for the
spectral theory of Pisot type substitutive systems.

Eigenvalues associated with the trivial coboundary. As claimed by
B. Host in [216], Theorem 7.3.11 and Theorem 7.3.15 allow one to determine
the spectrum associated with the trivial coboundary, in the unimodular case.

Proposition 7.3.29 ([216]). Let σ be a unimodular substitution of Pisot
type. The group of eigenvalues of Xσ associated with the trivial coboundary
is generated by the frequencies of letters in any word of the system, that is, by
the coordinates of a right normalized eigenvector associated with the dominant
eigenvalue of the incidence matrix of the substitution.

Hints to deduce this result from Theorem 7.3.15 and Lemma 7.3.19 are
the following:

Exercise 7.3.30. Let σ be a unimodular substitution of Pisot type over d
letters. Let Mσ be the incidence matrix of σ and 1 be the column vector
whose all coordinates are equal to 1. Let u1 be an expanding eigenvector of
Mσ, normalized so that the sum of its coordinates is equal to one.

1. Let x ∈ Rd. Show that tMσ
nx tends to zero in Rd if and only if x is

orthogonal to u1.
2. Show that tMσ

−1Zd = Zd.
3. Deduce that exp(2iπβ) is an eigenvalue of Xσ associated with the trivial

coboundary if and only β is an integer combination of the coordinates of
u1.

4. Note that the coordinates of u1 are the frequencies of letters in any point
in the system and deduce Proposition 7.3.29.
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Some basic number theory allows one to precise Proposition 7.3.29. We
recall that the characteristic polynomial of a Pisot type substitution is always
irreducible over Q (see Chap. 1).

Exercise 7.3.31. Let σ be a substitution of Pisot type and α be the domi-
nant eigenvalue of its incidence matrix.

1. Prove that the coordinates of a dominant right eigenvector of Mσ, nor-
malized so that the sum of its coordinates is equal to one, belong to
Z[α] (Hint: these coordinates are described by a system of equations with
rational coefficients.)

2. Prove that these coordinates are rationally independent (Hint: the eigen-
values of the incidence matrix are simple and algebraic conjugates; the
eigenvectors are linearly independent.)

3. If σ is unimodular, show that the group of eigenvalues associated with
the trivial coboundary is exp(2πiZ[α]).

The result of Exercise 7.3.31 can be obtained independently and general-
ized (out of the unimodular context) as a consequence of Theorem 7.3.25:

Proposition 7.3.32. Let α denote the dominant eigenvalue of the incidence
matrix of a substitution of Pisot type. The spectrum of the substitutive dy-
namical system associated with σ contains the set exp(2πiZ[α]).

In particular, substitutive dynamical systems of Pisot type are never
weakly mixing.

Proposition 7.3.32 means that Pisot type substitutions are quite close to
constant length substitutions with respect to the fact that both are never
weakly mixing: constant length substitutive dynamical systems always have
nontrivial rational eigenvalues whereas Pisot type substitutive dynamical sys-
tems always have irrational eigenvalues. But if a substitution is neither of
Pisot type, nor of constant length, then completely different behaviors can
occur, such as the absence of spectrum for which we gave sufficient conditions
in Theorem 7.3.24. An example of such a substitution is 1 �→ 112, 2 �→ 12222.

Since Z[α] is of rank d−1, we deduce from Proposition 7.3.32 and Exercise
7.3.12 that:

Corollary 7.3.33. Any Pisot type substitutive dynamical system over d let-
ters admits as a topological factor a minimal translation on the torus Td−1.

Rational spectrum. In [413], M. Solomyak focuses on the rational part of
the spectrum of unimodular Pisot type substitutive dynamical systems:

Theorem 7.3.34 (M. Solomyak [413]). The rational spectrum of a uni-
modular substitutive dynamical system of Pisot type is finite.

Note that this is not true in general for non-unimodular substitutions, as
stated in Theorem 7.3.10.
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A specific class of examples: β-numeration. A special attention was
devoted by B. Solomyak in [412, 411] to substitutions of Pisot type whose
incidence matrix has a specific form, such as to be a companion matrix.

For instance, the dynamical system associated with the unimodular sub-
stitution of Pisot type 1 �→ 123 . . . d, 2 �→ 1, 3 �→ 2,. . . , d �→ d−1 has a purely
discrete spectrum, and is measure-theoretically isomorphic to the rotation,
over (d − 1)-dimensional torus, by a normalized right dominant eigenvector
for the incidence matrix.

From a similar point of view, substitutions defined by 1 �→ 1a12, 2 �→ 1a23,
. . . , d−1 �→ 1ad−1d and d �→ 1ad have a very specific matrix. The numeration
systems associated with the dominant eigenvalue of such a matrix has been
studied in the context of β-numeration. From the properties of β-expansion,
B. Solomyak deduces in [412] that substitutions of Pisot type which are of
the above form have a purely discrete spectrum.

Two-letter substitutions: the coincidence condition. M. Hollander
and B. Solomyak restate in [206] the proof of the results of A. N. Livshits and
apply them to the case of Pisot type substitutions over a two-letter alphabet.

He proves that the systems associated with such substitutions have a
purely discrete spectrum if the substitution satisfies a combinatorial condition
which generalizes the coincidence condition introduced by F. M. Dekking for
substitutions of constant length (see Sec. 7.3.1). Indeed, a substitution over
the alphabet {1, 2} is said to satisfy the coincidence condition if there exist
two integers k, n such that σn(1) and σn(2) have the same k-th letter, and
the prefixes of length k − 1 of σn(1) and σn(2) have the same image under
the abelianization map.

This definition appeared in literature before [206] (see [340]). However,
the following results, although conjectured, were not proved before.

Theorem 7.3.35 (Hollander, Solomyak [206]). Let σ be a substitution of
Pisot type over a two-letter alphabet which satisfies the coincidence condition.
Then the substitutive dynamical system associated with σ has a purely discrete
spectrum.

Remark. The condition of coincidence and the condition of no nontrivial
coboundary are distinct: we already stated that two-letter substitutions have
no nontrivial coboundary, whereas there exist two-letters substitutions with
no coincidence, for instance the Morse sequence.

Up to recently, it was not known whether there existed a Pisot type
two-letter substitution which did not satisfy the coincidence condition. A
preprint from M. Barge and B. Diamond answers that question, by proving
the following:

Theorem 7.3.36 (Barge, Diamond [54]). Any substitution of Pisot type
over a two-letter alphabet satisfies the coincidence condition.

The proof is a very nice mix of combinatorics and geometry.
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7.4 The Rauzy fractal

The spectral theory of substitutive dynamical systems implies a better under-
standing of these systems. In particular, under some conditions such as uni-
modularity or Pisot type, these symbolic dynamical systems are not weakly
mixing, and their spectrum is the spectrum of a toral rotation. An important
remaining question is whether these systems have a purely discrete spectrum.
To answer that question, G. Rauzy developed the idea of looking for a geo-
metric representation of substitutive dynamical systems, as a rotation on a
suitable space. This representation being explicit, the problem of purely dis-
crete spectrum may be explored through the question of the representation’s
injectivity.

Following that point of view, the remainder of this chapter is devoted
to the reverse of the question that initiated the interest for substitutions:
indeed, as symbolic dynamical systems were first introduced to understand
better the dynamics of a given geometric map, one can ask for the reverse,
that is, which geometric actions are coded by a given substitution?

7.4.1 Where symbolic dynamics codes geometry...

Geometric representation. M. Queffélec defines in [340] (pp. 140) the
notion of geometric representation:

Definition 7.4.1. A geometric representation of a symbolic dynamical sys-
tem (X,S) is a continuous map ϕ from X onto a geometric dynamical system
(X , T ), on which there exists a partition indexed by the alphabet A, such that
every word in Xu is the itinerary of a point of (X , T ) with respect to the
partition.

It is thus natural to ask which systems admit such a geometric repre-
sentation, and, if so, how precise the representation is, that is, what is the
degree of injectivity of the representation. The representation is considered
to be precise if the map ϕ is a semi-topological conjugacy.

Nontrivial examples of representations. There have been many partial
answers given to Queffélec’s question: in [45], G. Rauzy and P. Arnoux in-
troduce the so-called Arnoux-Rauzy sequences, introduced in Chap. 1; they
show that each such sequence codes the orbit of a point under an exchange
of six intervals on the circle.

In [86], M. Boshernitzan and I. Kornfeld give explicitly a conjugacy map
between the dynamics of the restriction to the limit of a piecewise translation
and the dynamics of a substitutive system.

In [171], S. Ferenczi obtains a geometric realization of the Chacon se-
quence as exduction of a triadic rotation (see also Chap. 5).

Recently, J. Cassaigne, S. Ferenczi and L. Q. Zamboni have exhibited an
example of a non-substitutive Arnoux-Rauzy sequence whose properties are
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very far from those of substitutive Arnoux-Rauzy sequences: in particular,
their example cannot be geometrically realized as a natural coding of a toral
translation [106] (we will come back to this topic in Chap. 12).

In [408], V. F. Sirvent gives a geometrical realization of the Tribonacci
substitution as a dynamical system defined on a geodesic lamination on the
hyperbolic disc. This result is generalized in the same paper, for all Arnoux-
Rauzy sequences.

Representations by a translation on a compact abelian group. The
spectral theory of substitutive dynamical systems provides some information
about the geometric realizations by a translation on a compact group that
one may get: if a substitutive dynamical system is measure-theoretically iso-
morphic to a translation on a compact group, this translation must have in its
spectrum all the eigenvalues of the dynamical system. As a consequence, the
compact group must be a n-dimensional torus if the spectrum of the system
is irrational and of rank n. The compact group must admit as a factor, either
finite groups, if the spectrum contains rational numbers, or p-adic groups,
if there are enough rational eigenvalues (as is the case for constant length
substitutions). In a general case, the compact group may be a solenoid.

According to the spectral theory of Pisot type substitutive dynamical
systems presented in Sec. 7.3.3, and under this hypothesis of no non-trivial
coboundary, unimodular Pisot type substitutive systems are good candidates
to have a purely discrete spectrum, that is, to be measure-theoretically iso-
morphic to a toral translation, this translation being obtained with the fre-
quencies of occurrences of letters in any word of the system (see Proposition
7.3.29). A method to test this hypothesis is to try to explicit a conjugacy
between the shift map on the substitutive system and the toral translation
formerly described. Then, the problem will be to study the injectivity of the
conjugacy.

The idea of representing geometrically substitutive systems of Pisot type
was developed first by G. Rauzy [350], within the framework of discrepancy
for some real sequences. The aim of this section is to expose Rauzy’s work
about the Tribonacci substitution and the development given by many au-
thors to this original and fundamental example.

7.4.2 The Tribonacci substitution

In 1981, G. Rauzy generalized in [350] the dynamical properties of the Fi-
bonacci substitution to a three-letter alphabet substitution, called Tribonacci
substitution or Rauzy substitution, and defined by

σ(1) = 12 σ(2) = 13 σ(3) = 1.

The incidence matrix of this substitution is Mσ =


1 1 1

1 0 0
0 1 0


.
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Its characteristic polynomial is X3 − X2 − X − 1, and its set of roots
consists of a real number β > 1 and two complex conjugates α and α. Since
it satisfies the equation α3 = α2 + α + 1, the complex number α is called a
Tribonacci number, in reference to the Fibonacci equation X2 = X + 1.

In particular, the incidence matrix M admits as eigenspaces in R3 an
expanding one-dimensional direction and a contracting plane.

7.4.3 Geometric construction of the Rauzy fractal

Let u denote a biinfinite word which is a periodic point for σ, for instance
u = σ3∞(1) · σ∞(1). This infinite word u is embedded as a broken line in R3

by replacing each letter in the periodic point by the corresponding vector in
the canonical basis (e1, e2, e3) in R3.

An interesting property of this broken line is that it remains at a bounded
distance of the expanding direction of Mσ, turning around this line. When one
projects the vertices of the broken line on the contracting plane , parallel to
the expanding directing, then one obtains a bounded set in a two-dimensional
vector space. The closure of this set of points is a compact set denoted by R
and called the Rauzy fractal (see Fig. 7.5).

To be more precise, denote by π the linear projection in R3, parallel to the
expanding directing, on the contracting plane, identified with the complex
plane C. If u = (ui)i∈Z is the periodic point of the substitution, then the
Rauzy fractal is

R =

{
π

(
n∑
i=0

eui

)
; n ∈ Z

}
.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
����

��
��

3

1 2
3

3

2

3

1

3

21
1

3

3

2
1

3

2

2

3

2

Fig. 7.5. The projection method to get the Rauzy fractal for the Tribonnacci
substitution.

Three subsets of the Rauzy fractal can be distinguished. Indeed, for each
letter j = 1, 2, 3, the cylinder Rj is defined to be the closure of the set of



234 7. Spectral theory and geometric representation of substitutions

origins of any segment on the broken line which is parallel to the canonical
vector ej :

Rj =

{
π

(
n∑
i=0

eui

)
; n ∈ Z, un = j

}
.

The union of these three cylinders covers the compact R, and G. Rauzy
proved in [350] that their intersection has measure zero:

Proposition 7.4.2 (Rauzy [350]). The cylinders constitute a measurable
partition of the Rauzy fractal:

R = R1 ∪R2 ∪R3, the union being disjoint in measure.

7.4.4 Dynamics over the Rauzy fractal

One can note that it is possible to move on the broken line, from a vertex
to the following one, thanks to a translation by one of the three vectors of
the canonical basis. In the contracting plane, this means that each cylinder
Ri can be translated by a given vector, i.e., π(ei), without going out of the
Rauzy fractal:

Exercise 7.4.3. Prove that for every letter i = 1, 2, 3, the following inclusion
is true:

Ri − π(ei) ⊂ R.

Dynamics. Thus, the following map ϕ, called a domain exchange (see Fig.
7.6) is defined for any point of the Rauzy fractal which belongs to a unique
cylinder. According to Proposition 7.4.2, the cylinders intersect on a set of
measure zero, so that this map is defined almost everywhere on the Rauzy
fractal:

∀x ∈ R, ϕ(x) = x− π(ei), if x ∈ Ri.
Denote by R′i the image of the cylinder Ri through the domain exchange:

R′i = Ri − π(ei).

Fig. 7.6. Domain exchange over the Rauzy fractal.
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Symbolic dynamics. It is natural to code, up to the partition defined by
the 3 cylinders, the action of the domain exchange ϕ over the Rauzy fractal
R. G. Rauzy proved in [350] that the coding map, fromR into the three-letter
alphabet full shift {1, 2, 3}Z is almost everywhere one-to-one. Moreover, this
coding map is onto the substitutive system associated with the Tribonacci
substitution. Thus we have the following result:

Theorem 7.4.4 (Rauzy, [350]). The domain exchange ϕ defined on the
Rauzy fractal R is semi-topologically conjugate to the shift map on the sym-
bolic dynamical system associated with the Tribonacci substitution.

7.4.5 Geometric interpretation of the substitution: self-similarity

Number theory. Note that G. Rauzy obtains these results by proving that
the Rauzy fractal can be defined numerically as the complex set of power
series in α whose digits consist in all the sequences of 0 and 1 with no three
consecutive ones:

R =


∑
i≥0

εi α
i; εi ∈ {0, 1}; εiεi+1εi+2 = 0


 ⊂ C. (7.6)

The condition ε0 = 0 produces the cylinder R1, whereas the cylinder R2 is
defined by the condition ε0ε1 = 10, and R3 by ε0ε1 = 11.

The Tribonacci substitutive dynamical system Xσ has a special property:
since the letter 1 appears only at the beginning of σ(1), σ(2) and σ(3), we
have

[1] = σ (Xσ) , [2] = S
(
σ2(Xσ)

)
, [3] = S (σ[2]) .

The abelianization of the shift map S on the broken line is the translation
to the following vertex, which projects on the contracting plane as the domain
exchange ϕ. In the same point of view, the abelianization of the substitution
σ is the matrix M, which projects on the contracting plane as a complex
multiplication by the Tribonacci number α. So that we get:

R1 = αR, R2 = α2R+ 1 R3 = α3R+ α+ 1. (7.7)

This means that the Rauzy fractal R is partitioned by contractions of
itself. We say that R has a self-similar structure.

Exercise 7.4.5. Deduce (7.7) from (7.6).

7.4.6 Tilings : toral translation as a factor

The domain exchange ϕ is defined only almost everywhere. This problem is
solved when one quotients the contracting plane by the lattice L = Zπ(e1 −
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e3) + Zπ(e2 − e3). Indeed, this quotient maps the contracting plane onto a
two-dimensional torus; the 3 vectors π(e1), π(e2) and π(e3) map onto the
same vector on the torus. Thus, the projection of the domain exchange ϕ on
the quotient is a toral translation.

G. Rauzy proved in [350] that the restriction of the quotient map to
the Rauzy fractal is onto and almost everywhere one-to-one. Finally, we get
that the domain exchange on the Rauzy fractal, which is known to be semi-
topologically conjugate to the Tribonacci substitutive dynamical system, is
also measure-theoretically isomorphic to a minimal translation on the two-
dimensional torus.

More geometrically, the fact that the quotient map is one-to-one means
that any translate of R by a vector of the lattice L intersects R on a set of
measure zero. The fact that the restriction of the quotient map to the Rauzy
fractal is onto means that the union of these translated Rauzy fractal recovers
the plane. In other words, the Rauzy fractal generates a periodic tiling of the
plane (see Fig. 7.7).

Fig. 7.7. The periodic and autosimilar tiling generated by the Rauzy fractal.

The self-similarity of R implies that the induced tiling is quasi-periodic.
This is analogous to the well understood connection between Sturmian se-
quences, tilings of the line and quasi-crystals (see [49]): through methods
similar to those used by G. Rauzy in [350], E. Bombieri and J. Taylor use
substitutions to exhibit a connection between quasi-crystals and number the-
ory in [82] (see also [52, 245, 386, 431] and [440] for a study of the Rauzy
fractal as a quasicrystal).

Finally, by mixing dynamics, self-similarity and number theory, we get
the three following equivalent results:

Theorem 7.4.6 (Rauzy, [350]).

• Geometry. The Rauzy fractal generates a self-similar periodic tiling of C.
• Dynamics. The symbolic dynamical system generated by the Tribonacci sub-

stitution is measure-theoretically isomorphic to a toral translation.
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• Spectral theory.The Tribonacci substitutive dynamical system has a purely
discrete spectrum.

Additional geometric properties. Using methods introduced by F. M.
Dekking in [133], S. Ito and M. Kimura obtain in [218] an alternative con-
struction of the Rauzy fractal and use it to compute the Hausdorff dimension
of the boundary of the Rauzy fractal, which is strictly larger than 1 (see Chap.
8). V. Sirvent obtains equivalent results with a different method in [402]. By
using numeration systems, A. Messaoudi obtains in [289, 291, 290] additional
properties of the fractal R including an explicit boundary parametrization.

7.5 Geometric realization of substitutions of Pisot type

The case of the Tribonacci substitution being quite well understood, the
question of its generalization to a larger class of substitutions is thus natural.
Which substitutions generate self-similar and periodic tilings? Which ones
code the action of a toral translation? From a spectral point of view, a general
formulation for these questions is: which substitutions generate a dynamical
system with a purely discrete spectrum?

7.5.1 Generalized Rauzy fractals

For the Tribonacci substitution, the two main properties that allow us the
construction of the Rauzy fractal are the following:

• The incidence matrix of the substitution has a one-dimensional expanding
direction.

• The broken line corresponding to any periodic point of the substitution
remains at a bounded distance from the expanding direction.

Generalized Rauzy fractals. These properties are satisfied as soon as
the modulus of all but one of the eigenvalues of the substitution incidence
matrix is strictly less than 1. This means that the dominant eigenvalue of the
matrix is a Pisot number and the substitution is of Pisot type.

Definition 7.5.1. Let σ be a unimodular Pisot type substitution over d let-
ters. Let α1 > 1, . . . , αr be the real eigenvalues of the incidence matrix of σ,
αr+1, αr+1, . . . , αr+s, αr+s be its complex eigenvalues. Let v1, . . .vr+s ∈ Cd

be right eigenvectors of the incidence matrix associated with each of the eigen-
values αi, 1 ≤ i ≤ r + s.

For any finite word W , we define the following vector in Rr−1 × Cs:

δ(W ) =
|W |∑
k=1

(
(v2)Wi

, . . . , (vr+s)Wi

)
∈ Rr−1 × Cs.
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Let u = (ui)i∈Z be a periodic point for σ. Then the generalized Rauzy
fractal or Rauzy fractal associated with the substitution σ is the following
compact set:

R = {δ (u0 . . . ui) ; i ∈ N} ⊂ Rr−1 × Cs.

Examples of generalized Rauzy fractals are shown in Fig. 7.8.

1 �→ 21, 2 �→ 13, 3 �→ 1

1 �→ 132,
2 �→ 21323,

3 �→ 321323132

1 �→ 11223, 2 �→ 123, 3 �→ 2

Fig. 7.8. Examples of generalized Rauzy fractals.

Since r + 2s = d, Rr−1 × Cs is a R-vector space of dimension d − 1, so
that the Rauzy fractal associated with a unimodular substitution of Pisot
type can be considered as a part of Rd−1. Let us illustrate this point for the
Tribonacci substitution, by proving that the Rauzy fractal defined in Sec.
7.4.3 and the one defined above are identical:

Exercise 7.5.2. Let σ be the Tribonacci substitution and α be the Tri-
bonacci number, with |α| < 1.

1. Prove that the vector uα = (a1, a2, a3) = (1/α, 1/α2, 1/α3) is a normal-
ized right eigenvector of Mσ associated with α.
Then δ is a mapping from {1, 2, 3}∗ on C: δ(W1 . . .Wn) =

∑
1≤i≤n aWi .

2. Determine a left eigenvector vα of Mσ associated with α and which
satisfies tvαuα = 1.

3. Let w1, w2 be its real and imaginary parts: vα = w1 + iw2. Show that
the family {w1,w2} is a real basis of the contracting plane of H of Mσ.

4. Let qH : C→ H be following R-linear embedding:

∀z = x+ iy ∈ C, qH(z) = 2xw1 − 2yw2.

Prove that up to this identification, the map δ coincides with the linear
projection π : R3 → H parallel to the expanding direction of Mσ:

∀W ∈ {1, 2, 3}∗, qH(δ(W )) = π(l(W )).
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5. Let R be the generalized Rauzy fractal of σ given in Definition 7.5.1 and
R1 be the Rauzy fractal as defined in Sec. 7.4.3. Prove that qH(R) = R1.

The result proved in this exercise is general:

Lemma 7.5.3. Let σ be a substitution of Pisot type over a d-letter alpha-
bet. Let π be the linear projection parallel to the expanding direction of Mσ,
defined from R3 onto the contracting hyperplane Mσ. There exists a linear
embedding qH : Rr−1 × Ds → H such that: ∀W ∈ A, qH(δ(W )) = π(l(W )).

This implies that Definition 7.5.1 generalizes the Rauzy fractal defined by
G. Rauzy for the Tribonacci substitution:

Corollary 7.5.4. Let R be the generalized Rauzy fractal of σ. Let R1 =
{π (
∑n
i=0 eui) ; n ∈ Z}, where u is a periodic point for σ. Then R and R1

are linearly isomorphic: qH(R) = R1.

The reason that led us to define generalized Rauzy fractals by a numerical
method instead of a geometric method is that the map δ allows a better
understanding of the action of the shift map and of the substitution σ on the
Rauzy fractal. Indeed, the following relationships are easy to get:

∀W1,W2 ∈ A∗, δ(W1W2) = δ(W1) + δ(W2);

∀W ∈ A∗, δ(σ(W )) =


 α2 (0)

. . .
(0) αr+s


 δ(W ). (7.8)

For instance, such equalities are the main argument to get the formulas
of Sec. 7.4.5 that describe the self-similar structure of the Rauzy fractal for
the Tribonacci substitution.

Cylinders. As for the Tribonacci substitution, let us define the cylinders:

∀ i = 1 . . . d, Ri = {δ (u0 . . . uj) ; j ∈ N; uj = i}.

Exercise 7.5.5. Prove that the Rauzy fractal is the union of cylinders:

R =
d⋃
i=1

Ri.

Remark. Note that we do not know at the moment whether the union is
in general disjoint in measure. We will see in the next sections that this is
one of the main problems raised by the study of generalized Rauzy fractals.
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7.5.2 Topological properties of generalized Rauzy fractals

Many authors investigated topological properties of Rauzy fractals: V. F.
Sirvent and Y. Wang prove in [400] that generalized Rauzy fractals have
nonempty interior and are the closure of their interior.

Conditions for simple connectedness are given in [220] and in [187]. Condi-
tions for connectedness are given by V. Canterini in [103, 102], and restated in
a more algorithmic way in [397]. An estimation for the Haussdorf dimension
of the boundary of Rauzy fractals is computed in [163].

C. Holton and L. Q. Zamboni define in [207, 210, 209] real and complex
representations associated with every substitution, the incidence matrix of
which has a nonzero eigenvalue of modulus less than one. Their work gives
explicit bounds for the Haussdorf dimension of the projections on axes of
the Rauzy fractal associated with a substitution. More precisely, for any
k = 2, . . . , r + s, they prove that the projection of the Rauzy fractal on the
axis associated with the eigenvalue αk, that is, the k-coordinate of the Rauzy
fractal in Rr−1×Ds (this axis can be R or C), admits a Haussdorf dimension
which is less than − log(α1)/ log(αk).

Thus, for any k = 2, . . . , r + s, the projection is a Cantor set. If k =
s+ 1, . . . , s+ d and |αk|2α1 < 1, then the projection has nonempty interior.

Let us also mention that Rauzy fractals appear in [96], as continuous
factors of odometers, derived from sequence of cutting time of an interval
transformation restricted to a wild attractor.

Finally, some precise results exist about the n-dimensional generalization
of the Tribonacci substitution: the n-bonacci substitution is the n-letter al-
phabet substitution defined by

1 �→ 12, 2 �→ 13, . . . n− 1 �→ 1n, n �→ 1.

The spectral study of this substitution was made by B. Solomyak (see
Sec. 7.3.3). In [401, 403], V. F. Sirvent studies dynamical and geometrical
properties of the Rauzy fractals associated with these substitutions. Other
properties, mainly arithmetical, of the substitutions are given in [406, 404,
409]. In [407] are studied the dynamical and geometrical properties which are
common to all the k-bonacci substitutions.

The construction of the Rauzy fractal being generalized, the question is to
obtain conditions for a substitutive system to be semi-topologically conjugate
to a domain exchange on the Rauzy fractal associated with the substitution,
that is, to generalize the results of [350].

The problem of domain exchange. As for the Tribonacci substitution,
one can move along the broken line associated with a periodic point of a
substitution thanks to a translation by one of the canonical vectors. This can
be expressed in the following way:
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Exercise 7.5.6. Let R be the Rauzy fractal associated with a unimodu-
lar substitution of Pisot type, as defined in Definition 7.5.1. Let Ri be the
cylinders, the union of which is equal to R.

Prove that for every i = 1 . . . d, the following inclusion is satisfied:

Ri − δ(i) ⊂ R. (7.9)

The inclusion (7.9) means that one may define dynamics over the Rauzy
fractal, in terms of a domain exchange, as soon as the cylindersRi are disjoint
up to a set of zero measure. Unfortunately, whereas we know that the union
of the d cylinders Ri is equal to R (Exercise 7.5.5), nothing allows us to say
that these cylinders partition R up to a set of zero measure.

A necessary condition for this is the substitution to be unimodular: if the
substitution is not unimodular, the substitutive system may have a p-adic
component and the cylinders should intersect on a nonzero measure set.

Unfortunately again, the restriction to the class of unimodular substitu-
tion is still not sufficient to define dynamics on the Rauzy fractal of a substi-
tution: for substitutions over a two-letter alphabet, B. Host proved explicitly
that the coincidence condition (see Sec. 7.3.3) is necessary and sufficient for
the cylinders to be disjoint in measure. This is developed in Sec. 7.5.4.

For substitutions over a finite alphabet, P. Arnoux and S. Ito give an
alternative construction of the Rauzy fractal thanks to induction and suc-
cessive approximations (see also Chap. 8). This allowed them to generalize
the coincidence condition and to prove that this condition is sufficient for
the cylinders to intersect on a set of zero measure. Their main results are
presented in Sec. 7.5.4.

The problem of tilings. The main problem of the geometric realization
is to know whether a substitutive dynamical system is isomorphic to a com-
pact group translation. Again, for two-letter alphabet substitutions, B. Host
answered that question in terms of coincidences (see Sec. 7.5.4).

Another approach to this problem was made in [101] by formalizing and
generalizing the ideas of G. Rauzy in [353]: thanks to recognizability and
formal power series, it is possible to define an explicit conjugacy between a
substitutive system and the domain exchange over the Rauzy fractal. This
conjugacy is the reverse from the map which maps the Rauzy fractal onto
the symbolic space {1, . . . , d}, by coding the action of the domain exchange
over the Rauzy fractal. This brings a characterization of substitutive systems
with a purely discrete spectrum. It will be presented in Sec. 7.5.5.

7.5.3 The coincidence condition

As explained in Sec. 7.3, the spectrum of a substitutive dynamical system
is related to the notion of coboundary introduced by B. Host. In two spe-
cific cases, that is, constant length substitutions and two-letter substitutions,
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the spectrum is purely discrete if and only if the substitution satisfies the
combinatorial condition of coincidence (Theorem 7.3.4 and 7.3.35).

Let us point out the general definition of coincidences as introduced in
[40], and its relationship with coboundaries. We will see later that the general
condition of coincidence plays an important role in the problem of the domain
exchange.

As before, l : {1, . . . , d} → Nd is the abelianization map over {1, . . . , d}.

Definition 7.5.7 (Arnoux, Ito [40]). A substitution σ satisfies the coinci-
dence condition on prefixes (respectively suffixes) if for every couple of letters
(j, k), there exists a constant n such that σn(j) and σn(k) can be decomposed
in the following way:

σn(b1) = p1as1 and σn(b2) = p2as2, with l(p1) = l(p2)
(respectively l(s1) = l(s2)) .

Example 7.5.8. The Tribonacci substitution satisfies the coincidence condi-
tion, whereas the Morse sequence does not satisfy this condition.

The coincidence condition is connected with the notion of coboundary
introduced by B. Host and detailed in Sec. 7.3.2:

Lemma 7.5.9 (Host). Let σ be a substitution with a nontrivial coboundary
g : A → U. Let f be the function of modulus 1 which satisfies f(b) = g(a)f(a)
as soon as the word ab belongs to the language of the fixed point of the sub-
stitution.

If there exist two letters a and b and a rank k such that

• f(a) �= f(b),
• σk(a) begins with a and σk(b) begins with b,

then σ does not satisfy the coincidence condition on prefixes.

Proof. If σ satisfies the coincidence condition, there exist a multiple k1 of
k and a letter c such that

σk1(a) = p1cs1 and σn(b) = p2cs2, with l(p1) = l(p2).

Let p1 = au1 . . . un−1 and p2 = bv1 . . . vn−1. Since g is a coboundary we have

f(c)
f(b)

= g(vn−1) . . . g(v1) = g(un−1) . . . g(u1) =
f(c)
f(a)

.

Thus f(a) = f(b) which is impossible.

By using the following method of B. Host to construct substitutions with
nontrivial coboundaries, one gets a family of substitutions without coinci-
dence.
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Proposition 7.5.10 (Host). Let σ be a primitive substitution over an al-
phabet A. Let L2(Xσ) be the set of words of length 2 in the language of the
substitution.

The following substitution τ on the alphabet L2(Xσ) is primitive and has
a nontrivial coboundary:

∀ ab ∈ L2(Xσ), if
{
σ(a) = a1 . . . ak
σ(b) = b1 . . . bl

,

then τ(ab) = (a1a2)(a2a3) · · · (ak−1ak)(akb1) ∈ L2(Xσ)∗.

Proof. For any letter a ∈ A, choose a number ψ(a) �= 1 of modulus 1. For
any (ab) ∈ L2(Xσ), let f(ab) = ψ(a) and g(ab) = ψ(b)/ψ(a).

Let (ab) and (a′b′) be two elements of L2(Xσ) such that the word (ab)(a′b′)
(of length 2 in L2(Xσ)∗) belongs to the language of τ . By construction, we
have b = a′, so that

f(a′b′) = ψ(a′) = ψ(b) = g(ab)ψ(a) = g(ab)f(ab).

Thus, g is a nontrivial coboundary for τ .

Remark. This last method to get substitutions with nontrivial cobound-
aries shows that the notion of coboundary is the analogous of the notion of
height in the constant length case (see Sec. 7.3.1).

Substitutions of Pisot type. This last method does not provide Pisot
type substitutions with nontrivial coboundary: the characteristic polynomial
of the substitution that is obtained is never irreducible. We still do not know
whether there exists a Pisot type substitution which does not satisfy the
coincidence condition.

A negative answer to that question was recently given by M. Barge and
B. Diamond [54], for substitutions over a two-letter alphabet, as stated in
Theorem 7.3.36. In the general context of substitutions of Pisot type over
more than 2 letters, they prove that the coincidence condition is satisfied by
at least two letters:

Theorem 7.5.11 (Barge, Diamond [54]). Let σ be a substitution of Pisot
type on the alphabet A = {1 . . . d}. There exist two distinct letters i, j for
which there exist integers k, n such that σn(i) and σn(j) have the same k-th
letter, and the prefixes of length k−1 of σn(i) and σn(j) have the same image
under the abelianization map.

This is the most complete result on coincidence that is know at the mo-
ment.
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7.5.4 Condition for non-overlapping in generalized Rauzy fractals

Construction by successive approximations. P. Arnoux and S. Ito gen-
eralize in [40] the alternative construction given by S. Ito and M. Kimura [218]
of the Rauzy fractal associated with the Tribonacci substitution. Indeed, they
construct by successive approximations the Rauzy fractal for any unimodular
Pisot type substitution. The construction is described precisely in Chap. 8.

Thanks to this construction and by generalizing some of the techniques
of B. Host in [216], P. Arnoux and S. Ito prove that, under the condition of
coincidence, the d cylinders of the generalized Rauzy fractal associated with
a substitution over d letters are disjoint in measure. The first consequence
of this is that the Rauzy fractal of such a substitution has a self-similar
structure: a generalized Rauzy fractal satisfies formulas such as those stated
in Sec. 7.4.5 for the Tribonacci substitution.

The second consequence is that, now, nothing prevents us to define a
domain exchange on the Rauzy fractal, as it was the case for the Tribonacci
substitution.

∀x ∈ R, ϕσ(x) = x− δ(i), if x ∈ Ri.
P. Arnoux and S. Ito prove that coding this action on the Rauzy fractal

leads to the symbolic dynamical system generated by the substitution:

Theorem 7.5.12 (Arnoux, Ito [40], see Chap. 8). Let σ be a unimodular
Pisot type substitution over a d-letter alphabet which satisfies the condition
of coincidence. Then the substitutive dynamical system associated with σ is
measure-theoretically isomorphic to the exchange of d domains defined almost
everywhere on the self-similar Rauzy fractal of σ.

Remark. This result was previously proved by B. Host in an unpublished
work [216] for substitutions over a two-letter alphabet.

Appropriate quotient: toral translation factor. The Euclidean space
Rd−1 projects onto a d − 1-dimensional torus modulo the lattice L =∑d
i=2 Z(δ(i) − δ(d)). Through the quotient map, all the vectors δ(i) map

onto the same vector, so that the domain exchange ϕσ maps to a toral trans-
lation. In other words, the diagram shown in Fig. 7.5.4 commutes, where the
symbol � on an arrow denotes a measure-theoretic isomorphism.

Thus the domain exchange can be factorized by an irrational translation.
This implies a more geometrical version of Corollary 7.3.33:

Proposition 7.5.13 (Arnoux, Ito [40]). Any unimodular Pisot type sub-
stitutive dynamical system which satisfies the coincidence condition admits
as a continuous factor an irrational translation on the torus Td−1, the fibers
being finite almost everywhere.

Remark. The fibers are finite almost everywhere as the Rauzy fractal is
bounded.
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Fig. 7.9. Relations between the different maps related to Rauzy fractals.

Cardinality of the fibers of the quotient map. According to a proof
from B. Host, one can easily prove that the fibers are not only finite almost
everywhere: they are constant almost everywhere.

Exercise 7.5.14. Let σ be a unimodular substitution of Pisot type. Let ϕ :
Ω → Td−1 be a continuous toral representation of the substitutive dynamical
system associated with σ, that is, there exists t ∈ Td−1 such that ϕS(w) =
ϕ(w) + t, for all w ∈ Ω.

Let ψ : Td−1 �→ N ∪∞ be the cardinality of the fibers:

∀x ∈ Td−1, ψ(x) = Card {w ∈ Ω, ϕ(w) = x}.

1. Let w1, . . . , wn be n distinct elements in Ω and ε ∈ R. Let An,ε be the
set:

An,ε = {x ∈ Td−1; ∀i ≤ n, d(ϕ(wi),x) < ε}.

Prove that An,ε is an open set for the Borel topology.
2. Deduce that ψ is a measurable map for the Lebesgue measure over Td−1

and the discrete measure over N.
3. Prove that ψ is constant almost everywhere.

A more explicit version of the tiling problem. Note that the toral
translation obtained in the diagram below is precisely the maximal equicon-
tinuous factor of the substitutive dynamical system, up to the hypothesis of
no nontrivial coboundary:

Exercise 7.5.15. Let σ be a unimodular substitution of Pisot type with no
nontrivial coboundary.

1. Extend δ as a linear map over Rd.
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2. Prove that the kernel of δ is generated by any expanding eigenvector u
of the incidence matrix of σ.

3. Consider the decomposition δ(1) =
∑
i≥2 λi(δ(i)− δ(1)). Prove that

∀ i ≥ 2, λi =
(u)i∑
j(u)j

.

4. Deduce from Prop. 7.3.29 that the addition of δ(1) over
(
Rr−1 × Cs

)
/L is

the maximal equicontinuous factor of the substitutive dynamical system
associated with σ.

Corollary 7.5.16. A unimodular substitutive system of Pisot type, with co-
incidence and no nontrivial coboundary, has a purely discrete spectrum if and
only if the quotient map from the Rauzy fractal onto the torus is one-to-one.
In particular, in this case, the Rauzy fractal generates a periodic tiling.

An answer to the tiling problem? For two-letter substitutions, B. Host
proves that the problem of domain exchange is equivalent to the tiling prob-
lem. Indeed, in an unfortunately unpublished work [216], B. Host explicitly
realizes the inverse map of the coding map up to the partition by cylinder
(that is, the arrow R → Xσ on the lower commutative diagram). He states
that there exists an explicit continuous mapping f : Xσ → R such that

∃ a0, a1 ∈ R; ∀w ∈ Xσ, f(Sw) = f(w) + aw0 . (7.10)

An important fact is the following:

Lemma 7.5.17 (Host [216]). Let σ be a substitution over a two-letter al-
phabet. Let f : Xσ → R be a continuous function which satisfies (7.10). Then
f is almost everywhere one-to-one if and only if its projection onto the torus
modulo (a1 − a0) is also almost everywhere one-to-one.

As we know that f is almost everywhere one-to-one as soon as the substi-
tution satisfies the coincidence condition (Theorem 7.5.12), we deduce that
the dynamical system associated with a unimodular substitution of Pisot type
with coincidence over a two-letter alphabet is explicitly semi-topologically
conjugate to a toral translation. In other words:

Corollary 7.5.18 (Host [216]). The generalized Rauzy fractal of a two-
letter unimodular substitution of Pisot type with coincidence generates a pe-
riodic tiling of R.

Remark. The “toral” version of this corollary is included in Hollander’s
result in [206] (see Sec. 7.3.3). However, it was obtained much before Hollan-
der’s work. It is less general, since it depends on the unimodular condition,
but it has the advantage of being constructive.
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Unfortunately, in the general case, these techniques do not allow one to
prove that the projection on the torus preserves the injectivity: Lemma 7.5.17
is not true when the alphabet contains strictly more than two letters.

P. Arnoux and S. Ito give in [40] a sufficient condition for the rotation
factor to be isomorphic to the substitutive system: if there exists a set with
nonempty interior which is included in all the domains (after renormalization)
which appear in the construction by successive approximation of the Rauzy
fractal of the substitution, then we get an isomorphism (see Chap. 8).

7.5.5 Rauzy fractals and formal power series: condition for tiling

Thus, the work of P. Arnoux and S. Ito generalizes [350] to a large class of
substitutions, but two fundamental questions remain unsolved: first, the map-
ping from the substitutive dynamical system onto the Rauzy fractal which
conjugates the shift map and the domain exchange is not explicit, and the
same for the mapping onto the torus. Secondly, there is no result about the
injectivity of the mapping onto the torus. Both questions were solved by
G. Rauzy in [350] for the Tribonacci substitution. He gave in [353] ideas
to generalize his work for any Pisot type substitution. This approach has
been partially realized in [102] and [396], to obtain explicit representation
mappings and conditions for injectivity of the toral mapping.

Prefix-suffix expansion. Indeed, in [100], the prefix-suffix expansion de-
fined in Sec. 7.2.2 is used to produce a measure-theoretic isomorphism be-
tween the shift map on a substitutive system and an adding machine over the
shift of finite type, considered as a Markov compactum in which the order is
naturally defined by the substitution. This map is expressed under the form
Γ (w) = (pi, ai, si)i≥0 for all w in Xσ, so that we have:

w = . . . σi(pi)σi−1(pi−1) . . . σ(p1)p0·a0s0σ(s1) . . . σi(si) . . . .

We already explained that this provides a new proof of A. V. Vershik’s
results, originally proved thanks to a stationary Markov compactum with a
partial ordering on the labels of the edges. This ordering was arbitrary, so
that the representation by the Markov compactum was not explicit. On the
contrary, the definition of labels through prefixes of images of letters under
the substitution induces a natural ordering between the edges and provides
a well determined combinatorial representation.

Geometric realization of the substitutive system. If the substitution
is of Pisot type over a d-letter alphabet, then this prefix-suffix expansion
allows one to realize explicitly any element of Xσ as a point in Rd−1 ex-
pressed in terms of power series. More precisely, a consequence of (7.5.1) is
the following, where δ2, . . . , δr+s denote the coordinates of the map δ:



248 7. Spectral theory and geometric representation of substitutions

ψσ(w) = lim
n→+∞ δ(σ

n(pn) . . . σ0(p0) ) =



∑
i≥0 δ2(pi)α2

i

...∑
i≥0 δr+s(pi)αr+s

i


 ∈ R.

On each coordinate, this mapping coincides with the real or complex
representations of C. Holton and L. Q. Zamboni in [207, 209]. Gathering all
the one-dimensional realizations together is natural: indeed each of them is a
different expression of the same formal numeration system (the one generated
by the characteristic polynomial of the incidence matrix of the substitution).

It is proved in [101] that this representation map is the reverse map of
the coding map, up to the cylinders partition, from the Rauzy fractal onto
the substitutive dynamical system (see Theorem 7.5.12). In particular, this
map projects onto the (d− 1)-dimensional torus and satisfies a commutation
relation with the translation described in the preceding section. This gives a
new proof of Corollary 7.3.33 and 7.5.13 which makes the toral representation
totally explicit.

This also gives a new proof of Theorem 7.5.13. The interest of this method
lies in the fact the Rauzy fractal is obtained as the image of an explicit map,
so that it makes it possible to derive various topological properties of the
fractal, such as a criterion for the connectedness of the fractal [102], or a
description of the boundary of the Rauzy fractal [397].

Application to the tiling question. The main interest of such a con-
struction is that the explicit expression of the mapping from the substitutive
dynamical system onto the Rauzy fractal on one side, and onto the torus
one the other side, gives an efficient approach for a detailed study of the
injectivity of the realizations. Indeed, in [397], the question of injectivity is
not treated as usual from a measurable point of view [216, 40], but from a
formal and algebraic point of view, based on two points. The first one is the
combinatorial structure of the substitutive system, deduced from the prefix-
suffix automaton. The second one is the algebraic structure of the system,
produced by the incidence matrix of the substitution.

More precisely, one can note that the representation map ψσ onto the
Rauzy fractal of a Pisot type substitution shall be expressed with a formal
power series with coefficients into the splitting field of the characteristic poly-
nomial of the incidence matrix of the substitution: the representation map is
just obtained by gathering the set of finite values which can be taken for any
Archimedean topology by the formal power series.

In that way, the study of the injectivity of the representation map is
reduced to the study of sequences of digits such that the associated formal
power series tends to zero for all the Archimedean metrics for which the power
series has a limit. This implies that the sequences of digits are labels of paths
in a finite automaton. The understanding of the structure of the automaton
is fundamentally connected with the injectivity of the geometric (onto the
Rauzy fractal) and toral realizations.
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For instance, the injectivity in measure of the geometric representation of
a unimodular Pisot type substitutive system can be characterized in terms
of explicit combinatorial conditions on graphs. Contrary to the coincidence
condition, it is a necessary and sufficient condition, but it is quite difficult to
verify this condition quickly. Furthermore, this condition is satisfied by sub-
stitutions with coincidence, but we do not know whether equivalence holds.

The main interest of this approach is that, contrary to what happens
with the coincidence condition, these methods also give results about the
injectivity of the toral realization.

Theorem 7.5.19 (Siegel [397]). The injectivity in measure of the toral rep-
resentation of a unimodular Pisot type substitutive dynamical system deduced
from the Rauzy fractal construction is equivalent to an explicit combinato-
rial condition which depends only on the definition of the substitution which
generates the system.

Thus one can test whether the spectrum of a given unimodular Pisot type
substitutive dynamical system is purely discrete.

Corollary 7.5.20 (Siegel [397]). There exists an explicit and effective
sufficient combinatorial condition for a unimodular Pisot type substitutive
dynamical system to be measure-theoretically isomorphic to a toral transla-
tion, that is, to have a purely discrete spectrum. This condition is necessary
when the substitution has no non-trivial coboundary.

For instance, the systems generated by the substitutions 1 �→ 12, 2 �→ 31,
3 �→ 1, and 1 �→ 12, 2 �→ 13, 3 �→ 132 have a purely discrete spectrum: both
are measure-theoretically isomorphic to a translation on the two-dimensional
torus, both conjugacy maps being explicit semi-topological conjugacies.

In more geometrical terms, the injectivity of the toral realization has the
following interpretation in terms of tilings:

Corollary 7.5.21 (Siegel [397]). There exists an explicit and effective
combinatorial condition for the Rauzy fractal associated with a unimodular
Pisot type substitution over d letters to generate a periodic tiling of Rd−1.

The condition is too long to be given here. The difficulty in checking
whether this condition holds prevents one from obtaining general results
about the injectivity of the toral realization. However, even if the condi-
tion is too long to be checked by hand, it can be checked in a finite time
for any explicit example, thanks to the effective algorithm given in [397]. For
instance, this algorithm allows one to state that the substitution 1 �→ 21,
2 �→ 13, 3 �→ 1 generates a periodic tiling shown in Fig. 7.10. Notice that all
the substitutions that have been tested give a positive answer to the tiling
question.
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Fig. 7.10. Periodic tiling for the Rauzy fractal of 1 �→ 21, 2 �→ 13, 3 �→ 1.

About unimodular substitutions of Pisot type, an important remaining
question at the moment is to obtain a general sufficient condition, for instance
in terms of coincidences, for a unimodular Pisot type substitutive system to
have purely discrete spectrum, or equivalently, to be measure-theoretically
isomorphic to a toral rotation.

7.6 Extensions and applications

7.6.1 Non-unimodular substitutions

The formal point of view of substitutive dynamical systems can be extended
to non-unimodular substitutions. Indeed, in the unimodular case, the Rauzy
fractal of a substitution of Pisot type over d letters is made of the set of finite
values which can be taken for any Archimedean topology by the formal power
series. But, in the non-unimodular case, there exists a new type of topology
for which the formal power series converges: the p-adic topology. One can
define a new Rauzy fractal, with p-adic components, which consists of the
set of finite values which can be taken for any topology by the formal power
series (Archimedean and p-adic). Then, one obtains a set in the product of
Rd−1 and finite extensions of p-adic fields Qp, where p are prime divisors of
the determinant of the incidence matrix of the substitution [398].

The techniques developed in the unimodular case can be generalized:

• there exists a combinatorial condition on the substitution (in terms of
graphs) which is sufficient for the substitutive system to code the action of
a domain exchange in the new Rauzy fractal;

• there exists a lattice such that the quotient map modulo this lattice trans-
poses the domain exchange into a translation over a compact group;

• there exists an automaton which decides whether the quotient map is al-
most everywhere one-to-one.

Thus, we get the following result:
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Theorem 7.6.1 (Siegel [397]). There exists an explicit and effective com-
binatorial condition for a Pisot type substitutive dynamical system to be
measure-theoretically isomorphic to a toral translation, that is, to have a
purely discrete spectrum.

Example 7.6.2. The system generated by the substitution 1 �→ 1112 et 2 �→
12, which is known to have a purely discrete spectrum (Theorem 7.3.35), is
semi-topologically conjugate to a translation over the direct product of Z2
with two-adic solenoid S2(see [398, 397]).

The system generated by the substitution 1 �→ 2, 2 �→ 3, 3 �→ 11233 has
a purely discrete spectrum.

Many questions remain for non-unimodular Pisot substitutions: what is in
general the structure of the maximal equicontinuous factor? Even in the two-
dimensional case, where a condition for a purely discrete spectrum is known,
the structure is difficult to understand. As a final question, we know that the
substitution defined by 1 �→ 11222 and 2 �→ 1222 is isomorphic to a compact
group translation. We know that this group contains a one-dimensional torus,
and no p-adic factors. But what is precisely this group?

7.6.2 Substitutions and Markov partitions

The prefix-suffix expansion and the Rauzy fractal associated with a unimod-
ular substitution of Pisot type over a d-letter alphabet, naturally lead to
define a domain in Rd.

This domain consists of finite unions of cylinders. The base of each cylin-
der is a sub-domain of the Rauzy fractal of the substitution embedded in the
contracting hyperplane of the incidence matrix. Each cylinder is directed by
the expanding direction of the matrix. Examples are given in Fig. 7.11 for
the Fibonacci substitution and the Tribonacci substitution.

Fig. 7.11. Domains in R
d associated with the Fibonacci and Tribonacci substitu-

tions.

If the Rauzy fractal of the substitution generates a tiling of Rd−1 (see
Corollary 7.5.21), then the domain is a fundamental domain identified with
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the d-dimensional torus Td [396]. Illustrations are shown in Fig. 7.12 for the
Fibonacci and Tribonacci substitutions.

Fig. 7.12. Tilings of R
2 and R

3 associated with the Fibonacci and Tribonacci
substitutions.

Moreover, the prefix-suffix automaton induces a natural partition of this
fundamental domain such that the action of the toral automorphism associ-
ated with the incidence matrix of the substitution is coded, with respect to
this partition, by the set of biinfinite walks of the prefix-suffix automaton.

Thus, the Rauzy fractal of a unimodular substitution of Pisot type to-
gether with the prefix-suffix automaton produce a completely explicit Markov
partition for the toral automorphism associated with the incidence matrix of
the substitution, as soon as the Rauzy fractal generates a periodic tiling.

This produces a new method to build Markov partition, with the use
of substitutions. The advantage of this constructive method, compared to
those of R. Kenyon and A. Vershik [242] or S. Leborgne [263], is to permit to
characterize some topological properties of the Markov partition (boundary
parametrization, connectedness, simple connectedness).

Given a toral automorphism of Pisot type with nonnegative coefficients, it
is natural to consider the substitution which has the same incidence matrix,
and such that the image of each letter through the substitution consists of
letters in an increasing order. Such a substitution satisfies the coincidence
condition, so that there exists a Rauzy fractal associated with the substitu-
tion. It remains to check that the Rauzy fractal generates a periodic tiling to
finally obtain an explicit Markov partition of the toral automorphism con-
sidered at the beginning.



8. Diophantine approximations, substitutions,
and fractals

In this chapter we shall show how to associate with a substitution σ a domain
Rσ with fractal boundary, generalizing Rauzy’s famous construction of the
Rauzy fractal [350] (see also Chap. 7). The substitutions are of Pisot type
and unimodular, and our method is constructive. In this way, we obtain a
geometric representation of the substitution as a domain exchange and, with
a stronger hypothesis, we get a rotation on a torus. In fact, there are two quite
different types of dynamics which act on the set Rσ: the first one (given by
the shift) corresponds to the exchange of domains, while the dynamics of the
substitution is given by a Markov endomorphism of the torus whose structure
matrix is equal to the incidence matrix of the substitution. The first one has
zero entropy, whereas the second one has positive entropy. The domain Xσ is
interesting both from the viewpoint of fractal geometry, and of ergodic and
number theory; see for instance [350, 353, 218, 220, 291, 290, 375] and Chap.
7.

We illustrate this study with some substitutions such as the “modified
Jacobi-Perron substitutions”. We also end each section by evoking the re-
sults in the one-dimensional case corresponding to those obtained in the
two-dimensional case. We end this chapter by surveying some applications
in Diophantine approximation. In particular, we give a geometric and sym-
bolic interpretation of the natural extension of the modified Jacobi-Perron
algorithm.

This chapter is based on the study of a few representative examples of
generalized substitutions illustrating the general theory. We have chosed to
suppress most of the proofs (which are often rather technical) and to replace
them by figures to help the comprehension. Most of the proofs of the results
mentioned in this chapter are to be found in [40, 39].

We recommend the reading of Chap. 7, and in particular Sec. 7.4, as
a motivation for the results and the techniques developed in the present
chapter. Indeed the present approach has been inspired by the alternative
construction of the Rauzy fractal associated with the Tribonacci substitution
given in [218], by constructing successive approximations of the Rauzy fractal.
1 This chapter has been written by S. Ito

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 253–292, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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8.1 Substitutions and domains with fractal boundary

The aim of this section is to fix the framework in which we will be working
in this chapter. We introduce in particular the domain of R2 with fractal
boundary associated with a substitution over a three-letter alphabet. Every-
thing extends in a natural way to substitutions over any finite alphabet, but
to avoid cumbersome terminology and to help the visualization, we restrict
ourselves to substitutions over 2 or 3 letters.

8.1.1 Notation and main examples

In this chapter we focus on substitutions over the three-letter alphabet A =
{1, 2, 3}. The canonical basis of R3 is denoted by {e1, e2, e3}.

Let us introduce the families of substitutions we will consider in this
chapter.

Example 8.1.1 (Rauzy substitution [350]). The Rauzy substitution is defined
by:

σ(1) = 12, σ(2) = 13, σ(3) = 1.

The incidence matrix of this substitution is

Mσ =


 1 1 1

1 0 0
0 1 0


 .

Example 8.1.2 (Modified Jacobi-Perron substitution [220]). For every a ∈ N+

and δ ∈ {0, 1}, let us define the substitution σ(a,δ) as follows:

σ(a,0) : 1 −→
a times︷ ︸︸ ︷
11 · · · 1 2

2 −→ 3
3 −→ 1

, σ(a,1) : 1 −→
a times︷ ︸︸ ︷
11 · · · 1 3

2 −→ 1
3 −→ 2

.

The substitutions σ(a,δ), for a ∈ N+ and δ ∈ {0, 1}, are called modified
Jacobi-Perron substitutions and are connected in a natural way with the
modified Jacobi-Perron algorithm: for more details concerning this algorithm,
see Sec. 8.6.

For every a ∈ N+, the incidence matrices of the modified Jacobi-Perron
substitutions σ(a,0) and σ(a,1) are the following:

Mσ(a,0) =


a 0 1

1 0 0
0 1 0


 and Mσ(a,1) =


a 1 0

0 0 1
1 0 0


 .
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Throughout this chapter, substitutions will always be of Pisot
type and unimodular. Let us recall that this means that the eigenvalues
λ,λ′ and λ′′ of its incidence matrix Mσ satisfy λ > 1 > | λ′ |, | λ′′ | > 0
and det Mσ = ±1 (see Sec. 1.2.5). Notice that a substitution of Pisot type is
primitive, that is, there exists N such that MN

σ > 0 (see Theorem 1.2.9).

Contracting plane. Let t(1, α, β) and t(1, γ, δ) be the right and left eigen-
vectors of Mσ for the dominant eigenvalue λ:

Mσ
t(1, α, β) = λ t(1, α, β) and tMσ

t(1, γ, δ) = λ t(1, γ, δ).

Let Pγ,δ be the plane defined by

Pγ,δ :=
{
x ∈ R3

∣∣ 〈x, t(1, γ, δ) 〉 = 0
}
. (8.1)

Projection. The map π : R3 → Pγ,δ is defined to be the projection along
the vector (1, α, β).

The lattice L0. We denote by L0 the lattice

L0 = {nπ(e2 − e1) +m(e3 − e2)|m,n ∈ Z}.

Lemma 8.1.3. The plane Pγ,δ is the contracting invariant plane with respect
to Mσ. More precisely, we have MσPγ,δ = Pγ,δ, and letting v′ = t(1, α′, β′)
and v′′ = t(1, α′′, β′′) be the right eigenvectors of Mσ associated respectively
with eigenvalues λ′ and λ′′, we have:

• In the case where λ′ and λ′′ are real, then

v′,v′′ ∈ Pγ,δ and (Mσv
′,Mσv

′′) = (v′,v′′)
(
λ′ 0
0 λ′′

)
.

• If λ′ and λ′′ are complex, then λ′ = λ′′, and letting u′ := 1
2 (v′ + v′′) and

u′′ := 1
2i (v

′ − v′′), we have

u′,u′′ ∈ Pγ,δ and ∃ θ with (Mσu
′,Mσu

′′) =
1√
λ

(u′,u′′)
(

cos θ − sin θ
sin θ cos θ

)
.

The proof is left as an exercise.

8.1.2 Domain with fractal boundary associated with a
substitution

Let us associate with the fixed point u (and with the dynamical system
(Xu, T ) associated with u) a domain included in the contracting plane Pγ,δ
by projecting the broken lines in R3 corresponding to the images under the
abelianization homomorphism (see Chap. 1) of the prefixes of the sequence u.

Let σ be a unimodular substitution of Pisot type such that σ(1) begins
with 1. We associate with the substitution σ a domain Rσ with a fractal
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b o u n d a r y ,  which a d m i t s  a  n a t u r a l  d e c o m p o s i t i o n  i n t o  t h r e e  s e t s  R i ,  i = 
1 , 2 , 3 ,  a s  follows. 

T h e  s e t  R, is t h e  c l o s u r e  of U F = l  Y N ,  

w i t h  YN = { - n ( ~ : = ~  e u , )  1 k = 1, , N 

F o r  i = 1 , 2 , 3 ,  t h e  s e t  Ri is t h e  c l o s u r e  o f  UF=l Y N , i ,  

T h e  s i g n  - in t h e  above f o r m u l a s  a p p e a r s  h e r e  for s o m e  t e c h n i c a l  r e a s o n s  
d u e  t o  t h e  very d e f i n i t i o n  of t h e  generalized s u b s t i t u t i o n s  we i n t r o d u c e  l a t e r .  
T h i s  s e t  R, will b e  called t h e  ( g e n e r a l i z e d )  R a u z y  f r a c t a l  a s s o c i a t e d  w i t h  t h e  
s u b s t i t u t i o n  a .  

For t h e  R a u z y  s u b s t i t u t i o n  ( E x a m p l e  8 . 1 . 1 ) ,  a n d  t h e  modified J a c o b i -  
P e r r o n  s u b s t i t u t i o n  ( E x a m p l e  8 . 1 . 2 )  w i t h  a  = 1 a n d  6 = 0 ,  t h e  d o m a i n s  R, 
a r e  shown o n  F i g .  8 . 1 .  

Fig. 8.1. T h e  d o m a i n  R, w i t h  f r a c t a l  b o u n d a r y  for t h e  R a u z y  s u b s t i t u t i o n  a n d  
t h e  modified J a c o b i - P e r r o n  s u b s t i t u t i o n  a ( l , o ) .  

O u r  a i m  now is t o  give a n  explicit device of c o n s t r u c t i o n  for t h e  s e t  R, 
b y  i n t r o d u c i n g ,  i n  t h e  n e x t  s e c t i o n ,  a  n o t i o n  of generalized s u b s t i t u t i o n .  

8 . 1 . 3  T h e  t w o - d i m e n s i o n a l  c a s e  

W h i l e ,  i n  t h i s  c h a p t e r ,  we focus o n  s u b s t i t u t i o n s  over a  t h r e e - l e t t e r  a l p h a b e t ,  
t h e  r e s u l t s  a r e  satisfied by s u b s t i t u t i o n s  over a  g e n e r a l  a l p h a b e t  { 1 , 2 .  . . , d ) .  
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In particular, the simplest case of a two-letter alphabet is fundamental. At
the end of each section of this chapter, we will survey the corresponding
results in the two-dimensional case.

Let t(1, α) and t(1, γ) be, respectively, the right and left eigenvectors of
the matrix Mσ for the dominant eigenvalue λ:

Mσ
t(1, α) = λ t(1, α) tMσ

t(1, γ) = λ t(1, γ).

The contracting invariant line lσ with respect to Mσ is defined as

lσ =
{
x ∈ R2

∣∣ 〈x, t(1, γ)
〉

= 0
}
.

The projection along t(1, α) is also denoted π : R2 → lσ.
For any unimodular substitution σ of Pisot type such that σ(1) begins

with 1, one can obtain also some projective sets YN and YN,i (for i = 1, 2),
and their limit Rσ and Ri (for i = 1, 2): Ri is the closure of

⋃∞
N=1 YN,i (for

i = 1, 2), and Rσ is the closure of
⋃∞
N=1 YN .

Example 8.1.4 (Continued fraction substitutions). For every a ∈ N+, let us
define the substitutions σa over a two-letter alphabet by

σa(1) =

a times︷ ︸︸ ︷
11 · · · 1 2, σa(2) = 1.

The substitutions σa, with a ∈ N+, are called continued fraction substitutions
(the definition of the continued fraction algorithm will be recalled in Sec. 8.6).

The matrix of σa is

Mσa =
(
a 1
1 0

)
.

In this example, the setsRσ andRi, i = 1, 2 associated with the continued
fraction substitutions are intervals.

8.2 Generalized substitutions

8.2.1 Definitions

In this section, we construct a map Θ associated with the substitution σ:
the map Θ is a generalized substitution, which acts over translated faces of
the unit cube. It is obtained as a dual map of the substitution σ. For more
details, see [40, 39]. The purpose of the introduction of such a device is, first,
to get an explicit construction of an approximation of the contracting plane
as a stepped surface by the iteration Θn, and secondly, to recover, in an
explicit way after a suitable renormalization, the domain Rσ associated with
the substitution σ.
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We illustrate this notion through the examples of the Rauzy substitu-
tion and the modified Jacobi-Perron substitutions. We end this section by
considering the two-dimensional case.

Basic squares. Let x ∈ Z3 and i ∈ {1, 2, 3}. Translate the unit cube of R3

by the vector x. Then the face of the translated cube which contains x and
is orthogonal to the vector ei is denoted (x, i∗). More precisely, let (j, k) be
such that (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, then:

(x, i∗) := {x+ λej + µek | 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} .

Such a set is called a basic square. Illustrations of some basic squares are
given in Fig. 8.2.

0
e 1

3e

2e 0

(0, 1∗)

0

(0, 2∗)

0

(0, 3∗)

0
e 1

3e

2e

x

(x, 1∗)

Fig. 8.2. The basic squares (0, i∗), i = 1, 2, 3 and (x, 1∗).

The Z-module generated by the set of basic squares. Our next step
will be now to define a linear map which acts on the set of basic squares.
The idea is to substitute (according to a scheme given by the substitution
σ) a basic square by a union of basic squares. When iterating such a device,
overlap problems of basic squares may occur. We thus need to introduce a
suitable formalism. Let us equip the set of basic squares with a structure of
a Z-module.

Let Λ denote the set of all the basic squares (x, i∗):

Λ =
{

(x, i∗)
∣∣ x ∈ Z3, i ∈ {1, 2, 3}

}
.

Let G be the Z-module generated by Λ:

G =
{∑

λ∈Λmλλ
∣∣ mλ ∈ Z, # {λ | mλ �= 0} < +∞

}
.

The set G is the set of formal sums of weighted faces.
The lattice Z3 acts on G by translation:

∀y,x ∈ Z3, ∀i ∈ {1, 2, 3}, y + (x, i∗) := (y + x, i∗).

Now, we can define a map Θ acting on the set G.
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Definition 8.2.1. The endomorphism Θ of G associated with σ is defined
as follows, where Y and W denotes prefixes and suffixes:


∀i ∈ A, Θ(0, i∗) :=
∑3
j=1
∑
W :σ(j)=Y ·i·W

(
M−1

σ (f(W )) , j∗
)
,

∀x ∈ Z3, ∀i ∈ A, Θ(x, i∗) := M−1
σ x+Θ(0, i∗),

∀
∑
λ∈Λmλλ ∈ G, Θ(

∑
λ∈Λmλλ) :=

∑
λ∈ΛmλΘ(λ).

The formulation given above is quite cumbersome. For a better understanding
of the map Θ, see Fig. 8.4 , 8.5, 8.6, and see also the next sections, where we
apply the above formulas in some basic cases.

Note that M−1
σ maps Z3 to Z3, since the substitution is unimodular.

Let us introduce the stepped surface associated with a plane on which the
endomorphism Θ acts, in order to discuss the geometrical properties of Θ.

Stepped surface of a plane. Let 0 < γ, δ < 1. Let Pγ,δ be the plane
orthogonal to the vector t(1, γ, δ):

Pγ,δ :=
{
x ∈ R3

∣∣ 〈x, t(1, γ, δ) 〉 = 0
}
.

For each γ, δ, the stepped surfaces S+
γ,δ and S−γ,δ associated with Pγ,δ are

defined as the surfaces consisting of basic squares which are the best below
and above approximations of the plane Pγ,δ. More precisely, let S+

γ,δ and S−γ,δ
gather the faces of the translates with integer vertices of the unit cube which
intersect Pγ,δ:

S+
γ,δ :=

{
(x, i∗)

∣∣ 〈x, t(1, γ, δ) 〉 > 0,
〈
(x− ei), t(1, γ, δ)

〉
≤ 0
}
,

S−γ,δ :=
{

(x, i∗)
∣∣ 〈x, t(1, γ, δ) 〉 ≥ 0,

〈
(x− ei), t(1, γ, δ)

〉
< 0
}
.

Then the stepped surfaces are unions of such basic squares:

S+
γ,δ :=

⋃
(x,i∗)∈S+

γ,δ

(x, i∗), S−γ,δ :=
⋃

(x,i∗)∈S−γ,δ

(x, i∗).

These two stepped surfaces are the best approximations of the plane Pγ,δ
by faces contained respectively in the closed upper and lower half-spaces
{x| 〈x,t (1, γ, δ) 〉 ≥ 0} and {x| 〈x, t(1, γ, δ) 〉 ≤ 0}. The stepped surfaces are
called discretization of the plane Pγ,δ, or discrete planes.

Let Γ+
γ,δ and Γ−γ,δ be the subset of G consisting of all finite unions of

elements of S+
γ,δ and S−γ,δ:

Γ+
γ,δ :=

{∑
λ∈S+

γ,δ
nλλ
∣∣∣ nλ ∈ {0, 1}, #{λ | nλ = 1} < +∞

}
,

Γ−γ,δ :=
{∑

λ∈S−γ,δ
nλλ
∣∣∣ nλ ∈ {0, 1}, #{λ | nλ = 1} < +∞

}
.
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Thus elements of Γ+
γ,δ are finite parts of the stepped surface S+

γ,δ. We call
them patches of the stepped surface. The stepped surface has the following
invariance property with respect to Θ:

Theorem 8.2.2 ([39]). For each unimodular substitution σ of Pisot type,
let Θ be the endomorphism of G associated with σ, and let Γ+

γ,δ and Γ−γ,δ be the
patches of the stepped surface associated with the contracting invariant plane
Pγ,δ. Then Γ+

γ,δ and Γ−γ,δ are invariant with respect to the endomorphism Θ,
that is, ∑

λ∈S+
γ,δ
nλλ ∈ Γ+

γ,δ implies Θ
(∑

λ∈S+
γ,δ
nλλ
)
∈ Γ+

γ,δ,∑
λ∈S−γ,δ

nλλ ∈ Γ−γ,δ implies Θ
(∑

λ∈S−γ,δ
nλλ
)
∈ Γ−γ,δ.

This theorem means that one can apply Θ to any finite part of the stepped
surface and obtain a new finite part of the stepped surface. Let us define a
partial relationship of inclusion between parts of the stepped surface.

Notation. For γ =
∑
λ∈S+

γ,δ
nλλ, δ =

∑
λ∈S+

γ,δ
mλλ ∈ Γ+

γ,δ, γ � δ means
that nλ �= 0 if mλ �= 0, i.e., the patch δ is a subpatch of γ (See Fig. 8.3).

γ

�

δ

Fig. 8.3. Two patches γ and δ such that γ � δ.

Let U ′ denote the above faces of the unit cube, that is, the set of faces
which are in contact with the origin (0, 0, 0), and U the below faces, that is,
the set of faces which are in contact with the point (1, 1, 1) (see for instance
Fig. 8.5 below).

The next lemma means that the application of Θ to patches generates
new patches which contain the initial half-unit cube. The proof is left as an
exercise, and is a direct consequence of the definition of Θ.

Lemma 8.2.3. Let

U :=
∑

i=1,2,3

(ei, i∗) and U ′ :=
∑

i=1,2,3

(0, i∗).

Then we have
Θ(U) � U and Θ(U ′) � U ′.
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8.2.2 First example: the Rauzy substitution

Let us recall that the Rauzy substitution is defined as σ(1) = 12, σ(2) = 13
and σ(3) = 1.

Let f i be the column vectors of the matrix M−1
σ :

M−1
σ =


 0 1 0

0 0 1
1 −1 −1


 = (f1,f2,f3) .

Then the endomorphism Θ is defined by the following formulas:

Θ :
(0, 1∗) −→ (0, 3∗) + (f2, 1∗) + (f3, 2∗)
(0, 2∗) −→ (0, 1∗)
(0, 3∗) −→ (0, 2∗)

.

The way Θ acts on the faces of the unit cube is shown in Fig. 8.4.

0

(0, 1∗)

Θ−→
0

(0, 3∗) + (f2, 1
∗) + (f3, 2

∗)

0

(0, 2∗)

Θ−→ 0

(0, 1∗)

0

(0, 3∗)

Θ−→ 0

(0, 2∗)

Fig. 8.4. Endomorphism Θ for the Rauzy substitution.

In Fig. 8.5, one sees the successive images of the half unit cube U ′ =
(0, 1∗) ∪ (0, 2∗) ∪ (0, 3∗) through Θ. The three different colors describe the
successive images of each face (0, 1∗), (0, 2∗) and (0, 3∗). Note that even if
the image of a unit face does not contain the same unit face, the image of U ′
does contain U ′.

As a consequence, the sequence of patches Θn(U ′) is strictly increasing.
We will see in the next sections that there exists a renormalization that makes
the patches converge to a compact set in R2. The limit of this sequence may
be able to be imagined in Fig. 8.6.
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+ 

1 step 2 step 3 step 

4 step 

F i g .  8 . 5 .  I l l u s t r a t i o n  of U  i = , ,  ,,, O n ( O ,  i * )  for R a u z y  s u b s t i t u t i o n ,  n = 0 , l ,  2 , 3 , 4 .  

F i g .  8 . 6 .  I l l u s t r a t i o n  of U i = , , , , ,  0 8 ( 0 ,  i * )  for R a u z y  s u b s t i t u t i o n .  

8 . 2 . 3  Second example: t h e  modified Jacobi-Perron substitutions 

T h e s e  s u b s t i t u t i o n s  a n d  (see E x a m p l e  8 . 1 . 2 )  a r e  defined by: 

a  t i m e s  a  t i m e s  
A A 

1 + 1 1 . . . 1 2  1  + 1 1 . . . 1 3  
a ( a > o )  : 2  ' 3  7 O ( a , I )  : 2  + 1  

3 + 1  3 + 2  

T h e  a s s o c i a t e d  e n d o m o r p h i s m s  a n d  a r e  t h e  following: 

T h e  way ( f o r  E = 0 , l )  a c t s  on t h e  faces of t h e  u n i t  c u b e  is shown 
o n  F i g s .  8 . 7  a n d  8 . 8 .  I n  F i g .  8 . 9 ,  o n e  sees t h e  successive i m a g e s  of t h e  half 
c u b e  U' = ( 0 ,  1 * )  U ( O , 2 * )  U ( O , 3 * )  t h r o u g h  O .  S i m i l a r l y  a s  i n  t h e  c a s e  of 
t h e  R a u z y  s u b s t i t u t i o n ,  t h e  s e q u e n c e  of p a t c h e s  O n ( U ' )  i s  s t r i c t l y  i n c r e a s i n g ,  
since O  ( U ' )  c o n t a i n s  U'. An i d e a  of t h e  l i m i t  of t h e  sequence of r e n o r m a l i z e d  
p a t c h e s  is given in F i g .  8 . 1 0 .  
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0

(0, 1∗)

Θ(a,0)−→

(0, 3∗) +
∑

1≤k≤a ((e1 − ke3) , 1∗)

0

(0, 2∗)

Θ(a,0)−→
0

(0, 1∗)

0

(0, 3∗)

Θ(a,0)−→
0

(0, 1∗)

Fig. 8.7. The map Θ for the modified Jacobi-Perron substitutions σ(a,0) .

0

(0, 1∗)

Θ(a,1)−→ 0a

(0, 3∗) +
∑

1≤k≤a ((e1 − ke3) , 1∗)

0

(0, 2∗)

Θ(a,1)−→ 0

(0, 1∗)

0

(0, 3∗)

Θ(a,1)−→
0

(0, 1∗)

Fig. 8.8. The map Θ for the modified Jacobi-Perron substitutions σ(a,1) .
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Θ(1,0) :

Θ(0,1) :

Fig. 8.9. Illustration of
⋃
i=1,2,3 Θ

n(o, i∗), n = 0, 1, · · · , 5 for the modified Jacobi-
Perron substitutions.

⋃
i=1,2,3 Θ

8
(1,0) (0, i∗)

⋃
i=1,2,3 Θ

10
(1,0) (0, i∗)

Fig. 8.10. Modified Jacobi-Perron substitutions.

8.2.4 Third example: a non-simply connected example

In the case of the Rauzy and the modified Jacobi-Perron substitutions, the
sets Θn(0, i∗), (i = 1, 2, 3) are simply connected, but it can be remarked that,
in general, the sets Θn(0, i∗) (for i = 1, 2, 3) are not simply connected. The
example below is characteristic. Geometrical properties of the sets Θn(0, i∗),
i = 1, 2, 3 are studied in [219, 220] and [186].
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Example 8.2.4 (A non-simply connected example). Consider the substitution
defined by:

1 �→ 12, 2 �→ 31, 3 �→ 1.

If M denotes the matrix of this substitution, let f i be the columns of its
inverse:

M−1 =


 0 1 0

0 0 1
1 −1 −1


 = (f1,f2,f3) .

The associated endomorphism Θ is the following:

Θ :
(0, 1∗) −→ (0, 1∗) + (0, 3∗) + (f3, 2∗)
(0, 2∗) −→ (f1, 1∗)
(0, 3∗) −→ (0, 2∗).

The way Θ acts on the faces of the unit cube is shown on Fig. 8.11. The
successive images of the half unit cube U ′ = (0, 1∗) ∪ (0, 2∗) ∪ (0, 3∗) under
the action of Θ are given on Fig. 8.12. Here again, Θ(U ′) contains U ′, hence
the sequence of patches Θn(U ′) converges, see Fig. 8.13. These figures show
that for this substitution, the sets Θn(0, i∗), for i = 1, 2, 3, are not simply
connected.

0

(0, 1∗)

Θ−→
0

(0, 1∗) + (0, 3∗) + (f3, 2
∗)

0

(0, 2∗)

Θ−→
0

(f1, 1
∗)

0

(0, 3∗)

Θ−→
0

(0, 2∗)

Fig. 8.11. The endomorphism Θ for a substitution which generates a non-simply
connected stepped surface.
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0 - - 
0 step 

3 step 

4 step 

F i g .  8 . 1 2 .  Convergence of U i = l , ,  , ,  , n  O n  ( 0 ,  i * )  t o w a r d s  a  non-simply c o n n e c t e d  
s t e p p e d  s u r f a c e .  

F i g .  8 . 1 3 .  T h e  non-simply c o n n e c t e d  s e t  U i = ,  ,,,, 0 1 0 ( 0 ,  i * ) .  

8 . 2 . 5  T h e  two-dimensional case 

Endomorphism a s s o c i a t e d  w i t h  a  t w o - l e t t e r  s u b s t i t u t i o n .  We will 
consider now t h e  t w o - l e t t e r  a l p h a b e t  { 1 , 2 ) .  T h e  c u b e  faces a r e  t o  b e  replaced 
by t r a n s l a t e s  of u n i t  s e g m e n t s .  More precisely, for a n y  x E Z 2  a n d  i  E { 1 , 2 ) ,  
let ( x ,  i * )  b e  

( 2 ,  i * )  = { X  f X e j  1 0 I I 1 )  , w i t h  ( i ,  j )  E { ( I ,  2 ) ,  ( 2 ,  I ) }  

B y  analogy w i t h  t h e  t h r e e - d i m e n s i o n a l  c a s e ,  ,4 d e n o t e s  t h e  s e t  which 
c o n t a i n s  t h e s e  s e g m e n t s  a n d  t h e  Z - m o d u l e  g e n e r a t e d  by t h e  t r a n s l a t e d  
s e g m e n t s :  

A = { ( x ,  i * ) l  x E Z 2 ,  i  E { 1 , 2 ) )  ; 
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G =
{∑

λ∈Λmλλ
∣∣ mλ ∈ Z, #{λ | mλ �= 0} < +∞

}
.

The endomorphism of G associated with σ, denoted by Θ, is defined as in
Definition 8.2.1.

Stepped curve of a line. For any 0 < γ < 1, let lγ be the line which
admits t(1, γ) as a normal vector:

lγ =
{
x
∣∣ 〈x, t(1, γ)

〉
= 0
}
.

The stepped curves S+ and S− associated with the line lγ are the unions
of segments which are the best approximations of the line lγ .

S+ :=
{

(x, i∗)
∣∣ 〈x, t(1, γ)

〉
> 0,

〈
(x− ei), t(1, γ)

〉
≤ 0
}
,

S− :=
{

(x, i∗)
∣∣ 〈x, t(1, γ)

〉
≥ 0,

〈
(x− ei), t(1, γ)

〉
< 0
}
.

We similarly obtain two stepped curves S+ and S− by considering the
union of the supports of the elements of S+ and S−, and the sets Γ+ and
Γ− of the finite unions of elements of S+ and S−. Then Theorem 8.2.2 holds
according to this framework.

Example 8.2.5 (Continued fraction substitutions). Let us recall that the con-
tinued fraction substitutions are defined as (see Example 8.1.4):

σa(1) =

a times︷ ︸︸ ︷
11 · · · 1 2 σa(2) = 1.

The endomorphism Θa associated with σa is the following:

Θa :
(0, 1∗) −→ (0, 2∗) +

∑a
k=1((e1 − ke2), 1∗)

(0, 2∗) −→ (0, 1∗) .

Figure 8.14 illustrates how Θa acts on the unit segments (0, 1∗) and
(0, 2∗). In the special case a = 1, Fig. 8.15 illustrates the iteration of Θ1
on the unit half square (0, 1∗) ∪ (0, 2∗).

( e  −   e  , 2* )

( 0 , 1* )

( 0 , 2* ) 

( e  − e   , 2* ) ( 0 , 2* ) ( 0 , 1* )
1 2

1 2 a

Fig. 8.14. The action of Θ on unit segments for the continued fraction substitu-
tions.
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Fig. 8.15.
⋃
i=1,2 Θ1

n(0, i∗), n = 0, 1, 2, 3.

Example 8.2.6. Consider the square of the Fibonacci substitution, that is:

1 �→ 121, 2 �→ 12.

Let M denote the incidence matrix of this substitution, and let f1,f2 be
the column vectors of its inverse:

M−1 =
(

1 −1
−1 2

)
= (f1,f2) .

Then the endomorphism Θ associated with the substitution σ is the fol-
lowing:

Θ :
(0, 1∗) −→ (0, 1∗) + (f1 + f2, 1∗) + (f2, 2∗)
(0, 2∗) −→ (f1, 1∗) + (0, 2∗) .

Figure 8.16 illustrates how Θ acts on the unit segments (0, 1∗) and (0, 2∗)
and Fig. 8.17 illustrates the iteration of Θ on the union (0, 1∗) ∪ (0, 2∗).

( 0 , 1* ) ( 0 , 2* )( 0 , 1* )
1

( f  + f   , 1* ) 1 2

( f  , 2* ) 2

( 0 , 2* )

( f  , 1* )

Fig. 8.16. The action of Θ on unit segments for the substitution of Example 8.2.6.

Simple connectedness. On Example 8.1.4 and Example 8.2.6, one can
remark that the sets Θn(0, i∗), i = 1, 2, are simply connected. This property
does not hold any more in the general case as illustrated by the following
example.
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Fig. 8.17. The set
⋃
i=1,2 Θ

n(0, i∗), n = 0, 1, 2.

Example 8.2.7 (A non-simply connected example). Consider the substitution
defined by

1 �→ 112, 2 �→ 21.

Note that this substitution has the same incidence matrix as the substitution
in the previous example. We have just performed an exchange in the order
of the letters, which induces non-simply connectedness.

Let f1, f2 still denote the column vectors of the inverse of the incidence
matrix. The endomorphism Θ is given by

Θ :
(0, 1∗) −→ (0, 2∗) + (f2, 1∗) + (f1 + f2, 1∗)
(0, 2∗) −→ (0, 1∗) + (f1, 2∗).

The action Θ on unit segments is described in Fig. 8.18. The iteration of
Θ on (0, 1∗) ∪ (0, 2∗) is illustrated in Fig. 8.19, where one can see that the
sets Θn(0, i∗), i = 1, 2, are not simply connected.

( f  + f  , 1* )

( 0 , 1* ) ( 0 , 2* ) 

1

2( f  , 1* )

2

( 0 , 1* ) ( 0 , 2* ) 

( f  , 2* ) 1

Fig. 8.18. The map Θ.

In the case of two-letter substitutions, the simple connectedness property
can be characterized (see also Chap. 9):
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Fig. 8.19. The set
⋃
i=1,2 Θ

n(0, i∗), n = 0, 1, 2, 3.

Theorem 8.2.8 ([448, 159]). The sets Θn(0, i∗), i = 1, 2 are simply con-
nected for every integer n if and only if the substitution σ is an invertible
substitution, that is, if there exists an automorphism θ : Γ2 → Γ2 of the free
group Γ2 of rank 2 generated by {1, 2}, such that

σ ◦ θ = θ ◦ σ = Id.

8.3 Dynamical systems associated with the stepped
surface

There are two different methods of constructing the generalized Rauzy fractal
Rσ associated with the substitution σ. First, one can use convergent series
associated with the substitution, as is done in the seminal paper of Rauzy
(this is also the approach developed in [100, 101], see Chap. 7). Secondly, one
can also approximate it by a process of exduction. The aim of this section is
to try to formalize the latter approach, by introducing a family of larger and
larger dynamical systems induced from each other, and acting on arbitrarily
large parts of the discretization of the contracting plane.

8.3.1 Exchanges of domains associated with a substitution

Let σ be a unimodular substitution of Pisot type over a three-letter alphabet
and Θ be the endomorphism associated with σ.

The aim of this section is to construct a sequence of domains Dn which
tile the contracting plane Pγ,δ and a sequence of dynamical systems Wn on
Dn. The domains Dn are obtained by iterating Θ; we thus obtain a sequence
of larger and larger pieces of the contracting plane.
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Some special domains in the contracting plane. For any letter i =
1, 2, 3, we define the sets D(i)

n and D(i)′
n as the projections on the contracting

plane Pγ,δ, of the n-fold iterate of Θ of the two unit basic squares orthogonal
to the vector ei, i.e., (ei, i∗) and (0, i∗):

Definition 8.3.1. Let

D(i)
n := π (Θn(ei, i∗)) , and D(i)′

n := π (Θn(0, i∗)) , for i = 1, 2, 3.

We denote by Dn and D′n the union of these domains. Thus, if U and U ′
are the above and below half unit cubes, then we have

Dn := π (Θn(U)) , D′n := π (Θn(U ′)) .

Note that these unions are disjoint up to a set of zero measure and that the
sets Dn and D′n are subsets of the contracting plane Pγ,δ.
Inclusion relations between these domains. By definition, we have U ∈
Γ+
α,β and U ′ ∈ Γ−α,β . Thus, Theorem 8.2.2 and Lemma 8.2.3 imply that

Θn(U) � Θn−1(U) and Θn(U ′) � Θn−1(U ′).

Therefore, for every n, the domain Dn contains the domain Dn−1, and
D′n contains D′n−1.

One can remark that π(U) and π(U ′) are just the above and below pro-
jection of the unit cube on a plane which cross this cube, which implies that
they are equal. We deduce from this (see [40, 39] for more details), that we
have more generally:

Dn = D′n.

This implies that we can partition (up to a set of zero measure) Dn either by
the sets D(i)

n , for i = 1, 2, 3, or by the sets D′(i)n , for i = 1, 2, 3. Furthermore,
each part D′(i)n of Dn is the image under a translation by a specified vector of
the part D(i)

n of Dn. In dynamical terms, next theorem shows how to perform
onDn an exchange of domains, the domains being the setsD(i)

n , for i = 1, 2, 3.

Theorem 8.3.2. Let σ be a unimodular substitution of Pisot type such that
σ(1) begins with 1. Let f (n)

1 , f (n)
2 and f

(n)
3 be the column vectors of the

incidence matrix M−n
σ , i.e., M−n

σ =
(
f

(n)
1 ,f

(n)
2 ,f

(n)
3

)
.

Then the following dynamical system Wn on Dn is well-defined (up to a
set of measure 0):

Dn
Wn−→ Dn

x �→ x− π(f (n)
i ), if x ∈ D(i)

n , i = 1, 2, 3.

All the dynamical systems (Dn,Wn), for n ≥ 0, are isomorphic.
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For a proof of this theorem, see [40].
Consider for instance the Rauzy substitution. Fig. 8.20 illustrates the

successive exchange of pieces Wn over the sets Dn, for n = 0, 1, 2, 3. Each
vertical arrow shows the action of Θ: the set D0 goes onto D1, then onto
D2, and so on. The result of the action of the domain exchange Wn on the
right domain Dn divided into its three parts D(i)

n , is shown on the domain
Dn which is on the left handside of the arrow. Note that for i = 1, 2, 3, D(i)

n

is mapped onto D(i)′
n .

W

W

W

W

0

1

2

3

(3)f 1
f 2

(3)

f 3
(3)

f 3
(2)

f 2
(2)

f 1
(2)

f 1
(1)

f 2
(1) f 3

(1)

Fig. 8.20. Successive exchanges of domains for the Rauzy substitution.
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Figure 8.21 gives the equivalent illustrations for the modified Jacobi-
Perron substitution σ(1,0).

Fig. 8.21. Successive exchanges of domains for a modified Jacobi-Perron substitu-
tion.

Since each domain Dn contains the preceding domain Dn−1, the map
Wn is defined on Dn−1. Therefore, with every point x in Dn, one associates
two sequences with values in {1, 2, 3}. The first one u = (uk)k∈N codes the
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dynamics of the map Wn with respect to the partition {D(i)
n , i = 1, 2, 3} as

follows
∀k ∈ N, W k

n (x) ∈ D(uk)
n .

The second one v = (vk)k∈N codes the dynamics of the induced map of Wn

on Dn−1 with respect to the partition {D(i)
n−1, i = 1, 2, 3}:

∀k ∈ N, (Wn|Dn−1)k ∈ D(vk)
n−1.

(for a definition of the induced map, see Definition 5.4.7).
We prove in Sec. 8.3.2 that u = σ(v). In other words, the dynamical

system (Dn,Wn) is an exduction of the system (Dn−1,Wn−1), and more
generally of the systems (Dk,Wk), for k ≤ n − 1. The aim of Sec. 8.4 is to
prove that the sequence of sets Dn, when properly renormalized, converges
to the generalized Rauzy fractal Rσ in the Hausdorff topology. Hence, the
dynamical systems (Dn,Wn) will be used to define a dynamical system on
Rσ which is measure-theoretical isomorphic to the substitution dynamical
system (Xσ, S) defined by σ.

8.3.2 Induced transformations

Our motivation here is to give a geometric representation by means of the
sets Dn of the action of the shift on the substitutive dynamical system. Since
each domain Dn contains the preceding domain Dn−1, the map Wn is defined
on Dn−1. The next theorem means that the induced map of Wn on Dn−1 is
nothing other than the domain exchange Wn−1.

Theorem 8.3.3. The induced transformation Wn|Dn−1 of Wn into Dn−1
coincides with Wn−1. More precisely, let s(i)

k denote the letters which occur
in σ(i):

σ(i) = s(i)
1 s

(i)
2 · · · s(i)

l(i), i = 1, 2, 3.

Then the following relation holds:

W k−1
n

(
D

(i)
n−1

)
⊂ D(s(i)k )

n , k = 1, 2, · · · , l(i), (8.3)

W l(i)
n

(
D

(i)
n−1

)
= D

(i)′

n−1. (8.4)

Indeed, according to (8.3), the successive iterates of the domain exchange
Wn map the sub-domain D(i)

n−1 of Dn−1 onto the sub-domains D(j)
n of Dn,

the index j being a letter of σ(i) depending on the index of iteration. All
the sub-domains D(j)

n are disjoint from Dn−1 before performing the l(i)-th
iteration, (l(i) denotes the length of σ(i)). Concerning this l(i)-th iteration,
(8.4) means that D(i)

n−1 is mapped onto Dn−1, and that its image is precisely

the set D(i)′

n−1, that is, Wn−1(D(i)
n−1). Thus, the first return map of Wn on

Dn−1 is exactly the domain exchange Wn−1.



8 . 3  Dynamical systems associated w i t h  t h e  s t e p p e d  surface 2 7 5  

An i l l u s t r a t i o n  of t h i s  t h e o r e m  for n = 3  a n d  i  = 1  i n  t h e  case of t h e  
Rauzy s u b s t i t u t i o n  is given in F i g .  8 . 2 2 :  t h e  c o m m u t a t i v e  d i a g r a m  r e p -  
r e s e n t s  t h e  a c t i o n  of t h e  d o m a i n  e x c h a n g e s  W 2  a n d  W 3 ,  r e s p e c t i v e l y  on t h e  
d o m a i n s  D 2  a n d  D 3 ,  t h e  s e t  D 3  c o n t a i n i n g  t h e  s e t  D 2 .  T h e  p i c t u r e s  on t h e  
r i g h t  h a n d  s i d e  of t h e  figure r e p r e s e n t  t h e  successive i m a g e s  of D i l )  u n d e r  

t h e  a c t i o n  of W 3 .  T h e  d o m a i n  D d l )  is f i r s t  i n c l u d e d  i n  D i l )  ( b e c a u s e  a ( 1 )  

s t a r t s  w i t h  1 ) .  T h e n  W 3  m a p s  D i l )  i n s i d e  D?) ( b e c a u s e  a ( 1 )  c o n t i n u e s  w i t h  
(1)' 2 ) .  A n d  since a ( 1 )  is of l e n g t h  2 ,  W ;  m a p s  D i l )  i n s i d e  D 2  o n t o  D 2  . 

Fig. 8 . 2 2 .  I l l u s t r a t i o n  of Theorem 8 . 3 . 3  for t h e  Rauzy s u b s t i t u t i o n .  

Since e v e r y  d o m a i n  D n  c o n t a i n s  t h e  f i r s t  d o m a i n  D o ,  we d e d u c e  from 
T h e o r e m  8 . 3 . 3  t h e  following r e s u l t .  

Corollary 8.3.4. L e t  u s  d e n o t e  t h e  l e t t e r s  o c c u r r i n g  i n  a n  b y :  

p ( i )  = s ( n , n )  s ( n , n )  . . . s ( n , n )  
1 2  l ( , , , ) ,  i  = 1 , 2 7 3 .  

T h e n  w e  h a v e  

( S p )  

w2-I ( ~ t ) )  c D~ , k  = 1 , 2 , .  . . , l ( n ,  i ) ,  ( 8 . 5 )  

wh(n,i) ( ~ ( i )  O ) = D O  ( i l l  ( 8 . 6 )  

I n  p a r t i c u l a r ,  w e  h a v e ,  w h e r e  M l n  = ( f  p), f  p), f  PI), 

{ ~ ( 0 ) k l ,  ( n l )  
j= 1 

k =  1 , .  , l ( n , l )  
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E q u a l i t i e s  ( 8 . 5 )  a n d  ( 8 . 6 )  a r e  i l l u s t r a t e d  i n  F i g .  8 . 2 3  for t h e  Rauzy sub- 
s t i t u t i o n  i n  t h e  case n  = 3  a n d  i = 1 .  I n d e e d ,  o n  t h e  t o p  of t h i s  figure one 
finds t h e  a c t i o n  of t h e  d o m a i n  exchange W3 o n  D 3 .  T h e n  a r e  d r a w n  t h e  suc- 
cessive images of D i l )  t h r o u g h  t h e  i t e r a t i o n s  of W3. T h e s e  images a r e  succes- 

sively included in t h e  s e t s  D!), where j follows t h e  sequence a 3  ( 1 )  = 1213121. 

In t h i s  way, t h e s e  i t e r a t i o n s  of W3 o n  DL1) visit S U C C ~ S S ~ V ~ ~ ~  a l l  t h e  projec- 
t i o n s  of t h e  basic s q u a r e s  of t y p e  l *  t h a t  D 3  c o n t a i n s .  O n  t h e  7 - t h  i t e r a t i o n  

( 1 ) '  ( 7  = la3(l)1), D i 1 )  comes back i n t o  D o ,  a n d  more precisely o n t o  D o  . 

Fig. 8 . 2 3 .  A c t i o n  of t h e  i t e r a t e s  of W 3  o n  D:) for t h e  R a u z y  s u b s t i t u t i o n .  

E q u a l i t y  ( 8 . 7 )  is i l l u s t r a t e d  i n  F i g .  8.24 for t h e  R a u z y  s u b s t i t u t i o n  where 

( 3 )  ( 3 )  ( 3 )  a 3 ( 1 )  = 1213121 a n d  ( f ,  , f 2  , f 3  ) = 
Rotations. O n e  c a n  prove t h a t  t h e  s u b s e t  D o  of t h e  c o n t r a c t i n g  p l a n e  
P7,s t i l e s  periodically t h i s  p l a n e  u n d e r  t h e  a c t i o n  of t h e  l a t t i c e  L o  = 

{n7r(e2 - e l )  + m7r(e3 - e l )  I m ,  n  E Z) (see F i g .  8 . 2 6 ) .  
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1

2
3

4
5

6
7

0 π(−M3
σ)←−

1 1213121

0
1

2

3

4

5

6
7

Fig. 8.24. An illustration of (8.7) for the Rauzy substitution.

Furthermore the domain exchange transformation W0 : D0 → D0 (Fig.
8.25) coincides with the following rotation on the fundamental domain D0
(Fig. 8.26):

W0 :
D0 −→ D0
x �→ x− π(e1) (mod L0).

W0−→

Fig. 8.25. Action of W0.

x �−→ x− πe1

�−→

�−→

π 3e( )− e 1

2e )− e 1π (

Fig. 8.26. Illustration of the rotation.

The maps Wn similarly perform rotations on the fundamental domains
Dn, for every n ∈ N, the corresponding lattices being easily deduced from
L0:
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Ln = {nπ(Mσ(e2 − e1)) +mπ(Mσ(e3 − e1)) | m,n ∈ Z} .
Moreover, it can be shown that W0 is isomorphic to the following rotation

Tα,β on T2:

Tα,β(x, y) =
(
x+

α

1 + α+ β
, x+

β

1 + α+ β

)
(mod 1) .

8.3.3 The two-dimensional case

For two-letter substitutions, let us introduce analogously the unions of inter-
vals on the line lγ defined by:

D(i)
n := π (Θn(ei, i∗)) , D(i)′

n := π (Θn(0, i∗)) , i = 1, 2.

Dn := π
(
Θn
(∑

i=1,2(ei, i∗)
))
, D′n := π

(
Θn
(∑

i=1,2(0, i∗)
))
.

Then the following “union of intervals” exchange on Dn is well defined:

Dn
Wn−→ Dn

x �→ x− πf (n)
i , if x ∈ D(i)

n .

This map is isomorphic to the interval exchange (where M−n
σ =

(
f

(n)
1 ,f

(n)
2

)
):

D0
W0−→ D0

x �→ x− πei if x ∈ D(i)
0

.

The map Wn is illustrated on Fig. 8.27, for the substitution of Example
8.2.6 defined by 1 �→ 121 and 2 �→ 12. The map Wn is illustrated on Fig. 8.28
for the substitution of Example 8.2.7 defined by 1 �→ 121 and 2 �→ 21.

The statements of Theorem 8.3.3 and Corollary 8.3.4 also hold in the case
of a two-letter alphabet.

8.4 Renormalization and realization of substitutive
dynamical systems

Our aim is to find a domain exchange (and even a translation on the torus
T2) which describes the dynamics of the substitution. We first prove that for
unimodular substitutions of Pisot type, and under suitable conditions, the
sequence of sets Dn, when properly renormalized, converges to a compact
space in the Hausdorff topology, which is exactly the generalized Rauzy frac-
tal Rσ associated with the substitution σ. We then equip this limit set with
two transformations producing a realization of the substitutive dynamical
system.
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2f
(0)π

2f
(1)π

f 1
(0)π

(1)
f 1π

f 1
(2)π

W

0 

1W

W

2(2)
2fπ

Fig. 8.27. The maps W0, W1 and W2 for the substitution 1 �→ 121, 2 �→ 12.

2f
(0)π

2f
(1)π

f 1
(0)π

(1)
f 1π

f 1
(2)π

W

0 

1W

W

2(2)
2fπ

Fig. 8.28. The maps W0, W1 and W2 for the substitution 1 �→ 121, 2 �→ 21.
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Renormalized limit sets. The sequence of sets Dn is increasing. But all
these sets are included in the contracting hyperplane Pδ,γ of the matrix Mσ.
Therefore, the action of Mσ on Dn is a contraction. Furthermore, the renor-
malized domains Mn

σDn are, up to a set of measure zero, fundamental do-
mains for the lattice

L0 = {nπ(e2 − e1) +mπ(e3 − e1) | m,n ∈ Z} .

A simple computation (see [40, 39]) proves that Mn
σ contracts the sets Dn

in such a way that the limit set exists in the sense of the Hausdorff metric on
the family of compact subsets of Pγ,δ. Furthermore, one can prove that these
sets equal the generalized Rauzy fractal Rσ and its two decompositions into
Ri, i = 1, 2, 3, and R′i, i = 1, 2, 3, respectively.

Rσ := lim
n→∞Mn

σ (π (Θn(U)))
(

= lim
n→∞Mn

σ (π (Θn(U ′)))
)
,

Ri := lim
n→∞Mn

σ (π (Θn(ei, i∗))) ,

R′i := lim
n→∞Mn

σ (π (Θn(0, i∗))) .

Two important questions arise: are the sets Ri disjoint of each other, up to a
set of zero measure, and form a partition of Rσ? Is the set Rσ a fundamen-
tal domain for the lattice L0? For a detailed discussion on these problems,
see Chap. 7. The coincidence condition stated in Sec. 7.5.3 implies the dis-
jointness of the sets Ri. Under this condition, the set Rσ is a measurable
fundamental domain for the action on the contracting plane Pγ,δ of the lat-
tice L0. The following condition provides a positive answer to the second
question: there exists an open set O ⊂ Pγ,δ such that O ⊂Mn

σDn.
Under these sufficient conditions, one can equip Rσ with two dynamical

systems: the first one is a rotation in T2 which describes the shift on the
dynamical system (Xσ, S); the second one is a Markov endomorphism with
structure matrix Mσ and describes the action of σ on this dynamical system.

Theorem 8.4.1. Let σ be a unimodular substitution of Pisot type. Suppose
that the coincidence condition holds and that there exists an open set O ⊂ Pγ,δ
such that

O ⊂Mn
σDn.

Then the limit sets Rσ and Ri satisfy the following properties:

(1) The generalized Rauzy fractal Rσ is a union disjoint in mea-
sure (i.e., disjoint up to a set of zero measure) of the sets Ri, that is,
µ( Ri

⋂
Rj ) = 0 (i �= j), where µ denotes the Lebesgue measure:

Rσ =
⋃

i=1,2,3

Ri (disjoint in measure) .
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The set Rσ generates a periodic tiling of the contracting plane Pγ,δ,
for the lattice L0 = {nπ(e2 − e1) +mπ(e3 − e1) | m,n ∈ Z}. More pre-
cisely, µ( (Rσ + z)

⋂
(Rσ + z′) ) = 0 for every z �= z′ ∈ L0:

Pγ,δ =
⋃
z∈L0

(Rσ + z) (disjoint in measure) .

(2) The following transformation

W : Rσ → Rσ, x �→ x− π(ei), if x ∈ Ri,

is well-defined and is isomorphic to W0 : D0 → D0.
(3) The induced transformation W |MσRσ is isomorphic to W and

satisfies

W k−1(R(1)
i ) ⊂ R

s
(i)
k

, k = 1, 2, · · · , l(i),

W l(i)(R(1)
i ) = R(1)′

i ,

where σ(i) = s
(i)
1 · · · s

(i)
l(i) and R(1)

i := MσRi (R(1)′

i := MσR′i).
(4) The following transformation T : Rσ −→ Rσ is well defined:

Tx = M−1
σ x−M−1

σ (f(W )) + ej, if M−1
σ x ∈M−1

σ (f(W )) +Rj ,

where the word W is given by the following formula:

Θ(0, i∗) :=
∑
j=1,2,3

∑
W :σ(j)=Y ·i·W

(
M−1

σ (f(W )) , j∗
)
.

The transformation T is a Markov endomorphism, the structure matrix
of which is Mσ.

Remark. Theorem 8.4.1 requires the assumption that the sequences of
renormalized approximations we build for the domain exchange contains a
fixed open set, or equivalently, that for n large enough, Dn contains a disk
of large diameter. This sufficient condition guarantees that the substitution
system (Xσ, S) is isomorphic to a toral translation. See also Corollary 7.5.20.

In all known examples, the substitution system is in fact measure-
theoretically isomorphic to a toral translation. We do not know of any ex-
ample which does not satisfy the previous assumption. We believe that this
assumption holds for any unimodular substitution of Pisot type. However, it
is still an open problem, except in the case of a two-letter alphabet where
this conjecture has been proved proved recently [54]. For more details, see
the discussion in Chap. 7.

The transformation W on the set Rσ is illustrated in Fig. 8.29, for the
Rauzy substitution of Example 8.1.1. The transformation W on the set
Rσ is illustrated in Fig. 8.30, for the modified Perron-Frobenius substi-
tution σ(0,1) of Example 8.1.2. For the substitution of Example 8.2.4, the
transformation W on the non-simply connected set Rσ is illustrated in Fig.
8.31.
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F i g .  8 . 2 9 .  T h e  d o m a i n  exchange W i s o m o r p h i c  t o  t h e  d y n a m i c a l  s y s t e m  a s s o c i a t e d  
w i t h  t h e  R a u z y  s u b s t i t u t i o n .  

F i g .  8 . 3 0 .  T h e  d o m a i n  exchange W i s o m o r p h i c  t o  t h e  d y n a m i c a l  s y s t e m  a s s o c i a t e d  
w i t h  a  modified J a c o b i - P e r r o n  s u b s t i t u t i o n .  

F i g .  8 . 3 1 .  T h e  m a p  W for a  non-simply c o n n e c t e d  d o m a i n .  

8 . 5  F r a c t a l  b o u n d a r y  

I n  each e x a m p l e ,  t h e  b o u n d a r y  of t h e  d o m a i n  R, seems t o  b e  f r a c t a l .  To 
observe t h e  p r o p e r t i e s  of t h e s e  b o u n d a r i e s ,  l e t  us i n t r o d u c e  some n o t a t i o n .  

Unit intervals. L e t  us first fix some n o t a t i o n .  L e t  ( x ,  i )  E Z3 x { 1 , 2 , 3 )  b e  
t h e  following i n t e r v a l s ,  i l l u s t r a t e d  o n  F i g .  8 . 3 2 :  
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y + (x, i) := (y + x, i);

∀ t, u ∈ {1, 2, 3}, (x, t ∧ u) =




(x, s) if (t, u) ∈ {(2, 3), (3, 1), (1, 2)}
−(x, s) if (t, u) ∈ {(3, 2), (1, 3), (2, 1)}
0 if t = u,

where {s, t, u} = {1, 2, 3}.

0
e 1

3e

2e 0
e 1

(0, 1)

0 2e

(0, 2)

0

3e

(0, 3)

0

x

(x, 1)

Fig. 8.32. Illustration of (0, i), i = 1, 2, 3, and (x, 1).

Boundary map. Let us define the boundary map ∂ on Z3 × {1, 2, 3} by

∂(x, i∗) := (x, j) + (x+ ej , k)− (x, k)− (x+ ek, j),

where {i, j, k} ∈ {{1, 2, 3}, {2, 3, 1}, {3, 1, 2}}.
This map extends in a natural way to G as follows: given γ =

∑
λ∈Λmλλ ∈

G, we set ∂γ =
∑
λ∈Λmλ∂λ.

The set of points ∂γ, for γ ∈ G, is denoted by G1. Then G1 is a Z-module.

Boundary endomorphism of G1.

Definition 8.5.1. An endomorphism θ of G1 is called a boundary endomor-
phism associated with Θ if the following commutative relationship is satisfied:

G Θ−→ G
∂ ↓ ↓ ∂
G1

θ−→ G1

.

Roughly speaking, the boundary of the image under Θ of a weighted sum of
faces is the image of the boundary of this sum under the map θ, which acts
on weighted sums of unit intervals.

The following theorem proves the existence of such a boundary endomor-
phism.

Theorem 8.5.2 ([39]). Let σ be a Pisot substitution, and write σ(i) =
s

(i)
1 · · · s

(i)
l(i), i = 1, 2, 3.

Let θ be defined on the unit intervals (0, i) by

θ(0, i) :=
∑

1≤t≤3
1≤u≤3

∑
sl

(t)=j

s
(u)
m =k

(
M−1

σ

(
f
(
S

(t)
l

))
+ M−1

σ

(
f
(
S(u)
m

))
, t ∧ u

)
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where • {i, j, k} ∈ {{1, 2, 3}, {2, 3, 1}, {3, 1, 2}},
• S

(t)
l is the suffix of σ(t) after the occurrence of s(t)l ,

i.e., σ(t) = Pl
(t)sl

(t)Sl
(t).

We extend the definition of the map θ to G1 as follows:

θ(x, i) := M−1
σ x+ θ(0, i),

θ(
∑
λ∈Λ

nλλ) :=
∑
λ∈Λ

nλθ(λ).

Then the map θ is a boundary endomorphism of Θ.

For the Rauzy substitution of Example 8.1.1, the map θ is defined as
follows:

θ(0, 1) = (0, 1 ∧ 2) = (0, 3),
θ(0, 2) =

(
Mσ

−1(e2), 2 ∧ 1
)

+ (0, 2 ∧ 3)
= − ([1, 0,−1], 3) + (0, 1),

θ(0, 3) =
(
Mσ

−1(e3), 2 ∧ 1
)

+ (0, 3 ∧ 1)
= − ([0, 1,−1], 3) + (0, 2).

The map θ is represented in Fig. 8.33.

( 0 , 1 )

( 0 , 2 )

( e  − e   , 3 ) 2 3

( e  − e   , 3 ) 1 3

e e

e

1

3

2

( 0 , 1 )

e 1

( 0 , 3 )

e 3

( 0 , 2 )

e 2

( 0 , 3 )

e 3

Fig. 8.33. Boundary endomorphism for the Rauzy substitution.

Computation of Haussdorf dimension. If the boundary endomorphism
θ satisfies some non-cancellation conditions, then it is possible to compute
explicitly the dimension of Rσ (see [218], [220] and [219]).
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8.6 Continued fraction expansions and substitutions

The aim of this section is to apply the previous constructions to the modified
Jacobi-Perron substitutions and to make explicit the connection with the
corresponding simultaneous continued fraction algorithm. We first introduce
this algorithm, and then we discuss its natural extension. We conclude by
stating the previous results in the one-dimensional case.

More precisely, the idea is to extend what we previously did for one sub-
stitution to a family of substitutions (such a composition of substitutions is
called S-adic; for more details, see Chap. 12). Instead of iterating always the
same substitution, we will iterate modified Jacobi-Perron substitutions ac-
cording to the natural extension of this algorithm applied to the parameters
(α, β, γ, δ). Throughout this chapter we have worked with algebraic param-
eters (α, β, γ, δ) associated with a unimodular substitution of Pisot type, to
produce a generalized Rauzy fractal Rσ which tiles periodically (under extra
assumptions) the contracting plane Pγ,δ. We now want to extend these results
to any parameters (α, β, γ, δ) (not necessarily algebraic), and to associate a
set Rα,β,γ,δ tiling periodically the plane Pγ,δ with respect to the lattice L0,
on which one can perform an exchange of pieces isomorphic to the rotation
Tα,β . In other words, we are giving a symbolic interpretation of the natural
extension of the modified Jacobi-Perron algorithm. Let us note that we work
here with the modified Jacobi-Perron algorithm mainly for two reasons: the
first one is that we know a simple realization of its natural extension; the sec-
ond one is that it is almost everywhere strongly convergent with exponential
rate. This will the keypoint of the proof of Theorem 8.6.2 below.

This approach is directly inspired by the Sturmian case (see Chap. 6)
and is motivated by the following idea: we thus obtain a combinatorial de-
scription via generalized substitutions of toral rotations. Some applications
to Diophantine approximation are mentioned in the rest of this chapter.

8.6.1 The modified Jacobi-Perron algorithm

The classical Jacobi-Perron algorithm is an example of a multi-dimensional
generalization of the regular continued fraction expansion, as an attempt to
characterize cubic irrationals. This algorithm generates a sequence of simulta-
neous rational approximations of a pair of points with the same denominator
(see for instance [64, 90, 379]). The modified Jacobi-Perron algorithm in-
troduced by E. V. Podsypanin in [333] shares this property; this algorithm
is a two-point extension of the Brun algorithm. Moreover, both algorithms
are shown to be strongly convergent (in the sense of Brentjes [90]) almost
everywhere with exponential rate (see also [256]); the Jacobi-Perron case is
dealt with in [382] and the modified Jacobi-Perron in [182] (see also for a
simpler proof [286]). Both Jacobi-Perron algorithms (the classical one and
the modified one) are known to have an invariant ergodic probability mea-
sure equivalent to the Lebesgue measure (see for instance [380] and [383]).
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However, this measure is not known explicitly in the classical case (the den-
sity of the measure is shown to be a piecewise analytical function in [93, 92]),
whereas it is known explicitly for the modified case [44, 182].

Let X = [0, 1) × [ 0, 1) and

X0 = {(α, β) | α ≥ β} ,
X1 = {(α, β) | α < β} .

Let us define the transformation T on X by

T (α, β) :=




(
β

α
,

1
α
−
[

1
α

])
if (α, β) ∈ X0 − {(0, 0)} ,(

1
β
−
[

1
β

]
,
α

β

)
if (α, β) ∈ X1,

(0, 0) if α or β = 0.

If Tn(α, β) equals zero, for some integer n, then the algorithm stops. By
using the integer value functions

a(α, β) :=



[

1
α

]
if (α, β) ∈ X0,[

1
β

]
if (α, β) ∈ X1,

ε(α, β) :=
{

0 if (α, β) ∈ X0,
1 if (α, β) ∈ X1,

we define for each (α, β) ∈ X − {(0, 0)} a sequence of digits t(an, εn) by

t(an, εn) := t
(
a
(
Tn−1(α, β)

)
, ε
(
Tn−1(α, β)

))
, if Tn−1(α, β) �= (0, 0).

We denote
(αn, βn) := Tn(α, β).

Definition 8.6.1. The triple (X,T ; (a(α, β), ε(α, β))) is called the modified
Jacobi-Perron algorithm.

8.6.2 Natural extension

Let us introduce a transformation (X,T ) called a natural extension of the
modified Jacobi-Perron algorithm. Roughly speaking, we try to make the
map T one-to-one by considering a larger space.

Let X = X ×X and T be the transformation defined on X by

T (α, β, γ, δ) =




(
β

α
,

1
α
− a1,

δ

a1 + γ
,

1
a1 + γ

)
if (α, β) ∈ X0 − {(0, 0)} ,(

1
β
− a1,

α

β
,

1
a1 + δ

,
γ

a1 + δ

)
if (α, β) ∈ X1,

(0, 0, γ, δ) if α or β = 0.
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The transformation T is bijective.
We denote

(αn, βn, γn, δn) := T
n
(α, β, γ, δ).

We will assume 1, α, β linearly independent, so that the algorithm never stops.

8.6.3 A matricial point of view

For every a ∈ N+, let us introduce the following family of matrices:

A(a,0) =


a 0 1

1 0 0
0 1 0


 , A(a,1) =


a 1 0

0 0 1
1 0 0


 .

Then we have the following formulas:
 1
αn
βn


 =

1
θθ1 · · · θn−1

A−1
(an,εn)A

−1
(an−1,εn−1) · · ·A

−1
(a1,ε1)


 1
α
β


 ,


 1
γn
δn


 =

1
ηη1 · · · ηn−1

tA(an,εn)
tA(an−1,εn−1) · · · tA(a1,ε1)


 1
γ
δ


 ,

where θk = max(αk, βk) ,

ηk =
{
ak + γk−1, if (αk−1, βk−1) ∈ X0
ak + δk−1, if (αk−1, βk−1) ∈ X1

8.6.4 A geometrical point of view

Let Pγn,δn be the orthogonal plane with respect to t (1, γn, δn) :

Pγn,δn =
{
x
∣∣ 〈x, t (1, γn, δn)

〉
= 0
}

and let us introduce the linear map ϕ(an,εn) : R3 → R3 with matrix A(an,εn)
in the canonical basis of R3. Then we see that the following relationship is
true:

ϕ−1
(an,εn)Pγn−1,δn−1 = Pγn,δn .

Link with the modified Jacobi-Perron substitutions. The endomor-
phisms Θ(a,ε) associated with the modified Jacobi-Perron substitutions σ(a,ε)
satisfy the following property:

∀n ≥ 1, Θ(an,εn) · · ·Θ(a2,ε2)Θ(a1,ε1)(U) ∈ Γ+
γn,δn

.

Let us consider the renormalization of the set

πnΘ(an,εn) · · ·Θ(a2,ε2)Θ(a1,ε1)(U) ⊂ Pγn,δn ,
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that is,

lim
n→∞A(a1,ε1) · · ·A(an,εn)πnΘ(an,εn) · · ·Θ(a1,ε1)(U) ⊂ Pγ,δ

where πn : R3 → Pγn,δn is the projection along t (1, αn, βn). The properties
of this set are stated in the following theorem.

Theorem 8.6.2 ([225]). For almost every (γ, δ) ∈ [0, 1)×[0, 1) the following
limit sets exist

R(i)
α,β,γ,δ := lim

n→∞A(a1,ε1) · · ·A(an,εn)πnΘ(an,εn) · · ·Θ(a1,ε1)(ei, i∗),

R(i)′

α,β,γ,δ := lim
n→∞A(a1,ε1) · · ·A(an,εn)πnΘ(an,εn) · · ·Θ(a1,ε1)(0, i∗).

They satisfy the following properties:

(1) Rα,β,γ,δ =
⋃
i=1,2,3R

(i)
α,β,γ,δ is a periodic tiling on Pγ,δ, that is,⋃

z∈L0

(Rα,β,γ,δ + z) = Pγ,δ;

int(Rα,β,γ,δ + z)
⋂

int(Rα,β,γ,δ + z′) = φ (z �= z′).

(2) the following domain exchange transformation Wα,β,γ,δ is well-
defined:

Wα,β,γ,δ : Rα,β,γ,δ → Rα,β,γ,δ
x �→ x− π0(ei), if x ∈ R(i)

α,β,γ,δ.

8.6.5 The one-dimensional case and usual continued fractions

All these results also hold in the one-dimensional case. The usual continued
fraction algorithm T : [0, 1)→ [0, 1) is given by:

T (α) =
1
α
−
[

1
α

]
on [0, 1) , if α �= 0, otherwise T (0) = 0,

and the continued fraction expansion:

α =
1

a1 +
1

a2 +
1

. . . 1
.. .+ 1

an + Tn(α)
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where ak :=
[ 1
Tk−1α

]
. A realization of its natural extension T is given over

[0, 1)× [0, 1) by (see also Chap. 6):

T (α, γ) :=
(

1
α
− a1,

1
a1 + γ

)
.

The linear map ϕa : R2 → R2 with matrix in the canonical basis of R3:

Aa =
(
a 1
1 0

)
where ϕa satisfies ϕ−1

an lγn−1 = lγn , with (αn, γn) := Tn(α, γ), and where the
line lγn (with corresponding stepped curves Sγn and Sγn) equals

lγn :=
{
t(x, y)

∣∣ 〈 t(x, y), t(1, γn)
〉

= 0
}

Moreover, one has
Θan
(
Sγn−1

)
= Sγn

where Θa was defined in Sec. 8.2.5. Theorem 8.6.2 holds in this context and
has to be compared with the study of Sturmian sequences held in Chap. 6.

8.7 Diophantine applications

Let us apply the previous results first to obtain quasi-periodic tilings of a
given plane by projection of the associated stepped surface, second to con-
struct Markov partition of group automorphism, third to β-numbers, and
fourth, to Diophantine approximation.

8.7.1 Quasi-periodic tiling related to the stepped surface

Let us start with a plane Pγ,δ, 0 < γ, δ < 1, given by

Pγ,δ =
{
x |
〈
x, t (1, γ, δ)

〉
= 0
}
,

and let Sγ,δ be anyone of the two stepped surfaces associated with Pγ,δ, as
explained in Sec. 8.2.1.

Let π : R3 −→ Pγ,δ be the projection along t (1, α, β). Then we have a
tiling of π(Sα,β) generated by three parallelograms π(0, i∗) (i = 1, 2, 3) and
their translates. Let us denote the above tiling by Tα,β(= π(Sα,β)). In other
words, we project the discrete plane (that is, the stepped surface Sγ,δ) associ-
ated with the plane Pγ,δ onto this plane to obtain a tiling by parallelograms
being the projections of the basic squares.

Let Γn be the family of patches which are generated by n parallelograms
and which are simply connected, that is,

Γn = {γ | γ ≺ Tα,β , #γ = n, γ is simply connected} .
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Definition 8.7.1. A tiling T of a plane is said to be quasi-periodic if for
any n > 0, there exists R > 0 such that any configuration γ ∈ Γn occurs
somewhere in any neighborhood of radius R of any point.

This definition is the analog of that of uniform recurrence for symbolic se-
quences (see Chap. 1).

Theorem 8.7.2. Let (1, γ, δ) be rationally linearly independent, then the
tiling Tγ,δ is a quasi-periodic tiling.

The essential idea for the proof of this result comes from the following
fact: for each (1, γ, δ) there exists a sequence(

a1 a2 · · · · · ·
ε1 ε2 · · · · · ·

)

such that the stepped surface of Pγ,δ is given by

lim
n→∞Θ(a1,ε1)Θ(a2,ε2) · · ·Θ(an,εn)(U),

where the sequence (an, εn) is obtained by the modified Jacobi-Perron al-
gorithm, and Θ(a,ε) is the corresponding substitution. For more details, see
[221, 220]. Let us note that we have a result that holds for all the parame-
ters (with the assumption of rational independence) contrary to the previous
one in Sec. 8.6 on the construction of a fundamental domain Rα,β,γ,δ for the
rotation Tα,β in T2, which only held for almost every parameter. See also
[441, 73, 72, 36] for a combinatorial and arithmetic study of two-dimensional
sequences coding these tilings over a three-letter alphabet. These sequences
are shown to code a Z2-action on the torus T. We are in a dual situation with
respect to that described in Sec. 8.6. On the one hand, we have a Z2 action
by two rotations on the one-dimensional torus, and, on the other hand, we
have a two-dimensional rotation on T2. More generally, quasi-periodic tilings
generated by a non-negative integer matrix are discussed following the same
ideas in [186]. The tilings we consider here have been obtained via the classi-
cal method of cut and projection (see for instance [386]). Some attempts to
generalize these ideas towards different tilings have been made. For instance
it would be tempting to obtain a description by generalized substitutions of
the dynamics of the Penrose tiling described in [361].

8.7.2 The Markov partition of group automorphisms on T3

Let us consider the incidence matrix of a unimodular substitution of Pisot
type satisfying the assumption of Theorem 8.4.1.

Following the ideas of Sec. 7.6.2, it is possible to associate with the gen-
eralized Rauzy fractal Rσ and its decomposition into the three parts Ri
(i = 1, 2, 3) a fundamental domain of R3 realizing a Markov partition for the
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toral automorphism of matrix Mσ of T3 (the sets Ri are thus the bases for
the cylinders of the partition, and each cylinder is directed by the expanding
direction of the matrix). See Sec. 7.1.2 for the definition of Markov partitions,
and see also Sec 7.6.2 in Chap. 7.

Theorem 8.7.3 ([220]). Over the assumption of Theorem 8.4.1, it is pos-
sible to define sets Ri (i = 1, 2, 3) of R3 such that the set  :=

⋃
i=1,2,3Ri

is a fundamental domain, which can be identified with T3. The partition{
Ri, i = 1, 2, 3

}
of T3 is a Markov partition of the group automorphism

TMσ
: T3 −→ T3

x �−→Mσx ( mod 1)

with the structure matrix tMσ.

Remark. The existence of Markov partitions of group automorphisms on
Tn is discussed in [6] and [399]. In [89], Bowen claims that the boundary of
Markov partition of 3-dimensional group automorphisms cannot be smooth.
Theorem 8.7.3 explains how we can construct (non-smooth) Markov parti-
tions (an analogous discussion can be found in [62]).

The following question is reasonable. For any element of A ∈ SL(3,Z),
does there exist a substitution σ such that its incidence matrix Mσ satisfies
the assumption of Theorem 8.4.1? Is Mσ isomorphic to A? We only know
that for any A there exists N > 0 such that AN satisfies the assumption of
Theorem 8.4.1 (see [187]).

8.7.3 Application to β-numbers

Let us consider β-expansions, that is, expansions of real numbers in [0, 1[ as
powers of a number β: x =

∑∞
k=1 bkβ

−k, with some conditions on the non-
negative integers bk. There is a well-known “greedy algorithm” to write such
an expansion, and this algorithm is obviously related to the β-transformation
x �→ βx−[βx] (for more details, see for instance [181]). It is a natural question
to investigate those numbers that have an eventually periodic β-expansion;
in the case where β is an integer, these are the rational numbers, and one
can characterize among them those with purely periodic expansion. In the
general case, one can prove easily that these numbers can be expressed as
a rational fraction of β. The question is specially interesting when β is an
algebraic number and in particular, a Pisot number. It has been studied by
several authors, see for instance [223, 412, 411], the references in [181] and
Sec. 7.3.3.

In [375] (see also [374, 222]), a complete answer is given in the case of a
particular class of Pisot numbers, those that satisfy an equation

βd = k1β
d−1 + k2β

d−2 + · · ·+ kd−1β + 1,
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where the ki are nonnegative integers such that k1 ≥ k2 ≥ · · · ≥ kd−1 ≥ 1; in
that case, x has an eventually periodic β-expansion if and only if x belongs
to the field Q(β); furthermore, a characterization of those points having an
immediately periodic expansion is given by introducing a realization of the
natural extension of the β-transformation on a particular domain with a
fractal boundary of Rd. This domain can be explicitly described using the
previous ideas on generalized substitutions associated with the companion
matrix of the previous equation satisfied by β.

8.7.4 Diophantine approximation

Let us end this survey of the Diophantine applications of the generalized
substitutions by mentioning the following result.

Theorem 8.7.4. Let 〈1, α, β〉 be the basis of the cubic field Q(λ) given by

A


 1
α
β


 = λ


 1
α
β




for some A ∈ SL(3,Z), and let us assume that λ is a complex Pisot number.
The limit set of {

√
q

(
qα− p
qβ − r

) ∣∣ (q, p, r) ∈ Z3, q > 0
}

consist in a family of ellipses.

Theorem 8.7.4 is proved by algebraic geometry in [4]. For a proof of this
result using modified Jacobi-Perron substitutions in the case where (α, β) is
a purely periodic point with period 1 under this algorithm, see [227, 226]:
the nearest ellipses near to the origin are shown to be given by the modified
Jacobi-Perron algorithm.



9. Infinite words generated by invertible
substitutions

Combinatorial properties of finite and infinite words are of increasing impor-
tance in various fields of science (for a general reference, the reader should
consult [271, 272] and the references therein). The combinatorial properties
of the Fibonacci infinite word have been studied extensively by many authors
(see for examples [67, 142, 176, 450]).

This chapter looks at infinite words generated by invertible substitutions.
As we shall see, words of this family generalize the Fibonacci infinite word.

The combinatorial properties of those infinite words are of great interest
in various fields of mathematics, such as number theory [25, 95, 164, 229],
dynamical systems [327, 340, 350, 401], fractal geometry [40, 101, 218, 274],
tiling theory [40, 400], formal languages and computational complexity [67,
69, 201, 202, 233, 293, 384, 385, 447], and also in the study of quasicrystals
[82, 99, 258, 257, 274, 455, 456, 454, 459].

The purpose of this chapter is to study the properties of factors of infi-
nite words generated by primitive invertible substitutions over a two-letter
alphabet. It is deeply linked to Chap. 6: as we will see, all these words are
Sturmian words. The chapter is organized as follows.

Section 9.1 is devoted to the introduction and preliminaries. Section 9.2
is concerned with the structure of the semigroup of invertible substitutions
for which we give a set of generators; we derive various consequences from
the structure theorem.

Section 9.3 lists properties of factors of the Fibonacci word. After recall-
ing some basic facts, we introduce what we call the singular words of the
Fibonacci word and give their properties. We then establish two decomposi-
tions of the Fibonacci word involving the singular words. Some applications
are derived from those decompositions, describing combinatorial properties
of the Fibonacci word related to powers of its factors, for example. We also
prove local isomorphisms properties of the Fibonacci word and the overlap
properties of the factors.

In Sec. 9.4, we consider more general invertible substitutions. We define
singular factors of fixed points of invertible substitutions, and then give appli-
cations of decompositions associated with these singular words, after proving
some general properties of factors of fixed points of invertible substitutions.
1 This chapter has been written by Z. -Y. Wen

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 295–320, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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As we shall see, the general framework we introduce is at a much higher level
of complexity than with the Fibonacci word.

9.1 Preliminary

Let us now introduce some definitions and notation (see also Chap. 1).

Free monoid and free group. Let An = {a1, a2, · · · , an} be an alphabet
with n letters. Let A∗n and Γn respectively denote the free monoid with empty
word ε as neutral element and the free group generated by An. By a natural
embedding, we can regard the set A∗n as a subset of Γn, and consider any
W ∈ A∗n as a reduced element of Γn (see [327] and the references therein, see
also [275, 277, 416]).

The canonical abelianization map on A∗n is denoted by l : A∗n → Nn, as
defined in Chap. 1.

Factors. Let V,W ∈ A∗n.

• We write V ≺ W when the finite word V is a factor of the word W , that
is, when there exist words U,U ′ ∈ A∗n such that W = UV U ′.

• We say that V is a left (respectively right) factor of a word W , and we
write V !W (respectively V "W ), if there exists a word U ′ ∈ A∗n such that
W = V U ′ (respectively W = U ′V ).

• We denote byW−1 the inverse word ofW , that is,W−1 = w−1
p · · ·w−1

2 w−1
1

if W = w1w2 . . . wp. This only makes sense in Γn; but if V is a right factor
of W , we can write WV −1 = U , with W = UV ; this makes sense in A∗n,
since the reduced word associated with WV −1 belongs to A∗n. This abuse
of language will be very convenient in what follows.

Definition 9.1.1. Let u and v be two infinite words over An. We say that u
and v are locally isomorphic if any factor of u is also a factor of v and vice
versa. If u and v are locally isomorphic, we shall write u � v.

Remarks.

• This means that the dynamical systems associated with u and v under the
action of the shift, in the sense of Chap. 1, are the same. If we are only
interested in the language of factors of an infinite word, or in the system
associated with this infinite word, we do not need to differentiate between
locally isomorphic infinite words. We will use this remark several times.

• The notion of local isomorphism was first introduced in connection with
quasicrystals, and for physical reasons, the definition was that each factor
of u, or its mirror image, should also be a factor of v. Since however all the
languages we will consider in this chapter are closed under mirror image,
the definition we take here is equivalent in our case, and will allow simpler
proofs.
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Conjugation of a word. Let W = w1w2 . . . wp ∈ A∗n.

• The reversed word (or mirror image) of W , denoted W , is defined as W =
wp . . . w2w1.

• A word W is called a palindrome if W = W . We denote by P the set of
palindromic words.

• For 1 ≤ k ≤ |W |, we define the k-th conjugation of W as Ck(W ) =
wk+1 . . . wnw1 . . . wk, and we denote by C(W ) = {Ck(W ); 1 ≤ k ≤ |W |}.
By convention, C−k(W ) = C|W |−k(W ). We will say that two words are
conjugate if they belong to the same conjugacy class.

This may seem an abuse of language, since there is another notion of
conjugacy, if we consider the two words as an element of the free group; in
this sense, U and V are conjugate if there exist an element U ′ of the free
group Γn such that U = U ′V U ′−1. These two definitions turn out to be
equivalent:

Lemma 9.1.2. Two words U and V in A∗n are conjugate as elements of the
free monoid A∗n if and only if they are conjugate as elements of the free group
Γn; in that case, we can always find a conjugating element of length strictly
less than |U | = |V |.

Exercise 9.1.3. Give a proof of this lemma, and give the most general form
for the conjugating word U ′ such that U = U ′V U ′−1.

A word W ∈ A∗n is called primitive if W = Up, U ∈ A∗n, p > 0, implies
W = U (and thus p = 1). That is, W cannot be expressed as a proper power
of any other word. Notice that the k-th conjugation Ck is an action from A∗n
to A∗n preserving primitivity. That is, the word Ck(W ) is primitive if and
only if W is itself a primitive word. We will use the following lemma.

Lemma 9.1.4. A word W ∈ A∗n is primitive if and only if the cardinality of
C(W ) is |W |.

Proof. If the cardinality is smaller, it means that we can find k, l distinct,
1 ≤ k < l ≤ n, such that Ck(W ) = Cl(W ). It is immediate to check that we
can then find two nonempty words U, V such that Ck(W ) = UV , Cl(W ) =
V U ; since UV = V U , it is well known that they must be a power of the
same word U ′, and Ck(W ) is not primitive. Hence W is not primitive. The
reciprocal is trivial.

There is a useful criterion of primitivity:

Lemma 9.1.5. If the numbers |W |a1 , |W |a2 , . . . , |W |an are relatively prime,
the word W is primitive.

We leave the proof to the reader.
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Substitution. Let us recall that a substitution (or a morphism) over An
is a map σ : A∗n → A∗n, such that for any two words U and V , one has
σ(UV ) = σ(U)σ(V ). The substitution σ is uniquely determined by the image
of the elements of An. We denote by σ = (U1, U2, · · · , Un) the substitution
defined by σ(ai) = Ui, 1 ≤ i ≤ n.

The notions of incidence matrix and primitivity were introduced in
Chap. 1. In this chapter, unless stated otherwise, all substitutions we consider
are primitive.

If for some letter a ∈ An, the word σ(a) begins with a and has length at
least 2, then the sequence of words σn(a) converges to a fixed point σω(a) ∈
AN
n. In this chapter, we shall only consider fixed points of a substitution that

can be obtained by iterating a morphism in the above manner. We denote
by uσ any one of the fixed points of σ, if it exists.

Invertible substitution. Let σ : A∗n → A∗n be a substitution over A∗n.
Then σ can be naturally extended to Γn by defining σ(a−1

i ) = (σ(ai))−1,
1 ≤ i ≤ n. Denote by Aut(Γn) the group of automorphisms over Γn.

Definition 9.1.6. A substitution σ is called an invertible substitution if it
can be extended to all of Γn by an automorphism (also called σ), that is,
if there exists a map η : Γn → Γn such that ση = ησ = Id on Γn (where
Id is the substitution given by Id = (a1, a2, · · · , an)). The set of invertible
substitutions over A∗n is denoted by Aut(A∗n).

Remark. The set Aut(A∗n) is obviously a semigroup. Remark that its ele-
ments extend to automorphism of the free group, but they are not automor-
phisms of the free monoid A∗n in the usual sense, since they are not onto,
except for the trivial case of the permutations of the alphabet.

Example 9.1.7 (The Fibonacci substitution). Set A2 = {a, b} for convenience.
The Fibonacci substitution σ = (ab, a) is an invertible substitution over A2:
an easy computation shows that the map η = (b, b−1a) is its inverse.

REcall that the fixed point generated by the Fibonacci substitution σ =
(ab, a) (iterated over a) is called the infinite Fibonacci word;it is denoted by
uσ. We shall often simply call it the Fibonacci word when no confusion occurs.

General structure of Aut(Γn). The structure of Aut(Γn) is well known
[277, 314, 327]. In particular, we have the following theorem, where, as usual,
〈S〉 denotes the group generated by a set S of generators.

Theorem 9.1.8. Let n > 0. The number of generators of the group Aut(Γn)
is 3n− 3 and these generators can be determined explicitly.

If n = 2, then
Aut(Γ2) = 〈σ, π, ψ〉,

where σ = (ab, a), π = (b, a) and ψ = (a, b−1)

In the following section, we will give a description in terms of generators
of the related semigroup Aut(A∗2).
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Inner automorphisms and conjugacy. Let W ∈ Γn. We denote by iW :
Γn → Γn the inner automorphism defined by U �→WUW−1, for any U ∈ Γn.
The set of all inner automorphisms of Γn will be denoted by Inn(Γn).

For any substitution τ , the composition iW ◦τ results in U �→Wτ(U)W−1;
it is a morphism of the free group, but not a substitution in general. We have
the following lemma:

Lemma 9.1.9. Let τ be a substitution, and W ∈ Γn. The composition iW ◦τ
is a substitution if and only if: either W ∈ A∗n and W is of the form Xaτ(a)k,
where Xa is a suffix of τ(a), for any letter a , or W−1 ∈ A∗n and W−1 is of
the form τ(a)kXa, where Xa is a prefix of τ(a), for any letter a.

If iW ◦ τ is a substitution, then, for any letter a, iW ◦ τ(a) admits Xa as
prefix in the first case, and Xa as suffix in the second.

Proof. This is an immediate consequence of Lemma 9.1.2; iW ◦ τ is a
substitution if and only if, for all a, Wτ(a)W−1 is an element of the free
monoid; but this gives the necessary and sufficient condition for the form of
W .

We will say that two substitutions σ, τ are conjugate if there exists a
word W ∈ Γn such that σ = iW ◦ τ , which will be denoted as σ ∼ τ .

Note that the conjugating word W can be strictly longer than the images
of some letters; for example, the two substitutions (aba, ba) and (aba, ab)
are conjugate by the word aba. However, if σ and τ are two substitutions
conjugate by a word W , that is σ = iW ◦ τ , it is easy to check that, for any
suffix V of W , iV ◦ τ is again a substitution. Considering the particular case
where V is a letter, we see that the only way to conjugate a substitution is
to suppress a common initial (or final) letter from the images of the letters,
to replace it as a final (or initial) letter, and to iterate the operation; in
particular, a substitution can be conjugate to another substitution if and
only if all the images of letters have a common final or initial letter.

We can be more precise; we know that the word W or its inverse belong
to A∗n. We will say that the substitution σ is a left conjugate of τ if there
exists W ∈ A∗n such that σ = iW ◦ τ .

Exercise 9.1.10. 1. Prove that the conjugacy is an equivalence relation on
the set of substitutions.

2. Prove that the left conjugacy induces a total order relation on each class.
3. Prove that an element is maximal (respectively minimal) for that order

if the images of letters have no common prefix (respectively suffix).

Conjugacy has an interesting consequence:

Proposition 9.1.11. Let τ , σ be two conjugate primitive substitutions. Let
uτ , uσ be fixed points of τ and σ. Then uτ and uσ are locally isomorphic.
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Proof. We can suppose, by exchanging τ and σ if needed, that τ = iW ◦σ,
with W ∈ A∗. Then by induction we have

τk = (iWσ)k = iW iσ(W ) · · · iσn−1(W )σ
k.

Let Wk = Wσ(W ) · · ·σk−1(W ). We have τk = iWk
σk, that is, τk(a)Wk =

Wkσ
k(a). Thus there exist Uk and Vk such that τk(a) = UkVk, and σk(a) =

VkUk. Since, by primitivity, |τk(a)| tends to infinity, so does |Uk| or |Vk|.
Let U be a factor of uτ , by minimality of the fixed words of primitive

substitutions, U ≺ Uk or U ≺ Vk for k large enough, thus U ≺ uσ. The same
argument proves that any factor of uσ is a factor of uτ . Hence uτ � uσ.

9.2 Structure of invertible substitutions

This section describes a set of generators for the semigroup Aut(A∗2), thus
revealing part of its structure.

We will prove the following conclusion: any invertible substitution over a
three-letter alphabet can be written as a finite product of three special invert-
ible substitutions. This first result is a starting point for studying invertible
substitutions, since many basic properties will be derived from it.

The proof we present here is borrowed from [448]. A geometrical proof of
the same result is given in [159].
Theorem 9.2.1 ([448]). Let π = (b, a), σ = (ab, a), � = (ba, a), γ = (ab, b),
and δ = (ba, b). We have,

Aut(A∗2) = 〈π, �, σ〉 = 〈π, γ, δ〉.
The proof follows from the following lemmas.

Lemma 9.2.2. An automorphism τ ∈ Aut(Γ2) is an inner automorphism if
and only if its incidence matrix Mτ is the identity matrix.

Proof. This means that the kernel of the abelianization map: Aut(Γ2)→
GL(2,Z) is exactly the group of inner automorphisms; it is clear that the
matrix associated with an inner automorphism is the identity. To prove the
converse, it suffices to give a presentation of GL(2,Z) by generators and
relations, to find generators of Aut(Γ2) that project to the generators of
GL(2,Z), and to check that the combinations of these elements corresponding
to the relations are inner automorphisms, see [275].

Remark. This lemma does not generalize to more letters: the map (bab−1,
cbc−1, c) gives an automorphism of the free group on three letters whose
matrix is the identity, and which is not an inner automorphism.

Lemma 9.2.3. Let M be the monoid of square matrices of size 2 with non-
negative integer coefficients, and determinant ±1. We have

M = 〈A, B〉, where A =
(

0 1
1 0

)
, B =

(
1 1
1 0

)
.
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Proof. Let

C =
(

1 1
0 1

)
, D =

(
1 0
1 1

)
.

Let also M =
(
p r
q s

)
be an element of M with at least one entry ≥ 1. Up to

multiplication by A, we can suppose det M = 1. It was proved in Chap. 6,
by an easy induction using Euclidean divisions on the columns of the matrix,
that the set of matrices with nonnegative coefficients and determinant 1 is the
free monoid generated by C and D (see Lemma 6.5.14.). But one can easily
check the following relations: C = BA, D = AB. This ends the proof.

Proof of Theorem 9.2.1. Note that we have the trivial relations: σ = π◦δ,
δ = π ◦ σ, � = π ◦ γ, γ = π ◦ �; hence, a substitution can be decomposed on
{π, σ, �} if and only if it can be decomposed on {π, γ, δ}. We will prove that
this last set is a set of generators for Aut(A∗2).

The idea of the proof is, given an invertible substitution τ , to find, using
Lemma 9.2.3, a substitution φ, written as a product of π and γ, with the
same matrix as τ . Then, using Lemma 9.2.2, these two substitutions are
conjugate; but then τ = iW ◦ φ can be written as a product of π, γ and δ
(this is a generalization of the easy relation ib ◦ γ = δ).

Let τ ∈ Aut(A∗2). Then Mτ ∈ M. By Lemma 9.2.3, there exist M1,M2,
. . .Mk ∈ {A,D} such that Mτ = M1 · · ·Mk. Note that Mπ = A and
Mγ = D. Take φ = φ1 · · ·φk, with φi = π or φi = γ, according to Mi = A
or D. Then, we have Mτ = Mφ. Therefore Lemma 9.2.2 implies that τ ◦φ−1

is an inner automorphism iW . Hence we can write τ = iW ◦ φ, and the
two substitutions τ, φ are conjugate; by Lemma 9.1.9, we have W ∈ A∗2 or
W−1 ∈ A∗2. But it is clear that φ(a) and φ(b) have a different initial letter,
since π and γ send words with different initial letters on words with different
initial letters. Hence they have no common prefix, and W ∈ A∗2.

Thus we only need to prove the following claim: if φ ∈ 〈π, γ, δ〉 is such
that φ(a) = UW and φ(b) = VW (with U, V,W ∈ A∗2), then iW ◦ φ ∈
〈π, γ, δ〉. By induction, it is enough to prove it in the case where W is
reduced to one letter z ∈ {a, b}.

First consider z = b. Since ib◦φ, where φ = φ1φ2 . . . φt (φj ∈ {π, γ, δ}), is
a substitution, φ(a) and φ(b) must have b as last letter. This is only possible if
one of the φi is equal to γ, since it is obvious that, for a product of π and δ, the
images of a and b end with different letters. Let i be the first index such that
φi = γ, the proposition will follow if we can prove ibφ1φ2 . . . φi ∈ 〈π, γ, δ〉.

Using the properties π2 = id, γδ = δγ, we see that the product φ1φ2 . . . φi
can be written δe1πδe2 . . . δenπγ, with all the ek strictly positive, except
maybe the first, and n even (otherwise, τ(a) and τ(b) would end in a).
A proof by induction, starting from the remark that ibγ = δ, shows that
ibφ1φ2 . . . φi ∈ 〈π, γ, δ〉.

A similar proof can be done for z = a, in which case n is odd.
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Corollary 9.2.4. Let τ1, τ2 be two invertible substitutions and let uτ1 , uτ2
be the fixed points of τ1 and τ2 respectively. If there exist m,n ∈ N such that
Mn

τ1 = Mm
τ2 , then uτ1 � uτ2 .

Proof. It is clear that a fixed point of a substitution is also a fixed point
of all its powers; hence, by replacing τ1, τ2 by τn1 , τm2 , we can suppose that
Mτ1 = Mτ2 . But in that case, τ1 ◦ τ−1

2 is an automorphism of the free group
whose matrix is the identity. By Lemma 9.2.2, it is an inner automorphism,
hence the substitutions τ1, τ2 are conjugate; by Proposition 9.1.11, their fixed
points are locally isomorphic.

Exercise 9.2.5. The conjugacy class of a substitution is completely explicit:
it is obtained by exchanging γ and δ, since this does not change the matrix.
We know that left conjugacy defines a total order on this conjugacy class.

Find the maximal and the minimal element of a class, and explain how
to find the successor and the predecessor (for this order) of an invertible
substitution with given decomposition in the generators.

An interesting consequence of Corollary 9.2.4 is that fixed points of in-
vertible substitutions are dense in the system generated by an invertible sub-
stitution:

Corollary 9.2.6. Let φ be an invertible substitution. Let uφ be a fixed point
of φ, and let U be a factor of uφ. Then there exists a substitution τ such that
uτ is locally isomorphic to uφ, and admits U as prefix.

Proof. The substitution φ is a product of π, � and σ; we can replace all
the � by σ, this will change uσ to a locally isomorphic word, and will not
change the factors.

In that case, one of φn(a), φn(b) is a prefix of the other for all n; suppose
it is φn(a). Then, by definition of U , it appears in φn(a), for n large enough,
and we can find words W,A,B such that: φn(a) = WUA, φn(b) = WUAB.
But then, τ = iW−1 ◦φ is a substitution, whose fixed point, by the preceding
theorem, is locally isomorphic to uφ and admits U as prefix.

Another consequence of the proof of Theorem 9.2.1 is that any invertible
substitution τ is conjugate to a substitution σ which is a product of π and γ. If
we take the square, we can suppose that the number of π in the decomposition
of σ is even, and an easy induction shows that σ can be written as a product
of the substitutions γ and π ◦ γ ◦π. But these are the two basic substitutions
considered in Chap. 6, and from the results of this chapter, we obtain:

Corollary 9.2.7. A fixed point of a primitive invertible substitution on two
letters is Sturmian.
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Remarks.

• Observe that γ �∈ 〈π, δ〉 and δ �∈ 〈π, γ〉. Since the length of a substitution
can only increase by composition, this proves that the minimal number of
generators of Aut(A∗2) is exactly three.

• Brown [95], Kósa [254], Séébold [385], Mignosi and Séébold [294] have
considered invertible substitutions in 〈π, π1, π2〉, with π1 = (a, ab), π2 =
(a, ba). They studied combinatorial and arithmetic properties of the infinite
words generated by those invertible substitutions.

• Mignosi and Séébold [294] have considered Sturmian substitutions, that is,
substitutions preserving all Sturmian sequences. They proved that a fixed
point of a substitution over A2 is Sturmian if and only if the substitution
is invertible [294, 448], giving a more precise form of the corollary 9.2.7
above. This motivates us to study the set of invertible substitutions.

• Let n ≥ 2 and let An = {a1, · · · , an} be a n-letter alphabet. Invertible
substitutions over An are defined in complete analogy with invertible sub-
stitutions over A2. The Rauzy substitution, �n : A∗n → A∗n, is a typical
invertible substitution and is defined as follows:

�n(a1) = a1a2, �n(a2) = a2a3, · · · , �n(an−1) = an−1an, �n(an) = a1.

From its definition, we see that the Rauzy substitution is a generaliza-
tion of the Fibonacci substitution. This substitution has many remarkable
properties and has some interesting relations with other domains; for more
details, see Chap. 7. Other interesting invertible substitutions over An are
described in [164].

• Theorems 9.1.8 and 9.2.1, bring us to naturally conjecture that the num-
ber of generators of Aut(A∗n) is 3n − 3. However, authors in [451] have
proved that the set of invertible substitutions over an alphabet of more
than three letters is not finitely generated (their proof uses the notion of
“prime substitution”). Also, they gave examples showing that, in that case,
the structure of Aut(A∗n) is much more complex.

• Let τ be a substitution, we denote by Φτ the trace mapping induced from
τ , see [327] and Chap. 10. Let τ1, τ2 ∈ Aut(A∗2), then uτ1 and uτ2 are locally
isomorphic if and only Φτ1 = Φτ2 [327].

• In [154], Durand has proved the following result: If two primitive substitu-
tions over An have the same nonperiodic fixed point, then they have some
powers the incidence matrices of which have the same eigenvalues.

9.3 Singular words of the Fibonacci word and
applications

As we have seen in the last section, the Fibonacci substitution plays an
important role in the study of the structure of the group of invertible sub-
stitutions. Our investigation of the properties of infinite words generated by
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invertible substitutions will be guided by the study of the factors of the
Fibonacci word. Those factors have been studied in relation with mathe-
matics and physics in theories such as number theory, fractal geometry, for-
mal languages, computational complexity, quasicrystals, and so on; see for
examples, [25, 82, 229, 340, 384, 447]. Moreover, the properties of the fac-
tors of the Fibonacci word have been studied extensively by many authors
[67, 142, 233, 293, 384, 385, 450]. We give new properties of the factors of
the Fibonacci word based on a new family of factors we call singular words.
As we shall see, the most striking of those properties is that two distinct
occurrences of a singular word never overlap.

This section is organized as follows. After making preliminary remarks
on the Fibonacci word, we introduce the singular words and give elemen-
tary properties they satisfy. Then, we establish two decompositions of the
Fibonacci word in terms of the singular words (Theorems 9.3.6 and 9.3.8),
and describe some of their applications.

Those results (and, in particular, the positively separated property of the
singular words) bring us in Sec. 9.3.2 to other combinatorial properties of the
Fibonacci infinite word, such as local isomorphism, the overlap properties of
the factors and the powers of factors of the Fibonacci word.

9.3.1 Singular words and their properties

As earlier, let σ = (ab, a) be the Fibonacci substitution and uσ denote the
Fibonacci infinite word.

Two of the motivations we have are the following.

• The Fibonacci word is closely related to the Fibonacci numbers defined
by the recurrence formula fn+2 = fn+1 + fn, with the initial conditions
f−1 = f0 = 1, as shown in Chap. 2. Consider the following decomposition
of the Fibonacci word

a b aa bab aabaa babaabab aabaababaabaa babaababaabaababaabab · · ·

where the n-th block in the decomposition is of length fn, n ≥ −1. The
question of whether those blocks share special properties naturally comes to
mind. As we shall see, Theorem 9.3.6 will answer this question completely.

• As we know, the Fibonacci word is a Sturmian word, hence it has exactly
n+ 1 factors of length n. It is also balanced (see Chap. 6), hence, for any
n, there exists p such that each factor of length n has p or p+ 1 letters a.
As we will see, for n = fk a Fibonacci number, there are n factors with
fk−1 a’s, all in the same conjugacy class, and one factor (the singular word)
with fk−1 ± 1 a’s, depending on the parity. This only happens for special
values of n, and is linked to the continued fraction expansion of the golden
number.

We first need to state basic facts about the Fibonacci word, for which the
reader is referred to [67, 142, 340, 384]; see also Chap. 6.
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Proposition 9.3.1. Let Fn = σn(a), then

1. l(Fn) = (fn−1, fn−2);
2. Fn is primitive;
3. |σn(a)| = Card C(Fn) = fn, that is, all conjugates of the word Fn are

distinct. Moreover, C(Fn) = {W ; W ∈ C(Fn)}.
4. Fn+1 = FnFn−1.
5. For any k ≥ 1, σk(uσ) = uσ, that is, uσ = FkFk−1FkFkFk−1 · · · .
6. The word ab is a suffix of Fn for odd positive n, and the word ba is a

suffix of Fn for even strictly positive n.
7. b2 �≺ uσ, a3 �≺ uσ.
8. Any factor of uσ appears infinitely many times in uσ.
9. W ≺ uσ if and only if W ≺ uσ.

Proof. The first statement is immediate by recurrence, or by computing
the powers of the matrix of σ.

The second comes from the fact that consecutive Fibonacci numbers are
relatively prime, which allows us to use Lemma 9.1.5; alternatively, one could
use the fact that the matrix of σn has determinant 1 (the same argument
shows that, for any substitution τ such that the associated matrix has deter-
minant 1, τn(a) is primitive).

The third statement is a consequence of Lemma 9.1.4. The rest is easy to
check.

Remark. No other results than those cited in Proposition 9.3.1 will be
used.

A consequence of this proposition is that for any n ≥ 1, the set Lfn splits
into two parts. The first part coincides with the conjugacy class of the word
Fn, and the second part consists solely of some wordWn. We want to describe
more precisely Wn.

Assume α, β ∈ A2. Then αβ " Fn implies α �= β, by virtue of Proposition
9.3.1.6. An induction using Proposition 9.3.1 proves the following lemma.

Lemma 9.3.2. Let n ≥ 2, and assume that αβ is a suffix of Fn. Then

Fn = Fn−2Fn−1α
−1β−1αβ,

Remark. Observe that Fn = Fn−1Fn−2. Using the preceding lemma, we
see that the words Fn−1Fn−2 and Fn−2Fn−1 coincide except on the two
last letters which are distinct. This remarkable property will be useful when
studying the factors of the Fibonacci word.

Definition 9.3.3. Let αβ be a suffix of Fn. We denote by Wn the word
αFnβ

−1.
The word Wn is called the n-th singular word of the Fibonacci word uσ.

For convenience, we define W−2 = ε, W−1 = a and W0 = b. We denote by S
the set of singular words of uσ.
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Lemma 9.3.4. We have:

1. Wn �∈ C(Fn);
2. Lfn(Fn−1Fn) = {Wn}

⋃
{Ck(Fn); 0 ≤ k ≤ fn−1− 2}. In particular, as a

factor, Wn appears only once in Fn−1Fn.

Proof. Statement 1. follows from α �= β, so that l(Wn) �= l(Fn).
Lemma 9.3.2 implies that Fn−1Fn = FnFn−1α

−1β−1αβ when αβ " Fn.
Since Fn−1 ! Fn, the first fn−1 factors of length fn of the word Fn−1Fn are
exactly Ck(Fn), 1 ≤ k ≤ fn−1 − 2, and the last factor is Fn = C0(Fn). The
(fn−1 − 1)-th factor is αFnβ−1 = Wn, which ends the proof of 2.

We now describe properties of the singular words:

Proposition 9.3.5. Let {Wn}n≥−1 be the singular words.

1. If n ≥ 1, then

If n ≥ 0, then l(Wn) =
{

(fn−1 + 1, fn−2 − 1) if n is odd;
(fn−1 − 1, fn−2 + 1) if n is even.

2. Wn �≺Wn+1.
3. If α "Wn+1, then Wn+2 = WnWn+1α

−1β.
4. Wn = Wn−2Wn−3Wn−2, n ≥ 1.
5. For n ≥ 1,

Cfn−1−1(Fn) = Wn−2Wn−1,

Cfn−1(Fn) = Wn−1Wn−2.

In particular,

Wn−2 ≺ Ck(Fn) if and only if 0 ≤ k ≤ fn−1 − 1;
Wn−1 ≺ Ck(Fn) if and only if fn−1 − 1 ≤ k ≤ fn − 1.

6. For n ≥ 1, W2n−1 = aaUaa, W2n = bV b, where U, V ∈ A∗2.
7. For n ≥ 2, 1 < k < fn, no proper conjugate of Wn is a subword of F∞.
8. For n ≥ 0, W 2

n �≺ F∞.
9. For n ≥ −1, Wn is a palindrome.

10. Wn is not the product of two palindromes for n ≥ 2.
11. If n ≥ 2, then Wn is primitive.
12. For n ≥ 1, let αn = a if n is odd, and αn = b if n is even. we have:

Wn = αn


 n−2∏
j=−1

Wj


 =


 n−2∏
j=−1

Wn−j−3


αn.

13. Wn �≺
n−1∏
j=−1

Wj.
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14. Let k ≥ −1 and p ≥ 1, and let U =
k+p∏
j=k

Wj. Then U �∈ S.

The proofs are left to the readers as exercises (see also [450]).

The following theorem answers the question raised in the introductory
part of this section.

Theorem 9.3.6. We have uσ =
∞∏

j=−1

Wj.

Proof. One easily checks that Fn = abF0F1 · · ·Fn−3Fn−2. By definition of
the singular words Wn, we have Fk = α−1Wkβ. Then by Proposition 9.3.1.4.,
we get

Fn = W−1W0 · · ·Wn−2γn,

where γn = a if n is even, and b is n is odd. Letting n → ∞ we obtain the
conclusion of the theorem.

Some additional work [450] is needed to obtain an even more striking
decomposition into singular words. In particular, this decomposition shows
the non-overlapping property of the singular words and plays an important
role in the study of the factors of the Fibonacci word.

Definition 9.3.7. For every n ≥ 1, we consider the set Σn = {Wn−1,Wn+1}
as a new alphabet of two letters, and we define a morphism φn : A2 → Σn by
setting φn(a) = Wn+1, φn(b) = Wn−1. We call the sequence Z = φn(uσ) the
Fibonacci word over Σn.

By Proposition 9.3.1.6., the word Wn will appear in uσ infinitely many
times. We can now state the main result of this section:

Theorem 9.3.8. For any n ≥ 0, we have

uσ =


 n−1∏
j=−1

Wj


WnZ1WnZ2 · · ·WnZkWn · · ·

where Z = Z1Z2 · · ·Zn · · · is the Fibonacci word over Σn, and Wn has no
other occurrences than the occurrences shown in the formula.

For example, when n = 2, W2 = bab and the decomposition predicted by
Theorem 9.3.8 is:

abaa(bab)aabaa(bab)aa(bab)aabaa(bab)aabaa(bab)aa(bab)aabaa(bab)aa · · ·
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Definition 9.3.9. Let v = v1v2 · · · vn · · · be an infinite word over A2. Let
X = vkvk+1 · · · vk+p and Y = vlvl+1 · · · vl+m (with l ≥ k) be two factors of v,
then the distance between the occurrences of the factors X and Y is defined
by

d(X,Y ) =
{
l − k − p if l > k + p;
0 otherwise.

If d(X,Y ) > 0, we say that the words X and Y are positively separated.
Let W = vkvk+1 · · · vk+p (k, p ≥ 1) be a factor of v. If there is an integer

l, 1 ≤ l ≤ p, such that W = vk+lvk+l+1 · · · vk+l+p, then we say that W has
an overlap over p− l letters.

The following statement can be seen as equivalent to the above definition.
Let U ≺ uσ be a factor of the Fibonacci word. Then, the word U has an
overlap if and only if there exist words X,Y and Z such that U = XY = Y Z
and such that the word UZ = XY Z is a factor of uσ.

The next corollaries are consequences of Theorem 9.3.8.

Corollary 9.3.10. Two adjacent occurrences of a singular word Wn, n ≥ 1,
are positively separated. More precisely, for any n and k, we have

d(Wn,k,Wn,k+1) ∈ {fn+1, fn−1}.
Moreover, at least one of d(Wn,k,Wn,k+1) and d(Wn,k+1,Wn,k+2) is fn+1.

In particular, for n ≥ 1, Wn has no overlap, and the words of length fn−2k
adjacent to the word Wn+1 on the left and on the right are precisely Wn−2k.

Corollary 9.3.11. Let U ≺ uσ and assume fn < |U | ≤ fn+1. Let W be
a singular word of maximal length contained in U . Then W appears only
once in U . Moreover, W must be one of the three following singular words:
Wn−1,Wn or Wn+1.

9.3.2 Some applications of singular words

The results we will now describe follow from properties of singular words, and
more particularly from the fact that two occurrences of a singular word are
positively separated. Some of the results we give here are known (Example 1
and Example 3), but the proofs we provide are simpler.

Example 1. Power of factors [67, 233, 293, 384].

Theorem 9.3.12. We have:

1. for any n, W 2
n �≺ uσ;

2. for 0 ≤ k ≤ fn − 1,
(
Ck(Fn)

)2 ≺ uσ;
3. if U ≺ uσ, with fn−1 < |U | < fn, then U2 �≺ uσ;
4. if 0 ≤ k ≤ fn−1 − 2, then

(
Ck(Fn)

)3 ≺ uσ;
5. if fn−1 − 2 < k < fn, then

(
Ck(Fn)

)3 �≺ uσ;
6. for any U ≺ uσ, U4 �≺ uσ.
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Proof.

1. The statement follows from Proposition 9.3.1.5. and 9.3.5.6.
2. Let Ck(Fn) = UV with Fn = V U . Then U " Fn and V ! Fn. The result

follows from F 3
n ≺ uσ, since

(
Ck(Fn)

)2 = UV UV = UFnV ≺ (Fn)3.
3. Suppose that Wk is the largest singular word contained in U (as in Corol-

lary 9.3.11), and let U = V1WkV2. Assume that U2 = V1WkV2V1WkV2 ≺
uσ. Then Wk �≺ V2V1, otherwise Theorem 9.3.8 implies either that
Wk+1 ≺ V1, or Wk+1 ≺ V2, which would contradict the hypothesis on
Wk. But then these are consecutive occurrences, of Wk, so by Theorem
9.3.8 again, V2V1 must be either Wk+1 or Wk−1. Hence, U = V1WkV2 is
conjugated to WkV2V1, which is equal to WkWk+1 or to WkWk−1, and
by Proposition 9.3.5.5, U is conjugated either to Fk+2, or to Fk+1. But
these two cases are impossible, since they violate the hypothesis made on
U .

4. We have FnFnFn−1Fn ≺ f∞ since aaba ≺ f∞. Let αβ " Fn−1. Then by
Lemma 9.3.2, we have

F 2
nFn−1Fn = F 2

nFn−1Fn−2Fn−1α
−1β−1αβ = F 3

nFn−1α
−1β−1αβ ≺ uσ.

Note that Fn−1 ! Fn. Hence, if 0 ≤ k ≤ fn−1 − 2, then(
Ck(Fn)

)3 ≺ F 3
nFn−1α

−1β−1 ≺ uσ.

5. Now suppose that fn−1 − 1 < k < fn. Then Proposition 9.3.5.5 implies
Wn−1 ≺ Ck(Fn). Let Ck(Fn) = UWn−1V , so that V U = Wn−2. Thus(

Ck(Fn)
)3 = UWn−1Wn−2Wn−1Wn−2Wn−1V.

Now, if
(
Ck(Fn)

)3 ≺ uσ, then the word Wn−1Wn−2Wn−1 = Wn+1 would
overlap itself which is impossible, by Corollary 9.3.11.

6. The statement is proved using an argument similar to that developed in
statement 5.

Remark. From Theorem 9.3.12.2., we see that any two occurrences of a
conjugate of Fn, n ≥ 0, are not positively separated. This is a major difference
between the conjugates of Fn and Wn.

Example 2. Local isomorphism.

Denote by Sk = S(Sk−1) the kth iteration of the shift S. Properties of the
singular words of the Fibonacci word can be used to obtain the following
results on the local isomorphism properties of the Fibonacci word.

Theorem 9.3.13. 1. An infinite word u′σ obtained by changing a finite
number of letters in uσ is not locally isomorphic to uσ.

2. Let U ∈ A∗2. Then uσ � Uuσ if and only if there exists an integer m > −1
such that U "Wmα, with α = a if m is odd, and α = b if m is even.
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Proof.

1. Let uσ =
∏∞
j=−1Wj as in Theorem 9.3.6. Because only a finite number of

letters are changed in uσ, we can find an integer m and words U, V ∈ A∗2,
such that

F ′σ = UV

σ∏
j=m

Wj ,

where |V | = fm−1, V �= Wm−1. Therefore, VWm �≺ uσ, that is, uσ �� F ′σ.
2. From Theorem 9.3.6 and Proposition 9.3.5.12., for any k > 0 and m ≥ 0,

W2mauσ = W2ma


2m+2k−1∏

j=−1

Wj




 ∞∏
j=2m+2k

Wj




= W2mW2m+2k+1


 ∞∏
j=2m+2k

Wj


 .

Then, W2mW2m+2k+1 ≺ uσ. That is, for any V ≺ W2mauσ, we can
find an integer k, such that V ≺ W2mW2m+2k+1, so V ≺ uσ. The case
dealing with W2m+1b can be proved similarly. That is, if U " Wmα for
some m, then uσ � Uuσ. The case where U is not a right factor of any
Wmα, follows from an argument similar to that developed in the proof
of statement 1.

Example 3. Overlap of the factors of the Fibonacci word.

In this example, we shall determine the factors which have an overlap. First
recall the notation we introduced earlier. We say that the word U ≺ uσ has
an overlap if there exist words X,Y and Z such that U = XY = Y Z and
XY Z ≺ uσ. Write Û(Y ) = UZ = XY Z. We shall say that the word U has
an overlap with overlap factor Y (or overlap length |Y |). The word Û(Y ) is
called the overlap of U with overlap factor Y . We denote by O(uσ) = O the
set of factors which have an overlap. Obviously, if U ∈ O, then

|U |+ 1 ≤ |Û(Y )| ≤ 2|U | − 1, (9.1)

where Y is any overlap factor of U .

Lemma 9.3.14. Let fn < |U | ≤ fn+1, and U �= Wn+1. Then U ∈ O if and
only if Wn �≺ U .

Proof. Let Wn ≺ U and write U = SWnT . Note that Wn �∈ O, if U ∈ O.
Thus any overlap of U must be of the form SWnVWnT . Hence,

|SWnvWnT | ≥ |S|+ |T |+ 2fn + fn−1 = |U |+ fn+1 ≥ 2|U |,

which is in contradiction with (9.1).
Now suppose that Wn �≺ U . We have
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• either U = SFnT , where S, T �= ε, |S|+ |T | ≤ fn−1, S " Fn, T ! Fn;
• or U ≺ F 2

n .

In the first case, if |T | = fn−1, then U = Wn+1 �∈ O. Now assume |T | < fn−1.
We can write Fn = TXS, because |S|+ |T | ≤ fn−1, with S "Fn, T !Fn. Since
|T | < fn − 1, Theorem 9.3.12.4. implies(

C|T |(Fn)
)3 = (XST )3 = XSTXSTXST ≺ uσ.

That is, U = SFnT = STXST has an overlap with factor ST .
In the second case, observe that U ≺ F 2

n and |U | > fn. Writing U = ST ,
with |T | = fn, we get T = Ck(Fn) for some k, and S"T , so U = SXS. On the
other hand, since U = SCk(Fn) ≺ F 2

n , we have SXSXS = S
(
Ck(Fn)

)2 ≺
F 3
n ≺ uσ. That is, U = SXS has an overlap with overlap factor S.

Lemma 9.3.15. If U ∈ O, then U has a unique overlap factor.

Proof. Let fn < |U | ≤ fn+1, and let W be a singular word contained in U
with maximal length. By Corollary 9.3.16, W is one of Wn−1, Wn and Wn+1.
By virtue of Lemma 9.3.14, W must be Wn−1 since U ∈ O. So we can write
U = SWn−1T . Now suppose that U admits two different overlap factors.
Then Wn−1 will appear three times in one of these two overlap factors. Since
Wn−1 �∈ O, this overlap factor must be of the form SWn−1V1Wn−1V2Wn−1T .
An analogous argument to the one developed in Lemma 9.3.14 brings us to
a contradiction with (9.1).

The following corollary is immediate from Lemma 9.3.15 and the proof of
Lemma 9.3.14.

Corollary 9.3.16. Let U ∈ O be such that fn < |U | ≤ fn+1. Then U can be
decomposed under the form U = V V ′V , the length of |V | being the overlap
length.

The following theorem summarizes the results above.

Theorem 9.3.17. Let U be a word such that fn < |U | ≤ fn+1. Moreover
assume that U �= Wn+1 and U ≺ uσ. Then U ∈ O if and only if Wn �≺ U .
If U ∈ O, then U has a unique overlap factor V satisfying U = V V ′V and
|V | = |U | − fn. In particular, Ck(Fn) ∈ O if and only if 0 ≤ k ≤ fn − 2.

Remark. Note that:

1. fn+1 < 2fn < fn+2 < 3fn < fn+3;
2. for any k, Wn+1 �≺

(
Ck(Fn)

)2;
3. for any k, Wn+2 �≺

(
Ck(Fn)

)3.

The following corollary is an immediate consequence of Theorem 9.3.17.

Corollary 9.3.18. For any k,
(
Ck(Fn)

)2 ∈ O,
(
Ck(Fn)

)3 ∈ O.
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Remark. If W 2 �≺ uσ and W has no overlap factor, then two consecutive
occurrences of W are positively separated. Moreover, we can give for those
words a decomposition similar to the one we gave for singular words.

For example, let W = abab, by Theorem 9.3.12.3. and Theorem 9.3.17,
W 2 �≺ uσ and W �∈ O, so W is positively separated. The following decompo-
sition illustrates the remark above:

aba(abab)aaba(abab)a(abab)aaba(abab)aaba(abab)a(abab)aaba(abab) · · ·

We totally order A2 by setting a < b and we extend this order to the set
A∗2 of all words lexicographically. A Lyndon word is a word strictly smaller
than its proper right factors. Melançon [287] established the factorization of
the Fibonacci word into a nonincreasing product of Lyndon words. He also
described the intimate links between the Lyndon factorization and the fac-
torization into singular words, and also gave a self-similarity property of the
Lyndon factorization. Those results enabled him to give new proofs for The-
orems 9.3.6 and 9.3.8. He also introduced generalizations of singular words
to the Sturmian words. Using another approach, Cao and Wen [104] general-
ized singular words and the corresponding factorizations to general Sturmian
words and gave some applications to the studies of the factor properties of
Sturmian words.

9.4 Properties of factors of the fixed points of invertible
substitutions

In Sec. 9.3 we discussed some factor properties of the Fibonacci word. It is
natural to seek for more general invertible substitutions based on the knowl-
edge we developed on the Fibonacci substitution.

We will study some particular invertible substitutions; note that the ma-
trices associated with σ and π generate the set of invertible nonnegative
integral matrices, hence, for any invertible substitution, there is a conjugate
substitution which is a product of σ and π.

Such a substitution can be written τ = σnkπσnk−1π . . . σn2πσn1 , with
n1 ≥ 0, nk ≥ 0, and ni > 0 for 2 ≤ i ≤ k − 1. It is easy to check that the
word appears in the fixed point uτ if and only if nk > 0, and that τ(b) is a
prefix of τ(a) if n1 > 0, τ(a) is a prefix of τ(b) if n1 = 0. We see that we
can define in this way four classes of substitutions. We will only study the
substitutions such that nk > 0, n1 > 0, the other three classes have similar
properties.

Definition 9.4.1. We denote by Gσ the set of invertible substitutions that
can be written as a product σnkπσnk−1π . . . σn2πσn1 , with ni > 0 for 1 ≤ i ≤
k.
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Section 9.4.1 is concerned with elementary factor properties for the fixed
word of a substitution in Gσ. Section 9.4.2 defines singular words for general
invertible substitutions, and give some applications. These words are defined
by using a substitution in Gσ; however, as we will see, they have intrinsic
properties which allow to define them just by considering the language asso-
ciated with an invertible substitution.

9.4.1 Elementary properties of factors

Lemma 9.4.2. Let τ be an invertible substitution. For all α ∈ A2, the word
τ(α) is primitive.

Proof. Suppose that τ(α) is not primitive. Then there exist a word
W ∈ A∗2 and an integer p ≥ 2, such that τ(α) = W p. Hence l(τ(α))) =
(p|W |a, p|W |b). Thus detMτ will be divisible by p, which is in contradiction
with the fact detMτ = ±1.

We remark that, for any τ ∈ Gσ, we have τ(b)!τ(a). We remark also that,
if |τ(b)| > 1, the last two letters of τ(b) are distinct, and if we denote them
by βα, the last two letters of τ(a) are αβ; the proof is easy by induction.

We are now going to establish an important factorization of τ ∈ Gσ which
will be used in the sequel. We can write τ(a) = τ(b)U∗, by virtue of the
remark. Let U ! τ(a) with |U | = |U∗|. We can also write τ(a) = UV with
|V | = |τ(b)|.

Lemma 9.4.3. Let τ ∈ Gσ with |τ(b)| ≥ 2 and let τ(a) = τ(b)U∗ = UV as
above. If αβ " τ(a), then

1. U = U∗;
2. τ(b)α−1β−1 = V β−1α−1;
3. τ(a) = τ(b)U = Uτ(b)α−1β−1αβ.

Proof. Since αβ " τ(a), we have βα " τ(b).
We prove the lemma by induction with respect to the length of τ in terms

of Aσ := {σ, π}.

1. The inequality |τ(b)| ≥ 2 holds only if τ has length at least 2; if this
length is 2, then τ = σ2. In this case, τ(a) = σ2(a) = aba = τ(b)a,
U∗ = U = a, and the statement is true.
Suppose that for τ = τn · · · τ1, we have

τn · · · τ1(a) = τn · · · τ1(b)U∗n = UnVn, (9.2)

with U∗n = Un (so |Vn| = |τn · · · τ1(b)|).
Let τ = τn+1τn · · · τ1. Write

τ(a) = τn+1τn · · · τ1(a) = τn+1τn · · · τ1(b)U∗n+1 = Un+1Vn+1,
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with |U∗n+1| = |Un+1|. We will prove that U∗n+1 = Un+1.
If τn+1 = π, the proof is trivial. Suppose now that τn+1 = σ. By virtue
of (9.2), we have:

σ(τn · · · τ1(a)) = σ(UnVn) = σ(Un)σ(Vn) = σ(τn · · · τ1(b))σ(U∗n).

Thus U∗n+1 = σ(U∗n), Un+1 = σ(Un). So we get U∗n+1 = Un+1, since
U∗n = Un by induction.

2. The case of |τ(b)| = 2 can be checked directly. Let τ = τn · · · τ1, then by
statement 1. we have

τn+1τn · · · τ1(a) = τn+1τn · · · τ1(b)Un+1 = Un+1Vn+1.

Let αβ " τn · · · τ1(a) and suppose that Vnβ−1α−1 = τn · · · τ1(b)α−1β−1.
We shall prove

Vn+1α
−1β−1 = τn+1τn · · · τ1(b)β−1α−1.

As in the proof of statement 1., it suffices to consider τn+1 = σ. Since
αβ " τn+1τn · · · τ1(b), βα " σ(Vn+1), we have

Vn+1 = σ(Vn) = σ(τn · · · τ1(b)α−1β−1αβ)
= σ(τn · · · τ1(b))(σ(βα))−1σ(αβ).

Notice that σ(αβ) = aβα for any α �= β, and therefore we obtain

Vn+1α
−1β−1 = τn+1τn · · · τ1(b)β−1α−1.

3. The conclusion follows immediately from statements 1. and 2.

Lemma 9.4.4. Let W ∈ P, then σ(W )a, a−1σ(W ) ∈ P.

Proof. Since W ∈ P, we can write W in the following form:

ak1bl1ak2bl2 · · · akmζakm · · · bl2ak2bl1ak1 ,

where ζ ∈ {a, b, ε}, kj , lj = 1, if 2 ≤ j ≤ m− 1, and k1, km = 0.
Thus we have

σ(W )a = (ab)k1al1 · · · (ab)kmσ(ζ)(ab)km · · · al2(ab)k2al1(ab)k1a

= (ab)k1al1 · · · (ab)kmσ(ζ)a(ba)km · · · al2(ba)k2al1(ba)k1 .

Since σ(ζ)a is equal to a, aba, aa respectively according to ζ being ε, a, b,
σ(W )a is a palindrome with center a, b, ε respectively by the formula above.

Corollary 9.4.5. Let ζ ∈ A2. Suppose that τ ∈ Gσ with β " τ(ζ), then
ατ(ζ)β−1 ∈ P.

In particular, if |τ(ζ)| ≥ 3, and αβ " τ(ζ), then τ(ζ)β−1α−1 ∈ P.
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Proof. Let τ = τnτn−1 · · · τ1.
We prove this corollary by induction as in Lemma 9.4.3. We only prove

the case ζ = a, the case of ζ = b can be proved in a similar way.
The case of n = 1 is evident.
Now suppose that β " τnτn−1 · · · τ1(a) and ατnτn−1 · · · τ1(a)β−1 ∈ P.
If τn+1 = π, notice that the word π(τnτn−1 · · · τ1(a)) is obtained by ex-

changing the letters a and b in the word τnτn−1 · · · τ1(a). So by the induction
hypothesis, we get βπ(τnτn−1 · · · τ1(a))α−1 ∈ P.

Now suppose that τn+1 = σ. Notice that α " στnτn−1 · · · τ1(a). Thus

βστnτn−1 · · · τ1(a)α−1 = βσ(α−1ατnτn−1 · · · τ1(a)β−1β)α−1

= βσ(α−1)σ(ατnτn−1 · · · τ1(a)β−1)σ(β)α−1.

By the induction hypothesis, ατnτn−1 · · · τ1(a)β−1 ∈ P. On the other hand,
by a simple calculation, we have either βσ(α−1) = a−1, σ(β)α−1 = ε, or
βσ(α−1) = ε, σ(β)α−1 = a. Hence by Lemma 9.4.4, we get

βστnτn−1 · · · τ1(a)α−1 ∈ P.

Let τ(a) = τ(b)U be the factorization of Lemma 9.4.3. Let τ = σnkπ · · ·
σn2πσn1 , then U = σnkπ · · ·σn2πσn1−1(b). Thus by Lemma 9.4.3 and Corol-
lary 9.4.5, we get:

Corollary 9.4.6. Let τ ∈ Gσ and let αβ " τ(a).

1. If |τ(b)| = 1, then τ(a) = anb for some n, i.e., τ(a) is the product of
palindromes an and b;

2. If |τ(b)| = 2, then τ(a) is a palindrome;
3. If |τ(b)| > 2, then τ(a) is the product of palindromes τ(b)α−1β−1 and
βαu.

Lemma 9.4.7. Suppose that W ∈ A∗2 is a primitive word and suppose that
W = U1U2 is a product of two palindromes U1 and U2.

1. If |U1|, |U2| ∈ 2N + 1, then for any k, Ck(W ) �∈ P.
2. If |U1|, U2| ∈ 2N, then C|U1|/2(W ) ∈ P, C|U1|+|U2|/2(W ) ∈ P. For other
k, Ck(W ) �∈ P;

3. If |U1| ∈ 2N, |U2| ∈ 2N + 1 (or |U1| ∈ 2N + 1, |U2| ∈ 2N), then
C|U1|/2(W ) ∈ P (or C|U1|+|U2|/2(W ) ∈ P). For other k, Ck(W ) �∈ P.

Proof. We only prove statement 1., the other cases can be discussed in
the same way.

Notice that at least one of |U1|, |U2| is larger than 2 (otherwise U1, U2 will
be a2 or b2). Suppose that without loosing generality |U1| = 3. Then we can
write U1 = xU ′1x, where x ∈ A2, U ′1 ∈ P. Thus C1(W ) = C1(U1U2) =
(U ′1)(xU2x) is a product of two palindromes, and C1(U1U2) �∈ P. Since
|U ′1|, |xU2x| ∈ 2N + 1 and U ′1, xU2x ∈ P, we can repeat the discussion above
which follows the proof.
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Lemma 9.4.8. Let τ ∈ Gσ. Suppose that |τ(a)| ∈ 2N. If τ(a) = U1U2 is a
product of two palindromes, then |U1|, |U2| ∈ 2N + 1.

Proof. If |U1|, |U2| ∈ 2N, then |U1|a+ |U1|b, |U2|a+ |U2|b ∈ 2N. Thus both
components of l(τ(a)) are even which follows that |detMτ | ∈ 2N. But we
know that detMτ must be ±1.

From Corollary 9.4.6, Lemma 9.4.7, Lemma 9.4.8 and Propositions 9, 10,
11 of [143], we obtain

Proposition 9.4.9. Let τ ∈ Gσ.

1. Any conjugate of τ(a) is primitive.
2. |C(τ(a))| = |τ(a)|. That is, all conjugates of τ(a) are distinct.
3. Any conjugation of τ(a) (containing τ(a) itself) is either a palindrome,

or a product of two palindromes. In the later case, the factorization is
unique.

4. C(τ(a)) = C(τ(a)), where C(τ(a)) = {W ; W ∈ C(τ(a))}.
5. If |τ(a)| ∈ 2N, there is no palindrome in C(τ(a)); if |τ(a)| ∈ 2N+1, there

is only one palindrome in C(τ(a)).

9.4.2 Decomposition into singular words and its application

Similarly as in the case of the Fibonacci infinite word, we will introduce sin-
gular words for the invertible substitutions in Gσ and study their properties.

Let τ ∈ Gσ and let uτ = τ(uτ ) = w1w2 · · ·wk · · · be the fixed point of τ .
Then for any n ∈ N, we have

uτ = τn(uτ ) = τn(w1)τn(w2) · · · τn(wk) . . . (9.3)

We now discuss the properties of the factors of the infinite word uτ .

Definition 9.4.10. We denote τn(a) by An, and τn(b) by Bn.

Notice that if τ ∈ Gσ, then for any n ≥ 2, τn ∈ Gσ. Therefore the conclu-
sions about τ which we have obtained above hold also for τn. In particular,
An and Bn are primitive. We also remark that An and Bn always have a
different final letter.

Lemma 9.4.11. Any factor of length |An| of uτ is contained either in AnAn
or BnAn.

Proof. Let W be a factor of uτ of length |An|. Since the decomposition of
τ in product of σ, π begins with σ (from the definition of Gσ, we have nk > 0)
it follows that the fixed point contains only isolated occurrences of b, hence
it has a canonical decomposition in An and Bn where no two consecutive
Bn occur. Hence W will be contained in one of the following four words:
AnAn, AnBn, BnAn, AnBnAn. We have Bn ! An, so AnBn ≺ AnAn.
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Let W ≺ AnBnAn, write W = W1BnW2. Then W1 " An,W2 ! An. Let
An = BnUn be the factorization as in Lemma 9.4.3. Then Un !An by Lemma
9.4.3.3. Since |W | = |An| = |Bn|+ |Un|, |W2| < |Un|. Consequently W2 ! Un,
and hence W = W1BnW2 ≺ AnBnUn = AnAn.

We are going to study the two cases.

Lemma 9.4.12. Let W ≺ AnAn with |W | = |An|, then W ∈ C(An).

Proof. Since W ≺ AnAn, and |W | = |An|, we can write W = UV with
U " An, V ! An, and |U |+ |V | = |An|, which follows that An = V U . That is,
W = C|V |(An).

Since all conjugates of An are distinct by Primitivity of An, we get

Corollary 9.4.13. The set of the factors of length |An| of Akn, k = 2 is
exactly C(An).

Now we study the factors of the word BnAn. For this aim, we introduce
singular words of uτ as follows:

Definition 9.4.14. The n-th singular words of uτ with respect to a or b are
defined respectively as:

Wn,a = βAnα
−1, Wn,b = αBnβ

−1,

where α (respectively β) is the last letter of An (respectively Bn).

From the definition of the singular words, we get immediately:

Lemma 9.4.15. With the notation above, we have

(
l(Wn,a)
l(Wn,b)

)
=




(
|An|a − 1 |An|b + 1
|Bn|a + 1 |Bn|b − 1

)
if α = a;(

|An|a + 1 |An|b − 1
|Bn|a − 1 |Bn|b + 1

)
if α = b.

Hence the abelianizations of Wn,a and An differ, and we get:

Corollary 9.4.16. ∀n ∈ N, Wn,a �∈ C(An), Wn,b �∈ C(Bn).

Let αβ " An (so βα " Bn). By Lemma 9.4.3,

BnAn = BnunBnα
−1β−1αβ = AnBnα

−1β−1αβ.

Since AnBnα−1β−1 ≺ AnBn ≺ AnAn, we see that the first |Bn| − 2 factors
of length |An| of BnAn are those of AnAn which are distinct from each other
by Corollary 9.4.13, and the (|Bn| − 1)-th factor is exactly Wn,a which is not
in C(An) by Corollary 9.4.16. We get from the analysis above



318 9. Infinite words generated by invertible substitutions

Lemma 9.4.17. Let W ≺ BnAn with |W | = |An|. Then W is either in
C(An) or equal to Wn,a. In particular, as a factor, Wn,a appears only once
in BnAn.

Since we know that the fixed point is Sturmian, we deduce that |L|An|| =
|An|+ 1, and from the previous lemma we obtain:

Proposition 9.4.18. Let τ ∈ G, n ∈ N. Then L|An| = C(An(a))
⋃
{Wn,a},

L|Bn| = C(Bn(b))
⋃
{Wn,b}.

We now discuss the properties of the singular words. The above proposi-
tion can be rephrased: since the fixed word is Sturmian, it is balanced. Hence,
words of the same length as τ(a) can only have the same number of a as τ(a),
or one more or less a. We have shown that all words of same length as τ(a),
except one, the singular word, have same number of a as τ(a). We will see
that this difference appears in a very conspicuous way: either Wn,a has b as
initial and final letter, or ap(τ)+1 as initial and final prefix, where p(τ) is
the minimum of the number of a’s that separate two occurrences of b. (p(τ)
can also be defined in the following way: let (σπ)k the highest power of σπ
that occurs as prefix in the decomposition of τ in the generators σ, π; then
p(τ) = k + 1.

Proposition 9.4.19. ∀n,m ∈ N, Wn,a,Wn,b and βAmn Bnα
−1 ∈ P.

Proof. The fact that Wn,a,Wn,b ∈ P follows immediately from the defini-
tion of the singular words and Proposition 9.4.5.

Let An = BnUn be the factorization as in Lemma 9.4.3, then for any
m ≥ 1,

βAmn Bnα
−1 = ((βBnα−1)(αUnβ−1))m(βBnα−1),

by Corollary 9.4.6, βBnα−1, αunβ
−1 ∈ P. Thus βAmn Bnα

−1 ∈ P.

Lemma 9.4.20. Wn,a " Wn+2,a, Wn,b " Wn+2,b.

Proof. Let αβ " τn(a), then αβ " τn+2(a), thus

Wn+2,a = ατn+2(a)β−1 = ατn(τ2(a))β−1.

We have a ! τ2(a), so τ2(a) = ua for some u ∈ A2. Thus Wn+2,a =
ατn(u)τn(a)β−1 which yields the conclusion of the lemma.

Lemma 9.4.21. Either ap(τ)+1 "Wn,a, ap(τ)+1 !Wn,a, or b "Wn,a, b !Wn,a.

Proof. This follows from Proposition 9.4.18 and the definition of Wn,a.

Proposition 9.4.22. ∀n ∈ N, if Wn,a is not a power of a, then Wn,a is
primitive.
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Proof. Suppose that Wn,a is not a power of a. If Wn,a = wp for some
w ∈ A∗2 and p ≥ 2, then Wn,a will be equal to one of its conjugates. But we
will then have either b2 ≺ uτ or a2p(τ)+2 ≺ uτ . This is impossible.

Let u∞ = w1 · · ·wn · · · be an infinite word over A2. Let W ≺ u∞ be a
word which appears infinitely many times in u∞. If any two adjacent W ′s
(i.e., two successive occurrences) appearing in u∞ are separated by a factor
of u∞ (this assertion is equivalent to �U ≺ u∞ such that U = XY Z with
W = XY = Y Z), we say that the word W possesses the positive separation
property, and the factor is called a separate factor (with respect to W ). If
any separate factor is not equal to ε, we say that W is strongly separated
(otherwise, we say that W is weakly separated).

Definition 9.4.23. A word W ∈ A∗2 of the form W = (UV )kU , where k > 0,
UV is a primitive word, is called a sesquipower. The positive integer k is said
to be the order of the sesquipower. A sesquipower of order larger than 1 is
called a strong sesquipower.

From Lemma 9.4.12, Lemma 9.4.17, and the definition of Wn,a, we obtain
the following

Theorem 9.4.24. Let τ ∈ Gσ and let αβ " An. For n ≥ 1, we have

uτ = W0Wn,az
(n)
1 Wn,az

(n)
2 · · · z(n)

k Wn,az
(n)
k+1 · · · ,

where W0 = A
p(τ)
n Bnα

−1, ∀i, z(n)
i ∈ {βAp(τ)−1

n Bnα
−1, βA

p(τ)
n Bnα

−1}. We
call the above decomposition of uτ the n−decomposition of uτ ,

Denote by uτ (z(n)) the infinite word z(n)
1 z

(n)
2 . . . z

(n)
k . . ..

From the discussions above and Proposition 9.4.19, we obtain

Theorem 9.4.25. Let τ ∈ Gσ, then for any n,

1. Wn,a is strongly separated.
2. The separate factor is either βAp(τ)−1

n Bnα
−1, or βAp(τ)

n Bnα
−1.

3. The separate factors are sesquipower palindromes of order p(τ) and p(τ)−
1 respectively.

Example 9.4.26. Let τ = (σπ)n−1σ, then

τ = (anb, a), p(τ) = n.

Consider 1−decomposition of uτ , we have

ab"An1 = (anb)n, W0 = (A1)nB1a
−1 = (anb)n, W1,a = a(anb)b−1 = an+1.

Put

A = bAn1B1a
−1 = b(anb)naa−1 = b(anb)n−1, B = b(anb)n.
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When n = 1, τ = σ, then ∀m ∈ N, uσ(z(m)) = uσ over {A,B};
When n = 2, τ = σπσ, then

uσπσ(z(1)) = ABABAABABAABABABAABABAABABABAABA . . .

We see that uσπσ(z) �= uσπσ over {A,B}. A calculation on computer shows
that

uσπσ(z(1)) = uτ = uτ (z(1))

where τ = (ab, aba) = σσπ.

As said in the introduction, the motivation of this section is to generalize
the properties of the factors of the Fibonacci word to the case of all invert-
ible substitutions. By comparing with the results of Sec. 9.3, we see that one
main difference is the structure of the singular words and the singular de-
composition of the infinite word according to the singular words. In fact, the
structure of the singular words of a general invertible substitution is much
more complicated than that of the Fibonacci substitution: for example, all
singular words and separate words of the Fibonacci word are sesquipowers of
order 1, i.e, weak sesquipowers; on the other hand, those of a general invert-
ible substitution are strong sesquipowers. But we have seen that the singular
words still play an important role in the studies of the factors, such as power
of factors, overlap of factors and local isomorphism. On the other hand, sin-
gular words and their applications can be generalized to the case of Sturmian
words [104].

Remark. By introducing patterns in high dimensional space (see for ex-
ample [14, 329]), we can generalize the definition of local isomorphism to
the colored lattice, that are applicable in the studies of quasicrystals [459].
But it is a difficult problem to characterize local isomorphism for the general
case. In fact, in Theorem 9.2.4, we only deal with the invertible substitutions
over the alphabet of two letters. We do not know any results for the general
substitutions (which are non-invertible) over A2. For the alphabet over more
than two letters, the question is still open even for invertible substitutions.



10. Polynomial dynamical systems associated
with substitutions

It is natural, in many situations related to physics or geometry, to study
representations of the free group with values in SL(2,C). Conjugate repre-
sentations just differ by a change of coordinates, so one should be interested
in quantities invariant by conjugacy; the trace is one such quantity, so that,
for a representation φ, one is interested in studying trφ(W ), for an element
W of the free group.

For instance, consider the following problem. Given two complex 2 × 2-
matrices A0 and B0 with determinant 1, define, for n ≥ 0, An+1 = AnBn

and Bn+1 = BnAn (in other words, An is a product of 2n+1 matrices, the
factors being chosen according to the beginning of the Thue-Morse sequence).
How to compute the traces of An and Bn?

One can obtain
(
tr An, tr Bn, tr AnBn

)
by iterating the function Φ :

(x, y, z) �−→ (z, z, xyz − x2 − y2 + 2). To be more precise, one has(
tr An+1, tr Bn+1, tr An+1Bn+1

)
= Φ
(
tr An, tr Bn, tr AnBn

)
.

Had we defined An+1 = AnBn and Bn = An (this time using the Fi-
bonacci substitution), we would have obtained(
tr An+1, tr Bn+1, tr An+1Bn+1

)
=
(
tr AnBn, tr An, tr An tr AnBn−tr Bn

)
.

This behavior is general: given a substitution σ on the two-letter alphabet
{A0,B0}, there exists a polynomial map Φ from C3 into itself such that, if
An = σn(A0) and Bn = σn(B0), one has

(
tr An+1, tr Bn+1, tr An+1Bn+1

)
=

Φ
(
tr An, tr Bn, tr AnBn

)
.

Of course, to find such a recursion relation, one could think of expressing
the eight entries of Aj+1 and Bj+1 in terms of those of Aj and Bj , and then
getting, by elimination, a recursion relation linking nine successive values of
tr Aj . As a matter of fact, on the one hand, this method is not so bad: had
we considered a recursion involving n matrices, we should have obtained a
recursion relation, the length of which grows linearly in n, for the traces. On
the other hand, eliminating variables could be an untractable operation, even
when using computer algebra software. Besides, this method gives no idea of
the algebraic properties of these recurrence formulae.
1 This chapter has been written by J. Peyrière

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 321–342, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Another way of operating, which is developed here, is to exploit polyno-
mial identities in rings of matrices. This will provide an effective algorithm
for constructing such recursion relations for traces, the so-called trace maps.
Besides, these trace maps exhibit very interesting algebraic and geometric
properties.

More generally, given a representation φ in the case of the free group Γ2
on two elements with generators a, b, for any element W ∈ Γ2, there exists a
unique polynomial PW (x, y, z) such that

trφ(W ) = PW (trφ(a) trφ(b), trφ(ab));

in other words, the trace of any product of 2 matrices A,B can be computed
by using only tr A, tr B, tr AB. Hence, the traces of the representation is
completely determined by [T ]φ = (trφ(a), trφ(b), trφ(ab)) ∈ C3.

An object of particular interest are free subgroups of SL(2,C) whose
generators A,B have a parabolic commutator (that is, ABA−1B−1 has trace
2, or A and B have a common eigenvector). A computation shows that the
polynomial PW associated with the word W = aba−1b−1, as defined above,
is PW (x, y, z) = x2 + y2 + z2 − xyz − 2 = λ(x, y, z) + 2, where λ(x, y, z) =
x2+y2+z2−xyz−4. Hence, these free subgroups are given by representations
φ such that λ([T ]φ) = 0.

In Chap. 9, we studied endomorphisms σ of the free group; for any rep-
resentation φ whose image is a free group, such an endomorphism gives rise
to a new representation φ ◦ σ, and, by the above, one can find a polynomial
map Φσ : C3 → C3 such that [T ]φ◦σ = Φσ([Tφ]). We will show that λ ◦ Φσ
is always divisible by λ, and equal to λ if σ is an automorphism. Thus, we
recover a dynamical system on the surface λ(x, y, z) = 0 associated with the
automorphisms of the free group Γ2.

More is true: in Chap. 9, we saw that the inner automorphisms are exactly
those whose abelianization is the identity. We will prove here that they are
also exactly the automorphisms σ such that Φσ = Id.

It is of course tempting to try to generalize, by increasing the number of
letters, or the dimension. Indeed, when dealing with more than two matrices,
the situation is more complex. This time, one gets for Φ a polynomial map
from a certain affine algebraic variety into itself. We will show some results in
this direction, but everything here becomes more difficult, as we saw already
in Chap. 9.

The case of representations φ with value in SL(2,R) such that λ([T ]φ) = 0
is of particular geometric interest. Indeed, consider a once-punctured torus
with an hyperbolic metric; such a torus is obtained as a quotient of the
hyperbolic plane under the action of a free subgroup of SL(2,R) of rank
2 whose generators have a parabolic commutator, and it is classical that
the conjugacy classes of such groups, with given generators, parametrize the
Teichmüller space of the once-punctured torus. In fact, the elements [T ]φ
offer an explicitation of this parametrization, as will be proved below.
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One is also interested in the modular space: one would like to forget the
particular set of generators of the group. A change of generators is nothing
but an automorphism σ of the free group, and this is done, at the level of
the parametrization, by the polynomial map Φσ. Hence the modular space is
the quotient of the surface λ(x, y, z) = 0 by the action of the automorphism
group, via Φσ. Since the action of the inner automorphism group is trivial,
one obtains an action of the outer automorphism group, which is isomorphic
to SL(2Z).

We recover, in a completely different way, something very similar to the
modular surface discussed at the end of Chap. 6. This is just the beginning
of a long story: it may be proved that the modular surface of the compact
torus and of the once-punctured torus are isomorphic in a canonical way; the
once-punctured torus (whose fundamental group is Γ2) can be seen as a non-
commutative version of the compact torus (whose fundamental group is Z2);
the group of automorphisms of the free group in the first case plays the role
of SL(2,Z) in the second, and the linear representations we consider enter
naturally by considering geometric structures, instead of considering lattices
as we did in Chap. 6. It turns out that continued fractions and Sturmian
sequences also enter naturally in the hyperbolic version of the theory (for
example, by way of the parametrization of geodesics without self-intersection
on the hyperbolic once-punctured torus).

The trace maps are also useful in studying certain physical problems,
namely the heat or electric conduction in one-dimensional quasicrystals, mod-
eled as chains of atoms disposed according to a substitutive sequence.

These trace maps have been widely used and studied from the point of
view of iteration. But applications as well as the dynamical properties of trace
maps are not within the scope of this chapter, which only aims at defining
these dynamical systems.

Part of the material of this chapter comes from [331]. In the same volume,
which is the proceedings of a school on quasicrystals and deterministic disor-
der, one can find, besides mathematical developments, many courses showing
the importance of finite automata and substitutive sequences for modeling
and describing certain situations in condensed matter physics.

The main additions to the lecture given at Les Houches School in Con-
densed Matter Physics [331] are the following: the proof that Qσ = 1 char-
acterizes automorphisms, and the trace maps for 3× 3-matrices.

10.1 Polynomial identities in the algebra of
2× 2-matrices

10.1.1 Some identities for 2× 2-matrices

In this section upper case letters will stand for 2 × 2-matrices the entries
of which are complex numbers. The basic identity is given by the Cayley-
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Hamilton theorem:
A2 − (tr A)A + I det A = 0, (10.1)

where I is the identity matrix of order 2, and tr A stands for the trace of A.
As a consequence, one has

An = pn(tr A,det A)A− pn−1(tr A,det A) (det A) I,

where pn’s are polynomials in two variables, independent of A, with integer
coefficients. If A is invertible, such a formula is also valid for negative n.
The polynomials pn’s are closely related to the Chebyschev polynomials of
the second kind. Indeed, if variables are denoted by x and u, we have the
following recursion formula: pn+1 = xpn − upn−1, from which it results that
pn(2 cosϕ, 1) = sinnϕ/ sinϕ.

One has det A = λµ =
[
(λ+ µ)2 − (λ2 + µ2)

]
/2, if λ and µ are the

eigenvalues of A. Therefore the Cayley-Hamilton relation can be rewritten
as

A2 −A tr A +
1
2
[
(tr A)2 − tr A2] I = 0 .

This form allows bilinearization: writing this formula for A, B, and A+B,
one gets

AB + BA = tr AB− (tr A)(tr B) + A tr B + B tr A (10.2)

(we dropped the identity matrix I as, from now on, we identify scalars and
scalar matrices). As this identity is a polynomial identity with integral coef-
ficients linking the entries of matrices A and B, it is valid for matrices with
entries in any commutative ring.

By using (10.2), one gets A(AB+BA) = (tr AB−trA tr B) A+A2 tr B+
AB tr A. Then ABA = (tr AB− trA tr B) A + A2 tr B + AB tr A−A2B =
A tr AB + (A2 −A tr A) tr B− (A2 −A tr A)B. Finally, we get the formula

ABA = A tr AB + B det A− det A tr B (10.3)

which will be useful later.

For the sake of simplicity, we shall mostly deal with complex matrices
having determinant 1, i.e., elements of SL(2,C)).

Proposition 10.1.1. If m1, n1,m2, n2, · · · ,mk, nk is a sequence of integers,
there exist four polynomials p, q, r, and s in three variables with integer
coefficients such that, for any pair of matrices A and B in SL(2,C), one has

Am1Bn1Am2Bn2 · · ·AmkBnk = p(tr A, tr B, tr AB) +
q(tr A, tr B, tr AB) A +
r(tr A, tr B, tr AB) B +
s(tr A, tr B, tr AB) AB.
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Proof. By using repeatedly the Cayley-Hamilton theorem for A and B,
one is left with a linear combination with polynomial coefficients of I, A,
B, AB, BA, and of products of the form ABA · · · or BAB · · · . Then by
using the Cayley-Hamilton theorem for AB and BA, one is left with a linear
combination of I, A, B, AB, BA, ABA, and BAB. We conclude by using
(10.2) and (10.3).

Corollary 10.1.2. Given m’s and n’s as in Proposition 10.1.1, there exists
a unique polynomial P in three variables with integer coefficients such that,
for any pair (A,B) of unimodular 2× 2-matrices, one has

tr Am1Bn1 · · ·AmkBmk = P (tr A, tr B, tr AB) .

Proof. The existence results from the above proposition. The uniqueness
follows from the fact that (tr A, tr B, tr AB) can assume any value (x, y, z).
To see this, just take

A =
(
x 1
−1 0

)
and B =

(
0 t

z + t y

)

with t(z + t) + 1 = 0.

Remark. Had we not restricted the determinants of A and B to be 1, the
trace of the product above would have been expressed as a polynomial in the
five variables tr A, tr B, tr AB, det A, and det B.

Examples. Let A and B be two unimodular 2 × 2-matrices, x = tr A,
y = tr B, z = tr AB.

1.

(AB−BA)2 = (AB)2 + (BA)2 −AB2A−BA2B

= z(AB + BA)− 2− yABA− xBAB + A2 + B2

= z(z − xy + yA + xB)− 2− y(zA + B− y)
− x(zB + A− x) + xA + yB− 2

= x2 + y2 + z2 − xyz − 4.

This result is not surprising because tr(AB−BA) = 0. The polynomial

λ(x, y, z) = x2 + y2 + z2 − xyz − 4 (10.4)

will play an important role in the sequel. The above formula says that
the determinant of AB − BA is −λ(x, y, z). This is an easy exercise
in linear algebra to show that det(AB − BA) = 0 if and only if the
matrices A and B have a common eigendirection. Indeed, let e be a
non-zero element in ker(AB−BA). If e and Ae are independent, then
(AB−BA)Ae = AABe−BAAe = x(AB−BA)e = 0, which means
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that AB = BA (recall that we are here in dimension 2). If Ae = ρe,
then ρBe = ABe, which means that, if A �= ρI, there exists ρ′ such that
Be = ρ′e.

Thus A and B have a common eigendirection if and only if λ(x, y, z) = 0.
2.

ABA−1B−1 = AB(x−A)(y −B)
= (AB)2 + xyAB− yABA− xAB2

= (AB)2 + xA− yABA

= zAB− 1 + (x− yz)A− y(B− y)
= zAB + (x− yz)A− yB + y2 − 1.

Therefore tr ABA−1B−1 = λ(x, y, z) + 2.

We now turn our attention to formulae involving more than two elements
of SL(2,C). As a consequence of (10.2), we have the following proposition.

Proposition 10.1.3. If {Aj}1≤j≤n are elements of SL(2,C), then

1. any product constructed from these matrices or their inverses, can be
written as a linear combination of the 2n matrices Ai1Ai2 · · ·Aik (0 ≤
k ≤ n, i1 < i2 < · · · < ik) 1 the coefficients of which are polynomials in
the 2n − 1 variables tr Ai1Ai2 · · ·Aik (1 ≤ k ≤ n, i1 < i2 < · · · < ik),

2. the trace of such a product can be expressed as a polynomial with integer
coefficients in the 2n − 1 traces defined above.

We now turn to formulae which involve three matrices A1, A2, and A3
in SL(2,C). Let x1, x2, x3, y1, y2, and y3 denote the traces of A1, A2, A3,
A2A3, A3A1, and A1A2.

Define the following polynomials:

p(X,Y ) = x1y1 + x2y2 + x3y3 − x1x2x3 (10.5)

q(X,Y ) = x2
1 + x2

2 + x2
3 + y2

1 + y2
2 + y2

3

− x1x2y3 − x2x3y1 − x3x1y2 + y1y2y3 − 4 (10.6)

where X stands for the collection of x’s and similarly for Y .

Proposition 10.1.4 (Fricke lemma). One has

1. tr(A1A2A3) + tr(A1A3A2) = p(X,Y )
2. tr(A1A2A3) tr(A1A3A2) = q(X,Y ).

1 Of course, for k = 0, this product should be interpreted as the identity matrix.
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Proof. To prove assertion 1, write A1A2A3 + A1A3A2 = A1(A2A3 +
A3A2) and use (10.2).

To prove assertion 2, write [A1 (A2A3) A1] A3A2 = A1A2 (A3A1A3) A2
and use (10.3) twice. We obtain

A1A3A2 tr(A1A2A3) + A2A2
3A2 − y1A3A2 =

y2A1A2A3A2 + (A1A2)2 − x1A1A2
2.

By reducing further, we get

A1A3A2 tr(A1A2A3) = −2 + x2
3 + y2

1 − y1x2x3 + (x1 − y2x3)A1 + x2A2

−(x3 − y1x2)A3 + (y1y2 + y3 − x1x2)A1A2 + y2A1A3 − y1A2A3 ,

from which assertion 2 follows by taking the trace.

Corollary 10.1.5. tr(A1A2A3) and tr(A1A3A2) are the roots of the equa-
tion

z2 − p(X,Y )z + q(X,Y ) = 0.

This leads to define a polynomial in seven variables

Λ(X,Y, z) = z2 − p(X,Y )z + q(X,Y ) (10.7)

This corollary means that variables x’s, y’s, and z = tr(A1A2A3) are not
independent. Indeed the set of polynomials P , in seven variables with integer
coefficients such that, for any triple {Aj}1≤j≤3 of elements of SL(2,C), one
has

P (tr A1, tr A2, tr A3, tr A2A3, tr A3A1, tr A1A2, tr A1A2A3) = 0,

is an ideal containing Λ. It can be shown that this ideal is generated by
Λ. Therefore, the polynomial the existence of which is asserted in Proposi-
tion 10.1.3-2 is not unique when n > 2. In the case n = 3 it is defined up to
a multiple of Λ.

Proposition 10.1.6. Let z stand for tr A1A2A3. One has

2A1A2A3 = z − x1y1 − x3y3 + x1x2x3 + (y1 − x3x3)A1 − y2A2

+(y3 − x1x2)A3 + x3A1A2 + x2A1A3 + x1A2A3 .

Proof. In A1(A2A3), commute A1 and A2A3 by using (10.2). We get,
among other terms, −A2A3A1. By using (10.2) twice, on can make A1 to
jump over A3 and A2. So A1A2A3 can be written as −A1A2A3 plus a linear
combination of I, A1, A2, A3, and products of two such matrices.

Corollary 10.1.7. If n is larger than 3 and {Aj}1≤j≤n are elements of
SL(2,C), then
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1. any product constructed from these matrices or their inverses, can be
written as a linear combination of the matrices I, Ai (1 ≤ i ≤ n), and
Ai1Ai2 (1 ≤ i1 < i2 ≤ n), the coefficients of which are polynomials in
the variables tr Ai (1 ≤ i ≤ n), tr Ai1Ai2 (1 ≤ i1 < i2 ≤ n), and
tr Ai1Ai2Ai3 (1 ≤ i− 1 < i2 < i3 ≤ n).

2. the trace of such a product can be expressed as a polynomial with rational
coefficients in the n(n2 + 5)/6 traces defined above.

This last corollary is a significant improvement on Proposition 10.1.3 when
n is larger than 3.

As a matter of fact, one can go further reducing the number of traces
needed. It results from [278] that the trace of a product of the kind considered
above can be expressed as a rational fraction in the variables tr Ai (1 ≤ i ≤
n), tr AiAj (i < j, 1 ≤ i ≤ 3, 1 < j ≤ n), and tr A1A2A3 (see also [332]).

10.1.2 Free groups and monoids

Let A = {A1, A2, · · · , An} be a finite set called alphabet.

Free semi-group generated by A. Let A∗ be the set of words over the
alphabet A. Recall that the product W1W2 of two of its elements is just the
word obtained by putting the word W2 after the word W1. This operation
is called concatenation. It is associative and has a unit element, the empty
word, denoted by ε. The set A∗ endowed with this structure is called the free
semi-group or free monoid generated by A.

Free group generated by A. We perform the same construction as above
with the alphabet {A1, A2, · · · , An, A−1

1 , · · · , A−1
n

}
, but we introduce the

following simplification rules:

AjA
−1
j = A−1

j Aj = ε (for 1 ≤ j ≤ n).

We obtain a group2 which we will denote by ΓA and call the free group
generated by A.

In the case of a two-letter alphabet, Γ{a,b} will be simply denoted by Γ .

Abelianization map. The notations defined for the free monoid extend to
the free group: if W is an element of ΓA and a ∈ A, |W |a stands for the sums
of exponents of a in W (one can easily be convinced that |W |a only depends
on W and not of the particular word used to represent it). Moreover, |W |a
is independent of the order of the factors in W . Recall that the mapping
W �−→ l(W ) = (|W |A1 , · · · , |W |An) (where A1, A2, · · · , An are the elements
of A) is a group homomorphism of ΓA onto Zn known as the abelianization
map.
2 Strictly speaking, elements of this group are not words, but equivalence classes

of words.
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For instance,

|aba−1|a = 0 |aba−1|b = 1
|ab−1a−2|a = −1 |ab−1a−2|b = −1.

Representations in SL(2,C). A representation of A∗ or ΓA in SL(2,C)
is a mapping ϕ from A∗ or ΓA into SL(2,C) such that

ϕ(W1W2) = ϕ(W1)ϕ(W2)

for any W1 and W2 in A∗ or ΓA.
Such a representation is determined by the values Aj of ϕ(Aj) for j =

1, 2, · · · , n. Computing ϕ(W ) simply consists in replacing each letter in W
by the corresponding matrix.

10.1.3 Reformulation in terms of PI-algebras

The following proposition is mainly a reformulation of the corollary to Propo-
sition 10.1.1.

Proposition 10.1.8. For any W ∈ Γ , there exists a unique polynomial PW
with integer coefficients such that, for any representation ϕ of Γ in SL(2,C),
one has

trϕ(W ) = PW (trϕ(a), trϕ(b), trϕ(ab)) .

Moreover, if l(W1) = l(W2), the polynomial PW1 − PW2 is divisible by λ.

Proof. We only have to prove the second assertion. Consider a representa-
tion ϕ such that the matrices A = ϕ(a) and B = ϕ(b) share an eigenvector.
As these matrices are simultaneously trigonalizable, the trace of a product
of A’s and B’s does not depend on the order of factors. This means that
trϕ(W1) = trϕ(W2). In other terms, we have PW1(x, y, z) = PW2(x, y, z) as
soon as λ(x, y, z) = 0. The conclusion then follows from the irreducibility of
λ.

According to Horowitz [214], polynomials PW are called Fricke characters
of Γ .

The following notation will prove to be convenient: if ϕ is a representation
of Γ in SL(2,C), set

[T ]ϕ =
(

trϕ(a), trϕ(b), trϕ(ab)
)
. (10.8)

With this notation, the equation of definition of PW is trϕ(W ) = PW ([T ]ϕ).

The reader may wonder whether it was necessary to replace lower case
letters by upper case ones (i.e., to replace a letter by its image under a repre-
sentation) in the previous calculations. Indeed, this is not compulsory. If we
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analyze what we have done, we have just considered a and b to be generators
of an algebra on the ring Z[x, y, z], subject to the following relations:

a2 − xa+ 1 = 0, b2 − yb+ 1 = 0, and ab+ ba = z − xy + ya+ xb .

It is an algebra with polynomial identities (a PI algebra) which we call the
Procesi-Razmyslov algebra on a two-letter alphabet. Then Proposition 10.1.1
can be interpreted as giving a homomorphism of the group algebra3 of Γ to
the Procesi-Razmyslov algebra.

We denote again by tr the Z[x, y, z]-linear form on this algebra which
maps 1, a, b, and ab respectively on 2, x, y, and z. Then, for any W ∈ Γ ,
one has trW = PW . Moreover, it is easy to show that, if u and v are two
elements of this algebra, one has truv = tr vu.

10.2 Trace maps

10.2.1 Endomorphisms of free groups

A map σ from ΓA to ΓA is an endomorphism of ΓA if, for any W1 and W2
in ΓA, one has

σ(W1W2) = σ(W1)σ(W2) .

In the case where none of the words σ(Aj) contains negative powers, σ
is an endomorphism of A∗ and we recover the notion of substitution on the
alphabet A.

Obviously, an endomorphism σ is determined by σ(Aj) (j = 1, 2, · · · , n).
Hereafter we shall identify an endomorphism σ and the collection of words(
σ(A1), σ(A2), · · · , σ(An)

)
.

For instance4, σ = (ab, a) means that σ is the endomorphism, so called
the Fibonacci substitution, such that σ(a) = ab and σ(b) = a. In this case,
as an example, let us compute σ(aba−1):

σ(aba−1) = σ(a)σ(b)σ(a)−1

= aba(ab)−1 = abab−1a−1 .

The composition of endomorphisms is simply the composition of maps. This
is illustrated by the following examples:

• (ab, ba) ◦ (ab, a) = (abba, ab),
• (ab, a) ◦ (b, b−1a) = (b, b−1a) ◦ (ab, a) = (a, b) (this means that, as an

endomorphism of ΓA, the Fibonacci substitution is invertible).
3 This algebra is the set of finite formal linear combinations of elements of Γ

endowed with the bilinear multiplication which extends the product in Γ .
4 In the case of a two-letter alphabet, we prefer to denote by a and b the generators

instead of A1 and A2.
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Recall that the n×n-matrix Mσ whose entry of indices (i, j) is |σ(Aj)|Ai
is, by definition, the matrix of the endomorphism σ.

For instance, the Fibonacci substitution matrix is
(

1 1
1 0

)
, and the one of

the Morse substitution, (ab, ba), is
(

1 1
1 1

)
.

One has, for any σ and W ,

l(σ(W )) = Mσl(W )

and, for any pair of endomorphisms,

Mσ1◦σ2 = Mσ1 ×Mσ2 .

10.2.2 Trace maps (two-letter alphabet)

Recall that Γ stands for the free group on the two generators a and b.

Definition of trace maps. Let σ be an endomorphism of Γ . We define the
trace map associated with σ to be

Φσ =
(
Pσ(a), Pσ(b), Pσ(ab)

)
. (10.9)

It can be considered as well as a map from C3 to C3.

Let us compute the trace map for the Morse substitution σ = (ab, ba). We
operate in the Procesi-Razmyslov algebra. We wish to compute (tr ab, tr ba,
tr ab2a). We have tr ab = tr ba = z and ab2a = a(yb− 1)a = y(za+ b− y)−
(xa−1), so tr ab2a = xyz−y2−x2+2. At last, Φσ =

(
z, z, xyz − x2 − y2 + 2

)
.

Here are a few examples of trace maps.

σ Φσ
inner automorphism (x, y, z)

(a−1, b−1) (x, y, z)
(b, a) (y, x, z)

(ab, b−1) (z, y, x)
(b, a−1) (y, x, xy − z)
(ab, a) (z, x, xz − y)

(b, b−1a) (y, xy − z, x)
(ab, ba) (z, z, xyz − x2 − y2 + 2)
(aba, b) (xz − y, y, z2 − 2)

(a2b, ba) (xz − y, z, x2yz − x3 − xy2 − yz + 3x)
(aab, bab) (xz − y, yz − x, xyz2 − (x2 + y2 − 1)z)

First properties of trace maps.

Proposition 10.2.1. For any endomorphisms σ and τ of Γ , we have Φσ◦τ =
Φτ ◦ Φσ.
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Proof. We have the following characterization of Φσ: for any representa-
tion ϕ,

[T ](ϕ ◦ σ) = Φσ([T ]ϕ).

The proposition then results from

Φσ◦τ ([T ]ϕ) = [T ](ϕ ◦ σ ◦ τ) = Φτ ([T ](ϕ ◦ σ)) = Φτ ◦ Φσ([T ]ϕ) .

Corollary 10.2.2. For any endomorphism σ of Γ , and for any W ∈ Γ , one
has

Pσ(W ) = PW ◦ Φσ.

Proof. Let τ be the endomorphism (W, b). Then Pσ(W ) is the first com-
ponent of Φσ◦τ , i.e., the first component of Φτ composed with Φσ.

As a consequence, if σ has a fixed point W , the corresponding trace map
Φσ leaves the surfaces of PW (x, y, z) = constant globally invariant.

If σ is invertible, then Φσ ◦ Φσ−1 = id. Taking the Jacobian, we get

det (Φ′σ ◦ Φσ−1) det (Φ′σ−1) = 1 .

As these determinants are polynomials with integer coefficients, we must have
detΦ′σ ≡ 1 or detΦ′σ ≡ −1.

As an example, consider the Morse substitution for which we have

Φ′σ =


 0 0 1

0 0 1
yz − 2x xz − 2y xy


 .

The corresponding determinant is 0, so the Morse substitution is not invert-
ible.

Let us consider another example: σ = (aba, b). Then

Φ′σ =


 z −1 x

0 1 0
0 0 2z


 .

The determinant equals 2z2, therefore σ is not invertible.

Proposition 10.2.3. For any endomorphism σ of Γ , there exists a polyno-
mial Qσ with integer coefficients such that

λ ◦ Φσ = λ ·Qσ.
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Proof. Let x, y, and z be such that λ(x, y, z) = 0 and z �= 0. Choose
unimodular matrices A and B such that tr A = x, tr B = y, and tr AB =
z, and consider the representation ϕ defined by ϕ(a) = A and ϕ(b) = B.
As A and B share an eigenvector, so do ϕ(σ(a)) and ϕ(σ(b)). So we have
λ(T(ϕ ◦ σ)) = 0. Therefore λ(x, y, z) = 0 implies λ (Φσ(x, y, z)) = 0. Since λ
is irreducible, it divides λ ◦ Φσ.

As a consequence, any Φσ leaves globally invariant the surface Ω the
equation of which is λ(x, y, z) = 0. Moreover, the restriction of Φσ to Ω only
depends on Mσ.

Lemma 10.2.4. For any σ, we have Qσ(0, 0, 0) = 0 or 1.

Proof. This is checked by testing on matrices
(

0 1
−1 0

)
and
(

0 i
i 0

)
.

Proposition 10.2.5. If σ and τ are endomorphisms, we have

Qσ◦τ = Qσ ·Qτ ◦ Φσ .

Proof. We have

λ ·Qσ◦τ = λ ◦ Φσ◦τ = (λ ◦ Φτ ) ◦ Φσ = λ ◦ Φσ ·Qτ ◦ Φσ = λ ·Qσ ·Qτ ◦ Φσ .

Corollary 10.2.6. If σ is invertible, then Qσ ≡ 1 and Φσ leaves globally
invariant each surface λ(x, y, z) = constant.

Characterization of automorphisms of Γ in terms of Qσ. In this
section, if W ∈ Γ , we shall also denote the polynomial PW by trW . Let us
set tr a = x, tr b = y, and tr ab = z. As we have seen in Sec. 10.1.1, we have
tr an = un(x)a−un−1(x) for n ∈ Z, where the polynomials un satisfy u0 = 0,
u1(x) = 1, and un+1(x) + un−1(x) = xun(x).

Two elements W and W ′ of Γ are conjugate if there exists V ∈ Γ such
that W ′ = VWV −1. In this case, we have trW = trW ′.

Any W ∈ Γ is conjugate to ε, am, bn, or to am1bn1am2bn2 · · · amkbmk with∏k
j=1mjnj �= 0 (such a form will be called a cyclic reduction of W ). In the

latter case, we shall say that k is the width of W , otherwise the width of W
is 0.

Lemma 10.2.7. If W ∈ Γ , the degree, d◦z PW , of PW with respect to the
variable z equals the width of W .
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Proof. It goes by induction on the width k of W . This is true for k = 0.
Suppose that k ≥ 1 and the lemma is true for any word of width less than

k. Consider W = am1bn1am2bn2 · · · amkbmk , and write W = am1bn1W ′. One
has W = am1bn1am1a−m1W ′. Equality (10.3) shows that

W =
[
am1 tr am1bn1 − b−n1

]
a−m1W ′

= W ′ tr am1bn1 − b−n1a−m1W ′.

But, the second term of the last equality has a width less than k. One has
am1bn1 =

(
um1(x)a − um1−1(x)

)(
un1(y)b − un1−1(y)

)
, from which it results

that d◦z tr am1bn1 = 1. Therefore, d◦z trW = d◦z trW ′ + 1. This proves the
lemma.

Lemma 10.2.8. If W ∈ Γ is such that trW = αz, with α ∈ Z, then α = 1
and the cyclic reduction of W is either ab or a−1b−1.

Proof. If we had α = 0, the cyclic reduction of W would be ε, am, or bn.
But, the trace is nonzero in any of these cases. Therefore α �= 0.

So, by the preceding lemma, a cyclic reduction of W is of the form ambn

with mn �= 0. Therefore we have

αz = um(x)un(y) z− y um−1(x)un(y)− xum(x)un−1(y) + 2um−1(x)un−1(y).

By looking at the coefficients of z in both sides, we get |m| = |n| = 1. It is
then easy to show that we must have mn = 1.

Lemma 10.2.9. For W ∈ Γ , if trW = αx, then α = 1 and W is conjugate
either to a or to a−1.

Proof. Consider the following automorphism of Γ : σ = (ab, b−1). As one
has Φσ(x, y, z) = (z, y, x), it results from the corollary to Proposition 10.2.1
that trσ(W ) = αz. Then, by virtue of the preceding lemma, α = 1 and σ(W )
writes V (ab)±1V −1. Then, W = σ−1(V )a±1σ−1(V −1).

Of course, a similar result holds if trW = αy.

Proposition 10.2.10. Let σ be an endomorphism of Γ . Then Φσ = Id if
and only if σ is either an inner automorphism of Γ or an inner automorphism
composed with the involution (a−1, b−1).

Proof. Suppose Φσ = Id. It results from the preceding lemma that σ(a) =
UaεU−1 and σ(b) = V bηV −1, with |ε| = |η| = 1. By Proposition 10.1.8, λ
divides trσ(ab)−tr aεbη. This implies ε = η. By composing, if necessary, with
(a−1, b−1), we may suppose that ε = η = 1.

We assume that the words UaU−1 and V bV −1 are reduced (i.e., there
are no cancellations). If U = V = ε, there is nothing to be proved. Sup-
pose that |U | > 1 and write U = Wbn, with either W = ε or W end-
ing with an a. Then, σ(ab) = Wbnab−nW−1V bV −1; so, z = trσ(ab) =
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tr(ab−nW−1V bV −1Wbn). This means that, once reduced, W−1V does not
contain a. Therefore W−1V = bk. This shows that σ is an inner automor-
phism.

Now we turn to the study of polynomial maps from C3 to C3 which leave
λ invariant. Let us set

G =
{
ψ ∈ C[x, y, z]3

∣∣ λ ◦ ψ = λ
}
.

Of course G contains
{
Φσ
∣∣ σ ∈ AutΓ

}
(by the corollary to Proposi-

tion 10.2.5).
It will be convenient to name some elements of AutΓ :

α = (b, a), β = (ab, b−1), γ = (a, b−1).

The corresponding trace maps are (y, x, z), (z, y, x), and (x, y, xy − z).
We also consider the following elements of G: ρ(x, y, z) = (−x,−y, z) and

θ(x, y, z) = (−x, y,−z).
We shall use the following notations: d◦ stands for the total degree of a

polynomial in three variables, and, if ψ = (ψ1, ψ2, ψ3) ∈ C[x, y, z]3, degψ =∑3
j=1 d◦ ψj .

Lemma 10.2.11. If ψ = (ψ1, ψ2, ψ3) ∈ G, then, for j = 1, 2, 3, we have
d◦ ψj ≥ 1

Proof. If, for instance, we had ψ3 = c ∈ C, then we would have ψ2
1 +ψ2

2 −
cψ1ψ2 = x2 + y2 + z2 − xyz − c2, which is impossible, for the left-hand side
is reducible whereas the right-hand side is not.

Lemma 10.2.12. The set L =
{
ψ ∈ G

∣∣ degψ = 3
}

is the group generated
by Φα, Φβ, and ρ.

Proof. Let us call the variables x1, x2, and x3 instead of x, y, and z. We
have ψj = $j + hj , where $j is linear and hj ∈ C. We have

3∑
j=1

($j + hj)2 −
3∏
j=1

($j + hj) = x2
1 + x2

2 + x2
3 − x1x2x3.

Looking at terms of degree 3 gives $j = kjxτ(j), where τ is a permutation,
kj ∈ C, and k1k2k3 = 1. Looking at quadratic terms gives h1 = h2 = h3 = 0
and k2

1 = k2
2 = k2

3 = 1. The result follows easily.

Lemma 10.2.13. If ψ ∈ G is such that degψ > 3, there exists σ in 〈α, β, γ〉,
the group generated by α, β, and γ, such that degΦσ ◦ ψ < degψ.
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Proof. By replacing ψ by Φσ ◦ ψ, where σ is a suitable element of 〈α, β〉,
we may suppose d◦ ψ3 ≥ d◦ ψ2 ≥ d◦ ψ1. Moreover, since degψ > 3, we have
d◦ ψ3 ≥ 2.

Since ψ ∈ G, we have

ψ3(ψ3 − ψ1ψ2) + ψ2
2 + ψ2

1 = x2 + y2 + z2 − xyz. (10.10)

If we had d◦ ψ3 �= d◦ ψ1ψ2, the degree of the left-hand side of (10.10)
would be

max(2 d◦ ψ3,d◦ ψ1 + d◦ ψ2 + d◦ ψ3) ≥ 4,

which is impossible.
We have d◦ ψ3 = d◦ ψ1ψ2 > d◦ ψ2. If we had d◦(ψ3−ψ1ψ2) ≥ d◦ ψ3, then

we would have 2 d◦ ψ3 = 3, which is absurd. Therefore d◦(ψ3−ψ1ψ2) < d◦ ψ3,
and degΦγ ◦ ψ < degψ.

Proposition 10.2.14. G is the group generated by Φα, Φβ, Φγ , and ρ.

Proof. Apply Lemma 10.2.13 repeatedly and conclude by using Lemma
10.2.12.

Proposition 10.2.15. For an endomorphism σ of Γ , Qσ = 1 if and only if
σ is an automorphism.

Proof. Qσ = 1 is equivalent to Φσ ∈ G. Due to Proposition 10.2.14 and to
commutation relations

ΦαρΦα = ρ, ΦβθΦβ = θ, ΦαθΦα = ΦβρΦβ = ρθ,

there exists τ ∈ 〈α, β, γ〉 such that Φτ ◦ Φσ ∈ 〈ρ, θ〉. Then Lemma 10.2.8
and 10.2.9 and Proposition 10.2.10 show that σ ◦ τ is an automorphism.

Corollary 10.2.16. AutF = 〈α, β, γ〉.

Proof. If σ ∈ AutF , then Φσ ∈ G. So, there exists τ ∈ 〈α, β, γ〉 such
that τσ is an inner automorphism or an inner automorphism composed with
(a−1, b−1). But, as (a−1, b−1) = (αγ)2, the corollary will be proved once we
have shown that an inner automorphism is in 〈α, β, γ〉. It is easily checked
that, if iW stands for the inner automorphism V �→ WVW−1, we have ia =
αγβαγαγβαγ and ib = αiaα.

For further properties of trace maps, see [327].

10.2.3 Trace maps (n-letter alphabet)

Three-letter alphabet. If ϕ is a representation of ΓA in SL(2,C), we define
[T ]ϕ to be the following collection of traces:
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(
trϕ(A1), trϕ(A2), trϕ(A3), trϕ(A2A3), trϕ(A3A1),

trϕ(A1A2), trϕ(A1A2A3)
)

and recall the definitions of several polynomials

Λ(X,Y, z) = z2 − p(X,Y )z + q(X,Y )

where
p(X,Y ) = x1y1 + x2y2 + x3y3 − x1x2x3

and

q(X,Y ) = x2
1 +x2

2 +x2
3 +y2

1 +y2
2 +y2

3−x1x2y3−x2x3y1−x3x1y2 +y1y2y3−4

(as previously, X stands for the collection of x’s, and similarly for Y ).

Let V be the hyper-surface in C7 the equation of which is Λ(X,Y, z) = 0.
It can be seen that any point of V is of the form [T ]ϕ (see [327, 332]).

Proposition 10.1.3 (or the corollary to Proposition 10.1.6), shows that, for
any W ∈ ΓA, there exits a polynomial PW such that trϕ(W ) = PW ([T ]ϕ)
for any representation ϕ. As we have already observed, this polynomial is
no longer unique. It is indeed defined up to the addition of a multiple of
polynomial Λ (i.e., modulo the ideal I generated by Λ).

Now, if we have an endomorphism σ of ΓA, we choose a collection of
polynomials

Φσ =
(
Pσ(A1), Pσ(A2), Pσ(A3), Pσ(A2A3), Pσ(A3A1), Pσ(A1A2), Pσ(A1A2A3)

)
.

This Φσ defines a map from C7 to V, the restriction of which to V does not
depend on the different choices. Indeed, this is this map from V to V which
is the trace map and which we call Φσ. As previously, [T ](ϕ ◦ σ) = Φσ([T ]ϕ)
for any ϕ, and Φσ◦τ = Φτ ◦ Φσ.

In order to show that, as previously, there exists an algebraic sub-manifold
Ω of V which is globally invariant under any Φσ, we need the following lemma
of which we omit the proof.

Lemma 10.2.17. Three matrices A1, A2, and A3 in SL(2,C) have a com-
mon eigendirection if and only if Λ(X,Y, z) = λ(x1, x2, y3) = λ(x2, x3, y1) =
λ(x3, x1, y2) = 0 and p(X,Y )2 − 4q(X,Y ) = 0, where

z = tr A1A2A3, X = (x1, x2, x3) = (tr A1, tr A2, tr A3),
and Y = (y1, y2, y3) = (tr A2A3, tr A3A1, tr A1A2).

Let Ω be the manifold associated with the ideal J generated by the
polynomials Λ, λ(x1, x2, y3), λ(x2, x3, y1), λ(x3, x1, y2), and p2 − 4q.

Then an argument similar to the one used in the proof of Proposi-
tion 10.2.3 shows that Ω is invariant under any Φσ.
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n-letter alphabet. When n is larger than 3, some complications occur and
the situation is less easy to describe. In view of the corollary to Proposi-
tion 10.1.6, we need n(n2 + 5)/6 variables. The ideal I of relations between
these variables is no longer principal. The trace maps take the variety V of
I to itself. They still leave globally invariant a sub-variety Ω of V defined by
an ideal J the definition of which comes from expressing that n elements of
SL(2,C) have a common eigendirection.

10.3 The case of 3× 3-matrices

If M is a 3× 3-matrix, the Cayley-Hamilton identity can be written as

N3 − (tr N)N2 +
1
2
(
(tr N)2 − tr N2)N− 1

6
(tr N)3

+
1
2

(tr N)(tr N2)− 1
3

tr N3 = 0. (10.11)

So, by trilinearization, ones get the formula∑
η

Nη(1)Nη(2)Nη(3) − (tr Nη(1))Nη(2)Nη(3)

+
1
2

(tr Nη(1))(tr Nη(2))Nη(3)

− 1
2

(tr Nη(1)Nη(2))Nη(3) −
1
6

tr Nη(1)Nη(2)Nη(3)

+
1
2

(tr Nη(1)) tr Nη(2)Nη(3)

− 1
3

(tr Nη(1))(tr Nη(2))(tr Nη(3)) = 0,

where the summation runs over the permutations η of {1, 2, 3} and where
N1, N2, and N3 are arbitrary 3 × 3-matrices. If in this formula one takes
N1 = N2 = M and N3 = N, one gets

MNM + M2N + NM2 = (tr N)M2 + (tr M)(NM + MN)
− (tr M tr N− tr MN)M

− 1
2
(
(tr M)2 − tr M2)(N− tr N)

+ tr M2N− tr M tr MN. (10.12)

Let A = {a, b} be a two-letter alphabet. Consider the subset S0 = {ε} of
the free monoid A∗, of which the unit ε is the only element. We are going to
construct by induction a sequence Sn of subsets of An. Suppose that we know
Sn. Then, Sn+1 will be the set Sn a ∪ Sn b from which the elements ending
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exactly by a3, aba, bab, b3, ab2a, ba2b, a2ba2, or b2ab2 have been removed (by
“ending exactly”, we mean, for instance, that a2ba is not removed). We get

S1 = {a, b}
S2 = {a2, ab, ba, b2}
S3 = {ba2, b2a, a2b, ab2}
S4 = {b2a2, a2ba, b2ab, a2b2} (10.13)
S5 = {a2b2a, b2a2b}
S6 = {b2a2ba, a2b2ab}
S7 = ∅

Define

S =
6⋃

n=0

Sn. (10.14)

The property of the Sn’s which matters to us is the following. Suppose we
are given a representation ϕ from A∗ in M3(C), the ring of 3 × 3-matrices
with complex entries. Then, for any W ∈ Sn, the matrices ϕ(Wa) and ϕ(Wb)
can be expressed as a linear combination of the matrices {ϕ(V )}V ∈⋃n+1

i=0 Si ,
of which the coefficients are polynomials, which can be chosen independent
of ϕ, in the variables trϕ(a3), trϕ(b3), and {trϕ(V )}V ∈⋃n+1

i=0 Si . The verifica-
tion of this property is left to the reader. It involves repeated use of (10.11)
and (10.12). Also, it is important to notice that the traces of ϕ(V ), for V ∈ S6,
are not involved.

This can be summarized in the following proposition.

Proposition 10.3.1. Given a word W in {a, b}∗, there exists polynomials
{pV }V ∈S in ten variables with rational coefficients such that, for any repre-
sentation ϕ of {a, b}∗ in M3(C), one has

ϕ(W ) =
∑
V ∈S

pV (Tϕ)ϕ(V ),

where

Tϕ =
(

trϕ(a), trϕ(a2), trϕ(a3),

trϕ(b), trϕ(b2), trϕ(b3), trϕ(ab), trϕ(ab2), trϕ(a2b), trϕ(a2b2)
)
.

Lemma 10.3.2. There exists a polynomial p in ten variables with rational
coefficients such that, for any representation ϕ of A∗ in M3(C), one has

trϕ(b2a2ba) + trϕ(a2b2ab) = p(Tϕ).
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Proof. Multiply on the left identity (10.12) by N2M, then use (10.11)
and (10.12).

Lemma 10.3.3. There exists a polynomial q such that, for any representa-
tion of A∗ in M3(C), we have

trϕ(a2b2ab) trϕ(b2a2ba) = q(Tϕ).

Proof. By multiplying (10.12) on the right by L, one gets

tr MN tr ML = tr MNML + tr M2NL + tr M2NL− tr N tr M2L

− tr L tr M2N− (tr M)(tr MLN + tr MNL)
+ tr M tr N tr ML + tr M tr L tr MN

+
1
2

(
(tr M)2 − tr M2

)
(tr NL− tr N tr L).

By putting M = ϕ(ab), N = ϕ(a2b2), and L = ϕ(ba2b) in the preceding
identity, one gets

trϕ(b2a2ba)× trϕ(a2b2ab) =
p1(Tϕ) trϕ(b2a2ba) + p2(Tϕ) trϕ(a2b2ab) + p3(Tϕ), (10.15)

where p1, p2, and p3 are polynomials in ten variables.
Then, by replacing in (10.15) the matrices ϕ(a) and ϕ(b) by their trans-

pose, one gets

trϕ(b2a2ba)× trϕ(a2b2ab) =
p2(Tϕ) trϕ(b2a2ba) + p1(Tϕ) trϕ(a2b2ab) + p3(Tϕ). (10.16)

By adding (10.15) and (10.16) and taking Lemma 10.3.2 into account, one
gets

trϕ(b2a2ba)× trϕ(a2b2ab) =
1
2

(
p1(Tϕ) + p2(Tϕ)

)
+ p3(Tϕ).

Let us consider the following polynomial in eleven variables with rational
coefficients

Λ = τ2 − pτ + q,

where p and q are defined in Lemma 10.3.2 and 10.3.3. It results from these
lemmas that, for any homomorphism ϕ of Γ〈a,b〉 in M3(C), the roots of
Λ(Tϕ, τ) are tr a2b2ab and tr b2a2ba.

Proposition 10.3.4. The polynomial Λ is irreducible on C.
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Proof. Consider the homomorphism ϕ of Γ〈a,b〉 in M3(C) so defined

ϕ(a) =


 0 t 0

0 0 t−1

1 0 0


 and ϕ(b) =


0 1 0

0 0 1
1 0 0


 .

It is straightforward to check that Tϕ = (0, 0, 3, 0, 0, 3, 0, x, x, 0), p(Tϕ) =
x2 − 3, and q(Tϕ) = 2x3 − 6x2 + 9, where x = 1 + t + t−1. This gives
(p2 − 4q)(0, 0, 3, 0, 0, 3, 0, x, x, 0) = (x− 3)3(x+ 1).

If Λ were not irreducible, the polynomial p2 − 4q would be a square and
so would be the polynomial (p2−4q)(0, 0, 3, 0, 0, 3, 0, x, x, 0), which it is not.

Proposition 10.3.5. For any W ∈ Γ〈a,b〉 there exists a polynomial PW with
rational coefficients in eleven variables such that, for any homomorphism ϕ
from Γ〈a,b〉 to M3(C), one has

trϕ(W ) = PW (Tϕ, trϕ(a2b2ab)).

This polynomial is unique modulo the principal ideal generated by Λ.

Proof. The existence of PW results from Proposition 10.3.1 and Lemma
10.3.2. Its uniqueness modulo λ comes from the fact that the derivative of
the mapping ϕ �−→ (Tϕ, tr(ϕ(a2b2ab))) is of rank 10 at some ϕ, for instance
for ϕ such that

ϕ(a) =


1 1 0

0 1 2
0 0 1


 and ϕ(b) =


1 0 0

3 1 0
0 4 1


 .

As in the case of 2 × 2-matrices, one can define a trace map associated
with an endomorphism of Γ〈a,b〉: it is a polynomial map of the variety of 〈Λ〉
into itself.

10.4 Comments

Fricke formula and the corollary to Proposition 10.1.4 (Fricke lemma) appear
in [179], but were also stated by Vogt in 1889.

Proposition 10.1.3-1 has been stated by Fricke [179] and proved by
Horowitz [213]. Since then, it has been rediscovered several times: Allouche
and Peyrière [13] for n = 2, for general n by Kolář and Nori [252] (although
they gave a formula involving a number of traces much larger than 2n − 1 ),
and Peyrière et al. [327].

Traina [434, 433] gave an efficient algorithm for computing PW in the case
of a two-letter alphabet; also in this case Wen Z.-X. and Wen Z.-Y. [453] de-
termined the leading term of PW . Procesi [338] and Razmyslov [354], instead
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of considering relations between traces only, used more general polynomial
identities. This gives simple algorithms for computing polynomials PW with
an arbitrary alphabet. This is this method which is exposed here.

Proposition 10.1.6 and its corollary appear in Avishai, Berend and Glaub-
man [51].

The trace map appears in Horowitz [214]. It has also been rediscovered a
number of times: by Kohmoto et al. [318] in the case of Fibonacci, by Allouche
and Peyrière [13] and Peyrière [330] for n = 2, by Peyrière et al. [327] for
n > 2 .

Proposition 10.2.3 essentially appears in Horowitz [214]. It has also be
rediscovered. Kolář and Ali [251] conjectured it after having used a com-
puter algebra software. The proof given here appears in Peyrière [330]. For a
generalization, see [328]

Results in Sec. 10.2.2 can be found in Horowitz [214] and Peyrière et
al. [327]. For recent developments, see Wen &Wen [449, 448]: they prove that
Qσ(2, 2, z) ≡ 1 implies that σ is an automorphism; they show that, on a two-
letter alphabet, invertible substitutions (i.e., morphisms of the free monoid
which extend as automorphisms of the free group) are generated by three
substitutions.

The structure of the ideal I, for a four-letter alphabet, is studied by
Whittemore [457] and completely elucidated by Magnus [278] for an arbitrary
alphabet. It also results from Magnus [278] that, for a n-letter alphabet, one
can use 3n− 3 variables only in trace maps with the counterpart that Φσ is
a rational map instead of being a polynomial one. See also [332]

For a study of the quotient ring modulo I (the ring of Fricke characters)
see Magnus [278].

Polynomial identities for p × p-matrices are studied by Procesi [338],
Razmyslov [354], and Leron [262]. Wen Z.-X. [452, 453] gives some algorithms
for getting such identities. He also constructs a trace map for 3× 3-matrices
and a two-letter alphabet. This is his derivation which is given in this course.

For basic references on free groups, see [277, 313, 314, 315].



11. Piecewise linear transformations of the
unit interval and Cantor sets

We discussed in Chap. 7 the relationship between substitutive dynamical
systems and shifts of finite type, in terms of Markov expanding maps on
the interval. As an example, the Morse substitution and the expanding map

F (x) = 2x (mod 1) on [0, 1] have the same matrix
(

1 1
1 1

)
(see Sec. 7.1.2).

Substitutions and expanding maps have other similarities. For instance,
G. Rauzy gave a geometric realization of the Tribonacci substitution as an
expanding dynamical system on a compact subset of the Euclidean plane,
namely the Rauzy fractal (see Secs. 7.5 and 8.1.2). If β denotes the golden
ratio, the map F (x) = βx (mod 1) has the same symbolic dynamics on the

Rauzy fractal as the action of the matrix
(

1 1
1 0

)
.

The aim of this chapter is to study ergodicity of expanding maps from
a symbolic point of view, through the study of a few examples. Ergodic
properties of dynamical systems were obtained in the preceding chapters by
using the spectrum of the unitary operator U (let us recall that U is defined
on (X,T, µ) by U(f) = f ◦ T ; see Sec. 1.4). In this chapter, we will focus
on another operator, that is, the Perron-Frobenius operator, which has the
same spectrum on the unit circle as the unitary operator. Thus, the spectrum
of the Perron-Frobenius operator determines the ergodicity of the dynamical
system. We will give an algorithm to compute this spectrum concretely in a
few situations.

In [260], Lasota and Yorke focus their attention on expanding maps of
the interval: they state a relationship between the ergodicity of these dy-
namical systems and the spectrum of their Perron–Frobenius operator. In
Sec. 11.2.1 are summarized the definitions of the unitary operator and the
Perron–Frobenius operator, and the relationship between the spectrum of
these operators and the ergodicity of the dynamical systems. We do not claim
here to give an exhaustive presentation of these topics. We rather chose to
introduce these notions through the study of examples, in order to give an
idea of these classical methods.
1 This chapter has been written by M. Mori

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 343–361, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Hofbauer and Keller [204] stated a relationship between the singulari-
ties of the Ruelle’s zeta function and the spectrum of the Perron–Frobenius
operator. Baladi and Ruelle [53] and Mori [301] proved similar results. How-
ever, their methods are quite different. In Sec. 11.2.2, along [301], is defined
a Fredholm determinant, though the Perron–Frobenius operator is not com-
pact. This definition involves generating functions and renewal equations.
This Fredholm determinant allows us in Sec. 11.2.3 to determine explicitly
the spectrum of the Perron–Frobenius operator as well as the Ruelle’s zeta
function. We deduce ergodic properties of the dynamical system such as er-
godicity, mixing and rate of decay of correlations.

As an application, Sec. 11.4 is devoted to the computation of the Hausdorff
dimension of some Cantor sets naturally associated with piecewise linear
maps. For that purpose, we will define α–Fredholm matrices.

11.1 Definitions

Let F be a map from the unit interval [0, 1] into itself. Our main interest is
to study the asymptotic behavior of orbits x, F (x), F 2(x), · · · . Note that
Fn(x) denotes the n–th iteration and not the n–th power (F (x))n of F .

One–dimensional dynamical system. We focus on maps for which there
exists a probability measure µ on [0, 1] which satisfies the following conditions:

1. µ is absolutely continuous with respect to the Lebesgue measure, i.e.,
there exists a density function �(x), denoted by �(x) = dµ

dx (x), such that∫ 1
0 � dx = 1 and for every measurable set A, µ(A) =

∫
A
�(x) dx;

2. for any measurable set A, µ(A) = µ(F−1(A)) holds, that is, µ is an
invariant measure with respect to the map F .

From a physical view point, we are studying a dynamical system in an
equilibrium state: F is a time evolution, and µ is an equilibrium state. To
be more precise we should mention the σ–algebra which is generated by the
intervals. We shall omit it since it does not play an essential role in our
discussion.

Class of transformations. We call F a piecewise monotonic transforma-
tion if there exists a finite set A and a finite partition into intervals {〈a〉}a∈A
of [0, 1] such that on each subinterval 〈a〉 the map F is monotone (increasing
or decreasing).

We call a transformation F piecewise linear if the derivative F ′ is constant
on each interval of monotonicity 〈a〉.

We call a transformation F Markov if the following holds:

if F (〈a〉) ∩ 〈b〉o �= ∅, then F (〈a〉) ⊃ 〈b〉,

where Jo and J denote respectively the interior and the closure of a set J .
Namely, for any a ∈ A, F (〈a〉) is essentially a union of several 〈b〉 (b ∈ A).
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We call a map F expanding if

lim inf
n→∞

1
n

inf
x∈[0,1]

1
n

log |(Fn)′(x)| > 0.

This coefficient of expansivity will be denoted in all that follows ξ.

Symbolic Dynamics. Let A be a finite set and S denotes the shift map on
AN. As defined in Chap. 1, a triple (X,S, ν) is called a symbolic dynamical
system if X is a closed invariant subset of AN (i.e., TX = X) and ν an
invariant probability measure.

The one–dimensional dynamical system considered in the former sub-
section can be expressed in terms of symbolic dynamics. Namely, we code
in a natural way the orbits of the points of the unit interval with respect
to the partition into intervals of monotonicity. More precisely, let F de-
note a piecewise monotonic transformation. Let {〈a〉}a∈A be a partition of
[0, 1] into subintervals of monotonicity, that is, F is monotone on each 〈a〉,
∪a∈A〈a〉 = [0, 1] and 〈a〉 ∩ 〈b〉 = ∅ for a �= b. Let x ∈ [0, 1]. The expansion
wx = (wxn)n∈N of x is defined by: ∀n ∈ N+, Fn(x) ∈ 〈wxn+1〉.

We denote by X the closure of all the expansions of the points x: X :=
{wx|x ∈ [0, 1]}. Then the shift map S on X corresponds to F on [0, 1], that
is, for a sequence wx ∈ X which is the expansion of x, the expansion of F (x)
equals S(wx).

Admissible words. Let W = w1 · · ·wn be a finite word in A� and |W | = n
be the length of W . Let

〈W 〉 = ∩nk=1F
−k+1(〈wk〉) ⊂ [0, 1]

be defined as the interval coded by the word W , i.e., ∀x ∈ 〈W 〉, x ∈
〈w1〉, . . . , Fn−1(x) ∈ 〈wn〉. We say that a word W is admissible if 〈W 〉 �= ∅.
Structure matrix. For a Markov map F , the following A × A matrix M
plays an essential role, particularly when F is piecewise linear. Let for a, b ∈
A, Ma,b = 1 if F (〈a〉) ⊃ 〈b〉, Ma,b = 0 otherwise. We call this matrix the
structure matrix of F .

Functions of bounded variations. We denote by L1 and L∞ the set of
functions f such that

∫ 1
0 |f | dx < ∞ and supx∈[0,1] |f(x)| < ∞, respectively.

To study the ergodic properties of the dynamical systems we consider here,
the space of functions of bounded variation is one of the most important
notions. We will denote it by BV .

Definition 11.1.1. A function f : [0, 1] → [0, 1] is of bounded variation
if its total variation Var(f) := sup

∑n
k=1 |f(xk) − f(xk+1)|, is finite. The

supremum is taken over all finite subdivisions (xk)1≤k≤n of [0, 1].
A function f ∈ L1 is of bounded variation if v(f) = inf Var(g) is finite,

the infimum being taken over the class of those g such that f = g in L1.
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11.2 Ergodic properties of piecewise linear Markov
transformations

The aim of this section is to illustrate, through the study of the “simple”
example of a piecewise linear Markov transformation, how to deduce from
the spectral study of the Perron–Frobenius operator ergodic properties of
the dynamical systems arising from piecewise monotonic transformations.

Let

F (x) =

{
x/ηa 0 ≤ x < ηa
(x− ηa)/ηb ηa ≤ x ≤ 1,

where 1 − ηa = ηaηb, that is, limx↑1 F (x) = ηa. Let us take as alphabet
A = {a, b}, and corresponding intervals 〈a〉 = [0, ηa) and 〈b〉 = [ηa, 1].

We are interested first in ergodic properties such as the existence of an
invariant measure; second in statistical properties, for instance mixing. Re-
call that mixing deals with the convergence of

∫
f(x)g(Fn(x)) dx towards∫

f dx
∫
g dµ. For more details, see Chap. 5 or [445]. The rate of convergence

is called the decay of correlations.
Let us introduce some tools and notation, as the Perron–Frobenius oper-

ator, the generating functions or the Fredholm matrix.

11.2.1 The Perron–Frobenius operator

Definition 11.2.1. The operator defined on L1 by:

Pf(x) =
∑

y : F (y)=x

f(y)|F ′(y)|−1,

is called the Perron–Frobenius operator associated with F .

The name “Perron–Frobenius operator” is related to the fact that it has
similar properties to matrices with positive entries. For more details on this
operator, see for instance [94, 234, 335].

This operator corresponds to the change of variables F (x) → x in the
following integration:∫

f(x)g(F (x)) dx =
∫
Pf(x)g(x) dx f ∈ L1, g ∈ L∞.

However, restricting its domain to the set BV of bounded variation functions,
the eigenvalues of this operator allow one to determine ergodic properties of
the dynamical system [260]. There is no restriction here since eigenfunctions
of expanding maps of the interval are shown to be BV [260, 300]. This implies
that we can equivalently work here with L1 or with L2, as in the rest of this
book. Indeed, the following properties are satisfied by the Perron–Frobenius
operator
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1. P : L1 → L1 is positive,
2. the spectrum of P on the unit circle coincides with the spectrum of the

unitary operator defined by Uf = f ◦ F .

This implies the following:

1. The system admits 1 as an eigenvalue, and the eigenspace associated with
the eigenvalue 1 is contained in BV . Moreover, there exists a basis with
nonnegative functions � ∈ BV such that

∫
� dx = 1, and these � are the

density functions of invariant probability measures [260];
2. if 1 is a simple eigenvalue, then the dynamical system is ergodic;
3. if there exists no other eigenvalue except 1 on the unit circle, then the

dynamical system is strongly mixing [88], i.e., for f ∈ L1 and g ∈ L∞∫
f(x)g(Fn(x)) dx→

∫
f dx

∫
g dµ,

where µ denotes the invariant probability measure absolutely continuous
with respect to the Lebesgue measure. For more details on mixing, see
Chap. 5.

As an operator from L1 into itself, every |z| < 1 is an eigenvalue of P with
infinite multiplicity [240]. Thus the rate of convergence of

∫
f(x)g(Fn(x)) dx

to
∫
f dx
∫
g dµ has no meaning. However, restricting P to BV , every

|z| < e−ξ, (where ξ corresponds to the expansivity coefficient, i.e., ξ =
lim infn→∞ infx∈[0,1]

1
n log |(Fn)′(x)|) is an eigenvalue with infinite multiplic-

ity. Hence, the eigenvalues of P restricted to BV in the annulus e−ξ < |z| ≤ 1
play an essential role to determine ergodic properties such as ergodicity, mix-
ing, the rate of decay of convergence and so on.

Remark. Let 1J denote the indicator function of a set J . Note that

P1〈a〉(x) =
∑

y : F (y)=x

1〈a〉(y)|F ′(y)|−1 = ηa, P1〈b〉(x) =

{
ηb if x ∈ 〈a〉
0 otherwise.

11.2.2 Generating functions and Fredholm matrix

To study ergodic properties of a dynamical system, we need to determine
the eigenvalues of the Perron-Frobenius operator. Similarly as in the case of
matrices, the Fredholm determinant of a nuclear operator P is defined to be
det(I − zP ). It is an entire function, the zeros of which are the reciprocals of
the eigenvalues of P . Though the Perron-Frobenius operator is not nuclear,
the Fredholm determinant can be defined by constructing renewal equations.
However, in general, it is not an entire function and has for natural boundary
|z| = eξ.
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The generating functions of any g ∈ L∞, are the formal power series
defined by

sg(z) =

(
s
〈a〉
g (z)
s
〈b〉
g (z)

)
with



s〈a〉g (z) =

∞∑
n=0

zn
∫

1〈a〉(x)g(Fn(x)) dx

s〈b〉g (z) =
∞∑
n=0

zn
∫

1〈b〉(x)g(Fn(x)) dx.

Since

s〈a〉g (z) =
∞∑
n=0

zn
∫ [

Pn1〈a〉
]

(x) g(x) dx,

we get as a formal expression

s〈a〉g (z) =
∫ [

(I − zP )−11〈a〉
]

(x) g(x) dx.

This asserts, very roughly, that the reciprocals of eigenvalues of the Perron–
Frobenius operator become singular points of s〈a〉g (z).

The aim of this section is thus to use the above generating functions, in
order to study the ergodic properties of the map F . We are interested in
particular in the eigenvalues of the Perron–Frobenius operator in order to
prove the existence of an invariant probability measure µ, absolutely contin-
uous with respect to the Lebesgue measure such that the dynamical system
([0, 1], µ, F ) is strongly mixing.

Lemma 11.2.2. Let Φ(z) =
(
zηa zηa
zηb 0

)
(called a Fredholm matrix). Then

taking sg(z) =

(
s
〈a〉
g (z)
s
〈b〉
g (z)

)
, we get sg(z) =

(∫
〈a〉 g dx∫
〈b〉 g dx

)
+ Φ(z)sg(z).

Proof. Dividing the sum of the generating functions into the term corre-
sponding to n = 0 and the remaining part, we get:

s〈a〉g (z) =
∫

1〈a〉(x)g(x) dx+
∞∑
n=1

zn
∫

1〈a〉(x)g(Fn(x)) dx

=
∫

1〈a〉(x)g(x) dx+
∞∑
n=1

zn
∫
P1〈a〉(x)g(Fn−1(x)) dx

=
∫
〈a〉
g(x) dx+ ηa

∞∑
n=1

zn
∫
g(Fn−1(x)) dx

=
∫
〈a〉
g(x) dx+ zηa

∞∑
n=0

zn
∫
g(Fn(x)) dx

=
∫
〈a〉
g(x) dx+ zηa

(
s〈a〉g (z) + s〈b〉g (z)

)
.
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Similarly, we get

s〈b〉g (z) =
∫

1〈b〉(x)g(x) dx+
∞∑
n=1

zn
∫

1〈b〉(x)g(Fn(x)) dx

=
∫
〈b〉
g(x) dx+

∞∑
n=1

zn
∫
P1〈b〉(x)g(Fn−1(x)) dx

=
∫
〈b〉
g(x) dx+ ηb

∞∑
n=1

znηb

∫
〈a〉
g(Fn−1(x)) dx

=
∫
〈b〉
g(x) dx+ zηbs〈a〉g (z).

We thus get

sg(z) = (I − Φ(z))−1

(∫
〈a〉 g dx∫
〈b〉 g dx

)
.

We call this equation a renewal equation. In our case,

sg(z) =
1

(1− z)(1− (ηa − 1)z)

(
1 zηa

z 1−ηa
ηa

1− zηa

)(∫
〈a〉 g dx∫
〈b〉 g dx

)
.

11.2.3 Ergodic properties

An invariant measure for the map F . Let us introduce now an invariant
measure for the map F absolutely continuous with respect to the Lebesgue
measure. Let us recall that the density of this measure is an eigenvector for
the Perron–Frobenius operator associated with the eigenvalue 1, that is to
say, it corresponds to the singularity 1 for the generating functions.

Taking

�(x) =

{
1

(2−ηa)ηa
x ∈ 〈a〉,

1
2−ηa x ∈ 〈b〉,

we get

s〈a〉g (z) =

∫
〈a〉 g dx+ zηa

∫
〈b〉 g dx

(1− z)(1− (ηa − 1)z)

=
ηa
∫
g(x)�(x) dx
1− z +

(1− ηa)
∫
〈a〉 g dx− ηa

∫
〈b〉 g dx

(1− (ηa − 1)z)(2− ηa)

and

s〈b〉g (z) =
(1− ηa)

∫
g(x)�(x) dx

1− z +
− 1−ηa

ηa

∫
〈a〉 g dx+ (2− ηa)

∫
〈b〉 g dx

(1− (ηa − 1)z)(2− ηa)
.
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We thus can imagine that z = 1 and ηa− 1 may be the eigenvalues of the
Perron–Frobenius operator. As 1 is a singularity of order 1, 1 will be a simple
eigenvalue of P , and there may be no other eigenvalue in the unit circle. This
is what we hope to prove now in a more formal way.

Noticing
∫
�(x) dx = 1, we denote by µ a probability measure of den-

sity function �. The measure µ is an invariant probability measure for the
transformation F .

Mixing. Returning to the definition of sg(z), we get by comparing the co-
efficient of zn∫

1〈a〉(x)g(Fn(x)) dx = ηa

∫
g dµ+ Ca(ηa − 1)n,∫

1〈b〉(x)g(Fn(x)) dx = (1− ηa)
∫
g dµ+ Cb(ηa − 1)n,

where

Ca =
1− ηa
2− ηa

∫
〈a〉
g dx− ηa

2− ηa

∫
〈b〉
g dx, Cb =

−(1− ηa)
ηa(2− ηa)

∫
〈a〉
g dx+

∫
〈b〉
g dx.

Therefore, for example,
∫

1〈a〉(x)g(Fn(x)) dx converges to ηa
∫
g dµ expo-

nentially as n → ∞ with the rate (ηa − 1). Moreover, since ηa − 1 < 0, it is
oscillating. Note that the Lebesgue measure of 〈a〉 and 〈b〉 are ηa and 1− ηa,
respectively.

More generally, for a word W = w1 · · ·wm, let ηW denote the product
ηW = ηw1 · · · ηwm . Consider

∞∑
n=0

zn
∫

1〈W 〉(x)g(Fn(x)) dx

=
m−1∑
n=0

zn
∫

1〈W 〉(x)g(Fn(x)) dx+
∞∑
n=m

zn
∫

1〈W 〉(x)g(Fn(x)) dx

=
m−1∑
n=0

zn
∫

1〈W 〉(x)g(Fn(x)) dx+

{
zmηW (s〈a〉g (z) + s〈b〉g (z)) if wm = a,

zmηW s
〈a〉
g (z) if wm = b.

Take

χWg (z) =
m−1∑
n=0

zn
∫

1〈W 〉(x)g(Fn(x)) dx,

ΦW (z) =



(
zmηW , z

mηW

)
if wm = a,(

zmηW , 0
)
, if wm = b.

By dividing f into the sum f =
∑
W CW 1〈W 〉, we get
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∞∑
n=0

zn
∫
f(x)g(Fn(x)) dx =

∑
W

CW

∞∑
n=0

zn
∫

1〈W 〉(x)g(Fn(x)) dx

=
∑
W

CWχ
W
g (z) +

∑
W

CWΦ
W (z)sg(z).

Since f ∈ BV , there exists a decomposition f =
∑
W CW 1〈W 〉 such that∑∞

n=1 r
n
∑
|W |=n |CW | <∞ for any 0 < r < 1. This ensures the convergence

of
∑
W CWχ

W
g (z) and

∑
W CWΦ

W (z) in |z| < eξ.

Suppose now that |z| < eξ. Consider the eigenvalues of the Perron–
Frobenius operator in BV which are greater than e−ξ in modulus. Let us
prove that they coincide with the reciprocals of the solutions of det(I −
Φ(z)) = 0.

Note that for any ε > 0, there exists a constant C such that

Lebes(〈W 〉) ≤ Ce−(ξ−ε)n and ηW = ηw1 · · · ηwn ≤ Ce−(ξ−ε)n,

where Lebes is the Lebesgue measure. Hence,

|
∑
W

CWχ
W
g (z)| =

∣∣∣∣∣∣
∞∑
n=1

∑
|W |=n

|CW |χWg (z)

∣∣∣∣∣∣
≤
∞∑
n=1

∑
|W |=n

|CW |
n−1∑
m=0

|z|m||g||∞Ce−(ξ−ε)n,

|each component of
∑
W

ΦW (z)| ≤
∞∑
n=1

∑
|W |=n

|CW ||z|nCe−(ξ−ε)n.

Therefore for |z| < eξ,
∑
W CWχ

W
g (z) and all the components of

∑
W Φ

W (z)
are analytic.

On the other hand, sg(z) has singularities at z = 1 and z = 1/(ηa −
1). Therefore,

∑∞
n=0 z

n
∫
f(x)g(Fn(x)) dx can be extended meromorphically

outside of the unit disk and it has at most two singularities in |z| < eξ. This
shows that the reciprocals of the solutions of det(I −Φ(z)) = 0 coincide with
the eigenvalues of the Perron–Frobenius operator which is grater than e−ξ in
modulus. Namely, det(I−Φ(z)) plays the role of the Fredholm determinant for
nuclear operators. This is the reason why we call Φ(z) the Fredholm matrix.

Comparing the coefficients as before,∫
f(x)g(Fn(x)) dx→

∑
W

{
CW ηW

∫
g dµ if wm = a

CW ηW ηa
∫
g dµ if wm = b

=
∫
f dx

∫
g dµ.

The order of convergence is proved to be min{(ηa − 1), e−ξ}. Hence taking
f ∈ BV and g ∈ L∞, we get
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∫
f(x)g(Fn(x))dµ =

∫
f · �(x)g(Fn(x))dx→

∫
f · �dx

∫
gdµ =

∫
fdµ

∫
gdµ.

We call this property of the dynamical system strong mixing. The decay
rate of correlations is min{(ηa − 1), e−ξ}.

Remark. We can note now that the Fredholm matrix Φ(z) is essentially
a ‘weighted structure matrix’. Here the structure matrix of this dynamical

system is M =
(

1 1
1 0

)
. Namely, the first row expresses that F (〈a〉) contains

both 〈a〉 and 〈b〉, and the second row expresses that F (〈b〉) contains only 〈b〉.
The trace tr M = 1 means F (〈a〉) ⊃ 〈a〉, and this corresponds to the fixed

point x = 0. At the same time, since M2 =
(

2 1
1 1

)
, its trace equals 3. This

means there exists a fixed point a → a → a and another two-periodic orbit
a→ b→ a (b→ a→ b). In this way, the trace of the product of the structure
matrix expresses a number of periodic orbits.

Ruelle’s zeta function. Similarly, the trace of Φn(z) also corresponds to
periodic orbits with period n. Let us now define Ruelle’s zeta function:

ζ(z) = exp


 ∞∑
n=1

zn

n

∑
Fn(p)=p

|Fn′(p)−1|


 .

Then

ζ(z) = exp

[ ∞∑
n=1

1
n

trΦn(z)

]
= exp[− tr log(I − Φ(z))] = (det(I − Φ(z))−1.

This shows that the reciprocals of the singularities of the zeta function
become eigenvalues of the Perron–Frobenius operator.

Final result. The above discussions can be easily generalized to general
piecewise linear Markov transformations. We can construct a Fredholm ma-
trix Φ(z) by considering generating functions, and we get

Theorem 11.2.3. In |z| < eξ, the reciprocals of the solutions of det(I −
Φ(z)) = 0 coincide with the eigenvalues of the Perron–Frobenius operator
restricted to BV which are greater than e−ξ in modulus. Moreover, det(I −
Φ(z)) = 1/ζ(z).

Thus, if the solutions of the equation det(I − Φ(z)) = 0 satisfy

1. 1 is simple,
2. there exist no others eigenvalues on the unit circle,

then there exists an invariant probability measure µ absolutely continuous
with respect to the Lebesgue measure and the dynamical system ([0, 1], µ, F )
is strongly mixing.
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11.3 Non-Markov transformation: β–expansion

As an example of a non-Markov transformation, let us study the β–transfor-
mations.

Let 1 < ηa + ηb ≤ 2, A = {a, b}, 〈a〉 = [0, ηa) and 〈b〉 = [ηa, 1]. Let

F (x) =

{
x/ηa x ∈ 〈a〉
(x− ηa)/ηb x ∈ 〈b〉.

The map F is called a β-transformation if 1/ηa = 1/ηb = β. The above
case is a generalization of a β–transformation.

The generating function s〈a〉g (z) satisfies the same renewal equation as
before. If F (〈b〉) ⊂ 〈a〉, we put J1 = F (〈b〉). Next if F (J1) ⊃ 〈a〉, we put
J2 = F (J1) ∩ 〈b〉. Then

s〈b〉g (z) =
∫

1〈b〉(x)g(x) dx+ ηbzsJ1
g (z)

=
∫

1〈b〉(x)g(x) dx+ ηbz
(∫

1J1(x)g(x) dx+ zηa(s〈a〉g (z) + sJ2
g (z)
)
.

Similarly, taking

Jn =

{
F (Jn−1) if F (Jn−1) ⊂ 〈a〉,
F (Jn−1) ∩ 〈b〉 if F (Jn−1) ⊃ 〈a〉,

and

φ(n) =

{
0 if F (Jn) ⊂ 〈a〉 (Fn1 < ηa),∏n
k=1 ηw1

k
if F (Jn) ⊃ 〈a〉 (Fn1 ≥ ηa),

we get

s〈b〉g (z) = χbg(z) +
∞∑
n=1

znφ(n)s〈a〉g (z),

where w1 = (w1
n)n∈N is the expansion of 1 (following the notation of Sec.

11.1) and

χbg(z) =
∞∑
n=0

zn
n∏
k=1

ηw1
k

∫
Jn

g dx,

with J0 = 〈b〉. Note that all the components of χg(z) and Φ(z) are analytic
in |z| < eξ. Therefore, putting

Φ(z) =
(

zηa zηa∑∞
n=1 z

nφ(n) 0

)
,

we get a renewal equation
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sg(z) = (I − Φ(z))−1χg(z)

as before. Here χg(z) =
(∫
〈a〉 g dx
χbg(z)

)
.

Through a similar discussion to that of the Markov case, we obtain that
the reciprocals of the solutions of det(I−Φ(z)) = 0 coincide with the eigenval-
ues of the Perron–Frobenius operator which are greater than e−ξ in modulus.
Using this expression, we can prove that the dynamical system is strongly
mixing, and we can also calculate the density function � of the invariant
probability measure µ absolutely continuous with respect to the Lebesgue
measure, using

lim
z↑1

(1− z)(I − Φ(z))−1
(∫
〈a〉 g dx
χbg(1)

)
=
(

ηa
∫
g dµ

(1− ηa)
∫
g dµ

)
.

Therefore,(
ηa
∫
g dµ

(1− ηa)
∫
g dµ

)
= lim

z↑1
1− z

det(I − Φ(z))

(
1 ηa∑∞

n=1 z
nφ(n) 1− ηa

)(∫
〈a〉 g dx
χbg(1)

)
.

Hence,

�(x) = C−1

[
1〈a〉(x) + ηa

∞∑
n=0

n∏
k=1

ηw1
k
1Jn(x)

]
,

where C is the normalizing constant.

In general, we can also prove that

ζ(z) =
1

det(I − Φ(z))
.

We need unessential detailed discussion to prove this result (see [301]). Any-
way, we get

1
ζ(z)

= 1− zηa
∞∑
n=0

znφ(n),

where φ(0) = 1. Using the above expression, we can calculate the spectrum of
the Perron–Frobenius operator P . Thus by Theorem 11.2.3, we can determine
the ergodicity of the dynamical system.

11.4 Cantor sets

The usual Cantor set is generated by the map F (x) = 3x (mod 1) by dis-
carding the inverse images of [ 1

3 ,
2
3 ]. Namely, first we discard the interval

[ 1
3 ,

2
3 ]. Next we discard its inverse images [ 1

9 ,
2
9 ] and [7

9 ,
8
9 ]. Then we discard
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their inverse images [ 1
27 ,

2
27 ] [ 7

27 ,
8
27 ], [19

27 ,
20
27 ] and [25

27 ,
26
27 ], and continue this

procedure.
We consider here sets obtained by an analogous device of construction

and show how to compute their Hausdorff dimension by introducing the α–
Fredholm matrix.

11.4.1 Hausdorff Dimension

The aim of this section is to measure the size of a Cantor set by computing
its Hausdorff dimension.

Definition 11.4.1. Let us consider a set C ⊂ [0, 1]. Let δ > 0. A covering of
C by a family of intervals which is at most countable {Ii} (∪iIi ⊃ C), where
the length of each Ii is less than δ, is called a δ–covering.

Now for α ≥ 0, put
να(C, δ) = inf

∑
i

|Ii|α,

where the infimum is taken over all δ–coverings. Then, since να(C, δ) is mono-
tone increasing as δ ↓ 0, the limit

να(C) := lim
δ↓0
να(C, δ)

exists.

Lemma 11.4.2. Let us assume that να(C) < ∞ for α ≥ 0. Then for any
α′ > α, να′(C) = 0.

Proof. Let {Ii} be a δ–covering such that
∑
i |Ii|α < να(C) + 1. Then

να′(C) ≤
∑
i

|Ii|α
′ ≤ δα′−α

∑
i

|Ii|α ≤ δα
′−α(να(C) + 1).

Take δ ↓ 0, then we get να′(C) = 0.

The Hausdorff measure. We can construct a measure space over (C, να)
with a suitable σ–algebra. We will call να a Hausdorff measure with coeffi-
cient α. However, as one can see from Lemma 11.4.2, this Hausdorff measure
usually has no meaning. Namely, there exists α0 ≥ 0 such that for any α < α0
every set has measure infinity with respect to να, and for any α > α0 they
have measure 0. We call this critical value α0 the Hausdorff dimension of a
set C.
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11.4.2 A Cantor set associated with a piecewise linear Markov
transformation

Let

F (x) =



x/ηa x ∈ [0, ηa),
(x− ηa)/ηb x ∈ [ηa, ηa + ηb),
(x− ηa − ηb)/ηc x ∈ [ηa + ηb, 1],

and 0 < ηa, ηb, ηc < 1 and

ηa < (1− ηa − ηb)/ηc < ηa + ηb.

Put λa = ηa, λc = 1−ηa−ηb. These are the lengths of 〈a〉 and 〈c〉, respectively.
Now, let us define the α–Fredholm matrix by

Φα(z) =
( a c

a zηαa zηαa
c zηαc 0

)
.

Let C be the Cantor set of points such that their positive orbit under the
action of F never enters the interval 〈b〉.

As a rough discussion, we will calculate the Hausdorff dimension by cov-
ering the set C only by words with the same length.

As a first approximation, let us consider the covering by intervals 〈a〉 and
〈c〉. This can be expressed by

ηαa + ηαc = (1, 1)
(
λαa
λαc

)
.

The second approximation is the covering by intervals 〈aa〉, 〈ac〉 and 〈ca〉.
The subintervals corresponding to the word cc do not exist. Therefore, the
second approximation equals

(ηaλa)α + (ηaλc)α + (ηcλa)α = (1, 1)Φα(1)
(
λαa
λαc

)
.

Generally, the n–th approximation becomes

(1, 1)Φα(1)n−1
(
λαa
λαc

)
.

If all the eigenvalues of the α–Fredholm matrix are less than 1 in modu-

lus, (1, 1)Φα(1)n−1
(
λαa
λαc

)
converges to 0 as n tends to ∞. This says that α is

greater than the Hausdorff dimension of C. On the contrary, if one of the eigen-

value is greater than 1 in modulus, then (1, 1)Φα(1)n−1
(
λαa
λαc

)
will diverge.
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Note that by Perron–Frobenius’ theorem the maximal eigenvalue of Φα(1) is
positive. Thus, when α equals the Hausdorff dimension α0 of C, Φα0(1) has
eigenvalue 1. Therefore α0 will be the solution of det(I−Φα(1)) = 0. Namely,
α0 will satisfy

ηα0
a + (ηaηc)α0 = 1.

Take
(
λ∗a
λ∗c

)
as an eigenvector of Φα0(1) associated with the eigenvalue 1

with λ∗a+λ∗c = 1. To be more precise, λ∗a = ηα0
a and λ∗c = (ηaηc)α0 = 1−ηα0

a .

The other eigenvalue equals (ηα0
a −1) and

(
ηα0
a

−1

)
is an eigenvector associated

with it. Let us denote(
λα0
a

λα0
c

)
= C1

(
λ∗a
λ∗c

)
+ C2

(
ηα0
a

−1

)
,

where

C1 =
(1− ηa − ηc)α0 + 1

(1− ηa)α0 + 1
and C2 =

(1− ηa)α0 − (1− ηa − ηc)α0

(1− ηa)α0 + 1
.

This shows 0 < C1 < 1.

For a word W = w1 · · ·wn, (wi ∈ {a, c}), its Hausdorff measure will be

ν(〈W 〉) = lim
m→∞ η

α0
w1
· · · ηα0

wn−1
v(wn)Φα0(1)m

(
λα0
a

λα0
c

)
= C1η

α0
w1
· · · ηα0

wn−1
λ∗wn ,

(11.1)
where v(a) = (1, 0) and v(c) = (0, 1). Hence, the total measure 0 < ν(C) =
C1 < 1. The corresponding generating function is

sg(z) = (I − Φα0(z))−1χg =
1

1− ηα0
a z − (ηaηc)α0z2

(
1 zηα0

a

zηα0
c 1− zηα0

a

)
χg,

where χg =
(
χag
χcg

)
and χdg =

∫
〈d〉 g dν (d = a, c). Therefore,

sg(z) =
1

(1− z)(1− (1− ηα0
a )z)

( ∫
〈a〉 g dν + ηα0

a z
∫
〈c〉 g dν

ηα0
c z
∫
〈a〉 g dν + (1− ηα0

a z)
∫
〈c〉 g dν

)

=
1

1− z
1

2− ηα0
a

[
1
ηα0
a

∫
〈a〉
g dν +

∫
〈c〉
g dν

](
ηα0
a + small order

1− ηα0
a + small order

)
.

Now put

dµ

dν
(x) =




1
C1(2− ηα0

a )ηα0
a

if x ∈ 〈a〉,
1

C1(2− ηα0
a )

if x ∈ 〈c〉.



358 11. Cantor sets

Then, µ becomes an invariant probability measure absolutely continuous with
respect to the Hausdorff measure. By Equation (11.2),∫

1〈a〉(x)g(Fn(x)) dν − ν(〈a〉)
∫
g dµ ∼ (1− ηα0

a )n.

A similar equation also holds for the letter c. Therefore, this shows that the
dynamical system is strongly mixing.

Let us construct another map G : [0, 1] → [0, 1]. Let the lengths of 〈a∗〉
equal λ∗a = ηα0

a , and the length of 〈c∗〉 equal λ∗c = 1− ηα0
a , corresponding to

the eigenvector of Φα0(1) associated with the eigenvalue 1, respectively. Take

G(x) =

{
η−α0
a x if x ∈ 〈a∗〉,
η−α0
c (x− λ∗a) if x ∈ 〈c∗〉.

Note that G(1) = λ∗a. Also in this case, the generating function equals

sg(z : G) = (I − Φα0(z))−1χg(G).

One may easily understand that the invariant probability measure derived
from the above equation becomes Markov, and at the same time, the Fred-
holm matrix associated with G equals Φα0(z).

11.4.3 Rigorous Results

Let us state now the above results more precisely. We can extend these results
even to general piecewise linear cases by using signed symbolic dynamics. We
restrict ourselves to the Markov case in this chapter.

Let F : [0, 1] → [0, 1] be a piecewise linear Markov transformation. We
are going to consider a subset A1 ⊂ A and put

C = {x ∈ [0, 1] : wxi ∈ A1 for all i}.

The aim of this section is to study the Hausdorff dimension of C and the
ergodic properties of this dynamical system.

The α–Fredholm matrix is defined by

Φα(z)a,b =

{
zηαa if F (〈a〉) ⊃ 〈b〉,
0 otherwise.

Moreover we assume that F is expanding and the α–Fredholm matrix irre-
ducible (z �= 0).

Theorem 11.4.3. Let α0 be the maximal solution of det(I − Φα(1)) = 0.
Then α0 is the Hausdorff dimension of C.
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First, let us state elementary lemmas.

Lemma 11.4.4. Let 0 < α < 1, and xi > 0 (1 ≤ i ≤ k). Then,

kα−1(
k∑
i=1

xαi ) ≤ (
k∑
i=1

xi)α ≤
k∑
i=1

xαi .

Lemma 11.4.5. There exists a constant K > 1 such that

1
K
<
Lebes(〈Wa〉)
Lebes(〈Wb〉) < K,

for any word W and any symbols a, b ∈ A such that 〈Wa〉, 〈Wb〉 �= ∅.

To prove Theorem 11.4.3, we need to define another Hausdorff dimension.
Let µ be a probability measure on [0, 1]. Define

µα(C, δ) = inf
∑
i

µ(〈Wi〉)α,

where the infimum is taken over all coverings by words {Wi} such that
µ(〈Wi〉) < δ. The difference between να and µα lies in two points:

1. µα uses the probability measure µ, and να uses the Lebesgue measure,
2. to define µ, we only consider coverings by words, and to define να, we

consider any covering by intervals

Put
µα(C) = lim

δ→0
µα(C, δ),

and denote by dimµ(C) the critical point whether µα(C) converges or diverges.

Lemma 11.4.6. The Hausdorff dimension of C equals dimLebes(C).

Proof. It is clear that the Hausdorff dimension is less than or equal to
dimLebes(C). We will prove another inequality. Let {Ji} be a covering by
words such that

∑
(Lebes(Ji))α < M <∞. For each Ji, put

ni = min{n : |W | = n, 〈W 〉 ⊂ Ji}.

If there exist words W1, . . . ,Wk such that |Wj | = ni − 1 and 〈Wj〉 intersects
Ji, we will divide Ji into k subintervals Ji ∩ 〈W1〉, . . . , Ji ∩ 〈Wk〉. We denote
this new covering by words again by {Ji}. Therefore we can assume that Ji
is contained in some 〈Wi〉 with |Wi| = ni− 1, and contains at least one 〈W ′i 〉
with |W ′i | = ni. Then by Lemma 11.4.4 and the assumption,∑

i

(Lebes(Ji))α ≤ Card A1−αM < Card A ·M.
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Now we will choose a family of words {Wi,j} such that ∪j〈Wi,j〉 = Ji as
follows. First we will choose words wi,1, . . . ,Wi,j1 with length ni such that
〈Wi,j〉 ⊂ Ji. Note that j1 ≤ Card A. Next we will choose words Wi,j1+1, . . . ,

Wi,j2+1 with length ni + 1 and 〈wi,j〉 ⊂ Ji\ ∪j1j=1 〈Wi,j〉, and repeat this
procedure. It can be noted that the number of words Wi,j with length ni + k
is at most 2 Card A, and by Lemma 11.4.5,

Lebes(〈Wi,j〉) ≤ e−kξLebes(〈Vi〉)
≤ e−kξKCard A ·max{Lebes(〈Wi,j〉) : 1 ≤ j ≤ j1}
≤ e−kξKCard A · Lebes(Ji).

Then∑
i

∑
j

(Lebes(〈Wi,j〉)α ≤
∑
i

∑
k

∑
j : |Wi,j |=ni+k

(Lebes(〈Wi,j〉)α

≤
∑
i

∑
k

2Card A (e−kξKCard A · Lebes(Ji))α

≤ 2Kα(Card A)1+α

1− e−ξα
∑
i

(Lebes(Ji))α

≤ K ′M,

where

K ′ =
2Kα(Card A)2+α

1− e−ξ .

Now let us take any α which is greater than the Hausdorff dimension of
C. Then for any ε > 0, there exists a covering by intervals {Ji} such that∑
i(Lebes(Ji))

α < ε. Then we can choose a covering by words {〈Wi,j〉} such
that ∑

i

∑
j

(Lebes(〈Wi,j〉))α < K ′ε.

This shows that dimLebes(C) < α. Thus dimLebes(C) is less than or equal to
the Hausdorff dimension of C. Namely, the Hausdorff dimension of C equals
dimLebes(C).

A proof of the following theorem can be found in [80] (Theorem 14.1).

Theorem 11.4.7 (Billingsley). Let µ1, µ2 be probability measures. Assume
that

C ⊂
{
x : lim

n→∞
logµ1(〈wx[1, n]〉)
logµ2(〈wx[1, n]〉) = α

}
holds for some 0 ≤ α ≤ ∞, where wx[1, n] is a word with length n and
x ∈ 〈wx[1, n]〉. Then

dimµ2(C) = α dimµ1(C).
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In the examples studied in the former sections, the mapping G : [0, 1] →
[0, 1] was built from an eigenvector of Φα0(1). We are going to construct it
for general piecewise linear Markov transformations.

Since Φα(1) is irreducible, and Φα0(1) is a non–negative matrix, by
Perron–Frobenius’ theorem, the maximal eigenvalue is non–negative (accord-
ing to the assumption, this equals 1), and we can choose a non–negative
eigenvector associated with the maximal eigenvalue 1 for which the sum of
its components equals 1. Let the measure of a∗ (a ∈ A1) be the component
of the eigenvector. We arrange a∗ as in the natural order of a, and the slope
of G for x ∈ 〈a∗〉

G′(x) =

{
+η−α0

a if F ′(y) > 0
−η−α0

a if F ′(y) < 0
for y ∈ 〈a〉.

Then we can construct a mapping G which has the same symbolic dy-
namics as that of F restricted to C. Hence the Fredholm matrix of G equals
Φα0(z).

We denote by µG the induced measure from the Lebesgue measure over
[0, 1] where G acts over [0, 1], where F acts. Then

lim
n→∞

logLebes(〈wx[1, n]〉)
logµG(〈wx[1, n]〉) =

1
α0

holds for every x ∈ C. Of course, µG(C) = Lebes([0, 1]) = 1, i.e., dimµG(C) =
1. Therefore,

dimLebes(C) = α0 dimµG(C) = α0.

This shows that the Hausdorff dimension of C equals α0.

The measure µG is called a conformal measure and using this we can
prove that the Hausdorff measure on C is absolutely continuous with respect
to µG, and is nonzero and finite [205]. Moreover, according to the the as-
sumption made, G is expanding. Therefore it has an invariant probability
measure µ absolutely continuous with respect to the Lebesgue measure, and
the dynamical system is strongly mixing. We denote by �(x) = dµ

dx (x) the
density of µ with respect to the Lebesgue measure. The induced measure µ̂
on C (deduced from this measure µ) is absolutely continuous with respect to
the Hausdorff measure, and the density function �̂(y) of µ̂ with respect to
the Hausdorff measure ν equals �(x)/ν(C), where x and y have respectively
the same expansion with respect to G and F . This shows that the dynamical
system equipped with this measure is also strongly mixing.



12. Some open problems

As a conclusion, let us emphasize the underlying arithmetic structure and
the interaction between the geometric and symbolic nature of the dynamical
systems we have considered throughout this book. We are mainly interested
in the two following problems: first, finding geometric interpretations of var-
ious symbolic dynamical systems including those generated by substitutions,
and secondly, developing multidimensional continued fraction algorithms re-
flecting the dynamics of the systems.

12.1 The S-adic conjecture

Let us start with an algorithmic approach. For more details on the subject,
the reader is referred to [172, 174].

A sequence is said to have an at most linear complexity if there exists
a constant C such that for every positive integer n, p(n) ≤ Cn, or in other
words, if p(n) = O(n). Many sequences that we have encountered in this book
have at most linear complexity, including fixed points of primitive substitu-
tions, automatic sequences, Sturmian sequences, Arnoux-Rauzy sequences,
and so on. On the other hand, numerous combinatorial, ergodic or arith-
metic properties can be deduced from this indication on the growth-order of
the complexity function.

Let us start with a purely combinatorial result.

Theorem 12.1.1 (Cassaigne [109]). A sequence has at most linear com-
plexity if and only if the first difference of the complexity p(n + 1) − p(n) is
bounded.

Furthermore, an upper bound on the first difference can be explicitly given.
Let us note that the equivalent result does not hold in the case of sequences
with at most quadratic complexity: in [172], one can find an example of a
sequence with a quadratic complexity function and unbounded second differ-
ences p(n+ 2) + p(n)− 2p(n+ 1).
1 This chapter has been written by P. Arnoux and V. Berthé
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12.1.1 S-adic expansions

The following result [172] can be deduced from Theorem 12.1.1 and considera-
tions on the graph of words. The complexity function of a symbolic dynamical
system is defined as the function which counts the number of distinct factors
of the language of this system, i.e., the union of the sets of factors of the
sequences of the system.

Theorem 12.1.2 (Ferenczi [172]). Let X be a minimal symbolic system on
a finite alphabet A such that its complexity function pX(n) is at most linear,
or, equivalently (following Theorem 12.1.1), such that pX(n + 1) − pX(n)
is bounded; then there exists a finite set of substitutions S over an alphabet
D = {0, ..., d−1}, a substitution ϕ from D� to A�, and an infinite sequence of
substitutions (σn)n≥1 with values in S such that |σ1σ2...σn(r)| → +∞ when
n → +∞, for any letter r ∈ D, and any word of the language of the system
is a factor of ϕ(σ1σ2...σn)(0) for some n.

The above proposition can be read as follows: minimal systems with at
most linear complexity are generated by a finite number of substitutions. Using
a variation of the Vershik terminology, we propose to call such systems S-adic
systems, and the pair (ϕ, (σn))n≥1) is called an S-adic expansion of X. We
similarly call a sequence S-adic if the symbolic dynamical system generated
by the sequence is itself S-adic, and the sequence (ϕ(σn))n≥1 is again called
an S-adic expansion of the sequence x. Such expansions appear for instance
in Chap. 6.

The fact that the lengths of the words tend to infinity, which generalizes
the notion of everywhere growing substitutions (i.e., substitutions such that
∀r, ∃n ∈ N, |σn(r)| ≥ 2), is necessary to make Theorem 12.1.2 nonempty.
Furthermore, it can be seen in the proof of [172] that this prevents us from
getting a universal bound on the number d of letters of the alphabet D.
However, in an important particular case generalizing the Arnoux-Rauzy se-
quences [45], we do have a universal upper bound:

Proposition 12.1.3. For minimal systems over a three-letter alphabet such
that pX(n + 1) − pX(n) ≤ 2 for every n large enough, Theorem 12.1.2 is
satisfied with d ≤ 3 and CardS ≤ 327.

Such universal upper bounds exist (but are very large) as soon as one has an
upper bound on p(n+ 1)− p(n).

A measure-theoretic consequence of Theorem 12.1.2 is that a minimal
and uniquely ergodic system of at most linear complexity cannot be strongly
mixing [172].

The S-adic expansion is known in an explicit way for the symbolic dy-
namical systems generated by Sturmian sequences, by the Arnoux-Rauzy
sequences [45], for the systems generated by some binary codings of rotations
[3, 146] (i.e., for codings with respect to a partition of the unit circle into
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intervals the lengths of which are larger than or equal to the angle of the
rotation), and for systems generated by irrational interval exchanges (see in
particular [2, 165, 270]). In the Sturmian case (see Sec. 6.4.4 in Chap. 6), one
gets a more precise result: one can expand a given Sturmian sequence as an
infinite composition of two substitutions; the rules for the iteration of these
substitutions follow the Ostrowski expansion with respect to the angle of the
initial point whose orbit is coded (for more details, see [37]). In some other
cases (Arnoux-Rauzy sequences, binary codings, interval exchanges) one uses
multidimensional continued fraction expansions. See also [1, 202] for a de-
tailed sudy of the behaviour of sequences for which p(n+ 1)− p(n) ∈ {1, 2}
through the use of graphs of words. See also for more results on S-adicity
[446].

12.1.2 The conjecture

The converse of Theorem 12.1.2 is clearly false. To produce a counter-
example, it is sufficient to consider a non-primitive substitution [320] with
a fixed point of complexity function satisfying Θ(n log log n) as a �→ aba,
b �→ bb, or Θ(n log n) as a �→ aaba, b �→ bb. Nevertheless, in the case where
the initial sequence u is minimal, the fact that it is a fixed point of a sub-
stitution guarantees that the complexity is at most linear. This is not true
any more if the sequence u is generated by two substitutions, even if u is
minimal. Such an example was proposed by Cassaigne: one uses a positive
substitution which appears infinitely often in the iteration, and a substitution
having a fixed point of quadratic complexity which appears in long ranges in
the iteration.

Question. Let u be a sequence generated by the iteration of a finite number
of substitutions; which restrictions should one add to these substitutions, so
that the sequence u has at most linear complexity?

We still have to find a stronger form of S-adicity which would be equivalent to
at most linear complexity. This is the S-adic conjecture stating that minimal
systems have at most linear complexity if and only if they are strongly S-adic.

12.1.3 Linear recurrence

Durand gives a sufficient condition in [156] for a sequence to have at most
linear complexity. Namely, let u be a given recurrent sequence and let W be
a factor of the sequence u. Let us recall that a return word over W is a word
V such that VW is a factor of the sequence u, W is a prefix of VW and W
has exactly two occurrences in VW . A sequence is linearly recurrent if there
exists a constant C > 0 such that for every factor W , the length of every
return word V ofW satisfies |V | ≤ C|W |. Such a sequence always has at most
linear complexity [152]. Unfortunately, this condition is strictly stronger than
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having at most linear complexity. Durand shows that a sequence is linearly
recurrent if and only if it is proper S-adic with bounded partial quotients, i.e.,
every substitution comes back with bounded gaps in the S-adic expansion
[156]. In particular, a Sturmian sequence is linearly recurrent if and only
if the partial quotients in the continued fraction expansion of its angle are
bounded, which means that not every sequence with at most linear complexity
is linearly recurrent.

12.1.4 Periodic case and substitutive sequences

Given an S-adic sequence, one can ask whether this sequence is substitutive,
that is, whether it is a letter-to-letter projection of a fixed point of a substi-
tution. Substitutive Sturmian sequences correspond to quadratic angles (for
more details, see [126, 465] and Chap. 9). This can be deduced from Durand’s
characterization of substitutive sequences based on return words (the notion
of derived sequence can be geometrically seen using the induction). Hence,
this result can be considered as a generalization of Galois’ theorem for con-
tinued fraction expansions (see Sec. 6.5). See also [85] for a connected result:
if all the parameters of an interval exchange belong to the same quadratic
extension, the sequence of induced interval exchanges (by performing always
the same induction process) is ultimately periodic.

12.2 Multidimensional continued fraction expansions

12.2.1 Arithmetics and S-adicity

One of the main interests of the S-adic expansion lies in the fact that it
provides an arithmetic description of the sequences we consider. For instance,
the sequence (σn) (in Theorem 12.1.2) is governed by the continued fraction
expansion of the angle in the Sturmian case. More generally, in numerous
cases, the “partial quotients” (i.e., the gaps between successive occurrences
of runs of the same substitution which appear in the iteration in Theorem
12.1.2) provide a generalized continued fraction expansion which describes
the combinatorial properties of the sequence: one can find such examples of
continued fraction expansions in [2, 114, 146, 166, 165, 167, 270, 349, 358,
467]. The techniques which are usually used in these problems are, on the
one hand, the use of the graphs of words (see for instance [77]), and, on the
other hand, the induction process (see Chaps. 5 and 6).

The usual continued fraction algorithm provides the best rational approxi-
mations of a real number α; it is fundamentally connected to the toral rotation
of T, x �→ x+α. It describes in a natural way the combinatorial properties of
Sturmian sequences, as the properties of their geometric representation as a
coding of a rotation, as well as those of their associated symbolic dynamical
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system. What can be said now when considering the two-dimensional torus
T2, or when trying to get simultaneous approximation results?

There exist several unidimensional or multidimensional symbolic objects
which generalize Sturmian sequences in a natural way and provide multidi-
mensional continued fraction algorithms. One can for instance code a rotation
over T with respect to a partition into two intervals or more, the lengths of
which do not depend on the angle α of the rotation. Such sequences have
been studied for instance in [8, 70, 146, 363].

The following three particular generalizations have been the subject of
recent studies: interval exchanges, the Arnoux-Rauzy sequences and codings
of the Z2-action of two rotations on the unit circle.

12.2.2 Interval exchanges

Three-interval exchanges are fundamentally connected (via an induction pro-
cess) to binary codings of rotations, that is, to codings of irrational rotations
on T with respect to a two-interval partition. Ferenczi, Holton, and Zamboni
develop in [166, 165, 167] a multidimensional algorithm which generates the
orbits of the discontinuity points and opens new ways in the study of the
ergodic and spectral properties of interval exchanges. This algorithm is pro-
duced in a combinatorial way by catenative rules of production of bispecial
factors, or in a geometric way, by the observation of the evolution of the
intervals corresponding to the bispecial factors. It can also be expressed in
terms of a new induction process which does not correspond to the usual
ones. See [2, 270] and also [269] for an S-adic expansion.

12.2.3 Arnoux-Rauzy sequences

Let us consider now the Arnoux-Rauzy sequences. It will be recalled that
these are recurrent sequences defined over a three-letter alphabet with the
following extra combinatorial property [45]: for every n, there is exactly one
right special factor and one left special factor of length n, and these special
factors can be extended in three different way. It will be recalled that a
factor W of the sequence u is called right special (respectively left special)
if W is a prefix (respectively suffix) of at least two words of length |W | + 1
which are factors of the sequence u (see also Chap. 6). Let us note that they
can be similarly defined over any alphabet of larger size, say d; one thus
obtains sequences of complexity (d− 1)n+ 1. Arnoux-Rauzy sequences are a
natural generalization of Sturmian sequences, since they share with Sturmian
sequences the fundamental combinatorial property of the unicity of the right
(and left) special factors of given length. Contrary to the Sturmian case, these
sequences are not characterized by their complexity function any more.

One knows perfectly well the S-adic expansion of the Arnoux-Rauzy se-
quences [45], and more precisely, the S-adic expansion of the associated
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dynamical system and the S-adic expansion of the sequence which has as
prefixes the left special factors; following the terminology in the Sturmian
case, this sequence is called the left special sequence or the characteristic
sequence. The combinatorial properties of the Arnoux-Rauzy sequences are
well-understood and are perfectly described by a two-dimensional continued
fraction algorithm defined over a subset of zero measure of the simplex in-
troduced in [358, 467] and in [117]. See also [114] for the connections with
a generalization of the Fine and Wilf’s theorem for three periods. By using
this algorithm, one can express in an explicit way the frequencies of fac-
tors of given length [461], one can count the number of all the factors of
the Arnoux-Rauzy sequences [295], or prove that the associated dynamical
system has always simple spectrum [117].

These sequences can also be described as an exchange of six intervals of
the unit circle [45]. Let us recall that the Tribonacci sequence (i.e., the fixed
point beginning with a of the Rauzy substitution: a �→ ab, b �→ ac, c �→ a)
is an Arnoux-Rauzy sequence. In this case, one obtains good approximation
results [116]. The dynamical system generated by this sequence is isomorphic
to a rotation of the torus T2 (for more details, see Chaps. 7 and 8). More
generally, in the periodic case, i.e., in the case where the S-adic expansion
of the special sequence is purely periodic, this sequence is a fixed point of
a unimodular substitution of Pisot type (and conversely). All the results of
Chaps. 7 and 8 apply. In particular, the dynamical systems generated by such
sequences are obtained as toral rotations (the sufficient condition of Theorem
8.4.1 holds).

It was believed that all Arnoux-Rauzy sequences originated from toral
rotations, and more precisely, that they were natural codings of rotations over
T2. We say that a sequence u is a natural coding of a rotation if there exists a
measurable dynamical system (X,T, µ), which is itself measure-theoretically
isomorphic to a rotation, a generating partition P = {P1, P2, P3} of X, and
a point x ∈ X such that

∀n ∈ N, un = i if and only if Tn(x) ∈ Pi;

furthermore, the map T is supposed to be a piecewise translation, the transla-
tion vector taking exactly one value on each Pi. Namely, in all the examples,
we know that the rotation is constructed as an exchange of domains in R2,
the pieces of the exchange being isomorphic to the cylinders (see Chaps. 7
and 8).

This conjecture was disproved in [106], where an example of a totally
unbalanced Arnoux-Rauzy sequence is constructed (a sequence is said to
be totally unbalanced if there exists a letter a such that for each positive
integer n, there exist two factors of the sequence with equal length, with one
having at least n more occurrences of the letter a than the other). Namely,
a natural coding of a rotation cannot be totally unbalanced following [170].
Let us note that the partial quotients (in the sense of the S-adic expansion)
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are unbounded in the above example of totally unbalanced Arnoux-Rauzy
sequence.

The following questions are thus natural.

Questions. How to characterize the Arnoux-Rauzy sequences which are nat-
ural codings of rotations? In a weaker form, how to characterize the Arnoux-
Rauzy sequences which are measure-theoretically isomorphic to rotations? Is
linear recurrence a sufficient condition for either question? Are there Arnoux-
Rauzy sequences which are weakly mixing? What are the eigenvalues of the
Arnoux-Rauzy sequences? Do they admit a rotation as a factor?

12.2.4 Codings of two rotations

A third way of generalizing the Sturmian case consists in introducing a sec-
ond parameter. One thus gets two dual approaches: one can either code a
rotation of angle (α, β) in the two-dimensional torus T2, or a Z2-action by
two irrational rotations of angle α and β on T. In the first case, one gets
a unidimensional sequence, in the second, a two-dimensional sequence. We
discussed the first case by considering Arnoux-Rauzy sequences and their
connections with rotations over T2 in the previous section. Consider now the
second approach.

Let (α, β) ∈ R2, such that 1, α, β are rationally independent, and let
ρ ∈ R. Let u be the two-dimensional sequence defined over Z2 with values in
{0, 1} by

∀(m,n) ∈ Z2, (u(m,n) = 0⇐⇒ mα+ nβ + ρ ∈ [0, α[ modulo 1).

Such a two-dimensional sequence hasmn+n rectangular factors of size (m,n)
and is uniformly recurrent (i.e., for every positive integer n, there exists an
integer N such that every square factor of size (N,N) contains every square
factor of size (n, n)). The function which counts the number of rectangular
factors of given size is called the rectangle complexity function (for more
details, see Sec. 12.3). Conversely, every two-dimensional uniformly recurrent
sequence with complexity mn+ n admits such a geometric description [72].

Let us see why these sequences can be considered as a generalization of
Sturmian sequences.

They have the smallest complexity function known among two-dimensio-
nal sequences which are uniformly recurrent and not periodic. They are ob-
tained as a letter-to-letter projection of two-dimensional sequences defined
over a three-letter alphabet which code a plane approximation (let us recall
that Sturmian sequences code and describe discrete lines [68, 66]): one can
approximate a plane with irrational normal by square faces oriented along
the three coordinates planes; this approximation is called a discrete plane or a
stepped surface as in Chap. 8; after projection on the plane x+y+z = 0, along
(1, 1, 1), one obtains a tiling of the plane with three kinds of diamonds, namely
the projections of the three possible faces (for more details, see [441, 73], see
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also [356, 177] and Chap. 8). One can code this projection over Z2 by asso-
ciating with each diamond the name of the projected face. One thus gets a
sequence with values in a three-letter alphabet. These sequences are shown
to code a Z2-action over the unit circle T [73].

These latter sequences are generated by two-dimensional substitutions
governed by the Jacobi-Perron algorithm. Namely, a geometric interpreta-
tion of the Jacobi–Perron algorithm is given in [36]: in the same way as
classical continued fractions can be interpreted in terms of induction of rota-
tions, this algorithm can be considered as an induction algorithm for a group
of rotations operating on the unidimensional torus; it is not trivial that this
group can be induced on a subinterval to obtain a new group of rotations,
but by inducing on a suitable interval, the induction of the Z2-action we
consider is again generated by a Z2-action through a pair of rotations. How-
ever, unlike the classical Z-action, the generators of the Z2-action are not
canonically defined (since we can find an infinite number of bases for the
lattice Z2). This can be related to the fact that there seems to be no way of
defining a “best” two-dimensional continued fraction algorithm. Using this
induction process, a sequence of two-dimensional substitutions is defined in
[36] associated with the Jacobi–Perron algorithm (see also Chap. 8) which
generates the two-dimensional Sturmian sequences mentioned above over a
three-letter alphabet. We shall allude again to this notion of two-dimensional
substitution in Sec. 12.3.

12.3 Combinatorics on two-dimensional words

When one works with multidimensional sequences, fundamental problems
in the definition of the objects appear; for instance, how can one define a
multidimensional complexity function? Consider two-dimensional sequences,
i.e., sequences defined over Z2 with values in a finite alphabet. A possible
notion of complexity consists in counting the rectangular factors of given
size; we thus define the rectangle complexity function: (m,n) �→ P (m,n).
This notion is not completely satisfactory since it depends on the choice of a
basis of the lattice Z2. For a more general definition of complexity, see [371].
The following questions are thus natural:

Questions. Can one characterize a two-dimensional sequence with respect
to its rectangle complexity function? Which functions do exist as rectangle
complexity functions?

A two-dimensional sequence is periodic if it is invariant under translation,
i.e., if it admits a nonzero vector of periodicity. Note that the fact that the
lattice of periodicity vectors has rank 2 is characterized by a bounded rect-
angle complexity function. There is no characterization of periodic sequences
by means of the complexity function: one can construct two-dimensional se-
quences with a nonzero periodicity vector of very large complexity function;
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namely, consider the sequence (um+n)(m,n)∈Z2 , where the unidimensional se-
quence (un)n∈Z has maximal complexity. Conversely Nivat has conjectured
the following:

Conjecture 12.3.1. If there exists (m0, n0) such that P (m0, n0) ≤ m0n0, then
the two-dimensional sequence u is periodic.

Let us note that the conjecture was proved for factors of size (2, n) or (n, 2)
in [373]. A more general conjecture is given in [372, 373, 371]. Let us remark
that in higher-dimensional cases, counter-examples to the conjecture can be
produced [373].

It is interesting, with respect to this conjecture, to consider the “limit”
case of sequences of rectangle complexity function mn+1. Such sequences are
fully described in [112] and are all proved to be non-uniformly recurrent. The
two-dimensional Sturmian sequences mentioned in Sec. 12.2.4 of complexity
mn+n are conjectured to be the uniformly recurrent sequences with smallest
complexity function (it remains to give a more precise meaning to the term
“smallest” for parameters belonging to N2).

Let us end this section with the problem of the definition of two-
dimensional substitutions. Unlike the classical one-dimensional case, the no-
tion of a two-dimensional substitution is not trivial. Consider a map which
associates with a letter a pointed two-dimensional pattern. We first need
more information to know where to place the image of a letter. Two natural
problems then arise. First, it is not immediate to prove the consistency if one
wants to apply the substitution to a finite pattern or to a double sequence.
Secondly, how can one iterate such a process to generate a double sequence?
Two notions of substitutions are introduced in [36]. Pointed substitutions are
first defined: given the value of the initial sequence at the point x, one can de-
duce the value of the image sequence on a pointed pattern situated at a point
y that can be computed from x and its value. This is however inconvenient
for explicit computation, since one needs at each step global information. In
particular it is difficult to iterate it in order to generate a double sequence.
It is much more convenient to be able to use a local information, i.e., local
rules (this is exactly what is done when one computes one-dimensional sub-
stitutions: one does not compute the exact position of a given pattern, but
one only uses the fact that patterns follow each other). Roughly speaking,
a local rule says how to place the image of a pointed letter with respect to
the images of the letters belonging to a finite neighborhood. If we know the
image of the initial point, we can compute the values of adjacent points by
using a finite number of patterns, and in this way, compute the image of the
complete sequence. See also for a study of rectangle substitutions [195].

Questions. Can one build other examples of substitutions endowed with lo-
cal rules as the ones produced in [36]? Given a substitution with local rules,
does the limit of the iterates cover Z2? Can one introduce a different no-
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tion of substitution which can be used for the generation of two-dimensional
sequences?

12.4 Substitutions, rotations and toral automorphisms

The general question of the isomorphism between a substitutive dynamical
system and a rotation brings many open questions. For more details, see
Chap. 7.

The dynamical system generated by the Tribonacci substitution is measu-
re-theoretically isomorphic to a translation on the torus T2. The isomorphism
is a continuous onto map from the orbit closure of the fixed point of the sub-
stitution to the torus. The images of the three basic cylinders corresponding
to the letters are connected, and even simply connected domains of the torus.
The three basic sets are bases for the three cylinders of a Markov partition
for the automorphism of the torus T3 associated with the substitution. Do
these properties extend to some other symbolic dynamical systems?

Let us recall (Theorem 7.5.18) that the symbolic dynamical system associ-
ated with a unimodular substitution of Pisot type over a two-letter alphabet
{0, 1} is measure-theoretically isomorphic to a rotation on T (for more de-
tails, see Chap. 7, and in particular Sec. 7.5.3). This is obtained by proving
[54] that this class of substitution satisfies the following coincidence condi-
tion: there exist two integers k, n such that σn(0) and σn(1) have the same
k-th letter, and the prefixes of length k−1 of σn(0) and σn(1) have the same
number of occurrences of the letter 0.

It is conjectured that every unimodular substitution of Pisot type over
three letters satisfies a coincidence condition on three letters (see Chap. 7).
It is not known whether there exists a unimodular substitution of Pisot type
that does not satisfy the coincidence condition.

Conjecture 12.4.1. If the Perron–Frobenius eigenvalue of the incidence ma-
trix of a unimodular substitution is a Pisot number, then the dynamics of the
substitution is measure-theoretically isomorphic to a rotation on the torus.

A connected problem is the following, addressed by Liardet in [188]: is the
odometer associated with the numeration scale related to a real number β > 1
isomorphic in measure to a translation on a compact group if β is a canonical
Pisot number (i.e., β has a finite β-expansion and the associated companion
polynomial is irreducible over Q)?

Other natural questions arise concerning the topological properties of the
fractal domain Xσ associated with a substitution, such as the question of
connectedness and simple connectedness : Canterini gives in [102] a sufficient
condition for the connectivity of the exchange of domains associated with
unimodular substitutions of Pisot type.
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Question. Can one give a characterization of those substitutions for which
the associated domains are connected or simply connected?

12.5 Arithmetics in SL(d,N) and SL(d,Z)

We have considered here products of substitutions via the S-adic conjecture.
This can also be expressed in terms of products of matrices. It is thus natural
from an algebraic point of view to consider the properties of the monoid
SL(d,N) and of the group SL(d,Z), for d ≥ 2.

Definitions. For d ≥ 2, let SL(d,N) (respectively SL(d,Z)) denote the set of
matrices of determinant 1 with nonnegative (respectively integer) coefficients.
This set endowed with the multiplication is a monoid (respectively a group),
whose identity element is the identity matrix Id.

A matrix M in SL(d,N) is said to be a unit if it admits an inverse in
SL(d,N), i.e., if there exists a matrix N ∈ SL(d,N), such that MN = Id.
It is easy to check that the unit matrices are exactly the even permutation
matrices; there is no nontrivial unit for d = 2, and there are 2 units different
from the identity if d = 3, that is, the matrices:

P =


 0 1 0

0 0 1
1 0 1


 , P2 =


0 0 1

1 0 0
0 1 0


 .

A matrix M in SL(d,N) is said to be undecomposable if it is not a unit
matrix, and if, for any pair of matrices A,B in SL(d,N) such that M = AB,
A or B is a unit.

Structure of SL(2,N). The structure of the monoid SL(2,N) is very sim-
ple; this is a free monoid with two generators (for more details, see Chap.
6)

A =
(

1 0
1 1

)
, B =

(
1 1
0 1

)
.

These two matrices A and B are the only undecomposable matrices in
SL(2,N), and any matrix admits a unique decomposition in terms of these
two undecomposable elements. This decomposition is a matricial translation
of the Euclidean algorithm and it corresponds to the continued fraction ex-
pansion.

Structure of SL(3,N). The situation in SL(3,N) is completely different.
Note that this monoid is not free. Furthermore, we have the following theo-
rem. For a proof of this result (by J. Rivat), see Appendix A.

Theorem 12.5.1 (Rivat). There exist infinitely many undecomposable ma-
trices in SL(3,N).
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Questions. Can one give a simple characterization of the undecomposable
matrices in SL(3,N)? Can one find an explicit family of undecomposable
generators of SL(3,N)?

Some motivations for this question are the following: first, a decomposi-
tion of a matrix as a product of undecomposable matrices can be seen as a
multidimensional continued fraction algorithm; secondly, it can also provide
a better understanding of the automorphisms of the torus.

Invertible substitutions. A substitution over the alphabet A is said to be
invertible if it extends to a morphism of the free group generated by A.

Invertible substitutions over a two-letter alphabet are completely char-
acterized (see Sec. 9.2 and Chap. 6). In particular they are Sturmian, i.e.,
they preserve Sturmian words. In particular, the monoid of invertible substi-
tutions is finitely generated. One is far from understanding the structure of
the monoid of invertible substitutions over a larger size alphabet: indeed the
monoid of invertible substitutions over a d-letter alphabet is no more finitely
generated, for d > 2 (see [451]). Let us recall that SL(3,N) is not finitely gen-
erated (Theorem 12.5.1). However, these two results, which could be thought
nearly equivalent, are in fact completely unrelated. First, the substitutions
of [451] have matrices which are decomposable as products of elementary
matrices, and second, the abelianization map is not onto: there are positive
matrices of determinant 1 that are not matrices of invertible substitutions
for d = 3.

Question. Can one characterize invertible substitutions over a larger size al-
phabet?

Some decision problems. Some related decision problems can be consid-
ered, and most of them turn out to be undecidable in dimension at least 3,
such as the mortality problem, that is, the presence of the zero matrix in a
finitely generated subsemigorup.

In particular, is it possible to find an algorithm which decides whether
the semigroup generated by two or more square matrices of dimension two
over the nonnegative integers is free? The answer is negative in the three-
dimensional case: namely, this problem is shown to be undecidable by reduc-
ing the Post correspondence problem to it [248]. It is shown in [107] that
the above problem is still undecidable for square matrices of dimension 3
that are upper-triangular. Furthermore, in the case of two upper-triangular
2×2 matrices, sufficient conditions for freeness of the semigroup generated by
these two matrices are given. Related undecidable problems for 2-generator
matrix semigroups are the following (see [108]): given two square matrices,
decide whether the semigroup that they generate contains the zero matrix,
and whether it contains a matrix having a zero in the right upper corner.



A. Undecomposable matrices in dimension 3
(by J. Rivat)

Let us recall that SL(d,N) denotes the monoid of square matrices of dimen-
sion d with nonnegative integer coefficients and determinant 1. A matrix M is
a unit if there exists a matrix N such that MN = Id. A matrix M of SL(d,N)
is undecomposable if it is not a unit, and if, for all pair of matrices A,B in
SL(d,N) such that M = AB, A or B is a unit. The aim of this appendix is
to answer to the natural question: does there exist an infinite number of un-
decomposable matrices in SL(3,N)? The following theorem gives a positive
answer:

Theorem A.0.2. For any integer n ≥ 3, the following matrix is undecom-
posable:

Mn =


 1 0 n

1 n−1 0
1 1 n−1


 .

Remark. The matrices M1 and M2 are not undecomposable, since

M1 =


 1 0 1

1 0 0
1 1 0


 =


 1 0 0

0 1 0
0 1 1




1 0 1

1 0 0
0 1 0


 , M2 =


1 0 0

0 1 0
0 1 1




1 0 2

1 1 0
0 0 1


 .

Proof. We fix n ≥ 3. We consider A,B ∈ SL(3,N) such that AB = Mn,
and we denote:

A =


a1 a2 a3
b1 b2 b3
c1 c2 c3


 , B =


x1 x2 x3
y1 y2 y3
z1 z2 z3


 .

If a1a2a3 �= 0, using the relation a1x2 + a2y2 + a3z2 = 0, we deduce that
x2 = y2 = z2 = 0, which is impossible for a matrix of determinant 1. Hence
a1a2a3 = 0, and, up to a cyclic permutation of the columns (multiplication
by P or P2), one has either a1 �= 0, a2 = a3 = 0 or a1 �= 0, a2 = 0, a3 �= 0
(the case a1 = a2 = a3 = 0 is impossible since det(A) = 1).
1 This appendix has been written by J. Rivat; Institut Elie Cartan de Nancy;

Faculté des Sciences; B.P. 239; 54506 Vandoeuvre-lès-Nancy Cedex; FRANCE;
rivat@iecn.u-nancy.fr

N. Pytheas Fogg: LNM 1794, V. Berthé et al. (Eds.), pp. 375–376, 2002.
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From the two null coefficients of Mn, one obtains:

a1x2 = a2y2 = a3z2 = b1x3 = b2y3 = b3z3 = 0.

First case: Suppose a1 �= 0, a2 = a3 = 0, hence x2 = 0.
Since det(A) = a1(b2c3 − b3c2) = 1, one has a1 = 1. Hence the first line

of A is (1 0 0), which implies that the first line of B is the same as the first
line of Mn.

From the equation above b1x3 = 0, and x3 = n, one obtains b1 = 0; from
the equation c1x3 + c2y3 + c3z3 = n − 1 and x3 = n, one obtains c1 = 0,
hence:

A =


 1 0 0

0 b2 b3
0 c2 c3


 , B =


 1 0 n
y1 y2 y3
z1 z2 z3


 .

Since det(A) = b2c3 − b3c2 = 1, b2 must be strictly positive; hence,
from the equation above b2y3 = 0, one obtains y3 = 0. From the equation
c3z3 = n − 1, one obtains that z3 is strictly positive, hence, since b3z3 = 0,
one has b3 = 0; using again det A = 1, we get b2 = c3 = 1. Since the second
line of A is (0 1 0), the second line of B must be that of Mn, hence:

A =


 1 0 0

0 1 0
0 c2 1


 , B =


 1 0 n

1 n− 1 0
z1 z2 z3


 .

This implies that (n− 1)c2 + z2 = 1, hence c2 = 0, and A is the identity
matrix.

Second case: Suppose a1 �= 0, a2 = 0, a3 �= 0.
We have then x2 = z2 = 0. Since det(B) = y2(x1z3 − x3z1) = 1, one

obtains y2 = 1; this implies as above that the second column of A is that of
Mn. Hence:

A =


a1 0 a3
b1 n− 1 b3
c1 1 c3


 , B =


x1 0 x3
y1 1 y3
z1 0 z3


 .

From the determinant of B, one obtains that x1 and z3 are strictly posi-
tive, and from the equation a1x1 + a3z1 = 1, one obtains that a1 = x1 = 1,
z1 = 0, hence, again from the determinant of B, z3 = 1. Hence:

A =


 1 0 a3
b1 n− 1 b3
c1 1 c3


 , B =


 1 0 x3
y1 1 y3
0 0 1


 .

From the equation b1 + (n − 1)y1 = 1, one obtains y1 = 0, b1 = 1, and
from the equation b1x3 + (n− 1)y3 + b3 = 0, one obtains x3 = y3 = 0, hence
B is the identity, which ends the proof.
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formelles, C. R. Acad. Sci. Paris , Série I 307 (1988), 631–633.

28. J.-P. Allouche, Note on an article of H. Sharif and C. F. Woodcock: “Alge-
braic functions over a field of positive characteristic and Hadamard products”,
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Jacobi-Perron et de la transformation associée, Ann. Inst. Fourier 51 (2001),
565–686.

93. A. Broise, Fractions continues multidimensionnelles et lois stables, Bull. Soc.
Math. France 124 (1996), 97–139.

94. A. Broise, Transformations dilatantes de l’intervalle et théorèmes limites.
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cutting sequences, J. Théor. Nombres Bordeaux 5 (1993), 123–137.
127. K. Dadjani and C. Kraaikamp, Ergodic theory of numbers, Preprint, 2002.
128. G. Damamme and Y. Hellegouarch, Transcendence of the values of the

Carlitz zeta function by Wade’s method, J. Number Theory 39 (1991), 257–
278.

129. J. L. Davison, A class of transcendental numbers with bounded partial quo-
tients, in Number theory and applications (Banff, AB, 1988), pp. 365–371,
Kluwer Acad. Publ., Dordrecht, 1989.

130. F. M. Dekking and M. Keane, Mixing properties of substitutions, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978), 23–33.



References 383

131. F. M. Dekking, The spectrum of dynamical systems arising from substitu-
tions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41
(1977/78), 221–239.

132. F. M. Dekking, On the structure of self-generating sequences, in Séminaire
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129–143.

136. A. del Junco and M. Keane, On generic points in the Cartesian square of
Chacón’s transformation, Ergodic Theory Dynam. Systems 5 (1985), 59–69.

137. A. del Junco, M. Rahe and L. Swanson, Chacon’s automorphism has
minimal self-joinings, J. Analyse Math. 37 (1980), 276–284.

138. A. del Junco, A transformation with simple spectrum which is not rank one,
Canad. J. Math. 29 (1977), 655–663.
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Hermann, Paris, 1994. Second ed., with notes by J.-P. Kahane, T. W. Körner,
R. Lyons and S. W. Drury.

229. T. Kamae, J.-I. Tamura and Z.-Y. Wen, Hankel determinants for the Fi-
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246. A. Y. Khintchine, Continued fractions, P. Noordhoff, Ltd., Groningen, 1963.
247. B. P. Kitchens, Symbolic dynamics, Springer-Verlag, Berlin, 1998.
248. D. A. Klarner, J.-C. Birget and W. Satterfield, On the undecidability

of the freeness of integer matrix semigroups, Internat. J. Algebra Comput. 1
(1991), 223–226.



388 References

249. B. G. Klein, Homomorphisms of symbolic dynamical systems, Math. Systems
Theory 6 (1972), 107–122.

250. W. Kolakoski, Problem 5304, Amer. Math. Monthly 72 (1965), 674.
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Méditerranée, 1996.

290. A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy,
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340. M. Queffélec, Substitution dynamical systems—spectral analysis, Springer-
Verlag, Berlin, 1987. Lecture Notes in Mathematics, Vol. 1294.
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in Séminaire de Théorie des Nombres (Talence, 1987–1988), Univ. Bordeaux
I, 1988. Exp. No. 21.

354. J. P. Razmyslov, Trace identities of full matrix algebras over a field of char-
acteristic zero, Izv. Akad. Nauk SSSR ser. Mat. 38 (1974). English translation
in Math. USSR Izvestija, 8(1974): 727–760.

355. F. Recher, Propriétés de transcendance de séries formelles provenant de
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Nombres (Talence, 1986–1987), Univ. Bordeaux I, 1987. Exp. No. 4.
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430. A. Thue, Über unendliche Zeichenreihen, in Selected mathematical papers,
pp. 139–158, Universitetsforlaget, Oslo, 1977. Originally published in Chris-
tiania Vidensk. Selsk. Skr. 1906, no. 7; Jbuch 37, 66.

431. W. P. Thurston, Groups, tilings and finite state automata. Lectures notes
distributed in conjunction with the Colloquium Series, in AMS Colloquium
lectures, 1989.

432. M. Tobe, Introduction to Hungarian, Tairyûsha, Tokyo, 1988. In Japanese.
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İstanbul Üniv. Fen Fak. Mat. Derg. 49 (1990), 57–75. International Symposium
on Algebra and Number Theory (Silivri, 1990).

445. P. Walters, An introduction to ergodic theory, Springer-Verlag, New York,
1982.

446. K. Wargan, S-adic dynamical systems and Bratelli diagrams, PhD thesis,
George Washington University, 2001.

447. Z.-X. Wen and Z.-Y. Wen, Some studies of factors of infinite words gen-
erated by invertible substitutions, in Procedings of the 5th Conference Formal
Power Series and Algebraic Combinatorics, Florence, pp. 455–466, 1993.

448. Z.-X. Wen and Z.-Y. Wen, Local isomorphisms of invertible substitutions,
C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 299–304.

449. Z.-X. Wen and Z.-Y. Wen, On the leading term and the degree of the
polynomial trace mapping associated with a substitution, J. Statist. Phys. 75
(1994), 627–641.

450. Z.-X. Wen and Z.-y. Wen, Some properties of the singular words of the
Fibonacci word, European J. Combin. 15 (1994), 587–598.

451. Z.-X. Wen and Y.-P. Zhang, Some remarks on invertible substitutions on
three letter alphabet, Chinese Sci. Bull. 44 (1999), 1755–1760.

452. Z.-X. Wen, Diverses études sur l’automaticité, PhD thesis, Université Paris-
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absolute value, 28, 66
absolutely continuous measure, 24
additive coding sequence, 164, 166
adic dynamical system, 212
admissible sequences, 164
algebraic formal power series, 48, 55, 61
alphabet, 2
angle of a rotation sequence, 151
Arnoux-Rauzy sequences, 6, 86, 231,

367
at most linear complexity, 363
automatic sequence, 13
automaton, 12, 205

balanced, 147, 156
basic square, 258
Baum-Sweet sequence, 47
Beatty sequence, 82
beta
– expansion, 208, 291
– numeration, 230
– transformation, 291, 353
billiards, 84
bispecial factor, 3, 165
block, 2, 134
boundary endomorphism, 283
bounded variation, 345
Burnside’s problem, 104

canonical homomorphism (of abelian-
ization), 8

Cantor
– sequence, 49
– set, 4
– substitution, 49
ceiling, 151
Chacon
– map, 134
– substitution, 9, 133
character, 22, 121
clopen set, 5

coboundary, 223
coding
– of a dynamical system, 120
– of a rotation, 151
coincidence condition
– n-letter substitutions, 242
– constant length substitutions, 220
– two-letter substitutions, 230
complexity function, 3, 104
concatenation, 2, 328
conformal measure, 361
conjugacy
– semi-topological, 18, 120
– topological, 107
conjugation
– of substitutions, 299
– of words, 297, 333
continued fraction substitutions, 257
continuous spectrum, 22
contracting invariant plane, 233, 255
convergents, 179
correlation
– measure, 26, 38
– sequence, 25, 44
covering, 355
cutting sequence, 152
cyclic reduction, 333
cylinder set, 5

decay of correlations, 346
density function, 344
derived sequence, 80
desubstitution map, 215
diagonal of a double power series, 62
direct reading automaton, 13
discrete plane, 259
discrete spectrum, 22, 119
domain exchange, 234
dual coding sequence, 173
dyadic rotation, 121
dynamical system
– measure-theoretic, 19
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– symbolic, 5
– topological, 107

eigenfunctions, 21
eigenvalue
– irrational, 21
– trivial coboundary, 223
endomorphism of free group, 330
equilibrium state, 344
equivalent measures, 24
ergodic, 19, 136
– components, 142
– theorem, 110, 113
exit map of an automaton, 13
expanding, 345
extension
– of a factor, 3
– of a topological dynamical system, 18

factor, 2
– bispecial, 3, 165
– of a dynamical system, 141
– with fiber two, 123
Fibonacci
– expansion, 52
– number, 131
– sequence, 7, 51, 131
– substitution, 7, 51, 131, 298, 330
first return time, 130
fixed sequence of a Sturmian system,

159
Fourier coefficients, 24
fractional part, 151
Fredholm matrix, 348
free
– group, 8, 296, 328
– monoid, 2
– semi-group, 2, 328
frequency, 10, 149
Fricke characters, 329

Galois’ theorem, 184
generating
– functions, 348
– sequence of partitions, 115
generic point, 139
geodesic, 101
geodesic flow, 194
geometric representation, 231
golden ratio number, 131
graph, 204
group of p-adic integers, 28, 121

Hamming distance, 103

Hausdorff
– dimension, 355
– measure, 355
– topology, 278
Hensel expansion, 28
horocycle flows, 141
Hungarian-Japanese partition, 88

incidence matrix, 8, 128
induced map, 130, 176
infinite word, 2
initial point of a rotation sequence, 151
integral part, 151
intercept, 152
invariant
– function, 17
– measure, 12, 107
– of conjugacy, 22
inverse word, 296
invertible substitution, 8, 270, 298, 374
isolated letter, 146
isomorphism
– measure-theoretical, 20, 120
– spectral, 118
– topological, 18
itinerary, 176

joining, 139

kernel of a sequence, 15, 56
Kolakoski word, 93

Lagrange’s theorem, 47, 183
language, 2
Laurent formal power series, 54
left special
– sequence, 154
– word, 154
length of a word, 2
letter-to-letter projection, 13
linear
– polynomials, 55
– recurrent sequence, 365
local isomorphism, 296
log-fixed point, 94
Lyndon word, 312

Markov
– compactum, 212
– transformation, 344
matrix
– irreducible, 10
– of incidence, 8, 128
– primitive, 10
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– stochastic, 213
– undecomposable, 373
– unit, 373
maximal
– equicontinuous factor, 32
– spectral type, 25
measure of automaticity, 80
measure-theoretic
– dynamical system, 19
– factor, 20
– isomorphism, 20, 120
minimal
– dynamical system, 17, 106
– sequence, 6, 102
mirror image, 297
mixing
– strong, 136
– weak, 22, 134, 136
modified Jacobi-Perron
– algorithm, 286
– substitutions, 254
monoid, 2
Morse
– sequence, 7, 35, 55
– substitution, 7, 35
multiplicative coding sequence for a

Sturmian system, 166
multiplicity of the spectrum, 25, 119

natural
– coding of a rotation, 368
– extension, 186, 286
negatively eventually periodic, 156
non-Archimedean absolute value, 66
non-atomic measure, 110
nonperiodic partition of an infinite

sequence, 81
normal number, 114

occurrence, 2
odometer, 29, 121
one-sided shift, 4
orbit of a sequence, 5
Ore’s lemma, 55
output function of an automaton, 13

palindrome, 148, 297
partial quotients, 179
partially continuous spectrum, 22
partition corresponding to an infinite

word, 81
patches, 260
period-doubling sequence, 124
periodic sequence, 2

Perron–Frobenius operator, 346
piecewise
– linear, 344
– monotonic transformation, 344
Pisot
– substitution, 11, 138, 237
– Vijayaraghavan number, 11, 237
position of a factor, 2
positive definite sequence, 24
positively eventually periodic, 156
positively separated, 308
prefix-suffix automaton, 216
primitive
– matrix, 10
– substitution, 9, 128
– word, 297
probability measure, 107
Procesi-Razmyslov algebra, 330
proper Markov compactum, 213
Prouhet’s problem, 37
Prouhet-Thue-Morse sequence, 102
pumping lemma, 150
pure base of a substitution, 220

quasi-periodic tiling, 290
question-mark-function, 95

rank
– at most r, 115
– one, 115
Rauzy
– fractal, 233, 238, 256
– induction, 130
– substitution, 232, 254
recognizability, 102, 210
rectangle complexity function, 370
recurrent sequence, 2
regular language, 150
renewal equation, 349
representation of the free monoid, 329
retrogression, 174
return word, 80, 224, 365
reverse reading automaton, 13
Rokhlin
– Kakutani exduction, 138
– stack, 115
rotation
– on a compact group, 18, 120, 219
– sequence, 151, 176
Rudin-Shapiro sequence, 42, 125
Ruelle’s zeta function, 352

S-adic system, 364
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scenery flow, 195
self-joining, 139
self-similarity, 209
– Rauzy fractal, 235
semi-topological conjugacy, 18, 120
sequence, 2
sesquipower, 319
shift
– associated with a graph, 204
– of finite type, 203
– periodicity, 2, 12
similis partition, 87
simple spectrum, 25, 119
singular word, 305
skew product, 123
slope of a Sturmian sequence, 152
sofic system, 205
solenoid, 30
spacers, 134
special factor, 3, 367
spectral type, 24, 119
spectrum
– continuous, 22, 24
– discrete, 22, 119
– irrational, 21
– partially continuous, 22
– topological, 23
square billiards, 152
square-free word, 103
stack (Rokhlin), 115, 117
standard morphism, 197
states of an automaton, 13
stepped
– curves, 267
– surfaces, 259
stochastic matrix, 213
strongly mixing, 136, 352
structure matrix of a Markov map, 345
Sturmian
– biinfinite sequence, 157
– sequence, 6, 132, 145
– – over s+ 1 letters, 6, 85
– – over a two-letter alphabet, 132
– substitution, 197
– system, 158
substitution, 7
– invertible, 270

– of Pisot type, 11, 237
– two-dimensional, 61
– unimodular, 8
symbolic dynamical system, 5

tiling, 209
time evolution, 344
Toeplitz substitution, 124
topological
– conjugacy, 18, 107
– dynamical system, 17, 107
– factor, 18
– isomorphism, 18
– spectrum, 23
totally unbalanced sequence, 368
trace map, 322, 331, 337
transcendental formal power series, 55
transition maps of an automaton, 13
Tribonacci
– number, 233
– sequence, 368
– substitution, 232
two-dimensional
– k-automaton, 61
– substitution, 61
two-point extension of a dynamical

system, 123
type, 146

ultimately periodic sequence, 2
undecomposable matrix, 373
uniform tag sequence, 14
uniformly recurrent sequence, 5
unimodular substitution, 8
unique ergodicity, 12, 18, 108
unit matrix, 373
unitary operator, 21

Van der Corput map, 121
Von Neumann–Kakutani map, 123

weakly mixing, 22, 134, 136
width of a word, 333
word, 2

Zeckendorff numeration system, 51
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