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Ergodicity

The theorems presented in the previous chapter fully establish the first part of
Boltzmann’s ergodic hypothesis: for any measurable set E, the mean sojourn
time τ(E,x) is well defined for almost every point x. The second part of the
ergodic hypothesis, that is, the claim that τ(E,x) should coincide with the
measure of E for almost every x, is a statement of a different nature and is
the subject of the present chapter.

In this chapter we always take μ to be a probability measure invariant under
some measurable transformation f : M →M. We say that the system (f ,μ) is
ergodic if, given any measurable set E, we have τ(E,x) = μ(E) for μ-almost
every point x ∈ M. We are going to see that this is equivalent to saying that
the system is dynamically indivisible, in the sense that every invariant set
has either full measure or zero measure. Other equivalent formulations of the
ergodicity property are discussed in Section 4.1. One of them is that time
averages coincide with space averages: for every integrable function ϕ,

lim
n

1

n

n−1∑
j=0

ϕ(f j(x))=
∫
ϕ dμ at μ-almost every point.

In Section 4.2 we illustrate, by means of examples, several techniques to
prove or disprove ergodicity. Most of them will be utilized again later in
more complex situations. Next, we take the following viewpoint: we fix the
dynamical systems and analyze the properties of ergodic measures within the
space of all invariant measures of that dynamical system. As we are going to
see in Section 4.3, the ergodic measures are precisely the extremal elements of
that space.

In Section 4.4 we give a brief outline of the historical development of
ergodic theory in the context of conservative systems. The main highlights are
KAM theory, thus denominated in homage to Andrey Kolmogorov, Vladimir
Arnold and Jürgen Moser, and hyperbolic dynamics, which was initiated by
Steven Smale, Dmitry Anosov, Yakov Sinai and their collaborators. The two
theories deal with distinct types of dynamical behavior, elliptic and hyperbolic,
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94 Ergodicity

and they reach opposing conclusions: roughly speaking, hyperbolic systems
are ergodic whereas elliptic systems are not.

4.1 Ergodic systems

We use the expressions “the measure μ is ergodic with respect to the
transformation f ” or “the transformation f is ergodic with respect to the
measure μ” to mean the same thing, namely, that the system (f ,μ) is ergodic.
Recall that, by definition, this means that the mean sojourn time in any
measurable set of μ-almost every point coincides with the measure of that set.
This condition can be rephrased in several equivalent ways, as we are going to
see next.

4.1.1 Invariant sets and functions

A measurable function ϕ : M→R is said to be invariant if ϕ=ϕ◦f atμ-almost
every point. In other words, ϕ is invariant if it is constant on every trajectory
of f outside a zero measure subset. Moreover, we say that a measurable set
B ⊂ M is invariant if its characteristic function XB is an invariant function.
Equivalently, B is invariant if it differs from its pre-image f−1(B) by a zero
measure set:

μ(B
f−1(B))= 0.

Exercise 1.1.4 collects some equivalent formulations of this property. It is
easy to check that the family of all invariant sets is a σ -algebra, that is, it
is closed under countable unions and intersections and under passage to the
complement.

Example 4.1.1. Let f : [0,1]→ [0,1] be the decimal expansion transformation
introduced in Section 1.3.1, and μ be the Lebesgue measure. Clearly, the set
A=Q∩ [0,1] of rational numbers is invariant. Other interesting examples are
the sets of points x= 0.a1a2 . . . in [0,1] with prescribed proportions of digits ai

with each value k ∈ {0, . . . ,9}. More precisely, given any vector p= (p0, . . . ,p9)

such that pi ≥ 0 for every i and
∑

i pi = 1, define

Ap =
{

x : lim
n

1

n
#{1≤ i≤ n : ai = k} = pk for k= 0, . . . ,9

}
.

Observe that if x = 0 · a1a2 . . . then every point y ∈ f−1(x) may be written as
y = 0 · ba1a2 . . . with b ∈ {0, . . . ,9}. It is clear that the extra digit b does not
affect the proportion of digits with any of the values 0, . . . , 9 in the decimal
expansion. Thus, y ∈ Ap if and only if x ∈ Ap. This implies that Ap is indeed
invariant under f .
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4.1 Ergodic systems 95

Example 4.1.2. Let ϕ : [0,1] → R be a function in L1(μ). According to the
ergodic theorem of Birkhoff (Theorem 3.2.3), the time average ϕ̃ is an invariant
function. So, every level set

Bc = {x ∈ [0,1]; ϕ̃(x)= c}
is an invariant set. Observe also that every invariant function is of this form:
it is clear that if ϕ is invariant then it coincides with its time average ϕ̃ at
μ-almost every point.

The next proposition collects a few equivalent ways to define ergodicity. We
say that a function ϕ is constant at μ-almost every point if there exists c ∈ R

such that ϕ(x)= c for μ-almost every x ∈M.

Proposition 4.1.3. Let μ be an invariant probability measure of a measurable
transformation f : M→M. The following conditions are all equivalent:

(i) For every measurable set B ⊂ M one has τ(B,x) = μ(B) for μ-almost
every point.

(ii) For every measurable set B ⊂ M the function τ(B, ·) is constant at
μ-almost every point.

(iii) For every integrable function ϕ : M → R one has ϕ̃(x) = ∫ ϕ dμ for
μ-almost every point.

(iv) For every integrable function ϕ : M → R the time average ϕ̃ : M → R is
constant at μ-almost every point.

(v) For every invariant integrable functionψ : M→R one hasψ(x)= ∫ ψ dμ
for μ-almost every point.

(vi) Every invariant integrable function ψ : M → R is constant at μ-almost
every point.

(vii) For every invariant subset A we have either μ(A)= 0 or μ(A)= 1.

Proof. It is immediate that (i) implies (ii), that (iii) implies (iv) and that
(v) implies (vi). It is also clear that (v) implies (iii) and (vi) implies (iv),
because the time average is an invariant function (recall Proposition 3.2.4).
Analogously, (iii) implies (i) and (iv) implies (ii), because the mean sojourn
time is a time average (of the characteristic function of B). We are left to prove
the following implications:

(ii) implies (vii): Let A be an invariant set. Then τ(A,x) = 1 for μ-almost
every x ∈ A and τ(A,x)= 0 for μ-almost every x ∈ Ac. Since τ(A, ·) is assumed
to be constant at μ-almost every point, it follows that μ(A)= 0 or μ(A)= 1.

(vii) implies (v): Let ψ be an invariant integrable function. Then every
level set

Bc = {x ∈M :ψ(x)≤ c}
is an invariant set. So, the hypothesis implies that μ(Bc) ∈ {0,1} for every
c ∈ R. Since c �→ μ(Bc) is non-decreasing, it follows that there exists c̄ ∈ R
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96 Ergodicity

such that μ(Bc)= 0 for every c< c̄ and μ(Bc)= 1 for every c≥ c̄. Then ψ = c̄
at μ-almost every point. Hence,

∫
ψ dμ = c̄ and so ψ = ∫ ψ dμ at μ-almost

every point.

4.1.2 Spectral characterization

The next proposition characterizes the ergodicity property in terms of the
Koopman operator Uf (ϕ)= ϕ ◦ f :

Proposition 4.1.4. Let μ be an invariant probability measure of a measurable
transformation f : M→M. The following conditions are equivalent:

(i) (f ,μ) is ergodic.
(ii) For any pair of measurable sets A and B one has

lim
n

1

n

n−1∑
j=0

μ
(
f−j(A)∩B

)=μ(A)μ(B). (4.1.1)

(iii) For any functions ϕ ∈ Lp(μ) and ψ ∈ Lq(μ), with 1/p+1/q= 1, one has

lim
n

1

n

n−1∑
j=0

∫
(Uj

fϕ)ψ dμ=
∫
ϕ dμ

∫
ψ dμ. (4.1.2)

Proof. It is clear that (iii) implies (ii): just take ϕ = XA and ψ = XB. To show
that (ii) implies (i), let A be an invariant set. Taking A = B in hypothesis (ii),
we get that

μ(A)= lim
n

1

n

n−1∑
j=0

μ
(
f−j(A)∩A

)=μ(A)2.

This implies that μ(A)= 0 or μ(A)= 1.
Now it suffices to prove that (i) implies (iii). Consider any ϕ ∈ Lp(μ) and

ψ ∈ Lq(μ). By ergodicity and the ergodic theorem of Birkhoff (Theorem 3.2.3)
we have that

1

n

n−1∑
j=0

Uj
fϕ→

∫
ϕ dμ (4.1.3)

at μ-almost every point. Initially, assume that |ϕ| ≤ k for some k≥ 1. Then, for
every n ∈N, ∣∣∣∣(1

n

n−1∑
j=0

Uj
fϕ

)
ψ

∣∣∣∣≤ k|ψ |.

So, since k|ψ | ∈ L1(μ), we may use the dominated convergence theorem
(Theorem A.2.11) to conclude that∫ ⎛⎝1

n

n−1∑
j=0

Uj
fϕ

⎞⎠ψ dμ→
∫
ϕ dμ

∫
ψ dμ.
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4.1 Ergodic systems 97

This proves the claim (4.1.2) when ϕ is bounded. All that is left to do is remove
this restriction. Given any ϕ ∈ Lp(μ) and k≥ 1, define

ϕk(x)=
⎧⎨⎩

k if ϕ(x) > k
ϕ(x) if ϕ(x) ∈ [−k,k]
−k if ϕ(x) <−k.

Fix ε > 0. By the previous argument, for every k≥ 1 one has∣∣∣∣∫ (1

n

n−1∑
j=0

Uj
fϕk

)
ψ dμ−

∫
ϕk dμ

∫
ψ dμ

∣∣∣∣< ε (4.1.4)

if n is large enough (depending on k). Next, observe that ‖ϕk−ϕ‖p → 0 when
k →∞: this is clear when p =∞, because ϕk = ϕ for every k > ‖ϕ‖∞; for
p<∞ use the monotone convergence theorem (Theorem A.2.9). Hence, using
the Hölder inequality (Theorem A.5.5), we have that∣∣∣∣∫ (ϕk−ϕ)dμ

∫
ψ dμ

∣∣∣∣≤ ‖ϕk−ϕ‖p

∣∣∫ ψ dμ
∣∣< ε, (4.1.5)

for every k sufficiently large. Similarly,∣∣∣∣∫ 1

n

n−1∑
j=0

Uj
f (ϕk−ϕ)ψ dμ

∣∣∣∣≤ 1

n

n−1∑
j=0

∣∣∣∣∫ Uj
f (ϕk−ϕ)ψ dμ

∣∣∣∣
≤ 1

n

n−1∑
j=0

‖Uj
f (ϕk−ϕ)‖p ‖ψ‖q dμ

= ‖ϕk−ϕ‖p ‖ψ‖q < ε,

(4.1.6)

for every n and every k sufficiently large, independent of n. Fix k so that (4.1.5)
and (4.1.6) hold and then take n sufficiently large such that (4.1.4) also holds.
Summing the three relations (4.1.4) to (4.1.6), we get that∣∣∣∣∫ (1

n

n−1∑
j=0

Uj
fϕ

)
ψ dμ−

∫
ϕ dμ

∫
ψ dμ

∣∣∣∣< 3ε

for every n sufficiently large. This gives condition (iii).

In the case p= q= 2, the condition (4.1.2) may be expressed in terms of the
inner product · in the space L2(μ). In this way we get that (f ,μ) is ergodic if
and only if:

lim
n

1

n

n−1∑
j=0

[
(Un

f ϕ)− (ϕ · 1)
] ·ψ = 0 for every ϕ,ψ ∈ L2(μ). (4.1.7)
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98 Ergodicity

We will use a few times the following elementary facts: given any
measurable sets A and B,

|μ(A)−μ(B)| = |μ(A \B)−μ(B \A)|
≤ μ(A \B)+μ(B \A)=μ(A
B),

(4.1.8)

and given any sets A1,A2,B1,B2,(
A1 ∩A2

)


(
B1 ∩B2

)⊂ (A1
B1)∪ (A2
B2). (4.1.9)

Corollary 4.1.5. Assume that the condition (4.1.1) in Proposition 4.1.4 holds
for every A and B in some algebra A that generates the σ -algebra of
measurable sets. Then (f ,μ) is ergodic.

Proof. Let A and B be arbitrary measurable sets. By the approximation
theorem (Theorem A.1.19), given any ε > 0 there are A0 and B0 in A such
that μ(A
A0) < ε and μ(B
B0) < ε. Observe that∣∣μ(f−j(A)∩B

)−μ(f−j(A0)∩B0)
∣∣≤μ(f−j(A)
f−j(A0))+μ(B
B0)

=μ(A
A0)+μ(B
B0) < 2ε

(the equality uses the fact that μ is an invariant measure) for every j and

|μ(A)μ(B)−μ(A0)μ(B0)| ≤μ(A
A0)+μ(B
B0) < 2ε.

Then, the hypothesis

lim
n

1

n

n−1∑
j=0

μ
(
f−j(A0)∩B0

)=μ(A0)μ(B0)

implies that

−4ε ≤ liminf
n

1

n

n−1∑
j=0

μ
(
f−j(A)∩B

)−μ(A)μ(B)
≤ limsup

n

1

n

n−1∑
j=0

μ
(
f−j(A)∩B

)−μ(A)μ(B)≤ 4ε.

Since ε is arbitrary, this proves that the condition (4.1.1) holds for all pairs of
measurable sets. According to Proposition 4.1.4, it follows that the system is
ergodic.

In the same spirit, it suffices to check part (iii) of Proposition 4.1.4 on dense
subsets:

Corollary 4.1.6. Assume that the condition (4.1.2) in Proposition 4.1.4 for
every ϕ and ψ in dense subsets of Lp(μ) and Lq(μ), respectively. Then (f ,μ)
is ergodic.

We leave the proof of this fact to the reader (see Exercise 4.1.3).
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4.1 Ergodic systems 99

4.1.3 Exercises

4.1.1. Let (M,A) be a measurable space and f : M→M be a measurable transformation.
Prove that if p ∈M is a periodic point of period k, then the measure μp = 1

k (δp+
δf (p)+·· ·+ δf k−1(p)) is ergodic.

4.1.2. Let μ be an invariant probability measure, not necessarily ergodic, of a
measurable transformation f : M →M. Show that the following limit exists for
any pair of measurable sets A and B:

lim
n

1

n

n−1∑
i=0

μ
(
f−i(A)∩B

)
.

4.1.3. Show that an invariant probability measure μ is ergodic for a transformation
f : M→M if and only if any one of the following conditions holds:
(a) μ(

⋃
n≥0 f−n(A))= 1 for every measurable set A with μ(A) > 0;

(b) given any measurable sets A,B with μ(A)μ(B) > 0, there is n≥ 1 such that
μ
(
f−n(A)∩B

)
> 0;

(c) the convergence in condition (iii) of Proposition 4.1.4 holds for some choice
of p,q and some dense subset of functions ϕ ∈ Lp(μ) and ψ ∈ Lq(μ);

(d) there is p ∈ [1,∞] such that every invariant function ϕ ∈ Lp(μ) is constant
at μ-almost every point;

(e) every integrable function ϕ satisfying ϕ ◦ f ≥ ϕ at μ-almost every point (or
ϕ ◦ f ≤ ϕ at μ-almost every point) is constant at μ-almost every point.

4.1.4. Take M to be a metric space. Prove that an invariant probability measure μ
is ergodic for f : M → M if and only if the time average of every bounded
uniformly continuous function ϕ : M → R is constant at μ-almost every
point.

4.1.5. Take M to be a metric space. We call the basin of an invariant probability measure
μ the set B(μ) of all points x ∈M such that

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))=
∫
ϕ dμ

for every bounded continuous function ϕ : M → R. Check that the basin is an
invariant set. Moreover, if μ is ergodic then B(μ) has full μ-measure.

4.1.6. Show that ifμ and η are distinct ergodic probability measures of a transformation
f : M→M, then η and μ are mutually singular.

4.1.7. Let μ be a probability measure invariant under some transformation f : M→M.
Show that the product measure μ2 =μ×μ is invariant under the transformation
f2 : M ×M → M ×M defined by f2(x,y) = (f (x), f (y)). Moreover, if (f2,μ2) is
ergodic then (f ,μ) is ergodic. Is the converse true?

4.1.8. Let μ be a probability measure invariant under some transformation f : M →
M. Assume that (f n,μ) is ergodic for every n ≥ 1. Show that if ϕ is a
non-constant eigenfunction of the Koopman operator Uf then the eigenvalue
is not a root of unity and any set restricted to which ϕ is constant has zero
measure.
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100 Ergodicity

4.2 Examples

In this section we use a number of examples to illustrate different methods for
checking whether a system is ergodic or not.

4.2.1 Rotations on tori

Initially, let us consider the case of a rotation Rθ : S1 → S1 on the circle S1 =
R/Z. As observed in Section 1.3.3, the Lebesgue measure m is invariant under
Rθ . We want to analyze the ergodic behavior of the system (Rθ ,m) for different
values of θ .

If θ is rational, say θ = p/q in irreducible form, Rq
θ (x)= x for every x ∈ S1.

Then, given any segment I ⊂ S1 with length less than 1/q, the set

A= I ∪Rθ (I)∪ ·· · ∪Rq−1
θ (I)

is invariant under Rθ and its Lebesgue measure satisfies 0<m(A) < 1. Thus, if
θ is rational then the Lebesgue measure is not ergodic. The converse is much
more interesting:

Proposition 4.2.1. If θ is irrational then Rθ is ergodic relative to the Lebesgue
measure.

We are going to mention two different proofs of this fact. The first one,
which we detail below, uses some simple facts from Fourier analysis. The
second one, which we leave as an exercise (Exercise 4.2.6), is based on a
density point argument similar to the one we will use in Section 4.2.2 to prove
that the decimal expansion map is ergodic relative to the Lebesgue measure.

We denote by L2(m) the Hilbert space of measurable functions ψ whose
square is integrable, that is, such that:∫

|ψ |2 dm<∞.

It is convenient to consider functions with values in C, and we will do so. We
use the well-known fact that the family of functions

φk : S1 →C, x �→ e2π ikx, k ∈ Z

is a Hilbert basis of this space: given any ϕ ∈ L2(m) there exists a unique
sequence (ak)k∈Z of complex numbers such that

ϕ(x)=
∑
k∈Z

ake2π ikx for almost every x ∈ S1. (4.2.1)

This is called the Fourier series expansion of ϕ ∈ L2(m). Then

ϕ
(
Rθ (x)

)=∑
k∈Z

ake2π ikθe2π ikx. (4.2.2)
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4.2 Examples 101

Assume that ϕ is invariant. Then (4.2.1) and (4.2.2) coincide. By uniqueness
of the coefficients in the Fourier series expansion, this happens if and only if

ake2π ikθ = ak for every k ∈ Z.

The hypothesis that θ is irrational means that e2π ikθ �= 1 for every k �= 0. Hence,
the relation that we just obtained implies that ak = 0 for every k �= 0. In other
words, ϕ(z) = a0 for m-almost every z ∈ S1. This proves that every invariant
L2 function is constant m-almost everywhere. In particular, the characteristic
function ϕ = XA of any invariant set A ⊂ S1 is constant at m-almost every
point. This is the same as saying that A has either zero measure or full measure.
Hence, by Proposition 4.1.3, the measure m is ergodic.

These observations extend in a natural way to the rotation on the d-torus Td,
for any d ≥ 1:

Proposition 4.2.2. If θ = (θ1, . . . ,θd) is rationally independent then the
rotation Rθ : Td → Td is ergodic relative to the Lebesgue measure.

This may be proved by the same argument as in the case d = 1, using the
fact (see Exercise 4.2.1) that the family of functions

φk1,...,kd : Td →C, (x1, . . . ,xd) �→ e2π i(k1x1+···+kdxd), (k1, . . . ,kd) ∈ Zd

is a Hilbert basis of the space L2(m).

Corollary 4.2.3. If θ = (θ1, . . . ,θd) is rationally independent then the rotation
Rθ : Td → Td is minimal, that is, every orbit O(x) = {Rn

θ (x) : n ∈ N} is dense
in Td.

Proof. Let us consider in Td the flat distance, defined by:

d([ξ ], [η])= inf{d(ξ ′,η′) : ξ ′,η′ ∈Rd,ξ ′ ∼ ξ ,η′ ∼ η}.
Observe that this distance is preserved by every rotation. Let {Uk : k ∈N} be a
countable basis of open sets of Td and m be the Lebesgue measure on Td. By
ergodicity, there is W ⊂Td, with total Lebesgue measure, such that τ(Uk,x)=
m(Uk) > 0 for every k and every x ∈W. In particular, the orbit of x is dense in
Td for every x∈W. Now consider an arbitrary point x∈M and consider any y∈
W. Then, for every δ > 0 there exists k≥ 1 such that d(f k(y),x) < δ. It follows
that d(f n+k(y), f n(x)) < δ for every n ≥ 1. Since the orbit of y is dense, this
implies that the orbit of x is δ-dense, that is, it intersects the δ-neighborhood of
every point. Since δ is arbitrary, this implies that the orbit of x is dense in the
ambient torus.

In fact, the irrational rotations on the circle or, more generally, on any torus
have a much stronger property than ergodicity: they are uniquely ergodic,
meaning that they admit a unique invariant probability measure (which is
the Lebesgue measure, of course). Uniquely ergodic systems are studied in
Chapter 6.
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102 Ergodicity

4.2.2 Decimal expansion

Consider the transformation f : [0,1] → [0,1], f (x) = 10x− [10x] introduced
in Section 1.3.1. We have seen that f preserves the Lebesgue measure m.

Proposition 4.2.4. The transformation f is ergodic relative to the Lebesgue
measure m.

Proof. By Proposition 4.1.3, it suffices to prove that every invariant set A
has total measure. The main ingredient is the derivation theorem (Theo-
rem A.2.15), according to which almost every point of A is a density point of A.
More precisely (see also Exercise A.2.9), m-almost every point a ∈ A satisfies

lim
ε→0

inf

{
m
(
I ∩A

)
m(I)

: I an interval such that a ∈ I ⊂ B(a,ε)

}
= 1. (4.2.3)

Let us fix a density point a ∈ A. Since the set of points of the form m/10k,
k ∈ N, 0 ≤ m ≤ 10k has zero measure, it is no restriction to suppose that a is
not of that form. Let us consider the family of intervals

I(k,m)=
(

m− 1

10k
,

m

10k

)
, k ∈N, m= 1, . . . ,10k.

It is clear that for each k ∈ N there exists a unique m = mk such that I(k,mk)

contains the point a. Denote Ik = I(k,mk). The property (4.2.3) implies that

m
(
Ik ∩A

)
m(Ik)

→ 1 when k→∞.

Observe also that each f k is an affine bijection from Ik to the interval (0,1). This
has the following immediate consequence, which is crucial for our argument:

Lemma 4.2.5 (Distortion). For every k ∈N, one has

m(f k(E1))

m(f k(E2))
= m(E1)

m(E2)
(4.2.4)

for any measurable subsets E1 and E2 of Ik.

Applying this fact to E1 = Ik ∩A and E2 = Ik we find that

m
(
f k
(
Ik ∩A

))
m
(
(0,1)

) = m
(
Ik ∩A

)
m(Ik)

.

Clearly, m
(
(0,1)

) = 1. Moreover, as we take A to be invariant, f k(Ik ∩ A) is
contained in A. In this way we get that

m(A)≥ m
(
Ik ∩A

)
m(Ik)

for every k.

Since the sequence on the right-hand side converges to 1 when k →∞, it
follows that m(A)= 1, as we wanted to prove.
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4.2 Examples 103

The proof of Lemma 4.2.5 relies on the fact that the transformation f is
affine on each interval

(
(m− 1)/10,m/10

)
; that may give the impression that

the method of proof that we just presented is restricted to a very special class
of examples. In fact, this is not so—much to the contrary.

The reason is that there are many situations where one can obtain a slightly
weaker version of the statement of Lemma 4.2.5 that is, nevertheless, still
sufficient to conclude the proof of ergodicity. In a few words, instead of the
claim that the two sides of (4.2.4) are equal, one can often show that the
quotient between the two terms is bounded by some uniform constant. That
is called the bounded distortion property. As an illustration of these ideas, in
Section 4.2.4 we prove that the Gauss transformation is ergodic.

Next, we describe an application of Proposition 4.2.4 in the context of
number theory. We say that a number x ∈ R is 10-normal if every block of
digits (b1, . . . ,bl), l≥ 1 occurs with frequency 10−l in the decimal expansion of
x. Rational numbers are never 10-normal, of course, and it is also easy to give
irrational examples, such as x = 0.101001000100001000001 · · · . Moreover, it
is not difficult to construct 10-normal numbers, for example, the Champer-
nowne constant x = 0.12345678910111213141516171819202122 · · · , which
is obtained by concatenation of the successive natural numbers.

However, it is usually difficult to check whether a given number is 10-normal
or not. For example, that remains unknown for the numbers π , e and even

√
2.

On the other hand, using the previous proposition one can easily prove that
almost every number is 10-normal:

Proposition 4.2.6. The set of 10-normal numbers x ∈ R has full Lebesgue
measure in the real line.

Proof. Since the fact of being 10-normal or not is independent of the integer
part of the number, we only need to show that almost every x ∈ [0,1] is
10-normal. Consider f : [0,1]→ [0,1] defined by f (x)= 10x−[10x]. For each
block (b1, . . . ,bl) ∈ {0, . . . ,9}l, consider the interval

Ib1,...,bl =
[ κ

10l
,
κ + 1

10l

)
with κ =

l∑
i=1

bi10l−i.

Recall that if x= 0.a0a1 · · ·akak+1 · · · then f k(x)= 0.akak+1 · · · for every k≥ 1.
Hence, f k(x)∈ Ib1,...,bl if and only if (ak, . . . ,ak+l−1)= (b1, . . . ,bl). So, the mean
sojourn time τ(Ib1,...,bl ,x) is equal to the frequency of the block (b1, . . . ,bl) in
the decimal expansion of x. Using the Birkhoff ergodic theorem and the fact
that the transformation f is ergodic with respect to the Lebesgue measure m,
we conclude that for every (b1, . . . ,bl) there exists a full Lebesgue measure
subset B(b1, . . . ,bl) of the interval [0,1] such that

τ(Ib1,...,bl ,x)=m(Ib1,...,bl)=
1

10l
for every x ∈ B(b1, . . . ,bl).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.005
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.005
https://www.cambridge.org/core


104 Ergodicity

Let B be the intersection of B(b1, . . . ,bl) over all values of b1, . . . , bl in {0, . . . ,9}
and every l≥ 1. Then m(B)= 1 and every x ∈ B is 10-normal.

More generally, for any integer d ≥ 2, we say that x ∈ R is d-normal if
every block (b1, . . . ,bl) ∈ {0, . . . ,d − 1}l, l ≥ 1 occurs with frequency d−l in
the expansion of x in base d. Finally, we say that x is a normal number if it is
d-normal for every d ≥ 2. Everything that was said before for d = 10 extends
immediately to general d. In particular, the set of d-normal numbers has full
Lebesgue measure for every d ≥ 2. Taking the intersection over all the values
of d, we conclude that Lebesgue-almost every real number is normal (Borel
normal theorem).

4.2.3 Bernoulli shifts

Let (X,C,ν) be a probability space. In this section we consider the product
space � = XN, endowed with the product σ -algebra B = CN and the product
measure μ= νN. As explained in Appendix A.2.3, this means that: � is the set
of all sequences (xn)n∈N with xn ∈ X for every n; B is the σ -algebra generated
by the measurable cylinders

[m;Am, . . . ,An] = {(xi)i∈N : xi ∈ Ai for m≤ i≤ n}
with m ≤ n and Ai ∈ C for each i; and μ is the probability measure on �
characterized by

μ([m;Am, . . . ,An])=
n∏

i=m

ν(Ai). (4.2.5)

We may think of the elements of � as representing the results of a sequence
of random experiments with values in X and all subject to the same probability
distribution ν: given any measurable set A ⊂ X, the probability of xi ∈ A
is equal to ν(A) for every i. Moreover, in this model the results of the
successive experiments are independent: indeed, the relation (4.2.5) means that
the probability of xi ∈ Ai for every m≤ i≤ n is the product of the probabilities
of the individual events xi ∈ Ai.

In this section we introduce a dynamical system σ :�→� on the space �,
called the shift map, which preserves the measure μ. The pair (σ ,μ) is called
a Bernoulli shift. The main result is that every Bernoulli shift is an ergodic
system.

It is worth pointing out that N may be replaced with Z throughout the
construction. That is, we may take � to be the space of two-sided sequences
(. . . ,x−n, . . . ,x0, . . . ,xn, . . . ). Up to minor adjustments, which we leave to the
reader, all that follows remains valid in that case. In addition, in the two-sided
case the shift map is invertible.

The shift map σ :�→� is defined by

σ
(
(xn)n)= (xn+1)n.
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4.2 Examples 105

That is, by definition, σ sends each sequence (x0,x1, . . . ,xn, . . . ) to the sequence
(x1, . . . ,xn, . . . ). Observe that the pre-image of any cylinder is still a cylinder:

σ−1([m;Am, . . . ,An])= [m+ 1;Am, . . . ,An]. (4.2.6)

It follows that the map σ is measurable with respect to the σ -algebra B.
Moreover,

μ
(
σ−1([m;Am, . . . ,An])

)= ν(Am) · · ·ν(An)=μ
([m;Am, . . . ,An]

)
,

and (using Lemma 1.3.1) that ensures that the measure μ is invariant under σ .

Proposition 4.2.7. Every Bernoulli shift (σ ,μ) is ergodic.

Proof. Let A be an invariant measurable set. We want to prove that μ(A)= 0
or μ(A)= 1. We use the following fact:

Lemma 4.2.8. If B and C are finite unions of pairwise disjoint cylinders, then

μ
(
B∩σ−j(C)

)=μ(B)μ(σ−j(C))=μ(B)μ(C),
for every j sufficiently large.

Proof. First, suppose that B and C are both cylinders: B = [k;Bk, . . . ,Bl] and
C= [m;Cm, . . . ,Cn]. Then,

σ−j(C)= [m+ j;Cm, . . . ,Cn] for each j.

Consider any j large enough that m+ j> l. Then,

B∩σ−j(C)= {(xn)n : xk ∈ Bk, . . . ,xl ∈ Bl,xm+j ∈ Cm, . . . ,xn+j ∈ Cn}
= [k;Bk, . . . ,Bl,X, . . . ,X,Cm, . . . ,Cn],

where X appears exactly m+ j− l−1 times. By the definition (4.2.5), this gives
that

μ
(
B∩σ−j(C)

)= l∏
i=k

ν(Bi)1
m+j−l−1

n∏
i=m

ν(Ci)=μ(B)μ(C).

This proves the conclusion of the lemma when both sets are cylinders. The
general case follows easily, using the fact that μ is finitely additive.

Proceeding with the proof of Proposition 4.2.7, suppose for a while that
the invariant set A belongs to the algebra B0 whose elements are the finite
unions of pairwise disjoint cylinders. Then, on the one hand, we may apply
the previous lemma with B= C = A to conclude that μ(A∩ σ−j(A))= μ(A)2
for every large j. On the other hand, since A is invariant, the left-hand side of
this identity is equal to μ(A) for every j. It follows that μ(A)= μ(A)2, which
means that either μ(A)= 0 or μ(A)= 1.
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106 Ergodicity

Now let A be an arbitrary invariant set. By the approximation theorem
(Theorem A.1.19), given any ε > 0 there exists B ∈ B0 such that μ(A
B) < ε.
By Lemma 4.2.8 we may fix j such that

μ
(
B∩σ−j(B)

)=μ(B)μ(σ−j(B))=μ(B)2. (4.2.7)

Using (4.1.8) and (4.1.9) and the fact that μ is invariant, we get that∣∣μ(A∩σ−j(A)
)−μ(B∩σ−j(B)

)∣∣≤ 2μ(A
B) < 2ε (4.2.8)

(a similar fact was deduced during the proof of Corollary 4.1.5). Moreover,∣∣μ(A)2−μ(B)2∣∣≤ 2
∣∣μ(A)−μ(B)∣∣< 2ε. (4.2.9)

Putting the relations (4.2.7), (4.2.8) and (4.2.9) together, we conclude that
|μ(A)−μ(A)2|< 4ε. Since ε is arbitrary, we deduce that μ(A)= μ(A)2 and,
hence, either μ(A)= 0 or μ(A)= 1.

When X is a topological space and C is the corresponding Borel σ -algebra,
we may endow � with the product topology which, by definition, is the
topology generated by the cylinders [m;Am, . . . ,An] where Am, . . . , An are
open subsets of X. The property (4.2.6) implies that the shift map σ : �→
� is continuous with respect to this topology. The theorem of Tychonoff
(see [Dug66]) asserts that � is compact if X is compact.

A relevant special case is when X is a finite set endowed with the discrete
topology, that is, such that every subset of X is open. A map f : M →M in a
topological space M is said to be transitive if there exists some x ∈M whose
trajectory f n(x), n≥ 1 is dense in M. We leave it to the reader (Exercise 4.2.2)
to prove the following result:

Proposition 4.2.9. Let X be a finite set and � be either XN or XZ. Then the
shift map σ :�→� is transitive. Moreover, the set of all periodic points of σ
is dense in �.

The following informal statement, which is one of many versions of the
monkey paradox, illustrates the meaning of the ergodicity of the Bernoulli
measure μ: A monkey hitting keys at random on a typewriter keyboard for
an infinite amount of time will almost surely type the complete text of “Os
Lusı́adas”.1

To “prove” this statement we need to formulate it a bit more precisely. The
possible texts typed by the monkey correspond to the sequences (xn)n∈N in
the (finite) set X of all the characters on the keyboard: letters, digits, space,
punctuation signs, and so on. Denote by σ :�→� the shift map in the space
� = XN. It is assumed that each character ∗ ∈ X has a positive probability p∗

1 Monumental epic poem by the 16th-century Portuguese poet Luis de Camões.
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4.2 Examples 107

of being hit at each time. This corresponds to the probability measure

ν =
∑
∗∈X

p∗δ∗

on the set X. Furthermore, it is assumed that the character hit at each time
is independent of all the previous ones. This means that the distribution of the
sequences of characters (xn)n is governed by the Bernoulli probability measure
μ= νN.

The text of “Os Lusı́adas” corresponds to a certain finite (albeit very long)
sequence of characters (l0, . . . , lN). Consider the cylinder L = [0; l0, . . . , lN].
Then

μ(L)=
N∏

j=1

plj

is positive (although very small). A sequence (xn)n contains a complete copy
of “Os Lusı́adas” precisely if σ k

(
(xn)n

) ∈ L for some k ≥ 0. By the Birkhoff
ergodic theorem and the fact that (σ ,μ) is ergodic, the set K of values of k for
which that happens satisfies

lim
n

1

n
#
(
K ∩ [0,n− 1])=μ(L) > 0, (4.2.10)

with full probability. In particular, for almost all sequences (xn)n the set K
is infinite, which means that (xn)n contains infinitely many copies of “Os
Lusı́adas”. Actually, (4.2.10) yields an even stronger conclusion: still with full
probability, the copies of our poem correspond to a positive (although small)
fraction of all the typed characters. In other words, on average, the monkey
types a new copy of “Os Lusı́adas” every so many (a great many) years.

4.2.4 Gauss map

As we have seen in Section 1.3.2, the gauss map G(x) = 1/x− [1/x] has an
invariant probability measure μ equivalent to the Lebesgue measure, namely:

μ(E)= 1

log2

∫
E

dx

1+ x
. (4.2.11)

Proposition 4.2.10. The system (G,μ) is ergodic.

This can be proved using a more elaborate version of the method introduced
in Section 4.2.2. We are going to outline the arguments in the proof, referring to
Section 4.2.2 for those parts that are common to both situations and addressing
in more detail the main new difficulty.

Let A be an invariant set with positive measure. We want to show that
μ(A)= 1. On the one hand, it remains true that for almost every point a∈ [0,1]
there exists a sequence of intervals Ik containing a and such that Gk maps Ik
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108 Ergodicity

bijectively and differentiably onto (0,1). Indeed, such intervals can be found
as follows. First, consider

I(1,m)=
(

1

m+ 1
,

1

m

)
,

for each m≥ 1. Next, define, by recurrence,

I(k,m1, . . . ,mk)= I(1,m1)∩G−k+1
(
I(k− 1,m2, . . . ,mk)

)
for m1, . . . ,mk ≥ 1. Then, it suffices to take as Ik the interval I(k,m1, . . . ,mk)

that contains a. This is well defined for every k ≥ 1 and every point a in the
complement of a countable set, namely, the set

⋃∞
k=0 G−k({0,1}).

On the other hand, although the restriction of Gk to each Ik is a differentiable
bijection, it is not affine. For that reason, the analogue of (4.2.4) cannot hold in
the present case. This difficulty is by passed by the result that follows, which
is an example of distortion control: it is important to note that the constant K
is independent of Ik, E1, E2 and, most of all, k.

Proposition 4.2.11 (Bounded distortion). There exists K > 1 such that, given
any k ≥ 1 and any interval Ik such that Gk restricted to Ik is a differentiable
bijection,

μ(Gk(E1))

μ(Gk(E2))
≤ K

μ(E1)

μ(E2)

for any measurable subsets E1 and E2 of the interval Ik.

For the proof of this proposition we need the following two auxiliary results:

Lemma 4.2.12. For every x ∈ (0,1] we have

|G′(x)| ≥ 1 and |(G2)′(x)| ≥ 2 and |G′′(x)/G′(x)2| ≤ 2.

Proof. Recall that G(x) = 1/x − m on each interval (1/(m + 1),1/m].
Therefore,

G′(x)=− 1

x2
and G′′(x)= 2

x3
.

The first identity implies that |G′(x)| ≥ 1 for every x ∈ (0,1]. Moreover,
|G′(x)| ≥ 2 whenever x ≤ 2/3. On the other hand, x ≥ 2/3 implies that
G(x) = 1/x − 1 < 2/3 and, consequently, G′(G(x)) ≥ 2. Combining these
observations we find that |(G2)′(x)|= |G′(x)| |G′(G(x))|≥ 2 for every x∈ (0,1].
Finally, |G′′(x)/G′(x)2| = 2|x| ≤ 2 also for every x ∈ (0,1].

Lemma 4.2.13. There exists C> 1 such that, given any k≥ 1 and any interval
Ik such that Gk restricted to Ik is a differentiable bijection,

|(Gk)′(x)|
|(Gk)′(y)| ≤ C for any x and y in Ik.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.005
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.005
https://www.cambridge.org/core


4.2 Examples 109

Proof. Let g be a local inverse of G, that is, a differentiable function defined on
some interval and such that G(g(z))= z for every z in the domain of definition.
Note that [

log |G′ ◦ g(z)|]′ = G′′(g(z))g′(z)
G′(g(z))

= G′′(g(z))
G′(g(z))2

.

Therefore, the last estimate in Lemma 4.2.12 implies that∣∣[ log |G′ ◦ g(z)|]′∣∣≤ 2 for every g and every z. (4.2.12)

In other words, every function of the form log |G′ ◦ g| admits 2 as a Lipschitz
constant. Observe also that if x,y ∈ Ik then

log
|(Gk)′(x)|
|(Gk)′(y)| =

k−1∑
j=0

log |G′(Gj(x))|− log |G′(Gj(y))|

=
k∑

j=1

log |G′ ◦ gj(G
j(x))|− log |G′ ◦ gj(G

j(y))|,

where gj denotes a local inverse of G defined on the interval [Gj(x),Gj(y)].
Using the estimate (4.2.12), we get that

log
|(Gk)′(x)|
|(Gk)′(y)| ≤ 2

k∑
j=1

|Gj(x)−Gj(y)| = 2
k−1∑
i=0

|Gk−i(x)−Gk−i(y)|. (4.2.13)

Now, the first two estimates in Lemma 4.2.12 imply that

|Gk(x)−Gk(y)| ≥ 2[i/2]|Gk−i(x)−Gk−i(y)|
for every i= 0, . . . ,k. Replacing in (4.2.13), we conclude that

log
|(Gk)′(x)|
|(Gk)′(y)| ≤ 2

k−1∑
i=0

2−[i/2]|Gk(x)−Gk(y)| ≤ 8|Gk(x)−Gk(y)| ≤ 8.

Now it suffices to take C= e8.

Proof of Proposition 4.2.11. Let m be the Lebesgue measure on [0,1]. It
follows from Lemma 4.2.13 that

m(Gk(E1))

m(Gk(E2))
=
∫

E1
|(Gk)′|dm∫

E2
|(Gk)′|dm

≤ C
m(E1)

m(E2)
.

On the other hand, the definition (4.2.11) implies that

1

2log2
m(E)≤μ(E)≤ 1

log2
m(E)

for every measurable set E ⊂ [0,1]. Combining these two relations, we find
that

μ(Gk(E1))

μ(Gk(E2))
≤ 2

m(Gk(E1))

m(Gk(E2))
≤ 2C

m(E1)

m(E2)
≤ 4C

μ(E1)

μ(E2)
.

Hence, it suffices to take K = 4C.
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110 Ergodicity

We are ready to conclude that (G,μ) is ergodic. Let A be an invariant set with
μ(A) > 0. Then A also has positive Lebesgue measure, since μ is absolutely
continuous with respect to the Lebesgue measure. Let a be a density point of
A whose future trajectory is contained in the open interval (0,1). Consider the
sequence (Ik)k of the intervals I(k,m1, . . . ,mk) that contain a. It follows from
Lemma 4.2.12 that

diam Ik ≤ sup

{
1

|(Gk)′(x)| : x ∈ Ik

}
≤ 2−[k/2]

for every k≥ 1. In particular, the diameter of Ik converges to zero and so

μ
(
Ik ∩A

)
μ(Ik)

→ 1 when k→∞. (4.2.14)

Let us take E1 = Ik ∩Ac and E2 = Ik. By Proposition 4.2.11,

μ(Gk
(
Ik ∩Ac

)
)

μ(Gk(Ik))
≤ K

μ
(
Ik ∩Ac

)
μ(Ik)

.

Observe that Gk(Ik ∩ Ac) = Ac up to a zero measure set, because the set A
is assumed to be invariant. Recall also that Gk(Ik) = (0,1), which has full
measure. Therefore, the previous inequality may be written as

μ(Ac)≤ K
μ
(
Ik ∩Ac

)
μ(Ik)

.

According to (4.2.14), the expression on the right-hand side converges to zero
when k→∞. It follows that μ(Ac)= 0, as we wanted to prove.

4.2.5 Linear endomorphisms of the torus

Recall that we call the torus of dimension d (or just d-torus) the quotient space
Td = Rd/Zd, that is, the space of all equivalence classes of the equivalence
relation defined in Rd by x ∼ y⇔ x− y ∈ Zd. This quotient inherits from Rd

the structure of a differentiable manifold of dimension d. In what follows we
assume that Td is also endowed with the flat Riemannian metric, which makes
it locally isometric to the Euclidean space Rd. Let m be the volume measure
associated with this Riemannian metric (see Appendix A.4.5).

Let A be a d-by-d matrix with integer coefficients and determinant different
from zero. Then A(Zd)⊂ Zd and, consequently, A induces a transformation

fA : Td → Td, fA([x])= [A(x)],
where [x] denotes the equivalence class that contains x ∈ Rd. These transfor-
mations are called linear endomorphisms of the torus.

Note that fA is differentiable and the derivative DfA([x]) at each point is
canonically identified with A. In particular, the Jacobian detDfA([x]) is constant
equal to detA. It follows (Exercise 4.2.9) that the degree of f is equal to |detA|.
In particular, fA is invertible if and only if |detA| = 1. In this case, the inverse
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4.2 Examples 111

is the transformation fA−1 induced by the inverse matrix A−1; observe that A−1

is also a matrix with integer coefficients.
In any case, fA preserves the Lebesgue measure on Td. This may be seen as

follows. Since fA is a local diffeomorphism, the pre-image of any measurable
set D with sufficiently small diameter consists of |detA| (= degree of fA)
pairwise disjoint sets Di, each of which is mapped diffeomorphically onto D.
By the formula of change of variables, m(D)= |detA|m(Di) for every i. This
proves that m(D)=m(f−1

A (D)) for every measurable set D with small diameter.
Hence, fA does preserve the Lebesgue measure m. Next we prove the following
fact:

Theorem 4.2.14. The system (fA,m) is ergodic if and only if no eigenvalue of
the matrix A is a root of unity.

Proof. Suppose that no eigenvalue of A is a root of unity. Consider any
function ϕ ∈ L2(m) and let

ϕ([x])=
∑
k∈Zd

cke2π i(k·x)

be its Fourier series expansion (with k · x= k1x1+·· ·+ kdxd). The coefficients
ck ∈C satisfy ∑

k∈Zd

|ck|2 = ‖ϕ‖2
2 <∞. (4.2.15)

Then, the Fourier series expansion of ϕ ◦ fA is:

ϕ(fA([x]))=
∑
k∈Zd

cke2π i(k·A(x)) =
∑
k∈Zd

cke2π i(A∗(k)·x),

where A∗ denotes the adjoint of A. Suppose that ϕ is an invariant function, that
is, ϕ ◦ fA = ϕ at m-almost every point. Then, since the Fourier series expansion
is unique, we must have

cA∗(k) = ck for every k ∈ Z. (4.2.16)

We claim that the trajectory of every k �= 0 under the transformation A∗ is
infinite. Indeed, if the trajectory of some k �= 0 were finite then there would
exist l,r ∈ Z with r > 0 such that A(l+r)∗(k)= Al∗(k). This could only happen
if A∗ had some eigenvalue λ such that λr = 1. Since A and A∗ have the same
eigenvalues, that would mean that A has some eigenvalue which is a root of
unity, which is excluded by the hypothesis. Hence, the trajectory of every
k �= 0 is infinite, as claimed. Then the identity (4.2.16), together with (4.2.15),
implies that ck = 0 for every k �= 0. Thus, ϕ = c0 at m-almost every point. This
proves that the system (fA,m) is ergodic.

To prove the converse, assume that A admits some eigenvalue which is a
root of unity. Then the same holds for A∗ and, hence, there exists r > 0 such
that 1 is an eigenvalue of Ar∗. Since Ar∗ has integer coefficients, it follows (see
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112 Ergodicity

Exercise 4.2.8) that there exists some k ∈ Zd \ {0} such that Ar∗(k) = k. Fix k
and consider the function ϕ ∈ L2(m) defined by

ϕ([x])=
r−1∑
i=0

e2π i(Ai∗(k)·x) =
r−1∑
i=0

e2π i(k·Ai(x)).

Then ϕ is an invariant function for fA and it is not constant at m-almost every
point. Hence, (fA,m) is not ergodic.

4.2.6 Hopf argument

In this section we present an alternative, more geometric, method to prove the
ergodicity of certain linear endomorphisms of the torus. This is based on an
argument introduced by Eberhard F. Hopf in his pioneering work [Hop39] on
the ergodicity of geodesic flows on surfaces with negative Gaussian curvature.

In the present linear context, the Hopf argument may be used whenever
|detA| = 1 and the matrix A is hyperbolic, that is, A has no eigenvalues in
the unit circle. But its strongest point is that it may be extended to much more
general differentiable systems, not necessarily linear. Some of these extensions
are mentioned in Section 4.4.

The hypothesis that the matrix A is hyperbolic means that the space Rd may
be written as a direct sum Rd = Es⊕Eu such that:

1. A(Es) = Es and all the eigenvalues of A | Es have absolute value smaller
than 1;

2. A(Eu) = Eu and all the eigenvalues of A | Eu have absolute value bigger
than 1.

Then there exist constants C> 0 and λ < 1 such that

‖An(vs)‖ ≤ Cλn‖vs‖ for every vs ∈ Es and every n≥ 0,

‖A−n(vu)‖ ≤ Cλn‖vu‖ for every vu ∈ Eu and every n≥ 0.
(4.2.17)

Example 4.2.15. Consider A=
(

2 1
1 1

)
. The eigenvalues of A are

λu = 3+√5

2
> 1> λs = 3−√5

2
> 0

and the corresponding eigenspaces are:

Eu =
{
(x,y) ∈R2 : y=

√
5− 1

2
x

}
and Es =

{
(x,y) ∈R2 : y=−

√
5+ 1

2
x

}
.

The family of all affine subspaces of Rd of the form v + Es, with v ∈ Rd,
defines a partition F s of Rd that we call stable foliation and whose elements
we call stable leaves of A. This partition is invariant under A, meaning that
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s(x)

u (x)

x

Figure 4.1. Stable foliation and unstable foliation in the torus

the image of any stable leaf is still a stable leaf. Moreover, by (4.2.17),
the transformation A contracts distances uniformly inside each stable leaf.
Analogously, the family of all affine subspaces of Rd of the form v+Eu with
v ∈ Rd defines the unstable foliation Fu of Rd, whose elements are called
unstable leaves. The unstable foliation is also invariant and the transformation
A expands distances uniformly inside unstable leaves.

Mapping F s and Fu by the canonical projection π : Rd → Td, we obtain
foliations W s and Wu of the torus that we call stable foliation and unstable
foliation of the transformation fA. See Figure 4.1. The previous observations
show that these foliations are invariant under fA. Moreover:

(i) d(f j
A(x), f

j
A(y))→ 0 when j → +∞, for any points x and y in the same

stable leaf;
(ii) d(f j

A(y), f
j
A(z))→ 0 when j → −∞, for any points y and z in the same

unstable leaf.

We are going to use this geometric information to prove that (fA,m) is
ergodic. To that end, let ϕ : Td → R be any continuous function and consider
the time averages

ϕ+(x)= lim
n

1

n

n−1∑
j=0

ϕ(f j
A(x)) and ϕ−(x)= lim

n

1

n

n−1∑
j=0

ϕ(f−j
A (x)),

which are defined for m-almost every x ∈ Td. By Corollary 3.2.8, there exists
a full measure set X ⊂ Td such that

ϕ+(x)= ϕ−(x) for every x ∈ X. (4.2.18)

Let us denote by W s(x) and Wu(x), respectively, the stable leaf and the
unstable leaf of fA through each point x ∈ Td.

Lemma 4.2.16. The function ϕ+ is constant on each leaf of W s: if ϕ+(x) exists
and y ∈W s(x) then ϕ+(y) exists and it is equal to ϕ+(x). Analogously, ϕ− is
constant on each leaf of Wu.
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114 Ergodicity

Proof. According to property (i) above, d(f j
A(x), f

j
A(y)) converges to zero when

j→∞. Noting that ϕ is uniformly continuous (because its domain is compact),
it follows that

ϕ(f j
A(x))−ϕ(f j

A(y))→ 0 when j→∞.

In particular, the Cesàro limit

lim
n

1

n

n−1∑
j=0

ϕ(f j
A(x))−ϕ(f j

A(y))

is also zero. That implies that ϕ+(y) exists and is equal to ϕ+(x). The argument
for ϕ− is entirely analogous.

Given any open subset R of the torus and any x ∈ R, denote by W s(x,R)
the connected component of W s(x) ∩ R that contains x and by Wu(x,R) the
connected component of Wu(x)∩ R that contains x. We call R a rectangle if
W s(x,R) intersects Wu(y,R) at a unique point, for every x and y in R. See
Figure 4.2.

Lemma 4.2.17. Given any rectangle R ⊂ Td, there exists a measurable set
YR ⊂ X ∩R such that m(R \ YR) = 0 and, given any x and y in YR, there exist
points x′ and y′ in X ∩ R such that x′ ∈W s(x,R) and y′ ∈W s(y,R) and y′ ∈
Wu(x′).

Proof. Let us denote by ms
x the Lebesgue measure on the stable leaf W s(x)

of each point x ∈ Td. Note that m(R \X)= 0, since X has full measure in Td.
Then, by the theorem of Fubini,

ms
x

(
W s(x,R) \X

)= 0 for m-almost every x ∈ R.

Define YR =
{
x ∈ X ∩R : ms

x

(
W s(x,R) \X

)= 0
}
. Then YR has full measure in

R. Given x,y ∈ R, consider the map π : W s(x,R)→W s(y,R) defined by

π(x′)= intersection between Wu(x′,R) and W s(y,R).

s (x)

s (y )

x

y

R

x

y

Figure 4.2. Rectangle in Td
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This map is affine and, consequently, it has the following property, called
absolute continuity:

ms
x(E)= 0 ⇔ ms

y(π(E))= 0.

In particular, the image of W s(x,R) ∩ X has full measure in W s(y,R) and,
consequently, it intersects W s(y,R) ∩ X. So, there exists x′ ∈ W s(x,R) ∩ X
whose image y′ = π(x′) is in W s(y,R) ∩ X. Observing that x′ and y′ are in
the same unstable leaf, by the definition of π , we see that these points satisfy
the conditions in the conclusion of the lemma.

Consider any rectangle R. Given any x,y in YR, consider the points x′,y′ in X
given by Lemma 4.2.17. Using Lemma 4.2.16 as well, we obtain

ϕ−(x)= ϕ+(x)= ϕ+(x′)= ϕ−(x′)= ϕ−(y′)= ϕ+(y′)= ϕ+(y)= ϕ−(y).
This shows that the functions ϕ+ and ϕ− coincide with one another and are
constant in YR.

Now let R1, . . . ,RN be a finite cover of the torus by rectangles. Consider
the set

Y =
N⋃

j=1

Yj, where Yj = YRj .

Observe that m(Y) = 1, since Y ∩ Rj ⊃ Yj has full measure in Rj for every j.
We claim that ϕ+ = ϕ− is constant on the whole Y . Indeed, given any k, l ∈
{1, . . . ,N} we may find j0 = k, j1, . . . , jn−1, jn = l such that each Rji intersects
Rji−1 (that is just because the torus is path-connected). Recalling that Rj is an
open set and Yj is a full measure subset, we get that each Yji intersects Yji−1 .
Then, ϕ+ = ϕ− is constant on the union of all the Yji . This proves our claim.

In this way, we have shown that the time averages ϕ± of any contin-
uous function ϕ are constant at m-almost every point. Consequently (see
Exercise 4.1.4), the system (fA,m) is ergodic.

4.2.7 Exercises

4.2.1. Prove Proposition 4.2.2.
4.2.2. Prove Proposition 4.2.9.
4.2.3. Let I = [0,1] and f : I → I be the function defined by

f (x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x if 0≤ x< 1/3
2x− 2/3 if 1/3≤ x< 1/2
2x− 1/3 if 1/2≤ x< 2/3
2x− 1 if 2/3≤ x≤ 1.

Show that f is ergodic with respect to the Lebesgue measure m.
4.2.4. Let X be a finite set and � = XN. Prove that every infinite compact subset of �

invariant under the shift map σ :�→� contains some non-periodic point.
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116 Ergodicity

4.2.5. Let X be a topological space, endowed with the corresponding Borel σ -algebra
C, and let � = XN. Show that if X has a countable basis of open sets then the
Borel σ -algebra of � (for the product topology) coincides with the product
σ -algebra B = CN. The same is true for � = XZ and B = CZ.

4.2.6. In this exercise we propose an alternative proof of Proposition 4.2.1. Assume
that θ is irrational. Let A be an invariant set with positive measure. Recalling
that the orbit {Rn

θ (a) : n ∈ Z} of every a ∈ S1 is dense in S1, show that no point
of S1 is a density point of Ac. Conclude that μ(A)= 1.

4.2.7. Assume that θ is irrational. Let ϕ : S1 → R be any continuous function. Show
that

ϕ̃(x)= lim
n→∞

1

n

n−1∑
j=0

ϕ(Rj
θ (x)) (4.2.19)

exists at every point and, in fact, the limit is uniform. Deduce that ϕ̃ is constant
at every point. Conclude that Rθ has a unique invariant probability measure.

4.2.8. Let A be a square matrix of dimension d with rational coefficients and let λ be
a rational eigenvalue of A. Show that there exists some eigenvector with integer
coefficients, that is, some k ∈ Zd \ {0} such that Ak= λk.

4.2.9. Show that if f : M → M is a local diffeomorphism on a compact Riemannian
manifold then

degree f =
∫
|detDf |dm,

where m denotes the volume measure induced by the Riemannian metric of M,
normalized in such a way that m(M)= 1. In particular, for any square matrix A
of dimension d with integer coefficients, the degree of the linear endomorphism
fA : Td → Td is equal to |detA|.

4.2.10. A number x ∈ (0,1) has continued fraction expansion of bounded type if the
sequence (an)n constructed in Section 1.3.2 is bounded. Prove that the set L⊂
(0,1) of points with continued fraction expansion of bounded type has Lebesgue
measure zero.

4.2.11. Let f : M → M be a measurable transformation, μ be an ergodic invariant
measure and ϕ : M → R be a measurable function with

∫
ϕ dμ = +∞. Prove

that limn(1/n)
∑n−1

j=0 ϕ(f
j(x))=+∞ for μ-almost every x ∈M.

4.2.12. Observe that the number b in Exercise 3.2.4 is independent of x in a set with full
Lebesgue measure. Prove that the arithmetic mean of the numbers a1, . . . ,an, . . .
goes to infinity: limn(1/n)(a1+·· ·+ an)=+∞.

4.3 Properties of ergodic measures

In this section we take the transformation f : M→M to be fixed and we analyze
the set Me(f ) of probability measures that are ergodic with respect to f as a
subset of the space M1(f ) of all probability measures invariant under f .

Recall that a measure ν is said to be absolutely continuous with respect to
another measure μ if μ(E)= 0 implies ν(E)= 0. Then we write ν� μ. This
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4.3 Properties of ergodic measures 117

relation is transitive: if ν � μ and μ� λ then ν � λ. The first result asserts
that the ergodic probability measures are minimal for this order relation:

Lemma 4.3.1. If μ and ν are invariant probability measures such that μ is
ergodic and ν is absolutely continuous with respect to μ then μ= ν.

Proof. Let ϕ : M → R be any bounded measurable function. Since μ is
invariant and ergodic, the time average

ϕ̃(x)= lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))

is constant: ϕ̃(x)= ∫ ϕ dμ at μ-almost every point. Since ν�μ, it follows that
the equality also holds at ν-almost every point. In particular,∫

ϕ dν =
∫
ϕ̃ dν =

∫
ϕ dμ

(the first equality is part of the Birkhoff ergodic theorem). Therefore, the
integrals of each bounded measurable function ϕ with respect to μ and with
respect to ν coincide. In particular, considering characteristic functions, we
conclude that μ= ν.

It is clear that if μ1 and μ2 are probability measures invariant under the
transformation f then so is (1− t)μ1+ tμ2, for any t ∈ (0,1). This means that
the space M1(f ) of all probability measures invariant under f is convex. The
next proposition asserts that the ergodic probability measures are the extremal
elements of this convex set:

Proposition 4.3.2. An invariant probability measure μ is ergodic if and only
if it is not possible to write it as μ= (1− t)μ1+ tμ2 with t ∈ (0,1) and μ1,μ2 ∈
M1(f ) with μ1 �= μ2.

Proof. To prove the “if” claim, assume that μ is not ergodic. Then there exists
some invariant set A with 0<μ(A) < 1. Define μ1 and μ2 to be the normalized
restriction of μ to the set A and to its complement Ac, respectively:

μ1(E)= μ
(
E∩A

)
μ(A)

and μ2(E)= μ
(
E∩Ac

)
μ(Ac)

.

Since A and Ac are invariant sets and μ is an invariant measure, both μ1 and
μ2 are still invariant probability measures. Moreover,

μ=μ(A)μ1+μ(Ac)μ2

and, consequently, μ is not extremal.
To prove the converse, assume that μ is ergodic and μ= (1− t)μ1+ tμ2 for

some t ∈ (0,1). It is clear that μ(E)= 0 implies μ1(E)=μ2(E)= 0, that is, μ1

and μ2 are absolutely continuous with respect to μ. Hence, by Lemma 4.3.1,
μ1 =μ=μ2. This shows that μ is extremal.
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118 Ergodicity

Let us also point out that distinct ergodic measures “live” in disjoint subsets
of the space M (see also Exercise 4.3.6):

Lemma 4.3.3. Assume that the σ -algebra of M admits some countable
generating subset �. Let {μi : i ∈ I} be an arbitrary family of ergodic
probability measures, all distinct. Then these measures μi are mutually
singular: there exist pairwise disjoint measurable subsets {Pi : i ∈ I} invariant
under f and such that μi(Pi)= 1 for every i ∈ I.

Proof. Let A be the algebra generated by �. Note that A is countable, since it
coincides with the union of the (finite) algebras generated by the finite subsets
of �. For each i ∈ I, define

Pi =
⋂
A∈A

{x ∈M : τ(A,x)=μi(A)}.

Since μi is ergodic, {x ∈ M : τ(A,x) = μi(A)} has full measure for each A.
Using that A is countable, it follows that μi(Pi)= 1 for every i ∈ I. Moreover,
if there exists x∈Pi∩Pj then μi(A)= τ(A,x)=μj(A) for every A∈A. In other
words, μi =μi. This proves that the Pi are pairwise disjoint.

Now assume that f : M→M is a continuous transformation in a topological
space M. We say that f is transitive if there exists some x∈M such that {f n(x) :
n ∈ N} is dense in M. The next lemma provides a useful characterization of
transitivity. Recall that a topological space M is called a Baire space if the
intersection of any countable family of open dense subsets is dense in M. Every
complete metric space is a Baire space and the same is true for every locally
compact topological space (see [Dug66]).

Lemma 4.3.4. Let M be a Baire space with a countable basis of open sets.
Then f : M→M is transitive if and only if for every pair of open sets U and V
there exists k≥ 1 such that f−k(U) intersects V.

Proof. Assume that f is transitive and let x ∈M be a point whose orbit {f n(x) :
n ∈ N} is dense. Then there exists m ≥ 1 such that f m(x) ∈ V and (using the
fact that {f n(x) : n> m} is also dense) there exists n> m such that f n(x) ∈ U.
Take k= n−m. Then f m(x) ∈ f−k(U)∩V . This proves the “only if” part of the
statement.

To prove the converse, let {Uj : j ∈ N} be a countable basis of open subsets
of M. The hypothesis ensures that the open set

⋃∞
k=1 f−k(Uj) is dense in M for

every j ∈N. Then the intersection

X =
∞⋂

j=1

∞⋃
k=1

f−k(Uj)

is a dense subset of M. In particular, it is non-empty. On the other hand, by
definition, if x ∈ X then for every j ∈ N there exists k ≥ 1 such that f k(x) ∈ Uj.
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4.3 Properties of ergodic measures 119

Since the Uj constitute a basis of open subsets of M, this means that {f k(x) :
k ∈N} is dense in M.

Proposition 4.3.5. Let M be a Baire space with a countable basis of open sets.
If μ is an ergodic probability measure then the restriction of f to the support
of μ is transitive.

Proof. Start by noting that suppμ has a countable basis of open sets, because
it is a subspace of M, and it is a Baire space, since it is closed in M. Let
U and V be open subsets of suppμ. By the definition of support, μ(U) >
0 and μ(V) > 0. Define B =⋃∞

k=1 f−k(U). Then μ(B) > 0, because B ⊃ U,
and f−1(B) ⊂ B. By ergodicity (see Exercise 1.1.4) it follows that μ(B) = 1.
Then B must intersect V . This proves that there exists k ≥ 1 such that f−k(U)
intersects V . By Lemma 4.3.4, it follows that the restriction f : suppμ→ suppμ
is transitive.

4.3.1 Exercises

4.3.1. Let M be a topological space M with a countable basis of open sets, f : M →M
be a measurable transformation and μ be an ergodic probability measure. Show
that the orbit {f n(x) : n≥ 0} of μ-almost every point x∈M is dense in the support
of μ.

4.3.2. Let f : M→M be a continuous transformation in a compact metric space. Given
a function ϕ : M→R, prove that there exists an invariant probability measure μϕ
such that ∫

ϕ dμϕ = sup
η∈M1(f )

∫
ϕ dη.

4.3.3. Let g : E→E be a transformation induced by f : M→M, that is, a transformation
of the form g(x) = f ρ(x)(x) with ρ : E → N (see Section 1.4.2). Let ν be an
invariant probability measure of g and νg be the invariant measure of f defined
by (1.4.5). Assume that νρ(M) <∞ and denote μ= νρ/νρ(M). Show that (f ,μ)
is ergodic if and only if (g,ν) is ergodic.

4.3.4. Let f : M → M be a continuous transformation in a separable complete metric
space. Given any invariant probability measure μ, let μ̂ be its lift to the natural
extension f̂ : M̂ → M̂ (see Section 2.4.2). Show that (f̂ , μ̂) is ergodic if and only
if (f ,μ) is ergodic.

4.3.5. Let f : M →M be a measurable transformation and μ be an invariant measure.
Let gt : N → N, t ∈ R be a suspension flow of f and ν be the corresponding
suspension of the measure μ (see Section 3.4.1). Assume that ν(N) <∞ and
denote ν̂ = ν/ν(N). Show that ν̂ is ergodic for the flow (gt)t if and only if μ is
ergodic for f .

4.3.6. Show that for finite or countable families of ergodic measures the conclusion of
Lemma 4.3.3 holds even if the σ -algebra is not countably generated.

4.3.7. Give an example of a metric space M and a transformation f : M →M such that
there exists a sequence of ergodic Borel measures μn converging, in the weak∗

topology, to a non-ergodic invariant measure μ.
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4.3.8. Let M be a metric space, f : M→M be a continuous transformation and μ be an
ergodic probability measure. Show that 1

n

∑n−1
j=0 f j

∗ν converges to μ in the weak∗

topology for any probability measure ν on M absolutely continuous with respect
to μ, but not necessarily invariant.

4.3.9. Let X = {1, . . . ,d} and σ :�→� be the shift map in � = XN or � = XZ.
(1) Show that for every δ > 0 there exists k ≥ 1 such that, given x1, . . . ,xs ∈�

and m1, . . . ,ms ≥ 1, there exists a periodic point y ∈ � with period ns and
such that d(f j+ni(y), f j(xi)) < δ for every 0≤ j<mi, where n1 = 0 and ni =
(m1+ k)+·· ·+ (mi−1+ k) for 1< i≤ s.

(2) Let ϕ : � → R be a continuous function and ϕ̃ be its Birkhoff average.
Show that, given ε > 0, points x1, . . . ,xs ∈ � where the Birkhoff average
of ϕ is well defined, and numbers α1, . . . ,αs > 0 such that

∑
iα

i = 1, there
exists a periodic point y ∈� satisfying |ϕ̃(y)−∑iα

iϕ̃(xi)|< ε.
(3) Conclude that the set Me(σ ) of ergodic probability measures is dense in

the space M1(σ ) of all invariant probability measures.

4.4 Comments in conservative dynamics

The ergodic theorem of Birkhoff, proven in the 1930’s, provided a solid math-
ematical foundation to the statement of the Boltzmann ergodic hypothesis, but
left entirely open the question of its veracity. In this section we briefly survey
the main results obtained since then, in the context of conservative systems,
that is, dynamical systems that preserve a volume measure on a manifold.

Let us start by mentioning that, in a certain abstract sense, the majority of
conservative systems are ergodic. That is the sense of the theorem that we
state next, which was proven in the early 1940’s by John Oxtoby and Stanislav
Ulam [OU41]. Recall that a subset of a Baire space is called residual if it
may be written as a countable intersection of open and dense subsets. By the
definition of Baire space, every residual subset is dense.

Theorem 4.4.1 (Oxtoby, Ulam). For every compact Riemannian manifold M
there exists a residual subset R of the space Homeovol(M) of all conservative
homeomorphisms of M such that every element of R is ergodic.

The results presented below imply that the conclusion of this theorem is
no longer true when one replaces Homeovol(M) by the space Diffeok

vol(M)
of conservative diffeomorphisms of class Ck, at least for k > 3. Essentially
nothing is known in this regard in the cases k= 2 and k= 3. On the other hand,
Artur Avila, Sylvain Crovisier and Amie Wilkinson have recently announced
a C1 version of the previous theorem: for every compact Riemannian manifold
M, there exists a residual subset R of the space Diffeo1

vol(M) of conservative
diffeomorphisms of class C1 such that every f ∈R with positive entropy hvol(f )
is ergodic. The notion of entropy will be studied in Chapter 9.
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4.4 Comments in conservative dynamics 121

4.4.1 Hamiltonian systems

The systems that interested Boltzmann, relative to the motion of gas molecules,
may, in principle, be described by the laws of Newtonian classical mechanics.
In the so-called Hamiltonian formalism of classical mechanics, the states
of the system are represented by “generalized coordinates” q1, . . . ,qd and
“generalized momenta” p1, . . . ,pd, and the system’s evolution is described by
the solutions of the Hamilton–Jacobi equations:

dqj

dt
= ∂H

∂pj
and

dpj

dt
=−∂H

∂qj
, j= 1, . . . ,d, (4.4.1)

where H (the total energy of the system) is a C2 function of the variables q=
(q1, . . . ,qd) and p= (p1, . . . ,pd); the integer d ≥ 1 is the number of degrees of
freedom.

Example 4.4.2 (Harmonic pendulum). Let d= 1 and H(q,p)= p2/2−gcosq,
where g is a positive constant and (q,p) ∈R2. The Hamilton–Jacobi equations

dq

dt
= p and

dp

dt
=−gsinq

describe the motion of a pendulum subject to a constant gravitational field:
the coordinate q measures the angle with respect to the position of (stable)
equilibrium and p measures the angular momentum. Then p2/2 is the kinetic
energy and −gcosq is the potential energy. Thus, the Hamiltonian H is the
total energy.

Note that H is always a first integral of the system, that is, it is constant
along the flow trajectories:

dH

dt
=

d∑
j=1

∂H

∂qj

dqj

dt
+ ∂H

∂pj

dpj

dt
≡ 0.

Thus, we may consider the restriction of the flow to each energy hypersurface
Hc = {(q,p) : H(q,p)= c}. The volume measure dq1 · · ·dqddp1 · · ·dpd is called
the Liouville measure. Observe that the divergence of the vector field

F =
(
− ∂H

∂p1
, . . . ,− ∂H

∂pd
,
∂H

∂q1
, . . . ,

∂H

∂qd

)
is identically zero. Thus (recall Section 1.3.6) the Liouville measure is
invariant under the Hamiltonian flow. It follows (see Exercise 1.3.12) that
the restriction of the flow to each energy hypersurface Hc admits an invariant
measure μc that is given by

μc(E)=
∫

E

ds

‖gradH‖ for every measurable set E⊂Hc,

where ds denotes the volume element on the hypersurface. Then, the ergodic
hypothesis may be viewed as claiming that, in general, Hamiltonian systems
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122 Ergodicity

are ergodic with respect to this invariant measure μc on (almost) every energy
hypersurface.

The first important result in this context was announced by Andrey Kol-
mogorov at the International Congress of Mathematicians ICM 1954 and was
substantiated, soon afterwards, by the works of Vladimir Arnold and Jürgen
Moser. This led to the deep theory of so-called almost integrable systems that
is known as KAM theory, in homage to its founders, and to which several
other mathematicians contributed in a decisive manner, including Helmut
Rüssmann, Michael Herman, Eduard Zehnder, Jean-Christophe Yoccoz and
Jürgen Pöschel, among others. Let us explain what is meant by “almost
integrable”.

A Hamiltonian system with d degrees of freedom is said to be integrable (in
the sense of Liouville) if it admits d first integrals I1, . . . , Id:

• independent: that is, such that the gradients

grad Ij =
(
∂Ij

∂q1
,
∂Ij

∂p1
, . . . ,

∂Ij

∂qd
,
∂Ij

∂pd

)
, 1≤ j≤ d,

are linearly independent at every point on an open and dense subset of the
domain;

• in involution: that is, such that the Poisson brackets

{Ij, Ik} =
d∑

i=1

[
∂Ij

∂qi

∂Ik

∂pi
− ∂Ij

∂pi

∂Ik

∂qi

]
are all identically zero.

It follows from the previous remarks that every system with d = 1 degree
of freedom is integrable: the Hamiltonian H itself is a first integral. Another
important example:

Example 4.4.3. For any number d ≥ 1 of degrees of freedom, assume that
the Hamiltonian H depends only on the variables p = (p1, . . . ,pd). Then the
Hamilton–Jacobi equations (4.4.1) reduce to

dqj

dt
= ∂H

∂pj
(p) and

dpj

dt
=−∂H

∂qj
(p)= 0.

The second equation means that each pj is a first integral; it is easy to see that
the first integrals are independent and in involution. Then the expression on the
right-hand side of the first equation is independent of time. Hence, the solution
is given by

qj(t)= qj(0)+ ∂H

∂pi
(p(0)) t.

As we are going to comment in the following, this example is totally typical of
integrable systems.
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4.4 Comments in conservative dynamics 123

A classical theorem of Liouville asserts that if the system is integrable
then the Hamilton–Jacobi equations may be solved completely by quadratures.
In the proof (see Arnold [Arn78]) one constructs certain functions ϕ =
(ϕ1, . . . ,ϕd) with values in Td which, together with the first integrals I =
(I1, . . . , Id)∈Rd, constitute canonical coordinates of the system (they are called
action-angle coordinates). What we mean by “canonical” is that the coordinate
change

� : (q,p) �→ (ϕ, I)

preserves the form of the Hamilton–Jacobi equations: (4.4.1) becomes

dϕj

dt
= ∂H′

∂Ij
and

dIj

dt
=−∂H′

∂ϕj
, (4.4.2)

where H′ = H ◦ �−1 is the expression of the Hamiltonian in the new
coordinates. Since the Ij are first integrals, the second equation yields

0= dIj

dt
=−∂H′

∂ϕj
.

This means that H does not depend on the variables ϕj and so we are in the type
of situation described in Example 4.4.3. Each trajectory of the Hamiltonian
flow is constrained inside a torus {I= const} and, according to the first equation
in (4.4.2), it is linear in the coordinate ϕ:

ϕj(t)= ϕj(0)+ωj(I)t, where ωj(I)= ∂H′

∂Ij
(I).

In terms of the original coordinates (q,p), we conclude that the trajectories of
the Hamiltonian flow are given by

t �→�−1(ϕ(0)+ω(I)t, I)=�ϕ(0),I(ω(I)t), (4.4.3)

where�ϕ(0),I :Rd →M is a Zd-periodic function and ω(I)= (ω1(I), . . . ,ωd(I))
is called a frequency vector. We say that the trajectory is quasi-periodic.

4.4.2 Kolmogorov–Arnold–Moser theory

It is clear that integrable systems are never ergodic. However, since integra-
bility is a very rare property, this alone would not be an obstruction to most
Hamiltonian systems being ergodic. Nevertheless, the fundamental result that
we state next asserts that generic integrable systems are robustly non-ergodic:
every nearby Hamiltonian flow is also non-ergodic.

Let H0 be an integrable Hamiltonian, written in action-angle coordinates
(ϕ, I). More precisely, let Bd be a ball in Rd and assume that H0(ϕ, I) is defined
for every (ϕ, I) ∈ Td × Bd but depends only on the coordinate I. We call H0

non-degenerate if its Hessian matrix is invertible:

det

(
∂2H0

∂Ii∂Ij

)
i,j

�= 0 at every point. (4.4.4)
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124 Ergodicity

Observe that the Hessian matrix of H0 coincides with the Jacobian matrix of
the function I �→ ω(I). Therefore, the twist condition (4.4.4) means that the
map assigning to each value of I the corresponding frequency vector ω(I) is a
local diffeomorphism.

The next theorem means that, under this condition, most of the invariant tori
of the Hamiltonian flow of H0 persist for any nearby system:

Theorem 4.4.4. Let H0 be an integrable non-degenerate Hamiltonian of class
C∞. Then there exists a neighborhood V of H0 in the space C∞(Td × Bd,R)
such that for every H ∈ V there exists a compact set K ⊂Td×Bd satisfying:

(i) K is a union of differentiable tori of the form {(ϕ,u(ϕ)) : ϕ ∈ Td} each of
which is invariant under the Hamiltonian flow of H;

(ii) the restriction of the Hamiltonian flow of H to each of these tori is
conjugate to a linear flow on Td;

(iii) the set K has positive volume and, in fact, the volume of its complement
goes to zero when H→H0.

In particular, the Hamiltonian flow of H cannot be ergodic.

The latter is because the set K may be decomposed into positive volume
subsets that are also unions of invariant tori and, thus, are invariant. The proof
of the theorem shows that the persistence or not of a given invariant torus of H0

is intimately related to the arithmetic properties of the corresponding frequency
vector. Let us explain this.

Given c> 0 and τ > 0, we say that a vector ω0 ∈Rd is (c,τ)-Diophantine if

|k ·ω0| ≥ c

‖k‖τ for every k ∈ Zd, (4.4.5)

where ‖k‖ = |k1| + · · · + |kd|. Diophantine vectors are rationally independent;
in fact, the condition (4.4.5) means that ω0 is badly approximated by rationally
dependent vectors. We say that ω0 is τ -Diophantine if it is (c,τ)-Diophantine
for some c > 0. The set of τ -Diophantine vectors is non-empty if and only if
τ ≥ d− 1; moreover, it has full measure in Rd if τ is strictly larger than d− 1
(see Exercise 4.4.1).

While proving Theorem 4.4.4, it is shown that, given c > 0, τ ≥ d− 1 and
any compact set � ⊂ ω(Bd), one can find a neighborhood V of H0 such that,
for every H ∈ V and every (c,τ)-Diophantine vector ω0 ∈�, the Hamiltonian
flow of H admits a differentiable invariant torus restricted to which the flow is
conjugate to the linear flow t �→ ϕ(t)= ϕ(0)+ tω0.

Next, we discuss a version of Theorem 4.4.4 for discrete time systems or,
more precisely, symplectic transformations. We call a symplectic manifold
(see Arnold [Arn78, Chapter 8]) any differentiable manifold M endowed
with a symplectic form, that is, a non-degenerate differential 2-form θ . By
“non-degenerate” we mean that for every x ∈M and every u �= 0 there exists
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4.4 Comments in conservative dynamics 125

v such that θx(u,v) �= 0. Existence of a symplectic form on M implies that the
dimension is even: write dimM= 2d. Moreover, the d-th power θd= θ∧·· ·∧θ
is a volume form on M.

A differentiable transformation f : M → M is said to be symplectic if it
preserves the symplectic form, meaning that θx(u,v) = θf (x)(Df (x)u,Df (x)v)
for every x∈M and any u,v ∈ TxM. Then, in particular, f preserves the volume
form θd.

Example 4.4.5. Let M = R2d, with coordinates (q1, . . . ,qd,p1, . . . ,pd), and let
θ be the differential 2-form defined by

θx = dq1∧ dp1+·· ·+ dqd ∧ dpd (4.4.6)

for every x. Then θ is a symplectic form on M. Actually, a classical theorem
of Darboux states that for every symplectic form there exists some atlas of the
manifold such that the expression of the symplectic form in any local chart is
of the type (4.4.6). Consider any transformation of the form

f0(q1, . . . ,qd,p1, . . . ,pd)= (q1+ω1(p), . . . ,qd+ωd(p),p1, . . . ,pd).

Using

Df0 · ∂
∂qj

= ∂
∂qj

and Df0 · ∂
∂pj

= ∂
∂pj

+
∑

i

∂ωi

∂pj

∂

∂qi
,

we see that f0 is symplectic with respect to the form θ .

Example 4.4.6 (Cotangent bundle). Let M be a manifold of class Cr with r ≥
3. By definition, the cotangent space T∗q M at each point q ∈ M is the dual
of the tangent space TqM, and the cotangent bundle of M is the disjoint union
T∗M=⋃q∈M T∗q M of all cotangent spaces. See Appendix A.4.3. The cotangent
bundle is a manifold of class Cr−1 and the canonical projection π∗ : T∗M→M
mapping each T∗q M to the corresponding base point q is a map of class Cr−1.

A very important feature of the cotangent bundle is that it always admits a
canonical symplectic form, that is, one that depends only on the manifold M.
That can be seen as follows. Let α be the differential 1-form on T∗M defined by

α(q,p) : T(q,p)(T
∗M)→R, α(q,p) = p ◦Dπ∗(q,p)

for each (q,p) ∈ T∗M. It is clear that α is well defined and of class Cr−2.
Consider the exterior derivative θ∗ = dα. One can check (for instance, using
local coordinates) that θ∗ is non-degenerate at every point and, thus, is a
symplectic form in T∗M.

There is no corresponding statement for the tangent bundle TM. However,
once we fix a Riemannian metric on M it is possible to endow the tangent
bundle with a (non-canonical) symplectic form:
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Example 4.4.7 (Tangent bundle). Let M be a Riemannian manifold of class
Cr with r≥ 3. Then we may identify the tangent bundle TM with the cotangent
bundle T∗M through the map  : TM→ T∗M that maps each point (q,v) with
v ∈ TqM to the point (q,p) with p ∈ T∗q M defined by

p : TqM→R, p(w)= v ·q w.

Indeed,  is a diffeomorphism and it maps fibers of TM to fibers of T∗M,
preserving the base point. In particular, we may use  to transport the
symplectic form θ∗ in Example 4.4.6 to a symplectic form θ in TM:

θ(q,v)
(
w1,w2

)= θ∗ (q,v)

(
D (q,v)w1,D (q,v)w2

)
for any w1,w2 ∈ T(q,v)(TM). It is clear from the construction that, unlike θ∗,
this form θ depends on the Riemannian metric in M.

By analogy with the case of flows, we call a transformation f0 integrable if
there exist coordinates (q,p) ∈ Td × Bd such that f0(q,p) = (q+ ω(p),p) for
every (q,p). Moreover, we say that f0 is non-degenerate if

the map p �→ ω(p) is a local diffeomorphism. (4.4.7)

Theorem 4.4.8. Let f0 be a non-degenerate integrable transformation of class
C∞. Then there exists a neighborhood V of f0 in the space C∞(Td × Bd,Rd)

such that for every symplectic transformation2 f ∈ V there exists a compact set
K ⊂ Td×Bd satisfying:

(i) K is a union of differentiable tori of the form {(q,u(q)) : q ∈ Td}, each of
which is invariant under f ;

(ii) the restriction of the transformation f to each of these tori is conjugate to
a translation on Td;

(iii) the set K has positive volume and, in fact, the volume of the complement
converges to zero when f → f0.

In particular, the transformation f cannot be ergodic.

Just as in the previous (continuous time) situation, the set K is formed by
tori restricted to which the dynamics is conjugate to a Diophantine rotation.

Theorems 4.4.4 and 4.4.8 extend to systems of class Cr with r finite but
sufficiently large, depending on the dimension. For example, the version of
Theorem 4.4.8 for d = 1 is true for r > 3 and false for r < 3; in the boundary
case r= 3, parts (i) and (ii) of the theorem remain valid but part (iii) does not.

The notion of Hamiltonian flow extends to any symplectic manifold (M,θ),
as follows. Let H : M → R be a function of class C2 and dH(z) : TzM → R

denote its derivative at each point z ∈M. By the definition of symplectic form,

2 Relative to the canonical symplectic form (4.4.6).
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4.4 Comments in conservative dynamics 127

each θz : TzM× TzM → R is a non-degenerate alternate 2-form. Hence, there
exists exactly one vector XH(z) ∈ TzM such that

θz(XH(z),v)= dH(z)v for every v ∈ TzM.

The map z �→ XH(z) is a vector field of class C1 on the manifold M. This is
called the Hamiltonian vector field associated with H. The corresponding flow,
given by the differential equation

dz

dt
= XH(z), (4.4.8)

is the Hamiltonian flow associated with H. We leave it to the reader to check
that (4.4.8) corresponds precisely to the Hamilton–Jacobi equations (4.4.1)
when M =R2d and θ is the symplectic form in Example 4.4.5.

4.4.3 Elliptic periodic points

The ideas behind the results stated in the previous section may be used to
describe the behavior of conservative systems in the neighborhood of elliptic
periodic points. Let us explain this briefly, starting with the symplectic case in
dimension 2.

When M is a surface, the notions of symplectic form and area form coincide.
Thus, a differentiable transformation f : M → M is symplectic if and only if
it preserves area. Let ζ ∈ M be an elliptic fixed point, that is, such that the
eigenvalues of Df (ζ ) are in the unit circle. Let λ and λ̄ be the eigenvalues. We
say that the fixed point ζ is non-degenerate if λk �= 1 for every 1≤ k≤ 4. Then,
by the Birkhoff normal form theorem (see Arnold [Arn78, Appendix 7]), there
exist canonical coordinates (x,y) ∈ R2 in the neighborhood of the fixed point,
with ζ = (0,0), such that the transformation f has the form:

f (θ ,ρ)= (θ +ω0+ω1ρ,ρ)+R(θ ,ρ) with |R(θ ,ρ)| ≤ C|ρ|2, (4.4.9)

where (θ ,ρ) ∈ S1×R are the “polar” coordinates defined by

x=√ρ cos2πθ and y=√ρ sin2πθ .

Observe that the normal form f0 : (θ ,ρ) �→ (θ +ω0+ω1ρ,ρ) is integrable.
Moreover, f0 satisfies the twist condition (4.4.7) as long as ω1 �= 0 (this
condition does not depend on the choice of the canonical coordinates, just on
the transformation f ). Then one may apply the methods of Theorem 4.4.8 to
conclude that there exists a set K with positive area that is formed by invariant
circles with Diophantine rotation numbers, that is, such that the restriction of f
to each of these circles is conjugate to a Diophantine rotation. Even more, the
fixed point ζ is a density point of this set:

lim
r→0

m(B(ζ ,r) \K)

m(B(ζ ,r))
= 0,

where B(ζ ,r) represents the ball of radius r> 0 around ζ .
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We will refer to points ζ as in the previous paragraph as generic elliptic fixed
points. An important consequence of what we just said is that generic elliptic
fixed points of area-preserving transformations are stable: the trajectory of
any point close to ζ remains close to ζ for all times, as it is “trapped” on the
inside of some small invariant circle. This feature does not extend to higher
dimensions, as we will explain shortly.

Still in dimension two, we want to mention other important dynamical
phenomena that take place in the neighborhood of generic elliptic fixed points.
Let us start by presenting a very useful tool, known as the Poincaré–Birkhoff
fixed point theorem or Poincaré last theorem. The statement was proposed by
Poincaré, who also presented some special cases, a few months before his
death; the general case was proved by Birkhoff [Bir13] in the following year.

Let A= S1×[a,b], with 0< a< b, and let f : A→ A be a homeomorphism
that preserves each of the boundary components of the annulus A. We say
that f is a twist homeomorphism if it rotates the two boundary components in
opposite senses or, more precisely, if there exists some lift F : R× [a,b] →
R× [a,b], F(θ ,ρ)= ("(θ ,ρ),R(θ ,ρ)), of the map f to the universal cover of
the annulus, such that[

"(θ ,a)− θ]["(θ ,b)− θ]< 0 for every θ ∈R. (4.4.10)

Theorem 4.4.9 (Poincaré–Birkhoff fixed point). If f : A → A is a twist
homeomorphism that preserves area then f admits at least two fixed points
in the interior of A.

As mentioned previously, every generic elliptic fixed point ζ is accumulated
by invariant circles with Diophantine rotation numbers. Any two such disks
bound an annulus around ζ . Applying Theorem 4.4.9 (or, more precisely, its
corollary in Exercise 4.4.6) one gets that any such annulus contains, at least, a
pair of periodic orbits with the same period.

In a sense, these pairs of periodic orbits are what is left of the invariant
circles of the normal form f0 with rational rotation numbers, which are
usually destroyed by the addition of the term R in (4.4.9). Their periods go
to infinity when one approaches ζ . Generically, one of these periodic orbits is
hyperbolic (saddle points) and the other one is elliptic. An example is sketched
in Figure 4.3: the elliptic fixed point ζ is surrounded by a hyperbolic periodic
orbit and an elliptic periodic orbit, marked with the letters p and q, respectively,
both with period 4. Two invariant circles around ζ are also represented.

The Swiss mathematician Eduard Zehnder proved that, generically, the
hyperbolic periodic orbits exhibit transverse homoclinic points, that is, their
stable manifolds and unstable manifolds intersect transversely, as depicted
in Figure 4.3. This implies that the geometry of the stable manifolds and
unstable manifolds is extremely complex. Moreover, the elliptic periodic orbits
satisfy the genericity conditions mentioned previously. This means that all
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Figure 4.3. Invariant circles, periodic orbits and homoclinic intersections in the
neighborhood of a generic elliptic fixed point

Figure 4.4. Computational evidence for the presence of invariant circles, elliptic
islands and transverse homoclinic intersections

the dynamical complexity that we are describing in the neighborhood of ζ is
reproduced in the neighborhood of each one of these “satellite” elliptic orbits
(which have their own “satellites”, etc.).

Moreover, a theory developed by the French physicist Serge Aubry and
the American mathematician John Mather shows that ζ is also accumulated
by certain infinite, totally disconnected invariant sets, restricted to which
the transformation f is minimal (all the orbits are dense). In a sense, these
Aubry–Mather sets are a souvenir of the invariant circles of the normal form
f0 with irrational non-Diophantine rotation numbers that are also typically
destroyed by the addition of the perturbation term R in (4.4.9).

Figure 4.4 illustrates a good part of what we have been saying. It depicts
several computer-calculated trajectories of an area-preserving transformation.
The behavior of these trajectories suggests the presence of invariant circles,
elliptic satellites with their own invariant circles, and even hyperbolic orbits
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with associated transverse homoclinic intersections. One can also observe the
presence of certain trajectories with “chaotic” behavior, apparently related to
those homoclinic intersections.

More generally, let f : M → M be a symplectic diffeomorphism on a
symplectic manifold M of any (even) dimension 2d ≥ 2. We say that a
fixed point ζ ∈ M is elliptic if all the eigenvalues of the derivative Df (ζ )
are in the unit circle. Let λ1, λ̄1, . . . ,λd, λ̄d be those eigenvalues. We say
that ζ is non-degenerate if λk1

1 . . .λ
kd
d �= 1 for every (k1, . . . ,kd) ∈ Zd with

|k1| + · · · + |kd| ≤ 4 (in particular, the eigenvalues are all distinct). Then, by
the Birkhoff normal form theorem (see Arnold [Arn78, Appendix 7]), there
exist canonical coordinates (x1, . . . ,xd,y1, . . . ,yd) ∈R2d in a neighborhood of ζ
such that ζ = (0, . . . ,0,0, . . . ,0) and the transformation f has the form

f (θ ,ρ)= (θ +ω0+ω1(ρ),ρ)+R(θ ,ρ) with ‖R(θ ,ρ)‖ ≤ const‖ρ‖2,

where ω0 ∈ Rd, ω1 : Rd → Rd is a linear map and (θ ,ρ) ∈ Td ×Rd are the
“polar” coordinates defined by

xj =√ρj cos2πθj and yj =√ρj sin2πθj, j= 1, . . . ,d.

Assuming that ω1 is an isomorphism (this is yet another generic condition
on the transformation f ), we have that the normal form

f0 : (θ ,ρ) �→ (θ +ω0+ω1(ρ),ρ)

is integrable and satisfies the twist condition (4.4.7). Applying the ideas of
Theorem 4.4.8, one concludes that ζ is a density point of a set K formed
by invariant tori of dimension d, restricted to which the transformation f is
conjugate to a Diophantine rotation.

In particular, symplectic transformations with generic elliptic fixed (or
periodic) points are never ergodic. Observe, on the other hand, that for d > 1
a torus of dimension d does not separate the ambient space M into two
connected components. Therefore, the argument we used before to conclude
that generic elliptic fixed points on surfaces are stable does not extend to higher
dimensions. In fact, it is known that when d> 1 elliptic fixed points are usually
unstable: trajectories starting arbitrarily close to the fixed point may escape
from a fixed neighborhood of it. This is related to the phenomenon known as
Arnold diffusion, which is a very active research topic in this area.

Finally, let us mention that this theory also applies to continuous time
conservative systems. We say that a stationary point ζ of a Hamiltonian flow
is elliptic if all the eigenvalues of the derivative of the vector field at the point
ζ are pure imaginary numbers. Arguments similar to those in the discrete time
case show that, under generic hypothesis, ζ is a density point of a set formed
by invariant tori of dimension d restricted to each of which the Hamiltonian
flow is conjugate to a linear flow.
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Moreover, there are corresponding results for periodic trajectories of
Hamiltonian flows. One way to obtain such results is by considering a
cross-section to the flow at some point of the periodic trajectory and applying
the previous ideas to the corresponding Poincaré map. In this way one finds
that, under generic conditions, elliptic periodic trajectories of Hamiltonian
flows are accumulated by sets with positive volume consisting of invariant tori
of the flow.

The theory of Kolmogorov–Arnold–Moser has many other applications, in a
wide variety of situations in mathematics that go beyond the scope of this book.
The reader may find more complete information in the following references:
Arnold [Arn78], Bost [Bos86], Yoccoz [Yoc92], de la Llave [dlL93] and
Arnold, Kozlov and Neishtadt [AKN06], among others.

4.4.4 Geodesic flows

Let M be a compact Riemannian manifold. Some of the notions that are used
here are recalled in Appendix A.4.

It follows from the theory of ordinary differential equations that for each
(x,v) ∈ TM there exists a unique geodesic γx,v : R→ M of the manifold M
such that γx,v(0)= x and γ̇x,v(0)= v. Moreover, the family of transformations
defined by

f t : (x,v) �→ (γx,v(t), γ̇x,v(t))

is a flow on the tangent bundle TM, which is called the geodesic flow of M. We
denote by T1M the unit tangent bundle, formed by the pairs (x,v) ∈ TM with
‖v‖ = 1. The unit tangent bundle is invariant under the geodesic flow.

Equivalently, the geodesic flow may be defined as the Hamiltonian flow in
the tangent bundle TM (with the symplectic structure defined in Example 4.4.7)
associated with the Hamiltonian function H(x,v) = ‖v‖2. So, (f t)t preserves
the Liouville measure of the tangent bundle.

In this context, the Liouville measure may be described as follows. Every
inner product in a finite-dimensional vector space induces a volume element3

in that space, relative to which the cube spanned by any orthonormal basis
has volume 1. In particular, the Riemannian metric induces a volume element
dv on each tangent space TxM. Integrating this volume element along M, we
get a volume measure dx on the manifold itself. The Liouville measure of TM
is given, locally, by the product dxdv. Moreover, its restriction m to the unit
tangent bundle is given, locally, by the product dxdα, where dα is the measure
of angle on the unit sphere of TxM.

The fact that H is a first integral means that the norm ‖v‖ is constant
along trajectories of the flow. In particular, (f t)t leaves the unit tangent bundle

3 That is, a volume form defined up to sign: the sign is not determined because the inner product
does not detect the orientation of the vector space.
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132 Ergodicity

invariant. Furthermore, the geodesic flow preserves the restriction m of the
Liouville measure to T1M. However, the behavior of geodesic flows is, usually,
very different from the dynamics of the almost integrable systems that we
described in Section 4.4.2.

For example, the Austrian mathematician Eberhard F. Hopf [Hop39] proved
in 1939 that if M is a compact surface with negative Gaussian curvature at
every point then its geodesic flow is ergodic. Almost three decades later, his
theorem was extended to manifolds in any dimension, through the following
remarkable result of the Russian mathematician Dmitry Anosov [Ano67]:

Theorem 4.4.10 (Anosov). Let M be a compact manifold with negative
sectional curvature. Then the geodesic flow on the unit tangent bundle is
ergodic with respect to the Liouville measure on T1M.

Thus, the geodesic flows of manifolds with negative curvature were the first
important class of Hamiltonian systems for which the ergodic hypothesis could
be validated rigorously.

4.4.5 Anosov systems

There are two fundamental steps in the proof of Theorem 4.4.10. The first
one is to show that every geodesic flow on a manifold with negative curvature
is uniformly hyperbolic. This means that every trajectory γ of the flow is
contained in invariant submanifolds Ws(γ ) and Wu(γ ) that intersect each other
transversely along γ and satisfy:

• every trajectory in Ws(γ ) is exponentially asymptotic to γ in the future;
• every trajectory in Wu(γ ) is exponentially asymptotic to γ in the past;

(see Figure 4.5), with exponential convergence rates that are uniform, that is,
independent of γ . Moreover, the geodesic flow is transitive. The second main
step in the proof of Theorem 4.4.10 consists of showing that every transitive,
uniformly hyperbolic flow (or transitive Anosov flow) of class C2 that preserves
volume is ergodic. We will comment on this last issue in a little while.

There exists a corresponding notion for discrete time systems: we say that
a diffeomorphism f : N → N on a compact Riemannian manifold is uniformly

γ

Wu (γ)

Ws (γ )

Figure 4.5. Hyperbolic behavior
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hyperbolic (or an Anosov diffeomorphism) if the tangent space to the manifold
at every point z ∈ N admits a direct sum decomposition TzN = Es

z ⊕ Eu
z such

that the decomposition is invariant under the derivative of f :

Df (z)Es
z = Es

f (z) and Df (z)Eu
z = Eu

f (z) for every z ∈ N, (4.4.11)

and the derivative contracts Es
z and expands Eu

z , uniformly:

sup
z∈N
‖Df (z) | Es

z‖< 1 and sup
z∈N
‖Df (z)−1 | Eu

z ‖< 1 (4.4.12)

(for some choice of a norm compatible with the Riemannian metric on M).
One can prove that for each z ∈ N the set Ws(z) of points whose forward

trajectory is asymptotic to the trajectory of z is a differentiable (immersed)
submanifold of N tangent to Es

z at the point z; analogously, the set Ws(z)
of points whose backward trajectory is asymptotic to the trajectory of z is a
differentiable submanifold tangent to Eu

z at the point z. These submanifolds
form foliations (that is, decompositions of N into differentiable submanifolds)
that are invariant under the diffeomorphism:

f (Ws(z))=Ws(f (z)) and f (Wu(z))=Wu(f (z)) for every z ∈ N.

We call Ws(z) the stable manifold (or stable leaf ) and Wu(z) the unstable
manifold (or unstable leaf ) of the point z ∈M.

Concerning the second part of the proof of Theorem 4.4.10, the crucial tech-
nical tool to prove that every transitive, uniformly hyperbolic diffeomorphism
of class C2 that preserves volume is ergodic is the following theorem of Anosov
and Sinai [AS67]:

Theorem 4.4.11 (Absolute continuity). The stable and unstable foliations of
any Anosov diffeomorphism (or flow) of class C2 are absolutely continuous:

1. if X ⊂ N has zero volume then X ∩Ws(x) has volume zero inside Ws(x) for
almost every x ∈ N;

2. if Y ⊂ � is a zero volume subset of some submanifold � transverse to the
stable foliation, then the union of the stable manifolds through the points of
Y has zero volume in N;

and analogously for the unstable foliation.

Ergodicity of the system may then be deduced using the Hopf argument,
which we introduced in a special case in Section 4.2.6. Let us explain this.
Given any continuous function ϕ : N → R, let Eϕ be the set of all points
z ∈ N for which the forward and backward time averages, ϕ+(z) and ϕ−(z),
are well defined and coincide. This set Eϕ has full volume, as we have
seen in Corollary 3.2.8. Observe also that ϕ+ is constant on each stable
manifold and ϕ− is constant on each unstable manifold. So, by the first part
of Theorem 4.4.11, the intersection Yz =Wu(z)∩Eϕ has full volume in Wu(z)
for almost every z ∈ N. Moreover, ϕ− = ϕ+ is constant on each Yz. Fix any
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134 Ergodicity

such z. The transitivity hypothesis implies that the union of all stable manifolds
through the points of Wu(z) is the whole ambient manifold N. Hence, using the
second part of Theorem 4.4.11, the union of the stable manifolds through the
points of Yz has full volume in N. Clearly, ϕ+ is constant on this union. This
shows that the time average of every continuous function ϕ is constant on a
full measure set. Hence, f is ergodic.

We close this section by observing that all the known examples of Anosov
diffeomorphisms are transitive. The corresponding statement for Anosov flows
is false (see Verjovsky [Ver99]). Another open problem in this setting is
whether ergodicity still holds when the Anosov system is only of class C1. It is
known (see [Bow75b, RY80]) that in this case the absolute continuity theorem
(Theorem 4.4.11) is false, in general.

4.4.6 Billiards

As we have seen in Sections 4.4.2 and 4.4.3, non-ergodic systems are quite
common in the realm of Hamiltonian flows and symplectic transformations.
However, this fact alone is not sufficient to invalidate the ergodic hypothesis
of Boltzmann in the context where it was formulated. Indeed, ideal gases are
a special class of systems and it is conceivable that ergodicity could be typical
in this more restricted setting, even it is not typical for general Hamiltonian
systems.

In the 1960’s, the Russian mathematician and theoretical physicist Yakov
Sinai [Sin63] conjectured that Hamiltonian systems formed by spherical
hard balls that hit each other elastically are ergodic. Hard ball systems (see
Example 4.4.13 for a precise definition) had been proposed as a model for the
behavior of ideal gases by the American scientist Josiah Willard Gibbs who,
together with Boltzmann and Scottish mathematician and theoretical physicist
James Clark Maxwell, created the area of statistical mechanics. The ergodic
hypothesis of Boltzmann–Sinai, as Sinai’s conjecture is often referred to, is the
main topic in the present section.

In fact, we are going to discuss the problem of ergodicity for somewhat
more general systems, called billiards, whose formal definition was first given
by Birkhoff in the 1930’s.

In its simplest form, a billiard is given by a bounded connected domain�⊂
R2, called the billiard table, whose boundary ∂� is formed by a finite number
of differentiable curves. We call the corners those points of the boundary where
it fails to be differentiable; by hypothesis, they constitute a finite set C ⊂ ∂�.
One considers a point particle moving uniformly along straight lines inside
�, with elastic reflections on the boundary. That is, whenever the particle hits
∂� \C it is reflected in such a way that the angle of incidence equals the angle
of reflection. When the particle hits some corner it is absorbed: its trajectory is
not defined from then on.
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Figure 4.6. Dynamics of billiards

Let us denote by n the unit vector field orthogonal to the boundary ∂� and
pointing to the inside of�. It defines an orientation in ∂�\C: a vector t tangent
to the boundary is positive if the basis {t,n} of R2 is positive. It is clear that the
motion of the particle is characterized completely by the sequence of collisions
with the boundary. Moreover, each such collision may be described by the
position s ∈ ∂� and the angle of reflection θ ∈ (−π/2,π/2). Therefore, the
evolution of the billiard is governed by the transformation

f : (∂� \C)× (−π/2,π/2)→ ∂�× (−π/2,π/2), (4.4.13)

that associates with each collision (s,θ) the subsequent one (s′,θ ′). See
Figure 4.6.

In the example on the left-hand side of Figure 4.6 the billiard table is a
polygon, that is, the boundary consists of a finite number of straight line
segments. The one trajectory represented in the figure hits one of the corners.
Nearby trajectories, to either side, collide with distinct boundary segments,
with very different angles of incidence. In particular, it is clear that the billiard
transformation (4.4.13) cannot be continuous. Discontinuities may occur even
in the absence of corners. For example, on the right-hand side of Figure 4.6
the boundary has four connected components, all of which are differentiable
curves. Consider the trajectory represented in the figure, tangent to one of the
boundary components. Nearby trajectories, to either side, hit with different
boundary components. Consequently, the billiard map is discontinuous in this
case also.

Example 4.4.12 (Circular billiard table). On the left-hand side of Figure 4.7
we represent a billiard in the unit ball � ⊂ R2. The corresponding billiard
transformation is given by

f : (s,θ) �→ (s− (π − 2θ),θ).

The behavior of this transformation is described geometrically on the
right-hand side of Figure 4.7. Observe that f preserves the area measure dsdθ
and satisfies the twist condition (4.4.4). Note also that f is integrable (in the
sense of Section 4.4.2) and, in particular, the area measure is not ergodic.
We will see in a while (Theorem 4.4.14) that every planar billiard preserves
a natural measure equivalent to the area measure on ∂� × (−π/2,π/2).
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Figure 4.7. Billiard on a circular table

Then, using the previous observations, the KAM theory allows us to prove
that billiards with almost circular tables are not ergodic with respect to that
invariant measure.

The definition of billiard extends immediately to bounded connected
domains � in any Euclidean space Rd, d ≥ 1, whose boundary consists of
a finite number of differentiable hypersurfaces intersecting each other along
submanifolds with codimension larger than 1. We denote by C the union of
the submanifolds. As before, we endow ∂� with the orientation induced by
the unit vector n orthogonal to the boundary and pointing to the “inside” of �.
Elastic reflections on the boundary are defined by the following two conditions:
(i) the incident trajectory segment, the reflected trajectory segment and the
orthogonal vector n are co-planar and (ii) the angle of incidence equals the
angle of reflection. The billiard transformation is defined as in (4.4.13), having
as domain

{(s,v) ∈ (∂� \C)× Sd−1 : v ·n(s) > 0}.
Even more generally, we may take as a billiard table any bounded connected

domain in a Riemannian surface, whose boundary is formed by a finite
number of differentiable hypersurfaces intersecting along higher codimension
submanifolds. The definitions are analogous, except that the trajectories
between consecutive reflections on the boundary are given by segments of
geodesics and angles are measured according to the Riemannian metric on
the manifolds.

Example 4.4.13 (Ideal gases and billiards). Ideally, a gas is formed by a
large number N of molecules (N ≈ 1027) that move uniformly along straight
lines, between collisions, and collide with each other elastically. Check the
right-hand side of Figure 4.8. For simplicity, let us assume that the molecules
are identical spheres and that they are contained in the torus4 of dimension

4 One may replace the torus Td by a more plausible container, such as the d-dimensional cube
[0,1]d , for example. However, the analysis is a bit more complicated in that case, because we
must take into account the collisions of the balls with the container’s walls.
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Figure 4.8. Model for an ideal gas

d≥ 2. Let us also assume that all the molecules move with constant unit speed.
This system can be modelled by a billiard, as follows.

For 1≤ i≤N, denote by pi ∈Td the position of the center of the i-th molecule
Mi. Let ρ > 0 be the radius of each molecule. Then, each state of the system is
entirely described by a value of p= (p1, . . . ,pN) in the set

�= {p= (p1, . . . ,pN) ∈ TNd : ‖pi− pj‖ ≥ 2ρ for every i �= j}
(this set is connected, as long as the radius ρ is sufficiently small).

In the absence of collisions, the point p moves along a straight line inside�,
with constant speed. When two molecules Mi and Mj collide, ‖pi − pj‖ = 2ρ
and the velocity vectors change in the following way. Let vi and vj be the
velocity vectors of the two molecules immediately before the collision and
let Rij be the straight line through pi and pj. The elasticity hypothesis means
that the velocity vectors v′i and v′j immediately after the collision are given by
(check the right-hand side of Figure 4.8):

(i) the components of vi and v′i in the direction of Rij are symmetric and the
same is true for vj and v′j;

(ii) the components of vi and v′i in the direction orthogonal to Rij are equal and
the same is true for vj and v′j .

This means, precisely, that the point p undergoes elastic reflection on
the hypersurface {p ∈ ∂� : ‖pi − pj‖ = 2ρ} of the boundary of � (see
Exercise 4.4.4). Therefore, the motion of the point p corresponds exactly to
the evolution of the billiard in the table �.

The next result places billiards well inside the domain of interest of ergodic
theory. Let ds be the volume measure induced on the boundary ∂� by the
Riemannian metric of the ambient manifold; in the planar case (that is, when
� ⊂ R2), ds is just the arc-length. Denote by dθ the angle measure on each
hemisphere {v ∈ Sd−1 : v ·n(s) > 0}.
Theorem 4.4.14. The transformation f preserves the measure ν = cosθdsdθ
on the domain {(s,v) ∈ ∂�× Sd−1 : v ·n(s) > 0}.
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s

s ′

dθ
dt

s

s ′

dh

Figure 4.9. Calculating the derivative of the billiard map

In what follows we sketch the proof for planar billiards. The reader should
have no trouble checking that all the arguments extend naturally to arbitrary
dimension.

Consider any family of trajectories starting from a given boundary point (this
means that s is fixed), as represented on the left-hand side of Figure 4.9. Let
this family be parameterized by the angle of reflection θ . Denote by �(s,s′) the
length of the line segment connecting s to s′. Then �(s,s′)dθ = dh= cosθ ′ds′

and, thus,

∂s′

∂θ
= �(s,s′)

cosθ ′
.

To calculate the derivative of θ ′ with respect to θ , observe that the variation
of θ ′ is the sum of two components: the first one corresponds to the variation
of θ , whereas the second one arises from the variation of the normal vector
n(s′) as the collision point s′ varies. By the definition of curvature, this
second component is equal to κ(s′)ds′. It follows that dθ ′ = dθ + κ(s′)ds′ and,
consequently,

∂θ ′

∂θ
= 1+ κ(s′)∂s′

∂θ
= 1+ κ(s′)�(s,s′)

cosθ ′
.

This can be summarized as follows:

Df (s,θ)
∂

∂θ
= �(s,s′)

cosθ ′
∂

∂s′
+
(

1+ κ(s′)�(s,s′)
cosθ ′

)
∂

∂θ ′
. (4.4.14)

Next, consider any family of parallel trajectories, as represented on the
right-hand side of Figure 4.9. Let this family be parameterized by the
arc-length t in the direction orthogonal to the trajectories. The variations of
s and s′ along this family are given by −cosθds = dt = cosθ ′ds′. Since the
trajectories all have the same direction, the variations of the angles θ and θ ′

arise, solely, from the variations of the normal vectors n(s) and n(s′) as s and
s′ vary. That is, dθ = κ(s)ds and dθ ′ = κ(s′)ds′. Therefore,

Df (s,θ)

(
− 1

cosθ

∂

∂s
− κ(s)

cosθ

∂

∂θ

)
= 1

cosθ ′
∂

∂s′
+ κ(s′)

cosθ ′
∂

∂θ ′
. (4.4.15)
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4.4 Comments in conservative dynamics 139

Let J(s,θ) be the matrix of the derivative Df (s,θ) with respect to the bases
{∂/∂s,∂/∂θ} and {∂/∂s′,∂/∂θ ′}. The relations (4.4.14) and (4.4.15) imply that

detJ(s,θ)=

∣∣∣∣∣ �(s,s′)
cosθ ′

1
cosθ ′

1+ κ(s′) �(s,s′)
cosθ ′

κ(s′)
cosθ ′

∣∣∣∣∣∣∣∣∣ 0 − 1
cosθ

1 − κ(s)
cosθ

∣∣∣∣ = cosθ

cosθ ′
. (4.4.16)

So, by change of variables,∫
ϕ dν =

∫
ϕ(s′,θ ′)cosθ ′ ds′ dθ ′ =

∫
ϕ(f (s,θ))cosθ ′

cosθ

cosθ ′
dsdθ

=
∫
ϕ(f (s,θ))cosθ dsdθ =

∫
(ϕ ◦ f )dν

for every bounded measurable function ϕ. This proves that f preserves the
measure ν = cosθdsdθ , as we stated.

We call a billiard dispersing if the boundary of the billiard table is strictly
convex at every point, when viewed from the inside. In the planar case, with
the orientation conventions that we adopted, this means that the curvature κ is
negative at every point. Figure 4.10 presents two examples. In the first one,
� ⊂ R2 and the boundary is a connected set formed by the union of five
differentiable curves. In the second example, � ⊂ T2 and the boundary has
three connected components, all of which are differentiable and convex.

The class of dispersing billiards was introduced by Sinai in his 1970
article [Sin70]. The denomination “dispersing” refers to the fact that in
such billiards any (thin) beam of parallel trajectories becomes divergent
upon reflection on the boundary, as illustrated on the left-hand side of
Figure 4.10. Sinai observed that dispersing billiards are hyperbolic systems,
in a non-uniform sense: invariant sub-bundles Es

z and Eu
z as in (4.4.11) exist

at almost every point and, instead of (4.4.12), we have that the derivative
is contracting along Es

z and expanding along Eu
z asymptotically, that is, for

sufficiently large iterates (depending on the point z).

2

∂ Ω

Figure 4.10. Dispersive billiards
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140 Ergodicity

Figure 4.11. Bunimovich stadium and mushroom

The billiards associated with ideal gases (Example 4.4.13) with N = 2
molecules are dispersing: it is easy to see that {(p1,p2)∈R2d : ‖p1−p2‖= 2ρ}
is a convex hypersurface. Consequently, these billiards are hyperbolic, in the
sense of the previous paragraph. Using a subtle version of the Hopf argument,
Sinai proved in [Sin70] that such billiards are ergodic, at least when d = 2.
This was later extended to arbitrary dimension d ≥ 2 by Sinai and his student
Nikolai Chernov [SC87], still in the case N= 2. Thus, dispersing billiards were
the first class of billiards for which ergodicity was proven rigorously.

The case N ≥ 3 of the Boltzmann–Sinai ergodic hypothesis is a lot
more difficult because the corresponding billiards are not dispersing: the
hypersurface

{(p1,p2, . . . ,pN) ∈RNd : ‖p1− p2‖ = 2ρ}
has cylinder geometry, with zero curvature along the direction of the variables
pi, i> 2. Such billiards are called semi-dispersing. Most results in this setting
are due to the Hungarian mathematicians András Krámli, Nándor Simányi and
Domoko Szász. In [KSS91, KSS92] they proved hyperbolicity and ergodicity
for N = 3 and also for N = 4 assuming that d ≥ 3. Later, Simányi [Sim02]
proved hyperbolicity for the general case: any number of spheres, in any
dimension. The problem of ergodicity remains open, in general, although there
are many other partial results.

There are now several known examples of ergodic billiards that are not
dispersing. This even includes some billiards whose boundary curvature is
non-negative at every point. The best-known example is the Bunimovich
stadium, whose boundary is formed by two semi-circles and two straight line
segments. See Figure 4.11. This billiard is hyperbolic, but this property arises
from a different mechanism, called defocusing: a beam of parallel trajectories
reflecting on a concave segment of the billiard table wall starts by focusing, but
then gets dispersed. Another interesting example is the Bunimovich mushroom:
hyperbolic behavior and elliptic behavior coexist on disjoint invariant sets both
with positive measure.

4.4.7 Exercises

4.4.1. We say that ω ∈ Rd is τ -Diophantine if it is (c,τ)-Diophantine, that is, if it
satisfies (4.4.5), for some c > 0. Prove that the set of τ -Diophantine vectors is
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non-empty if and only if τ ≥ d−1. Moreover, show that the set has full Lebesgue
measure in Rd whenever τ is strictly larger than d− 1.

4.4.2. Consider a billiard on a rectangular table. Check that every trajectory that does
not hit any corner either is periodic or is dense in the billiard table.

4.4.3. Show that every billiard on an acute triangle exhibits some periodic trajectory.
[Observation: the same is true for right triangles, but the problem is open for
obtuse triangles.]

4.4.4. Consider the billiard model for ideal gases in Example 4.4.13. Check that elastic
collisions between any two molecules correspond to the elastic reflections of the
billiard point particle on the boundary of �.

4.4.5. Prove Theorem 4.4.9 under the additional hypothesis that the function ρ �→
"(θ ,ρ) is monotone (increasing or decreasing) for every θ ∈R.

4.4.6. Consider the context of Theorem 4.4.9 but, instead of (4.4.10), assume that f
rotates the two boundary components of A with different velocities: there exists
some lift F : R×[a,b]→R×[a,b] and there exist p,q ∈Z with q≥ 1, such that,
denoting Fq = ("q,Rq),[

"q(θ ,a)− p− θ]["q(θ ,b)− p− θ]< 0 for every θ ∈R. (4.4.17)

Show that f has two periodic orbits with period q in the interior of A, at least.
4.4.7. Let � be a convex domain in the plane whose boundary ∂� is a differentiable

curve. Show that the billiard on � has infinitely many periodic orbits.
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