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Recurrence

Ergodic theory studies the behavior of dynamical systems with respect to
measures that remain invariant under time evolution. Indeed, it aims to describe
those properties that are valid for the trajectories of almost all initial states
of the system, that is, all but a subset that has zero weight for the invariant
measure. Our first task, in Section 1.1, will be to explain what we mean by
‘dynamical system’ and ‘invariant measure’.

The roots of the theory date back to the first half of the 19th century.
By 1838, the French mathematician Joseph Liouville observed that every
energy-preserving system in classical (Newtonian) mechanics admits a natural
invariant volume measure in the space of configurations. Just a bit later, in
1845, the great German mathematician Carl Friedrich Gauss pointed out that
the transformation

(0,1]→R, x �→ fractional part of
1

x
,

which has an important role in number theory, admits an invariant measure
equivalent to the Lebesgue measure (in the sense that the two have the same
zero measure sets). These are two of the examples of applications of ergodic
theory that we discuss in Section 1.3. Many others are introduced throughout
this book.

The first important result was found by the great French mathematician
Henri Poincaré by the end of the 19th century. Poincaré was particularly
interested in the motion of celestial bodies, such as planets and comets, which
is described by certain differential equations originating from Newton’s law of
universal gravitation. Starting from Liouville’s observation, Poincaré realized
that for almost every initial state of the system, that is, almost every value of
the initial position and velocity, the solution of the differential equation comes
back arbitrarily close to that initial state, unless it goes to infinity. Even more,
this recurrence property is not specific to (celestial) mechanics: it is shared by
any dynamical system that admits a finite invariant measure. That is the theme
of Section 1.2.
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2 Recurrence

The same theme reappears in Section 1.5, in a more elaborate context: there,
we deal with any finite number of dynamical systems commuting with each
other, and we seek simultaneous returns of the orbits of all those systems to the
neighborhood of the initial state. This kind of result has important applications
in combinatorics and number theory, as we will see.

The recurrence phenomenon is also behind the constructions that we present
in Section 1.4. The basic idea is to fix some positive measure subset of
the domain and to consider the first return to that subset. This first-return
transformation is often easier to analyze, and it may be used to shed much
light on the behavior of the original transformation.

1.1 Invariant measures

Let (M,B,μ) be a measure space and f : M → M be a measurable
transformation. We say that the measure μ is invariant under f if

μ(E)=μ(f−1(E)) for every measurable set E⊂M. (1.1.1)

We also say that μ is f -invariant, or that f preserves μ, to mean just the
same. Notice that the definition (1.1.1) makes sense, since the pre-image of
a measurable set under a measurable transformation is still a measurable set.
Heuristically, the definition means that the probability that a point picked “at
random” is in a given subset is equal to the probability that its image is in that
subset.

It is possible, and convenient, to extend this definition to other types of
dynamical systems, beyond transformations. We are especially interested in
flows, that is, families of transformations f t : M→M, with t ∈R, satisfying the
following conditions:

f 0 = id and f s+t = f s ◦ f t for every s, t ∈R. (1.1.2)

In particular, each transformation f t is invertible and the inverse is f−t. Flows
arise naturally in connection with differential equations of the form

dγ

dt
(t)= X(γ (t))

in the following way: under suitable conditions on the vector field X, for each
point x in the domain M there exists exactly one solution t �→ γx(t) of the
differential equation with γx(0)= x; then f t(x)= γx(t) defines a flow in M.

We say that a measure μ is invariant under a flow (f t)t if it is invariant under
each one of the transformations f t, that is, if

μ(E)=μ(f−t(E)) for every measurable set E⊂M and t ∈R. (1.1.3)
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1.1 Invariant measures 3

Proposition 1.1.1. Let f : M →M be a measurable transformation and μ be
a measure on M. Then f preserves μ if and only if∫

φ dμ=
∫
φ ◦ f dμ (1.1.4)

for every μ-integrable function φ : M→R.

Proof. Suppose that the measure μ is invariant under f . We are going to show
that the relation (1.1.4) is valid for increasingly broader classes of functions.
Let XB denote the characteristic function of any measurable subset B. Then

μ(B)=
∫

XB dμ and μ(f−1(B))=
∫

Xf−1(B) dμ=
∫
(XB ◦ f )dμ.

Thus, the hypothesis μ(B) = μ(f−1(B)) means that (1.1.4) is valid for
characteristic functions. Then, by linearity of the integral, (1.1.4) is valid for all
simple functions. Next, given any integrable φ : M → R, consider a sequence
(sn)n of simple functions, converging to φ and such that |sn| ≤ |φ| for every n.
That such a sequence exists is guaranteed by Proposition A.1.33. Then, using
the dominated convergence theorem (Theorem A.2.11) twice:∫

φ dμ= lim
n

∫
sn dμ= lim

n

∫
(sn ◦ f )dμ=

∫
(φ ◦ f )dμ.

This shows that (1.1.4) holds for every integrable function if μ is invariant.
The converse is also contained in the arguments we just presented.

1.1.1 Exercises

1.1.1. Let f : M→M be a measurable transformation. Show that a Dirac measure δp is
invariant under f if and only if p is a fixed point of f . More generally, a probability
measure δp,k = k−1

(
δp + δf (p) + ·· · + δf k−1(p)

)
is invariant under f if and only if

f k(p)= p.
1.1.2. Prove the following version of Proposition 1.1.1. Let M be a metric space, f :

M →M be a measurable transformation and μ be a measure on M. Show that f
preserves μ if and only if ∫

φ dμ=
∫
φ ◦ f dμ

for every bounded continuous function φ : M→R.
1.1.3. Prove that if f : M →M preserves a measure μ then, given any k ≥ 2, the iterate

f k also preserves μ. Is the converse true?
1.1.4. Suppose that f : M → M preserves a probability measure μ. Let B ⊂ M be a

measurable set satisfying any one of the following conditions:
(a) μ(B \ f−1(B))= 0;
(b) μ(f−1(B) \B)= 0;
(c) μ(B
f−1(B))= 0;
(d) f (B)⊂ B.
Show that there exists C⊂M such that f−1(C)= C and μ(B
C)= 0.
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4 Recurrence

1.1.5. Let f : U → U be a C1 diffeomorphism on an open set U ⊂ Rd. Show that the
Lebesgue measure m is invariant under f if and only if |detDf | ≡ 1.

1.2 Poincaré recurrence theorem

We are going to study two versions of Poincaré’s theorem. The first one
(Section 1.2.1) is formulated in the context of (finite) measure spaces.
The theorem of Kac̆, that we state and prove in Section 1.2.2, provides
a quantitative complement to that statement. The second version of the
recurrence theorem (Section 1.2.3) assumes that the ambient is a topological
space with certain additional properties. We will also prove a third version of
the recurrence theorem, due to Birkhoff, whose statement is purely topological.

1.2.1 Measurable version

Our first result asserts that, given any finite invariant measure, almost every
point in any positive measure set E returns to E an infinite number of times:

Theorem 1.2.1 (Poincaré recurrence). Let f : M → M be a measurable
transformation and μ be a finite measure invariant under f . Let E ⊂ M be
any measurable set with μ(E) > 0. Then, for μ-almost every point x ∈ E there
exist infinitely many values of n for which f n(x) is also in E.

Proof. Denote by E0 the set of points x ∈ E that never return to E. As a first
step, let us prove that E0 has zero measure. To this end, let us observe that the
pre-images f−n(E0) are pairwise disjoint. Indeed, suppose there exist m> n≥ 1
such that f−m(E0) intersects f−n(E0). Let x be a point in the intersection and
y = f n(x). Then y ∈ E0 and f m−n(y) = f m(x) ∈ E0. Since E0 ⊂ E, this means
that y returns to E at least once, which contradicts the definition of E0. This
contradiction proves that the pre-images are pairwise disjoint, as claimed.

Since μ is invariant, we also have that μ(f−n(E0))= μ(E0) for all n≥ 1. It
follows that

μ

( ∞⋃
n=1

f−n(E0)

)
=

∞∑
n=1

μ(f−n(E0))=
∞∑

n=1

μ(E0).

The expression on the left-hand side is finite, since the measure μ is assumed
to be finite. On the right-hand side we have a sum of infinitely many terms that
are all equal. The only way such a sum can be finite is if the terms vanish. So,
μ(E0)= 0 as claimed.

Now let us denote by F the set of points x∈E that return to E a finite number
of times. It is clear from the definition that every point x ∈ F has some iterate
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1.2 Poincaré recurrence theorem 5

f k(x) in E0. In other words,

F ⊂
∞⋃

k=0

f−k(E0).

Since μ(E0)= 0 and μ is invariant, it follows that

μ(F)≤μ
( ∞⋃

k=0

f−k(E0)

)
≤

∞∑
k=0

μ
(
f−k(E0)

)= ∞∑
k=0

μ(E0)= 0.

Thus, μ(F)= 0 as we wanted to prove.

Theorem 1.2.1 implies an analogous result for continuous time systems: if
μ is a finite invariant measure of a flow (f t)t then for every measurable set
E ⊂ M with positive measure and for μ-almost every x ∈ E there exist times
tj →+∞ such that f tj(x) ∈ E. Indeed, if μ is invariant under the flow then, in
particular, it is invariant under the so-called time-1 map f 1. So, the statement
we just made follows immediately from Theorem 1.2.1 applied to f 1 (the times
tj one finds in this way are integers). Similar observations apply to the other
versions of the recurrence theorem that we present in the sequel.

On the other hand, the theorem in the next section is specific to discrete time
systems.

1.2.2 Kac̆ theorem

Let f : M → M be a measurable transformation and μ be a finite measure
invariant under f . Let E ⊂M be any measurable set with μ(E) > 0. Consider
the first-return time function ρE : E→N∪{∞}, defined by

ρE(x)=min{n≥ 1 : f n(x) ∈ E} (1.2.1)

if the set on the right-hand side is non-empty and ρE(x)=∞ if, on the contrary,
x has no iterate in E. According to Theorem 1.2.1, the second alternative occurs
only on a set with zero measure.

The next result shows that this function is integrable and even provides the
value of the integral. For the statement we need the following notation:

E0 = {x ∈ E : f n(x) /∈ E for every n≥ 1} and

E∗0 = {x ∈M : f n(x) /∈ E for every n≥ 0}.
In other words, E0 is the set of points in E that never return to E and E∗0 is
the set of points in M that never enter E. We have seen in Theorem 1.2.1 that
μ(E0)= 0.

Theorem 1.2.2 (Kac̆). Let f : M→M be a measurable transformation, μ be a
finite invariant measure and E⊂M be a positive measure set. Then the function
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6 Recurrence

ρE is integrable and ∫
E
ρE dμ=μ(M)−μ(E∗0).

Proof. For each n≥ 1, define

En = {x ∈ E : f (x) /∈ E, . . . , f n−1(x) /∈ E, but f n(x) ∈ E} and

E∗n = {x ∈M : x /∈ E, f (x) /∈ E, . . . , f n−1(x) /∈ E, but f n(x) ∈ E}.
That is, En is the set of points of E that return to E for the first time exactly at
time n,

En = {x ∈ E : ρE(x)= n},
and E∗n is the set points that are not in E and enter E for the first time exactly at
time n. It is clear that these sets are measurable and, hence, ρE is a measurable
function. Moreover, the sets En, E∗n , n≥ 0 constitute a partition of the ambient
space: they are pairwise disjoint and their union is the whole of M. So,

μ(M)=
∞∑

n=0

(
μ(En)+μ(E∗n)

)=μ(E∗0)+ ∞∑
n=1

(
μ(En)+μ(E∗n)

)
. (1.2.2)

Now observe that

f−1(E∗n)= E∗n+1 ∪En+1 for every n. (1.2.3)

Indeed, f (y) ∈ E∗n means that the first iterate of f (y) that belongs to E is
f n(f (y)) = f n+1(y) and that occurs if and only if y ∈ E∗n+1 or else y ∈ En+1.
This proves the equality (1.2.3). So, given that μ is invariant,

μ(E∗n)=μ(f−1(E∗n))=μ(E∗n+1)+μ(En+1) for every n.

Applying this relation successively, we find that

μ(E∗n)=μ(E∗m)+
m∑

i=n+1

μ(Ei) for every m> n. (1.2.4)

The relation (1.2.2) implies that μ(E∗m)→ 0 when m→∞. So, taking the limit
as m→∞ in the equality (1.2.4), we find that

μ(E∗n)=
∞∑

i=n+1

μ(Ei). (1.2.5)

To complete the proof, replace (1.2.5) in the equality (1.2.2). In this way we
find that

μ(M)−μ(E∗0)=
∞∑

n=1

( ∞∑
i=n

μ(Ei)

)
=

∞∑
n=1

nμ(En)=
∫

E
ρE dμ,

as we wanted to prove.
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1.2 Poincaré recurrence theorem 7

In some cases, for example when the system (f ,μ) is ergodic (this property
will be defined and studied later, starting from Chapter 4), the set E∗0 has zero
measure. Then the conclusion of the Kac̆ theorem means that

1

μ(E)

∫
E
ρE dμ= μ(M)

μ(E)
(1.2.6)

for every measurable set E with positive measure. The left-hand side of this
expression is the mean return time to E. So, (1.2.6) asserts that the mean return
time is inversely proportional to the measure of E.

Remark 1.2.3. By definition, E∗n = f−n(E)\⋃n−1
k=0 f−k(E). So, the fact that the

sum (1.2.2) is finite implies that the measure of E∗n converges to zero when
n→∞. This fact will be useful later.

1.2.3 Topological version

Now let us suppose that M is a topological space, endowed with its Borel
σ -algebra B. A point x ∈ M is recurrent for a transformation f : M → M
if there exists a sequence nj →∞ of natural numbers such that f nj(x)→ x.
Analogously, we say that x ∈ M is recurrent for a flow (f t)t if there exists a
sequence tj →+∞ of real numbers such that f tj(x)→ x when j→∞.

In the next theorem we assume that the topological space M admits a
countable basis of open sets, that is, there exists a countable family {Uk : k ∈N}
of open sets such that every open subset of M may be written as a union of
elements Uk of this family. This condition holds in most interesting examples.

Theorem 1.2.4 (Poincaré recurrence). Suppose that M admits a countable
basis of open sets. Let f : M→M be a measurable transformation and μ be a
finite measure on M invariant under f . Then, μ-almost every x∈M is recurrent
for f .

Proof. For each k, denote by Ũk the set of points x ∈ Uk that never return to
Uk. According to Theorem 1.2.1, every Ũk has zero measure. Consequently,
the countable union

Ũ =
⋃
k∈N

Ũk

also has zero measure. Hence, to prove the theorem it suffices to check that
every point x that is not in Ũ is recurrent. That is easy, as we are going to see.
Consider x ∈M \ Ũ and let U be any neighborhood of x. By definition, there
exists some element Uk of the basis of open sets such that x ∈Uk and Uk ⊂U.
Since x is not in Ũ, we also have that x /∈ Ũk. In other words, there exists n≥ 1
such that f n(x) is in Uk. In particular, f n(x) is also in U. Since the neighborhood
U is arbitrary, this proves that x is a recurrent point.

Let us point out that the conclusions of Theorems 1.2.1 and 1.2.4 are false,
in general, if the measure μ is not finite:
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8 Recurrence

Example 1.2.5. Let f : R → R be the translation by 1, that is, the
transformation defined by f (x) = x+ 1 for every x ∈ R. It is easy to check
that f preserves the Lebesgue measure on R (which is infinite). On the other
hand, no point x ∈ R is recurrent for f . According to the recurrence theorem,
this last observation implies that f can not admit any finite invariant measure.

However, it is possible to extend these statements for certain cases of infinite
measures: see Exercise 1.2.2.

To conclude, we present a purely topological version of Theorem 1.2.4,
called the Birkhoff recurrence theorem, that makes no reference at all to
invariant measures:

Theorem 1.2.6 (Birkhoff recurrence). If f : M → M is a continuous
transformation on a compact metric space M then there exists some point x∈X
that is recurrent for f .

Proof. Consider the family I of all non-empty closed sets X ⊂ M that are
invariant under f , in the sense that f (X) ⊂ X. This family is non-empty, since
M ∈ I. We claim that an element X ∈ I is minimal for the inclusion relation
if and only if the orbit of every x ∈ X is dense in X. Indeed, it is clear that if
X is a closed invariant subset then X contains the closure of the orbit of each
one of its elements. Hence, in order to be minimal, X must coincide with every
one of these closures. Conversely, for the same reason, if X coincides with the
orbit closure of each one of its points then it has no proper subset that is closed
and invariant. That is, X is minimal. This proves our claim. In particular, every
point x in a minimal set is recurrent. Therefore, to prove the theorem it suffices
to prove that there exists some minimal set.

We claim that every totally ordered set {Xα} ⊂ I admits a lower bound.
Indeed, consider X =⋂α Xα . Observe that X is non-empty, since the Xα are
compact and they form a totally ordered family. It is clear that X is closed and
invariant under f and it is equally clear that X is a lower bound for the set {Xα}.
That proves our claim. Now it follows from Zorn’s lemma that I does contain
minimal elements.

Theorem 1.2.6 can also be deduced from Theorem 1.2.4 together with
the fact, which we will prove later (in Chapter 2), that every continuous
transformation on a compact metric space admits some invariant probability
measure.

1.2.4 Exercises

1.2.1. Show that the following statement is equivalent to Theorem 1.2.1, meaning that
each one of them can be obtained from the other. Let f : M→M be a measurable
transformation and μ be a finite invariant measure. Let E⊂M be any measurable
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1.2 Poincaré recurrence theorem 9

set with μ(E) > 0. Then there exists N ≥ 1 and a positive measure set D⊂E such
that f N(x) ∈ E for every x ∈D.

1.2.2. Let f : M→M be an invertible transformation and suppose that μ is an invariant
measure, not necessarily finite. Let B ⊂ M be a set with finite measure. Prove
that, given any measurable set E ⊂ M with positive measure, μ-almost every
point x ∈ E either returns to E an infinite number of times or has only a finite
number of iterates in B.

1.2.3. Let f : M → M be an invertible transformation and suppose that μ is a σ -finite
invariant measure: there exists an increasing sequence of measurable subsets Mk

with μ(Mk) <∞ for every k and
⋃

k Mk = M. We say that a point x goes to
infinity if, for every k, there exists only a finite number of iterates of x that are
in Mk. Show that, given any E ⊂M with positive measure, μ-almost every point
x ∈ E returns to E an infinite number of times or else goes to infinity.

1.2.4. Let f : M →M be a measurable transformation, not necessarily invertible, μ be
an invariant probability measure and D⊂M be a set with positive measure. Prove
that almost every point of D spends a positive fraction of time in D:

limsup
n

1

n
#{0≤ j≤ n− 1 : f j(x) ∈D}> 0

for μ-almost every x ∈ D. [Note: One may replace limsup by liminf in the
statement, but the proof of that fact will have to wait until Chapter 3.]

1.2.5. Let f : M → M be a measurable transformation preserving a finite measure μ.
Given any measurable set A⊂M with μ(A)> 0, let n1< n2< · · · be the sequence
of values of n such that μ(f−n(A)∩A) > 0. The goal of this exercise is to prove
that VA = {n1,n2, . . .} is a syndetic, that is, that there exists C> 0 such that ni+1−
ni ≤ C for every i.
(a) Show that for any increasing sequence k1 < k2 < · · · there exist j> i≥ 1 such

that μ(A∩ f−(kj−ki)(A)) > 0.
(b) Given any infinite sequence �= (lj)j of natural numbers, denote by S(�) the

set of all finite sums of consecutive elements of �. Show that VA intersects
S(�) for every �.

(c) Deduce that the set VA is syndetic.
[Note: Exercise 3.1.2 provides a different proof of this fact.]

1.2.6. Show that if f : [0,1] → [0,1] is a measurable transformation preserving the
Lebesgue measure m then m-almost every point x ∈ [0,1] satisfies

liminf
n

n|f n(x)− x| ≤ 1.

[Note: Boshernitzan [Bos93] proved a much more general result, namely that
liminfn n1/dd(f n(x),x) < ∞ for μ-almost every point and every probability
measure μ invariant under f : M →M, assuming M is a separable metric whose
d-dimensional Hausdorff measure is σ -finite.]

1.2.7. Define f : [0,1] → [0,1] by f (x) = (x+ ω)− [x+ ω], where ω represents the
golden ratio (1+√5)/2. Given x ∈ [0,1], check that n|f n(x)− x| = n2|ω− qn|
for every n, where (qn)n → ω is the sequence of rational numbers given by qn =
[x+nω]/n. Using that the roots of the polynomial R(z)= z2− z−1 are precisely
ω and ω −√5, prove that liminfn n2|ω − qn| ≥ 1/

√
5. [Note: This shows that

the constant 1 in Exercise 1.2.6 cannot be replaced by any constant smaller than
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10 Recurrence

1/
√

5. It is not known whether 1 is the smallest constant such that the statement
holds for every transformation on the interval.]

1.3 Examples

Next, we describe some simple examples of invariant measures for transforma-
tions and flows that help us interpret the significance of the Poincaré recurrence
theorems and also lead to some interesting conclusions.

1.3.1 Decimal expansion

Our first example is the transformation defined on the interval [0,1] in the
following way:

f : [0,1]→ [0,1], f (x)= 10x−[10x].
Here and in what follows, we use [y] as the integer part of a real number y,
that is, the largest integer smaller than or equal y. So, f is the map sending
each x ∈ [0,1] to the fractional part of 10x. Figure 1.1 represents the graph
of f .

We claim that the Lebesgue measure μ on the interval is invariant under the
transformation f , that is, it satisfies

μ(E)=μ(f−1(E)) for every measurable set E⊂M. (1.3.1)

This can be checked as follows. Let us begin by supposing that E is an interval.
Then, as illustrated in Figure 1.1, its pre-image f−1(E) consists of ten intervals,
each of which is ten times shorter than E. Hence, the Lebesgue measure of
f−1(E) is equal to the Lebesgue measure of E. This proves that (1.3.1) does
hold in the case of intervals. As a consequence, it also holds when E is a finite

0 2/10 4/10 6/10 8/10

1

1

E

Figure 1.1. Fractional part of 10x
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1.3 Examples 11

union of intervals. Now, the family of all finite unions of intervals is an algebra
that generates the Borel σ -algebra of [0,1]. Hence, to conclude the proof it is
enough to use the following general fact:

Lemma 1.3.1. Let f : M → M be a measurable transformation and μ be a
finite measure on M. Suppose that there exists some algebra A of measurable
subsets of M such that A generates the σ -algebra B of M and μ(E) =
μ(f−1(E)) for every E ∈ A. Then the latter remains true for every set E ∈ B,
that is, the measure μ is invariant under f .

Proof. We start by proving that C= {E ∈B :μ(E)=μ(f−1(E))} is a monotone
class. Let E1 ⊂ E2 ⊂ ·· · be any increasing sequence of elements of C and let
E=⋃∞

i=1 Ei. By Theorem A.1.14 (see Exercise A.1.9),

μ(E)= lim
i
μ(Ei) and μ(f−1(E))= lim

i
μ(f−1(Ei)).

So, using the fact that Ei ∈ C,

μ(E)= lim
i
μ(Ei)= lim

i
μ(f−1(Ei))=μ(f−1(E)).

Hence, E ∈ C. In precisely the same way, one gets that the intersection of any
decreasing sequence of elements of C is in C. This proves that C is indeed a
monotone class.

Now it is easy to deduce the conclusion of the lemma. Indeed, since
C is assumed to contain A, we may use the monotone class theorem
(Theorem A.1.18), to conclude that C contains the σ -algebra B generated by
A. That is precisely what we wanted to prove.

Now we explain how one may use the fact that the Lebesgue measure is
invariant under f , together with the Poincaré recurrence theorem, to reach some
interesting conclusions. The transformation f is directly related to the usual
decimal expansion of a real number: if x is given by

x= 0.a0a1a2a3 · · ·
with ai ∈ {0,1,2,3,4,5,6,7,8,9} and ai �= 9 for infinitely many values of i, then
its image under f is given by

f (x)= 0.a1a2a3 · · · .
Thus, more generally, the n-th iterate of f can be expressed in the following
way, for every n≥ 1:

f n(x)= 0.anan+1an+2 · · · (1.3.2)

Let E be the subset of points x ∈ [0,1] whose decimal expansion starts with
the digit 7, that is, such that a0 = 7. According to Theorem 1.2.1, almost every
element in E has infinitely many iterates that are also in E. By the expression
(1.3.2), this means that there are infinitely many values of n such that an = 7.
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12 Recurrence

So, we have shown that almost every number x whose decimal expansion starts
with 7 has infinitely many digits equal to 7.

Of course, instead of 7 we may consider any other digit. Even more, there
is a similar result (see Exercise 1.3.2) when, instead of a single digit, one
considers a block of k ≥ 1 consecutive digits. Later on, in Chapter 3, we will
prove a much stronger fact: for almost every number x ∈ [0,1], every digit
occurs with frequency 1/10 (more generally, every block of k≥ 1 digits occurs
with frequency 1/10k) in the decimal expansion of x.

1.3.2 Gauss map

The system we present in this section is related to another important algorithm
in number theory, the continued fraction expansion, which plays a central role
in the problem of finding the best rational approximation to any real number.
Let us start with a brief presentation of this algorithm.

Given any number x0 ∈ (0,1), let

a1 =
[

1

x0

]
and x1 = 1

x0
− a1.

Note that a1 is a natural number, x1 ∈ [0,1) and

x0 = 1

a1+ x1
.

Supposing that x1 is different from zero, we may repeat this procedure, defining

a2 =
[

1

x1

]
and x2 = 1

x1
− a2.

Then

x1 = 1

a1+ x2
and so x0 = 1

a1+ 1

a2+ x2

.

Now we may proceed by induction: for each n ≥ 1 such that xn−1 ∈ (0,1),
define

an =
[

1

xn−1

]
and xn = 1

xn−1
− an =G(xn−1),

and observe that

x0 = 1

a1+ 1

a2+ 1

· · ·+ 1

an+ xn

. (1.3.3)
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1.3 Examples 13

It can be shown that the sequence

zn = 1

a1+ 1

a2+ 1

· · ·+ 1

an

(1.3.4)

converges to x0 when n→∞. This is usually expressed through the expression

x0 = 1

a1+ 1

a2+ 1

· · ·+ 1

an+ 1

· · ·

, (1.3.5)

which is called continued fraction expansion of x0.
Note that the sequence (zn)n defined by the relation (1.3.4) consists of

rational numbers. Indeed, one can show that these are the best rational
approximations of the number x0, in the sense that each zn is closer to x0 than
any other rational number whose denominator is smaller than or equal to the
denominator of zn (written in irreducible form). Observe also that to obtain
(1.3.5) we had to assume that xn ∈ (0,1) for every n ∈N. If in the course of the
process one encounters some xn = 0, then the algorithm halts and we consider
(1.3.3) to be the continued fraction expansion of x0. It is clear that this can
happen only if x0 itself is a rational number.

This continued fraction algorithm is intimately related to a certain dynamical
system on the interval [0,1] that we describe in the following. The Gauss map
G : [0,1]→ [0,1] is defined by

G(x)= 1

x
−
[

1

x

]
= fractional part of 1/x,

if x ∈ (0,1] and G(0) = 0. The graph of G can be easily sketched (see
Figure 1.2), starting from the following observation: for every x in each interval
Ik = (1/(k+1),1/k], the integer part of 1/x is equal to k and so G(x)= 1/x−k.

The continued fraction expansion of any number x0 ∈ (0,1) can be obtained
from the Gauss map in the following way: for each n≥ 1, the natural number
an is determined by

Gn−1(x0) ∈ Ian ,

and the real number xn is simply the n-th iterate Gn(x0) of the point x0.
This process halts whenever we encounter some xn = 0; as we explained
previously, this can only happen if x0 is a rational number (see Exercise 1.3.4).
In particular, there exists a full Lebesgue measure subset of (0,1) such that all
the iterates of G are defined for all the points in that subset.
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14 Recurrence

10

1

1/21/31/4

Figure 1.2. Gauss map

A remarkable fact that makes this transformation interesting from the point
of view of ergodic theory is that G admits an invariant probability measure
that, in addition, is equivalent to the Lebesgue measure on the interval. Indeed,
consider the measure defined by

μ(E)=
∫

E

c

1+ x
dx for every measurable set E⊂ [0,1], (1.3.6)

where c is a positive constant. The integral is well defined, since the function
in the integral is continuous on the interval [0,1]. Moreover, this function takes
values inside the interval [c/2,c] and that implies

c

2
m(E)≤μ(E)≤ cm(E) for every measurable set E⊂ [0,1]. (1.3.7)

In particular, μ is indeed equivalent to the Lebesgue measure m.

Proposition 1.3.2. The measure μ is invariant under G. Moreover, if we
choose c= 1/ log2 then μ is a probability measure.

Proof. We are going to use the following lemma:

Lemma 1.3.3. Let f : [0,1] → [0,1] be a transformation such that there exist
pairwise disjoint open intervals I1, I2, . . . satisfying

1. the union
⋃

k Ik has full Lebesgue measure in [0,1] and
2. the restriction fk = f | Ik to each Ik is a diffeomorphism onto (0,1).

Let ρ : [0,1] → [0,∞) be an integrable function (relative to the Lebesgue
measure) satisfying

ρ(y)=
∑

x∈f−1(y)

ρ(x)

|f ′(x)| (1.3.8)

for almost every y ∈ [0,1]. Then the measure μ= ρdx is invariant under f .
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1.3 Examples 15

Proof. Let φ = χE be the characteristic function of an arbitrary measurable set
E⊂ [0,1]. Changing variables in the integral,∫

Ik

φ(f (x))ρ(x)dx=
∫ 1

0
φ(y)ρ(f−1

k (y))|(f−1
k )′(y)|dy.

Note that (f−1
k )′(y)= 1/f ′(f−1

k (y)). So, the previous relation implies that∫ 1

0
φ(f (x))ρ(x)dx=

∞∑
k=1

∫
Ik

φ(f (x))ρ(x)dx

=
∞∑

k=1

∫ 1

0
φ(y)

ρ(f−1
k (y))

|f ′(f−1
k (y))| dy.

(1.3.9)

Using the monotone convergence theorem (Theorem A.2.9) and the hypothesis
(1.3.8), we see that the last expression in (1.3.9) is equal to∫ 1

0
φ(y)

∞∑
k=1

ρ(f−1
k (y))

|f ′(f−1
k (y))| dy=

∫ 1

0
φ(y)ρ(y)dy.

In this way we find that
∫ 1

0 φ(f (x))ρ(x)dx= ∫ 1
0 φ(y)ρ(y)dy. Sinceμ=ρdx and

φ=XE, this means that μ(f−1(E))=μ(E) for every measurable set E⊂ [0,1].
In other words, μ is invariant under f .

To conclude the proof of Proposition 1.3.2 we must show that the condition
(1.3.8) holds for ρ(x)= c/(1+ x) and f = G. Let Gk denote the restriction of
G to the interval Ik = (1/(k+ 1),1/k), for k≥ 1. Note that G−1

k (y)= 1/(y+ k)
for every k. Note also that G′(x)= (1/x)′ = −1/x2 for every x �= 0. Therefore,

∞∑
k=1

ρ(G−1
k (y))

|G′(G−1
k (y))|

=
∞∑

k=1

c(y+ k)

y+ k+ 1

(
1

y+ k

)2

=
∞∑

k=1

c

(y+ k)(y+ k+ 1)
.

(1.3.10)
Observing that

1

(y+ k)(y+ k+ 1)
= 1

y+ k
− 1

y+ k+ 1
,

we see that the last sum in (1.3.10) has a telescopic structure: except for the
first one, all the terms occur twice, with opposite signs, and so they cancel out.
This means that the sum is equal to the first term:

∞∑
k=1

c

(y+ k)(y+ k+ 1)
= c

y+ 1
= ρ(y).

This proves that the equality (1.3.8) is indeed satisfied and, hence, we may use
Lemma 1.3.1 to conclude that μ is invariant under f .
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16 Recurrence

Finally, observing that c log(1+ x) is a primitive of the function ρ(x), we
find that

μ([0,1])=
∫ 1

0

c

1+ x
dx= c log2.

So, picking c= 1/ log2 ensures that μ is a probability measure.

This proposition allows us to use ideas from ergodic theory, applied to the
Gauss map, to obtain interesting conclusions in number theory. For example
(see Exercise 1.3.3), the natural number 7 occurs infinitely many times in the
continued fraction expansion of almost every number x0 ∈ (1/8,1/7), that is,
one has an = 7 for infinitely many values of n ∈ N. Later on, in Chapter 3,
we will prove a much more precise statement, that contains the following
conclusion: for almost every x0 ∈ (0,1) the number 7 occurs with frequency

1

log2
log

64

63

in the continued fraction expansion of x0. Try to guess right away where this
number comes from!

1.3.3 Circle rotations

Let us consider on the real line R the equivalence relation ∼ that identifies any
numbers whose difference is an integer number:

x∼ y ⇔ x− y ∈ Z.

We represent by [x] ∈ R/Z the equivalence class of each x ∈ R and denote
by R/Z the space of all equivalence classes. This space is called the circle
and is also denoted by S1. The reason for this terminology is that R/Z can be
identified in a natural way with the unit circle {z ∈C : |z| = 1} on the complex
plane, by means of the map

φ : R/Z→{z ∈C : |z| = 1}, [x] �→ e2πxi. (1.3.11)

Note that φ is well defined: since the function x �→ e2πxi is periodic of period
1, the expression e2πxi does not depend on the choice of a representative x for
the class [x]. Moreover, φ is a bijection.

The circle R/Z inherits from the real line R the structure of an abelian group,
given by the operation

[x]+ [y] = [x+ y].
Observe that this is well defined: the equivalence class on the right-hand side
does not depend on the choice of representatives x and y for the classes on the
left-hand side. Given θ ∈R, we call rotation of angle θ the transformation

Rθ : R/Z→R/Z, [x] �→ [x+ θ ] = [x]+ [θ ].
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1.3 Examples 17

Note that Rθ corresponds, via the identification (1.3.11), to the transformation
z �→ e2πθ iz on {z ∈C : |z| = 1}. The latter is just the restriction to the unit circle
of the rotation of angle 2πθ around the origin in the complex plane. It is clear
from the definition that R0 is the identity map and Rθ ◦Rτ = Rθ+τ for every θ
and τ . In particular, every Rθ is invertible and the inverse is R−θ .

We can also endow S1 with a natural structure of a probability space, as
follows. Let π : R→ S1 be the canonical projection, that assigns to each x ∈R

its equivalence class [x]. We say that a set E⊂ S1 is measurable if π−1(E) is a
measurable subset of the real line. Next, let m be the Lebesgue measure on the
real line. We define the Lebesgue measure μ on the circle to be given by

μ(E)=m
(
π−1(E)∩ [k,k+ 1)

)
for every k ∈ Z.

Note that the left-hand side of this equality does not depend on k, since, by
definition, π−1(E) ∩ [k,k+ 1) = (π−1(E) ∩ [0,1)

)+ k and the measure m is
invariant under translations.

It is clear from the definition that μ is a probability. Moreover, μ is invariant
under every rotation Rθ (according to Exercise 1.3.8, it is the only probability
measure with this property). This can be shown as follows. By definition,
π−1(R−1

θ (E)) = π−1(E)− θ for every measurable set E ⊂ S1. Let k be the
integer part of θ . Since m is invariant under all the translations,

m
(
(π−1(E)− θ)∩ [0,1)

)=m
(
π−1(E)∩ [θ ,θ + 1)

)
=m

(
π−1(E)∩ [θ ,k+ 1)

)+m
(
π−1(E)∩ [k+ 1,θ + 1)

)
.

Note that π−1(E)∩ [k+ 1,θ + 1) = (π−1(E)∩ [k,θ)
)+ 1. So, the expression

on the right-hand side of the previous equality may be written as

m
(
π−1(E)∩ [θ ,k+ 1)

)+m
(
π−1(E)∩ [k,θ)

)=m
(
π−1(E)∩ [k,k+ 1)

)
.

Combining these two relations we find that

μ
(
R−1
θ (E)

)=m
(
π−1(R−1

θ (E)∩ [0,1))
)=m

(
π−1(E)∩ [k,k+ 1)

)=μ(E)
for every measurable set E⊂ S1.

The rotations Rθ : S1 → S1 exhibit two very different types of dynamical
behavior, depending on the value of θ . If θ is rational, say θ = p/q with p ∈ Z

and q ∈N, then

Rq
θ ([x])= [x+ qθ] = [x] for every [x].

Consequently, in this case every point x ∈ S1 is periodic with period q. In the
opposite case we have:

Proposition 1.3.4. If θ is irrational then O([x])= {Rn
θ ([x]) : n ∈N} is a dense

subset of the circle R/Z for every [x].
Proof. We claim that the set D= {m+nθ : m∈Z,n∈N} is dense in R. Indeed,
consider any number r ∈R. Given any ε > 0, we may choose p ∈ Z and q ∈N
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18 Recurrence

such that |qθ−p|< ε. Note that the number a= qθ−p is necessarily different
from zero, since θ is irrational. Let us suppose that a is positive (the case when
a is negative is analogous). Subdividing the real line into intervals of length a,
we see that there exists an integer l such that 0≤ r− la< a. This implies that

|r− (lqθ − lp)| = |r− la|< a< ε.

As m = lq and n = −lq are integers and ε is arbitrary, this proves that r is in
the closure of the set D, for every r ∈R.

Now, given y ∈R and ε > 0, we may take r = y− x and, using the previous
paragraph, we may find m,n ∈ Z such that |m+ nθ − (y− x)| < ε. This is
equivalent to saying that the distance from [y] to the iterate Rn

θ ([x]) is less than
ε. Since x, y and ε are arbitrary, this shows that every orbit O([x]) is dense
in S1.

In particular, it follows that every point on the circle is recurrent for Rθ (this
is also true when θ is rational). The previous proposition also leads to some
interesting conclusions in the study of the invariant measures of Rθ . Among
other things, we will learn later (in Chapter 6) that if θ is irrational then the
Lebesgue measure is the unique probability measure that is preserved by Rθ .
Related to this, we will see that the orbits of Rθ are uniformly distributed
subsets of S1.

1.3.4 Rotations on tori

The notions we just presented can be generalized to arbitrary dimension, as we
are going to explain. For each d ≥ 1, consider the equivalence relation on Rd

that identifies any two vectors whose difference is an integer vector:

(x1, . . . ,xd)∼ (y1, . . . ,yd) ⇔ (x1− y1, . . . ,xd− yd) ∈ Zd.

We denote by [x] or [(x1, . . . ,xd)] the equivalence class of any x= (x1, . . . ,xd).
Then we call the d-dimensional torus, or simply the d-torus, the space

Td =Rd/Zd = (R/Z)d

formed by those equivalence classes. Let m be the Lebesgue measure on Rd.
The operation

[(x1, . . . ,xd)]+ [(y1, . . . ,yd)] = [(x1+ y1, . . . ,xd+ yd)]
is well defined and turns Td into an abelian group. Given θ = (θ1, . . . ,θd) ∈Rd,
we call

Rθ : Td → Td, Rθ ([x])= [x]+ [θ ]
the rotation by θ (sometimes, Rθ is also called the translation by θ ). The map

φ : [0,1]d → Td, (x1, . . . ,xd) �→ [(x1, . . . ,xd)]
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1.3 Examples 19

is surjective and allows us to define a Lebesgue probability measure μ on the
d-torus, through the following formula:

μ(B)=m
(
φ−1(B)

)
for every B⊂ Td such that φ−1(B) is measurable.

This measure μ is invariant under Rθ for every θ .
We say that a vector θ = (θ1, . . . ,θd) ∈ Rd is rationally independent if, for

any integer numbers n0,n1, . . . ,nd, we have that

n0+ n1θ1+·· ·+ ndθd = 0 ⇒ n0 = n1 = ·· · = nd = 0.

Otherwise, we say that θ is rationally dependent. One can show that θ is
rationally independent if and only if the rotation Rθ is minimal, meaning that
the orbit O([x])= {Rn

θ ([x]) : n ∈ N} of every [x] ∈ Td is a dense subset of Td.
In this regard, see Exercises 1.3.9–1.3.10 and also Corollary 4.2.3.

1.3.5 Conservative maps

Let M be an open subset of the Euclidian space Rd and f : M → M be a
C1 diffeomorphism. This means that f is a bijection, both f and its inverse
f−1 are differentiable and the two derivatives are continuous. Denote by vol
the restriction to M of the Lebesgue measure (volume measure) on Rd. The
formula of change of variables asserts that, for any measurable set B⊂M,

vol(f (B))=
∫

B
|detDf |dx. (1.3.12)

One can easily deduce the following consequence:

Lemma 1.3.5. A C1 diffeomorphism f : M→M preserves the volume measure
vol if and only if the absolute value |detDf | of its Jacobian is equal to 1 at
every point.

Proof. Suppose that the absolute value |detDf | of its Jacobian is equal to 1
at every point. Let E be any measurable set E and B = f−1(E). The formula
(1.3.12) yields

vol(E)=
∫

B
1dx= vol(B)= vol(f−1(E)).

This means that f preserves the measure vol and so we proved the “if” part of
the statement.

To prove the “only if,” suppose that |detDf (x)| > 1 for some point x ∈M.
Then, since the Jacobian is continuous, there exists a neighborhood U of x and
some number σ > 1 such that

|detDf (y)| ≥ σ for all y ∈U.

Then, applying (1.3.12) to B=U, we get that

vol(f (U))≥
∫

U
σ dx≥ σ vol(U).
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20 Recurrence

Denote E = f (U). Since vol(U) > 0, the previous inequality implies that
vol(E) > vol(f−1(E)). Hence, f does not leave vol invariant. In precisely the
same way, one shows that if |detDf (x)|< 1 for some point x ∈M then f does
not leave the measure vol invariant.

1.3.6 Conservative flows

Now we discuss the invariance of the volume measure in the setting of flows
f t : M → M, t ∈ R. As before, take M to be an open subset of the Euclidean
space Rd. Let us suppose that the flow is C1, in the sense that the map (t,x) �→
f t(x) is differentiable and all the derivatives are continuous. Then, in particular,
every flow transformation f t : M →M is a C1 diffeomorphism: the inverse is
f−t. Since f 0 is the identity map and the Jacobian varies continuously, we have
that detDf t(x) > 0 at every point.

Applying Lemma 1.3.5 in this context, we find that the flow preserves the
volume measure if and only if

detDf t(x)= 1 for every x ∈U and every t ∈R. (1.3.13)

However, this is not very useful in practice because most of the time we do
not have an explicit expression for f t and, hence, it is not clear how to check
the condition (1.3.13). Fortunately, there is a reasonably explicit expression for
the Jacobian of the flow that can be used in some interesting situations. Let us
explain this.

Let us suppose that the flow f t : M →M corresponds to the trajectories of a
C1 vector field F : M → Rd. In other words, each t �→ f t(x) is the solution of
the differential equation

dy

dt
= F(y) (1.3.14)

that has x as the initial condition (when dealing with differential equations we
always assume that their solutions are defined for all times).

The Liouville formula relates the Jacobian of f t to the divergence divF of
the vector field:

detDf t(x)= exp

(∫ t

0
divF(f s(x))ds

)
for every x and every t.

Recall that the divergence of a vector field F is the trace of its Jacobian matrix,
that is

divF = ∂F1

∂x1
+·· ·+ ∂Fd

∂xd
. (1.3.15)

Combining the Liouville formula with (1.3.13), we obtain:

Lemma 1.3.6 (Liouville). The flow (f t)t associated with a C1 vector field F
preserves the volume measure if and only if the divergence of F is identically
zero.
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1.3 Examples 21

We can extend this discussion to the case when M is any Riemannian
manifold of dimension d ≥ 2. The reader who is unfamiliar with this notion
may wish to check Appendix A.4.5 before proceeding.

For simplicity, let us suppose that the manifold is orientable. Then the
volume measure on M is given by a differentiable d-form ω, called the volume
form (this remains true in the non-orientable case, except that the form ω is
defined up to sign only). What this means is that the volume of any measurable
set B contained in the domain of local coordinates (x1, . . . ,xd) is given by

vol(B)=
∫

B
ρ(x1, . . . ,xd)dx1 · · ·dxd,

where ω = ρdx1 · · ·dxd is the expression of the volume form in those local
coordinates. Let F be a C1 vector field on M. Writing

F(x1, . . . ,xd)= (F1(x1, . . . ,xd), . . . ,Fd(x1, . . . ,xd)),

we may express the divergence as

divF = ∂(ρF)

∂x1
+·· ·+ ∂(ρF)

∂xd

(it can be shown that the right-hand side does not depend on the choice of the
local coordinates). A proof of the following generalization of Lemma 1.3.6 can
be found in Sternberg [Ste58]:

Theorem 1.3.7 (Liouville). The flow (f t)t associated with a C1 vector field F
on a Riemannian manifold preserves the volume measure on the manifold if
and only if divF = 0 at every point.

Then, it follows from the recurrence theorem for flows that, assuming that
the manifold has finite volume (for example, if M is compact) and divF = 0,
then almost every point is recurrent for the flow of F.

1.3.7 Exercises

1.3.1. Use Lemma 1.3.3 to give another proof of the fact that the decimal expansion
transformation f (x) = 10x − [10x] preserves the Lebesgue measure on the
interval.

1.3.2. Prove that, for any number x ∈ [0,1] whose decimal expansion contains the
block 617 (for instance, x = 0.3375617264 · · · ), that block occurs infinitely
many times in the decimal expansion of x. Even more, the block 617 occurs
infinitely many times in the decimal expansion of almost every x ∈ [0,1].

1.3.3. Prove that the number 617 appears infinitely many times in the continued
fraction expression of almost every number x0 ∈ (1/618,1/617), that is, one
has an = 617 for infinitely many values of n ∈N.
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22 Recurrence

1.3.4. Let G be the Gauss map. Show that a number x ∈ (0,1) is rational if and only if
there exists n≥ 1 such that Gn(x)= 0.

1.3.5. Consider the sequence 1,2,4,8, . . . ,an= 2n, . . . of all the powers of 2. Prove that,
given any digit i∈ {1, . . . ,9}, there exist infinitely many values of n for which an

starts with that digit.
1.3.6. Prove the following extension of Lemma 1.3.3. Let f : M → M be a C1 local

diffeomorphism on a compact Riemannian manifold M. Let vol be the volume
measure on M and ρ : M → [0,∞) be a continuous function. Then f preserves
the measure μ= ρ vol if and only if

∑
x∈f−1(y)

ρ(x)

|detDf (x)| = ρ(y) for every y ∈M.

When f is invertible this means that f preserves the measure μ if and only if
ρ(x)= ρ(f (x))|detDf (x)| for every x ∈M.

1.3.7. Check that if A is a d × d matrix with integer coefficients and determinant
different from zero then the transformation fA :Td →Td defined on the torus by
fA([x])= [A(x)] preserves the Lebesgue measure on Td.

1.3.8. Show that the Lebesgue measure on S1 is the only probability measure invariant
under all the rotations of S1, even if we restrict to rational rotations. [Note: We
will see in Chapter 6 that, for any irrational θ , the Lebesgue measure is the
unique probability measure invariant under Rθ .]

1.3.9. Suppose that θ = (θ1, . . . ,θd) is rationally dependent. Show that there exists a
continuous non-constant function ϕ : Td → C such that ϕ ◦ Rθ = ϕ. Conclude
that there exist non-empty open subsets U and V of Td that are disjoint and
invariant under Rθ , in the sense that Rθ (U)=U and Rθ (V)= V . Deduce that no
orbit O([x]) of the rotation Rθ is dense in Td.

1.3.10. Suppose that θ = (θ1, . . . ,θd) is rationally independent. Prove that if V is
a non-empty open subset of Td invariant under Rθ , then V is dense in Td.
Conclude that

⋃
n∈Z Rn

θ (U) is dense in the torus, for every non-empty open
subset U. Deduce that there exists [x] whose orbit O([x]) under the rotation
Rθ is dense in Td. Conclude that O([y]) is dense in Td for every [y].

1.3.11. Let U be an open subset of R2d and H : U → R be a C2 function. Denote by
(p1, . . . ,pd,q1, . . . ,qd) the coordinate variables in R2d. The Hamiltonian vector
field associated with H is defined by

F(p1 , . . . ,pd ,q1 , . . . ,qd)=
(
∂H

∂q1
, . . . ,

∂H

∂qd
,− ∂H

∂p1
, . . . ,− ∂H

∂pd

)
.

Check that the flow defined by F preserves the volume measure.
1.3.12. Let f : U → U be a C1 diffeomorphism preserving the volume measure on an

open subset U of Rd. Let H : U→R be a first integral of f , that is, a C1 function
such that H ◦ f =H. Let c be a regular value of H and ds be the volume measure
defined on the hypersurface Hc = H−1(c) by the restriction of the Riemannian
metric of Rd. Prove that the restriction of f to the hypersurface Hc preserves the
measure ds/‖gradH‖.
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1.4 Induction 23

1.4 Induction

In this section we describe a general method, based on the Poincaré recurrence
theorem, to construct from a given system (f ,μ) other systems, that we refer to
as systems induced by (f ,μ). The reason this is interesting is the following. On
the one hand, it is often the case that an induced system is easier to analyze,
because it has better global properties than the original one. On the other hand,
interesting conclusions about the original system can often be obtained from
analyzing the induced one. Examples will appear in a while.

1.4.1 First-return map

Let f : M → M be a measurable transformation and μ be an invariant
probability measure. Let E ⊂ M be a measurable set with μ(E) > 0 and
ρ(x) = ρE(x) be the first-return time of x to E, as given by (1.2.1). The
first-return map to the domain E is the map g given by

g(x)= f ρ(x)(x)

whenever ρ(x) is finite. The Poincaré recurrence theorem ensures that this is
the case for μ-almost every x ∈ E and so g is defined on a full measure subset
of E. We also denote by μE the restriction of μ to the measurable subsets E.

Proposition 1.4.1. The measure μE is invariant under the map g : E→ E.

Proof. For every k ≥ 1, denote by Ek the subset of points x ∈ E such that
ρ(x)= k. By definition, g(x)= f k(x) for every x ∈ Ek. Let B be any measurable
subset of E. Then

μ(g−1(B))=
∞∑

k=1

μ

(
f−k(B)∩Ek

)
. (1.4.1)

On the other hand, since μ is f -invariant,

μ
(
B
)=μ(f−1(B)

)=μ(f−1(B)∩E1
)+μ(f−1(B) \E

)
. (1.4.2)

Analogously,

μ
(
f−1(B) \E

)=μ(f−2(B) \ f−1(E)
)

=μ(f−2(B)∩E2
)+μ(f−2(B) \ (E∪ f−1(E))

)
.

Replacing this expression in (1.4.2), we find that

μ
(
B
)= 2∑

k=1

μ
(
f−k(B)∩Ek

)+μ(f−2(B) \
1⋃

k=0

f−k(E)

)
.

Repeating this argument successively, we obtain

μ
(
B
)= n∑

k=1

μ
(
f−k(B)∩Ek

)+μ(f−n(B) \
n−1⋃
k=0

f−k(E)

)
. (1.4.3)
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24 Recurrence

Now let us go to the limit when n → ∞. It is clear that the last term is
bounded above by μ

(
f−n(E)\⋃n−1

k=0 f−k(E)
)
. So, using Remark 1.2.3, that term

converges to zero when n→∞. In this way we conclude that

μ
(
B
)= ∞∑

k=1

μ
(
f−k(B)∩Ek

)
.

Together with (1.4.1), this shows that μ(g−1(B))=μ(B) for every measurable
subset B of E. That is to say, the measure μE is invariant under g.

Example 1.4.2. Consider the transformation f : [0,∞)→[0,∞) defined by

f (0)= 0 and f (x)= 1/x if x ∈ (0,1) and f (x)= x− 1 if x≥ 1.

Let E= [0,1]. The time ρ of first return to E is given by

ρ(0)= 1 and ρ(x)= k+ 1 if x ∈ (1/(k+ 1),1/k] with k≥ 1.

So, the first-return map to E is given by

g(0)= 0 and g(x)= 1/x− k if x ∈ (1/(k+ 1),1/k] with k≥ 1.

In other words, g is the Gauss map. We saw in Section 1.3.2 that the Gauss map
admits an invariant probability measure equivalent to the Lebesgue measure on
[0,1). From this, one can draw some interesting conclusions about the original
map f . For instance, using the ideas in the next section one finds that f admits
an (infinite) invariant measure equivalent to the Lebesgue measure on [0,∞).

1.4.2 Induced transformations

In an opposite direction, given any measure ν invariant under g : E → E, we
may construct a certain related measure νρ that is invariant under f : M →M.
For this, g does not even have to be a first-return map: the construction that we
present below is valid for any map induced from f , that is, any map of the form

g : E→ E, g(x)= f ρ(x)(x), (1.4.4)

where ρ : E→N is a measurable function (it suffices that ρ is defined on some
full measure subset of E). As before, we denote by Ek the subset of points x∈E
such that ρ(x)= k. Then we define

νρ(B)=
∞∑

n=0

∑
k>n

ν
(
f−n(B)∩Ek

)
, (1.4.5)

for every measurable set B⊂M.

Proposition 1.4.3. The measure νρ defined in (1.4.5) is invariant under f and
satisfies νρ(M)=

∫
E ρ dν. In particular, νρ is finite if and only if the function ρ

is integrable with respect to ν.
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1.4 Induction 25

Proof. First, let us prove that νρ is invariant. By the definition (1.4.5),

νρ
(
f−1(B)

)= ∞∑
n=0

∑
k>n

ν
(
f−(n+1)(B)∩Ek

)= ∞∑
n=1

∑
k≥n

ν
(
f−n(B)∩Ek

)
.

We may rewrite this expression as follows:

νρ
(
f−1(B)

)= ∞∑
n=1

∑
k>n

ν
(
f−n(B)∩Ek

)+ ∞∑
k=1

ν
(
f−k(B)∩Ek

)
. (1.4.6)

Concerning the last term, observe that

∞∑
k=1

ν
(
f−k(B)∩Ek

)= ν(g−1(B)
)= ν(B)= ∞∑

k=1

ν
(
B∩Ek

)
,

since ν is invariant under g. Replacing this in (1.4.6), we see that

νρ
(
f−1(B)

)= ∞∑
n=1

∑
k>n

ν
(
f−n(B)∩Ek

)+ ∞∑
k=1

ν
(
B∩Ek

)= νρ(B)
for every measurable set B ⊂ E. The second claim is a direct consequence of
the definitions:

νρ(M)=
∞∑

n=0

∑
k>n

ν
(
f−n(M)∩Ek

)= ∞∑
n=0

∑
k>n

ν(Ek)=
∞∑

k=1

kν(Ek)=
∫

E
ρ dν.

This completes the proof.

It is interesting to analyze how this construction relates to the one in the
previous section when g is a first-return map of f and the measure ν is the
restriction μ | E of some invariant measure μ of f :

Corollary 1.4.4. If g is the first-return map of f to a measurable subset E and
ν =μ | E, then

1. νρ(B)= ν(B)=μ(B) for every measurable set B⊂ E.
2. νρ(B)≤μ(B) for every measurable set B⊂M.

Proof. By definition, f−n(E)∩Ek = ∅ for every 0 < n < k. This implies that,
given any measurable set B ⊂ E, all the terms with n > 0 in the definition
(1.4.5) are zero. Hence, νρ(B)=∑k>0 ν(B∩Ek)= ν(B) as claimed in the first
part of the statement.

Consider any measurable set B⊂M. Then,

μ
(
B
)=μ(B∩E

)+μ(B∩Ec
)= ν(B∩E

)+μ(B∩Ec
)

=
∞∑

k=1

ν
(
B∩Ek

)+μ(B∩Ec
)
.

(1.4.7)
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26 Recurrence

Since μ is invariant, μ(B∩Ec)=μ(f−1(B)∩ f−1(Ec)
)
. Then, as in the previous

equality,

μ
(
B∩Ec

)=μ(f−1(B)∩E∩ f−1(Ec)
)+μ(f−1(B)∩Ec ∩ f−1(Ec)

)
=

∞∑
k=2

ν
(
f−1(B)∩Ek

)+μ(f−1(B)∩Ec ∩ f−1(Ec)
)
.

Replacing this in (1.4.7), we find that

μ
(
B
)= 1∑

n=0

∑
k>n

ν
(
f−n(B)∩Ek

)+μ(f−1(B)∩
1⋂

n=0

f−n(Ec)

)
.

Repeating this argument successively, we get that

μ
(
B
)= N∑

n=0

∑
k>n

ν
(
f−n(B)∩Ek

)+μ(f−N(B)∩
N⋂

k=0

f−n(Ec)

)

≥
N∑

n=0

∑
k>n

ν
(
f−n(B)∩Ek

)
for every N ≥ 1.

Taking the limit as N →∞, we conclude that μ(B)≥ νρ(B).
We also have from the Kac̆ theorem (Theorem 1.2.2) that

νρ(M)=
∫

E
ρ dν =

∫
E
ρ dμ=μ(M)−μ(E∗0).

So, it follows from Corollary 1.4.4 that νρ =μ if and only if μ(E∗0)= 0.

Example 1.4.5 (Manneville–Pomeau). Given d > 0, let a be the only number
in (0,1) such that a(1+ ad)= 1. Then define f : [0,1]→ [0,1] as follows:

f (x)= x(1+ xd) if x ∈ [0,a] and f (x)= x− a

1− a
if x ∈ (a,1].

The graph of f is depicted on the left-hand side of Figure 1.3. Observe that
|f ′(x)| ≥ 1 at every point, and the inequality is strict at every x > 0. Let (an)n
be the sequence on the interval [0,a] defined by a1 = a and f (an+1) = an for
n ≥ 1. We also write a0 = 1. Some properties of this sequence are studied in
Exercise 1.4.2.

Now consider the map g(x)= f ρ(x)(x), where

ρ : [0,1]→N, ρ(x)= 1+min{n≥ 0 : f n(x) ∈ (a,1]}.
In other words, ρ(x) = k and so g(x) = f k(x) for every x ∈ (ak,ak−1]. The
graph of g is represented on the right-hand side of Figure 1.3. Note that the
restriction to each interval (ak,ak−1] is a bijection onto (0,1]. A key point is
that the induced map g is expanding:

|g′(x)| ≥ 1

1− a
> 1 for every x ∈ [0,1].

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.002
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.002
https://www.cambridge.org/core


1.4 Induction 27

010

1

1

1

a1

a1a1

f g

a2

a2a2 a3a3

Figure 1.3. Construction of an induced transformation

Using the ideas that will be developed in Chapter 11, one can show that g
admits a unique invariant probability measure ν equivalent to the Lebesgue
measure on (0,1]. In fact, the density (Radon–Nikodym derivative) of ν with
respect to the Lebesgue measure is bounded from zero and infinity. Then, the
f -invariant measure νρ in (1.4.5) is equivalent to Lebesgue measure. It follows
(see Exercise 1.4.2) that this measure is finite if and only if d ∈ (0,1).

1.4.3 Kakutani–Rokhlin towers

It is possible, and useful, to generalize the previous constructions even further,
by omitting the initial transformation f : M → M altogether. More precisely,
given a transformation g : E → E, a measure ν on E invariant under g and a
measurable function ρ : E → N, we are going to construct a transformation
f : M → M and a measure νρ invariant under f such that E can be identified
with a subset of M, g is the first-return map of f to E, with first-return time
given by ρ, and the restriction of νρ to E coincides with ν.

This transformation f is called the Kakutani–Rokhlin tower of g with time
ρ. The measure νρ is finite if and only if ρ is integrable with respect to ν. They
are constructed as follows. Begin by defining

M = {(x,n) : x ∈ E and 0≤ n< ρ(x)}

=
∞⋃

k=1

k−1⋃
n=0

Ek×{n}.

In other words, M consists of k copies of each set Ek = {x ∈ E : ρ(x) = k},
“piled up” on top of each other. We call each

⋃
k>n Ek × {n} the n-th floor of

M. See Figure 1.4.
Next, define f : M→M as follows:

f (x,n)=
{
(x,n+ 1) if n< ρ(x)− 1
(g(x),0) if n= ρ(x)− 1

.
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E1 E2 E3 Ek

ground floor

1st floor

2nd floor

(k−1)-st floor

k-th floor

g

Figure 1.4. Kakutani–Rokhlin tower of g with time ρ

In other words, each point (x,n) is “lifted” one floor at a time, until reaching the
floor ρ(x)−1; at that stage, the point “falls” directly to (g(x),0) on the ground
(zero-th) floor. The ground floor E×{0} is naturally identified with the set E.
Besides, the first-return map to E×{0} corresponds precisely to g : E→ E.

Finally, the measure νρ is defined by

νρ | (Ek×{n})= ν | Ek

for every 0 ≤ n < k. It is clear that the restriction of νρ to the ground floor
coincides with ν. Moreover, νρ is invariant under f and

νρ(M)=
∞∑

k=1

kν(Ek)=
∫

E
ρ dν.

This completes the construction of the Kakutani–Rokhlin tower.

1.4.4 Exercises

1.4.1. Let f : S1 → S1 be the transformation f (x)= 2x mod Z. Show that the function
τ(x) = min{k ≥ 0 : f k(x) ∈ (1/2,1)} is integrable with respect to the Lebesgue
measure. State and prove a corresponding result for any C1 transformation g :
S1 → S1 that is close to f , in the sense that supx{‖g(x)− f (x)‖,‖g′(x)− f ′(x)‖} is
sufficiently small.

1.4.2. Consider the measure νρ and the sequence (an)n defined in Example 1.4.5. Check
that νρ is always σ -finite. Show that (an)n is decreasing and converges to zero.
Moreover, there exist c1,c2,c3,c4 > 0 such that

c1 ≤ ajj
1/d ≤ c2 and c3 ≤

(
aj− aj+1

)
j1+1/d ≤ c4 for every j. (1.4.8)

Deduce that the g-invariant measure νρ is finite if and only if d ∈ (0,1).
1.4.3. Let σ : �→ � be the map defined on the space � = {1, . . . ,d}Z by σ((xn)n) =

(xn+1)n. Describe the first-return map g to the subset {(xn)n ∈� : x0 = 1}.
1.4.4. [Kakutani–Rokhlin lemma] Let f : M → M be an invertible transformation

and μ be an invariant probability measure without atoms and such that
μ(
⋃

n∈N f n(E)) = 1 for every E ⊂ M with μ(E) > 0. Show that for every
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1.5 Multiple recurrence theorems 29

n ≥ 1 and ε > 0 there exists a measurable set B ⊂ M such that the iterates
B, f (B), . . . , f n−1(B) are pairwise disjoint and the complement of their union has
measure less than ε. In particular, this holds for every invertible system that is
aperiodic, that is, whose periodic points form a zero measure set.

1.4.5. Let f : M →M be a transformation and (Hj)j≥1 be a collection of subsets of M
such that if x∈Hn then f j(x)∈Hn−j for every 0≤ j< n. Let H be the set of points
that belong to Hj for infinitely many values of j, that is, H =⋂∞

k=1

⋃∞
j=k Hj. For

y ∈H, define τ(y)=min{j≥ 1 : y ∈Hj} and T(y)= f τ (y)(y). Observe that T maps
H inside H. Moreover, show that

limsup
n

1

n
#{1≤ j≤ n : x ∈Hj} ≥ θ > 0 ⇒ liminf

k

1

k

k−1∑
i=0

τ(Ti(x))≤ 1

θ
.

1.4.6. Let f : M → M be a transformation preserving a measure μ. Let (Hj)j≥1 and
τ : M → N be as in Exercise 1.4.5. Consider the sequence of functions (τn)n
defined by τ1(x) = τ(x) and τn(x) = τ(f τn−1(x)(x))+ τn−1(x) for n > 1. Suppose
that

limsup
n

1

n
#{1≤ j≤ n : x ∈Hj} ≥ θ > 0 for μ-almost every x ∈M.

Show that τn+1(x)/τn(x)→ 1 for μ-almost every x ∈M. [Note: Sequences with
this property are called non-lacunary.]

1.5 Multiple recurrence theorems

Now we consider finite families of commuting maps fi : M →M, i= 1, . . . ,q,
that is, such that

fi ◦ fj = fj ◦ fi for every i, j ∈ {1, . . . ,q}.
Our goal is to explain that the results in Section 1.2 extend to this setting: we
find points that are simultaneously recurrent for these transformations.

The first result in this direction generalizes the Birkhoff recurrence theorem
(Theorem 1.2.6):

Theorem 1.5.1 (Birkhoff multiple recurrence). Let M be a compact metric
space and f1, . . . , fq : M→M be continuous commuting maps. Then there exists
a ∈M and a sequence (nk)k →∞ such that

lim
k

f nk
i (a)= a for every i= 1, . . . ,q. (1.5.1)

The key point here is that the sequence (nk)k does not depend on i: we say
that the point a is simultaneously recurrent for all the maps fi, i = 1, . . . ,q.
A proof of Theorem 1.5.1 is given in Section 1.5.1. Next, we discuss the
following generalization of the Poincaré recurrence theorem (Theorem 1.2.1):

Theorem 1.5.2 (Poincaré multiple recurrence). Let (M,B,μ) be a probability
space and fi : M → M, i = 1, . . . ,q be measurable commuting maps that
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30 Recurrence

preserve the measure μ. Then, given any set E ⊂ M with positive measure,
there exists n≥ 1 such that

μ
(
E∩ f−n

1 (E)∩ ·· · ∩ f−n
q (E)

)
> 0.

In other words, for a positive measure subset of points x ∈ E, their orbits
under all the maps fi, i= 1, . . . ,q return to E simultaneously at time n (we say
that n is a simultaneous return of x to E): once more, the crucial point with the
statement is that n does not depend on i.

The proof of Theorem 1.5.2 will not be presented here; we refer the
interested reader to the book of Furstenberg [Fur77]. We are just going to
mention some direct consequences and, in Chapter 2, we will use this theorem
to prove the Szemerédi theorem on the existence of arithmetic progressions
inside “dense” subsets of integer numbers.

To begin with, observe that the set of simultaneous returns is always infinite.
Indeed, let n be as in the statement of Theorem 1.5.2. Applying the theorem to
the set F = E∩ f−n

1 (E)∩ ·· · ∩ f−n
q (E), we find m≥ 1 such that

μ
(
E∩ f−(m+n)

1 (E)∩ ·· · ∩ f−(m+n)
q (E)

)
≥μ(F∩ f−m

1 (F)∩ ·· · ∩ f−m
q (F)

)
> 0.

Thus, m+n is also a simultaneous return to E, for all the points in some subset
of E with positive measure.

It follows that, for any set E ⊂ M with μ(E) > 0 and for μ-almost every
point x ∈ E, there exist infinitely many simultaneous returns of x to E. Indeed,
suppose there is a positive measure set F ⊂ E such that every point of F has a
finite number of simultaneous returns to E. On the one hand, up to replacing
F by a suitable subset, we may suppose that the simultaneous returns to E
of all the points of F are bounded by some k ≥ 1. On the other hand, using
the previous paragraph, there exists n > k such that G = F ∩ f−n

1 (F) ∩ ·· · ∩
f−n
q (F) has positive measure. Now, it is clear from the definition that n is a

simultaneous return to E of every x ∈G. This contradicts the choice of F, thus
proving our claim.

Another direct corollary is the Birkhoff multiple recurrence theorem
(Theorem 1.5.1). Indeed, if fi : M→M, i= 1, . . . ,q are continuous commuting
transformations on a compact metric space then there exists some probability
measure μ that is invariant under all these transformations (this fact will be
checked in the next chapter, see Exercise 2.2.2). From this point on, we may
argue exactly as in the proof of Theorem 1.2.4. More precisely, consider
any countable basis {Uk} for the topology of M. According to the previous
paragraph, for every k there exists a set Ũk ⊂ Uk with zero measure such
that every point in Uk \ Ũk has infinitely many simultaneous returns to Uk.
Then Ũ = ⋃k Ũk has measure zero and every point in its complement is
simultaneously recurrent, in the sense of Theorem 1.5.1.
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1.5 Multiple recurrence theorems 31

1.5.1 Birkhoff multiple recurrence theorem

In this section we prove Theorem 1.5.1 in the case when the transformations
f1, . . . , fq are homeomorphisms of M, which suffices for all our purposes in the
present chapter. The general case may be deduced easily (see Exercise 2.4.7)
using the concept of natural extension, which we will present in the next
chapter.

The theorem may be reformulated in the following useful way. Consider the
transformation F : Mq →Mq defined on the product space Mq =M× ·· ·×M
by F(x1, . . . ,xq)= (f1(x1), . . . , fq(xq)). Denote by
q the diagonal of Mq, that is,
the subset of points of the form x̃= (x, . . . ,x). Theorem 1.5.1 claims, precisely,
that there exist ã ∈
q and (nk)k →∞ such that

lim
k

Fnk(ã)= ã. (1.5.2)

The proof of Theorem 1.5.1 is by induction on the number q of transfor-
mations. The case q = 1 is contained in Theorem 1.2.6. Consider any q ≥ 2
and suppose that the statement is true for every family of q− 1 commuting
homeomorphisms. We are going to prove that it is true for the family f1, . . . , fq.

Let G be the (abelian) group generated by the homeomorphisms f1, . . . , fq.
We say that a set X ⊂M is G-invariant if g(X)⊂ X for every g ∈ G. Observing
that the inverse g−1 is also in G, we see that this implies g(X) = X for every
g ∈ G. Just as we did in Theorem 1.2.6, we may use Zorn’s lemma to conclude
that there exists some minimal, non-empty, closed, G-invariant set X ⊂M (this
is Exercise 1.5.2). The statement of the theorem is not affected if we replace M
by X. Thus, it is no restriction to assume that the ambient space M is minimal.
This assumption is used as follows:

Lemma 1.5.3. If M is minimal then for every non-empty open set U⊂M there
exists a finite subset H⊂ G such that⋃

h∈H
h−1(U)=M.

Proof. For any x ∈ M, the closure of the orbit G(x) = {g(x) : g ∈ G} is a
non-empty, closed, G-invariant subset of M. So, the hypothesis that M is
minimal implies that every orbit G(x) is dense in M. In particular, there is
g ∈ G such that g(x) ∈U. This proves that {g−1(U) : g ∈ G} is an open cover of
M. By compactness, it follows that there exists a finite subcover, as claimed.

Consider the product Mq endowed with the distance function

d
(
(x1, . . . ,xq),(y1, . . . ,yq)

)=max{d(xi,yi) : 1≤ i≤ q}.
Note that the map M→
q, x �→ x̃= (x, . . . ,x) is a homeomorphism, and even
an isometry for this choice of a distance. Every open set U ⊂M corresponds
to an open set Ũ ⊂ 
q through this homeomorphism. Given any g ∈ G,
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32 Recurrence

we denote by g̃ : Mq → Mq the homeomorphism defined by g̃(x1, . . . ,xq) =
(g(x1), . . . ,g(xq)). The fact that the group G is abelian implies that g̃ commutes
with F; note also that every g̃ preserves the diagonal 
q. Then the conclusion
of Lemma 1.5.3 may be rewritten in the following form:⋃

h∈H
h̃−1(Ũ)=
q. (1.5.3)

Lemma 1.5.4. Given ε > 0 there exist x̃ ∈ 
q, ỹ ∈ 
q and n ≥ 1 such that
d(Fn(x̃), ỹ) < ε.

Proof. Define gi = fi ◦ f−1
q for each i= 1, . . . ,q−1. Since the maps fi commute

with each other, so do the maps gi. Then, by induction, there exist y ∈M and
(nk)k →∞ such that

lim
k

gnk
i (y)= y for every i= 1, . . . ,q− 1.

Denote xk = f−nk
q (y) and consider x̃k = (xk, . . . ,xk) ∈
q. Then,

Fnk(x̃k)= (f nk
1 f−nk

q (y), . . . , f nk
q−1f−nk

q (y), f nk
q f−nk

q (y))

= (gnk
1 (y), . . . ,g

nk
q−1(y),y)

converges to (y, . . . ,y,y) when k →∞. This proves the lemma, with x̃ = x̃k,
ỹ= (y, . . . ,y,y) and n= nk for every k sufficiently large.

The next step is to show that the point ỹ in Lemma 1.5.4 is arbitrary:

Lemma 1.5.5. Given ε > 0 and z̃∈
q there exist w̃ ∈
q and m≥ 1 such that
d(Fm(w̃), z̃) < ε.

Proof. Given ε > 0 and z̃ ∈
q, consider Ũ = open ball of center z̃ and radius
ε/2. By Lemma 1.5.3 and the observation (1.5.3), we may find a finite set
H⊂ G such that the sets h̃−1(Ũ), h ∈H cover 
q. Since the elements of G are
(uniformly) continuous functions, there exists δ > 0 such that

d(x̃1, x̃2) < δ ⇒ d(h̃(x̃1), h̃(x̃2)) < ε/2 for every h ∈H.

By Lemma 1.5.4 there exist x̃, ỹ ∈
q and n≥ 1 such that d(Fn(x̃), ỹ) < δ. Fix
h ∈H such that ỹ ∈ h̃−1(Ũ). Then,

d
(
h̃(Fn(x̃)), z̃

)≤ d
(
h̃(Fn(x̃)), h̃(ỹ)

)+ d
(
h̃(ỹ), z̃

)
< ε/2+ ε/2.

Take w̃= h̃(x̃). Since h̃ commutes with Fn, the previous inequality implies that
d(Fn(w̃), z̃) < ε, as we wanted to prove.

Next, we prove that one may take x̃= ỹ in Lemma 1.5.4:

Lemma 1.5.6 (Bowen). Given ε > 0 there exist ṽ ∈ 
q and k ≥ 1 with
d(Fk(ṽ), ṽ) < ε.
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1.5 Multiple recurrence theorems 33

Proof. Given ε > 0 and z̃0 ∈ 
q, consider the sequences εj, mj and z̃j, j ≥ 1
defined by recurrence as follows. Initially, take ε1 = ε/2.

• By Lemma 1.5.5 there are z̃1 ∈
q and m1 ≥ 1 with d(Fm1(z̃1), z̃0) < ε1.
• By the continuity of Fm1 , there exists ε2 < ε1 such that d(z̃, z̃1) < ε2 implies

d(Fm1(z̃), z̃0) < ε1.

Next, given any j≥ 2:

• By Lemma 1.5.5 there are z̃j ∈
q and mj ≥ 1 with d(Fmj(z̃j), z̃j−1) < εj.
• By the continuity of Fmj , there exists εj+1 < εj such that d(z̃, z̃j) < εj+1

implies d(Fmj(z̃), z̃j−1) < εj.

In particular, for any i< j,

d(Fmi+1+···+mj(z̃j), z̃i) < εi+1 ≤ ε
2

.

Since 
q is compact, we can find i, j with i < j such that d(z̃i, z̃j) < ε/2. Take
k=mi+1+·· ·+mj. Then,

d(Fk(z̃j), z̃j)≤ d(Fk(z̃j), z̃i)+ d(z̃i, z̃j) < ε.

This completes the proof of the lemma.

Now we are ready to conclude the proof of Theorem 1.5.1. For that, let us
consider the function

φ :
q →[0,∞), φ(x̃)= inf{d(Fn(x̃), x̃) : n≥ 1}.
Observe that φ is upper semi-continuous: given any ε > 0, every point x̃ admits
some neighborhood V such that φ(ỹ) < φ(x̃)+ ε for every y ∈ V . This is an
immediate consequence of the fact that φ is given by the infimum of a family of
continuous functions. Then (Exercise 1.5.4), φ admits some continuity point ã.
We are going to show that this point satisfies the conclusion of Theorem 1.5.1.

Let us begin by observing that φ(ã) = 0. Indeed, suppose that φ(ã) is
positive. Then, by continuity, there exist β > 0 and a neighborhood V of ã
such that φ(ỹ)≥ β > 0 for every ỹ ∈ V . Then,

d(Fn(ỹ), ỹ)≥ β for every y ∈ V and n≥ 1. (1.5.4)

On the other hand, according to (1.5.3), for every x̃ ∈
q there exists h ∈H
such that h̃(x̃) ∈ V . Since the transformations h are uniformly continuous, we
may fix α > 0 such that

d(z̃, w̃) < α ⇒ d
(
h̃(z̃), h̃(w̃)

)
< β for every h ∈H. (1.5.5)

By Lemma 1.5.6, there exists n ≥ 1 such that d(x̃,Fn(x̃)) < α. Then, using
(1.5.5) and recalling that F commutes with every h̃,

d
(
h̃(x̃),Fn(h̃(x̃))

)
< β.

This contradicts (1.5.4). This contradiction proves that φ(ã)= 0, as claimed.
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34 Recurrence

In other words, there exists (nk)k→∞ such that d(Fnk(ã), ã)→ 0 when k→
∞. This means that (1.5.2) is satisfied and, hence, the proof of Theorem 1.5.1
is complete.

1.5.2 Exercises

1.5.1. Show, by means of examples, that the conclusion of Theorem 1.5.1 is generally
false if the transformations fi do not commute with each other.

1.5.2. Let G be the abelian group generated by commuting homeomorphisms f1, . . . , fq :
M→M on a compact metric space. Prove that there exists some minimal element
X ⊂M for the inclusion relation in the family of non-empty, closed, G-invariant
subsets of M.

1.5.3. Show that if ϕ : M → R is an upper semi-continuous function on a compact
metric space then ϕ attains its maximum, that is, there exists p ∈ M such that
ϕ(p)≥ ϕ(x) for every x ∈M.

1.5.4. Show that if ϕ : M → R is an (upper or lower) semi-continuous function on a
compact metric space then the set of continuity points of ϕ contains a countable
intersection of open and dense subsets of M. In particular, the set of continuity
points is dense in M.

1.5.5. Let f : M → M be a measurable transformation preserving a finite measure μ.
Given k ≥ 1 and a positive measure set A⊂M, show that for almost every x ∈ A
there exists n≥ 1 such that f jn(x) ∈ A for every 1≤ j≤ k.

1.5.6. Let f1, . . . , fq : M → M be commuting homeomorphisms on a compact metric
space. A point x ∈M is called non-wandering if for every neighborhood U of x
there exist n1, . . . ,nq ≥ 1 such that f n1

1 · · · f nq
q (U) intersects U. The non-wandering

set is the set �(f1, . . . , fq) of all non-wandering points. Prove that �(f1, . . . , fq) is
non-empty and compact.
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