
Preface

In short terms, ergodic theory is the mathematical discipline that deals
with dynamical systems endowed with invariant measures. Let us begin by
explaining what we mean by this and why these mathematical objects are so
worth studying. Next, we highlight some of the major achievements in this
field, whose roots go back to the physics of the late 19th century. Near the
end of the preface, we outline the content of this book, its structure and its
prerequisites.

What is a dynamical system?

There are several definitions of what a dynamical system is some more general
than others. We restrict ourselves to two main models.

The first one, to which we refer most of the time, is a transformation f :
M → M in some space M. Heuristically, we think of M as the space of all
possible states of a given system. Then f is the evolution law, associating with
each state x ∈ M the one state f (x) ∈ M the system will be in a unit of time
later. Thus, time is a discrete parameter in this model.

We also consider models of dynamical systems with continuous time,
namely flows. Recall that a flow in a space M is a family f t : M →M, t ∈R of
transformations satisfying

f 0 = identity and f t ◦ f s = f t+s for all t,s ∈R. (0.0.1)

Flows appear, most notably, in connection with differential equations: take f t

to be the transformation associating with each x ∈M the value at time t of the
solution of the equation that passes through x at time zero.

We always assume that the dynamical system is measurable, that is, that the
space M carries a σ -algebra of measurable subsets that is preserved by the
dynamics, in the sense that the pre-image of any measurable subset is still a
measurable subset. Often, we take M to be a topological space, or even a metric
space, endowed with the Borel σ -algebra, that is, the smallest σ -algebra that
contains all open sets. Even more, in many of the situations we consider in
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x Preface

this book, M is a smooth manifold and the dynamical system is taken to be
differentiable.

What is an invariant measure?

A measure in M is a non-negative function μ defined on the σ -algebra of M,
such that μ(∅)= 0 and

μ
(∪n An)=

∑
n

μ(An)

for any countable family {An} of pairwise disjoint measurable subsets. We
call μ a probability measure if μ(M) = 1. In most cases, we deal with finite
measures, that is, such that μ(M) < ∞. Then we can easily turn μ into a
probability ν: just define

ν(E)= μ(E)

μ(M)
for every measurable set E⊂M.

In general, we say that a measure μ is invariant under a transformation f if

μ(E)=μ(f−1(E)) for every measurable set E⊂M. (0.0.2)

Heuristically, this may be read as follows: the probability that a point is in any
given measurable set is the same as the probability that its image is in that set.
For flows, we replace (0.0.2) by

μ(E)=μ(f−t(E)) for every measurable set E⊂M and t ∈R. (0.0.3)

Notice that (0.0.2)–(0.0.3) do make sense since, by assumption, the pre-image
of a measurable set is also a measurable set.

Why study invariant measures?

As in any other branch of mathematics, an important part of the motivation
is intrinsic and aesthetical: as we will see, these mathematical structures
have deep and surprising properties, which are expressed through beautiful
theorems. Equally fascinating, ideas and results from ergodic theory can be
applied in many other areas of mathematics, including some that do not seem
to have anything to do with probabilistic concepts, such as combinatorics and
number theory.

Another key motivation is that many problems in the experimental sci-
ences, including many complicated natural phenomena, can be modelled by
dynamical systems that leave some interesting measure invariant. Historically,
the most important example came from physics: Hamiltonian systems, which
describe the evolution of conservative systems in Newtonian mechanics, are
described by certain flows that preserve a natural measure, the so-called
Liouville measure. Actually, we will see that very general dynamical systems
do possess invariant measures.
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Preface xi

Yet another fundamental reason to be interested in invariant measures is
that their study may yield important information on the dynamical system’s
behavior that would be difficult to obtain otherwise. Poincaré’s recurrence
theorem, one of the first results we analyze in this book, is a great illustration
of this: it asserts that, relative to any finite invariant measure, almost every orbit
returns arbitrarily close to its initial state.

Brief historic survey

The word ergodic is a concatenation of two Greek words, εργ oν (ergon) =
work and oδoσ (odos) = way, and was introduced in the 19th century by the
Austrian physicist L. Boltzmann. The systems that interested Boltzmann, J. C.
Maxwell and J. C. Gibbs, the founders of the kinetic theory of gases, can be
described by a Hamiltonian flow, associated with a differential equation of the
form(

dq1

dt
, . . . ,

dqn

dt
,
dp1

dt
, . . . ,

dpn

dt

)
=
(
∂H

∂p1
, . . . ,

∂H

∂pn
,− ∂H

∂q1
, . . . ,− ∂H

∂qn

)
.

Boltzmann believed that typical orbits of such a flow fill in the whole energy
surface H−1(c) that contains them. Starting from this ergodic hypothesis, he
deduced that the (time) averages of observable quantities along typical orbits
coincide with the (space) averages of such quantities on the energy surface,
which was crucial for his formulation of the kinetic theory of gases.

In fact, the way it was formulated originally by Boltzmann, this hypothesis is
clearly false. So, the denomination ergodic hypothesis was gradually displaced
to what would have been a consequence, namely, the claim that time averages
and space averages coincide. Systems for which this is true were called
ergodic. And it is fair to say that a great part of the progress experienced by
ergodic theory in the 20th century was motivated by the quest to understand
whether most Hamiltonian systems, especially those that appear in connection
with the kinetic theory of gases, are ergodic or not.

The foundations were set in the 1930’s, when J. von Neumann and
G. D. Birkhoff proved that time averages are indeed well defined for almost
every orbit. However, in the mid 1950’s, the great Russian mathematician
A. N. Kolmogorov observed that many Hamiltonian systems are actually
not ergodic. This spectacular discovery was much expanded by V. Arnold
and J. Moser, in what came to be called KAM (Kolmogorov–Arnold–Moser)
theory.

On the other hand, still in the 1930’s, E. Hopf had given the first important
examples of Hamiltonian systems that are ergodic, namely, the geodesic flows
on surfaces with negative curvature. His result was generalized to geodesic
flows on manifolds of any dimension by D. Anosov, in the 1960’s. In fact,
Anosov proved ergodicity for a much more general class of systems, both with
discrete time and in continuous time, which are now called Anosov systems.
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An even broader class, called uniformly hyperbolic systems, was introduced
by S. Smale and became a major focus for the theory of dynamical systems
through the last half a century or so. In the 1970’s, Ya. Sinai developed the
theory of Gibbs measures for Anosov systems, conservative or dissipative,
which D. Ruelle and R. Bowen rapidly extended to uniformly hyperbolic
systems. This certainly ranks among the greatest achievements of smooth
ergodic theory.

Two other major contributions must also be mentioned in this brief survey.
One is the introduction of the notion of entropy, by Kolmogorov and Sinai,
near the end of the 1950’s. Another is the proof that the entropy is a complete
invariant for Bernoulli shifts (two Bernoulli shifts are equivalent if and only if
they have the same entropy), by D. Ornstein, some ten years later.

By then, the theory of non-uniformly hyperbolic systems was being initiated
by V. I. Oseledets, Ya. Pesin and others. But that would take us beyond the
scope of the present book.

How this book came to be

This book grew from lecture notes we wrote for the participants of mini-courses
we taught at the Department of Mathematics of the Universidade Federal
de Pernambuco (Recife, Brazil), in January 2003, and at the meeting Novos
Talentos em Matemática held by Fundação Calouste Gulbenkian (Lisbon,
Portugal), in September 2004.

In both cases, most of the audience consisted of young undergraduates with
little previous contact with measure theory, let alone ergodic theory. Thus, it
was necessary to provide very friendly material that allowed such students to
follow the main ideas to be presented. Still at that stage, our text was used by
other colleagues, such as Vanderlei Horita (São José do Rio Preto, Brazil), for
teaching mini-courses to audiences with a similar profile.

As the text evolved, we have tried to preserve this elementary character
of the early chapters, especially Chapters 1 and 2, so that they can used
independently of the rest of the book, with as few prerequisites as possible.

Starting from the mini-course we gave at the 2005 Colóquio Brasileiro de
Matemática (IMPA, Rio de Janeiro), this project acquired a broader purpose.
Gradually, we evolved towards trying to present in a consistent textbook format
the material that, in our view, constitutes the core of ergodic theory. Inspired
by our own research experience in this area, we endeavored to assemble in
a unified presentation the ideas and facts upon which is built the remarkable
development this field experienced over the last decades.

A main concern was to try and keep the text as self-contained as possible.
Ergodic theory is based on several other mathematical disciplines, especially
measure theory, topology and analysis. In the appendix, we have collected the
main material from those disciplines that is used throughout the text. As a rule,
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Preface xiii

proofs are omitted, since they can easily be found in many of the excellent
references we provide. However, we do assume that the reader is familiar with
the main tools of linear algebra, such as the canonical Jordan form.

Structure of the book

The main part of this book consists of 12 chapters, divided into sections and
subsections, and one appendix, also divided into section and subsections. A list
of exercises is given at the end of every section, appendix included. Statements
(theorems, propositions, lemmas, corollaries, etc.), exercises and formulas are
numbered by section and chapter: for instance, (2.3.7) is the seventh formula in
the third section of the second chapter and Exercise A.5.1 is the first exercise
in the fifth section of the appendix. Hints for selected exercises are given in
special chapter after the appendix. At the end, we provide a list of references
and an index.

Chapters 1 through 12 organized as follows:

• Chapters 1 through 4 constitute a kind of introductory cycle, in which we
present the basic notions and facts in ergodic theory—invariance, recurrence
and ergodicity—as well as some main examples. Chapter 3 introduces the
fundamental results (ergodic theorems) upon which the whole theory is
built.

• Chapter 4, where we introduce the key notion of ergodicity, is a turning point
in our text. The next two chapters (Chapters 5 and 6) develop a couple of
important related topics: decomposition of invariant measures into ergodic
measures and systems admitting a unique, necessarily ergodic, invariant
measure.

• Chapters 7 through 9 deal with very diverse subjects—loss of memory, the
isomorphism problem and entropy—but they also form a coherent structure,
built around the idea of considering increasingly chaotic systems: mixing,
Lebesgue spectrum, Kolmogorov and Bernoulli systems.

• Chapter 9 is another turning point. As we introduce the fundamental concept
of entropy, we take our time to present it to the reader from several different
viewpoints. This is naturally articulated with the content of Chapter 10,
where we develop the topological version of entropy, including an important
generalization called pressure.

• In the two final chapters, 11 and 12, we focus on a specific class of
dynamical systems, called expanding transformations, that allows us to
exhibit a concrete (and spectacular!) application of many of the general
ideas presented the text. This includes Ruelle’s theorem and its applications,
which we view as a natural climax of the book.

Appendices A.1 through A.2 cover several basic topics of measure and
integration. Appendix A.3 deals with the special case of Borel measures in
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metric spaces. In Appendix A.4 we recall some basic facts from the theory
of manifolds and smooth maps. Similarly, Appendices A.5 and A.6 cover
some useful basic material about Banach spaces and Hilbert spaces. Finally,
Appendix A.7 is devoted to the spectral theorem.

Examples and applications have a key part in any mathematical discipline
and, perhaps, even more so in ergodic theory. For this reason, we devote special
attention to presenting concrete situations that illustrate and put in perspective
the general results. Such examples and constructions are introduced gradually,
whenever the context seems better suited to highlight their relevance. They
often return later in the text, to illustrate new fundamental concepts as we
introduce them.

The exercises at the end of each section have a threefold purpose. There
are routine exercises meant to help the reader become acquainted with the
concepts and the results presented in the text. Also, we leave as exercises
certain arguments and proofs that are not used in the sequel or belong to more
elementary related areas, such as topology or measure theory. Finally, more
sophisticated exercises test the reader’s global understanding of the theory. For
the reader’s convenience, hints for selected exercises are given in a special
chapter following the appendix.

How to use this book?

These comments are meant, primarily, for the reader who plans to use this
book to teach a course. Appendices A.1 through A.7 provide quick references
to background material. In principle, they are not meant to be presented in
class.

The content of Chapters 1 through 12 is suitable for a one-year course, or
a sequence of two one-semester courses. In either case, the reader should be
able to cover most of the material, possibly reserving some topics for seminars
given by the students. The following sections are especially suited for that:

Section 1.5, Section 2.5, Section 3.4, Section 4.4, Section 6.4, Section 7.3,
Section 7.4, Section 8.3, Section 8.4, Section 8.5, Section 9.5, Section 9.7,
Section 10.4, Section 10.5, Section 11.1, Section 11.3, Section 12.3 and
Section 12.4.

In this format, Ruelle’s theorem (Theorem 12.1) and its applications are a
natural closure for the course.

In case only one semester is available, some selection of topics will be
necessary. The authors’ suggestion is to try and cover the following program:

Chapter 1: Sections 1.1, 1.2 and 1.3.
Chapter 2: Sections 2.1 and 2.2.
Chapter 3: Sections 3.1, 3.2 and 3.3.
Chapter 4: Sections 4.1, 4.2 and 4.3.
Chapter 5: Section 5.1 (mention Rokhlin’s theorem).
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Chapter 6: Sections 6.1, 6.2 and 6.3.
Chapter 7: Sections 7.1 and 7.2.
Chapter 8: Section 8.1 and 8.2 (mention Ornstein’s theorem).
Chapter 9: Sections 9.1, 9.2, 9.3 and 9.4.
Chapter 10: Sections 10.1 and 10.2.
Chapter 11: Section 11.1.

In this format, the course could close either with the proof of the varia-
tional principle for the entropy (Theorem 10.1) or with the construction of
absolutely continuous invariant measures for expanding maps on manifolds
(Theorem 11.1.2).

We have designed the text in such a way as to make it feasible for the
lecturer to focus on presenting the central ideas, leaving it to the student to
study in detail many of the proofs and complementary results. Indeed, we
devoted considerable effort to making the explanations as friendly as possible,
detailing the arguments and including plenty of cross-references to previous
related results as well to the definitions of the relevant notions.

In addition to the regular appearance of examples, we have often chosen to
approach the same notion more than once, from different points of view, if that
seemed useful for its in-depth understanding. The special chapter containing
the hints for selected exercises is also part of that effort to encourage and
facilitate the autonomous use of this book by the student.
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