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Existence of invariant measures

In this chapter we prove the following result, which guarantees the existence
of invariant measures for a broad class of transformations:

Theorem 2.1 (Existence of invariant measures). Let f : M → M be a
continuous transformation on a compact metric space. Then there exists some
probability measure on M invariant under f .

The main point in the proof is to introduce a certain topology in the set
M1(M) of probability measures on M, that we call weak∗ topology. The idea
is that two measures are close, with respect to this topology, if the integrals
they assign to (many) bounded continuous functions are close. The precise
definition and some of the properties of the weak∗ topology are presented
in Section 2.1. The crucial property, that makes this topology so useful for
proving the existence theorem, is that it turns M1(M) into a compact space
(Theorem 2.1.5).

The proof of Theorem 2.1 is given in Section 2.2. We will also see,
through examples, that the hypotheses of continuity and compactness cannot
be omitted.

In Section 2.3 we insert the construction of the weak∗ topology into a
broader framework from functional analysis and we also take the opportunity
to introduce the notion of the Koopman operator of a transformation, which
will be very useful in the sequel. In particular, as we are going to see, it allows
us to give an alternative proof of Theorem 2.1, based on tools from functional
analysis.

In Section 2.4 we describe certain explicit constructions of invariant
measures for two important classes of systems: skew-products and natural
extensions (or inverse limits) of non-invertible transformations.

Finally, in Section 2.5 we discuss some important applications of the idea of
multiple recurrence (Section 1.5) in the context of combinatorial arithmetics.
Theorem 2.1.5 has an important role in the arguments, which is the reason why
this discussion was postponed to the present chapter.
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36 Existence of invariant measures

2.1 Weak∗ topology

In this section M will always be a metric space. Our goal is to define the
so-called weak∗ topology in the set M1(M) of Borel probability measures on
M and to discuss its main properties.

Let d(·, ·) be the distance function on M and B(x,δ) denote the ball of center
x ∈M and radius δ > 0. Given B⊂M, we define

d(x,B)= inf{d(x,y) : y ∈ B}
and we call the δ-neighborhood of B the set Bδ of points x∈M with d(x,B)< δ.

2.1.1 Definition and properties of the weak∗ topology

Given a measure μ ∈ M1(M), a finite set � = {φ1, . . . ,φN} of bounded
continuous functions φi : M→R and a number ε > 0, we define

V(μ,�,ε)= {ν ∈M1(M) :
∣∣∫ φi dν−

∫
φi dμ

∣∣< ε for every i}. (2.1.1)

Note that the intersection of any two such sets contains some set of this form.
Thus, the family {V(μ,�,ε) :�,ε} may be taken as a basis of neighborhoods
of each μ ∈M1(M).

The weak∗ topology is the topology defined by these bases of neighbor-
hoods. In other words, the open sets in the weak∗ topology are the sets A ⊂
M1(M) such that for every μ∈A there exists some V(μ,�,ε) contained in A.
Observe that the definition depends only on the topology of M, not on its dis-
tance. Furthermore, this topology is Hausdorff: Proposition A.3.3 implies that
if μ and ν are distinct probabilities then there exist ε > 0 and some bounded
continuous function φ : M→R such that V(μ,{φ},ε)∩V(ν, {φ},ε)= ∅.

Lemma 2.1.1. A sequence (μn)n∈N converges to a measure μ∈M1(M) in the
weak∗ topology if and only if∫

φ dμn →
∫
φ dμ for every bounded continuous function φ : M→R.

Proof. To prove the “only if” claim, consider any set �= {φ} consisting of a
single bounded continuous function φ. Since (μn)n → μ, for any ε > 0 there
exists n̄ ≥ 1 such that μn ∈ V(μ,�,ε) for every n ≥ n̄. This means, precisely,
that ∣∣∣∣∫ φ dμn−

∫
φ dμ

∣∣∣∣< ε for every n≥ n̄.

In other words, the sequence (
∫
φ dμn)n converges to

∫
φ dμ.

The converse asserts that if (
∫
φ dμn)n converges to

∫
φ dμ for every

bounded continuous function φ then, given any � = {φ1, . . . ,φN} and ε > 0,
there exists n̄ ≥ 1 such that μn ∈ V(μ,�,ε) for n ≥ n̄. To check that this is
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2.1 Weak∗ topology 37

so, let �= {φ1, . . . ,φN}. The hypothesis ensures that for every i there exists n̄i

such that ∣∣∣∣∫ φi dμn−
∫
φi dμ

∣∣∣∣< ε for every n≥ n̄i .

Taking n̄=max{n̄1, . . . , n̄N} we get that μn ∈ V(μ,�,ε) for every n≥ n̄.

2.1.2 Portmanteau theorem

Now let us discuss other useful ways of defining the weak∗ topology. Indeed,
the relations (2.1.2), (2.1.3), (2.1.4) and (2.1.5) below introduce other natural
choices for neighborhoods of a probability measure μ∈M1. In Theorem 2.1.2
we prove that all these choices give rise to the same topology in M1(M), which
coincides with the weak∗ topology.

A direct variation of the definition of weak∗ topology is obtained by taking
as the basis of neighborhoods the family of sets

V(μ,�,ε)= {η ∈M1(M) :

∣∣∣∣∫ ψi dη−
∫
ψi dμ

∣∣∣∣< ε for every i}, (2.1.2)

where ε > 0 and � = {ψ1, . . . ,ψN} is a family of Lipschitz functions. The next
definition is formulated in terms of closed subsets. Given any finite family
F = {F1, . . . ,FN} of closed subsets of M and given any ε > 0, consider

Vf (μ,F ,ε)= {ν ∈M1 : ν(Fi) < μ(Fi)+ ε for every i}. (2.1.3)

The next construction is analogous, just with open subsets instead of closed
subsets. Given any finite family A = {A1, . . . ,AN} of open subsets of M and
given any ε > 0, consider

Va(μ,A,ε)= {ν ∈M1 : ν(Ai) > μ(Ai)− ε for every i}. (2.1.4)

We call a continuity set of a measure μ any Borel subset B of M whose
boundary ∂B has zero measure for μ. Given any finite family B= {B1, . . . ,BN}
of continuity sets of μ and given any ε > 0, consider

Vc(μ,B,ε)= {ν ∈M1 : |μ(Bi)− ν(Bi)|< ε for every i}. (2.1.5)

Given any two topologies T1 and T2 in the same set, we say that T1 is weaker
than T2 (or, equivalently, that T2 is stronger than T1) if every subset that is open
for T1 is also open for T2. We say that the two topologies are equivalent if they
have exactly the same open sets.

Theorem 2.1.2. The topologies defined by the bases of neighborhoods (2.1.1),
(2.1.2), (2.1.3), (2.1.4) and (2.1.5) are all equivalent.

Proof. Since every Lipschitz function is continuous, it is clear that the
topology (2.1.2) is weaker than the topology (2.1.1).

To show that the topology (2.1.3) is weaker than the topology (2.1.2),
consider any finite family F = {F1, . . . ,FN} of closed subsets of M. According
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38 Existence of invariant measures

to Lemma A.3.4, for each δ > 0 and each i there exists a Lipschitz function
ψi : M → [0,1] such that XFi ≤ ψi ≤ XFδi

. Observe that
⋂
δ Fδi = Fi, because

Fi is closed, and so μ(Fδi )→ μ(Fi) when δ→ 0. Fix δ > 0 small enough so
that μ(Fδi )−μ(Fi) < ε/2 for every i. Let � be the set of functions ψ1, . . . ,ψN

obtained in this way. Observe that∣∣∣∣∫ ψi dν−
∫
ψi dμ

∣∣∣∣< ε/2 ⇒ ν(Fi)−μ(Fδi ) < ε/2 ⇒ ν(Fi)≤μ(Fi)+ ε

for every i. In other words, V(μ,�,ε/2) is contained in Vf (μ,F ,ε).
It is easy to see that the topologies (2.1.3) and (2.1.4) are equivalent.

Indeed, let F = {F1, . . . ,Fn} be any finite family of closed subsets and let
A= {A1, . . . ,AN}, where each Ai is the complement of Fi. Clearly,

Vf (μ,F ,ε)= {ν ∈M1 : ν(Fi) < μ(Fi)+ ε for every i}
= {ν ∈M1 : ν(Ai) > μ(Ai)− ε for every i} = Va(μ,A,ε).

Next, let us show that the topology (2.1.5) is weaker than these equivalent
topologies (2.1.3) and (2.1.4). Given any finite family B = {B1, . . . ,BN} of
continuity sets of μ, let Fi be the closure and Ai be the interior of each Bi.
Denote F = {F1, . . . ,FN} and A= {A1, . . . ,AN}. Since μ(Fi)=μ(Bi)=μ(Ai),

ν(Fi) < μ(Fi)+ ε ⇒ ν(Bi) < μ(Bi)+ ε
ν(Ai) > μ(Ai)− ε ⇒ ν(Bi) > μ(Bi)− ε

for every i. This means that Vf (μ,F ,ε)∩Va(μ,A,ε) is contained in Vc(μ,B,ε).
Finally, let us prove that the topology (2.1.1) is weaker than the topology

(2.1.5). Let � = {φ1, . . . ,φN} be a finite family of bounded continuous
functions. Fix an integer number � such that sup |φi(x)| < � for every i.
For each i, the pre-images φ−1

i (s), s ∈ [−�,�] are pairwise disjoint. Hence,
μ
(
φ−1

i (s)
) = 0 except for a countable set of values of s. In particular, we

may choose k ∈ N and points −� = t0 < t1 < · · · < tk−1 < tk = � such that
tj− tj−1 < ε/2 and μ({φ−1

i (tj)})= 0 for every j. Then, each

Bi,j = φ−1
i ((tj−1, tj])

is a continuity set of μ. Moreover,

k∑
j=1

tjμ(Bi,j)≥
∫
φi dμ≥

k∑
j=1

tj−1μ(Bi,j) >

k∑
j=1

tjμ(Bi,j)− ε/2,

and we also have similar inequalities for the integrals relative to ν. It follows
that ∣∣∣∣∫ φi dμ−

∫
φi dν

∣∣∣∣≤ k∑
j=1

� |μ(Bi,j)− ν(Bi,j)|+ ε/2 (2.1.6)

for every i. Denote B = {Bi,j : i = 1, . . . ,N and j = 1, . . . ,k}. Then the relation
(2.1.6) implies that Vc(μ,B,ε/(2k�)) is contained in V(μ,�,ε).
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2.1 Weak∗ topology 39

2.1.3 The weak∗ topology is metrizable

Now assume that the metric space M is separable. We will see in Exercise 2.1.3
that the weak∗ topology on M1(M) is separable. Here we show that it is also
metrizable: we exhibit a distance function on M1(M) that induces the weak∗

topology.
Given μ,ν ∈M1(M), define D(μ,ν) to be the infimum of all numbers δ > 0

such that
μ(B) < ν(Bδ)+ δ and ν(B) < μ(Bδ)+ δ (2.1.7)

for every Borel set B⊂M.

Lemma 2.1.3. The function D is a distance on M1(M).

Proof. Let us start by showing that D(μ,ν) = 0 implies μ = ν. Indeed, the
hypothesis implies

μ(B)≤ ν(B̄) and ν(B)≤μ(B̄)
for every Borel set B⊂M, where B̄ denotes the closure of B. When B is closed,
these inequalities mean that μ(B)= ν(B). As we have seen previously, any two
measures that coincide on the closed subsets are necessarily the same.

We leave it to the reader to check all the other conditions in the definition of
a distance (Exercise 2.1.5).

This distance D is called the Levy–Prohorov metric on M1(M). In what
follows we denote by BD(μ,r) the ball of radius r> 0 around any μ∈M1(M).

Proposition 2.1.4. If M is a separable metric space then the topology induced
by the Levy–Prohorov distance D coincides with the weak∗ topology on
M1(M).

Proof. Let ε > 0 and F = {F1, . . . ,FN} be a finite family of closed subsets of
M. Fix δ ∈ (0,ε/2) such that μ(Fδi ) < μ(Fi)+ ε/2 for every i. If ν ∈ BD(μ,δ)
then

ν(Fi) < μ(F
δ
i )+ δ < μ(Fi)+ ε for every i,

which means that ν ∈ Vf (μ,F ,ε). This shows that the topology induced by
the distance D is stronger than the topology (2.1.3) which, as we have seen, is
equivalent to the weak∗ topology.

We are left to prove that if M is separable then the weak∗ topology is stronger
than the topology induced by D. For that, let {p1,p2, . . . } be any countable
dense subset of M. Given ε > 0, let us fix δ ∈ (0,ε/3). For each j, the spheres
∂B(pj,r)= {x : d(x,pj)= r}, r> 0 are pairwise disjoint. So, we may find r> 0
arbitrarily small such that μ(∂B(pj,r)) = 0 for every j. Fix any such r, with
r ∈ (0,δ/3). The family {B(pj,r) : j = 1,2, . . . } is a countable cover of M by
continuity sets of μ. Fix k≥ 1 such that the set U =⋃k

j=1 B(pj,r) satisfies

μ
(
U
)
> 1− δ. (2.1.8)
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40 Existence of invariant measures

Figure 2.1. Partition defined by a finite cover

Next, let us consider the (finite) partition P of U defined by the family of balls

{B(pj,r) : j= 1, . . . ,k}.
That is, the elements of P are the maximal sets P ⊂ U such that, for each j,
either P is contained in B(pj,r) or P is disjoint from B(pj,r). See Figure 2.1.
Now let E be the family of all finite unions of elements of P . Note that the
boundary of every element of E has measure zero, since it is contained in the
union of the boundaries of the balls B(pj,r), 1 ≤ j ≤ k. That is, every element
of E is a continuity set of μ.

If ν ∈ Vc(μ,E ,δ) then

|μ(E)− ν(E)|< δ for every E ∈ E . (2.1.9)

In particular, (2.1.8) together with (2.1.9) imply that

ν
(
U
)
> 1− 2δ. (2.1.10)

Now, given any Borel subset B, denote by EB the union of all the elements of
P that intersect B. Then EB ∈ E and so the relation (2.1.9) yields

|μ(EB)− ν(EB)|< δ.
Observe that B is contained in EB

⋃
Uc. Moreover, EB ⊂ Bδ because every

element of P has diameter less than 2r < δ. These facts, together with (2.1.8)
and (2.1.10), imply that

μ(B)≤ μ(EB)+ δ < ν(EB)+ 2δ ≤ ν(Bδ)+ 2δ

ν(B)≤ ν(EB)+ 2δ < μ(EB)+ 3δ ≤μ(Bδ)+ 3δ.

Since 3δ < ε, these relations imply that ν ∈ BD(μ,ε).

One can show that if M is a complete separable metric space then
the Levy–Prohorov metric on M1(M) is complete (and separable, by
Exercise 2.1.3). See, for example, Theorem 6.8 in Billingsley [Bil68].
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2.1 Weak∗ topology 41

2.1.4 The weak∗ topology is compact

In this section we take the metric space M to be compact. We are going to
prove the following fundamental result:

Theorem 2.1.5. The space M1(M) is compact for the weak∗ topology.

Since we already know that M1(M) is metrizable, it suffices to prove:

Proposition 2.1.6. Every sequence (μk)k∈N in M1(M) has some subsequence
that converges in the weak∗ topology.

Proof. Let {φn : n ∈ N} be a countable dense subset of the unit ball of
C0(M) (recall Theorem A.3.13). For each n ∈N, the sequence of real numbers∫
φn dμk , k ∈N is bounded by 1. Hence, for each n∈N there exists a sequence

(kn
j )j∈N such that∫

φn dμkn
j

converges to some number �n ∈R when j→∞.

Moreover, each sequence (kn+1
j )j∈N may be chosen to be a subsequence of the

previous (kn
j )j∈N. Define �j = kj

j for each j ∈ N. By construction, (�j)j∈N is a
subsequence of every (kn

j )j∈N, up to finitely many terms. Hence,(∫
φn dμ�j

)
j

→�n for every n ∈N.

One can easily deduce that

�(ϕ)= lim
j

∫
ϕ dμ�j (2.1.11)

exists, for every function ϕ ∈ C0(M). Indeed, suppose first that ϕ is in the unit
ball of C0(M). Given any ε > 0, we may find n ∈ N such that ‖ϕ − φn‖ ≤ ε.
Then, ∣∣∣∣∫ ϕ dμ�j −

∫
φn dμ�j

∣∣∣∣≤ ε
for every j. Since

∫
φn dμ�j converges (to �n), it follows that

limsup
j

∫
ϕ dμ�j − liminf

j

∫
ϕ dμ�j ≤ 2ε.

Since ε is arbitrary, we find that limj
∫
ϕ dμ�j exists. This proves (2.1.11) when

the function is in the unit ball. The general case reduces immediately to this
one, just replacing ϕ with ϕ/‖ϕ‖. In this way, we have completed the proof of
(2.1.11).

Finally, it is clear that the operator � : C0(M)→ R defined by (2.1.11) is
linear and positive: �(ϕ)≥minϕ ≥ 0 whenever ϕ ≥ 0 at all points. Moreover,
�(1) = 1. Thus, by Theorem A.3.11, there exists some Borel probability
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42 Existence of invariant measures

measure μ on M such that �(ϕ) = ∫ ϕ dμ for every continuous function ϕ.
Now, the equality in (2.1.11) may be rewritten as∫

ϕ dμ= lim
j

∫
ϕ dμ�j for every ϕ ∈ C0(M).

According to Lemma 2.1.1, this means that the subsequence (μ�j)j∈N converges
to μ in the weak∗ topology.

As we observed previously, Theorem 2.1.5 is an immediate consequence of
the proposition we have just proved.

2.1.5 Theorem of Prohorov

The theorem that we are going to state in this section provides a very general
criterion for a family of probability measures to be compact. Indeed, the
class of metric spaces M to which it applies includes virtually all interesting
examples.

Definition 2.1.7. A set M of Borel measures in a topological space is tight if
for every ε > 0 there exists a compact set K ⊂M such that μ(Kc) < ε for every
measure μ ∈M.

Note that when M consists of a single measure this definition corresponds
exactly to Definition A.3.6. Clearly, tightness is a hereditary property: if a set
is tight then all its subsets are also tight. Note also that if M is a compact metric
space then the space M1(M) of all probability measures is a tight set. So, the
next result is an extension of Theorem 2.1.5:

Theorem 2.1.8 (Prohorov). Let M be a complete separable metric space. A
set K ⊂ M1(M) is tight if and only if every sequence in K admits some
subsequence that is convergent in the weak∗ topology of M1(M).

Proof. We only prove the necessary condition, which is the most useful part
of the statement. Then, in Exercise 2.1.8, we invite the reader to prove the
converse.

Suppose that K is tight. Consider an increasing sequence (Kl)l of compact
subsets of M such that η(Kc

l ) ≤ 1/l for every l and every η ∈ K. Fix any
sequence (μn)n in K. To begin with, we claim that for every l there exists a
subsequence (nj)j and there exists a measure νl on M such that νl(Kc

l )= 0 and
(μnj | Kl)j converges to νl, in the sense that∫

Kl

ψ dμnj →
∫

Kl

ψ dνl for every continuous function ψ : Kl→R. (2.1.12)

Indeed, that is a simple consequence of Theorem 2.1.5: up to restricting to a
subsequence, we may suppose that the limit bl = limnμn(Kl) exists (note that
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2.1 Weak∗ topology 43

1≥ bl ≥ 1− 1/l); it follows from the theorem that the sequence of normalized
restrictions (

(μn | Kl)/μn(Kl)
)

n

admits a subsequence converging to some probability measure ηl ∈M1(Kl); to
conclude the proof of the claim it suffices to take ηl to be a probability measure
on M with ηl(Kc

l )= 0 and to choose νl = blηl.
Next, using a diagonal argument analogous to the one in Proposition 2.1.6,

we may choose a subsequence (nj)j in such a way that (2.1.12) holds, simul-
taneously, for every l ≥ 1. Observe that the sequence (νl)l is non-decreasing:
given k> l and any continuous function φ : M→[0,1],∫

φ dνl = lim
j

∫
Kl

φ dμnj ≤ lim
j

∫
Kk

φ dμnj =
∫
φ dνk.

Analogously, for any k> l and any continuous function φ : M→[0,1],∫
φ dνk−

∫
φ dνl = lim

j

∫
Kk\Kl

φ dμnj ≤ limsup
j

μnj(K
c
l )≤ 1/l.

Using Exercise A.3.5, we may translate this in terms of measures of sets (rather
than integrals of functions): for every k> l and every Borel set E⊂M,

νl(E)≤ νk(E)≤ νl(E)+ 1/l. (2.1.13)

Define ν(E)= liml νl(E) for each Borel set E. We claim that ν is a probability
measure on M. It is immediate from the definition that ν(∅) = 0 and that
ν is additive. Furthermore, ν(M) = liml ν(Kl) = liml bl = 1. To show that ν
is countably additive (σ -additive), we use the criterion of continuity at the
empty set (Theorem A.1.14). Consider any decreasing sequence (Bn)n of Borel
subsets of M with

⋂
n Bn = ∅. Given ε > 0, choose l such that 1/l < ε. Since

νl is countably additive, Theorem A.1.14 shows that νl(Bn) < ε for every n
sufficiently large. Hence, ν(Bn) ≤ νl(Bn)+ 1/l < 2ε for every n sufficiently
large. This proves that (ν(Bn))n converges to zero and, by Theorem A.1.14, it
follows that ν is indeed countably additive.

The definition of ν implies (see Exercise 2.1.1 or Exercise 2.1.4) that (νl)l
converges to ν in the weak∗ topology. So, given ε > 0 and any bounded
continuous function ϕ : M → R, we have that |∫ ϕ dνl−

∫
ϕ dν|< ε for every

l sufficiently large. Fix l such that, in addition, sup |ϕ|/l< ε. Then,∣∣∣∣∫ ϕ dμnj −
∫
ϕ dνl

∣∣∣∣≤ ∣∣∣∣∫
Kc

l

ϕ dμnj

∣∣∣∣+ ∣∣∣∣∫
Kl

ϕ dμnj −
∫

Kl

ϕ dνl

∣∣∣∣≤ 2ε

for every j sufficiently large. This shows that |∫ ϕ dμnj−
∫
ϕ dν|< 3ε whenever

j is large enough. Thus, (μnj)j converges to ν in the weak∗ topology.
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44 Existence of invariant measures

2.1.6 Exercises

2.1.1. Let M be a metric space and (μn)n be a sequence in M1(M). Show that the
following conditions are all equivalent:
1. (μn)n converges to a probability measure μ in the weak∗ topology.
2. limsupnμn(F)≤μ(F) for every closed set F ⊂M.
3. liminfnμn(A)≥μ(A) for every open set A⊂M.
4. limnμn(B)=μ(B) for every continuity set B of μ.
5. limn

∫
ψ dμn =

∫
ψ dμ for every Lipschitz function ψ : M→R.

2.1.2. Fix any dense subset F of the unit ball of C0(M). Show that a sequence (μn)n∈N
of probability measures on M converges to some μ ∈ M1(M) in the weak∗

topology if and only if

∫
φ dμn converges to

∫
φ dμ, for every φ ∈F .

2.1.3. Show that the subset formed by the measures with finite support is dense in
M1(M), relative to the weak∗ topology. Assuming that the metric space M is
separable, conclude that M1(M) is also separable.

2.1.4. The uniform topology in M1(M) is defined by the basis of neighborhoods

Vu(μ,ε)= {ν ∈M1(M) : |μ(B)− ν(B)|< ε for every B ∈ B},

and the pointwise topology is defined by the basis of neighborhoods

Vp(μ,B,ε)= {ν ∈M1(M) : |μ(Bi)− ν(Bi)|< ε for every i},

where ε > 0, n ≥ 1 and B = {B1, . . . ,BN} is a finite family of measurable sets.
Check that the uniform topology is stronger than the pointwise topology and the
latter is stronger than the weak∗ topology. Show, by means of examples, that
these relations may be strict.

2.1.5. Complete the proof of Lemma 2.1.3.
2.1.6. Let Vk, k = 1,2, . . . be random variables with real values, that is, measurable

functions Vk : (X,B,μ)→ R defined in some probability space (X,B,μ). The
distribution function of Vk is the monotone function Fk : R→ [0,1] defined by
Fk(a) = μ({x ∈ X : Vk(x) ≤ a}). We say that (Vk)k converges in distribution to
some random variable V if limk Fk(a)= F(a) for every continuity point a of the
distribution function F of the random variable V . What does this have to do with
the weak∗ topology?

2.1.7. Let (μn)n∈N be a sequence of probability measures converging to some μ in the
weak∗ topology. Let B be a continuity set of μ with μ(B) > 0. Prove that the
normalized restrictions (μn | B)/μn(B) converge to the normalized restriction
(μ | B)/μ(B) when n →∞. What can be said if we replace continuity sets by
closed sets or by open sets?

2.1.8. (Converse to the theorem of Prohorov) Prove that if K ⊂M1(M) is such that
every sequence in K admits some convergent subsequence then K is tight.
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2.2 Proof of the existence theorem 45

2.2 Proof of the existence theorem

Given any f : M →M and any measure η on M, we denote by f∗η and call the
iterate (or image) of η under f the measure defined by

f∗η
(
B
)= η(f−1(B)

)
for each measurable set B⊂M. Note that the measure η is invariant under f if
and only if f∗η= η.

Lemma 2.2.1. Let η be a measure and φ be a bounded measurable function.
Then ∫

φ df∗η=
∫
φ ◦ f dη. (2.2.1)

Proof. If φ is the characteristic function of a measurable set B then the relation
(2.2.1) means that f∗η(B)= η(f−1(B)), which holds by definition. By linearity
of the integral, it follows that (2.2.1) holds whenever φ is a simple function.
Finally, since every bounded measurable function can be approximated by
simple functions (see Proposition A.1.33), it follows that the claim in the
lemma is true in general.

Proposition 2.2.2. If f : M→M is continuous then f∗ : M1(M)→M1(M) is
continuous relative to the weak∗ topology.

Proof. Let ε > 0 and � = {φ1, . . . ,φn} be any family of bounded continuous
functions. Since f is continuous, the family� ={φ1 ◦ f , . . . ,φn ◦ f } also consists
of bounded continuous functions. By the previous lemma,∣∣∣∣∫ φi d(f∗μ)−

∫
φi d(f∗ν)

∣∣∣∣= ∣∣∣∣∫ (φi ◦ f )dμ−
∫
(φi ◦ f )dν

∣∣∣∣
and so the left-hand side is smaller than ε if the right-hand side is smaller than
ε. That means that

f∗
(
V(μ,�,ε)

)⊂ V(f∗μ,�,ε)) for every μ, � and ε,

and this last fact shows that f∗ is continuous.

At this point, Theorem 2.1 could be deduced from the classical Schauder–
Tychonoff fixed point theorem for continuous operators in topological vector
spaces. A topological vector space is a vector space V endowed with a
topology relative to which both operations of V (addition and multiplication
by a scalar) are continuous. A set K⊂V is said to be convex if (1− t)x+ ty∈K
for every x,y ∈ K and every t ∈ [0,1].
Theorem 2.2.3 (Schauder–Tychonoff). Let F : V → V be a continuous
transformation on a topological vector space V. Suppose that there exists a
compact convex set K ⊂ V such that F(K)⊂K. Then F(v)= v for some v ∈K.
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46 Existence of invariant measures

Theorem 2.1 corresponds to the special case when V =M(M) is the space
of complex measures, K =M1(M) is the space of probability measures on M
and F = f∗ is the action of f on M(M).

However, the situation of Theorem 2.1 is a lot simpler than the general
case of the Schauder–Tychonoff theorem because the operator f∗ besides being
continuous is also linear. This allows for a direct and elementary proof of
Theorem 2.1 that also provides some additional information about the invariant
measure.

To that end, let ν be any probability measure on M: for example, ν could be
the Dirac mass at any point. Form the sequence of probability measures

μn = 1

n

n−1∑
j=0

f j
∗ν, (2.2.2)

where f j
∗ν is the image of ν under the iterate f j. By Theorem 2.1.5, this

sequence has some accumulation point, that is, there exists some subsequence
(nk)k∈N and some probability measure μ ∈M1(M) such that

1

nk

nk−1∑
j=0

f j
∗ν→μ (2.2.3)

in the weak∗ topology. Now we only need to prove:

Lemma 2.2.4. Every accumulation point of a sequence (μn)n∈N of the form
(2.2.2) is a probability measure invariant under f .

Proof. The relation (2.2.3) asserts that, given any family � = {φ1, . . . ,φN} of
bounded continuous functions and given any ε > 0, we have∣∣∣∣ 1

nk

nk−1∑
j=0

∫
(φi ◦ f j)dν−

∫
φi dμ

∣∣∣∣< ε/2 (2.2.4)

for every i and every k sufficiently large. By Proposition 2.2.2,

f∗μ= f∗
(

lim
k

1

nk

nk−1∑
j=0

f j
∗ν
)
= lim

k

1

nk

nk∑
j=1

f j
∗ν . (2.2.5)

Now observe that∣∣∣∣ 1

nk

nk−1∑
j=0

∫
(φi ◦ f j)dν− 1

nk

nk∑
j=1

∫
(φi ◦ f j)dν

∣∣∣∣
= 1

nk

∣∣∣∣∫ φi dν−
∫
(φi ◦ f nk)dν

∣∣∣∣≤ 2

nk
sup |φi|,
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2.2 Proof of the existence theorem 47

and the latter expression is smaller than ε/2 for every i and every k sufficiently
large. Combining this fact with (2.2.4), we conclude that∣∣∣∣ 1

nk

nk∑
j=1

∫
(φi ◦ f j)dν−

∫
φi dμ

∣∣∣∣< ε (2.2.6)

for every i and every k sufficiently large. This means that

1

nk

nk∑
j=1

f j
∗ν→μ

when k→∞. However, (2.2.5) means that this sequence converges to f∗μ. By
uniqueness of the limit, it follows that f∗μ=μ.

Now the proof of Theorem 2.1 is complete. The examples that follow show
that neither of the two hypotheses in the theorem, continuity and compactness,
may be omitted.

Example 2.2.5. Consider f : (0,1]→ (0,1] given by f (x)= x/2. Suppose that
f admits some invariant probability measure: we are going to show that this is
actually not true. By the recurrence theorem (Theorem 1.2.4), relative to that
probability measure almost every point of (0,1] is recurrent. However, it is
clear that there are no recurrent points: the orbit of every x ∈ (0,1] converges
to zero and, in particular, does not accumulate on the initial point x. Hence, f
is an example of a continuous transformation (on a non-compact space) that
does not have any invariant probability measure.

Example 2.2.6. Modifying a little the previous construction, we see that the
same phenomenon may occur in compact spaces, if the transformation is not
continuous. Consider f : [0,1]→ [0,1] given by f (x)= x/2 if x �= 0 and f (0)=
1. For the same reason as before, no point x ∈ (0,1] is recurrent. So, if there
exists some invariant probability measure μ then it must give full weight to the
sole recurrent point x= 0. In other words, μ must be the Dirac mass supported
at zero, that is, the measure δ0 defined by

δ0(E)= 1 if 0 ∈ E and δ0(E)= 0 if 0 /∈ E.

However, the measure δ0 is not invariant under f : for example, the measurable
set E= {0} has measure 1 and yet its pre-image f−1(E) is the empty set, which
has measure zero. Thus, this transformation f has no invariant probability
measures.

Our third example is of a different nature. We include it to stress the
limitations of Theorem 2.1 (which are inherent to its great generality): the
measures whose existence is ensured by the theorem may be completely trivial;
for example, in the situation that we are going to describe “almost every point”
just means the point x = 0. For this reason, an important objective in ergodic
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48 Existence of invariant measures

theory is to construct more sophisticated invariant measures, with additional
interesting properties such as, for instance, being equivalent to the Lebesgue
measure.

Example 2.2.7. Consider f : [0,1] → [0,1] given by f (x) = x/2. This is
a continuous transformation on a compact space. So, by Theorem 2.1, f
admits some invariant probability measure. Using the same arguments as in
the previous example, we find that there exists a unique invariant probability
measure, namely, the Dirac mass δ0 at the origin. Note that in this case the
measure δ0 is indeed invariant.

As an immediate application of Theorem 2.1, we have the following
alternative proof of the Birkhoff recurrence theorem (Theorem 1.2.6). Suppose
that f : M → M is a continuous transformation on a compact metric space.
By Theorem 2.1, there exists some f -invariant probability measure μ. Every
compact metric space admits a countable basis of open sets. So, we may apply
Theorem 1.2.4 to conclude that μ-almost every point is recurrent. In particular,
the set of recurrent points is non-empty, as stated by Theorem 1.2.6.

2.2.1 Exercises

2.2.1. Prove the following generalization of Lemma 2.2.4. Let f : M → M be a
continuous transformation on a compact metric space, ν be a probability measure
on M and (In)n be a sequence of intervals of natural numbers such that #In

converges to infinity when n goes to infinity. Then every accumulation point of
the sequence

μn = 1

#In

∑
j∈In

f j
∗ν

is an f -invariant probability measure.
2.2.2. Let f1, . . . , fq : M → M be any finite family of commuting continuous transfor-

mations on a compact metric space. Prove that there exists some probability
measure μ that is invariant under fi for every i∈ {1, . . . ,q}. In fact, the conclusion
remains true for any countable family {fj : j ∈ N} of commuting continuous
transformations on a compact metric space.

2.2.3. Let f : [0,1] → [0,1] be the decimal expansion transformation. Show that for
every k ≥ 1 there exists some invariant probability measure whose support is
formed by exactly k points (in particular, f admits infinitely many invariant prob-
ability measures). Determine whether there are invariant probability measures μ
such that

(a) the support of μ is infinite countable;
(b) the support of μ is non-countable but has empty interior;
(c) the support of μ has non-empty interior but μ is singular with respect to the

Lebesgue measure m.
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2.3 Comments in functional analysis 49

2.2.4. Prove the theorem of existence of invariant measures for continuous flows:
every continuous flow (f t)t∈R on a compact metric space admits some invariant
probability measure.

2.2.5. Show that the transformation f : [−1,1] → [−1,1], f (x) = 1 − 2x2 has some
invariant probability measure equivalent to the Lebesgue on the interval.

2.2.6. Let f : M→M be an invertible measurable transformation and m be a probability
measure on M such that m(A)= 0 if and only if m(f (A))= 0. We say that the pair
(f ,m) is totally dissipative if there exists a measurable set W ⊂M whose iterates
f j(W), j∈Z are pairwise disjoint and such that their union has full measure. Prove
that if (f ,m) is totally dissipative then f admits some σ -finite invariant measure
equivalent to Lebesgue measure m. This measure is necessarily infinite.

2.2.7. Let f : M→M be an invertible measurable transformation and m be a probability
measure on M such that m(A) = 0 if and only if m(f (A)) = 0. We say that the
pair (f ,m) is conservative if there is no measurable set W ⊂ M with positive
measure whose iterates f j(W), j ∈ Z are pairwise disjoint. Show that if (f ,m) is
conservative then, for every measurable set X ⊂ M, m-almost every point of X
returns to X infinitely times.

2.2.8. Suppose that (f ,m) is conservative. Show that f admits a σ -finite invariant
measure μ equivalent to m if and only if there exist sets X1 ⊂ ·· · ⊂ Xn ⊂ ·· ·
with M =⋃n Xn and m(Xn) <∞ for every n, such that the first-return map fn to
each Xn admits a finite invariant measure μn absolutely continuous with respect
to the restriction of m to Xn.

2.2.9. Find conservative pairs (f ,m) such that f has no finite invariant measures
equivalent to m. [Observation: Ornstein [Orn60] gave examples such that f does
not even have σ -finite invariant measures equivalent to m.]

2.3 Comments in functional analysis

The definition of weak∗ topology in the space of probability measures is a
special case of a construction from functional analysis that is worthwhile
recalling here. It leads us to introducing a certain linear isometry Uf in
the space L1(μ), called the Koopman operator of the system (f ,μ). These
operators have an important role in ergodic theory because they allow for
powerful tools from Analysis to be used in the study of invariant measures.
To illustrate this fact, we present an alternative proof of Theorem 2.1 based on
the spectral properties of the Koopman operator.

2.3.1 Duality and weak topologies

Let E be a Banach space, that is, a vector space endowed with a complete norm.
The dual of E is the space E∗ of all continuous linear functionals defined on E.
This is also a Banach space, with the norm

‖g‖ = sup

{ |g(v)|
‖v‖ : v ∈ E \ {0}

}
. (2.3.1)
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50 Existence of invariant measures

The weak topology in the space E is the topology defined by the following
basis of neighborhoods:

V(v, {g1, . . . ,gN},ε)= {w ∈ E : |gi(v)− gi(w)|< ε for every i}, (2.3.2)

where g1, . . . ,gN ∈ E∗. In terms of sequences, it satisfies

(vn)n → v ⇒ (g(vn))n → g(v) for every g ∈ E∗.

The weak∗ topology in the dual space E∗ is the topology defined by the
following basis of neighborhoods:

V∗(g, {v1, . . . ,vN},ε)= {h ∈ E∗ : |g(vi)− h(vi)|< ε for every i}, (2.3.3)

where v1, . . . ,vN ∈ E. It satisfies

(gn)n → g ⇒ (gn(v))n → g(v) for every v ∈ E.

The weak∗ topology has the following remarkable property:

Theorem 2.3.1 (Banach–Alaoglu). The closed unit ball of E∗ is compact for
the weak∗ topology.

The construction carried out in the previous sections corresponds to the
situation where E is the space C0(M) of (complex) continuous functions and
E∗ is the space M(M) of complex measures on a compact metric space
M: according to the theorem of Riesz–Markov (Theorem A.3.12), M(M)
corresponds to the dual of C0(M) when we identify each measure μ ∈M(M)
with the linear functional Iμ(φ)=

∫
φ dμ. Note that the definition of the norm

(2.3.1) implies that

‖μ‖ = sup

{ |∫ φ dμ|
sup |φ| : φ ∈ C0(M) \ {0}

}
.

In particular, the set M1(M) of probability measures is contained in the unit
ball of M(M). Since this set is closed for the weak∗ topology, we conclude that
Theorem 2.1.5 is also a direct consequence of the theorem of Banach–Alaoglu.

Now consider any continuous transformation f : M→M and the correspond-
ing action f∗ : M(M)→M(M), μ �→ f∗μ in the space of complex measures.
Then f∗ is a linear operator on M(M) and it is continuous with respect to

the weak∗ topology. There exists another continuous linear operator naturally
associated with f , namely Uf : C0(M)→C0(M), φ �→ φ ◦ f . Observe that these
two operators are dual, in the following sense (remember Lemma 2.2.1):∫

Uf (φ)dμ=
∫
(φ ◦ f )dμ=

∫
φ d(f∗μ). (2.3.4)

These observations motivate the important notion that we are going to
introduce in the next section.
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2.3 Comments in functional analysis 51

2.3.2 Koopman operator

Let (M,B) be a measurable space, f : M →M be a measurable transformation
and μ be an f -invariant measure. The Koopman operator of (f ,μ) is the linear
operator

Uf : L1(μ)→ L1(μ), Uf (φ)= φ ◦ f .

Note that Uf is well defined and is an isometry, that is, it preserves the norm in
the Banach space L1(μ): since μ is invariant under f ,

‖Uf (φ)‖1 =
∫
|Uf (φ)|dμ=

∫
|φ| ◦ f dμ=

∫
|φ|dμ= ‖φ‖1. (2.3.5)

Moreover, Uf is a positive linear operator: Uf (φ) ≥ 0 at μ-almost every point
whenever φ ≥ 0 at μ-almost every point. For future reference, we summarize
these facts in the following proposition:

Proposition 2.3.2. The Koopman operator Uf : L1(M)→ L1(M) of any system
(f ,μ) is a positive linear isometry.

The property (2.3.5) implies that the operator Uf is injective. In general, Uf

is not surjective (see Exercise 2.3.5). It is clear that if f is invertible then Uf is
an isomorphism: the inverse is just the Koopman operator Uf−1 of the inverse
of f .

We may also consider versions of the Koopman operator defined on the
spaces Lp(μ),

Uf : Lp(μ)→ Lp(μ), Uf (φ)= φ ◦ f

for each p ∈ [1,∞]. Proposition 2.3.2 remains valid in all these cases: all these
operators are positive linear isometries.

When M is a compact metric space and f is continuous, it is particularly
interesting to investigate the action of Uf restricted to the space C0(M) of
continuous functions:

Uf : C0(M)→ C0(M).

It is clear that this operator is continuous relative to the norm of uniform
convergence. As we have seen previously, the dual space of C0(M) is naturally
identified with the space M(M) of complex measures on M. Moreover, the
relation (2.3.4) shows that, under that identification, the dual operator

U∗
f : C0(M)∗ → C0(M)∗

corresponds precisely to the action f∗ : M(M)→M(M) of the transformation
f on M(M). This fact allows us to give an alternative proof of Theorem 2.1,
based on certain facts from spectral theory.

For that, we need to recall some notions from the theory of positive linear
operators. The reader can find a lot more details in Deimling [Dei85], including
the proofs of the results quoted in the following.
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52 Existence of invariant measures

Let E be a Banach space. A closed convex subset C is called a cone of E if
it satisfies:

λC⊂ C for every λ≥ 0 and C∩ (−C)= {0}. (2.3.6)

We call the cone C normal if

inf{‖x+ y‖ : x,y ∈ C such that ‖x‖ = ‖y‖ = 1}> 0.

Let us fix a cone C of E. Given any continuous linear operator T : E → E,
we say that T is positive over C if the image T(C) ⊂ C. Given a continuous
linear functional φ : E → R, we say that φ is positive over C if φ(v) ≥ 0 for
every v ∈ C. By definition, the dual cone C∗ is the cone of E∗ formed by all
the linear functionals positive over C.

Example 2.3.3. The cone C0+(M) = {ϕ ∈ C0(M) : ϕ ≥ 0} is a normal cone
of C0(M) (Exercise 2.3.3). By the Riesz–Markov theorem (Theorem A.3.11),
the dual cone is naturally identified with the space of finite positive measures
on M.

Denote by r(T) the spectral radius of the continuous linear operator T:

r(T)= lim
n

n
√‖Tn‖.

Then r(T) = r(T∗), where T∗ : E∗ → E∗ represents the linear operator dual
to T . The next result is a consequence of the theorem of Banach–Mazur; see
Proposition 7.2 in Deimling [Dei85]:

Theorem 2.3.4. Let C be a normal cone of a Banach space E and T : E→ E
be a linear operator positive over C. Then r(T∗) is an eigenvalue of the dual
operator T∗ : E∗ → E∗ and it admits some eigenvector v∗ ∈ C∗.

As an application, let us give an alternative proof of the existence of invariant
measures for continuous transformations on compact spaces. Consider the
cone C = C0+(M) of E = C0(M). As we observed before, the dual cone C∗

is the space of finite positive measures on M. It is clear from the definition
that the operator T = Uf is positive over C. Also, its spectral radius is equal
to 1, since sup |T(ϕ)| ≤ sup |ϕ| for every ϕ ∈ C0(M) and T(1) = 1. So, by
Theorem 2.3.4, there exists some finite positive measure μ on M that is an
eigenvalue of the dual operator T∗ = f∗ associated with the eigenvalue 1. In
other words, the measure μ is invariant. Multiplying by a suitable constant, we
may suppose that μ is a probability measure.

2.3.3 Exercises

2.3.1. Let �1 be the space of summable sequences of complex numbers, endowed with
the norm ‖(an)n‖1 =∑∞

n=0 |an|. Let �∞ be the space of bounded sequences and
c0 be the space of sequences converging to zero, both endowed with the norm
‖(an)n‖∞ = supn≥0 |an|.
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(a) Check that �∞, �1 and c0 are Banach spaces.
(b) Show that the map (an)n �→

[
(bn)n �→∑

n anbn

]
defines norm-preserving

isomorphisms from �∞ to the dual space (�1)∗ and from �1 to the dual space
(c0)

∗.
2.3.2. Show that a sequence (xk)k in �1 (write xk = (xk

n)n for each k) converges in the
topology defined by the norm if and only if it converges in the weak topology,
that is, if and only if (

∑
n anxk

n)k converges for every (an)n ∈ �∞. [Observation:
This does not imply that the two topologies are the same. Why not?] Show that
this is no longer true if we replace the weak topology by the weak∗ topology.

2.3.3. Check that C0
+(M) is a normal cone.

2.3.4. Let Rθ : S1 → S1 be an irrational rotation and m be the Lebesgue measure on the
circle. Calculate the eigenvalues and the eigenvectors of the Koopman operator
Uθ : L2(m)→ L2(m). Show that the spectrum of Uθ coincides with the unit circle
{z ∈C : |z| = 1}.

2.3.5. Show, through examples, that the Koopman operator Uf need not be surjective.
2.3.6. Let U : H→H be an isometry of a Hilbert space H. By Exercise A.6.8, the image

of U is a closed subspace of H. Deduce that there exist closed subspaces V and
W such that U(V)= V , the iterates of W are pairwise orthogonal and orthogonal
to V , and

H = V⊕
∞⊕

n=0

Un(W).

Furthermore, U is an isomorphism if and only if W = {0}.
2.3.7. Let φ : E→R be a continuous convex functional on a separable Banach space E.

Assume that φ is differentiable in all directions at some point u ∈ E. Prove that
there exists at most one bounded linear functional T : E → R tangent to φ at u,
that is, such that T(v)≤ φ(u+v)−φ(u) for every v ∈ E. If φ is differentiable at
u then the derivative Dφ(u) is a linear functional tangent to φ at u. [Observation:
The smoothness theorem of Mazur (Theorem 1.20 in Phelps [Phe93]) states that
the set of points where φ is differentiable and, consequently, there exists a unique
linear functional tangent to φ is a residual subset of E.]

2.4 Skew-products and natural extensions

In this section we describe two general constructions that are quite useful
in ergodic theory. The first one is a basic model for the situation where
two dynamical systems are coupled in the following way: the first system
is autonomous but the second one is not, because its evolution depends on
the evolution of the former. The second construction associates an invertible
system with any given system, in such a way that their invariant measures are
in one-to-one correspondence. This permits reduction to the invertible case for
many statements about general, not necessarily invertible systems.

2.4.1 Measures on skew-products

Let (X,A) and (Y ,B) be measurable spaces. We call a skew-product any
measurable transformation F : X × Y → X × Y of the form F(x,y) =
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54 Existence of invariant measures

(f (x),g(x,y)). Represent by π : X × Y → X the canonical projection to the
first coordinate. By definition,

π ◦F = f ◦π . (2.4.1)

Let m be a probability measure on X×Y invariant under F and let μ= π∗m be
its projection to X. Using that m is invariant under F, we get that

f∗μ= f∗π∗m= π∗F∗m= π∗m=μ,

that is, μ is invariant under f . The next proposition provides a partial converse
to this conclusion: under suitable hypotheses, every f -invariant measure is the
projection of some F-invariant measure.

Proposition 2.4.1. Let X be a complete separable metric space, Y be a
compact metric space and F be continuous. Then, for every probability
measure μ on X invariant under f there exists some probability measure m
on X×Y invariant under F and such that π∗m=μ.

Proof. Given any f -invariant probability measure invariant μ on X, let
K ⊂ M1(X × Y) be the set of measures η on X × Y such that π∗η = μ.
Consider any η ∈ K. Then, π∗F∗η = f∗π∗η = f∗μ = μ. This proves that K is
invariant under F∗. Next, note that the projection π : X×Y → X is continuous
and, thus, the operator π∗ is continuous relative to the weak∗ topology. So,
K is closed in M1(X × Y). By Proposition A.3.7, given any ε > 0 there
exists a compact set K ⊂ X such that μ(Kc) < ε. Then K × Y is compact
and η

(
(K × Y)c

) = μ(Kc) < ε for every η ∈ K. This proves that the set K
is tight. Consider any η ∈K. By the theorem of Prohorov (Theorem 2.1.8), the
sequence

1

n

n−1∑
j=0

Fj
∗η

has some accumulation point m ∈K. Arguing as in the proof of Lemma 2.2.4,
we conclude that m is invariant under F.

2.4.2 Natural extensions

We are going to see that, given any surjective transformation f : M →M, one
can always find an extension f̂ : M̂ → M̂ that is invertible. By extension we
mean that there exists a surjective map π : M̂ → M such that π ◦ f̂ = f ◦ π .
This fact is very useful, for it makes it possible to reduce to the invertible case
the proofs of many statements about general systems. We comment on the
surjective hypothesis in Example 2.4.2: we will see that this hypothesis can be
omitted in many interesting cases.

To begin with, take M̂ to be the set of all pre-orbits of f , that is, all sequences
(xn)n≤0 indexed by the non-positive integers and satisfying f (xn) = xn+1 for
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2.4 Skew-products and natural extensions 55

every n < 0. Consider the map π : M̂ →M sending each sequence (xn)n≤0 to
its term x0 of order zero. Observe that π(M̂) =M. Finally, define f̂ : M̂ → M̂
to be the shift by one unit to the left:

f̂ (. . . ,xn, . . . ,x0)= (. . . ,xn, . . . ,x0, f (x0)). (2.4.2)

It is clear that f̂ is well defined and satisfies π ◦ f̂ = f ◦ π . Moreover, f̂ is
invertible: the inverse is the shift to the right:

(. . . ,yn, . . . ,y−1,y0) �→ (. . . ,yn, . . . ,y−2,y−1).

If M is a measurable space then we may turn M̂ into a measurable space by
endowing it with the σ -algebra generated by the measurable cylinders

[Ak, . . . ,A0] = {(xn)n≤0 ∈ M̂ : xi ∈ Ai for i= k, . . . ,0}, (2.4.3)

where k ≤ 0 and Ak, . . . , A0 are measurable subsets of M. Then π is a
measurable map, since

π−1(A)= [A]. (2.4.4)

Moreover, f̂ is measurable if f is measurable:

f̂−1([Ak, . . . ,A0])=
[
Ak, . . . ,A−2,A−1 ∩ f−1(A0)

]
. (2.4.5)

The inverse of f̂ is also measurable, since

f̂ ([Ak, . . . ,A0])= [Ak, . . . ,A0,M]. (2.4.6)

Analogously, if M is a topological space then we may turn M̂ into a
topological space by endowing it with the topology generated by the open
cylinders [Ak, . . . ,A0], where k ≤ 0 and Ak, . . . , A0 are open subsets of M.
The relations (2.4.4) and (2.4.6) show that π and f̂−1 are continuous, whereas
(2.4.5) shows that f̂ is continuous if f is continuous. Observe that if M admits
a countable basis U of open sets then the cylinders [Ak, . . . ,A0] with k ≥ 0 and
A0, . . . ,Ak ∈ U constitute a countable basis of open sets for M̂.

If M is a metric space, with distance d, then the following function is a
distance on M̂:

d̂
(
x̂, ŷ)=

0∑
n=−∞

2n min{d(xn,yn),1}, (2.4.7)

where x̂= (xn)n≤0 and ŷ= (yn)n≤0. It follows immediately from the definition
that if x̂ and ŷ belong to the same pre-image π−1(x) then

d̂(f̂ j(x̂), f̂ j(ŷ))≤ 2−jd̂(x̂, ŷ) for every j≥ 0.

So, every pre-image π−1(x) is a stable set, that is, a subset restricted to which
the transformation f̂ is uniformly contracting.

Example 2.4.2. Given any transformation g : M → M, consider its maximal
invariant set Mg =⋂∞

n=1 gn(M). Clearly, g(Mg)⊂Mg. Suppose that

(i) M is compact and g is continuous or (ii) #g−1(y) <∞ for every y.
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56 Existence of invariant measures

Then (Exercise 2.4.3), the restriction f = (g |Mg) : Mg→Mg is surjective. This
restriction contains all the interesting dynamics of g. For example, assuming
that f n(M) is a measurable set for every n, every probability measure invariant
under g is also invariant under f . Analogously, every point that is recurrent for
g is also recurrent for f , at least in case (i). For this reason, we also refer to the
natural extension of f = (g |Mg) as the natural extension of g.

A set �⊂M such that f−1(�)=� is called an invariant set of f . There is
a corresponding notion for the transformation f̂ . The next proposition shows
that every closed invariant set of f admits a unique lift to a closed invariant set
of the transformation f̂ :

Proposition 2.4.3. Assume that M is a topological space. If�⊂M is a closed
set invariant under f then �̂= π−1(�) is the only closed set invariant under f
and satisfying π(�̂)=�.

Proof. Since π is continuous, if � is closed then �̂= π−1(�) is also closed.
Moreover, if � is invariant under f then �̂ is invariant under f̂ :

f̂−1(�̂)= (π ◦ f̂ )−1(�)= (f ◦π)−1(�)= π−1(�)= �̂.

In the converse direction, let �̂ ⊂ M̂ be a closed set invariant under f̂ and
such that π(�̂)=�. It is clear that �̂⊂ π−1(�). To prove the other inclusion,
we must show that, given any x0 ∈�, if x̂ ∈ π−1(x0) then x̂ ∈ �̂. Let us write
x̂= (xn)n≤0. Consider n≤ 0 and any neighborhood of x̂ of the form

V = [An, . . . ,A0], An, . . . ,A0 open subsets of M.

By the definition of natural extension, x0= f−n(xn) and, hence, xn ∈ f n(�)=�.
Then, the hypothesis π(�̂) = � implies that π(ŷn) = xn for some ŷn ∈ �̂.
Since �̂ is invariant under f̂ , we have that f̂−n(ŷn) ∈ �̂. Moreover, the property
π(ŷn)= xn implies that

f−n(ŷn)= (. . . ,yn,k, . . . ,yn,−1,yn,0 = xn,xn−1, . . . ,x−1,x0).

It follows that f−n(ŷn) ∈ V , since V contains x̂ and its definition only depends
on the coordinates indexed by j ∈ {n, . . . ,0}. This proves that x̂ is accumulated
by elements of �̂. Since �̂ is closed, it follows that x̂ ∈ �̂.

Now let μ̂ be an invariant measure of f̂ and let μ = π∗μ̂. The property
π ◦ f̂ = f ◦π implies that μ is invariant under f :

f∗μ= f∗π∗μ̂= π∗ f̂ ∗μ̂= π∗μ̂=μ.

We say that μ̂ is a lift of μ. The next result, which is a kind of version of
Proposition 2.4.3 for measures, is due to Rokhlin [Rok61]:

Proposition 2.4.4. Assume that M is a complete separable metric space and
f : M→M is continuous. Then every probability measure μ invariant under f
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2.4 Skew-products and natural extensions 57

admits a unique lift, that is, there is a unique measure μ̂ on M̂ invariant under
f̂ and such that π∗μ̂=μ.

Uniqueness is easy to establish and is independent of the hypotheses on the
space M and the transformation f . Indeed, if μ̂ is a lift of μ then (2.4.4) and
(2.4.5) imply that the measure of every cylinder is uniquely determined:

μ̂([Ak, . . . ,A0])= μ̂
([

Ak ∩ ·· · ∩ f−k(A0)
])=μ(Ak ∩ ·· · ∩ f−k(A0)

)
. (2.4.8)

The proof of existence will be proposed to the reader in Exercise 5.2.4, using
ideas to be developed in Chapter 5. We will also see in Exercise 8.5.7 that those
arguments remain valid in the somewhat more general setting of Lebesgue
spaces. But existence of the lift is not true in general, for arbitrary probability
spaces, as shown by the example in Exercise 1.15 in the book of Przytycki and
Urbański [PU10]).

2.4.3 Exercises

2.4.1. Let M be a compact metric space and X be a set of continuous maps f : M →
M, endowed with a probability measure ν. Consider the skew-product F : XN×
M → XN×M defined by F((fn)n,x)= ((fn+1)n, f0(x)). Show that F admits some
invariant probability measure m of the form m= νN×μ. Moreover, a measure m
of this form is invariant under F if and only if the measure μ is stationary for ν,
that is, if and only if μ(E)= ∫ f∗μ(E)dν(f ) for every measurable set E⊂M.

2.4.2. Let f : M→M be a surjective transformation, f̂ : M̂→ M̂ be its natural extension
and π : M̂ → M be the canonical projection. Show that if g : N → N is an
invertible transformation such that f ◦p= p◦g for some map p : N→M then there
exists a unique map p̂ : N→ M̂ such that π ◦ p̂= p and p̂◦g= f̂ ◦ p̂. Suppose that
M and N are compact spaces and the maps p and g are continuous. Show that if p
is surjective then p̂ is surjective (and so g : N→N is an extension of f̂ : M̂→ M̂).

2.4.3. Check the claims in Example 2.4.2.
2.4.4. Show that if (M,d) is a complete separable metric space then the same holds

for the space (M̂, d̂) of the pre-orbits of any continuous surjective transformation
f : M→M.

2.4.5. The purpose of this exercise and the next is to generalize the notion of
natural extension to finite families of commuting transformations. Let M be
a compact space and f1, . . . , fq : M → M be commuting surjective continuous
transformations. Let M̂ be the set of all sequences (xn1,...,nq)n1,...,nq≤0, indexed by
the q-tuples of non-positive integer numbers, such that

fi(xn1,...,ni ,...,nq)= xn1,...,ni+1,...,nq for every i and every (n1, . . . ,nq).

Let π : M̂ → M be the map sending (xn1,...,nq)n1,...,nq≤0 to the point x0,...,0.

For each i, let f̂ i : M̂ → M̂ be the map sending (xn1,...,ni ,...nq)n1,...,nq≤0 to
(xn1,...,ni+1,...nq)n1,...,nq≤0.
(a) Prove that M̂ is a compact space. Moreover, M̂ is metrizable if M is

metrizable.
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58 Existence of invariant measures

(b) Show that every f̂ i : M̂ → M̂ is a homeomorphism with π ◦ f̂ i = fi ◦ π .
Moreover, these homeomorphisms commute.

(c) Prove that π is continuous and surjective. In particular, M̂ is non-empty.
2.4.6. Let M be a compact space and g1, . . . ,gq : M → M be commuting continuous

transformations. Define Mg =⋂∞
n=1 gn

1 · · ·gn
q(M).

(a) Check that Mg = ⋂n1,...,nq
gn1

1 · · ·gnq
q (M), where the intersection is over all

q-tuples (n1, . . . ,nq) with ni ≥ 1 for every i.
(b) Show that gi(Mg) ⊂ Mg and the restriction fi = gi | Mg is surjective, for

every i.
[Observation: It is clear that these restrictions fi commute.]

2.4.7. Use the construction in Exercises 2.4.5 and 2.4.6 to extend the proof of
Theorem 1.5.1 to the case when the transformations fi are not necessarily
invertible.

2.5 Arithmetic progressions

In this section we prove two fundamental results of combinatorial arithmetics,
the theorem of van der Waerden and the theorem of Szemerédi, using the
multiple recurrence theorems (Theorem 1.5.1 and Theorem 1.5.2) introduced
in Section 1.5.

We call a partition of the set Z of integers numbers any finite family of
pairwise disjoint sets S1, . . . ,Sk ⊂Z whose union is the whole of Z. Recall that
a (finite) arithmetic progression is a sequence of the form

m+ n,m+ 2n, . . . ,m+ qn, with m ∈ Z and n,q≥ 1.

The number q is called the length of the progression.
The next theorem was originally proven by the Dutch mathematician Bartel

van der Waerden [vdW27] in the 1920’s:

Theorem 2.5.1 (van der Waerden). Given any partition {S1, . . . ,Sl} of Z, there
exists j∈ {1, . . . , l} such that Sj contains arithmetic progressions of every length.
In other words, for every q≥ 1 there exist m∈Z and n≥ 1 such that m+ in∈ Sj

for every 1≤ i≤ q.

Some time afterwards, the Hungarian mathematicians Pål Erdös and Pål
Turan [ET36] conjectured the following statement, which is stronger than the
theorem of van der Waerden: any set S ⊂ Z whose upper density is positive
contains arithmetic progressions of every length. This was proven by another
Hungarian mathematician, Endre Szemerédi [Sze75], almost four decades
later. To state the theorem of Szemerédi precisely, we need to define the notion
of upper density of a subset of Z.

We call an interval of the set Z any subset I of the form {n ∈ Z : a≤ n< b}
with a≤ b. The cardinal of an interval I is the number #I = b− a. The upper
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2.5 Arithmetic progressions 59

density of a subset S of Z is the number

Du(S)= limsup
#I→∞

#
(
S∩ I

)
#I

,

where I represents any interval of Z. The lower density Dl(S) of a subset S of Z
is defined analogously, just replacing limit superior with limit inferior. In other
words, Du(S) is the largest and Dl(D) is the smallest number D such that

#
(
S∩ Ij

)
#Ij

→D for some sequence of intervals Ij ⊂ Z with #Ij →∞.

In the next lemma we collect some simple properties of the upper and lower
densities. The proof is left as an exercise (Exercise 2.5.1).

Lemma 2.5.2. For any S⊂ Z,

0≤Dl(S)≤Du(S)≤ 1 and Dl(S)= 1−Du(Z \ S).

Moreover, if S1, . . . ,Sl is a partition of Z then

Dl(S1)+·· ·+Dl(Sl)≤ 1≤Du(S1)+·· ·+Du(Sl).

Example 2.5.3. Let S be the set of even numbers. For any interval I ⊂ Z, we
have #(S ∩ I) = #I/2 if the cardinal of I is even and #(S ∩ I) = (#I ± 1)/2
if the cardinal of I is odd; the sign ± is positive if the smallest element of I
is an even number and it is negative otherwise. It follows, immediately, that
Du(S)=Dl(S)= 1/2.

Example 2.5.4. Let S be the following subset of Z:

{1,3,4,7,8,9,13,14,15,16,21,22,23,24,25,31,32,33,34,35,36,43, . . .}.
That is, for each k ≥ 1 we include in S a block of k consecutive integers and
then we omit the next k integer numbers. On the one hand, S contains intervals
of every length. Consequently, Du(S)= 1. On the other hand, the complement
of S also contains intervals of every length. So, Dl(S)= 1−Du(Z \ S)= 0.

Notice that, in both examples, the set S contains arithmetic progressions of
every length. Actually, in Example 2.5.3 the set S even contains arithmetic
progressions of infinite length. That is not true in Example 2.5.4, because in
this case the complement of S contains arbitrarily long intervals.

Theorem 2.5.5 (Szemerédi). If S is a subset of Z with positive upper density
then it contains arithmetic progressions of every length.

The theorem of van der Waerden is an easy consequence of the theorem of
Szemerédi. Indeed, it follows from Lemma 2.5.2 that if S1, . . . ,Sl is a partition
of Z then there exists j such that Du(Sj) > 0. By Theorem 2.5.5, such an Sj

contains arithmetic progressions of every length.
The original proofs of these results were combinatorial. Then, Furstenberg

(see [Fur81]) observed that the two theorems could also be deduced from
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60 Existence of invariant measures

ideas in ergodic theory: we will show in Section 2.5.1 how to obtain the
theorem of van der Waerden from the multiple recurrence theorem of Birkhoff
(Theorem 1.5.1); similar arguments yield the theorem of Szemerédi from the
multiple recurrence theorem of Poincaré (Theorem 1.5.2), as we will see in
Section 2.5.2.

The theory of Szemerédi remains a very active research area. In particular,
alternative proofs of Theorem 2.5.5 have been given by other authors. Recently,
this led to the following spectacular result of the British mathematician Ben
Green and the Australian mathematician Terence Tao [GT08]: the set of
prime numbers contains arithmetic progressions of every length. This is not a
consequence of the theorem of Szemerédi, because the upper density of the set
of prime numbers is zero, but the theorem of Szemerédi does have an important
role in the proof. On the other hand, the Green–Tao theorem is a special case
of yet another conjecture of Erdös: if S⊂N is such that the sum of the inverses
diverges, that is, such that ∑

n∈S

1

n
=∞,

then S contains arithmetic progressions of every length. This more general
statement remains open.

2.5.1 Theorem of van der Waerden

In this section we prove Theorem 2.5.1. The idea of the proof is to reduce the
conclusion of the theorem to a claim about the shift map

σ :�→�, (αn)n∈Z �→ (αn+1)n∈Z

in the space � = {1,2, . . . , l}Z of two-sided sequences with values in the
set {1,2, . . . , l}. This claim will then be proved using the multiple recurrence
theorem of Birkhoff.

Observe that every partition {S1, . . . ,Sl} of Z into l≥ 2 subsets determines an
element α = (αn)n∈Z of �, through αn = i⇔ n ∈ Si. Conversely, every α ∈�
determines a partition of Z into subsets

Si = {n ∈ Z : αn = i}, i= 1, . . . , l.

We are going to show that for every α ∈� and every q≥ 1, there exist m ∈ Z

and n≥ 1 such that

αm+n = ·· · = αm+qn. (2.5.1)

In view of what we have just observed, this means that for every partition
{S1, . . . ,Sl} and every q≥ 1 there exists i ∈ {1, . . . , l} such that Si contains some
arithmetic progression of length q. Since there are finitely many Si, that implies
that some Sj contains arithmetic progressions of arbitrarily large lengths. This
is the same as saying that Si contains arithmetic progressions of every length
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because, clearly, every arithmetic progression of length q contains arithmetic
progressions of every length smaller than q. This reduces the proof of the
theorem to proving the claim in (2.5.1).

To that end, let us consider on � the distance defined by d(β,γ )= 2−N(β,γ ),
where

N(β,γ )=max
{
N ≥ 0 : βn = γn for every n ∈ Z with |n|< N

}
.

Note that
d(β,γ ) < 1 if and only if β0 = γ0. (2.5.2)

Since the metric space (�,d) is compact, the closure Z = {σ n(α) : n ∈ Z
}

of
the trajectory of α is also compact. Moreover, Z is invariant under the shift
map. Let us consider the transformations f1 = σ , f2 = σ 2, . . . , fq = σ q defined
from Z to Z. It is clear from the definition that these transformations commute
with each other. So, we may use Theorem 1.5.1 to conclude that there exist
θ ∈ Z and a sequence (nk)k →∞ such that

lim
k

f nk
i (θ)= θ for every i= 1,2, . . . ,q.

Observe that f
nj
i = σ inj . In particular, we may fix n = nj such that the iterates

σ n(θ), σ 2n(θ), . . . , σ qn(θ) are all within a distance of less than 1/2 from the
point θ . Consequently,

d
(
σ in(θ),σ jn(θ)

)
< 1 for every 1≤ i, j≤ q.

Then, as θ is in the closure Z of the orbit of α, we may find m ∈ Z such that
σm(α) is so close to θ that

d
(
σm+in(α),σm+jn(α)

)
< 1 for every 1≤ i, j≤ q.

Taking into account the observation (2.5.2) and the definition of the shift map
σ , this means that αm+n = ·· · = αm+qn, as we wanted to prove. This completes
the proof of the theorem of van der Waerden.

2.5.2 Theorem of Szemerédi

Now let us prove Theorem 2.5.5. We use the same kind of dictionary between
partitions of Z and sequences of integer numbers that was used in the previous
section to prove the theorem of van der Waerden.

Let S be a subset of integer numbers with positive upper density, that is, such
that there exist c> 0 and intervals Ij = [aj,bj) of Z satisfying

lim
j

#Ij =∞ and lim
j

#
(
S∩ Ij

)
#Ij

≥ c.

Let us associate with S the sequence α = (αj)j∈Z ∈� = {0,1}Z defined by

αj = 1⇔ j ∈ S.
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62 Existence of invariant measures

Consider the shift map σ :�→� and the subset A= {α ∈� : α0 = 1} of �.
Note that both A and its complement are open cylinders of �. Thus, A is both
open and closed in �. Moreover, for every j ∈ Z,

σ j(α) ∈ A⇔ αj = 1⇔ j ∈ S.

So, to prove the theorem of Szemerédi it suffices to show that for every k ∈ N

there exist m ∈ Z and n≥ 1 such that

σm+n(α),σm+2n(α), . . . ,σm+kn(α) ∈ A. (2.5.3)

For that, let us consider the sequence μj of probability measures defined on
� by

μj = 1

#Ij

∑
i∈Ij

δσ i(α). (2.5.4)

Since the space M1(�) of all probability measures on � is compact
(Theorem 2.1.5), up to replacing (μj)j by some subsequence we may suppose
that it converges in the weak∗ topology to some probability measure μ on �.

Observe that μ is a σ -invariant probability measure, for, given any
continuous function ϕ :�→R,∫

(ϕ ◦σ)dμj = 1

#Ij

∑
i∈Ij

ϕ(σ i(α))+ 1

#Ij

[
ϕ(σ bj(α))−ϕ(σ aj(α))

]
=
∫
ϕ dμj+ 1

#Ij

[
ϕ(σ bj(α))−ϕ(σ aj(α))

]
and, taking the limit when j → ∞, it follows that

∫
(ϕ ◦ σ)dμ = ∫ ϕ dμ.

Observe also that μ(A) > 0. Indeed, since A is closed, Theorem 2.1.2 ensures
that

μ(A)≥ limsup
j

μj(A)= limsup
j

#
(
S∩ Ij

)
#Ij

≥ c.

Given any k ≥ 1, consider fi = σ i for i = 1, . . . ,k. It is clear that these
transformations commute with each other. So, we are in a position to apply
Theorem 1.5.2 to conclude that there exists some n≥ 1 such that

μ
(
A∩σ−n(A)∩ ·· · ∩σ−kn(A)

)
> 0.

Since A is open, this implies (Theorem 2.1.2) that

μl
(
A∩σ−n(A)∩ ·· · ∩σ−kn(A)

)
> 0

for every l sufficiently large. By the definition (2.5.4) of μl, this means that
there exists some m ∈ Il such that

σm(α) ∈ A∩σ−n(A)∩ ·· · ∩σ−kn(A).

In particular, σm+in(α) ∈ A for every i= 1, . . . ,k, as we wanted to prove.
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2.5 Arithmetic progressions 63

2.5.3 Exercises

2.5.1. Prove Lemma 2.5.2.
2.5.2. Show that the conclusion of Theorem 2.5.1 remains valid for partitions of finite

subsets of Z, as long as they are sufficiently large. More precisely: given q, l≥ 1
there exists N ≥ 1 such that, for any partition of the set {1,2, . . . ,N} into l subsets,
at least one of these subsets contains arithmetic progressions of length q.

2.5.3. A point x ∈ M is said to be super non-wandering if, given any neighborhood
U of x and any k ≥ 1, there exists n ≥ 1 such that

⋂k
j=0 f−jn(U) �= ∅. Show

that the theorem of van der Warden is equivalent to the following statement:
every invertible transformation on a compact metric space has some super
non-wandering point.

2.5.4. Prove the following generalization of the theorem of van der Waerden to arbitrary
dimension, called the Grünwald theorem: given any partition Nk = S1 ∪ ·· · ∪ Sl

and any q≥ 1, there exist j ∈ {1, . . . , l}, d ∈N and b ∈Nk such that

b+ d(a1, . . . ,ak) ∈ Sj for any 1≤ ai ≤ q and any 1≤ i≤ k.
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