
3

Ergodic theorems

In this chapter we present the fundamental results of ergodic theory. To
motivate the kind of statements that we are going to discuss, let us consider
a measurable set E ⊂ M with positive measure and an arbitrary point x ∈ M.
We want to analyze the set of iterates of x that visit E, that is,

{ j≥ 0 : f j(x) ∈ E}.
For example, the Poincaré recurrence theorem states that this set is infinite,
for almost every x ∈ E. We would like to have more precise quantitative
information. Let us call the mean sojourn time of x to E the value of

τ(E,x)= lim
n→∞

1

n
#{0≤ j< n : f j(x) ∈ E}. (3.0.1)

There is an analogous notion for flows, defined by

τ(E,x)= lim
T→∞

1

T
m
({0≤ t≤ T : f t(x) ∈ E}), (3.0.2)

where m is the Lebesgue measure on the real line. It would be interesting to
know, for example, under which conditions the mean sojourn time is positive.
But before tackling this problem one must answer an even more basic question:
when do the limits in (3.0.1)–(3.0.2) exist?

These questions go back to the work of the Austrian physicist Ludwig Boltz-
mann (1844–1906), who developed the kinetic theory of gases. Boltzmann
was an emphatic supporter of the atomic theory, according to which gases
are formed by a large number of small moving particles, constantly colliding
with each other, at a time when this theory was still highly controversial.
In principle, it should be possible to explain the behavior of a gas by
applying the laws of classical mechanics to each one of these particles
(molecules). In practice, this is not realistic because the number of molecules is
huge.

The proposal of the kinetic theory was, then, to try and explain the behavior
of gases at a macroscopic scale as the statistical combination of the motions
of all its molecules. To formulate the theory in precise mathematical terms,
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3.1 Ergodic theorem of von Neumann 65

Boltzmann was forced to make an assumption that became known as the
ergodic hypothesis. In modern language, the ergodic hypothesis claims that, for
the kind of systems (Hamiltonian flows) that describe the motions of particles
of a gas, the mean sojourn time to any measurable set E exists and is equal to
the measure of E, for almost every point x.

Efforts to validate (or not) this hypothesis led to important developments,
in mathematics (ergodic theory, dynamical systems) as well as in physics
(statistical mechanics). In this chapter we concentrate on results concerning the
existence of the mean sojourn time. The question of whether τ(E,x) = μ(E)
for almost every x is the subject of Chapter 4.

Denoting by ϕ the characteristic function of the set E, we may rewrite the
expression on the right-hand side of (3.0.1) as

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)). (3.0.3)

This suggests a natural generalization of the original question: does the limit
in (3.0.3) exist for more general functions ϕ, for example, for all integrable
functions?

The ergodic theorem of von Neumann (Theorem 3.1.6) states that the limit in
(3.0.3) does exist, in the space L2(μ), for every function ϕ ∈L2(μ). The ergodic
theorem of Birkhoff (Theorem 3.2.3) goes a lot further, by asserting that the
convergence holds at μ-almost every point, for every ϕ ∈ L1(μ). In particular,
the limit in (3.0.1) is well defined for μ-almost every x (Theorem 3.2.1).

We give a direct proof of the theorem of von Neumann and we also show
how it can be deduced from the theorem of Birkhoff. Concerning the latter, we
are going to see that it can be obtained as a special case of an even stronger
result, the subadditive ergodic theorem of Kingman (Theorem 3.3.3). This
theorem asserts that ψn/n converges almost everywhere, for any sequence of
functions ψn such that ψm+n ≤ψm+ψn ◦ f m for every m,n.

All these results remain valid for flows, as we comment upon in Section 3.4.

3.1 Ergodic theorem of von Neumann

In this section we state and prove the ergodic theorem of von Neumann. We
begin by reviewing some general ideas concerning isometries in Hilbert spaces.
See Appendices A.6 and A.7 for more information on this topic.

3.1.1 Isometries in Hilbert spaces

Let H be a Hilbert space and F be a closed subspace of H. Then,

H = F⊕F⊥, (3.1.1)
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66 Ergodic theorems

where F⊥ = {w ∈H : v ·w = 0 for every v ∈ F} is the orthogonal complement
of F. The projection PF : H → F associated with the decomposition (3.1.1) is
called the orthogonal projection to F. It is uniquely characterized by

‖x−PF(x)‖ =min{‖x− v‖ : v ∈ F}.
Observe that PF(v)= v for every v ∈ F and, consequently, P2

F = PF.

Example 3.1.1. Consider the Hilbert space L2(μ), with the inner product

ϕ ·ψ =
∫
ϕψ̄ dμ.

Let F be the subspace of constant functions. Given any ϕ ∈ L2(μ), we have
that (PF(ϕ)−ϕ) · 1= 0, that is,

PF(ϕ) · 1= ϕ · 1.

Since PF(ϕ) is a constant function, the expression on the left-hand side is equal
to PF(ϕ). The expression on the right-hand side is equal to

∫
ϕ dμ. Therefore,

the orthogonal projection to the subspace F is given by

PF(ϕ)=
∫
ϕ dμ.

Recall that the adjoint operator U∗ : H →H of a continuous linear operator
U : H→H is defined by the relation

U∗u · v = u ·Uv for every u,v ∈H. (3.1.2)

The operator U is said to be an isometry if it preserves the inner product:

Uu ·Uv = u · v for every u,v ∈H. (3.1.3)

This is equivalent to saying that U preserves the norm of H (see Exer-
cise A.6.9). Another equivalent condition is U∗U = id . Indeed,

Uu ·Uv = u · v for every u,v ⇔ U∗Uu · v = u · v for every u,v.

The property U∗U= id implies that U is injective. In general, an isometry need
not be surjective. See Exercises 2.3.5 and 2.3.6. If an isometry is surjective then
it is an isomorphism; such isometries are also called unitary operators.

Example 3.1.2. If f : M → M preserves a measure μ then, as we saw in
Section 2.3.2, the Koopman operator Uf : L2(μ)→ L2(μ) is an isometry. If
f is invertible then Uf is a unitary operator.

We call the set of invariant vectors of a continuous linear operator U : H→H
the subspace

I(U)= {v ∈H : Uv = v}.
Observe that I(U) is a closed vector subspace, since U is continuous and linear.
When U is an isometry, we have that I(U)= I(U∗):

Lemma 3.1.3. If U : H→H is an isometry then Uv= v if and only if U∗v= v.
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3.1 Ergodic theorem of von Neumann 67

Proof. Since U∗U = id , it is clear that Uv = v implies U∗v = v. Now assume
that U∗v = v. Then, Uv · v = v ·U∗v = v · v = ‖v‖2. So, using the fact that U
preserves the norm of H,

‖Uv− v‖2 = (Uv− v) · (Uv− v)= ‖Uv‖2−Uv · v− v ·Uv+‖v‖2 = 0.

This means that Uv = v.

To close this brief digression, let us quote a classical result from functional
analysis, due to Marshall H. Stone, that permits the reduction of the study of
Koopman operators of continuous time systems to the discrete case.

Let Ut : H → H, t ∈ R be a 1-parameter group of linear operators on a
Banach space: by this we mean that U0= id and Ut+s=UtUs for every t,s∈R.
We say that the group is strongly continuous if

lim
t→t0

Utv =Ut0v, for every t0 ∈R and v ∈H.

Theorem 3.1.4 (Stone). If Ut : H → H, t ∈ R is a strongly continuous
1-parameter group of unitary operators on a complex Hilbert space then there
exists a self-adjoint operator A, defined on a dense subspace D(A) of H, such
that Ut |D(A)= eitA for every t ∈R.

A proof may be found in Yosida [Yos68, § IX.9] and a simple application is
given in Exercise 3.1.5. The operator iA is called the infinitesimal generator of
the group. It may be retrieved through

iAv = lim
t→0

1

t

(
Utv− v

)
. (3.1.4)

See Yosida [Yos68, § IX.3] for a proof of the fact that the limit on the
right-hand side exists for every v in a dense subspace of H.

Example 3.1.5. Let H be the Banach space of continuous functions ϕ : S1 →
C, with the norm of uniform convergence. Define Ut(ϕ)(x)= ϕ(x+ t) for every
function ϕ ∈H. Observe that (Ut)t is a strongly continuous 1-parameter group
of isometries of H. The infinitesimal generator is given by

iAφ(x)= lim
t→0

1

t

(
Utφ(x)−φ(x)

)= lim
t→0

1

t

(
φ(x+ t)−φ(x))= φ′(x).

Its domain is the subset of functions of class C1, which is well known to be
dense in H.

3.1.2 Statement and proof of the theorem

Our first ergodic theorem is:

Theorem 3.1.6 (von Neumann). Let U : H → H be an isometry in a Hilbert
space H and P be the orthogonal projection to the subspace I(U) of invariant
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68 Ergodic theorems

vectors of U. Then,

lim
n→∞

1

n

n−1∑
j=0

Ujv = Pv for every v ∈H. (3.1.5)

Proof. Let L(U) be the set of vectors v ∈ H of the form v = Uu− u for some
u ∈H and let L̄(U) be its closure. We claim that

I(U)= L̄(U)⊥. (3.1.6)

This can be checked as follows. Consider any v ∈ I(U) and w ∈ L̄(U). By
Lemma 3.1.3, we have that v ∈ I(U∗), that is, U∗v= v. Moreover, by definition
of L̄(U), there are un ∈H, n≥ 1 such that (Uun− un)n →w. Since

v · (Uun− un)= v ·Uun− v · un =U∗v · un− v · un = 0

for every n, we conclude that v ·w = 0. This proves that I(U)⊂ L̄(U)⊥. Next,
consider any v ∈ L̄(U)⊥. Then, in particular,

v · (Uu− u)= 0 or, equivalently, U∗v · u− v · u= 0

for every u ∈ H. This means that U∗v = v. Using Lemma 3.1.3 once more,
we deduce that v ∈ I(U). This shows that L̄(U)⊥ ⊂ I(U), which completes the
proof of (3.1.6). As a consequence, using (3.1.1),

H = I(U)⊕ L̄(U). (3.1.7)

Now we prove the identity (3.1.5), successively, for v ∈ I(U), for v ∈ L̄(U)
and for any v ∈H. Begin by supposing that v ∈ I(U). On the one hand, Pv= v.
On the other hand,

1

n

n−1∑
j=0

Ujv = 1

n

n−1∑
j=0

v = v

for every n, and so this sequence converges to v when n →∞. Combining
these two observations we get (3.1.5) in this case.

Next, suppose that v ∈ L(U). Then, by definition, there exists u ∈ H such
that v =Uu− u. It is clear that

1

n

n−1∑
j=0

Ujv = 1

n

n−1∑
j=0

(
Uj+1u−Uju

)= 1

n
(Unu− u).

The norm of this last expression is bounded by 2‖u‖/n and, consequently,
converges to zero when n→∞. This shows that

lim
n

1

n

n−1∑
j=0

Ujv = 0 for every v ∈ L(U). (3.1.8)
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3.1 Ergodic theorem of von Neumann 69

More generally, suppose that v ∈ L̄(U). Then, there exist vectors vk ∈ L(U)
converging to v when k→∞. Observe that∥∥∥∥1

n

n−1∑
j=0

Ujv− 1

n

n−1∑
j=0

Ujvk

∥∥∥∥≤ 1

n

n−1∑
j=0

‖Uj(v− vk)‖ ≤ ‖v− vk‖

for every n and every k. Together with (3.1.8), this implies that

lim
n

1

n

n−1∑
j=0

Ujv = 0 for every v ∈ L̄(U). (3.1.9)

Since (3.1.6) implies that Pv = 0 for every v ∈ L̄(U), this shows that (3.1.5)
holds also when v ∈ L̄(U).

The general case of (3.1.5) follows immediately, as H = I(U)⊕ L̄(U).

3.1.3 Convergence in L2(μ)

Given a measurable transformation f : M → M and an invariant probability
measure μ on M, we say that a measurable function ψ : M → R is invariant
if ψ ◦ f = ψ at μ-almost every point. The following result is a special case of
Theorem 3.1.6:

Theorem 3.1.7. Given any ϕ ∈ L2(μ), let ϕ̃ be the orthogonal projection of ϕ
to the subspace of invariant functions. Then the sequence

1

n

n−1∑
j=0

ϕ ◦ f j (3.1.10)

converges to ϕ̃ in the space L2(μ). If f is invertible, then the sequence

1

n

n−1∑
j=0

ϕ ◦ f−j (3.1.11)

also converges to ϕ̃ in L2(μ).

Proof. Let U = Uf : L2(μ)→ L2(μ) be the Koopman operator of (f ,μ). Note
that a function ψ is in the subspace I(U) of invariant functions if and only
if ψ ◦ f = ψ at μ-almost every point. By Theorem 3.1.6, the sequence in
(3.1.10) converges in the space L2(μ) to the orthogonal projection ϕ̃ of ϕ to
the subspace I(U). This proves the first claim.

The second one is analogous, taking instead U =Uf−1 , which is the inverse
of Uf . We get that the sequence in (3.1.11) converges in L2(μ) to the orthogonal
projection of ϕ to the subspace I(Uf−1). Observing that I(Uf−1) = I(Uf ), we
conclude that the limit of this sequence is just the same function ϕ̃ as before.
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70 Ergodic theorems

3.1.4 Exercises

3.1.1. Show that under the hypotheses of the von Neumann ergodic theorem one has
the following stronger conclusion:

lim
n−m→∞

1

n−m

n−1∑
j=m

ϕ ◦ f j → P(ϕ).

3.1.2. Use the previous exercise to show that, given any A⊂M with μ(A) > 0, the set
of values of n ∈ N such that μ(A∩ f−n(A)) > 0 is syndetic. [Observation: We
have seen a different proof of this fact in Exercise 1.2.5.]

3.1.3. Prove that the set F={ϕ ∈L1(μ) :ϕ is f -invariant} is a closed subspace of L1(μ).
3.1.4. State and prove a version of the von Neumann ergodic theorem for flows.
3.1.5. Let ft : M→M, t∈R be a continuous flow on a compact metric space M andμ be

an invariant probability measure. Check that the 1-parameter group Ut : L2(μ)→
L2(μ), t ∈ R of Koopman operators ϕ �→ Utϕ = ϕ ◦ ft is strongly continuous.
Show that μ is ergodic if and only if 0 is a simple eigenvalue of the infinitesimal
generator of the group.

3.2 Birkhoff ergodic theorem

The theorem that we present in this section was proven by George David
Birkhoff,1 the prominent American mathematician of his generation and author
of many other fundamental contributions to dynamics. It is a substantial
improvement of the von Neumann ergodic theorem, because its conclusion
is stated in terms of convergence at μ-almost every point, which in this context
is a stronger property than convergence in L2(μ), as explained in Section 3.2.3.

3.2.1 Mean sojourn time

We start by stating the version of the theorem for mean sojourn times:

Theorem 3.2.1 (Birkhoff). Let f : M → M be a measurable transformation
and μ be a probability measure invariant under f . Given any measurable set
E⊂M, the mean sojourn time

τ(E,x)= lim
n

1

n
#{j= 0,1, . . . ,n− 1 : f j(x) ∈ E}

exists at μ-almost every point x ∈M. Moreover,
∫
τ(E,x)dμ(x)=μ(E).

Observe that if τ(E,x) exists for some x ∈M then

τ(E, f (x))= τ(E,x). (3.2.1)

1 His son Garret Birkhoff was also a mathematician, and is well known for his work in algebra.
The notion of projective distance that we use in Section 12.3 was due to him.
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3.2 Birkhoff ergodic theorem 71

Indeed, by definition,

τ(E, f (x))= lim
n→∞

1

n

n∑
j=1

XE(f
j(x))

= lim
n→∞

1

n

n−1∑
j=0

XE(f
j(x))− 1

n

[
XE(x)−XE(f

n(x))
]

= τ(E,x)− lim
n→∞

1

n

[
XE(x)−XE(f

n(x))
]
.

Since the characteristic function is bounded, the last limit is equal to zero. This
proves (3.2.1).

The next example shows that the mean sojourn time does not exist for every
point, in general:

Example 3.2.2. Consider the number x ∈ (0,1) defined by the decimal
expansion x = 0.a1a2a3 . . . , where ai = 1 if 2k ≤ i < 2k+1 with k even and
ai = 0 if 2k ≤ i< 2k+1 with k odd. In other words,

x= 0.10011110000000011111111111111110 . . . ,

where the lengths of the alternating blocks of 0s and 1s are given by successive
powers of 2. Let f : [0,1]→[0,1] be the transformation defined in Section 1.3.1
and let E=[0,1/10). That is, E is the set of all points whose decimal expansion
starts with the digit 0. It is easy to check that if n= 2k− 1 with k even then

1

n

n−1∑
j=0

XE(f
j(x))= 21+ 23+·· ·+ 2k−1

2k− 1
= 2

3
.

On the other hand, if one takes n= 2k− 1 with k odd then

1

n

n−1∑
j=0

XE(f
j(x))= 21+ 23+·· ·+ 2k−2

2k− 1
= 2k− 2

3(2k− 1)
→ 1

3

as k→∞. Thus, the mean sojourn time of x in the set E does not exist.

3.2.2 Time averages

As we observed previously,

τ(E,x)= lim
n

1

n

n−1∑
j=0

ϕ(f j(x)), where ϕ =XE.

The next statement extends Theorem 3.2.1 to the case when ϕ is any integrable
function:
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72 Ergodic theorems

Theorem 3.2.3 (Birkhoff). Let f : M → M be a measurable transformation
and μ be a probability measure invariant under f . Given any integrable
function ϕ : M→R, the limit

ϕ̃(x)= lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)) (3.2.2)

exists at μ-almost every point x ∈M. Moreover, the function ϕ̃ defined in this
way is integrable and satisfies∫

ϕ̃(x)dμ(x)=
∫
ϕ(x)dμ(x).

In a little while, we will obtain this theorem as a special case of a more
general result, the subadditive ergodic theorem. The limit ϕ̃ is called the
time average, or orbital average, of ϕ. The next proposition shows that time
averages are constant on the orbit of μ-almost every point, which generalizes
(3.2.1):

Proposition 3.2.4. Let ϕ : M→R be an integrable function. Then,

ϕ̃(f (x))= ϕ̃(x) for μ-almost every point x ∈M. (3.2.3)

Proof. By definition,

ϕ̃(f (x))= lim
n→∞

1

n

n∑
j=1

ϕ(f j(x))= lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))+ 1

n

[
ϕ(f n(x))−ϕ(x)]

= ϕ̃(x)+ lim
n→∞

1

n

[
ϕ(f n(x))−ϕ(x)].

We need the following lemma:

Lemma 3.2.5. If φ is an integrable function then limn(1/n)φ(f n(x)) = 0 for
μ-almost every point x ∈M.

Proof. Fix any ε > 0. Since μ is invariant, we have that

μ
({x ∈M : |φ(f n(x))| ≥ nε})=μ({x ∈M : |φ(x)| ≥ nε})

=
∞∑

k=n

μ
({x ∈M : k≤ |φ(x)|

ε
< k+ 1}).

Adding these expressions over n ∈N, we obtain

∞∑
n=1

μ
({x ∈M : |φ(f n(x))| ≥ nε})= ∞∑

k=1

kμ
({x ∈M : k≤ |φ(x)|

ε
< k+ 1})

≤
∫ |φ|

ε
dμ.
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3.2 Birkhoff ergodic theorem 73

Since φ is integrable, by assumption, all these expressions are finite. That
implies that the set B(ε) of all points x such that |φ(f n(x))| ≥ nε for infinitely
many values of n has zero measure (check Exercise A.1.6). Now, the definition
of B(ε) implies that for every x /∈ B(ε) there exists p≥ 1 such that |φ(f n(x))|<
nε for every n≥ p. Consider the set B=⋃∞

i=1 B(1/i). Then B has zero measure
and limn(1/n)φ(f n(x))= 0 for every x /∈ B.

Applying Lemma 3.2.5 to the function φ = ϕ we obtain the identity in
(3.2.3). This completes the proof of Proposition 3.2.4.

In general, the total measure subset of points for which the limit in (3.2.2)
exists depends on the function ϕ under consideration. However, in some
situations it is possible to choose such a set independent of the function. A
useful example of such a situation is:

Theorem 3.2.6. Let M be a compact metric space and f : M → M be a
measurable map. Then there exists some measurable set G⊂M with μ(G)= 1
such that

1

n

n−1∑
j=0

ϕ(f j(x))→ ϕ̃(x) (3.2.4)

for every x ∈G and every continuous function ϕ : M→R.

Proof. By the Birkhoff ergodic theorem, for every continuous function ϕ there
exists G(ϕ)⊂M such that μ(G(ϕ))= 1 and (3.2.4) holds for every x ∈ G(ϕ).
By Theorem A.3.13, the space C0(M) of continuous functions admits some
countable dense subset {ϕk : k ∈N}. Take

G=
∞⋂

k=1

G(ϕk).

Since the intersection is countable, it is clear that μ(G) = 1. So, it suffices to
prove that (3.2.4) holds for every continuous function ϕ whenever x ∈G. This
can be done as follows. Given ϕ ∈ C0(M) and any ε > 0, take k ∈N such that

‖ϕ−ϕk‖ = sup
{|ϕ(x)−ϕk(x)| : x ∈M

}≤ ε.
Then, given any point x ∈G,

limsup
n

1

n

n−1∑
j=0

ϕ(f j(x))≤ lim
n

1

n

n−1∑
j=0

ϕk(f
j(x))+ ε = ϕ̃k(x)+ ε

liminf
n

1

n

n−1∑
j=0

ϕ(f j(x))≥ lim
n

1

n

n−1∑
j=0

ϕk(f
j(x))− ε = ϕ̃k(x)− ε.
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74 Ergodic theorems

This implies that

limsup
n

1

n

n−1∑
j=0

ϕ(f j(x))− liminf
n

1

n

n−1∑
j=0

ϕ(f j(x))≤ 2ε.

Since ε is arbitrary, it follows that the limit ϕ̃(x) exists, as stated.

In general, one can not say anything about the speed of convergence in
Theorem 3.2.3. For example, it follows from a theorem of Kakutani and
Petersen (check pages 94 to 99 of Petersen [Pet83]) that if the measure μ
is ergodic2 and non-atomic then, given any sequence (an)n of positive real
numbers with limn an = 0, there exists some bounded measurable function ϕ
with

limsup
n

1

an

∣∣∣1
n

n−1∑
j=0

ϕ(f j(x))−
∫
ϕ dμ

∣∣∣=+∞.

Another interesting observation is that there is no analogue of the Birkhoff
ergodic theorem for infinite invariant measures. Indeed, suppose that μ is a
σ -finite, but infinite, invariant measure of a transformation f : M→M. We say
that a measurable set W ⊂ M is wandering if the pre-images f−i(W), i ≥ 0
are pairwise disjoint. Suppose that μ is ergodic and conservative, that is, such
that every wandering set has zero measure. Then, given any sequence (an)n of
positive real numbers,

1. either, for every ϕ ∈ L1(μ),

liminf
n

1

an

n−1∑
j=0

ϕ ◦ f j = 0 at almost every point;

2. or, there exists (nk)k →∞ such that, for every ϕ ∈ L1(μ),

lim
k

1

ank

nk−1∑
j=0

ϕ ◦ f j =∞ at almost every point.

This and other related facts about infinite measures are proved in Section 2.4
of Aaronson [Aar97].

3.2.3 Theorem of von Neumann and consequences

The theorem of von Neumann (Theorem 3.1.7) may also be deduced directly
from the theorem of Birkhoff, as we are going to explain.

2 We say that an invariant measure μ is ergodic if f−1(A)= A up to measure zero implies that
either μ(A) = 0 or μ(Ac) = 0. The study of ergodic measures will be the subject of the next
chapter.
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3.2 Birkhoff ergodic theorem 75

Consider any ϕ ∈ L2(μ) and let ϕ̃ be the corresponding time average. We
start by showing that ϕ̃ ∈ L2(μ) and its norm satisfies ‖ϕ̃‖2 ≤ ‖ϕ‖2. Indeed,

|ϕ̃| ≤ lim
n

1

n

n−1∑
j=0

|ϕ ◦ f j| and, hence, |ϕ̃∣∣2 ≤ lim
n

(
1

n

n−1∑
j=0

∣∣ϕ ◦ f j|
)2

.

Then, by the Fatou lemma (Theorem A.2.10),[∫
|ϕ̃∣∣2 dμ

]1/2

≤ liminf
n

[∫ (
1

n

n−1∑
j=0

|ϕ ◦ f j|
)2

dμ

]1/2

. (3.2.5)

We can use the Minkowski inequality (Theorem A.5.3) to bound the sequence
on the right-hand side from above:[∫ (

1

n

n−1∑
j=0

|ϕ ◦ f j|
)2

dμ

]1/2

≤ 1

n

n−1∑
j=0

[∫
|ϕ ◦ f j|2 dμ

]1/2

. (3.2.6)

Since μ is invariant under f , the expression on the right-hand side is equal to[∫ |ϕ|2 dμ
]1/2

. So, (3.2.5) and (3.2.6) imply that ‖ϕ̃‖2 ≤ ‖ϕ‖2 <∞.

Now let us show that (1/n)
∑n−1

j=0 ϕ ◦ f j converges to ϕ̃ in L2(μ). Initially,
suppose that the function ϕ is bounded, that is, there exists C > 0 such that
|ϕ| ≤ C. Then,∣∣∣1

n

n−1∑
j=0

ϕ ◦ f j
∣∣∣≤ C for every n and |ϕ̃| ≤ C.

Then we may use the dominated convergence theorem (Theorem A.2.11) to
conclude that

lim
n

∫ (
1

n

n−1∑
j=0

ϕ ◦ f j− ϕ̃
)2

dμ=
∫ (

lim
n

1

n

n−1∑
j=0

ϕ ◦ f j− ϕ̃
)2

dμ= 0.

In other words, (1/n)
∑n−1

j=0 ϕ ◦ f j converges to ϕ̃ in the space L2(μ). We are
left to extend this conclusion to arbitrary functions ϕ in L2(μ). For that, let us
consider some sequence (ϕk) of bounded functions such that (ϕk)k converges
to ϕ. For example:

ϕk(x)=
{
ϕ(x) if |ϕ(x)| ≤ k
0 otherwise.

Denote by ϕ̃k the corresponding time averages. Given any ε > 0, let k0 be fixed
such that ‖ϕ−ϕk‖2 < ε/3 for every k ≥ k0. Note that ‖(ϕ−ϕk) ◦ f j‖2 is equal
to ‖ϕ−ϕk‖2 for every j≥ 0, because the measure μ is invariant. Thus,∥∥∥1

n

n−1∑
j=0

(ϕ−ϕk)◦ f j
∥∥∥

2
≤‖ϕ−ϕk‖2<ε/3 for every n≥ 1 and k≥ k0. (3.2.7)
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76 Ergodic theorems

Observe also that ϕ̃ − ϕ̃k is the time average of the function ϕ − ϕk. So, the
argument in the previous paragraph gives that

‖ϕ̃− ϕ̃k‖2 ≤ ‖ϕ−ϕk‖2 < ε/3 for every k≥ k0. (3.2.8)

By assumption, for every k≥ 1 there exists n0(k)≥ 1 such that∥∥∥1

n

n−1∑
j=0

ϕk ◦ f j− ϕ̃k

∥∥∥
2
< ε/3 for every n≥ n0(k). (3.2.9)

Adding (3.2.7), (3.2.8), (3.2.9) we get that∥∥∥1

n

n−1∑
j=0

ϕ ◦ f j− ϕ̃
∥∥∥

2
< ε for every n≥ n0(k0).

This completes the proof of the theorem of von Neumann from the theorem of
Birkhoff.

Exercise 3.2.5 contains an extension of these conclusions to any Lp(μ)

space.

Corollary 3.2.7. The time average ϕ̃ of any function ϕ ∈ L2(μ) coincides with
the orthogonal projection P(ϕ) of ϕ to the subspace of invariant functions.

Proof. On the one hand, Theorem 3.1.7 gives that (1/n)
∑n−1

j=0 ϕ ◦ f j converges
to P(ϕ) in L2(μ). On the other hand, we have just shown that this sequence
converges to ϕ̃ in the space L2(μ). So, by uniqueness of the limit, P(ϕ)= ϕ̃.

Corollary 3.2.8. If f : M → M is invertible then the time averages of any
function ϕ ∈ L2(μ) relative to f and to f−1 coincide at μ-almost every point:

lim
n

1

n

n−1∑
j=0

ϕ ◦ f−j = lim
n

1

n

n−1∑
j=0

ϕ ◦ f j at μ-almost every point. (3.2.10)

Proof. The limit on the left-hand side of (3.2.10) is the orthogonal projection
of ϕ to the subspace of functions invariant under f−1, whereas the limit on the
right-hand side is the orthogonal projection of ϕ to the subspace of functions
invariant under f . It is clear that these two subspaces are exactly the same.
Thus, the two limits coincide in L2(μ).

3.2.4 Exercises

3.2.1. Let X = {x1, . . . ,xr} be a finite set and σ : X → X be a permutation. We call σ a
cyclic permutation if it admits a unique orbit (containing all r elements of X).
1. Prove that, for any cyclic permutation σ and any function ϕ : X→R,

lim
n→∞

1

n

n−1∑
i=0

ϕ(σ i(x))= ϕ(x1)+·· ·+ϕ(xr)

r
.
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3.2 Birkhoff ergodic theorem 77

2. More generally, prove that for any permutation σ and any function ϕ

lim
n→∞

1

n

n−1∑
i=0

ϕ(σ i(x))= ϕ(x)+ϕ(σ(x))+·· ·+ϕ(σ
p−1(x))

p
,

where p≥ 1 is the cardinality of the orbit of x.
3.2.2. Check that Lemma 3.2.5 can also be deduced from the Birkhoff ergodic theorem

and then we may even weaken the hypothesis: it suffices to suppose that φ is
measurable and ψ = φ ◦ f −φ is integrable.

3.2.3. A function ϕ : Z→ R is said to be uniformly quasi-periodic if for every ε > 0
there exists L(ε) ∈ N such that every interval {n+ 1, . . . ,n+ L(ε)} in the set of
integers contains some τ such that |ϕ(k+ τ)− ϕ(k)| < ε for every k ∈ Z. Any
such τ is called an ε-quasi-period of f .
(a) Prove that if ϕ is uniformly quasi-periodic then ϕ is bounded.
(b) Show that for every ε > 0 there exists ρ ≥ 1 such that

∣∣∣ 1
ρ

(n+1)ρ∑
j=nρ+1

ϕ(j)− 1

ρ

ρ∑
j=1

ϕ(j)
∣∣∣< 2ε for every n≥ 1.

(c) Show that the sequence (1/n)
∑n

j=1 ϕ(j) converges to some real number
when n→∞.

(d) More generally, prove that limn(1/n)
∑n

k=1 ϕ(x+ k) exists for every x ∈ Z

and is independent of x.
3.2.4. Prove that for Lebesgue-almost every x∈ [0,1], the geometric mean of the integer

numbers a1, . . . ,an, . . . in the continued fraction expansion of x converges to some
real number: in other words, there exists b ∈R such that limn(a1a2 · · ·an)

1/n = b.
[Observation: Compare with Exercise 4.2.12.]

3.2.5. Let ϕ : M→R be an integrable function and ϕ̃ be the corresponding time average,
given by Theorem 3.2.3. Show that if ϕ ∈ Lp(μ) for some p> 1 then ϕ̃ ∈ Lp(μ)

and ‖ϕ̃‖p ≤ ‖ϕ‖p. Moreover,

1

n

n−1∑
j=0

ϕ ◦ f j

converges to ϕ̃ in the space Lp(μ).
3.2.6. Prove the Birkhoff ergodic theorem for flows: if μ is a probability measure

invariant under a flow f and ϕ ∈ L1(μ) then the function

ϕ̃(x)= lim
T→∞

1

T

∫ T

0
ϕ(f t(x))dt

is defined at μ-almost every point and
∫
ϕ̃ dμ= ∫ ϕ dμ.

3.2.7. Prove that if a continuous transformation f : M →M of a compact metric space
M admits exactly one invariant probability measure μ, and this measure is such
that μ(A) > 0 for every non-empty open set A⊂M, then every orbit of f is dense
in M.
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78 Ergodic theorems

3.3 Subadditive ergodic theorem

A sequence of functions ϕn : M → R is said to be subadditive for a
transformation f : M→M if

ϕm+n ≤ ϕm+ϕn ◦ f m for every m,n≥ 1. (3.3.1)

Example 3.3.1. A sequence ϕn : M→R is additive for the transformation f if
ϕm+n = ϕm+ϕn ◦ f m for every m,n≥ 1. For example, the time sums

ϕn(x)=
n−1∑
j=0

ϕ(f j(x))

of any function ϕ : M → R form an additive sequence. In fact, every additive
sequence is of this form, with ϕ = ϕ1. Of course, additive sequences are also
subadditive.

For the next example we need the notion of the norm of a square matrix A
of dimension d, which is defined as follows:

‖A‖ = sup

{‖Av‖
‖v‖ : v ∈Rd \ {0}

}
. (3.3.2)

Compare with (2.3.1). It follows directly from the definition that the norm of
the product of two matrices is less than or equal to the product of the norms of
those matrices:

‖AB‖ ≤ ‖A‖‖B‖ . (3.3.3)

Example 3.3.2. Let A : M → GL(d) be a measurable function with values
in the linear group, that is, the set GL(d) of invertible square matrices of
dimension d. Define

φn(x)= A(f n−1(x)) · · ·A(f (x))A(x)
for every n ≥ 1 and x ∈ M. Then the sequence ϕn(x) = log‖φn(x)‖ is
subadditive. Indeed,

φm+n(x)= φn(f m(x))φm(x).

and so, using (3.3.3),

ϕm+n(x)= log‖φn(f m(x))φm(x)‖
≤ log‖φm(x)‖+ log‖φn(f m(x))‖ = ϕm(x)+ϕn(f

m(x))

for every m, n and x.

Recall that, given any function ϕ : M → R, we denote by ϕ+ : M → R its
positive part, which is defined by ϕ+(x)=max{ϕ(x),0}.
Theorem 3.3.3 (Kingman). Let μ be a probability measure invariant under a
transformation f : M→M and let ϕn : M→R, n≥ 1 be a subadditive sequence
of measurable functions such that ϕ+1 ∈ L1(μ). Then (ϕn/n)n converges at
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3.3 Subadditive ergodic theorem 79

μ-almost every point to some function ϕ : M → [−∞,+∞) that is invariant
under f . Moreover, ϕ+ ∈ L1(μ) and∫

ϕ dμ= lim
n

1

n

∫
ϕn dμ= inf

n

1

n

∫
ϕn dμ ∈ [−∞,+∞).

The proof of Theorem 3.3.3 that we are going to present is due to Avila
and Bochi [AB], who started from a proof of the Birkhoff ergodic theorem
(Theorem 3.2.3) by Katznelson and Weiss [KW82]. An important observation
is that Theorem 3.2.3 is not used in the arguments. This allows us to obtain the
theorem of Birkhoff as a particular case of Theorem 3.3.3.

3.3.1 Preparing the proof

A sequence (an)n in [−∞,+∞) is said to be subadditive if am+n ≤ am+an for
every m,n≥ 1.

Lemma 3.3.4. If (an)n is a subadditive sequence then

lim
n

an

n
= inf

n

an

n
∈ [−∞,∞). (3.3.4)

Proof. If am = −∞ for some m then, by subadditivity, an = −∞ for every
n > m. In that case, both sides of (3.3.4) are equal to −∞ and so the lemma
holds. From now on let us assume that an ∈R for every n.

Let L = infn(an/n) ∈ [−∞,+∞) and B be any real number larger than L.
Then we may find k≥ 1 such that

ak

k
< B.

For n> k, we may write n= kp+q, where p and q are integers such that p≥ 1
and 1≤ q≤ k. Then, by subadditivity,

an ≤ akp+ aq ≤ pak+ aq ≤ pak+α,

where α =max{ai : 1≤ i≤ k}. Hence,

an

n
≤ pk

n

ak

k
+ α

n
.

Observe that pk/n converges to 1 and α/n converges to zero when n→∞. So,
since ak/k< B, we have that

L≤ an

n
< B

for every n sufficiently large. Making B→ L, we conclude that

lim
n

an

n
= L= inf

n

an

n
.

This completes the argument.
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80 Ergodic theorems

Now let (ϕn)n be as in Theorem 3.3.3. By subadditivity,

ϕn ≤ ϕ1+ϕ1 ◦ f +·· ·+ϕ1 ◦ f n−1.

This relation remains valid if we replace ϕn and ϕ1 by their positive parts ϕ+n
and ϕ+1 . Hence, the hypothesis that ϕ+1 ∈ L1(μ) implies that ϕ+n ∈ L1(μ) for
every n. Moreover, the hypothesis that (ϕn)n is subadditive implies that

an =
∫
ϕn dμ, n≥ 1

is a subadditive sequence in [−∞,+∞). Therefore, by Lemma 3.3.4, the limit

L= lim
n

an

n
= inf

n

an

n
∈ [−∞,∞)

exists. Define ϕ− : M→[−∞,∞] and ϕ+ : M→[−∞,∞] through

ϕ−(x)= liminf
n

ϕn

n
(x) and ϕ+(x)= limsup

n

ϕn

n
(x).

Clearly, ϕ−(x)≤ ϕ+(x) for every x ∈M. We are going to prove that∫
ϕ− dμ≥ L≥

∫
ϕ+ dμ, (3.3.5)

as long as each function ϕn is bounded from below. Consequently, the two
functions ϕ− and ϕ+ coincide at μ-almost every point and their integral is
equal to L. Thus, the theorem will be proven in this case, with ϕ = ϕ− = ϕ+
(the fact that ϕ is invariant under f is part of Exercise 3.3.2). At the end, we
remove that boundedness assumption using a truncation trick.

3.3.2 Key lemma

In this section we assume that ϕ− >−∞ at every point. Fix ε > 0 and define,
for each k ∈N,

Ek =
{
x ∈M : ϕj(x)≤ j

(
ϕ−(x)+ ε

)
for some j ∈ {1, . . . ,k}}.

It is clear that Ek ⊂ Ek+1 for every k. Moreover, the definition of ϕ−(x) implies
that M =⋃k Ek. Define also

ψk(x)=
{
ϕ−(x)+ ε if x ∈ Ek

ϕ1(x) if x ∈ Ec
k.

It follows from the definition of Ek that ϕ1(x) > ϕ−(x)+ ε for every x ∈ Ec
k.

Combining this fact with the previous observations, we see that the sequence
(ψk(x))k is non-increasing and converges to ϕ−(x)+ ε, for every x ∈ M. In
particular, by the monotone convergence theorem (Theorem A.2.9),∫

ψk dμ→
∫
(ϕ− + ε)dμ as k→∞.

The crucial step in the proof of the theorem is the following estimate:
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Figure 3.1. Decomposition of the trajectory of a point

Lemma 3.3.5. For every n> k≥ 1 and μ-almost every x ∈M,

ϕn(x)≤
n−k−1∑

i=0

ψk(f
i(x))+

n−1∑
i=n−k

max{ψk,ϕ1}(f i(x)).

Proof. Take x ∈ M such that ϕ−(x) = ϕ−(f j(x)) for every j ≥ 1 (this holds
at μ-almost every point, according to Exercise 3.3.2). Consider the sequence,
possibly finite, of integer numbers

m0 ≤ n1 <m1 ≤ n2 <m2 ≤ . . . (3.3.6)

defined inductively as follows (see also Figure 3.1).
Define m0 = 0. Let nj be the smallest integer greater than or equal to mj−1

satisfying f nj(x) ∈ Ek (if it exists). Then, by the definition of Ek, there exists mj

such that 1≤mj− nj ≤ k and

ϕmj−nj(f
nj(x))≤ (mj− nj)(ϕ−(f nj(x))+ ε). (3.3.7)

This completes the definition of the sequence (3.3.6). Now, given n ≥ k, let
l≥ 0 be the largest integer such that ml ≤ n. By subadditivity,

ϕnj−mj−1(f
mj−1(x))≤

nj−1∑
i=mj−1

ϕ1(f
i(x))

for every j = 1, . . . , l such that mj−1 �= nj, and analogously for ϕn−ml(f
ml(x)).

Thus,

ϕn(x)≤
∑
i∈I

ϕ1(f
i(x))+

l∑
j=1

ϕmj−nj(f
nj(x)) (3.3.8)

where I =⋃l
j=1[mj−1,nj)

⋃[ml,n). Observe that

ϕ1(f
i(x))=ψk(f

i(x)) for every i ∈
⋃l

j=1
[mj−1,nj)∪ [ml,min{nl+1,n}),

since f i(x)∈Ec
k in all these cases. Moreover, since ϕ− is constant on orbits (see

Exercise 3.3.2) and ψk ≥ ϕ− + ε, the relation (3.3.7) gives that

ϕmj−nj(f
nj(x))≤

mj−1∑
i=nj

(ϕ−(f i(x))+ ε)≤
mj−1∑
i=nj

ψk(f
i(x))
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82 Ergodic theorems

for every j= 1, . . . , l. In this way, using (3.3.8), we conclude that

ϕn(x)≤
min{nl+1,n}−1∑

i=0

ψk(f
i(x))+

n−1∑
i=nl+1

ϕ1(f
i(x)).

Since nl+1 > n− k, the lemma is proven.

3.3.3 Estimating ϕ−
Towards establishing (3.3.5), in this section we prove the following lemma:

Lemma 3.3.6.
∫
ϕ− dμ= L

Proof. Suppose for a while that ϕn/n is uniformly bounded from below, that is,
that there exists κ > 0 such that ϕn/n≥−κ for every n. Applying the lemma of
Fatou (Theorem A.2.10) to the sequence of non-negative functions ϕn/n+ κ ,
we get that ϕ− is integrable and∫

ϕ− dμ≤ lim
n

∫
ϕn

n
dμ= L.

To prove the opposite inequality, observe that Lemma 3.3.5 implies

1

n

∫
ϕn dμ≤ n− k

n

∫
ψk dμ+ k

n

∫
max{ψk,ϕ1}dμ. (3.3.9)

Note that max{ψk,ϕ1} ≤max{ϕ− + ε,ϕ+1 }, and this last function is integrable.
So, the limit superior of the last term in (3.3.9) as n→∞ is less than or equal
to zero. So, making n→∞ we get that L≤ ∫ ψk dμ for every k. Then, making
k→∞, we conclude that

L≤
∫
ϕ− dμ+ ε.

Finally, making ε→ 0 we get that L≤ ∫ ϕ− dμ. This proves the lemma when
ϕn/n is uniformly bounded from below.

We are left to remove this hypothesis. Define, for each κ > 0,

ϕκn =max{ϕn,−κn} and ϕκ− =max{ϕ−,−κ}.
The sequence (ϕκn )n satisfies all the conditions of Theorem 3.3.3: indeed, it is
subadditive and the positive part of ϕκ1 is integrable. Moreover, it is clear that
ϕκ− = liminfn(ϕ

κ
n /n). So, the argument in the previous paragraph shows that∫

ϕκ− dμ= inf
n

1

n

∫
ϕκn dμ. (3.3.10)

By the monotone convergence theorem (Theorem A.2.9), we also have that∫
ϕn dμ= inf

κ

∫
ϕκn dμ and

∫
ϕ− dμ= inf

κ

∫
ϕκ− dμ. (3.3.11)
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Combining the relations (3.3.10) and (3.3.11), we get that∫
ϕ− dμ= inf

κ

∫
ϕκ− = inf

κ
inf

n

1

n

∫
ϕκn dμ= inf

n

1

n

∫
ϕn dμ= L.

This completes the proof of the lemma.

3.3.4 Bounding ϕ+
To complete the proof of (3.3.5), we are now going to show that

∫
ϕ+ dμ ≤ L

as long as infxϕn(x) is finite for every n. Let us start by proving the following
auxiliary result:

Lemma 3.3.7. For any fixed k,

limsup
n

ϕkn

n
= k limsup

n

ϕn

n
.

Proof. The inequality ≤ is clear, since ϕkn/kn is a subsequence of ϕn/n. To
prove the opposite inequality, let us write n= kqn+ rn with rn ∈ {1, . . . ,k}. By
subadditivity,

ϕn ≤ ϕkqn +ϕrn ◦ f kqn ≤ ϕkqn +ψ ◦ f kqn ,

where ψ =max{ϕ+1 , . . . ,ϕ+k }. Observe that n/qn → k when n→∞. Moreover,
as ψ ∈ L1(μ), we may use Lemma 3.2.5 to see that ψ ◦ f n/n converges to zero
at μ-almost every point. Hence, dividing all the terms in the previous relation
by n and taking the limit superior as n→∞, we get that

limsup
n

1

n
ϕn ≤ limsup

n

1

n
ϕkqn + limsup

n

1

n
ψ ◦ f kqn = 1

k
limsup

q

1

q
ϕkq,

as stated in the lemma.

Lemma 3.3.8. Suppose that infxϕn(x) >−∞ for every n. Then
∫
ϕ+ dμ≤ L.

Proof. For each k and n≥ 1, consider θn =−∑n−1
j=0 ϕk ◦ f jk. Observe that∫

θn dμ=−n
∫
ϕk dμ for every n, (3.3.12)

since f k preserves the measure μ. Since the sequence (ϕn)n is subadditive,
θn ≤−ϕkn for every n. Hence, using Lemma 3.3.7,

θ− = liminf
n

θn

n
≤− limsup

n

ϕkn

n
=−k limsup

n

ϕn

n
=−kϕ+,

and so ∫
θ− dμ≤−k

∫
ϕ+ dμ. (3.3.13)

Observe also that the sequence (θn)n is additive: θm+n = θm+ θn ◦ f km for every
m, n≥ 1. Since θ1 =−ϕk is bounded from above by − infϕk, we also have that
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84 Ergodic theorems

the function θ+1 is bounded and, consequently, integrable. Thus, we may apply
Lemma 3.3.6, together with the equality (3.3.12), to conclude that∫

θ− dμ= inf
n

∫
θn

n
dμ=−

∫
ϕk dμ. (3.3.14)

Putting (3.3.13) and (3.3.14) together we get that∫
ϕ+ dμ≤ 1

k

∫
ϕk dμ.

Finally, taking the infimum over k we get that
∫
ϕ+ dμ≤ L.

Lemmas 3.3.6 and 3.3.8 imply the relation (3.3.5) and, thus, Theorem 3.3.3
is proven when infϕk >−∞ for every k. In the general case, consider

ϕκn =max{ϕn,−κn} and ϕκ− =max{ϕ−,−κ} and ϕκ+ =max{ϕ+,−κ}
for every constant κ > 0. The previous arguments may be applied to the
sequence (ϕκn )n for each fixed κ > 0. Hence, ϕκ+ = ϕκ− at μ-almost every point
for every κ > 0. Since ϕκ− → ϕ− and ϕκ+ → ϕ+ when κ→∞, it follows that
ϕ− = ϕ+ at μ-almost every point. The proof of Theorem 3.3.3 is complete.

3.3.5 Lyapunov exponents

We have observed previously that every sequence of time sums

ϕn =
n−1∑
j=0

ϕ ◦ f j, n≥ 1

is additive and, in particular, subadditive. Therefore, the ergodic theorem
of Birkhoff (Theorem 3.2.3) is a particular case of Theorem 3.3.3. Another
important consequence of the subadditive ergodic theorem is the theorem of
Furstenberg–Kesten that we state next.

Let f : M → M be a measurable transformation and μ be an invariant
probability measure. Consider any measurable function θ : M → GL(d) with
values in the group GL(d). The cocycle defined by θ over f is the sequence of
functions defined by

φn(x)= θ(f n−1(x)) · · ·θ(f (x))θ(x) for n≥ 1 and φ0(x)= id

for every x ∈M. We leave it to the reader to check that

φm+n(x)= φn(f m(x)) ·φm(x) for every m,n ∈N and x ∈M. (3.3.15)

It is also easy to check that, conversely, any sequence (φn)n with this property
is the cocycle defined by θ = φ1 over the transformation f .

Theorem 3.3.9 (Furstenberg–Kesten). If log+ ‖θ‖ ∈ L1(μ) then

λmax(x)= lim
n

1

n
log‖φn(x)‖
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exists at μ-almost every point. Moreover, λ+max ∈ L1(μ) and∫
λmax dμ= lim

n

1

n

∫
log‖φn‖dμ= inf

n

1

n

∫
log‖φn‖dμ.

If log+ ‖θ−1‖ ∈ L1(μ) then

λmin(x)= lim
n
−1

n
log‖φn(x)−1‖

exists at μ-almost every point. Moreover, λmin ∈ L1(μ) and∫
λmin dμ= lim

n
−1

n

∫
log‖(φn)−1‖dμ= sup

n
−1

n

∫
log‖(φn)−1‖dμ.

To deduce this result from Theorem 3.3.3 it suffices to note that the
sequences

ϕmax
n (x)= log‖φn(x)‖ and ϕmin

n (x)= log‖φn(x)−1‖
are subadditive (recall Example 3.3.2).

The multiplicative ergodic theorem of Oseledets, which we are going to
state in the following, provides a major refinement of the conclusion of the
Furstenberg–Kesten theorem. It asserts that, under the same hypotheses as
Theorem 3.3.9, for μ-almost every x∈M there exist a positive integer k= k(x)
and real numbers λ1(x) > · · · > λk(x) and a filtration (that is, a decreasing
sequence of vector subspaces)

Rd = V1
x > · · ·> Vk

x > Vk+1
x = {0} (3.3.16)

such that, for every i ∈ {1, . . . ,k} and μ-almost every x ∈M,

(a1) k(f (x))= k(x) and λi(f (x))= λi(x) and θ(x) ·Vi
x = Vi

f (x);

(b1) lim
n

1

n
log‖φn(x)v‖ = λi(x) for every v ∈ Vi

x \Vi+1
x ;

(c1) lim
n

1

n
log |detφn(x)| =

k∑
i=1

di(x)λi(x), where di(x)= dimVi
x− dimVi+1

x .

Moreover, the numbers k(x) and λ1(x), . . . ,λk(x) and the subspaces V1
x , . . . ,Vk

x

depend measurably on the point x.
The numbers λi(x) are called the Lyapunov exponents of θ at the point x.

They satisfy λ1 = λmax and λk = λmin. For this reason, we also call λmax(x)
and λmin(x) the extremal Lyapunov exponents of θ at the point x. Each di(x) is
called the multiplicity of the Lyapunov exponent λi(x).

When f is invertible, we may extend the sequence φn to the whole of Z,
through

φ−n(x)= φn(f−n(x))−1 for every n≥ 1 and x ∈M.

Assuming also that log+ ‖θ−1‖∈L1(μ), one obtains a stronger conclusion than
before: more than a filtration, there is a decomposition

Rd = E1
x ⊕·· ·⊕Ek

x (3.3.17)
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such that, for every i= 1, . . . ,k,

(a2) θ(x) ·Ei
x = Ei

f (x) and Vi
x = Vi+1

x ⊕Ei
x; so, dimEi

x = dimVi
x− dimVi+1

x ;

(b2) lim
n→±∞

1

n
log‖φn(x)v‖ = λi(x) for every v ∈ Ei

x different from zero;

(c2) lim
n→+∞

1

n
log |detφn(x)| =

k∑
i=1

di(x)λi(x), where di(x)= dimEi
x.

The reader will find a much more detailed discussion of these results,
including proofs, in Chapter 4 of [Via14].

3.3.6 Exercises

3.3.1. Give a direct proof of the Birkhoff ergodic theorem (Theorem 3.2.3), using the
approach in the proof of Theorem 3.3.3.

3.3.2. Given a subadditive sequence (ϕn)n with ϕ+1 ∈ L1(μ), show that the functions

ϕ− = liminf
n

ϕn

n
and ϕ+ = limsup

n

ϕn

n

are f -invariant, that is, they satisfy ϕ−(x) = ϕ− ◦ f (x) and ϕ+(x) = ϕ+ ◦ f (x) for
μ-almost every x ∈M.

3.3.3. State and prove the subadditive ergodic theorem for flows.
3.3.4. Let M be a compact manifold and f : M →M be a diffeomorphism of class C1

that preserves the Lebesgue measure. Check that

k(x)∑
i=1

di(x)λi(x)= 0 at μ-almost every point x ∈M,

where λi(x), i= 1, . . . ,k(x) are the Lyapunov exponents of Df at the point x and
di(x), i= 1, . . . ,k(x) are the corresponding multiplicities.

3.3.5. Let (ϕn)n be a subadditive sequence of functions for some transformation f : M→
M. We call the time constant of (ϕn)n the number

lim
n

1

n

∫
ϕn dμ

when it exists. Assuming that the limit does exist and is finite, show that we may
write ϕn = ψn + γn for each n, in such a way that (ψn)n is an additive sequence
and (γn)n is a subadditive sequence with time constant equal to zero.

3.3.6. Under the assumptions of the Furstenberg–Kesten theorem, show that the
sequence ψn = (1/n) log‖φn‖ is uniformly integrable, in the following sense:
for every ε > 0 there exists δ > 0 such that

μ(E) < δ ⇒
∫

E
ψ+n dμ< ε for every n.

3.3.7. Under the assumptions of the Furstenberg–Kesten theorem, let �k denote the
time average of the function ψk = (1/k) log‖φk‖ relative to the transformation
f k. Show that λmax(x) ≤ �k(x) for every k and μ-almost every x. Using
Exercise 3.3.6, show that for every ρ > 0 and μ-almost every x there exists k
such that �k(x)≤ λmax(x)+ρ.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.004
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:06, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.004
https://www.cambridge.org/core
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3.4 Discrete time and continuous time

Most of the time we focus our presentation in the context of dynamical systems
with discrete time. However, almost everything that was said so far extends,
more or less straightforwardly, to systems with continuous time. One reason
why the two theories are so similar is that one may relate systems of either kind
to systems of the other kind, through certain constructions. That is the subject
of the present section. For simplicity, we stick to the case of invertible systems.
The general case may be handled using the notion of natural extension, which
was described in Section 2.4.2.

3.4.1 Suspension flows

Our first construction associates with every invertible map f : M → M and
every measurable function τ : M → (0,∞) a flow gt : N → N, t ∈ R, that we
call the suspension of f with return time τ , whose recurrence properties are
directly related to the recurrence properties of f . In particular, we associate a
measure ν invariant under this flow with every measure μ invariant under f .
For this construction we assume that the function τ is such that

∞∑
j=1

τ(f j(x))=
∞∑

j=1

τ(f−j(x))=+∞ (3.4.1)

for every x ∈M. That is the case, for instance, if τ is bounded away from zero.
The first step is to construct the domain N of the suspension flow. Let us

consider the transformation F : M×R→M×R defined by

F(x,s)= (f (x),s− τ(x)).
Note that F is invertible. Let ∼ be the equivalence relation defined in M×R

by

(x,s)∼ (x̃, s̃) ⇔ there exists n ∈ Z such that Fn(x,s)= (x̃, s̃).

We denote by N the set of equivalence classes and by π : M × R→ N the
canonical projection associating with every (x,s) ∈M×R the corresponding
equivalence class.

Now consider the flow Gt : M×R→M×R given by Gt(x,s)= (x,s+ t). It
is clear that Gt ◦F= F ◦Gt for every t ∈R. This ensures that Gt, t ∈R induces
a flow gt, t ∈R in the quotient space N, given by

gt(π(x,s))= π(Gt(x,s)) for every x ∈M and s, t ∈R. (3.4.2)

Indeed, if π(x,s) = π(x̃, s̃) then there exists n ∈ Z such that Fn(x,s) = (x̃, s̃).
Hence,

Gt(x̃, s̃)=Gt ◦Fn(x,s)= Fn ◦Gt(x,s)

and so π(Gt(x,s)) = π(Gt(x̃, s̃)). This shows that the flow gt, t ∈ R is well
defined.
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88 Ergodic theorems

To better understand how this flow is related to the transformation f , we need
to revisit the construction from a more concrete point of view. Let us consider
D= {(x,s) ∈M×R : 0≤ s< τ(x)}. We claim that D is a fundamental domain
for the equivalence relation ∼, that is, it contains exactly one representative
of each equivalence class. Uniqueness of the representative is immediate: just
observe that if (x,s) ∈ D then Fn(x,s) = (xn,sn) with sn < 0 for every n > 0
and sn > τ(f n(x)) for every n > 0. To prove existence, we need the condition
(3.4.1): it ensures that the iterates (xn,sn)= Fn(x,s) of any (x,s) satisfy

lim
n→+∞sn =−∞ and lim

n→−∞sn =+∞.

Then, taking n maximum such that sn≥ 0, we find that (xn,sn)∈D. In this way,
the claim is proved. Now observe that the claim means that the restriction of
the projection π to domain D is a bijection over N. Thus, we may identify N
with D and, in particular, we may consider gt, t ∈R as a flow in D.

In just the same way, we may identify M with the subset � = π(M×{0}) of
N. Observing that

gτ(x)(π(x,0))= π(x,τ(x))= π(f (x),0), (3.4.3)

we see that, through this identification, the transformation f : M → M
corresponds to the first-return map (or Poincaré return map) of the suspension
flow to �. See Figure 3.2.

Now let μ be a measure on M invariant under f . Let us denote by ds the
Lebesgue measure on the real line R. It is clear that the (infinite) measure
μ× ds is invariant under the flow Gt, t ∈R. Moreover, it is invariant under the
transformation F, since μ is invariant under f . We call the suspension of μ with
return time τ the measure ν defined on N by

ν = π∗(μ× ds |D). (3.4.4)

In other words, ν is the measure such that∫
ψ dν =

∫ ∫ τ(x)

0
ψ(π(x,s))dsdμ(x)

M

τ (x)

x

f(x)

0

Figure 3.2. Suspension flow
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3.4 Discrete time and continuous time 89

for every bounded measurable function ψ : N → (0,∞). In particular,

ν(N)=
∫

1dν =
∫
τ(x)dμ(x) (3.4.5)

is finite if and only if the function τ is integrable with respect to μ.

Proposition 3.4.1. The flow gt, t ∈R preserves the measure ν.

Proof. Let us fix t ∈R. Given any measurable set B⊂ N, let B̂= π−1(B)∩D.
By the definition of ν, we have that ν(B) = (μ× ds)(B̂). For each n ∈ Z, let
B̂n be the set of all pairs (x,s) ∈ B̂ such that G−t(x,s) ∈ Fn(D) and let Bn =
π(B̂n). Since D is a fundamental domain, {B̂n : n ∈ Z} is a partition of B̂ and
{Bn : n∈Z} is a partition of B. Moreover, B̂n= π−1(Bn)∩D and, consequently,
ν(Bn)= (μ× ds)(B̂n) for every n. The definition of the suspension flow gives
that

π−1
(
g−t(Bn)

)=G−t
(
π−1(Bn)

)=G−t
(⋃

k∈Z
Fk(B̂n)

)=⋃
k∈Z

Fk
(
G−t(B̂n)

)
.

Observing that F−n(G−t(B̂n))⊂D, we conclude that

ν
(
g−t(Bn)

)= (μ× ds)
(
π−1(g−t(Bn))∩D

)= (μ× ds)
(
F−n(G−t(B̂n))

)
.

As the measure μ× ds is invariant under both F and Gt, the last expression is
equal to (μ× ds)(B̂n). Therefore,

ν(g−t(B))=
∑
n∈Z
ν(g−t(Bn))=

∑
n∈Z
(μ× ds)(B̂n)= (μ× ds)(B̂)= ν(B).

This proves that ν is invariant under the flow gt, t ∈R.

In Exercise 3.4.2 we invite the reader to relate the recurrence properties of
the systems (f ,μ) and (gt,ν).

3.4.2 Poincaré maps

Next, we present a kind of inverse for the construction described in the previous
section. Let gt : N → N, t ∈ R be a measurable flow and ν be an invariant
measure. Let � ⊂ N be a cross-section of the flow, that is, a subset of N such
that for every x ∈� there exists τ(x) ∈ (0,∞] such that gt(x) /∈� for every t ∈
(0,τ(x)) and gτ(x)(x) ∈� whenever τ(x) is finite. We call τ(x) the first-return
time of x to �. Our goal is to construct, starting from ν, a measure μ that is
invariant under the first-return map (or Poincaré return map)

f : {x ∈� : τ(x) <∞}→�, f (x)= gτ(x)(x).

Observe that this map is injective.
For each ρ > 0, denote�ρ ={x∈� : τ(x)≥ ρ}. Given A⊂�ρ and δ ∈ (0,ρ],

consider Aδ = {gt(x) : x ∈ A and 0≤ t< δ}. Observe that the map (x, t) �→ gt(x)
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90 Ergodic theorems

is a bijection from A×[0,δ) to Aδ . Assume that� is endowed with a σ -algebra
of measurable subsets such that

1. the function τ and the maps f and f−1 are measurable;
2. if A⊂�ρ is measurable then Aδ ⊂ N is measurable, for every δ ∈ (0,ρ].
Lemma 3.4.2. Let A be a measurable subset of �ρ for some ρ > 0. Then, the
function δ �→ ν(Aδ)/δ is constant in the interval (0,ρ].

Proof. Consider any δ ∈ (0,ρ] and l≥ 1. It is clear that

Aδ =
l−1⋃
i=0

giδ/l(Aδ/l),

and this is a disjoint union. Using that ν is invariant under the flow gt, t ∈ R,
we conclude that ν(Aδ) = lν(Aδ/l) for every δ ∈ (0,ρ] and every l ≥ 1. Then,
ν(Arδ)= rν(Aδ) for every δ ∈ (0,ρ] and every rational number r∈ (0,1). Using,
furthermore, the fact that both sides of this relation vary monotonically with
r, we get that the equality remains true for every real number r ∈ (0,1). This
implies the conclusion of the lemma.

Given any measurable subset A of �ρ , ρ > 0, let us define

μ(A)= ν(Aδ)
δ

for any δ ∈ (0,ρ]. (3.4.6)

Next, given any measurable subset A of �, let

μ(A)= sup
ρ
μ(A∩�ρ). (3.4.7)

See Figure 3.3. We leave it to the reader to check that μ is a measure in �
(Exercise 3.4.1). We call it the flux of ν through � under the flow.

Proposition 3.4.3. Suppose that the measure ν is finite. Then the measure μ
in � is invariant under the Poincaré map f .

Aδ

f(A)δ

Σ

A

f(A)

Figure 3.3. Flux of a measure through a cross-section
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Proof. Start by observing that the map f is essentially surjective: the
complement of the image f (�) has measure zero. Indeed, suppose that there
exists a set E withμ(E)> 0 contained in�\ f (�). It is no restriction to assume
that E⊂�ρ for some ρ > 0. Then, ν(Eρ) > 0. Since ν is finite, by assumption,
we may apply the Poincaré recurrence theorem to the flow g−t, t ∈ R. We get
that there exists z∈Eρ such that g−s(z)∈Eρ for arbitrarily large values of s> 0.
By definition, z = gt(y) for some y ∈ E and some t ∈ (0,ρ]. By construction,
the backward trajectory of y intersects �. Hence, there exists x ∈ � such that
f (x)= y. This contradicts the choice of E. Thus, the claim is proved.

Given any measurable set B⊂�, let us denote A= f−1(B). Moreover, given
ε > 0, let us consider a countable partition of B into measurable subsets Bi

satisfying the following conditions: for every i there is ρi > 0 such that

1. Bi and Ai = f−1(Bi) are contained in �ρi ;
2. sup(τ | Ai)− inf(τ | Ai) < ερi.

Next, choose ti < inf(τ | Ai) ≤ sup(τ | Ai) < si such that si − ti < ερi. Fix
δi = ρi/2. Then, using the fact that f is essentially surjective,

gti(Ai
δi
)⊃ Bi

δi−(si−ti)
and gsi(Ai

δi
)⊂ Bi

δi+(si−ti)
.

Hence, using the hypothesis that ν is invariant,

ν(Ai
δi
)= ν(gti(Ai

δi
))≥ ν(Bi

δi−(si−ti)
)

ν(Ai
δi
)= ν(gsi(Ai

δi
))≤ ν(Bi

δi+(si−ti)
).

Dividing by δi we get that

μ(Ai)≥ 1− (si− ti)

δ
μ(Bi) > (1− 2ε)μ(Bi)

μ(Ai)≤ 1+ (si− ti)

δ
μ(Bi) < (1+ 2ε)μ(Bi).

Finally, adding over all the values of i, we conclude that

(1− 2ε)μ(A)≤μ(B)≤ (1+ 2ε)μ(A).

Since ε is arbitrary, this proves that the measure μ is invariant under f .

3.4.3 Exercises

3.4.1. Check that the function μ defined by (3.4.6)–(3.4.7) is a measure.
3.4.2. In the context of Section 3.4.1, suppose that M is a topological space and f : M→

M and τ : M → (0,∞) are continuous. Let gt : N → N be the suspension flow
and ν be the suspension of some Borel measure μ invariant under f .
(a) Show that if x ∈M is recurrent for the transformation f then π(x,s) ∈ N is

recurrent for the flow gt, for every s ∈R.
(b) Show that if π(x,s) ∈ N is recurrent for the flow gt, for some s ∈ R, then

x ∈M is recurrent for f .
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92 Ergodic theorems

(c) Conclude that the set of recurrent points of f has total measure for μ if and
only if the set of recurrent points of gt, t ∈ R has total measure for ν. In
particular, this happens if at least one of the measures μ or ν is finite.

3.4.3. Let gt : N → N, t ∈ R be the flow defined by a vector field X of class C1 on a
compact Riemannian manifold N. Assume that this flow preserves the volume
measure ν associated with the Riemannian metric. Let � be a hypersurface of N
transverse to X and ν� be the volume measure on� associated with the restriction
of the Riemannian metric. Define φ : �→ (0,∞) through φ(y) = |X(y) · n(y)|,
where n(·) is a unit vector field orthogonal to �. Show that the measure η= φν�
is invariant under the Poincaré map f : �→ � of the flow. Indeed, η coincides
with the flux of ν through �.

3.4.4. The following construction has a significant role in the theory of interval
exchanges. Let N̂ ⊂ R4

+ be the set of all 4-tuples (λ1,λ2,h1,h2) of positive real
numbers, endowed with the standard volume measure ν̂ = dλ1dλ2dh1dh2. Define

F : N̂ → N̂, F(λ1,λ2,h1,h2)=
{
(λ1−λ2,λ2,h1,h1+ h2) if λ1 > λ2

(λ1,λ2−λ1,h1+ h2,h2) if λ1 < λ2.

(F is not defined when λ1 = λ2.) Let N be the quotient of N̂ by the equivalence
relation z ∼ z̃⇔ Fn(z) = z̃ for some n ∈ Z and let π : N̂ → N be the canonical
projection. Define

Gt : N̂ → N̂, t ∈R, Gt(λ1,λ2,h1,h2)= (etλ1,etλ2,e−th1,e−th2).

Let â : N̂ → (0,∞) be the functional given by â(λ1,λ2,h1,h2)= λ1h1+λ2h2. For
each c> 0, let N̂c be the subset of all x∈ N̂ such that â(x)= c, let ν̂c be the volume
measure defined on N̂c by the restriction of the Riemannian metric of R4

+ and let
η̂c = ν̂c/‖grad â‖.
(a) Show that F preserves the functional â and so there exists a functional

a : N → (0,∞) such that a ◦ π = â. Show that Gt commutes with F and
preserves â. Hence, (Gt)t induces a flow (gt)t in the quotient space N that
preserves the functional a. Check that F and (Gt)t preserve ν̂ and η̂c for
every c.

(b) Check that D= {(λ1,λ2,h1,h2) :λ1+λ2≥ 1>max{λ1,λ2}
}

is a fundamental
domain for ∼. Consider the measure ν = π∗(ν̂ | D) on N. Check that the
definition does not depend on the choice of the fundamental domain and
show that ν is invariant under the flow (gt)t. Is the measure ν finite?

(c) Check that � = π({(λ1,λ2,h1,h2) : λ1 + λ2 = 1}) is a cross-section of the
flow (gt)t. Calculate the Poincaré map f : � → � and the corresponding
first-return time function τ . Calculate the flux μ of the measure ν through
�. Is the measure μ finite?

(d) For every c > 0, let Nc = π(N̂c) and ηc = π∗(η̂c ∩D). Show that Nc and ηc

are invariant under (gt)t, for every c> 0. Check that ηc(Nc) <∞ for every
c. Conclude that ν-almost every point is recurrent for the flow (gt)t.
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