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Ergodic decomposition

For convex subsets of vector spaces with finite dimension, it is clear that every
element of the convex set may be written as a convex combination of the
extremal elements. For example, every point in a triangle may be written as
a convex combination of the vertices of the triangle. In view of the results in
Section 4.3, it is natural to ask whether a similar property holds in the space
of invariant probability measures, that is, whether every invariant measure is a
convex combination of ergodic measures.

The ergodic decomposition theorem, which we prove in this chapter
(Theorem 5.1.3), asserts that the answer is positive, except that the number
of “terms” in this combination is not necessarily finite, not even countable.
This theorem has several important applications; in particular, it permits the
reduction of the proof of many results to the case when the system is ergodic.

We are going to deduce the ergodic decomposition theorem from another
important result from measure theory, the Rokhlin disintegration theorem.
The simplest instance of this theorem holds when we have a partition of
a probability space (M,μ) into finitely many measurable subsets P1, . . . ,PN

with positive measure. Then, obviously, we may write μ as a linear
combination

μ=μ(P1)μ1+·· ·+μ(PN)μN

of its normalized restrictions μi(E)= μ(E∩Pi)/μ(Pi) to each of the partition
elements. The Rokhlin disintegration theorem (Theorem 5.1.11) states that this
type of disintegration of the probability measure is possible for any partition
P (possibly uncountable!) that can be obtained as the limit of an increasing
sequence of finite partitions.

5.1 Ergodic decomposition theorem

Before stating the ergodic decomposition theorem, let us analyze a couple of
examples that help motivate and clarify its content:
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5.1 Ergodic decomposition theorem 143

Example 5.1.1. Let f : [0,1] → [0,1] be given by f (x) = x2. The Dirac
measures δ0 and δ1 are invariant and ergodic for f . It is also clear that x= 0 and
x = 1 are the unique recurrent points for f and so every invariant probability
measure μ must satisfy μ({0,1}) = 1. Then, μ = μ({0})δ0 + μ({1})δ1 is a
(finite) convex combination of the ergodic measures.

Example 5.1.2. Let f :T2 →T2 be given by f (x,y)= (x+y,y). The Lebesgue
measure m on the torus is preserved by f . Observe that every horizontal circle
Hy = S1×{y} is invariant under f and the restriction f : Hy →Hy is the rotation
Ry. Let my be the Lebesgue measure on Hy. Observe that my is also invariant
under f . Moreover, my is ergodic whenever y is irrational. On the other hand,
by the Fubini theorem,

m(E)=
∫

my(E)dy for every measurable set E. (5.1.1)

The identity is not affected if we consider the integral restricted to the subset
of irrational values of y. Then (5.1.1) presents m as an (uncountable) convex
combination of ergodic measures.

5.1.1 Statement of the theorem

Let us start by introducing some useful terminology. In what follows, (M,B,μ)
is a probability space and P is a partition of M into measurable subsets. We
denote by π : M→P the canonical projection that assigns to each point x ∈M
the element P(x) of the partition that contains it. This projection map endows
P with the structure of a probability space, as follows. Firstly, by definition, a
subset Q of P is measurable if and only if its pre-image

π−1(Q)= union of all P ∈P that belong to Q

is a measurable subset of M. It is easy to check that this definition is consistent:
the family B̂ of measurable subsets is a σ -algebra in P . Then, we define the
quotient measure μ̂ by

μ̂(Q)=μ(π−1(Q)) for every Q ∈ B̂.

Theorem 5.1.3 (Ergodic decomposition). Let M be a complete separable
metric space, f : M → M be a measurable transformation and μ be an
invariant probability measure. Then there exist a measurable set M0 ⊂ M
with μ(M0) = 1, a partition P of M0 into measurable subsets and a family
{μP : P ∈P} of probability measures on M, satisfying

(i) μP(P)= 1 for μ̂-almost every P ∈P;
(ii) P �→ μP(E) is measurable, for every measurable set E⊂M;

(iii) μP is invariant and ergodic for μ̂-almost every P ∈P;
(iv) μ(E)= ∫ μP(E)dμ̂(P), for every measurable set E⊂M.
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144 Ergodic decomposition

Part (iv) of the theorem means that μ is a convex combination of the ergodic
probability measures μP, where the “weight” of each μP is determined by the
probability measure μ̂. Part (ii) ensures that the integral in (iv) is well defined.
Moreover (see Exercise 5.1.3), it implies that the map P→M1(M) given by
P �→μP is measurable.

5.1.2 Disintegration of a measure

We are going to deduce Theorem 5.1.3 from an important result in measure
theory, the Rokhlin disintegration theorem, which has many other applications.
To state this theorem we need the following notion.

Definition 5.1.4. A disintegration of μwith respect to a partition P is a family
{μP : P ∈P} of probability measures on M such that, for every measurable set
E⊂M:

(i) μP(P)= 1 for μ̂-almost every P ∈P;
(ii) the map P→R, defined by P �→μP(E) is measurable;

(iii) μ(E)= ∫ μP(E)dμ̂(P).

Recall that the partition P inherits from M a natural structure of probability
space, with a σ -algebra B̂ and a probability measure μ̂. The measures μP are
called conditional probabilities of μ with respect to P .

Example 5.1.5. Let P ={P1, . . . ,Pn} be a finite partition of M into measurable
subsets with μ(Pi) > 0 for every i. The quotient measure μ̂ is given by
μ̂({Pi})=μ(Pi). Consider the normalized restriction μi of μ to each Pi:

μi(E)= μ
(
E∩Pi

)
μ(Pi)

for every measurable set E⊂M.

Then {μ1, . . . ,μn} is a disintegration of μ with respect to P: it is clear that
μ(E)=∑n

i=1 μ̂({Pi})μi(E) for every measurable set E⊂M.

This construction extends immediately to countable partitions. In the next
example we treat an uncountable case:

Example 5.1.6. Let M=T2 and P be the partition of M into horizontal circles
S1×{y}, y ∈ S1. Let m be the Lebesgue measure on T2 and m̂ be the Lebesgue
measure on S1. Denote by my the Lebesgue measure (arc-length) on each
horizontal circle S1×{y}. By the Fubini theorem,

m(E)=
∫

my(E)dm̂(y) for every measurable set E⊂ T2.

Hence, {my : y ∈ S1} is a disintegration of m with respect to P .

The next proposition asserts that disintegrations are essentially unique, when
they exist. The hypothesis is very general: it holds, for example, if M is a
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5.1 Ergodic decomposition theorem 145

topological space with a countable basis of open sets and B is the Borel
σ -algebra:

Proposition 5.1.7. Assume that the σ -algebra B admits some countable
generator. If {μP : P∈P} and {μ′P : P∈P} are disintegrations of μ with respect
to P , then μP =μ′P for μ̂-almost every P ∈P .

Proof. Let � be a countable generator of the σ -algebra B and A be the algebra
generated by �. Note that A is countable, since it coincides with the union
of the (finite) algebras generated by the finite subsets of �. For each A ∈ A,
consider the sets

QA = {P ∈P :μP(A) > μ
′
P(A)} and RA = {P ∈P : μP(A) < μ

′
P(A)}.

If P ∈ QA then P is contained in π−1(QA) and, using property (i) in the
definition of disintegration, μP(A ∩ π−1(QA)) = μP(A). Otherwise, P is
disjoint from π−1(QA) and, hence, μP(A ∩ π−1(QA)) = 0. Moreover, these
conclusions remain valid when one takes μ′P in the place of μP. Hence, using
property (iii) in the definition of disintegration,

μ
(
A∩π−1(QA)

)=
⎧⎪⎨⎪⎩
∫
P μP

(
A∩π−1(QA)

)
dμ̂(P)= ∫QA

μP(A)dμ̂(P)∫
P μ

′
P

(
A∩π−1(QA)

)
dμ̂(P)= ∫QA

μ′P(A)dμ̂(P).

Since μP(A) > μ′P(A) for every P ∈QA, this implies that μ̂(QA)= 0 for every
A ∈A. A similar argument shows that μ̂(RA)= 0 for every A ∈A. So,⋃

A∈A
QA ∪RA

is also a subset of P with measure zero. For every P in the complement of
this subset, the measures μP and μ′P coincide on the generating algebra A and,
consequently, they coincide on the whole σ -algebra B.

On the other hand, disintegrations may fail to exist:

Example 5.1.8. Let f : S1 → S1 be an irrational rotation and P be the partition
of S1 whose elements are the orbits {f n(x) : n ∈ Z} of f . Assume that there
exists a disintegration {μP : P ∈P} of the Lebesgue measure μ with respect to
P . Consider the iterates {f∗μP : P ∈ P} of the conditional probabilities. Since
the partition elements are invariant sets, f∗μP(P) = μP(P) = 1 for μ̂-almost
every P. It is clear that, given any measurable set E⊂M,

P �→ f∗μP(E)=μP(f
−1(E))

is a measurable function. Moreover, since μ is an invariant measure,

μ(E)=μ(f−1(E))=
∫
μP(f

−1(E))dμ̂(P)=
∫

f∗μP(E)dμ̂(P).
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146 Ergodic decomposition

These observations show that {f∗μP : P ∈ P} is a disintegration of μ with
respect to the partition P . By uniqueness (Proposition 5.1.7), it follows that
f∗μP = μP for μ̂-almost every P. That is, almost every conditional probability
μP is invariant. That is a contradiction, because P={f n(x) : n∈Z} is an infinite
countable set and so there can be no invariant probability measure giving P a
positive weight.

The theorem of Rokhlin states that disintegrations always exist if the
partition P is the limit of an increasing sequence of countable partitions and
the space M is reasonably well behaved. The precise statement is given in the
section that follows.

5.1.3 Measurable partitions

We say that P is a measurable partition if there exists some measurable set
M0 ⊂M with full measure such that, restricted to M0,

P =
∞∨

n=1

Pn

for some increasing sequence P1 ≺P2 ≺ ·· · ≺Pn ≺ ·· · of countable partitions
(see also Exercise 5.1.1). By Pi ≺ Pi+1 we mean that every element of Pi+1 is
contained in some element of Pi or, equivalently, every element of Pi coincides
with a union of elements of Pi+1. Then we say that Pi is coarser than Pi+1 or,
equivalently, that Pi+1 is finer than Pi.

Represent by
∨∞

n=1Pn the partition whose elements are the non-empty
intersections of the form

⋂∞
n=1 Pn with Pn ∈ Pn for every n. Equivalently, this

is the coarser partition such that

Pn ≺
∞∨

n=1

Pn for every n.

It follows immediately from the definition that every countable partition is
measurable. It is easy to find examples of uncountable measurable partitions:

Example 5.1.9. Let M = T2, endowed with the Lebesgue measure m, and let
P be the partition of M into horizontal circles S1×{y}. Then P is a measurable
partition. To see that, consider

Pn = {S1× I(i,n) : i= 1, . . . ,2n},
where I(i,n), 1 ≤ i ≤ 2n is the segment of S1 = R/Z corresponding to the
interval [(i − 1)/2n, i/2n) ⊂ R. The sequence (Pn)n is increasing and P =∨∞

n=1Pn.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.006
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:26, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.006
https://www.cambridge.org/core


5.1 Ergodic decomposition theorem 147

On the other hand, not all partitions are measurable:

Example 5.1.10. Let f : M → M be a measurable transformation and μ
be an ergodic probability measure. Let P be the partition of M whose
elements are the orbits of f . Then P is not measurable, unless f exhibits an
orbit with full measure. Indeed, suppose that there exists a non-decreasing
sequence P1 ≺ P2 ≺ ·· · ≺ Pn ≺ ·· · of countable partitions such that P =∨∞

n=1Pn restricted to some full measure subset. This last condition implies
that almost every orbit of f is contained in some element Pn of the partition
Pn. In other words, up to measure zero, every element of Pn is invariant
under f . By ergodicity, it follows that for every n there exists exactly
one Pn ∈ Pn such that μ(Pn) = 1. Denote P = ⋂∞

n=1 Pn. Then P is an
element of the partition

∨∞
n=1Pn = P , that is, P is an orbit of f , and it has

μ(P)= 1.

Theorem 5.1.11 (Rokhlin disintegration). Assume that M is a complete
separable metric space and P is a measurable partition. Then the probability
measure μ admits some disintegration with respect to P .

Theorem 5.1.11 is proven in Section 5.2. The hypothesis that P is
measurable is, actually, also necessary for the conclusion of the theorem (see
Exercise 5.2.2).

5.1.4 Proof of the ergodic decomposition theorem

At this point we are going to use Theorem 5.1.11 to prove the ergodic
decomposition theorem. Let U be a countable basis of open sets of M and
A be the algebra generated by U . Note that A is countable and that it generates
the Borel σ -algebra of M. By the ergodic theorem of Birkhoff, for every
A ∈A there exists a set MA ⊂M with μ(MA)= 1 such that the mean sojourn
time τ(A,x) is well defined for every x ∈ MA. Let M0 =⋂A∈A MA. Note that
μ(M0)= 1, since the intersection is countable.

Now consider the partition P of M0 defined as follows: two points x,y ∈M0

are in the same element of P if and only if τ(A,x)= τ(A,y) for every A ∈A.
We claim that this partition is measurable. To prove that it is so, consider any
enumeration {Ak : k∈N} of the elements of the algebra A and let {qk : k∈N} be
an enumeration of the rational numbers. For each n ∈N, consider the partition
Pn of M0 defined as follows: two points x,y ∈M0 are in the same element of
Pn if and only if, given any i, j ∈ {1, . . . ,n},

either τ(Ai,x)≤ qj and τ(Ai,y)≤ qj

or τ(Ai,x) > qj and τ(Ai,y) > qj.

It is clear that every Pn is a finite partition, with no more than 2n2
elements. It

follows immediately from the definition that x and y are in the same element
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148 Ergodic decomposition

of
∨∞

n=1Pn if and only if τ(Ai,x)= τ(Ai,y) for every i. This means that

P =
∞∨

n=1

Pn,

which implies our claim.
So, by Theorem 5.1.11, there exists some disintegration {μP : P ∈ P} of μ

with respect to P . Parts (i), (ii) and (iv) of Theorem 5.1.3 are contained in the
definition of disintegration. To prove part (iii) it suffices to show that μP is
invariant and ergodic for μ̂-almost every P, which is what we do now.

Consider the family of probability measures {f∗μP : P ∈ P}. Observe that
every P∈P is an invariant set, since mean sojourn times are constant on orbits.
It follows that

f∗μP(P)=μP(f
−1(P))=μP(P)= 1.

Moreover, given any measurable set E⊂M, the function

P �→ f∗μP(E)=μP(f
−1(E))

is measurable and, using the fact that μ is invariant under f ,

μ(E)=μ(f−1(E))=
∫
μP(f

−1(E))dμ̂(P)=
∫

f∗μP(E)dμ̂(P).

This shows that {f∗μP : P ∈ P} is a disintegration of μ with respect to P . By
uniqueness (Proposition 5.1.7), it follows that f∗μP =μP for almost every P.

We are left to prove that μP is ergodic for almost every P. Since μ(M0)= 1,
we have that μP(M0 ∩P)= 1 for almost every P. Hence, it is enough to prove
that, given any P ∈ P and any measurable set E ⊂M, the mean sojourn time
τ(E,x) is well defined for every x ∈M0 ∩P and is constant on that set. Fix P
and denote by C the class of all measurable sets E for which this holds. By
construction, C contains the generating algebra A. Observe that if E1,E2 ∈ C
with E1 ⊃ E2 then E1 \E2 ∈ C:

τ(E1 \E2,x)= τ(E1,x)− τ(E2,x)

is well defined and it is constant on M0 ∩ P. In particular, if E ∈ C then Ec is
also in C. Analogously, C is closed under countable pairwise disjoint unions: if
Ej ∈ C are pairwise disjoint then

τ
(⋃

j

Ej,x
)
=
∑

j

τ(Ej,x)

is well defined and it is constant on M0 ∩ P. It is easy to deduce that C is a
monotone class: given any sequences An,Bn ∈ C, n ≥ 1 with An ⊂ An+1 and
Bn ⊃ Bn+1 for every n, the two previous observations yield

∞⋃
n=1

An = A1 ∪
∞⋃

n=1

(An+1 \An) ∈ C and
∞⋂

n=1

Bn =
( ∞⋃

n=1

Bc
n

)c ∈ C.
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5.1 Ergodic decomposition theorem 149

By Theorem A.1.18, it follows that C contains the Borel σ -algebra of M.
This concludes the proof of Theorem 5.1.3 from Theorem 5.1.11.

5.1.5 Exercises

5.1.1. Show that a partition P is measurable if and only if there exist measurable subsets
M0,E1,E2, . . . ,En, . . . such that μ(M0)= 1 and, restricted to M0,

P =
∞∨

n=1

{En,M \En}.

5.1.2. Let μ be an ergodic probability measure for a transformation f . Then μ is also
invariant under f k for any k≥ 2. Describe the ergodic decomposition of μ for the
iterate f k.

5.1.3. Let M be a metric space and X be a measurable space. Prove that the following
conditions are all equivalent:
(a) the map ν : X→M1(M), x �→ νx is measurable;
(b) the map X → R, x �→ ∫

ϕ dνx is measurable, for every bounded continuous
function ϕ : M→R;

(c) the map X →R, x �→ ∫
ψ dνx is measurable, for every bounded measurable

function ψ : M→R;
(d) the map X→R, x �→ νx(E) is measurable, for every measurable set E⊂M.

5.1.4. Prove that if {μP : P ∈P} is a disintegration of μ then∫
ψ dμ=

∫ (∫
ψ dμP

)
dμ̂(P)

for every bounded measurable function ψ : M→R.
5.1.5. Let μ be a probability measure invariant under a measurable transformation

f : M → M. Let f̂ : M̂ → M̂ be the natural extension of f and μ̂ be the lift
of μ (Section 2.4.2). Relate the ergodic decomposition of μ to the ergodic
decomposition of μ̂.

5.1.6. When M is a compact metric space, we may obtain the ergodic decomposition of
an invariant probability measure μ by taking for M0 the subset of points x ∈M
such that

μx = lim
n

1

n

n−1∑
j=0

δf j(x)

exists in the weak∗ topology and taking for P the partition of M0 defined
by P(x) = P(y) ⇔ μx = μy. Check the details of this alternative proof of
Theorem 5.1.3 for compact metric spaces.

5.1.7. Let σ :�→� be the shift map in � = {1, . . . ,d}Z. Consider the partition W s of
� into “stable sets”

W s((an)n)= {(xn)n : xn = an for every n≥ 0}.
Given any probability measureμ invariant under σ , let {μP : P∈P} be an ergodic
decomposition of μ. Check that P ≺W s, restricted to a full measure subset of M.
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150 Ergodic decomposition

5.2 Rokhlin disintegration theorem

Now we prove Theorem 5.1.11. Fix any increasing P1 ≺ P2 ≺ ·· · ≺ Pn ≺ ·· ·
of countable partitions such that P =∨∞

n=1Pn restricted to some full measure
set M0 ⊂M. As before, we use Pn(x) to denote the element of Pn that contains
a given point x ∈M.

5.2.1 Conditional expectations

Let ψ : M → R be any bounded measurable function. For each n ≥ 1, define
en(ψ) : M→R as follows:

en(ψ ,x)=
⎧⎨⎩

1

μ(Pn(x))

∫
Pn(x)

ψ dμ if μ(Pn(x)) > 0

0 otherwise.
(5.2.1)

Since the partitions Pn are countable, the second case of the definition
corresponds to a subset of points with total measure zero. Observe also that
en(ψ) is constant on each Pn ∈Pn; let us denote by En(ψ ,Pn) the value of that
constant. Then,∫

ψ dμ=
∑
Pn

∫
Pn

ψ dμ=
∑
Pn

μ(Pn)En(ψ ,Pn)=
∫

en(ψ)dμ (5.2.2)

for every n∈N (the sums involve only partition elements Pn ∈Pn with positive
measure).

Lemma 5.2.1. Given any bounded measurable function ψ : M → R, there
exists a subset Mψ of M with μ(Mψ)= 1 such that

(i) e(ψ ,x)= limn en(ψ ,x) exists for every x ∈Mψ ;
(ii) e(ψ) : Mψ→R is measurable and constant on each P ∈P;

(iii)
∫
ψ dμ= ∫ e(ψ)dμ.

Proof. Initially, suppose that ψ ≥ 0. For each α < β, let S(α,β) be the set of
points x ∈M such that

liminf
n

en(ψ ,x) < α < β < limsup
n

en(ψ ,x).

It is clear that the sequence en(ψ ,x) diverges if and only if x∈ S(α,β) for some
pair of rational numbers α < β. In other words, the limit e(ψ ,x) exists if and
only if x belongs to the intersection Mψ of all S(α,β)c with rational α < β. As
this is a countable intersection, in order to prove that μ(Mψ)= 1 it suffices to
show that μ(S(α,β))= 0 for every α < β. We do this next.

Let α and β be fixed and denote S= S(α,β). Given x ∈ S, fix any sequence
of integers 1≤ ax

1 < bx
1 < · · ·< ax

i < bx
i < · · · such that

eax
i
(ψ ,x) < α and ebx

i
(ψ ,x) > β for every i≥ 1.
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5.2 Rokhlin disintegration theorem 151

Define Ai to be the union of the partition elements Ai(x)= Pax
i
(x) and Bi to be

the union of the partition elements Bi(x)= Pbx
i
(x) obtained in this way, for all

points x ∈ S. By construction, S⊂ Ai+1 ⊂ Bi ⊂ Ai for every i≥ 1. In particular,
S is contained in the set

S̃=
∞⋂

i=1

Bi =
∞⋂

i=1

Ai .

Since the sequence Pn, n≥ 1, is monotone increasing, given any two of the sets
Ai(x)= Pax

i
(x) that form Ai, either they are disjoint or one is contained in the

other. It follows that the maximal sets Ai(x) are pairwise disjoint and, hence,
they constitute a partition of Ai. Hence, adding only over such maximal sets
with positive measure,∫

Ai

ψ dμ=
∑
Ai(x)

∫
Ai(x)

ψ dμ≤
∑
Ai(x)

αμ(Ai(x))= αμ(Ai),

for every i≥ 1. Analogously,∫
Bi

ψ dμ=
∑
Bi(x)

∫
Bi(x)

ψ dμ≥
∑
Bi(x)

βμ(Bi(x))= βμ(Bi).

Since Ai ⊃ Bi and we are assuming that ψ ≥ 0, it follows that

αμ(Ai)≥
∫

Ai

ψ dμ≥
∫

Bi

ψ dμ≥ βμ(Bi),

for every i ≥ 1. Taking the limit as i→∞, we find that αμ(̃S) ≥ βμ(̃S). This
implies that μ(̃S) = 0 and, hence, μ(S) = 0. This proves the claim when ψ is
non-negative. The general case follows immediately, since we may always write
ψ =ψ+−ψ−, whereψ± are measurable, non-negative and bounded. Note that
en(ψ) = en(ψ

+)− en(ψ
−) for every n ≥ 1 and, hence, the conclusion of the

lemma holds for ψ if it holds for ψ+ and ψ−. This ends the proof of claim (i).
The other claims are simple consequences of the definition. The fact that

e(ψ) is measurable follows directly from Proposition A.1.31. Since Pn is
coarser than P , it is clear that en(ψ) is constant on each P ∈ P , restricted to a
subset of M with full measure. Hence, the same is true for e(ψ). This proves
part (ii). Observe also that |en(ψ)| ≤ sup |ψ | for every n ≥ 1. Hence, we may
use the dominated convergence theorem to pass to the limit in (5.2.2). In this
way, we get part (iii).

We are especially interested in the case when ψ is a characteristic function:
ψ =XA for some measurable set A⊂M. In this case, the definition means that

e(ψ ,x)= lim
n

μ
(
Pn(x)∩A

)
μ(Pn(x))

. (5.2.3)

We denote by PA the subset of elements P of the partition P that intersect
Mψ . Observe that μ̂(PA)= 1. Moreover, we define E(A) : PA → R by setting
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152 Ergodic decomposition

E(A,P)= e(ψ ,x) for any x ∈Mψ ∩P. Note that e(ψ)= E(A) ◦π . Hence, the
function E(A) is measurable and satisfies:∫

ψ dμ=
∫

e(ψ)dμ=
∫

E(A)dμ̂. (5.2.4)

5.2.2 Criterion for σ -additivity

The hypothesis that the ambient space M is complete separable metric space is
used in the proof of the important criterion for σ -additivity that we now state
and prove:

Proposition 5.2.2. Let M be a complete separable metric space and A be an
algebra generated by a countable basis U = {Uk : k ∈ N} of open sets of M.
Let μ : A→[0,1] be an additive function with μ(∅)= 0. Then μ extends to a
probability measure on the Borel σ -algebra of M.

First, let us outline the proof. We consider the product space � = {0,1}N,
endowed with the topology generated by the cylinders

[0;a0, . . . ,as] = {(ik)k∈N : i0 = a0, . . . , is = as}, s≥ 0.

Note that � is compact (Exercise A.1.11). Using the fact that M is a complete
metric space, we will show that the map

γ : M→�, γ (x)= (XUk(x)
)

k∈N
is a measurable embedding of M inside �. Moreover, the function μ yields an
additive function ν defined on the algebra A� generated by the cylinders of �.
This algebra is compact (Definition A.1.15), since every element is compact.
Hence, ν extends to a probability measure on the Borel σ -algebra of �; we
still represent this extension by ν. We will show that the image γ (M) has full
measure for ν. Then, the image γ−1∗ ν is a probability measure on the Borel
σ -algebra of M. Finally, we will check that this probability measure is an
extension of the function μ.

Now let us detail these arguments. In what follows, given any set A⊂M, we
denote A1 = A and A0 = Ac.

Lemma 5.2.3. The image γ (M) is a Borel subset of �.

Proof. Let x ∈M and (ik)k = γ (x). It is clear that

(A)
⋂k

j=0 U
ij
j �= ∅ for every k ∈N,

since x is in the intersection. Moreover, since U is a basis of open sets of M,

(B) there exists k ∈N such that ik = 1 and diamUk ≤ 1, and

(C) for every k ∈N such that ik = 1 there exists l(k) > k such that il(k) = 1 and
Ūl(k) ⊂Uk and diamUl(k) ≤ diamUk/2.
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5.2 Rokhlin disintegration theorem 153

Conversely, suppose that (ik)k ∈� satisfies conditions (A), (B) and (C). We are
going to show that there exists x ∈M such that γ (x)= (ik)k. For that, define

Fn =
n⋂

k=0

Vk,

where Vk = Uc
k if ik = 0 and Vk = Ūl(k) if ik = 1. Then (Fn)n is a decreasing

sequence of closed sets. Condition (A) assures that Fn �= ∅ for every n ≥ 1.
Conditions (B) and (C) imply that the diameter of Fn converges to zero as
n →∞. Then, since M is a complete metric space, the intersection

⋂
n Fn

contains some point x. By construction, Fn is contained in
⋂n

k=0 Uik
k for every

n. It follows that

x ∈
∞⋂

k=0

Uik
k ,

that is, γ (x)= (ik)k. In this way, we have shown that the image of γ is perfectly
characterized by the conditions (A), (B) and (C).

To conclude the proof it suffices to show that the subset described by each of
these conditions may be constructed from cylinders through countable unions
and intersections. Given k ∈N, let N(k) be the set of (k+1)-tuples (a0, . . . ,ak)

in {0,1} such that Ua0
0 ∩·· ·∩Uak

k �= ∅. Condition (A) corresponds to the subset

∞⋂
k=0

⋃
(a0,...,ak)∈N(k)

[0;a0, . . . ,ak].

Let D= {k ∈N : diamUk ≤ 1}. Then, condition (B) corresponds to⋃
k∈D

⋃
(a0,...,ak−1)

[0;a0, . . . ,ak−1,1].

Finally, given any k ∈ N, let L(k) be the set of all l> k such that Ūl ⊂ Uk and
diamUl ≤ diamUk/2. Condition (C) corresponds to the subset

∞⋂
k=0

⋃
a0,...,ak−1

(
[0;a0, . . . ,ak−1,0]

∪
⋃

l∈L(k)

⋃
ak+1,...,al−1

[0;a0, . . . ,ak−1,1,ak+1, . . . ,al−1,1]
)

.

This completes the proof of the lemma.

Corollary 5.2.4. The map γ : M → γ (M) is a measurable bijection whose
inverse is also measurable.

Proof. Given any points x �= y in M, there exists k ∈ N such that Uk contains
one of the points but not the other. This ensures that γ is injective. For any
s≥ 0 and a0, . . . ,as ∈ {0,1},

γ−1([0;a0, . . . ,as])=Ua0
0 ∩ ·· · ∩Uas

s . (5.2.5)
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154 Ergodic decomposition

This implies that γ is measurable, because the cylinders generate the Borel
σ -algebra of �. Next, observe that

γ (Ua0
0 ∩ ·· · ∩Uas

s )= [0;a0, . . . ,as] ∩ γ (M) (5.2.6)

for every s,a0, . . . ,as. Using Lemma 5.2.3, it follows that γ (Ua0
0 ∩ ·· · ∩Uas

s )

is a Borel subset of � for every s,a0, . . . ,as. This proves that the inverse
transformation γ−1 is measurable.

Now we are ready to prove that μ extends to a probability measure on
the Borel σ -algebra of M, as claimed in Proposition 5.2.2. For that, let us
consider the algebra A� generated by the cylinders of �. Note that the
elements of A are the finite pairwise disjoint unions of cylinders. In particular,
every element of A� is compact and, consequently, A� is a compact algebra
(Definition A.1.15). Define:

ν([0;a0, . . . ,as])=μ
(
Ua0

0 ∩ ·· · ∩Uas
s

)
, (5.2.7)

for every s≥ 0 and a0, . . . ,as in {0,1}. Then ν is an additive function in the set
of all cylinders, with values in [0,1]. It extends in a natural way to an additive
function defined on the algebra A� , which we still denote as ν.

It is clear that ν(�)= 1. Moreover, since the algebra A� is compact, we may
use Theorem A.1.14 to conclude that the function ν :A�→[0,1] is σ -additive.
Hence, by Theorem A.1.13, the function ν extends to a probability measure
defined on the Borel σ -algebra of �. Given any cover C of γ (M) by cylinders,
it follows from the definition (5.2.7) that

ν
(⋃

C∈C
C
)
=μ

(⋃
C∈C
γ−1(C)

)
=μ(M)= 1.

Taking the infimum over all covers, we conclude that ν(γ (M))= 1.
By Corollary 5.2.4, the image γ−1∗ ν is a Borel probability measure on M.

By definition, and using the relation (5.2.6),

γ −1
∗ ν

(
Ua0

0 ∩ ·· · ∩Uas
s

)= ν(γ(Ua0
0 ∩ ·· · ∩Uas

s

))= ν([0;a0, . . . ,as] ∩ γ (M)
)

= ν([0;a0, . . . ,as])=μ
(
Ua0

0 ∩ ·· · ∩Uas
s

)
for any s,a0, . . . ,as. This implies that γ−1∗ ν is an extension of the function
μ : A→[0,1]. Therefore, the proof of Proposition 5.2.2 is complete.

5.2.3 Construction of conditional measures

Let U ={Uk : k∈N} be a basis of open sets of M and A be the algebra generated
by U . It is clear that A generates the Borel σ -algebra of M. Observe also that
A is countable: it coincides with the union of the (finite) algebras generated by
the subsets {Uk : 0≤ k≤ n}, for every n≥ 1. Define

P∗ =
⋂
A∈A

PA.
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5.2 Rokhlin disintegration theorem 155

Then μ̂(P∗)= 1, since the intersection is countable. For each P ∈P∗, define

μP : A→[0,1], μP(A)= E(A,P). (5.2.8)

In particular, μP(M)= E(M,P)= 1. It is clear that μP is an additive function:
the definition (5.2.3) gives that

A∩B= ∅ ⇒ E
(
A∪B,P

)= E(A,P)+E(B,P) for every P ∈P∗.

By Proposition 5.2.2, it follows that this function extends to a probability
measure defined on the Borel σ -algebra of M, which we still denote as μP.
We are left to check that this family of measures {μP : P ∈ P∗} satisfies all the
conditions in the definition of disintegration (Definition 5.1.4).

Let us start with condition (i). Let P ∈P∗ and, for every n≥ 1, let Pn be the
element of the partition Pn that contains P. Observe that if A ∈A is such that
A∩Pn = ∅ for some n then

μP(A)= E(A,P)= lim
m

μ
(
A∩Pm

)
μ(Pm)

= 0,

since Pm ⊂ Pn for every m≥ n. Fix n. For each s≥ 0, let Ps
n be the union of all

sets of the form Ua0
0 ∩ ·· · ∩Uas

s that intersect Pn. By the previous observation,
the cylinders of length s + 1 that are not in Ps

n have measure zero for μP.
Therefore, μP(Ps

n) = 1 for every s ≥ 0. Passing to the limit when s →∞,
we conclude that μP(U) = 1 for every open set U that contains Pn. Since the
measure μP is regular (Proposition A.3.2), it follows that μP(Pn)= 1. Passing
to the limit when n→∞, we find that μP(P)= 1 for every P ∈P∗.

Finally, let C denote the family of all measurable sets E ⊂ M for which
conditions (ii) and (iii) hold. By construction (recall Lemma 5.2.1), given any
A ∈A, the function P �→ μP(A)= E(A,P) is measurable and satisfies

μ(A)=
∫

E(A,P)dμ̂(P)=
∫
μP(A)dμ̂(P).

This means that A⊂ C. We claim that C is a monotone class. Indeed, suppose
that B is the union of an increasing sequence (Bj)j of sets in C. Then, by
Proposition A.1.31,

P �→μP(B)= sup
j
μP(Bj) is a measurable function

and, using the monotone convergence theorem,

μ(B)= lim
n
μ(Bn)= lim

n

∫
μP(Bn)dμ̂=

∫
lim

n
μP(Bn)dμ̂=

∫
μP(B)dμ̂.

This means that B ∈ C. Analogously, if B is the intersection of a decreasing se-
quence of sets in C then P �→μP(B) is measurable and μ(B)= ∫ μP(B)dμ̂(P).
That is, B ∈ C. This proves that C is a monotone class, as we claimed. By
Theorem A.1.18 it follows that C coincides with the Borel σ -algebra of M.

The proof of Theorem 5.1.11 is complete.
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156 Ergodic decomposition

5.2.4 Exercises

5.2.1. Let P and Q be measurable partitions of (M,B,μ) such that P ≺Q up to measure
zero. Let {μP : P ∈ P} be a disintegration of μ with respect to P and, for every
P ∈P , let {μP,Q : Q ∈Q,Q⊂ P} be a disintegration of μP with respect to Q. Let
π : Q→ P be the canonical projection, such that Q ⊂ π(Q) for almost every
Q ∈Q. Show that {μπ(Q),Q : Q ∈Q} is a disintegration of μ with respect to Q.

5.2.2. (Converse to the theorem of Rokhlin) Let M be a complete separable metric
space. Show that if P satisfies the conclusion of Theorem 5.1.11, that is, if μ
admits a disintegration with respect to P , then the partition P is measurable.

5.2.3. Let P1 ≺ ·· · ≺ Pn ≺ ·· · be an increasing sequence of countable partitions such
that the union

⋃
nPn generates the σ -algebra B of measurable sets, up to measure

zero. Show that the conditional expectation e(ψ)= limn en(ψ) coincides with ψ
at almost every point, for every bounded measurable function.

5.2.4. Prove Proposition 2.4.4, using Proposition 5.2.2.
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