
7

Correlations

The models of dynamical systems that interest us the most, transformations
and flows, are deterministic: the state of the system at any time determines the
whole future trajectory; when the system is invertible, the past trajectory is
equally determined. However, these systems may also present stochastic (that
is, “partly random”) behavior: at some level coarser than that of individual
trajectories, information about the past is gradually lost as the system is
iterated. That is the subject of the present chapter.

In probability theory one calls the correlation between two random variables
X and Y the number

C(X,Y)= E
[
(X−E[X])(Y−E[Y])]= E[XY]−E[X]E[Y].

Note that the expression (X − E[X])(Y − E[Y]) is positive if X and Y
are on the same side (either larger or smaller) of their respective means,
E[X] and E[Y], and it is negative otherwise. Therefore, the sign of C(X,Y)
indicates whether the two variables exhibit, predominantly, the same behavior
or opposite behaviors, relative to their means. Furthermore, correlation close
to zero indicates that the two behaviors are little, if at all, related to each other.

Given an invariant probability measure μ of a dynamical system f : M →
M and given measurable functions ϕ,ψ : M → R, we want to analyze the
evolution of the correlations

Cn(ϕ,ψ)= C(ϕ ◦ f n,ψ)

when time n goes to infinity. We may think of ϕ and ψ as quantities that are
measured in the system, such as temperature, acidity (pH), kinetic energy,
and so forth. Then Cn(ϕ,ψ) measures how much the value of ϕ at time n
is correlated with the value of ψ at time zero; to what extent one value
“influences” the other.

For example, if ϕ = XA and ψ = XB are characteristic functions, then ψ(x)
provides information on the position of the initial point x, whereas ϕ(f n(x))
informs on the position of its n-th iterate f n(x). If the correlation Cn(ϕ,ψ) is
small, then the first information is of little use to make predictions about the
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182 Correlations

second one. That kind of behavior, where correlations approach zero as time n
increases, is quite common in important models, as we are going to see.

We start by introducing the notions of (strong) mixing and weak mixing
systems, and by studying their basic properties (Section 7.1). In Sections 7.2
and 7.3 we discuss these notions in the context of Markov shifts, which
generalize Bernoulli shifts, and of interval exchanges, which are an extension
of the class of circle rotations. In Section 7.4 we analyze, in quantitative terms,
the speed of decay of correlations for certain classes of functions.

7.1 Mixing systems

Let f : M → M be a measurable transformation and μ be an invariant
probability measure. The correlations sequence of two measurable functions
ϕ,ψ : M→R is defined by

Cn(ϕ,ψ)=
∫
(ϕ ◦ f n)ψ dμ−

∫
ϕ dμ

∫
ψ dμ, n ∈N. (7.1.1)

We say that the system (f ,μ) is mixing if

lim
n

Cn(XA,XB)= lim
n
μ
(
f−n(A)∩B

)−μ(A)μ(B)= 0, (7.1.2)

for any measurable sets A,B⊂M. In other words, when n grows the probability
of the event {x ∈ B and f n(x) ∈ A} converges to the product of the probabilities
of the events {x ∈ B} and {f n(x) ∈ A}.

Analogously, given a flow f t : M → M, t ∈ R and an invariant probability
measure μ, we define

Ct(ϕ,ψ)=
∫
(ϕ ◦ f t)ψ dμ−

∫
ϕ dμ

∫
ψ dμ, t ∈R (7.1.3)

and we say that the system (f t,μ) is mixing if

lim
t→+∞Ct(XA,XB)= lim

t→+∞μ
(
f−t(A)∩B

)−μ(A)μ(B)= 0, (7.1.4)

for any measurable sets A,B⊂M.

7.1.1 Properties

A mixing system is necessarily ergodic. Indeed, suppose that there exists some
invariant set A⊂M with 0<μ(A) < 1. Taking B= Ac, we get f−n(A)∩B= ∅
for every n. Then, μ(f−n(A)∩B) = 0 for every n, whereas μ(A)μ(B) �= 0. In
particular, (f ,μ) is not mixing. The example that follows shows that ergodicity
is strictly weaker than mixing:

Example 7.1.1. Let θ ∈ R be an irrational number. As we have seen in
Section 4.2.1, the rotation Rθ : S1 → S1 is ergodic with respect to the Lebesgue
measure m. However, (Rθ ,m) is not mixing. Indeed, if A,B⊂ S1 are two small
intervals then R−n

θ (A)∩B is empty and, thus, m(R−n
θ (A)∩B)= 0 for infinitely
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7.1 Mixing systems 183

many values of n. Since m(A)m(B) �= 0, it follows that the condition in (7.1.2)
does not hold.

It is clear from the definition (7.1.2) that if (f ,μ) is mixing then (f k,μ) is
mixing for every k ∈ N. The corresponding statement for ergodicity is false:
the map f (x) = 1− x on the set {0,1} is ergodic with respect to the measure
(δ0+ δ1)/2 but the second iterate f 2 is not.

Lemma 7.1.2. Assume that limnμ(f−n(A)∩B)= μ(A)μ(B) for every pair of
sets A and B in an algebra A that generates the σ -algebra of measurable sets.
Then (f ,μ) is mixing.

Proof. Let C be the family of all measurable sets A such that μ(f−n(A)∩ B)
converges to μ(A)μ(B) for every B ∈ A. By assumption, C contains A. We
claim that C is a monotone class. Indeed, let A = ⋃k Ak be the union of an
increasing sequence A1 ⊂ ·· · ⊂ Ak ⊂ ·· · of elements of C. Given ε > 0, there
exists k0 ≥ 1 such that

μ(A)−μ(Ak)=μ(A \Ak) < ε

for every k≥ k0. Moreover, for every n≥ 1,

μ
(
f−n(A)∩B

)−μ(f−n(Ak)∩B
)=μ(f−n(A \Ak)∩B

)
≤μ(f−n(A \Ak))=μ(A \Ak) < ε.

For each fixed k ≥ k0, the fact that Ak ∈ C ensures that there exists n(k) ≥ 1
such that

|μ(f−n(Ak)∩B
)−μ(Ak)μ(B)|< ε for every n≥ n(k).

Adding these three inequalities we conclude that

|μ(f−n(A)∩B
)−μ(A)μ(B)|< 3ε for every n≥ n(k0).

Since ε > 0 is arbitrary, this shows that A ∈ C. In the same way, one proves
that the intersection of any decreasing sequence of elements of C is still an
element of C. So, C is indeed a monotone class. By the monotone class theorem
(Theorem A.1.18), it follows that C contains every measurable set: for every
measurable set A one has

lim
n
μ
(
f−n(A)∩B

)=μ(A)μ(B) for every B ∈A.

All that is left to do is to deduce that this property holds for every measurable
set B. This follows from precisely the same kind of arguments as we have just
detailed, as the reader may readily check.

Example 7.1.3. Every Bernoulli shift (recall Section 4.2.3) is mixing. Indeed,
given any two cylinders A= [p;Ap, . . . ,Aq] and B= [r;Br, . . . ,Bs],

μ
(
f−n(A)∩B

)=μ([r;Br, . . . ,Bs,X, . . . ,X,Ap, . . . ,Aq])
=μ([r;Br, . . . ,Bs])μ([p;Ap, . . . ,Aq])=μ(A)μ(B)
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184 Correlations

for every n > s − p. Let A be the algebra generated by the cylinders: its
elements are the finite pairwise disjoint unions of cylinders. It follows from
what we have just said that μ(f−n(A)∩B) = μ(A)μ(B) for every pair of sets
A,B ∈ A and every n sufficiently large. Since A generates the σ -algebra of
measurable sets, we may use Lemma 7.1.2 to conclude that the system is
mixing, as stated.

Example 7.1.4. Let g : S1 → S1 be defined by g(x) = kx, where k ≥ 2 is
an integer number, and let m be the Lebesgue measure on the circle. The
system (g,m) is equivalent to a Bernoulli shift, in the following sense. Let
X = {0,1, . . . ,k− 1} and let f : M →M be the shift map in M = XN. Consider
the product measure μ= νN in M, where ν is the probability measure defined
by ν(A)= #A/k for every A⊂ X. The map

h : M→ S1, h
(
(an)n

)= ∞∑
n=1

an−1

kn

is a bijection, restricted to a full measure subset, and both h and its inverse
are measurable. Moreover, h∗μ = m and h ◦ f = g ◦ h at almost every point.
We say that h is an ergodic equivalence between (g,m) and (f ,μ). Through
it, properties of one system may be translated to corresponding properties for
the other system. In particular, recalling Example 7.1.3, we get that (g,m) is
mixing: given any measurable sets A,B⊂ S1,

m
(
g−n(A)∩B

)=μ(h−1(g−n(A)∩B)
)=μ(f−n(h−1(A))∩ h−1(B)

)
→μ(h−1(A))μ(h−1(B))=m(A)m(B) when n→∞.

Example 7.1.5. For surjective endomorphisms of the torus (Section 4.2.5)
mixing and ergodicity are equivalent properties: the system (fA,m) is mixing
if and only if no eigenvalue of the matrix A is a root of unity (compare
Theorem 4.2.14). In Exercise 7.1.4 we invite the reader to prove this fact; a
stronger statement will appear in Exercise 8.4.2. More generally, relative to
the Haar measure, a surjective endomorphism of a compact group is mixing if
and only if it is ergodic. In fact, even stronger statements are true, as we will
comment upon in Section 9.5.3.

Let us also discuss the topological version of the notion of a mixing system.
For that, take the ambient M to be a topological space. A transformation f :
M →M is said to be topologically mixing if, given any non-empty open sets
U,V ⊂M, there exists n0 ∈N such that f−n(U)∩V is non-empty for every n≥
n0. This is similar to but strictly stronger than the hypothesis of Lemma 4.3.4:
in the lemma we asked f−n(U) to intersect V for some value of n, whereas now
we request that to happen for every n sufficiently large.

Proposition 7.1.6. If (f ,μ) is mixing then the restriction of f to the support of
μ is topologically mixing.
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7.1 Mixing systems 185

Proof. Denote X = supp(μ). Let A,B ⊂ X be open sets. By the definition of
support of a measure, μ(A) > 0 and μ(B) > 0. Hence, since μ is mixing, there
exists n0 such that μ(f−n(A) ∩ B) > μ(A)μ(B)/2 > 0 for every n ≥ n0. In
particular, μ(f−n(A)∩B) �= ∅ for every n≥ n0.

It follows directly from this proposition that if f admits some invariant
probability measure μ that is mixing and positive on open sets, then f is
topologically mixing. For example, given any finite set X = {1, . . . ,d}, the shift
map

f : XZ→ XZ (or f : XN→ XN)

is topologically mixing. Indeed, for any probability measure ν supported on
the whole of X, the Bernoulli measure μ = νZ (or μ = νN) is mixing and
positive on open sets, as we have seen in Example 7.1.3. Analogously, by
Example 7.1.4, every transformation f : S1 → S1 of the form f (x) = kx with
k≥ 2 is topologically mixing.

Example 7.1.7. Translations in a metrizable group G are never topologically
mixing. Indeed, consider any left-translation Lg (the case of right-translations
is analogous). We may suppose that g is not the unit element e since otherwise
it is obvious that Lg is not topologically mixing. Fix some distance d invariant
under all the translations of the group G (recall Lemma 6.3.6) and let α =
d(e,g−1). Consider U = V = ball of radius α/4 around e. Every L−n

g (U) is a
ball of radius α/4. Assume that L−n

g (U) intersects V . Then L−n
g (U) is contained

in the ball of radius 3α/4 and, thus, L−n−1
g (U) is contained in the ball of radius

3α/4 around g−1. Consequently, L−n−1
g (U) does not intersect V . Since n is

arbitrary, this shows that Lg is not topologically mixing.

7.1.2 Weak mixing

A system (f ,μ) is weak mixing if, given any measurable sets A,B⊂M,

lim
n

1

n

n−1∑
j=0

|Cj(XA,XB)| = lim
n→∞

1

n

n−1∑
j=0

∣∣μ(f−j(A)∩B)−μ(A)μ(B)∣∣= 0. (7.1.5)

It is clear from the definition that every mixing system is also weak mixing.
On the other hand, every weak mixing system is ergodic. Indeed, if A⊂M is
an invariant set then

lim
n

1

n

n−1∑
j=0

|Cj(XA,XAc)| =μ(A)μ(Ac)

and, hence, the hypothesis implies that μ(A)= 0 or μ(Ac)= 0.

Example 7.1.8. Translations in metrizable compact groups are never weak
mixing with respect to the Haar measure μ (or any other invariant measure

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.008
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.008
https://www.cambridge.org/core


186 Correlations

positive on open sets). Indeed, as observed in Example 7.1.7, it is always
possible to choose open sets U and V such that f−n(U) ∩ V is empty for at
least one in every two consecutive values n. Then,

liminf
n

1

n

n−1∑
j=0

∣∣μ(f−j(U)∩V)−μ(U)μ(V)∣∣≥ 1

2
μ(U)μ(V) > 0.

In this way we get several examples of ergodic systems, even uniquely ergodic
ones, that are not weak mixing.

We are going to see in Section 7.3.2 that the family of interval exchanges
contains many systems that are weak mixing (and uniquely ergodic) but are
not mixing.

The proof of the next result is analogous to the proof of Lemma 7.1.2 and is
left to the reader:

Lemma 7.1.9. Assume that limn(1/n)
∑n−1

j=0 |μ(f−j(A)∩B)−μ(A)μ(B)| = 0
for every pair of sets A and B in some algebra A that generates the σ -algebra
of measurable sets. Then (f ,μ) is weak mixing.

Example 7.1.10. Given a system (f ,μ), let us consider the product transfor-
mation f2 : M×M →M×M given by f2(x,y) = (f (x), f (y)). It is easy to see
that f2 preserves the product measure μ2 = μ×μ. If (f2,μ2) is ergodic then
(f ,μ) is ergodic: just note that if A⊂M is invariant under f and μ(A) ∈ (0,1)
then A×A is invariant under f2 and μ2(A×A) ∈ (0,1).

The converse is not true in general, that is, (f2,μ2) may not be ergodic even
if (f ,μ) is ergodic. For example, if f : S1 → S1 is an irrational rotation and d is
a distance invariant under rotations, then any neighborhood {(x,y) : d(x,y) < r}
of the diagonal is invariant under f2.

The next result shows that this type of phenomenon cannot occur in the
category of weak mixing systems:

Proposition 7.1.11. The following conditions are equivalent:

(i) (f ,μ) is weak mixing;
(ii) (f2,μ2) is weak mixing;

(iii) (f2,μ2) is ergodic.

Proof. To prove that (i) implies (ii), consider any measurable sets A,B,C,D in
M. Then∣∣μ2(f

−j
2 (A×B)∩ (C×D))−μ2(A×B)μ2(C×D)

∣∣
= ∣∣μ(f−j(A)∩C

)
μ(f−j(B)∩D)−μ(A)μ(B)μ(C)μ(D)∣∣

≤ ∣∣μ(f−j(A)∩C
)−μ(A)μ(C)∣∣+ ∣∣μ(f−j(B)∩D

)−μ(B)μ(D)∣∣.
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7.1 Mixing systems 187

Therefore, the hypothesis (i) implies that

lim
n

1

n

n−1∑
j=0

∣∣μ2(f
−j
2 (A×B)∩ (C×D))−μ2(A×B)μ2(C×D)

∣∣= 0.

It follows that

lim
n

1

n

n−1∑
j=0

∣∣μ2(f
−j
2 (X)∩Y)−μ2(X)μ2(Y)

∣∣= 0

for any X,Y in the algebra generated by the products E × F of measurable
subsets of M, that is, the algebra formed by the finite pairwise disjoint unions
of such products. Since this algebra generates the σ -algebra of measurable
subsets of M×M, we may use Lemma 7.1.9 to conclude that (f2,μ2) is weak
mixing.

It is immediate that (i) implies (iii). To prove that (iii) implies (i), observe
that

1

n

n−1∑
j=0

[
μ
(
f−j(A)∩B

)−μ(A)μ(B)]2
= 1

n

n−1∑
j=0

[
μ
(
f−j(A)∩B

)2− 2μ(A)μ(B)μ
(
f−j(A)∩B

)+μ(A)2μ(B)2].
The right-hand side may be rewritten as

1

n

n−1∑
j=0

[
μ2

(
f−j
2 (A×A)∩ (B×B)

)−μ2(A×A)μ2(B×B)
]

− 2μ(A)μ(B)
1

n

n−1∑
j=0

[
μ
(
f−j(A)∩B

)−μ(A)μ(B)].
Since (f2,μ2) is ergodic and, consequently, (f ,μ) is also ergodic, part (ii) of
Proposition 4.1.4 gives that both terms in this expression converge to zero. In
this way, we conclude that

lim
n

1

n

n−1∑
j=0

[
μ
(
f−j(A)∩B

)−μ(A)μ(B)]2 = 0

for any measurable sets A,B⊂M. Using Exercise 7.1.2, we deduce that (f ,μ)
is weak mixing.

7.1.3 Spectral characterization

In this section we discuss equivalent formulations of the notions of mixing and
weak mixing systems, in terms of the Koopman operator.
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Proposition 7.1.12. The following conditions are equivalent:
(i) (f ,μ) is mixing.

(ii) There exist p,q ∈ [1,∞] with 1/p+ 1/q = 1 such that Cn(ϕ,ψ)→ 0 for
any ϕ ∈ Lp(μ) and ψ ∈ Lq(μ).

(iii) The condition in part (ii) holds for ϕ in some dense subset of Lp(μ) and
ψ in some dense subset of Lq(μ).

Proof. Condition (i) is the special case of (ii) for characteristic functions. Since
the correlations (ϕ,ψ) �→Cn(ϕ,ψ) are bilinear functions, condition (i) implies
that Cn(ϕ,ψ)→ 0 for any simple functions ϕ and ψ . This implies (iii), since
the simple functions form a dense subset of Lr(μ) for any r ≥ 1.

To show that (iii) implies (ii), let us begin by observing that as correlations
Cn(ϕ,ψ) are equicontinuous functions of ϕ and ψ . Indeed, given ϕ1,ϕ2 ∈
Lp(μ) and ψ1,ψ2 ∈ Lq(μ), the Hölder inequality (Theorem A.5.5) gives that∣∣∣∣∫ (ϕ1◦ f n)ψ1 dμ−

∫
(ϕ2◦ f n)ψ2 dμ

∣∣∣∣≤‖ϕ1−ϕ2‖p ‖ψ1‖q+‖ϕ2‖p ‖ψ1−ψ2‖q.

Moreover,∣∣∣∣∫ ϕ1 dμ
∫
ψ1 dμ−

∫
ϕ2 dμ

∫
ψ2 dμ

∣∣∣∣≤‖ϕ1−ϕ2‖1 ‖ψ1‖1+‖ϕ2‖1 ‖ψ1−ψ2‖1.

Adding these inequalities, and noting that ‖ · ‖1 ≤ ‖ · ‖r for every r≥ 1, we get
that∣∣Cn(ϕ1,ψ1)−Cn(ϕ2,ψ2)

∣∣≤ 2‖ϕ1−ϕ2‖p ‖ψ1‖q+2‖ϕ2‖p ‖ψ1−ψ2‖q (7.1.6)

for every n≥ 1. Then, given ε > 0 and any ϕ ∈ Lp(μ) and ψ ∈ Lq(μ), we may
take ϕ ′ and ψ ′ in the dense subsets mentioned in the hypothesis such that

‖ϕ−ϕ ′‖p < ε and ‖ψ −ψ ′‖q < ε.

In particular, ‖ϕ ′‖p < ‖ϕ‖p+ε and ‖ψ ′‖q < ‖ψ‖q+ε. Then, (7.1.6) gives that

|Cn(ϕ,ψ)| ≤ |Cn(ϕ
′,ψ ′)|+ 2ε(‖ϕ‖p+‖ψ‖q+ 2ε) for every n.

Moreover, by hypothesis, |Cn(ϕ
′,ψ ′)|<ε for every n sufficiently large. Since ε

is arbitrary, these two inequalities imply that Cn(ϕ,ψ) converges to zero when
n→∞. This proves property (ii).

The same argument proves the following version of Proposition 7.1.12 for
the weak mixing property:

Proposition 7.1.13. The following conditions are equivalent:
(i) (f ,μ) is weak mixing.

(ii) There exist p,q∈ [1,∞]with 1/p+1/q=1 such that (1/n)
∑n

j=1 |Cj(ϕ,ψ)|
converges to 0 for any ϕ ∈ Lp(μ) and ψ ∈ Lq(μ).

(iii) The condition in part (ii) holds for ϕ in some dense subset of Lp(μ) and
ψ in some dense subset of Lq(μ).
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7.1 Mixing systems 189

In the case p= q= 2, we may express the correlations in terms of the inner
product · in the Hilbert space L2(μ):

Cn(ϕ,ψ)= [Un
f ϕ− (ϕ · 1)

] ·ψ for every ϕ,ψ ∈ L2(μ).

Therefore, Proposition 7.1.12 gives that (f ,μ) is mixing if and only if

lim
n

[
Un

f ϕ− (ϕ · 1)
] ·ψ = 0 for every ϕ,ψ ∈ L2(μ), (7.1.7)

and Proposition 7.1.13 gives that (f ,μ) is weak mixing if and only if

lim
n

1

n

n∑
j=1

∣∣[Uj
fϕ− (ϕ · 1)

] ·ψ∣∣= 0 for every ϕ,ψ ∈ L2(μ). (7.1.8)

The condition (7.1.7) means that Un
f ϕ converges weakly to ϕ ·1= ∫ ϕ dμ, while

(7.1.8) is a Cesàro version of that assertion. Compare both conditions with the
characterization of ergodicity in (4.1.7).

Corollary 7.1.14. Let f : M→M be a mixing transformation relative to some
invariant probability measure μ. Let ν be any probability measure on M,
absolutely continuous with respect to μ. Then f n∗ ν converges pointwise to μ,
that is, ν(f−n(B))→μ(B) for every measurable set B⊂M.

Proof. Let ϕ = XB and ψ = dν/dμ. Note that ϕ ∈ L∞(μ) and ψ ∈ L1(μ).
Hence, by Proposition 7.1.12,∫
(XB ◦ f n)

dν

dμ
dμ=

∫
(Un

f ϕ)ψ dμ→
∫
ϕ dμ

∫
ψ dμ=

∫
XB dμ

∫
dν

dμ
dμ.

The sequence on the left-hand side coincides with
∫
(XB ◦ f n)dν = ν(f−n(B)).

The right-hand side is equal to μ(B)
∫

1dν =μ(B).

7.1.4 Exercises

7.1.1. Show that (f ,μ) is mixing if and only if μ(f−n(A) ∩ A) → μ(A)2 for every
measurable set A.

7.1.2. Let (an)n be a bounded sequence of real numbers. Prove that

lim
n

1

n

n∑
j=1

|aj| = 0

if and only if there exists E ⊂ N with density zero at infinity (that is, with
limn(1/n)#(E ∩ {0, . . . ,n − 1}) = 0) such that the restriction of (an)n to the
complement of E converges to zero when n→∞. Deduce that

lim
n

1

n

n∑
j=1

|aj| = 0 ⇔ lim
n

1

n

n∑
j=1

(aj)
2 = 0.

7.1.3. Prove that if μ is weak mixing for f then μ is weak mixing for every iterate f k,
k≥ 1.
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190 Correlations

7.1.4. Show that if no eigenvalue of A ∈ SL(d,R) is a root of unity then the linear
endomorphism fA : Td → Td induced by A is mixing, with respect to the Haar
measure.

7.1.5. Let f : M →M be a measurable transformation in a metric space. Check that an
invariant probability measure μ is mixing if and only if (f n

∗ η)n converges to μ in
the weak∗ topology for every probability measure η absolutely continuous with
respect to μ.

7.1.6. (Multiple von Neumann ergodic theorem). Show that if (f ,μ) is weak mixing
then

1

N

N−1∑
n=0

(ϕ1 ◦ f n) · · ·(ϕk ◦ f kn)→
∫
ϕ1 dμ · · ·

∫
ϕk dμ in L2(μ),

for any bounded measurable functions ϕ1, . . . , ϕk.

7.2 Markov shifts

In this section we introduce an important class of systems that generalizes
the notion of Bernoulli shift. As explained previously, Bernoulli shifts model
sequences of identical experiments such that the outcome of each experiment is
independent of all the others. In the definition of Markov shifts we weaken this
independence condition: we allow each outcome to depend on the preceding
one, but not the others. More generally, Markov shifts may be used to model the
so-called finite memory processes, that is, sequences of experiments for which
there exists k ≥ 1 such that the outcome of each experiment depends only on
the outcomes of the k previous experiments. In this regard, see Exercise 7.2.4.

To define a Markov shift, let (X,A) be a measurable space and � = XN

(or � = XZ) be the space of all sequences in X, endowed with the product
σ -algebra. Let us consider the shift map

σ :�→�, σ
(
(xn)n

)= (xn+1)n.

Let us be given a family {P(x, ·) : x ∈ X} of probability measures on X that
depend measurably on the point x. They will be called transition probabilities:
for each measurable set E ⊂ X, the number P(x,E) is meant to represent the
probability that xn+1 ∈ E, given that xn = x. A probability measure p in X is
called a stationary measure, relative to the family of transition probabilities, if
it satisfies∫

P(x,E)dp(x)= p(E), for every measurable set E⊂ X. (7.2.1)

Heuristically, this means that, relative to p, a probability of the event xn+1 ∈ E
is equal to the probability of the event xn ∈ E.
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7.2 Markov shifts 191

Fix any stationary measure p (assuming it exists) and then define

μ
([m;Am, . . . ,An]

)
=
∫

Am

dp(xm)

∫
Am+1

dP(xm,xm+1) · · ·
∫

An

dP(xn−1,xn) (7.2.2)

for every cylinder [m;Am, . . . ,An] of �. One can show (check Exercise 7.2.1)
that this function extends to a probability measure in the σ -algebra generated
by the cylinders. This probability measure is invariant under the shift map σ ,
because the right-hand side of (7.2.2) does not depend on m. Every probability
measure μ obtained in this way is called a Markov measure; moreover, the
system (σ ,μ) is called a Markov shift.

Example 7.2.1 (Bernoulli measure). Suppose that P(x, ·) does not depend on
x, that is, that there exists a probability measure ν on X such that P(x, ·) = ν
for every x ∈ X. Then∫

P(x,E)dp(x)=
∫
ν(E)dp(x)= ν(E)

for every probability measure p and every measurable set E ⊂ X. Therefore,
there exists exactly one stationary measure, namely p = ν. The definition in
(7.2.2) gives

μ
([m;Am, . . . ,An]

)= ∫
Am

dν(xm)

∫
Am+1

dν(xm+1) · · ·
∫

An

dν(xn)

= ν(Am)ν(Am+1) · · ·ν(An).

Example 7.2.2. Suppose that the set X is finite, say X = {1, . . . ,d} for some
d ≥ 2. Any family of transition probabilities P(x, ·) on X is completely
characterized by the values

Pi,j = P(i, {j}), 1≤ i, j≤ d. (7.2.3)

Moreover, a measure p on the set X is completely characterized by the values
pi = p({i}), 1≤ i≤ d. With these notations, the definition (7.2.1) translates to

d∑
i=1

piPi,j = pj, for every 1≤ j≤ d. (7.2.4)

Moreover, a Markov measure μ is determined by

μ
([m;am, . . . ,an]

)= pam Pam,am+1 · · ·Pan−1,an . (7.2.5)

In the remainder of this book we always restrict ourselves to finite Markov
shifts, that is, to the context of Example 7.2.2. We take the set X endowed with
the discrete topology and the corresponding Borel σ -algebra. Observe that the
matrix

P= (Pi,j
)

1≤i,j≤d

defined by (7.2.3) satisfies the following conditions:
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(i) Pi,j ≥ 0 for every 1≤ i, j≤ d;
(ii)

∑d
j=1 Pi,j = 1 for every 1≤ i≤ d.

We say that P is a stochastic matrix. Conversely, any matrix that satisfies (i)
and (ii) defines a family of transition probabilities on the set X. Observe also
that, denoting p= (p1, . . . ,pd), the relation (7.2.4) corresponds to

P∗p= p, (7.2.6)

where P∗ denotes the transpose of the matrix P. In other words, the stationary
measures correspond precisely to the eigenvectors of the transposed matrix for
the eigenvalue 1. Using the following classical result, one can show that such
eigenvalues always exist:

Theorem 7.2.3 (Perron–Frobenius). Let A be a d×d matrix with non-negative
coefficients. Then there exists λ≥ 0 and some vector v �= 0 with non-negative
coefficients such that Av = λv and λ≥ |γ | for every eigenvalue γ of A.

If A has some power whose coefficients are all positive then λ > 0 and it
has some eigenvector v whose coefficients are all positive. Indeed, λ > |γ | for
any other eigenvalue γ of A. Moreover, the eigenvalue λ has multiplicity 1
and it is the only eigenvalue of A having some eigenvector with non-negative
coefficients.

A proof of the Perron–Frobenius theorem may be found in Meyers [Mey00],
for example. Applying this theorem to the matrix A = P∗, we conclude that
there exist λ≥ 0 and p �= 0 with pi ≥ 0 for every i, such that

d∑
i=1

piPi,j = λpj, for every 1≤ j≤ d.

Adding over j= 1, . . . ,d we get that

d∑
j=1

d∑
i=1

piPi,j = λ
d∑

j=1

pj.

Using property (ii) of the stochastic matrix, the left-hand side of this equality
may be written as

d∑
i=1

pi

d∑
j=1

Pi,j =
d∑

i=1

pi.

Comparing the last two equalities and recalling that the sum of the coefficients
of p is a positive number, we conclude that λ = 1. This proves our claim that
there always exist vectors p �= 0 satisfying (7.2.6).

When Pn has positive coefficients for some n ≥ 1, it follows from
Theorem 7.2.3 that the eigenvector is unique up to scaling, and it may be
chosen with positive coefficients.
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7.2 Markov shifts 193

Example 7.2.4. In general, p is not unique and it may also happen that there
is no eigenvalue with positive coefficients. For example, consider:

P=

⎛⎜⎜⎜⎜⎜⎝
1− a a 0 0 0

b 1− b 0 0 0
0 0 1− c c 0
0 0 d 1− d 0
e 0 0 0 1− e

⎞⎟⎟⎟⎟⎟⎠
where a,b,c,d,e ∈ (0,1). A vector p = (p1,p2,p3,p4,p5) satisfies P∗p = p if
and only if ap1 = bp2 and cp3 = dp4 and p5 = 0. Therefore, the eigenspace has
dimension 2 and no eigenvector has positive coefficients.

On the other hand, suppose that p is such that pi = 0 for some i. Let μ be
the corresponding Markov measure and let �i = (X \ {i})N (or �i = (X \ {i})Z).
Then μ(�i)= 1, since μ([n; i])= pi = 0 for every n. This means that we may
eliminate the symbol i, and still have a system that is equivalent to the original
one. Therefore, up to removing from the set X a certain number of superfluous
symbols, we may always take the eigenvector p to have positive coefficients.

Denote by �P the set of all sequences (xn)n ∈� satisfying

Pxn,xn+1 > 0 for every n, (7.2.7)

that is, such that all the transitions are “allowed” by P. It is clear from the
definition that �P is invariant under the shift map σ . The transformations σ :
�P → �P constructed in this way are called shifts of finite type and will be
studied in more detail in Section 10.2.2.

Lemma 7.2.5. The set �P is closed in � and, given any solution of P∗p = p
with positive coefficients, the support of the corresponding Markov measure μ
coincides with �P.

Proof. Let xk = (xk
n)n, k ∈ N be any sequence in �P and suppose that it

converges in � to some x= (xn)n. By the definition of the topology in �, this
means that for every n there exists kn ≥ 1 such that xk

n= xn for every k≥ kn. So,
given any n, taking k≥max{kn,kn+1} we conclude that Pxn,xn+1 = Pxk

n,xk
n+1
> 0.

This shows that x ∈�P and that proves the first part of the lemma.
To prove the second part, recall that the cylinders [m;xm, . . . ,xn] form a basis

of neighborhoods of any x= (xn)n in �. If x ∈�P then

μ([m;xm, . . . ,xn])= pxm Pxm,xm+1 · · ·Pxn−1,xn > 0

for every cylinder and, thus, x ∈ suppμ. If x /∈�P then there exists n such that
Pxn,xn+1 = 0. In that case, μ([n;xn,xn+1])= 0 and so x /∈ suppμ.

Example 7.2.6. There are three possibilities for the support of a Markov
measure in Example 7.2.4. If p = (p1, p2,0,0,0) with p1,p2 > 0 then we may
eliminate the symbols 3,4,5. All the sequences of symbols 1,2 are admissible.
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Hence suppμ= {1,2}N. Analogously, if p= (0,0,p3,p4,0) with p3,p4> 0 then
suppμ={3,4}N. In all the other cases, p= (p1,p2,p3,p4,0)with p1,p2,p3,p4>

0. Eliminating the symbol 5, we get that the set of admissible sequences is

�P = {1,2}N ∪{3,4}N.

Both sets in this union are invariant and have positive measure. So, in this case
the Markov shift (σ ,μ) is not ergodic. But it follows from the theory presented
in the next section that in the previous two cases the system (σ ,μ) is indeed
ergodic.

In the next lemma we collect some simple properties of stochastic matrices
that will be useful in what follows:

Lemma 7.2.7. Let P be a stochastic matrix and p= (p1, . . . ,pd) be a solution
of P∗p = p. For every n ≥ 0, denote by Pn

i,j, 1 ≤ i, j ≤ d the coefficients of the
matrix Pn. Then:

(i)
∑d

j=1 Pn
i,j = 1 for every 1≤ i≤ d and every n≥ 1;

(ii)
∑d

i=1 piPn
i,j = pj for every 1≤ j≤ d and every n≥ 1;

(iii) the hyperplane H= {(h1, . . . ,hd) : h1+·· ·+hd = 0} is invariant under the
matrix P∗.

Proof. Condition (ii) in the definition of stochastic matrix may be written as
Pu= u, with u= (1, . . . ,1). Then Pnu= u for every n≥ 1. This is just another
way of writing claim (i). Analogously, P∗p = p implies that (P∗)np = p for
every n ≥ 1, which is another way of writing claim (ii). Observe that H is the
orthogonal complement of vector u. Since u is invariant under P, it follows that
H is invariant under the transposed matrix P∗, as claimed in (iii).

7.2.1 Ergodicity

In this section we always take p = (p1, . . . ,pd) to be a solution of P∗p = p
with pi > 0 for every i, normalized in such a way that

∑
i pi = 1. Let μ be the

corresponding Markov measure. We want to understand which conditions the
stochastic matrix P must satisfy for the system (σ ,μ) to be ergodic.

We say that a stochastic matrix P is irreducible if for every 1≤ i, j≤ d there
exists n≥ 0 such that Pn

i,j > 0. In other words, P is irreducible if any outcome
i may be followed by any outcome j, after a certain number n of steps which
may depend on i and j.

Theorem 7.2.8. The Markov shift (σ ,μ) is ergodic if and only if the matrix P
is irreducible.

The remainder of the present section is dedicated to the proof of this
theorem. We start by proving the following useful estimate:
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7.2 Markov shifts 195

Lemma 7.2.9. Let A= [m;am, . . . ,aq] and B= [r;br, . . . ,bs] be cylinders of �
with r> q. Then

μ
(
A∩B

)=μ(A)μ(B)Pr−q
aq,br

pbr

.

Proof. We may write A∩B as a disjoint union

A∩B=
⋃

x

[m;am, . . . ,aq,xq+1, . . . ,xr−1,br, . . . ,bs],

over all x= (xq+1, . . . ,xr−1) ∈ Xr−q−1. Then,

μ
(
A∩B

)=∑
x

pam Pam,am+1 . . .Paq−1,aq Paq,xq+1 . . .Pxr−1,br Pbr ,br+1 . . .Pbs−1,bs

=μ(A)
∑

x

Paq,xq+1 . . .Pxr−1,br

1

pbr

μ(B).

The sum in this last expression is equal to Pr−q
aq,br

. Therefore,

μ
(
A∩B

)=μ(A)μ(B)Pr−q
aq,br

/pbr ,

as stated.

Lemma 7.2.10. A stochastic matrix P is irreducible if and only if

lim
n

1

n

n−1∑
l=0

Pl
i,j = pj for every 1≤ i, j≤ d. (7.2.8)

Proof. Assume that (7.2.8) holds. Recall that pj > 0 for every j. Then, given
any 1 ≤ i, j ≤ d, we have Pl

i,j > 0 for infinitely many values of l. In particular,
P is irreducible.

To prove the converse, consider A= [0; i] and B= [0; j]. By Lemma 7.2.9,

1

n

n−1∑
l=0

μ
(
A∩σ−l(B)

)= 1

pj
μ(A)μ(B)

1

n

n−1∑
l=0

Pl
i,j.

According to Exercise 4.1.2, the left-hand side converges when n → ∞.
Therefore,

Qi,j = lim
n

1

n

n−1∑
l=0

Pl
i,j

exists for every 1≤ i, j≤ d. Consider the matrix Q= (Qi,j)i,j, that is,

Q= lim
n

1

n

n−1∑
l=0

Pl. (7.2.9)

Using Lemma 7.2.7(ii) and taking the limit when n→∞, we get that

d∑
i=1

piQi,j = pj for every 1≤ j≤ d. (7.2.10)
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Observe also that, given any k≥ 1,

PkQ= lim
n

1

n

n−1∑
l=0

Pk+l = lim
n

1

n

n−1∑
l=0

Pl =Q. (7.2.11)

It follows that Qi,j does not depend on i. Indeed, suppose that there exist r and
s such that Qr,j < Qs,j. Of course, we may choose s in such a way that the
right-hand side of this inequality is larger. Since P is irreducible, there exists k
such that Pk

s,r > 0. Hence, using (7.2.11) followed by Lemma 7.2.7(i),

Qs,j =
d∑

i=1

Pk
s,iQi,j <

(
d∑

i=1

Pk
s,i

)
Qs,j =Qs,j,

which is a contradiction. This contradiction proves that Qi,j does not depend
on i, as claimed. Write Qj =Qi,j for any i. The property (7.2.10) gives that

pj =
d∑

i=1

Qi,jpi =Qj

(
d∑

i=1

pi

)
=Qj,

for every j. This finishes the proof of the lemma.

Proof of Theorem 7.2.8. Suppose thatμ is ergodic. Let A=[0; i] and B=[0; j].
By Proposition 4.1.4,

lim
n

1

n

n−1∑
l=0

μ
(
A∩σ−l(B)

)=μ(A)μ(B)= pipj. (7.2.12)

On the other hand, by Lemma 7.2.9, we have thatμ(A∩σ−l(B))= piPl
i,j. Using

this identity in (7.2.12) and dividing both sides by pi we find that

lim
n

1

n

n−1∑
l=0

Pl
i,j = pj.

Note that j is arbitrary. So, by Lemma 7.2.10, this proves that P is irreducible.
Now suppose that the matrix P is irreducible. We want to conclude that μ is

ergodic. According to Corollary 4.1.5, it is enough to prove that

lim
n

1

n

n−1∑
l=0

μ
(
A∩σ−l(B)

)=μ(A)μ(B) (7.2.13)

for any A and B in the algebra generated by the cylinders. Since the elements
of this algebra are the finite pairwise disjoint unions of cylinders, it suffices
to consider the case when A and B are cylinders, say A = [m;am, . . . ,aq] and
B = [r;br, . . . ,bs]. Observe also that the validity of (7.2.13) is not affected if
one replaces B by some pre-image σ−j(B). So, it is no restriction to suppose
that r> q. Then, by Lemma 7.2.9,

1

n

n−1∑
l=0

μ
(
A∩σ−l(B)

)=μ(A)μ(B) 1

pbr

1

n

n−1∑
l=0

Pr−q+l
aq,br
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for every n. By Lemma 7.2.10,

lim
n

1

n

n−1∑
l=0

Pr−q+l
aq,br

= lim
n

1

n

n−1∑
l=0

Pl
aq,br

= pbr .

This proves the property (7.2.13) for the cylinders A and B.

7.2.2 Mixing

In this section we characterize the Markov shifts that are mixing, in terms of
the corresponding stochastic matrix P. As before, we take p to be a normalized
solution of P∗p = p with positive coefficients and μ to be the corresponding
Markov measure.

We say that a stochastic matrix P is aperiodic if there exists n≥ 1 such that
Pn

i,j > 0 for every 1≤ i, j≤ d. In other words, P is aperiodic if some power Pn

has only positive coefficients. The relation between the notions of aperiodicity
and irreducibility is analyzed in Exercise 7.2.6.

Theorem 7.2.11. The Markov shift (σ ,μ) is mixing if and only if the matrix P
is aperiodic.

For the proof of Theorem 7.2.11 we need the following fact:

Lemma 7.2.12. A stochastic matrix P is aperiodic if and only if

lim
l

Pl
i,j = pj for every 1≤ i, j≤ d. (7.2.14)

Proof. Since we assume that pj > 0 for every j, it is clear that (7.2.14) implies
that Pl

i,j > 0 for every i, j and every l sufficiently large.
Now suppose that P is aperiodic. Then we may apply the theorem of

Perron–Frobenius (Theorem 7.2.3) to the matrix A = P∗. Since p is an
eigenvector of A with positive coefficients, we get that λ= 1 and all the other
eigenvalues of A are smaller than 1 in absolute value. By Lemma 7.2.7(iii),
the hyperplane H formed by the vectors (h1, . . . ,hd) with h1 + ·· · + hd = 0 is
invariant under A. It is clear that H is transverse to the direction of p. Then the
decomposition

Rd =Rp⊕H (7.2.15)

is invariant under A and the restriction of A to the hyperplane H is a contraction,
meaning that its spectral radius is smaller than 1. It follows that the sequence
(Al)l converges to the projection on the first coordinate of (7.2.15), that is, to
the matrix B characterized by Bp = p and Bh = 0 for every h ∈ H. In other
words, (Pl)l converges to B∗. Observe that

Bi,j = pi for every 1≤ i, j≤ d.

Therefore, limn Pl
i,j = Bj,i = pj for every i, j.
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Proof of Theorem 7.2.11. Suppose that the measure μ is mixing. Let A= [0; i]
and B= [0; j]. By Lemma 7.2.9, we have that μ(A∩σ−l(B))= piPl

i,j for every
l. Therefore,

pi lim
l

Pl
i,j = lim

l
μ
(
A∩σ−l(B)

)=μ(A)μ(B)= pipj.

Dividing both sides by pi we get that liml Pl
i,j= pj. According to Lemma 7.2.12,

this proves that P is aperiodic.
Now suppose that the matrix P is aperiodic. We want to conclude that μ is

mixing. According to Lemma 7.1.2, it is enough to prove that

lim
l
μ
(
A∩σ−l(B)

)=μ(A)μ(B) (7.2.16)

for any A and B in the algebra generated by the cylinders. Since the elements
of this algebra are the finite pairwise disjoint unions of cylinders, it suffices
to treat the case when A and B are cylinders, say A = [m;am, . . . ,aq] and B =
[r;br, . . . ,bs]. By Lemma 7.2.9,

μ
(
A∩σ−l(B)

)=μ(A)μ(B) 1

pbr

Pr−q+l
aq,br

for every l> q− r. Then, using Lemma 7.2.12,

lim
l
μ
(
A∩σ−l(B)

)=μ(A)μ(B) 1

pbr

lim
l

Pr−q+l
aq,br

=μ(A)μ(B) 1

pbr

lim
l

Pl
aq,br

=μ(A)μ(B)

This proves the property (7.2.16) for cylinders A and B.

Example 7.2.13. In Example 7.2.4 we found different types of Markov
measures, depending on the choice of the probability eigenvector p. In the
first case, p= (p1,p2,0,0,0) and the measure μ is supported on {1,2}N. Once
the superfluous symbols 3, 4, 5 have been removed, the stochastic matrix
reduces to

P=
(

1− a a
b 1− b

)
.

Since this matrix is aperiodic, the Markov measure μ is mixing. The second
case is entirely analogous. In the third case, p = (p1,p2,p3,p4,0) and, after
removing the superfluous symbol 5, the stochastic matrix reduces to

P=

⎛⎜⎜⎝
1− a a 0 0

b 1− b 0 0
0 0 1− c c
0 0 d 1− d

⎞⎟⎟⎠ .

This matrix is not irreducible and, hence, the Markov measures that one finds
in this case are not ergodic (recall also Example 7.2.6).
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7.2 Markov shifts 199

Example 7.2.14. It is not difficult to find examples of irreducible matrices that
are not aperiodic:

P=

⎛⎜⎜⎝
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0

⎞⎟⎟⎠ .

Indeed, we see that Pn
i,j > 0 if and only if n has the same parity as i− j. Note

that

P2 =

⎛⎜⎜⎝
1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

⎞⎟⎟⎠ .

Exercise 7.2.6 shows that every irreducible matrix has a form of this type.

7.2.3 Exercises

7.2.1. Let X = {1, . . . ,d} and P = (Pi,j)i,j be a stochastic matrix and p = (pi)i be a
probability vector such that P∗p= p. Show that the function defined on the set of
all cylinders by

μ
([m;am, . . . ,an]

)= pam Pam ,am+1 · · ·Pan−1,an

extends to a measure on the Borel σ -algebra of � = XN (or � = XZ), invariant
under the shift map σ :�→�.

7.2.2. Prove that every weak mixing Markov shift is actually mixing.
7.2.3. Let X = {1, . . . ,d} and let μ be a Markov measure for the shift map σ : XZ→ XZ.

Does it follow that μ is also a Markov measure for the inverse σ−1 :�→�?
7.2.4. Let X be a finite set and � = XZ (or � = XN). Let μ be a probability measure

on �, invariant under the shift map σ :�→�. Given k ≥ 0, we say that μ has
memory k if

μ([m− l;am−l, . . . ,am−1,am])
μ([m− l;am−l, . . . ,am−1]) = μ([m− k;am−k, . . . ,am−1,am])

μ([m− k;am−k, . . . ,am−1])
for every l ≥ k, every m and every (an)n ∈ � (by convention, the equality holds
whenever at least one of the denominators is zero). Check that the measures with
memory 0 are the Bernoulli measures and the measures with memory 1 are the
Markov measures. Show that every measure with memory k ≥ 2 is equivalent to
a Markov measure in the space �̃ = X̃Z (or �̃ = X̃N), where X̃ = Xk.

7.2.5. The goal is to show that the set of all measures with finite memory is dense
in the space M1(σ ) of all probability measures invariant under the shift map
σ : �→ �. Given any invariant probability measure μ and any k ≥ 1, consider
the function μk defined on the set of all cylinders by
• μk =μ for cylinders with length less than or equal to k;
• for every l≥ k, every m and every (an)n ∈�,

μk([m− l;am−l, . . . ,am−1,am])
μk([m− l;am−l, . . . ,am−1]) = μ([m− k;am−k, . . . ,am−1,am])

μ([m− k;am−k, . . . ,am−1]) .
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Show that μk extends to a probability measure on the Borel σ -algebra of �,
invariant under the shift map and with memory k. Check that limkμk = μ in the
weak∗ topology.

7.2.6. Let P be an irreducible stochastic matrix. The goal is to show that there exist
κ ≥ 1 and a partition of X into κ subsets such that the restriction of Pκ to each of
these subsets is aperiodic. To do so:
(1) For every i ∈ X, define R(i) = {n ≥ 1 : Pn

i,i > 0}. Show that R(i) is closed
under addition: if n1,n2 ∈ R(i) then n1+ n2 ∈ R(i).

(2) Let R ⊂ N be closed under addition and let κ ≥ 1 be the greatest common
divisor of its elements. Show that there exists m≥ 1 such that R∩[m,∞)=
κN∩ [m,∞).

(3) Show that the greatest common divisor κ of the elements of R(i) does not
depend on i ∈ X and that P is aperiodic if and only if κ = 1.

(4) Assume that κ ≥ 2. Find a partition {Xr : 0 ≤ r < κ} of X such that the
restriction of Pκ to each Xr is aperiodic.

7.3 Interval exchanges

By definition, an interval exchange is a bijection of the interval [0,1) with
a finite number of discontinuities and whose restriction to every continuity
subinterval is a translation. Figure 7.1 describes an example with four
continuity subintervals. To fix ideas, we always take the transformation to be
continuous on the right, that is, we take all continuity subintervals to be closed
on the left and open on the right.

As a direct consequence of the definition, every interval exchange preserves
the Lebesgue measure on [0,1). These transformations exhibit a very rich
dynamical behavior and they also have important connections with many
other systems, such as polygonal billiards, conservative flows on surfaces and
Teichmüller flows. For example, the construction that we sketch next shows
that interval exchanges arise naturally as Poincaré return maps of conservative
vector fields on surfaces.

T C A G

f (G )

f (A )

f (C )

f (T )

Figure 7.1. An interval exchange
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7.3 Interval exchanges 201

Example 7.3.1. Let S be an orientable surface and ω be an area form in S, that
is, a differential 2-form that is non-degenerate at every point. We may associate
with every vector field X a differential 1-form β, defined by

βx(v)= ωx(X(x),v) for every vector v ∈ TxS.

Observe that X and β have the same zeros. Moreover, at all other points
the kernel of β coincides with the direction of the vector field. The 1-form
β permits the definition of the notion of “transverse arc-length” of curves
c : [a,b]→ S, as follows:

�(c)=
∫

c
β =

∫ b

a
βc(t)(ċ(t))dt.

Note that the flow trajectories have transverse arc-length zero. However, for
curves transverse to the flow, the measure � is equivalent to the usual arc-length
measure, in the sense that they have the same zero measure sets. We can show
(see Exercise 7.3.1) that the 1-form β is closed if and only if X preserves area.
Then, using the theorem of Green, the Poincaré maps of the flow preserve
the transverse length. With an additional hypothesis on the zeros of X, the
first-return map f : � → � to any cross-section � is well defined and is
continuous outside a finite subset of �. Then, parameterizing � by transverse
arc length, f is an interval exchange.

An interval exchange is determined by two ingredients. The first one, of a
combinatorial nature, concerns the number of continuity subintervals, the order
of these subintervals and the order of their images inside the interval [0,1). This
may be informed by assigning a label (for example, a letter) to each continuity
subinterval and to its image, and by listing these labels in their corresponding
orders, in two horizontal rows. For example, in the case described in Figure 7.1,
we obtain

π =
(

T C A G
G A C T

)
.

Note that the choice of the labels is arbitrary. We denote by A, and call
alphabet, the set of all labels.

The second ingredient, of a metric nature, concerns the lengths of the
subintervals. This may be expressed through a vector with positive coefficients,
indexed by the alphabet: each coefficient determines the length of the
corresponding continuity subinterval (and of its image). In the case of
Figure 7.1 this length vector has the form

λ= (λT ,λC,λA,λG).

The sum of the coefficients of a length vector is always equal to 1.
Then, the interval exchange f : [0,1)→[0,1) associated with each pair (π ,λ)

is defined as follows. For every label α ∈ A, denote by Iα the corresponding
continuity subinterval and define wα = v1 − v0, where v0 is the sum of the
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A B

f (B)

f (A)

Figure 7.2. Rotation viewed as an exchange of two intervals

lengths λβ corresponding to all labels β to the left of α on the top row of π and
v1 is the sum of the lengths λγ corresponding to all the labels γ to the left of α
on the bottom row of π . Then

f (x)= x+wα for every x ∈ Iα .

The vector w= (wα)α∈A is called the translation vector. Clearly, for each fixed
π , the translation vector is a linear function of the length vector λ= (λα)α∈A.

Example 7.3.2. The simplest interval exchanges have only two continuity
subintervals. See Figure 7.2. Choosing the alphabet A= {A,B}, we get

π =
(

A B
B A

)
and f (x)=

{
x+λB for x ∈ IA

x−λA = x+λB− 1 for x ∈ IB.

This transformation corresponds precisely to the rotation RλB if we identify
[0,1) with the circle S1 in the natural way. In this sense, the class of interval
exchanges are a generalization of the family of circle rotations.

7.3.1 Minimality and ergodicity

As we saw previously, a circle rotation Rθ is minimal if and only if θ is
irrational. Moreover, in that case Rθ is also uniquely ergodic. Given that almost
every number is irrational, this means that minimality and unique ergodicity
are typical in the family of circle rotations. In this section we discuss the two
properties in the broader context of interval exchanges.

Let us start with an observation that has no analogue for rotations. We say
that the combinatorics π of an interval exchange reducible if there exists some
position such that the labels to the left of that position in the two rows of π are
exactly the same. For example,

π =
(

B X O L F D
X O B F D L

)
is reducible, as the labels to the left of the fourth position are the same in
both rows: B, O and X. As a consequence, for any length vector λ, the interval
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7.3 Interval exchanges 203

exchange f defined by (π ,λ) leaves the subinterval IB ∪ IO ∪ IX invariant. In
particular, f cannot be minimal, not even transitive. In what follows we always
assume the combinatorics π to be irreducible.

It is natural to ask whether the interval exchange is minimal whenever the
length vector λ= (λα)α∈A is rationally independent, that is, whenever∑

α∈A
nαλα �= 0

for every non-zero vector (nα)α∈A with integer coefficients. This turns out to
be true but, in fact, the hypothesis of rational independence is a bit too strong:
we are going to present a somewhat more general condition that still implies
minimality.

We denote by ∂Iα the left endpoint of each subinterval Iα . We say that a
pair (π ,λ) satisfies the Keane condition if the trajectories of these points are
disjoint:

f m(∂Iα) �= ∂Iβ for every m≥ 1 and any α,β ∈A with ∂Iβ �= 0 (7.3.1)

(note that there always exist ᾱ and β̄ such that f (∂Iᾱ)= 0= ∂Iβ̄). We leave the
proof of the next lemma as an exercise (Exercise 7.3.2):

Lemma 7.3.3. (1) If the pair (π ,λ) satisfies the Keane condition then the
combinatorics matrix π is irreducible.
(2) If π is irreducible and λ is rationally independent then the pair (π ,λ)

satisfies the Keane condition.

Since the subset of rationally independent vectors has full Lebesgue
measure, it follows that the Keane condition is satisfied for almost every length
vector λ, if π is irreducible.

Example 7.3.4. In the case of two subintervals (recall Example 7.3.2), the
interval exchange has the form f m(x) = x + mλB mod Z. Then, the Keane
condition means that

mλB �= λA+ n and λA+mλB �= λA+ n

for every m ∈ N and n ∈ Z. It is clear that this holds if and only if the vector
(λA,λB) is rationally independent.

Example 7.3.5. For exchanges of three or more intervals, the Keane condition
is strictly weaker than the rational independence of the length vector. Consider,
for example,

π =
(

A B C
C A B

)
.

Then f m(x)= x+mλC mod Z and, thus, the Keane condition means that

{mλC,λA+mλC,λA+λB+mλC} and {λA+ n,λA+λB+ n}
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are disjoint for every m ∈N and n ∈ Z. Equivalently,

pλC /∈ {q,λA+ q} for every p ∈ Z and q ∈ Z.

This may hold even when (λA,λB,λC) is rationally dependent.

The following result was proved by Michael Keane [Kea75]:

Theorem 7.3.6 (Keane). If (π ,λ) satisfies the Keane condition then the
interval exchange f is minimal.

Example 7.3.7. The Keane condition is not necessary for minimality. For
example, consider the interval exchange defined by (π ,λ), where

π =
(

A B C D
D C B A

)
,

λA=λC, λB=λD and λA/λB=λC/λD is irrational. Then (π ,λ) does not satisfy
the Keane condition and yet f is minimal.

As observed previously, every minimal circle rotation is also uniquely
ergodic. This is still true for exchanges of three intervals, but not in general.
Indeed, Keane gave an example of an exchange of four intervals exhibiting two
ergodic probability measures, notwithstanding the fact that the combinatorics
matrix π is irreducible and the length vector λ is rationally independent.

Keane conjectured that, nevertheless, it should be true that almost every
interval exchange is uniquely ergodic. The following remarkable result, ob-
tained independently by Howard Masur [Mas82] and William Veech [Vee82],
established this conjecture:

Theorem 7.3.8 (Masur, Veech). Assume that π is irreducible. Then, for
Lebesgue-almost every length vector λ, the interval exchange defined by (π ,λ)
is uniquely ergodic.

Earlier, Michael Keane and Gérard Rauzy [KR80] had shown that unique
ergodicity holds for a residual (Baire second category) subset of length vectors
whenever the combinatorics is irreducible.

7.3.2 Mixing

The interval exchanges provide many examples of systems that are uniquely
ergodic and weak mixing but not (strongly) mixing.

Indeed, the theorem of Masur–Veech (Theorem 7.3.8) asserts that almost
every interval exchange is uniquely ergodic. Another deep theorem, due to
Artur Avila and Giovanni Forni [AF07], states that, circle rotations (more
precisely, interval exchanges with a unique discontinuity point) excluded,
almost every interval exchange is weak mixing. The topological version of
this fact had been proved by Arnaldo Nogueira and Donald Rudolph [NR97].
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7.3 Interval exchanges 205

On the other hand, a result of Anatole Katok [Kat80] that we are going to
discuss below asserts that interval exchanges are never mixing:

Theorem 7.3.9. Let f : [0,1)→ [0,1) be an interval exchange and μ be an
invariant probability measure. Then (f ,μ) is not mixing.

Proof. We may take μ to be ergodic, for otherwise the conclusion is obvious.
If μ has some atom then its support is a periodic orbit and, thus, μ cannot
be mixing. Hence, we may also take μ to be non-atomic. Denote by m the
Lebesgue measure on the interval and consider the map

h : [0,1)→[0,1), h(x)=μ([0,x]).
Then h is a homeomorphism and satisfies h∗μ = m. Consequently, the map
g = h ◦ f ◦ h−1 : [0,1) → [0,1) has finitely many discontinuity points and
preserves the Lebesgue measure. In particular, the restriction of g to each
continuity subinterval is a translation. Therefore, g is also an interval exchange.
It is clear that (f ,μ) is mixing if and only if (g,m) is mixing. Therefore, to
prove Theorem 7.3.9 it is no restriction to suppose that μ is the Lebesgue
measure m. We do that from now on.

Our goal is to find a measurable set X such that m(X ∩ f−n(X)) does not
converge to m(X)2 when n→∞. Let d= #A.

Lemma 7.3.10. Every interval J = [a,b) contained in some Iβ admits a
partition {J1, . . . ,Js} into no more than d + 2 subintervals of the form Ji =
[ai,bi) and admits natural numbers t1, . . . , ts ≥ 1 such that

(i) f n(Ji)∩ J = ∅ for every 0< n< ti and 1≤ i≤ s;
(ii) f ti | Ji is a translation for every 1≤ i≤ s;

(iii) {f t1(J1), . . . , f ts(Js)} is a partition of J;
(iv) the intervals f n(Ji), 1≤ i≤ s, 0≤ n< ti are pairwise disjoint;
(v)

⋃∞
n=0 f n(J)=⋃s

i=1

⋃ti−1
n=0 f n(Ji).

Proof. Let B be the set formed by the endpoints a and b of J together with the
endpoints ∂Iα , α ∈A minus the origin. Then #B≤ d+ 1. Let BJ ⊂ J be the set
of points x ∈ J for which there exists m ≥ 1 such that f m(x) ∈ B and f n(x) /∈ J
for every 0< n<m. The fact that f is injective, together with the definition of
m, implies that the map

BJ → B, x �→ f m(x)

is injective. In particular, #BJ ≤ #B ≤ d+ 1. Consider the partition of J into
subintervals Ji=[ai,bi)with endpoints ai,bi in the set BJ∪{a,b}. This partition
has at most d+2 elements. By the Poincaré recurrence theorem, for each i there
exists ti ≥ 1 such that f ti(Ji) intersects J. Take ti minimum with this property.
Part (i) of the lemma is an immediate consequence. By the definition of BJ ,
the restriction of f ti to the interval Ji is a translation, as stated in part (ii), and
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its image is contained in J. Moreover, the images f ti(Ji), 1≤ i≤ s are pairwise
disjoint, since f is injective and the ti are the first-return times to J. In particular,

s∑
i=1

m(f ti(Ji))=
s∑

i=1

m(Ji)=m(J)

and so
⋃s

i=1 f ti(Ji) = J. This proves part (iii). Part (iv) also follows directly
from the fact that f is injective and the ti are the first-return times to J. Finally,
part (v) is a direct consequence of part (iii).

Consider any interval J contained in some Iβ . By ergodicity, the invariant set⋃∞
n=0 f n(J) has full measure. By part (v) of Lemma 7.3.10, this set is a finite

union of intervals closed on the left and open on the right. Therefore,

∞⋃
n=0

f n(J)=
s⋃

i=1

ti−1⋃
n=0

f n(Ji)= I.

So, by Lemma 7.3.10(iv), the family PJ = {f n(Ji) : 1≤ i≤ s and 0≤ n< ti} is
a partition of I.

Lemma 7.3.11. Given δ > 0 and N ≥ 1, we may choose the interval J in such
a way that diamPJ < δ and ti ≥ N for every i.

Proof. It is clear that diam f n(Ji) = diamJi ≤ diamJ for every i and every n.
Hence, diamPJ < δ as long as we pick J with diameter smaller than δ. To get
the second property in the statement, take any point x ∈ I such that f n(x) �= ∂Iα
for every 0≤ n< N and α ∈A. We claim that f n(x) �= x for every 0< n< N.
Otherwise, since f n is a translation in the neighborhood of x, we would have
f n(y) = y for every point y in that neighborhood, which would contradict the
hypothesis that (f ,m) is ergodic. This proves our claim. Now it suffices to take
J = [x,x+ ε) with ε <min0<n<N d(x, f n(x)) to ensure that ti ≥ N for every i.

Lemma 7.3.12. For every 1≤ i≤ s there exist si ≤ d+2 and natural numbers
{ti,1, . . . , ti,si} such that ti,j ≥ ti and, given any set A in the algebra AJ generated
by PJ, there exists ti,j such that

m
(
A∩ f−ti,j(A)

)
≥ 1

(d+ 2)2
m(A). (7.3.2)

Proof. Applying Lemma 7.3.10 to each of the intervals Ji, 1 ≤ i ≤ s we find
si ≤ d+2, a partition {Ji,j : 1≤ j≤ si} of the interval Ji and natural numbers ti,j
such that each ti,j is the first-return time of the points of Ji,j to Ji. It is clear that
ti,j ≥ ti, since ti is the first-return time of any point of Ji to the interval J. The
fact that Ji,j ⊂ f−ti,j(Ji) implies that

f n(Ji)=
si⋃

j=1

f n(Ji,j)⊂
si⋃

j=1

f−ti,j(f n(Ji)) for every n≥ 0.
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7.3 Interval exchanges 207

Since the algebra AJ is formed by the finite pairwise disjoint unions of intervals
f n(Ji), 0≤ n< ti, it follows that

A⊂
s⋃

i=1

si⋃
j=1

f−ti,j(A) for every A ∈AJ .

In particular, m(A)≤∑s
i=1

∑si
j=1 m(A∩ f−ti,j(A)). Recalling that s≤ d+ 2 and

si ≤ d+ 2 for every i, this implies (7.3.2).

We are ready to conclude the proof of Theorem 7.3.9. For that, let us fix a
measurable set X ⊂ [0,1) with

0<m(X) <
1

4(d+ 2)2
.

By Lemma 7.3.11, given any N ≥ 1 we may find an interval J⊂ [0,1) such that
all the first-return times ti ≥ N and there exists A ∈AJ such that

m(X
A) <
1

4
m(X)2. (7.3.3)

Applying Lemma 7.3.12, we get that there exists ti,j ≥ ti ≥ N such that:

m
(
X∩ f−tij(X)

)≥m
(
A∩ f−tij(A)

)− 2m(X
A)

≥ 1

(d+ 2)2
m(A)− 1

2
m(X)2.

The relation (7.3.3) implies that m(A)≥ (3/4)m(X). Therefore,

m
(
X∩ f−tij(X)

)≥ 3

4

1

(d+ 2)2
m(X)− 1

2
m(X)2

≥ 3m(X)2− 1

2
m(X)2 > 2m(X)2.

This proves that limsupn m(X ∩ f−n(X)) ≥ 2m(X)2, and so the system (f ,m)
cannot be mixing.

7.3.3 Exercises

7.3.1. Let ω be an area form on a surface. Let X be a differentiable vector field on S
and β be the differential 1-form defined on S by βx = ωx(X(x), ·). Show that β is
closed if and only if X preserves the area measure.

7.3.2. Prove Lemma 7.3.3.
7.3.3. Show that if (π ,λ) satisfies the Keane condition then f has no periodic points.

[Observation: This is a step in the proof of Theorem 7.3.6.]
7.3.4. Let f : [0,1) → [0,1) be an irreducible interval exchange and let a ∈ (0,1)

be the largest of all the discontinuity points of f and f−1. The Rauzy–Veech
renormalization R(f ) : [0,1)→ [0,1) is defined by R(f )(x) = g(ax)/a, where
g is the first-return map of f to the interval [0,a). Check that R(f ) is an interval
exchange with the same number of continuity subintervals as f , or less. If f is
described by the data (π ,λ), how can we describe R(f )?
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208 Correlations

7.3.5. Given d ≥ 2 and a bijection σ : N→ N without periodic points, consider the
transformation f : [0,1] → [0,1] where each f (x) is obtained by permuting the
digits of the base d expansion of x as prescribed by σ . More precisely, if x =∑∞

n=1 and−n with an ∈ {0, . . . ,d−1} and infinitely many values of n such that an<

d−1, then f (x)=∑∞
n=1 aσ(n)d−n. Show that f preserves the Lebesgue measure m

in the interval and that (f ,m) is mixing.

7.4 Decay of correlations

In this section we discuss how quickly the correlations sequence Cn(ϕ,ψ)
decays to zero in a mixing system. Since we are dealing with deterministic
systems, we cannot expect interesting estimates to hold for arbitrary functions.
However, as we are going to see, such estimates do exist in many important
cases, if we restrict ϕ and ψ to suitable subsets of functions. Given that the
correlations (ϕ,ψ) �→ Cn(ϕ,ψ) are bilinear functions, it is natural to consider
subsets that are vector subspaces.

We say that (f ,μ) has exponential decay of correlations on a given vector
space V if there exists λ < 1 and for every ϕ,ψ ∈ V there exists A(ϕ,ψ) > 0
such that

|Cn(ϕ,ψ)| ≤ A(ϕ,ψ)λn for every n≥ 1. (7.4.1)

There are similar notions (polynomial decay, for instance) where the exponen-
tial λn is replaced by some other sequence converging to zero.

To illustrate the theory, let us analyze the issue of decay of correlations in
the context of one-sided Markov shifts. That will also allow us to introduce
several ideas that will be useful later in more general situations. Let f : M→M
be the shift map in M = XN, where X = {1, . . . ,d} is a finite set. Let P= (Pi,j)i,j
be an aperiodic stochastic matrix and p = (pi)i be the positive eigenvector of
P∗, normalized by p1+ ·· ·+ pd = 1. Let μ be the Markov measure defined in
M by (7.2.2).

Consider L = G−1P∗G, where G is the diagonal matrix whose coefficients
are p1, . . . ,pd. The coefficients of L are given by

Li,j = pj

pi
Pj,i for each 1≤ i, j≤ d.

Recall that we denote u= (1, . . . ,1) and H = {(h1, . . . ,hd) : h1+ ·· ·+ hd = 0}.
Let

V = {(v1, . . . ,vd) : p1v1+·· ·+ pdvd = 0}.
Then G(u) = p and G(V) = H. Recalling (7.2.15), it follows that the
decomposition

Rd =Ru⊕V (7.4.2)

is invariant under L and all the eigenvalues of the restriction of L to V are
smaller than 1 in absolute value. We say that L has the spectral gap property if
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7.4 Decay of correlations 209

the largest eigenvalue is simple and all the rest of the spectrum is contained in
a closed disk with strictly smaller radius.

The transfer operator of the shift map f is the linear operator Lf mapping
each function ψ : M→R to the function Lfψ : M→R defined by

Lfψ(x1, . . . ,xn, . . . ,)=
d∑

x0=1

Lx1,x0ψ(x0,x1, . . . ,xn, . . . ). (7.4.3)

The transfer operator is dual to the Koopman operator Uf , in the following
sense: ∫

ϕ(Lfψ)dμ=
∫
(Ufϕ)ψ dμ (7.4.4)

for any bounded measurable functions ϕ,ψ . Let us prove this fact.
We call a function ϕ : M → R locally constant if there is n ≥ 0 such

that every ϕ(x) depends only on the first n coordinates x0, . . . ,xn−1 of the
point x. For example, characteristic functions of cylinders are locally constant
functions. Since every bounded measurable function is a uniform limit of linear
combinations of characteristic functions of cylinders, it follows that every
bounded measurable function is the uniform limit of some sequence of locally
constant functions. Thus, to prove (7.4.4) it suffices to consider the case when
ϕ and ψ are both locally constant.

Then, consider functions ϕ andψ that depend only on the first n coordinates.
By the definition of Markov measure,∫

ϕ(Lfψ)dμ=
∑

a1,...,an

pa1 Pa1,a2 · · ·Pan−1,anϕ(a1, . . . ,an)Lfψ(a1, . . . ,an).

Using the definition of the transfer operator, the right-hand side of this
expression is equal to∑

a0,a1,...,an

pa0 Pa0,a1 Pa1,a2 · · ·Pan−1,anϕ(a1, . . . ,an)ψ(a0,a1, . . . ,an).

Observe that ϕ(a1, . . . ,an) = Ufϕ(a0,a1, . . . ,an). So, using once more the
definition of the Markov measure, this last expression is equal to

∫
(Ufϕ)ψ dμ.

This proves the duality property (7.4.4).
As a consequence, we may write the correlations sequence in terms of the

iterates of the transfer operator:

Cn(ϕ,ψ)=
∫
(Un

f ϕ)ψ−
∫
ϕ dμ

∫
ψ dμ=

∫
ϕ
(
Ln

fψ−
∫
ψ dμ

)
dμ. (7.4.5)

The property Lu= u means that
∑

j Li,j = 1 for every j. This has the following
useful consequence:

sup |Lfψ | ≤ sup |ψ | for every ψ . (7.4.6)
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210 Correlations

Taking ϕ ≡ 1 in (7.4.4) we get the following special case, which will also be
useful later: ∫

Lfψ dμ=
∫
ψ dμ for every ψ . (7.4.7)

Now let us denote by E0 the subset of functions ψ that depend only on the
first coordinate. The map ψ �→ (ψ(1), . . . ,ψ(d)) is an isomorphism between
E0 and the Euclidean space Rd. Moreover, the definition

Lfψ(x1)=
d∑

x0=1

Lx1,x0ψ(x0)

shows that the restriction of the transfer operator to E0 corresponds precisely
to the operator L :Rd →Rd. Note also that the hyperplane V ⊂Rd corresponds
to the subset of ψ ∈ E0 such that

∫
ψ dμ= 0. Consider in E0 the norm defined

by ‖ψ‖0 = sup |ψ |.
Fix any number λ between 1 and the spectral radius of L restricted to V .

Every function ψ ∈ E0 may be written:

ψ = c+ v with c=
∫
ψ dμ ∈Ru and v =ψ −

∫
ψ dμ ∈ V .

Then the spectral gap property implies that there exists B> 1 such that

sup
∣∣Ln

fψ −
∫
ψ dμ

∣∣≤ B‖ψ‖0λ
n for every n≥ 1. (7.4.8)

Using (7.4.5), it follows that

|Cn(ϕ,ψ)| ≤ B‖ϕ‖0‖ψ‖0λ
n for every n≥ 1.

In this way, we have shown that every aperiodic Markov shift has exponential
decay of correlations in E0.

With a little more effort, one can improve this result, by extending the
conclusion to a much larger space of functions. Consider in M the distance
defined by

d
(
(xn)n,(yn)n

)= 2−N(x,y) where N(x,y)=min{n≥ 0 : xn �= yn}.
Fix any θ > 0 and denote by E the set of functions ϕ that are θ -Hölder, that is,
such that

Kθ (ϕ)= sup

{ |ϕ(x)−ϕ(y)|
d(x,y)θ

: x �= y

}
is finite.

It is clear that E contains all the locally constant functions. We claim:

Theorem 7.4.1. Every aperiodic Markov shift (f ,μ) has exponential decay of
correlations in the space E of θ -Hölder functions, for any θ > 0.

Observe that Lf (E)⊂ E . The function ‖ψ‖= sup |ψ |+Kθ (ψ) is a complete
norm in E and the linear operator Lf : E → E is continuous relative to this
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7.4 Decay of correlations 211

norm (Exercise 7.4.1). One way to prove the theorem is by showing that this
operator has the spectral gap property, with invariant decomposition

E =Ru⊕
{
ψ ∈ E :

∫
ψ dμ= 0

}
.

Once that is done, exactly the same argument that we used before for E0 proves
the exponential decay of correlations in E . We do not present the details here
(but we will come back to this theme, in a much more general context, near
the end of Section 12.3). Instead, we give a direct proof that (7.4.8) may be
extended to the space E .

Given ψ ∈ E and x= (x1, . . . ,xn, . . . ) ∈M, we have

Lk
fψ(x)=

d∑
a1,...,ak=1

Lx1,ak · · ·La2,a1ψ(a1, . . . ,ak,x1, . . . ,xn, . . . )

for every k≥ 1. Then, given y= (y1, . . . ,yn, . . . ) with x1 = y1 = j,

|Lk
fψ(x)−Lk

fψ(y)| ≤
d∑

a1,...,ak=1

Lj,ak · · ·La2,a1 Kθ (ψ)2
−kθd(x,y)θ .

Using the property
∑d

i=1 Lj,i = 1, we conclude that

|Lk
fψ(x)−Lk

fψ(y)| ≤ Kθ (ψ)2
−kθd(x,y)θ ≤ Kθ (ψ)2

−kθ . (7.4.9)

Given any function ϕ, denote by πϕ the function that depends only on the first
coordinate and coincides with the mean of ϕ on each cylinder [0; i]:

πϕ(i)= 1

pi

∫
[0;i]
ϕ dμ.

It is clear that sup |πϕ| ≤ sup |ϕ| and
∫
πϕ dμ= ∫ ϕ dμ. The inequality (7.4.9)

implies that

sup |Lk
fψ −π(Lk

fψ)| ≤ Kθ (ψ)2
−kθ for every k≥ 1.

Then, using the property (7.4.6),

sup |Lk+l
f ψ −Ll

fπ(Lk
fψ)| ≤ Kθ (ψ)2

−kθ for every k, l≥ 1. (7.4.10)

Moreover, the properties (7.4.6) and (7.4.7) imply that

sup |π(Lk
fψ)| ≤ sup |ψ | and

∫
π(Lk

fψ)dμ=
∫
ψ dμ.

Therefore, the property (7.4.8) gives that

sup

∣∣∣∣Ll
fπ(Lk

fψ)−
∫
ψ dμ

∣∣∣∣≤ Bsup |ψ |λl for every l≥ 1. (7.4.11)

Adding (7.4.10) and (7.4.11), we get that

sup

∣∣∣∣Lk+l
f ψ −

∫
ψ dμ

∣∣∣∣≤ Kθ (ψ)2
−kθ +Bsup |ψ |λl for every k, l≥ 1.
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212 Correlations

Fix σ < 1 such that σ 2 ≥ max{2−θ ,λ}. Then the previous inequality (with
l≈ n/2≈ k) gives

sup

∣∣∣∣Ln
fψ −

∫
ψ dμ

∣∣∣∣≤ B‖ψ‖σ n−1 for every n. (7.4.12)

Now Theorem 7.4.1 follows from the same argument that we used before for
E0, with (7.4.12) in the place of (7.4.8).

7.4.1 Exercises

7.4.1. Show that ‖ϕ‖ = sup |ϕ| + Kθ (ϕ) defines a complete norm in the space E of
θ -Hölder functions and the transfer operator Lf is continuous relative to this
norm.

7.4.2. Let f : M →M be a local diffeomorphism on a compact manifold M and d ≥ 2
be the degree of f . Assume that there exists σ > 1 such that ‖Df (x)v‖ ≥ σ‖v‖
for every x ∈M and every vector v tangent to M at the point x. Fix θ > 0 and let
E be the space of θ -Hölder functions ϕ : M→R. For every ϕ ∈ E , define

Lfϕ : M→R, Lfϕ(y)= 1

d

∑
x∈f−1(y)

ϕ(x).

(a) Show that infϕ ≤ infLfϕ ≤ supLfϕ ≤ supϕ and Kθ (Lfϕ) ≤ σ−θKθ (ϕ) for
every ϕ ∈ E .

(b) Conclude that Lf : E → E is a continuous linear operator (relative to the
norm defined in Exercise 7.4.1) with ‖Lf ‖ = 1.

(c) Show that, for every ϕ ∈ E, the sequence (Ln
f ϕ)n converges to a constant

νϕ ∈R when n→∞. Moreover, there exists C> 0 such that

‖Ln
f ϕ− νϕ‖ ≤ Cσ−nθ‖ϕ‖ for every n and every ϕ ∈ E .

(d) Conclude that the operator Lf : E→ E has the spectral gap property.
(e) Show that the map ϕ �→ νϕ extends to a Borel probability measure on M

(recall Theorem A.3.12).
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