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Unique ergodicity

This chapter is dedicated to a distinguished class of dynamical systems,
characterized by the fact that they admit exactly one invariant probability
measure. Initially, in Section 6.1, we give alternative formulations of this
property and we analyze the properties of the unique invariant measure.

The relation between unique ergodicity and minimality is another important
theme. A dynamical system is said to be minimal if every orbit is dense in the
ambient space. As we observe in Section 6.2, every uniquely ergodic system is
minimal, restricted to the support of the invariant measure, but the converse is
not true, in general.

The main construction of uniquely ergodic transformations is algebraic in
nature. In Section 6.3 we introduce the notion of the Haar measure of a
topological group and we show that every transitive translation on a compact
metrizable topological group is minimal and even uniquely ergodic: the Haar
measure is the unique invariant probability measure.

In Section 6.4 we present a remarkable application of the idea of unique
ergodicity in the realm of arithmetics: the theorem of Hermann Weyl on the
equidistribution of polynomial sequences.

Throughout this chapter, unless stated otherwise, it is understood that M is
a compact metric space and f : M→M is a continuous transformation.

6.1 Unique ergodicity

We say that a transformation f : M → M is uniquely ergodic if it admits
exactly one invariant probability measure. The corresponding notion for flows
is defined in precisely the same way. This denomination is justified by the
observation that the invariant probability measure μ is necessarily ergodic.
Indeed, suppose there existed some invariant set A ⊂ M with 0 < μ(A) < 1.
Then the normalized restriction of μ to A, defined by

μA(E)= μ
(
E∩A

)
μ(A)

for every measurable set E⊂M,
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158 Unique ergodicity

would be an invariant probability measure, different from μ, which would
contradict the assumption that f is uniquely ergodic.

Proposition 6.1.1. The following conditions are equivalent:

(i) f admits a unique invariant probability measure;
(ii) f admits a unique ergodic probability measure;

(iii) for every continuous function ϕ : M → R, the sequence of time averages
n−1∑n−1

j=0 ϕ(f
j(x)) converges at every point to a constant;

(iv) for every continuous function ϕ : M → R, the sequence of time averages
n−1∑n−1

j=0 ϕ ◦ f j converges uniformly to a constant.

Proof. It is easy to see that (ii) implies (i). Indeed, since invariant measure
is a convex combination of ergodic measures (Theorem 5.1.3), if there is a
unique ergodic probability measure then the invariant probability measure is
also unique. It is clear that (iv) implies (iii), since uniform convergence implies
pointwise convergence. To see that (iii) implies (ii), suppose that μ and ν are
ergodic probability measures of f . Then, given any continuous function ϕ :
M→R,

lim
n

1

n

n−1∑
j=0

ϕ(f j(x))=
⎧⎨⎩
∫
ϕ dμ at μ-almost every point∫
ϕ dν at ν-almost every point.

Since, by assumption, the limit does not depend on the point x, it follows that∫
ϕ dμ=

∫
ϕ dν

for every continuous function ϕ. Using Proposition A.3.3 we find that μ= ν.
We are left to prove that (i) implies (iv). Start by recalling that f admits

some invariant probability measure μ (by Theorem 2.1). The idea is to show
that if (iv) does not hold then there exists some probability measure ν �=μ and,
hence, (i) does not hold either. Suppose then that (iv) does not hold, that is,
that there exists some continuous function ϕ : M→R such that n−1∑n−1

j=0 ϕ ◦ f j

does not converge uniformly to any constant; in particular, it does not converge
uniformly to

∫
ϕ dμ. By definition, this means that there exists ε > 0 such that

for every k≥ 1 there exist nk ≥ k and xk ∈M such that∣∣∣∣ 1

nk

nk−1∑
j=0

ϕ(f j(xk))−
∫
ϕ dμ

∣∣∣∣≥ ε. (6.1.1)

Let us consider the sequence of probability measures

νk = 1

nk

nk−1∑
j=0

δf j(xk)
.

Since the space M1(M) of probability measures on M is compact for the weak∗

topology (Theorem 2.1.5), up to replacing this sequence by a subsequence,
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6.2 Minimality 159

we may suppose that it converges to some probability measure ν on M. By
Lemma 2.2.4 applied to the Dirac measure δx, the probability measure ν is
invariant under f . On the other hand, the fact that (νk)k converges to ν in the
weak∗ topology implies that∫

ϕ dν = lim
k

∫
ϕ dνk = lim

k

1

nk

nk−1∑
j=0

ϕ(f j(xk)).

Then, recalling (6.1.1), we have that∣∣∣∣∫ ϕ dν−
∫
ϕ dμ

∣∣∣∣≥ ε.
In particular, ν �=μ. This concludes the argument.

6.1.1 Exercises

6.1.1. Give an example of a transformation f : M →M in a compact metric space such
that (1/n)

∑n−1
j=0 ϕ ◦ f j converges uniformly, for every continuous function ϕ :

M→R, but f is not uniquely ergodic.
6.1.2. Let f : M → M be a transitive continuous transformation in a compact metric

space. Show that if (1/n)
∑n−1

j=0 ϕ ◦ f j converges uniformly, for every continuous
function ϕ : M→R, then f is uniquely ergodic.

6.1.3. Let f : M →M be an isometric homeomorphism in a compact metric space M.
Show that if μ is an ergodic measure for f then, for every n ∈ N, the function
ϕ(x)= d(x, f n(x)) is constant on the support of μ.

6.2 Minimality

Let �⊂M be a closed invariant set of f : M →M. We say that � is minimal
if it coincides with the closure of the orbit {f n(x) : n≥ 0} of every point x ∈�.
We say that the transformation f is minimal if the ambient M is a minimal set.

Recall that the support of a measure μ is the set of all points x ∈ M such
that μ(V) > 0 for every neighborhood V of x. It follows immediately from the
definition that the complement of the support is an open set: if x /∈ suppμ then
there exists an open neighborhood V such that μ(V)= 0; then V is contained
in the complement of the support. Therefore, suppμ is a closed set.

It is also easy to see that the support of any invariant measure is an invariant
set, in the following sense: f (suppμ) ⊂ suppμ. Indeed, let x ∈ suppμ and
let V be any neighborhood of y = f (x). Since f is continuous, f−1(V) is a
neighborhood of x. Then μ(f−1(V)) > 0, because x ∈ suppμ. Hence, using
that μ is invariant, μ(V) > 0. This proves that y ∈ suppμ.

Proposition 6.2.1. If f : M → M is uniquely ergodic then the support of the
unique invariant probability measure μ is a minimal set.
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160 Unique ergodicity

Proof. Suppose that there exists x ∈ suppμ whose orbit {f j(x) : j ≥ 0} is not
dense in the support of μ. This means that there exists some open subset U of
M such that U∩ suppμ is non-empty and

f j(x) /∈U∩ suppμ for every j≥ 0. (6.2.1)

Let ν be any accumulation point of the sequence of probability measures

νn = n−1
n−1∑
j=0

δf j(x), n≥ 1

with respect to the weak∗ topology. Accumulation points do exist, by
Theorem 2.1.5, and ν is an invariant probability measure, by Lemma 2.2.4.
The condition (6.2.1) means that νn(U) = 0 for every n ≥ 1. Hence, using
Theorem 2.1.2 (see also part 3 of Exercise 2.1.1) we have that ν(U)= 0. This
implies that no point of U is in the support of μ, which contradicts the fact that
U∩ suppμ is non-empty.

The converse to Proposition 6.2.1 is false in general:

Theorem 6.2.2 (Furstenberg). There exists some real-analytic diffeomorphism
f : T2 → T2 that is minimal, preserves the Lebesgue measure m on the torus,
but is not ergodic for m. In particular, f is not uniquely ergodic.

In the remainder of this section we give a brief sketch of the proof of
this result. A detailed presentation may be found in the original paper of
Furstenberg [Fur61], as well as in Mañé [Mañ87]. In Section 7.3.1 we mention
other examples of minimal transformations that are not uniquely ergodic.

To prove Theorem 6.2.2, we look for a transformation f : T2 → T2 of
the form f (x,y) = (x + α,y + φ(x)), where α is an irrational number and
φ : S1 →R is a real-analytic function with

∫
φ(x)dx= 0. Note that f preserves

the Lebesgue measure on T2. Let us also consider the map f0 : T2 → T2 given
by f0(x,y)= (x+α,y). Note that no orbit of f0 is dense in T2 and that the system
(f0,m) is not ergodic.

Let us consider the cohomological equation

u(x+α)− u(x)≡ φ(x). (6.2.2)

If φ and α are such that (6.2.2) admits some measurable solution u : S1 → R

then (f0,m) and (f ,m) are ergodically equivalent (see Exercise 6.2.1) and,
consequently, (f ,m) is not ergodic. On the other hand, one can show that if
(6.2.2) admits no continuous solution then f is minimal (the converse to this
fact is Exercise 6.2.2). Therefore, it suffices to find φ and α such that the
cohomological equation admits a measurable solution but not a continuous
solution.

It is convenient to express these conditions in terms of the Fourier expansion
φ(x) = ∑

n∈Z ane2π inx. To ensure that φ is real-analytic it is enough to
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6.2 Minimality 161

require that:

there exists ρ < 1 such that |an| ≤ ρn for every n sufficiently large. (6.2.3)

Indeed, in that case the series
∑

n∈Z anzn converges uniformly on every corona
{z∈C : r≤ |z| ≤ r−1} with r>ρ. In particular, its sum in the unit circle, which
coincides with φ, is a real-analytic function. Since we want φ to take values in
the real line and to have zero average, we must also require:

a0 = 0 and a−n = ān for every n≥ 1. (6.2.4)

According to Exercise 6.2.3, the cohomological equation admits a solution
in the space L2(m) if and only if

∞∑
n=1

∣∣∣∣ an

e2πniα − 1

∣∣∣∣2 <∞. (6.2.5)

Moreover, the solution is uniquely determined: u=∑n∈Z bne2π inx with

bn = an

e2π inα − 1
for every n ∈ Z. (6.2.6)

Fejér’s theorem (see [Zyg68]) states that if u is a continuous function
then the sequence of partial sums of its Fourier expansion converges Cesàro
uniformly to u:

1

n

n∑
k=1

⎛⎝ k∑
j=−k

bje
2π ijx

⎞⎠ converges uniformly to u(x). (6.2.7)

Hence, to ensure that u is not continuous it suffices to require:⎛⎝ k∑
j=−k

bj

⎞⎠
k

is not Cesàro convergent. (6.2.8)

In this way, the problem is reduced to finding α and (an)n that satisfy (6.2.3),
(6.2.4), (6.2.5) and (6.2.8). Exercise 6.2.4 hints at the issues involved in the
choice of such objects.

6.2.1 Exercises

6.2.1. Show that if u is a measurable solution of the cohomological equation (6.2.2)
then h : T2 →T2, h(x,y)= (x,y+u(x)) is an ergodic equivalence between (f0,m)
and (f ,m), that is, h is an invertible measurable transformation that preserves the
measure m and conjugates the two maps f and f0. Deduce that (f ,m) cannot be
ergodic.

6.2.2. Show that if u is a continuous solution of the cohomological equation (6.2.2) then
h : T2 → T2, h(x,y)= (x,y+ u(x)) is a topological conjugacy between f0 and f .
In particular, f cannot be transitive.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.007
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.007
https://www.cambridge.org/core


162 Unique ergodicity

6.2.3. Check that if u(x)=∑n∈Z bne2π inx is a solution of (6.2.2) then

bn = an

e2π inα − 1
for every n ∈ Z. (6.2.9)

Moreover, u ∈ L2(m) if and only if
∑∞

n=1 |bn|2 <∞.
6.2.4. We say that an irrational number α is Diophantine if there exist c> 0 and τ > 0

such that |qα− p| ≥ c|q|−τ for any p,q ∈ Z with q �= 0. Show that the condition
(6.2.5) is satisfied whenever α is Diophantine and φ satisfies (6.2.3).

6.2.5. (Theorem of Gottschalk) Let f : M→M be a continuous map in a compact metric
space M. Show that the closure of the orbit of a point x ∈M is a minimal set if
and only if Rε = {n ∈ Z : d(x, f n(x)) < ε} is a syndetic set for every ε > 0.

6.2.6. Let f : M →M be a continuous map in a compact metric space M. We say that
x,y ∈M are close if infn d(f n(x), f n(y)) = 0. Show that if x ∈M is such that the
closure of its orbit is a minimal set then, for every neighborhood U of x and every
point y close to x, there exists an increasing sequence (ni)i such that f ni1+···+nik (x)
and f ni1+···+nik (y) are in U for any i1 < · · ·< ik and k≥ 1.

6.2.7. (Theorem of Hindman) A theorem of Auslander and Ellis (see [Fur81,
Theorem 8.7]) states that in the conditions of Exercise 6.2.6 the closure of the
orbit of every y ∈ M contains some point x that is close to y and such that the
closure of its orbit is a minimal set. Deduce the following refinement of the
theorem of van der Waerden: given any decomposition N= S1∪·· ·∪Sq of the set
of natural numbers into pairwise disjoint sets, there exists j such that Sj contains
a sequence n1 < · · · < ni < · · · such that ni1 + ·· · + nik ∈ Sj for every k ≥ 1 and
any i1 < · · ·< ik.

6.3 Haar measure

We are going to see that every compact topological group carries a remarkable
probability measure, called the Haar measure, that is invariant under every
translation and every surjective group endomorphism. Assuming that the group
is metrizable, every transitive translation is uniquely ergodic, with the Haar
measure as the unique invariant probability measure.

6.3.1 Rotations on tori

Fix d ≥ 1 and a rationally independent vector θ = (θ1, . . . ,θd). As we have
seen in Section 4.2.1, the rotation Rθ : Td → Td is ergodic with respect to the
Lebesgue measure m on the torus. Our goal now is to show that, in fact, Rθ is
uniquely ergodic.

According to Proposition 6.1.1, we only have to show that, given any
continuous function ϕ : Td →R, there exists cϕ ∈R such that

ϕn = 1

n

n−1∑
j=0

ϕ ◦Rj
θ converges to cϕ at every point. (6.3.1)
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6.3 Haar measure 163

Take cϕ =
∫
ϕ dm. By ergodicity, the sequence (ϕn)n of time averages

converges to cϕ at m-almost every point. In particular, ϕn(x)→ cϕ for a dense
subset of values of x ∈ Td.

Let d be the distance induced in the torus Td = Rd/Zd by the usual norm
in Rd: the distance between any two points in the torus is the minimum of the
distances between all their representatives in Rd. It is clear that the rotation Rθ
preserves that distance:

d(Rθ (x),Rθ (y))= d(x,y) for every x,y ∈ Td.

Then, using that ϕ is continuous, given any ε > 0 we may find δ > 0 such that

d(x,y) < δ⇒ d(Rj
θ (x),R

j
θ (y)) < δ⇒ |ϕ(Rj

θ (x))−ϕ(Rj
θ (y))|< ε

for every j≥ 0. Then,

d(x,y) < δ⇒ |ϕn(x)−ϕn(y)|< ε for every n≥ 1.

Since ε does not depend on n, this proves that the sequence (ϕn)n is
equicontinuous.

This allows us to use the theorem of Ascoli to prove the claim (6.3.1), as
follows. Suppose that there exists x̄ ∈ Td such that (ϕn(x̄))n does not converge
to cϕ . Then there exists c �= cϕ and some subsequence (nk)k such that ϕnk(x̄)
converges to c when k →∞. By the theorem of Ascoli, up to restricting to a
subsequence we may suppose that (ϕnk)k is uniformly convergent. Let ψ be its
limit. Then ψ is a continuous function such that ψ(x)= cϕ for a dense subset
of values of x ∈ Td but ψ(x̄) = c is different from cϕ . It is clear that such a
function does not exist. This contradiction proves our claim that Rθ is uniquely
ergodic.

6.3.2 Topological groups and Lie groups

Recall that a topological group is a group (G, ·) endowed with a topology with
respect to which the two operations

G×G→G, (g,h) �→ gh and G→G, g �→ g−1 (6.3.2)

are continuous. In all that follows it is assumed that the topology of G is such
that every set consisting of a single point is closed. When G is a manifold and
the operations in (6.3.2) are differentiable, we say that (G, ·) is a Lie group. See
Exercise 6.3.1.

The Euclidean space Rd is a topological group, and even a Lie group, relative
to addition+, and the same holds for the torus Td. Recall that Td is the quotient
of Rd by its subgroup Zd. This construction may be generalized as follows:

Example 6.3.1. Given any closed normal subgroup H of a topological group
G, let G/H be the set of equivalence classes for the equivalence relation defined
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164 Unique ergodicity

in G by x ∼ y⇔ x−1y ∈ H. Denote by xH the equivalence class that contains
each x ∈G. Consider the following group operation in G/H:

xH · yH = (x · y)H.

The hypothesis that H is a normal subgroup ensures that this operation is
well defined. Let π : G �→ G/H be the canonical projection, given by π(x)=
xH. Consider in G/H the quotient topology, defined in the following way:
a function ψ : G/H → X is continuous if and only if ψ ◦ π : G → X is
continuous. The hypothesis that H is closed ensures that the points are closed
subsets of G/H. It follows easily from the definitions that G/H is a topological
group. Recall also that if the group G is abelian then all subgroups are
normal.

Example 6.3.2 (Linear group). The set G = GL(d,R) of invertible real
matrices of dimension d is a Lie group for the multiplication of matrices,
called real linear group of dimension d. Indeed, G may be identified with an
open subset of the Euclidean space R(d

2) and, thus, has a natural structure of a
differentiable manifold. Moreover, it follows directly from the definitions that
the multiplication of matrices and the inversion map A �→A−1 are differentiable
with respect to this manifold structure. G has many important Lie subgroups,
such as the special linear group SL(d,R), consisting of the matrices with
determinant 1, and the orthogonal group O(d,R), formed by the orthogonal
matrices.

We call left-translation and right-translation associated with an element g
of the group G, respectively, the maps

Lg : G→G, Lg(h)= gh and Rg : G→G, Rg(h)= hg.

An endomorphism of G is a continuous map φ : G → G that preserves the
group operation, that is, such that φ(gh)= φ(g)φ(h) for every g,h ∈G. When
φ is an invertible endomorphism, that is, a bijection whose inverse is also an
endomorphism, we call it an automorphism.

Example 6.3.3. Let A ∈GL(d,Z); in other words, A is an invertible matrix of
dimension d with integer coefficients. Then, as we have seen in Section 4.2.5,
A induces an endomorphism fA : Td → Td. It can be shown that every
endomorphism of the torus Td is of this form.

A topological group is locally compact if every g ∈ G has some compact
neighborhood. For example, every Lie group is locally compact. On the other
hand, the additive group of rational numbers, with the topology inherited from
the real line, is not locally compact.

The following theorem is the starting point of the ergodic theory of locally
compact groups:
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6.3 Haar measure 165

Theorem 6.3.4 (Haar). Let G be a locally compact topological group. Then:

(i) There exists some Borel measure μG on G that is invariant under all
left-translations, finite on compact sets and positive on open sets;

(ii) If η is a measure invariant under all left-translations and finite on
compact sets then η= cμG for some c> 0.

(iii) μG(G) <∞ if and only if G is compact.

We are going to sketch the proof of parts (i) and (ii) in the special case
when G is a Lie group. It will be apparent that in this case μG is a volume
measure on G. The proof of part (iii), for any topological group, is proposed in
Exercise 6.3.4.

Starting with part (i), let e be the unit element and d≥ 1 be the dimension of
the Lie group. Consider any inner product · in the tangent space TeG. For each
g ∈G, represent by Lg : TeG→ TgG the derivative of the left-translation Lg at
the point e. Next, consider the inner product defined in TgG in the following
way:

u · v =L−1
g (u) ·L−1

g (v) for every u, v ∈ TgG.

It is clear that this inner product depends differentiably on g. Therefore, it
defines a Riemannian metric in G. It is also clear from the construction that
this metric is invariant under left-translations: noting that Lhg =DLh(g)Lg, we
see that

DLh(g)(u) ·DLh(g)(v)=L−1
hg DLh(g)(u) ·L−1

hg DLh(g)(v)

=L−1
g (u) ·L−1

g (v)= u · v
for any g,h ∈G and u,v ∈ TgG. Let μG be the volume measure induced by this
Riemannian metric. This measure may be characterized in the following way.
Given any x= (x1, . . . ,xd) in G, consider

ρ(x)= det

⎛⎜⎝ g1,1(x) · · · g1,d(x)
. . .

. . .
. . .

gd,1(x) · · · gd,d(x)

⎞⎟⎠ where gi,j = ∂

∂xi
· ∂
∂xj

.

Then μG(B)=
∫

B |ρ(x)|dx1 · · · dxd, for any measurable set B contained in the
domain of the local coordinates. Noting that the function ρ is continuous and
non-zero, for every local chart, it follows that μG is positive on open sets and
finite on compact sets. Moreover, since the Riemannian metric is invariant
under left-translations, the measure μG is also invariant under left-translations.

Now we move on to discussing part (ii) of Theorem 6.3.4. Let ν any measure
as in the statement. Denote by B(g,r) the open ball of center g and radius r,
relative to the distance associated with the Riemannian metric. In other words,
B(g,r) is the set of all points in G that may be connected to g by some curve of
length less than r. Fix ρ > 0 such that ν(B(e,ρ)) is finite (such a ρ does exist
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166 Unique ergodicity

because G is locally compact and ν is finite on compact sets). We claim that

limsup
r→0

ν(B(g,r))

μG(B(g,r))
≤ ν(B(e,ρ))

μG(B(e,ρ))
(6.3.3)

for every g ∈G. This may be seen as follows.
First, the limit on the left-hand side of the inequality does not depend on

g, because both measures are assumed to be invariant under left-translations.
Therefore, it is enough to consider the case g = e. Let (rn)n be any sequence
converging to zero and such that:

lim
n

ν(B(e,rn))

μG(B(e,rn))
= limsup

r→0

ν(B(e,r))

μG(B(e,r))
. (6.3.4)

By the Vitali lemma (Theorem A.2.16), we may find (gj)j in B(e,ρ) and (nj)j
in N such that

1. the balls B(gj,rnj) are contained in B(e,ρ) and they are pairwise disjoint;
2. the union of these balls has full μG-measure in B(e,ρ).

Moreover, given any a ∈ R smaller than the limit in (6.3.4), we may suppose
that the integers nj are sufficiently large that ν(B(gj,rnj))≥ aμG(B(gj,rnj)) for
every j. It follows that

ν(B(e,ρ))≥
∑

j

ν(B(gj,rnj))≥
∑

j

aμG(B(gj,rnj))= aμG(B(e,ρ)).

Since a may be taken arbitrarily close to (6.3.4), this proves the claim (6.3.3).
Next, we claim that ν is absolutely continuous with respect to μG. Indeed,

let b be any number larger than the quotient on the right-hand side of (6.3.3).
Given any measurable set B ⊂ G with μG(B) = 0, and given any ε > 0, let
{B(gj,rj) : j} be a cover of B by balls of small radii, such that ν(B(gj,rj)) ≤
bμ(B(gj,rj)) and

∑
jμG(B(gj,rj))≤ ε. Then,

ν(B)≤
∑

j

ν(B(gj,rj))≤ b
∑

j

μ(B(gj,rj))≤ bε.

Since ε> 0 is arbitrary, it follows that ν(B)= 0. Therefore, ν�μG, as claimed.
Now, by the Lebesgue derivation theorem (Theorem A.2.15),

dν

μG
(g)= lim

r→0

1

μ(B(g,r))

∫
B(g,r)

dν

μG
dμG = lim

r→0

ν(B(g,r))

μ(B(g,r))

for μ-almost every g ∈G. The limit on the left-hand side does not depend on g
and, by (6.3.3), it is finite. Let c ∈ R be that limit. Then ν = cμG, as stated in
part (ii) of Theorem 6.3.4.

In the case when the group G is compact, it follows from Theo-
rem 6.3.4 that there exists a unique probability measure that is invariant
under left-translations, positive on open sets and finite on compact sets. This
probability measure μG is called the Haar measure of the group. For example,
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6.3 Haar measure 167

the normalized Lebesgue measure is the Haar measure on the torus Td. See
also Exercises 6.3.5 and 6.3.6. The Haar measure features some additional
properties:

Corollary 6.3.5. Assume that G is compact. Then the Haar measure μG is
invariant under right-translations and under every surjective endomorphism
of G.

Proof. Given any g ∈ G, consider the probability measure (Rg)∗μG. Observe
that Lh ◦Rg = Rg ◦Lh for every h ∈G. Hence,

(Lh)∗(Rg)∗μG = (Rg)∗(Lh)∗μG = (Rg)∗μG.

In other words, (Rg)∗μG is invariant under every left-translation. By unique-
ness, it follows that (Rg)∗μG =μG for every g ∈G, as claimed.

Given any surjective endomorphism φ : G → G, consider the probability
φ∗μG. Given any h∈G, choose some g∈ φ−1(h). Observe that Lh ◦φ = φ ◦Lg.
Hence,

(Lh)∗φ∗μG = φ∗(Lg)∗μG = φ∗μG.

In other words, φ∗μG is invariant under every left-translation. By uniqueness,
it follows that φ∗μG =μG, as claimed.

More generally, when we do not assume G to be compact, the argument in
Corollary 6.3.5 shows that for every g ∈G there exists λ(g) > 0 such that

(Lg)∗μG = λ(g)μG.

The map G→ (0,∞), g �→ λ(g) is a group homomorphism.

6.3.3 Translations on compact metrizable groups

We call a distance d in a topological group G left-invariant if it is invariant
under every left-translation: d(Lh(g1),Lh(g2)) = d(g1,g2) for every g1, g2,
h ∈ G. Analogously, we call a distance right-invariant if it is invariant under
every right-translation. In this section we always take the group G to be com-
pact and metrizable. We start by observing that it is always possible to choose
the distance in G in such a way that it is invariant under all the translations:

Lemma 6.3.6. If G is a compact metrizable topological group then there exists
some distance compatible with the topology of G that is both left-invariant and
right-invariant.

Proof. Let (Un)n be a countable basis of neighborhoods of the unit element e
of G. By Lemma A.3.4, for every n there exists a continuous function ϕn : G→
[0,1] such that ϕn(e)= 0 and ϕn(z)= 1 for every z ∈G \Un. Define

ϕ : G→[0,1], ϕ(z)=
∞∑

n=1

2−nϕn(z).
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168 Unique ergodicity

Then, ϕ is continuous and ϕ(e)= 0< ϕ(z) for every z �= e. Now define

d(x,y)= sup{|ϕ(gxh)−ϕ(gyh)| : (g,h) ∈G2} (6.3.5)

for every x,y ∈ G. The supremum is finite, since we take G to be compact. It
is easy to see that d is a distance in G. Indeed, note that d(x,y)= 0 means that
ϕ(gxh)= ϕ(gyh) for every g,h ∈G. In particular, taking g= e and h= y−1, we
get that ϕ(xy−1)=ϕ(e). By the construction of ϕ, this implies that x= y. All the
other axioms of the notion of distance follow directly from the definition of d.
It is also clear from the definition that d is invariant under both left-translations
and right-translations.

We are left to prove that the distance d is compatible with the topology of
the group G. It is easy to check that, given any neighborhood V of a point
x ∈ G, there exists δ > 0 such that B(x,δ) ⊂ V . Indeed, since U = x−1V is a
neighborhood of e ∈ G, the properties of ϕ ensure that there exists δ > 0 such
that ϕ(z) ≤ 1− δ for every z /∈ U. Then, y /∈ V implies that ϕ(x−1y) ≤ 1− δ
or, in other words, that |ϕ(e)− ϕ(x−1y)| ≥ δ. Taking g= x−1 and h= e in the
definition (6.3.5), we see that this last inequality implies that d(x,y) ≥ δ, that
is, y /∈ B(x,δ). Now let us check the converse: given x ∈ G and δ > 0, there
exists some neighborhood V of x contained in B(x,δ). By continuity, for every
pair (g,h) ∈G2 there exists an open neighborhood U×V×W of (g,x,h) in G3

such that

|ϕ(gxh)−ϕ(g′x′h′)| ≤ δ/2 for every (g′,x′,h′) ∈U×V×W. (6.3.6)

The sets U ×W obtained in this way, with x fixed and g,h variable, form
an open cover of G2. Let Ui ×Wi, i = 1, . . . ,k be a finite subcover and Vi,
i = 1, . . . ,k be the corresponding neighborhoods of x. Take V =⋂k

i=1 Vi and
consider any y ∈ V . Given any (g,h) ∈ G2, the condition (6.3.6) implies that
|ϕ(gxh) − ϕ(gyh)| ≤ δ/2. It follows that d(x,y) ≤ δ/2 and, consequently,
y ∈ B(x,δ).

Example 6.3.7. Given a matrix A ∈ GL(d,R), denote by ‖A‖ its operator
norm, that is, ‖A‖ = sup{‖Av‖ : ‖v‖ = 1}. Observe that ‖OA‖ = ‖A‖ = ‖AO‖
for every O in the orthogonal group O(d,R). Define

d(A,B)= log(1+‖A−1B− id‖+‖B−1A− id‖).

Then d is a distance in GL(d,R), invariant under left-translations:

d(CA,CB)= log(1+‖A−1C−1CB− id‖+‖B−1C−1CA− id‖)= d(A,B)

for every C ∈ GL(d,R). This distance is not invariant under right-translations
in GL(d,R) (Exercise 6.3.3). However, it is right-invariant (and left-invariant)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.007
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.007
https://www.cambridge.org/core


6.3 Haar measure 169

restricted to the orthogonal group O(d,R): for every O ∈O(d,R),

d(AO,CO)= log(1+‖O−1A−1BO− id‖+‖O−1B−1AO− id‖)
= log(1+‖O−1(A−1B− id )O‖+‖O−1(B−1A− id)O‖)
= d(A,B).

Theorem 6.3.8. Let G be a compact metrizable topological group and let
g ∈G. The following conditions are equivalent:

(i) Lg is uniquely ergodic;
(ii) Lg is ergodic with respect to μG;

(iii) the subgroup {gn : n ∈ Z} generated by g is dense in G.

Proof. It is clear that (i) implies (ii). To prove that (ii) implies (iii), consider the
invariant distance d given by Lemma 6.3.6. Let H be the closure of {gn : n∈Z}
and consider the continuous function

ϕ(x)=min{d(x,y);y ∈H}.
Observe that this function is invariant under Lg: using that gH=H, we get that

ϕ(x)=min{d(x,y) : y ∈H} =min{d(gx,gy) : y ∈H}
=min{d(gx,z) : z ∈H} = ϕ(gx) for every x ∈G.

Since H is closed, ϕ(x)= 0 if and only if x ∈H. If H �=G then μG(G\H) > 0,
as the Haar measure is positive on open sets. In that case, the function ϕ is
not constant at μG-almost every point, which implies that Lg cannot be ergodic
with respect to μG.

Finally, to prove that (iii) implies (i), let us show that if μ is a probability
measure invariant under Lg then μ = μG. For that, it suffices to check that μ
is invariant under every left-translation in G. Fix h ∈ G. Since μ is invariant
under Lg, ∫

ϕ(x)dμ(x)=
∫
ϕ(gnx)dμ(x)

for every n ∈ N and every continuous function ϕ : G→ R. On the other hand,
the hypothesis ensures that there exists a sequence of natural numbers nj →∞
such that gnj → h. Given any (uniformly) continuous function ϕ : G→ R and
any ε > 0, fix δ > 0 such that |ϕ(x)− ϕ(y)| < ε whenever d(x,y) < δ. If j is
sufficiently large,

d(gnj x,hx)= d(gnj ,h) < δ for every x ∈G.

Hence, |ϕ(gnj x)−ϕ(hx)|< ε for every x and, consequently,∣∣∣∣∫ (ϕ(x)−ϕ(hx)
)

dμ

∣∣∣∣= ∣∣∣∣∫ (ϕ(gnj x)−ϕ(hx)
)

dμ

∣∣∣∣< ε.
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170 Unique ergodicity

Since ε is arbitrary, it follows that
∫
ϕ dμ = ∫ ϕ ◦ Lh dμ for every continuous

function ϕ and every h ∈G. This implies that μ is invariant under Lh for every
h ∈G, as claimed.

6.3.4 Odometers

Odometers, or adding machines, are mathematical models for the mechanisms
that register the distance (number of kilometers) travelled by a car or the
amount of electricity (number of energy units) consumed in a house. They
come with a dynamic, which consists in advancing the counter by one unit
each time. The main difference with respect to real-life odometers is that our
idealized counters allow for an infinite number of digits.

Fix any number basis d ≥ 2, for example d = 10, and consider the set X =
{0,1, . . . ,d− 1}, endowed with the discrete topology. Let M = XN be the set of
all sequences α = (αn)n with values in X, endowed with the product topology.
This topology is metrizable: it is compatible, for instance, with the distance
defined in M by

d(α,α′)= 2−N(α,α′) where N(α,α′)=min{j≥ 0 : αj �= α′j}. (6.3.7)

Observe also that M is compact, being the product of compact spaces (theorem
of Tychonoff).

Let us introduce in M the following operation of “sum with transport”: given
α = (αn)n and β = (βn)n in M, define α+β = (γn)n as follows. First,

• if α0+β0 < d then γ0 = α0+β0 and δ1 = 0;
• if α0+β0 ≥ d then γ0 = α0+β0− d and δ1 = 1.

Next, for every n≥ 1,

• if αn+βn+ δn < d then γn = αn+βn+ δn and δn+1 = 0;
• if αn+βn+ δn ≥ d then γn = αn+βn+ δn− d and δn+1 = 1.

The auxiliary sequence (δn)n corresponds precisely to the transports. The map
+ : M×M→M defined in this way turns M into an abelian topological group
and the distance (6.3.7) is invariant under all the translations (Exercise 6.3.8).

Now consider the “translation by 1” f : M→M defined by

f
(
(αn)n

)= (αn)n+ (1,0, . . . ,0, . . . )= (0, . . . ,0,αk+ 1,αk+1, . . . ,αn, . . . )

where k ≥ 0 is the smallest value of n such that αn < d− 1; if there exists no
such k, that is, if (αn)n is the constant sequence equal to d− 1, then the image
f ((αn)n) is the constant sequence equal to 0. We leave it to the reader to check
that this transformation f : M→M is uniquely ergodic (Exercise 6.3.9).

It is possible to genralize this construction somewhat, in the following
way. Take M =∏∞

n=0{0,1, . . . ,dn− 1}, where (dn)n is any sequence of integer
numbers larger than 1. Just as in the previous particular case, this set has the
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6.3 Haar measure 171

I0

Ik–1

Figure 6.1. Example of the piling method

structure of a metrizable compact abelian group and the “translation by 1” is
uniquely ergodic.

Example 6.3.9. A (simple) pile in an interval1 I is an ordered family S of
pairwise disjoint subintervals I0, . . . , Ik−1 with the same length and whose
union is I. Write Ik = I0. We associate with S the transformation f : I → I
whose restriction to each Ij is the translation mapping Ij to Ij+1. Graphically,
we represent the subintervals “piled up” on top of each other in order: from
the bottom I0 to the top Ik−1. Then f is nothing but the translation “upwards”,
except at the top of the pile. See the left-hand side of Figure 6.1.

Let us consider a sequence (Sn)n of piles in the same interval I, constructed
as follows. Fix any integer number d ≥ 2. Take S0 = {I}. For each n≥ 1, take
as Sn the pile obtained by dividing Sn−1 into d columns, all with the same
width, and piling them up on top of each other. This procedure is described on
the right-hand side of Figure 6.1 for d= 3. Let fn : I→ I be the transformation
associated with each Sn. We leave it to the reader to show (Exercise 6.3.10) that
the sequence (fn)n converges at every point to a transformation f : I → I that
preserves the Lebesgue measure. Moreover, this transformation f is uniquely
ergodic.

This is only one of the simplest applications of the so-called piling method,
which is a very effective tool to produce examples with interesting properties.
The reader may find a detailed discussion of this method in Section 6 of
Friedman [Fri69]. Another application, a bit more elaborate, will be given in
Example 8.2.3.

Example 6.3.10 (Substitutions). We are going to mention briefly a construc-
tion of a combinatorial nature that generalizes the definition of odometer and
provides several other interesting examples of minimal and even uniquely
ergodic systems. For more information, including about the relations between

1 For definiteness, take all intervals to be closed on the left and open on the right.
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172 Unique ergodicity

such systems and the odometer, we recommend the book of Queffélec [Que87]
and the paper of Ferenczi, Fisher and Talet [FFT09].

We call a substitution in a finite alphabet A any map associating with each
letter α ∈ A a word s(α) formed by a finite number of letters of A. A few
examples, for A = {0,1}: Thue–Morse substitution s(0) = 01 and s(1) = 10;
Fibonacci substitution s(0)= 01 and s(1)= 0; Feigenbaum substitution s(0)=
11 and s(1)= 10; Cantor substitution s(0)= 010 and s(1)= 111; and Chacon
substitution s(0)= 0010 and s(1)= 1. We may iterate a substitution by defining
s1(α)= s(α) and

sk+1(α)= s(α1) · · ·s(αn) if sk(α)= α1 · · ·αn.

We call a substitution s primitive (or aperiodic) if there exists k ≥ 1 such that
for any α,β ∈A the word sk(α) contains the letter β.

Let A be endowed with the discrete topology and � =AN be the space of
all sequences in A, endowed with the product topology. Denote by S :�→�

the map induced in that space by a given substitution s: the image of each
(a0, . . . ,an, . . . ) ∈ � is the sequence of the letters that constitute the word
obtained when one concatenates the finite words s(a0), . . . , s(an), . . . Suppose
that there exists some letter α0 ∈A such that the word s(α0) has length larger
than 1 and starts with the letter α0. That is the case for all the examples listed
above. Then (Exercise 6.3.11), S admits a unique fixed point x = (xn)n with
x0 = α0.

Consider the restriction σ : X → X of the shift map σ : � → � to the
closure X ⊂� of the orbit {σ n(x) : n≥ 0} of the point x. If the substitution s is
primitive then σ : X → X is minimal and uniquely ergodic (see Section 5
in [Que87]). That holds, for instance, for the Thue–Morse, Fibonacci and
Feigenbaum substitutions.

6.3.5 Exercises

6.3.1. Let G be a manifold and · be a group operation in G such that the map (g,h) �→
g · h is of class C1. Show that g �→ g−1 is also of class C1.

6.3.2. Let G be a compact topological space such that every point admits a countable
basis of neighborhoods and let · be a group operation in G such that the map
(g,h) �→ g · h is continuous. Show that g �→ g−1 is also continuous.

6.3.3. Show that the distance d in Example 6.3.7 is not right-invariant.
6.3.4. Prove part (iii) of Theorem 6.3.4: a locally compact group G is compact if and

only if its Haar measure is finite.
6.3.5. Identify GL(1,R) with the multiplicative group R\ {0}. Check that the measure

μ defined on GL(1,R) by∫
GL(1,R)

ϕ dμ=
∫
R\{0}

ϕ(x)

|x| dx

is both left-invariant and right-invariant. Find a measure invariant under all the
translations of GL(1,C).
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6.4 Theorem of Weyl 173

6.3.6. Identify GL(2,R) with {(a11,a12,a21,a22) ∈ R4 : a11a22 − a12a21 �= 0}, in such
a way that det(a11,a12,a21,a22) = a11a22 − a12a21. Show that the measure μ
defined by∫

GL(2,R)
ϕ dμ=

∫
ϕ(x11,x12,x21,x22)

|det(x11,x12,x21,x22)|2 dx11dx12dx21dx22

is both left-invariant and right-invariant. Find a measure invariant under all the
translations of GL(2,C).

6.3.7. Let G be a compact metrizable group and let g ∈ G. Check that the following

conditions are equivalent:

(1) Lg is uniquely ergodic;
(2) Lg is transitive: there is x ∈G such that {gnx : n ∈ Z} is dense in G;
(3) Lg is minimal: {gny : n ∈ Z} is dense in G for every y ∈G.

6.3.8. Show that the operation + : M×M→M defined in Section 6.3.4 is continuous
and endows M with the structure of an abelian group. Moreover, every
translation in this group preserves the distance defined in (6.3.7).

6.3.9. Let f : M→M be an odometer, as defined in Section 6.3.4, with d = 10. Given
b0, . . . ,bk−1 in {0, . . . ,9}, denote by [b0, . . . ,bk−1] the set of all sequences β ∈M
with β0 = b0, . . . , βk−1 = bk−1. Show that

lim
n

1

n
#
{
0≤ j< n : f j(x) ∈ [b0, . . . ,bk−1]

}= 1

10k

for every x∈M. Moreover, this limit is uniform. Conclude that f admits a unique
invariant probability measure and calculate that measure explicitly.

6.3.10. Check the claims in Example 6.3.9.
6.3.11. Prove that if s is a substitution in a finite alphabet A and α ∈ A is such that

s(α) has length larger than 1 and starts with the letter α, then the transformation
S : �→ � defined in Example 6.3.10 admits a unique fixed point that starts
with the letter α ∈A.

6.4 Theorem of Weyl

In this section we use ideas that were discussed previously to prove a beautiful
theorem of Hermann Weyl [Wey16] about the distribution of polynomial
sequences.

Consider any polynomial function P : R → R with real coefficients and
degree d ≥ 1:

P(x)= a0+ a1x+ a2x2+·· ·+ adxd.

Composing P with the canonical projection R→ S1, we obtain a polynomial
function P∗ : R→ S1 with values on the circle S1 =R/Z. Define

zn = P∗(n), for every n≥ 1.

We may think of zn as the fractional part of the real number P(n). We want to
understand how the sequence (zn)n is distributed on the circle.
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174 Unique ergodicity

Definition 6.4.1. We say that a sequence (xn)n in S1 is equidistributed if, for
any continuous function ϕ : S1 →R,

lim
n→∞

1

n

n∑
j=1

ϕ(xj)=
∫
ϕ(x)dx.

According to Exercise 6.4.1, this is equivalent to saying that, for every
segment I ⊂ S1, the fraction of terms of the sequence that are in I is equal
to the corresponding length m(I).

Theorem 6.4.2 (Weyl). If at least one of the coefficients a1, a2, . . . , ad is
irrational then the sequence zn = P∗(n), n ∈N is equidistributed.

In order to develop some intuition about this theorem, let us start by
considering the special case d= 1. In this case the polynomial function reduces
to P(x)= a0+ a1x. Let us consider the transformation

f : S1 → S1, f (θ)= θ + a1.

By assumption, the coefficient a1 is irrational. Therefore, as we have seen
in Section 6.3.1, this transformation admits a unique invariant probability
measure, which is the Lebesgue measure m. Consequently, given any
continuous function ϕ : S1 →R and any point θ ∈ S1,

lim
n→∞

1

n

n∑
j=1

ϕ(f j(θ))=
∫
ϕ dm.

Take θ = a0. Then f j(θ)= a0+ a1j= zj. Hence, the previous relation yields

lim
n→∞

1

n

n∑
j=1

ϕ(zj)=
∫
ϕ dm.

This is precisely what it means to say that zj is equidistributed.

6.4.1 Ergodicity

Now we extend the previous arguments to any degree d ≥ 1. Consider the
transformation f : Td → Td defined on the d-dimensional torus Td by the
following expression:

f (θ1,θ2, . . . ,θd)= (θ1+α,θ2+ θ1, . . . ,θd+ θd−1), (6.4.1)

where α is an irrational number to be chosen later. Note that f is invertible: the
inverse is given by

f−1(θ1,θ2, . . . ,θd)= (θ1−α,θ2−θ1+α, . . . ,θd−θd−1+·· ·+(−1)d−1θ1+(−1)dα).
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6.4 Theorem of Weyl 175

Note also that the derivative of f at each point is given by the matrix⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 1

⎞⎟⎟⎟⎟⎟⎠ ,

whose determinant is 1. This ensures that f preserves the Lebesgue measure
on the torus (recall Lemma 1.3.5).

Proposition 6.4.3. The Lebesgue measure on Td is ergodic for f .

Proof. We are going to use a variation of the Fourier series expansion
argument in Proposition 4.2.1. Let ϕ :Td →R be any function in L2(m). Write

ϕ(θ)=
∑
n∈Zd

ane2π in·θ

with θ = (θ1, . . . ,θd), n= (n1, . . . ,nd) and n ·θ = n1θ1+·· ·+ndθd. The L2-norm
of ϕ is given by ∑

n∈Zd

|an|2 =
∫
|ϕ(θ)|2 dθ1 · · · dθd <∞. (6.4.2)

Observe that

ϕ(f (θ))=
∑
n∈Zd

ane2π i(n1(θ1+α)+n2(θ2+θ1)+···+nd(θd+θd−1))

=
∑
n∈Zd

ane2π in1αe2π iL(n)·θ ,

where L(n)= (n1+ n2,n2+ n3, . . . ,nd−1+ nd,nd). Suppose that the function ϕ
is invariant, that is, ϕ ◦ f = ϕ at almost every point. Then

ane2π in1α = aL(n) for every n ∈ Zd. (6.4.3)

This implies that an and aL(n) have the same absolute value. On the other hand,
the integrability relation (6.4.2) implies that there exists at most a finite number
of terms with any given absolute value different from zero. It follows that an =
0 for every n∈Zd whose orbit Lj(n), j∈Z is infinite. Observing the expression
of L, we deduce that an = 0 except, possibly, if n2 = ·· · = nd = 0. For the
remaining values of n, that is, for every n= (n1,0, . . . ,0), one has that L(n)= n
and, thus, the relation (6.4.3) becomes

an = ane2π in1α .

Since α is irrational, the last factor is different from 1 whenever n1 is non-zero.
Therefore, this relation implies that an = 0 also for n= (n1,0, . . . ,0) with n1 �=
0. In this way, we have shown that if ϕ is an invariant function then all the terms
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176 Unique ergodicity

in its Fourier series vanish except, possibly, the constant term. This means that
ϕ is constant at almost every point, which proves that the Lebesgue measure is
ergodic for f .

6.4.2 Unique ergodicity

The last step in the proof of Theorem 6.4.2 is the following result:

Proposition 6.4.4. The transformation f is uniquely ergodic: the Lebesgue
measure on the torus is the unique invariant probability measure.

Proof. The proof is by induction on the degree d of the polynomial P. The case
of degree 1 was treated previously. Therefore, we only need to explain how the
case of degree d may be deduced from the case of degree d− 1. For that, we
write Td = Td−1× S1 and

f : Td−1× S1 → Td−1× S1, f (θ0,η)= (f0(θ0),η+ θd−1), (6.4.4)

where θ0 = (θ1, . . . ,θd−1) and f0(θ0) = (θ1 + α,θ2 + θ1, . . . ,θd−1 + θd−2). By
induction, the transformation

f0 : Td−1 → Td−1

is uniquely ergodic. Let us denote by π : Td → Td−1 the projection π(θ)= θ0.

Lemma 6.4.5. For any probability measureμ invariant under f , the projection
π∗μ coincides with the Lebesgue measure m0 on Td−1.

Proof. Given any measurable set E⊂ Td−1,

(π∗μ)(f−1
0 (E))=μ(π−1f−1

0 (E)).

Using that π ◦ f = f0 ◦ π and the fact that μ is f -invariant, we get that the
expression on the right-hand side is equal to

μ(f−1π−1(E))=μ(π−1(E))= (π∗μ)(E).
Therefore, (π∗μ)(f−1

0 (E))= (π∗μ)(E) for every measurable subset E, that is,
π∗μ is invariant under f0. It is clear that π∗μ is a probability measure. Since f0
is uniquely ergodic, it follows that π∗μ coincides with the Lebesgue measure
m0 on Td−1.

Now suppose that μ, besides being invariant, is also ergodic for f . By
Theorem 3.2.6, and by ergodicity, the set G(μ)⊂M of all points θ ∈ Td such
that

lim
n

1

n

n−1∑
j=0

ϕ(f j(θ))=
∫
ϕ dμ for any continuous function ϕ : Td →R

(6.4.5)
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6.4 Theorem of Weyl 177

has full measure. Let G0(μ) be the set of all θ0 ∈Td−1 such that G(μ) intersects
{θ0} × S1. In other words, G0(μ) = π(G(μ)). It is clear that π−1(G0(μ))

contains G(μ) and, thus, has full measure. Hence, using Lemma 6.4.5,

m0(G0(μ))=μ(π−1(G0(μ)))= 1. (6.4.6)

For the same reasons, this relation remains valid for the Lebesgue measure:

m0(G0(m))=m(π−1(G0(m)))= 1. (6.4.7)

The identities (6.4.6) and (6.4.7) imply that the intersection between G0(μ)

and G0(m) has full measure for m0. So, in particular, these two sets cannot be
disjoint. Let θ0 be any point in the intersection. By definition, G(μ) intersects
{θ0}× S1. But the next result asserts that G(m) contains {θ0}× S1:

Lemma 6.4.6. If θ0 ∈G0(m) then {θ0}× S1 is contained in G(m).

Proof. The crucial observation is that the measure m is invariant under every
transformation of the form

Rβ : Td−1× S1 → Td−1× S1, (ζ ,η) �→ (ζ ,η+β).
The hypothesis θ0 ∈ G0(m) means that there exists some η ∈ S1 such that
(θ0,η) ∈G(m), that is,

lim
n

1

n

n−1∑
j=0

ϕ(f j(θ0,η))=
∫
ϕ dm

for every continuous function ϕ : Td → R. Any other point of {θ0} × S1 may
be written as (θ0,η+β)= Rβ(θ0,η) for some β ∈ S1. Recalling (6.4.1), we see
that

f
(
Rβ(τ0,ζ )

)= (τ1+α,τ2+ τ1, . . . ,τd−1+ τd−2,ζ +β+ τd−1)= Rβ
(
f (τ0,ζ )

)
for every (τ0,ζ ) ∈ Td−1× S1. Hence, by induction,

f j(θ0,η+β)= f j
(
Rβ(θ0,η)

)= Rβ
(
f j(θ0,η)

)
for every j≥ 1. Therefore, given any continuous function ϕ : Td →R,

lim
n

1

n

n−1∑
j=0

ϕ(f j(θ0,η+β))= lim
1

n

n−1∑
j=0

(ϕ ◦Rβ)(f
j(θ0,η))

=
∫
(ϕ ◦Rβ)dm=

∫
ϕ dm.

This proves that (θ0,η+β) is in G(m) for every β ∈ S1, as stated.

It follows from what we said so far that G(μ) and G(m) intersect each other
at some point of {θ0}×S1. In view of the definition (6.4.5), this implies that the
two measures have the same integral for every continuous function. According
to Proposition A.3.3, this implies that μ=m, as we wanted to prove.
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178 Unique ergodicity

Corollary 6.4.7. The orbit of every point θ ∈Td is equidistributed on the torus
Td, in the sense that

lim
n

1

n

n−1∑
j=0

ψ(f j(θ))=
∫
ψ dm

for every continuous function ψ : Td →R.

Proof. This follows immediately from Propositions 6.1.1 and 6.4.4.

6.4.3 Proof of the theorem of Weyl

To complete the proof of Theorem 6.4.2, we introduce the polynomial
functions p1, . . . ,pd defined by

pd(x)= P(x) and

pj−1(x)= pj(x+ 1)− pj(x) for j= 2, . . . ,d.
(6.4.8)

Lemma 6.4.8. The polynomial pj(x) has degree j, for every 1 ≤ j ≤ d.
Moreover, p1(x)= αx+β with α = d!ad.

Proof. By definition, pd(x)=P(x) has degree d. Hence, to prove the first claim
it suffices to show that if pj(x) has degree j then pj−1(x) has degree j− 1. In
order to do that, let

pj(x)= bjx
j+ bj−1xj−1+·· ·+ b0,

where bj �= 0. Then

pj(x+ 1)= bj(x+ 1)j+ bj−1(x+ 1)j−1+·· ·+ b0

= bjx
j+ (jbj+ bj−1)x

j−1+·· ·+ b0.

Subtracting one expression from the other, we get that

pj−1(x)= (jbj)x
j−1+ b′j−2xj−2+·· ·+ b′0

has degree j− 1. This proves the first claim in the lemma. This calculation
also shows that the main coefficient of pj−1(x) (the coefficient of the term with
highest degree) can be obtained multiplying by j the main coefficient of pj(x).
Consequently, the main coefficient of p1 must be equal to d!aq, as claimed in
the last part of the lemma.

Lemma 6.4.9. For every n≥ 0,

f n
(
p1(0),p2(0), . . . ,pd(0)

)= (p1(n),p2(n), . . . ,pd(n)
)
.

Proof. The proof is by induction on n. Since the case n= 0 is obvious, we only
need to treat the inductive step. Recall that f was defined in (6.4.1). If

f n−1(p1(0),p2(0), . . . ,pd(0))= (p1(n− 1),p2(n− 1), . . . ,pd(n− 1))
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6.4 Theorem of Weyl 179

then f n(p1(0),p2(0), . . . ,pd(0)) is equal to

(p1(n− 1)+α,p2(n− 1)+ p1(n− 1), . . . ,pd(n− 1)+ pd−1(n− 1)).

Using the definition (6.4.8) and Lemma 6.4.8, we find that this expression is
equal to

(p1(n),p2(n), . . . ,pd(n)),

and that proves the lemma.

Finally, we are ready to prove that the sequence zn = P∗(n), n ∈ N is
equidistributed. We treat two cases separately.

First, suppose that the main coefficient ad of P(x) is irrational. Then the
number α in Lemma 6.4.8 is irrational and, thus, the results in Section 6.4.2
are valid for the transformation f :Td →Td. Let ϕ : S1 →R be any continuous
function. Consider ψ : Td →R defined by

ψ(θ1,θ2, . . . ,θd)= ϕ(θd).

Fix θ = (p1(0),p2(0), . . . ,pd(0)). Using Lemma 6.4.9 and Corollary 6.4.7, we
get that

lim
n

1

n

n−1∑
j=0

ϕ(zn)= lim
n

1

n

n−1∑
j=0

ψ(f n(θ))=
∫
ψ dm=

∫
ϕ dx.

This ends the proof of Theorem 6.4.2 in the case when ad is irrational.
Now suppose that ad is rational. Write ad = p/q with p ∈ Z and q ∈ N. It is

clear that we may write zn as a sum

zn = xn+ yn, xn = adnd and yn =Q∗(n)

where Q(x)= a0+a1x+·· ·+ad−1xd−1 and Q∗ :R→ S1 is given by Q∗ =π ◦Q.
To begin with, observe that

xn+q− xn = p

q
(n+ q)d− p

q
nd

is an integer, for every n∈N. This means that the sequence xn, n∈N is periodic
(with period q) in the circle R/Z. In particular, it takes no more than q distinct
values. Observe also that, since ad is rational, the hypothesis of the theorem
implies that some of the coefficients a1, . . . , ad−1 of Q are irrational. Hence, by
induction on the degree, the sequence yn, n ∈ N is equidistributed. More than
that, the subsequences

yqn+r =Q∗(qn+ r), n ∈ Z

are equidistributed for every r ∈ {0,1, . . . ,q− 1}. In fact, as the reader may
readily check, these sequences may be written as ynq+r = Q(r)∗ (n) for some
polynomial Q(r) that also has degree d− 1 and, thus, the induction hypothesis
applies to each one of them as well. From these two observations it follows
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180 Unique ergodicity

that every subsequence zqn+r, n ∈Z is equidistributed. Consequently, zn, n ∈N

is also equidistributed. This completes the proof of Theorem 6.4.2.

6.4.4 Exercises

6.4.1. Show that a sequence (zj)j is equidistributed on the circle if and only if

lim
n

1

n
#{1≤ j≤ n : zj ∈ I} =m(I)

for every segment I ⊂ S1, where m(I) denotes the length of I.
6.4.2. Show that the sequence (

√
n mod Z)n is equidistributed on the circle. Does the

same hold for the sequence (logn mod Z)n?
6.4.3. Koksma [Kok35] proved that the sequence (an mod Z)n is equidistributed on the

circle for Lebesgue-almost every a> 1. That is not true for every a> 1. Indeed,
consider the golden ratio a= (1+√5)/2. Check that the sequence (an mod Z)n
converges to 0 ∈ S1 when n→∞; in particular, it is not equidistributed on the
circle.
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