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Equivalent systems

This chapter is devoted to the isomorphism problem in ergodic theory: under
what conditions should two systems (f ,μ) and (g,ν) be considered “the
same” and how does one decide, for given systems, whether they are in those
conditions?

The fundamental notion is called ergodic equivalence: two systems are said
to be ergodically equivalent if, restricted to subsets with full measure, the
corresponding transformations are conjugated by some invertible map that
preserves the invariant measures. Through such a map, properties of either
system may be translated to corresponding properties of the other system.

Although this is a natural notion of isomorphism in the context of ergodic
theory, it is not an easy one to handle. In general, the only way to prove that two
given systems are equivalent is by exhibiting the equivalence map more or less
explicitly. On the other hand, the most usual way to show that two systems are
not equivalent is by finding some property that holds for one but not the other.

Thus, it is useful to consider a weaker notion, called spectral equivalence:
two systems are spectrally equivalent if their Koopman operators are conju-
gated by some unitary operator. Two ergodically equivalent systems are always
spectrally equivalent, but the converse is not true.

The idea of spectral equivalence leads to a rich family of invariants, related
to the spectrum of the Koopman operator, that must have the same value for
any two systems that are equivalent and, thus, may be used to exclude that
possibility. Other invariants, of non-spectral nature, have an equally crucial
role. The most important of all, the entropy, will be treated in Chapter 9.

The notions of ergodic equivalence and spectral equivalence, and the
relations between them, are studied in Sections 8.1 and 8.2, respectively. In
Sections 8.3 and 8.4 we study two classes of systems with opposite dynamical
features: transformations with discrete spectrum, that include the ergodic
translations on compact abelian groups, and transformations with a Lebesgue
spectrum, which have the Bernoulli shifts as the main example.

These two classes of systems, as well as others that we introduced previously
(ergodicity, strong mixing, weak mixing) are invariants of spectral equivalence
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214 Equivalent systems

and, hence, also of ergodic equivalence. Finally, in Section 8.5 we discuss a
third notion of equivalence, that we call ergodic isomorphism, especially in
the context of Lebesgue spaces.

8.1 Ergodic equivalence

Let μ and ν be probability measures invariant under measurable transforma-
tions f : M →M and g : N → N, respectively. We say that the systems (f ,μ)
and (g,ν) are ergodically equivalent if one can find measurable sets X ⊂ M
and Y ⊂ N with μ(M \ X) = 0 and ν(N \ Y) = 0, and a measurable bijection
φ : X→ Y with measurable inverse, such that

φ∗μ= ν and φ ◦ f = g ◦φ.

We leave it to the reader to check that this is indeed an equivalence relation,
that is, reflexive, symmetric and transitive.

Observe also that the sets X and Y in the definition may be chosen to be
invariant under f and g, respectively. Indeed, consider X0 =⋂∞

n=0 f−n(X). It
is clear from the definition that X0 ⊂ X and f (X0) ⊂ X0. Since μ(X) = 1
and the intersection is countable, we have that μ(X0)= 1. Analogously, Y0 =⋂∞

n=0 g−n(Y) is a measurable subset of Y such that ν(Y0)= 1 and g(Y0)⊂ Y0.
Moreover, by construction, Y0 = φ(X0). Therefore, the restriction of φ to X0 is
still a bijection onto Y0.

Example 8.1.1. Let f : [0,1] → [0,1] be defined by f (x) = 10x− [10x]. As
we saw in Section 1.3.1, this transformation preserves the Lebesgue measure
m on [0,1]. If one represents each number x ∈ [0,1] by its decimal expansion
x = 0.a0a1a2 . . . , the transformation f corresponds, simply, to shifting all the
digits of x one unit to the left. That motivates us to consider:

φ : {0,1, . . . ,9}N→[0,1], φ
(
(an)n

)= ∞∑
n=0

an

10n+1
= 0.a0a1a2 . . .

It is clear that φ is surjective. On the other hand, it is not injective, since
certain real numbers have more than one decimal expansion: for example,
0.1000000 . . . = 0.099999 . . . Actually, this happens if and only the number
admits a finite decimal expansion, that is, such that all but finitely many digits
are zero. The set of such numbers is countable and, hence, is irrelevant from the
point of view of the Lebesgue measure. More precisely, let us consider the set
X⊂ {0,1, . . . ,9}N of all sequences with an infinite number of symbols different
from zero and the set Y ⊂ [0,1] of all numbers whose decimal expansion is
infinite (hence, unique). Then the restriction of φ to X is a bijection onto Y .

It is easy to check that both φ | X and its inverse are measurable: use the fact
that the image of the intersection of X with each cylinder [0;a0, . . . ,am−1] is
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8.1 Ergodic equivalence 215

the intersection of Y with some interval of length 10−m. This observation also
shows that φ∗ν = m, where ν denotes the Bernoulli measure on {0,1, . . . ,9}N
that assigns equal weights to all the digits. Moreover, denoting by σ the shift
map in {0,1, . . . ,9}N, we have that

φ ◦σ ((an)n
)= 0,a1a2 . . .an · · · = f ◦φ((an)n

)
for every (an)n ∈ X. This proves that (f ,m) is ergodically equivalent to the
Bernoulli shift (σ ,ν).

Suppose that (f ,μ) and (g,ν) are ergodically equivalent. A measurable set
A ⊂ M is invariant under f : M → M if and only if φ(A) is invariant under
g : N → N. Moreover, ν(φ(A)) = μ(A). Therefore, (f ,μ) is ergodic if and
only if (g,ν) is ergodic. It is just as easy to obtain similar conclusions for the
mixing and the weak mixing properties. Indeed, essentially all the properties
that we study in this book are invariants of ergodic equivalence, that is, if they
hold for a given system then they also hold for any system that is ergodically
equivalent to it. An exception is unique ergodicity, which is a property of a
different nature, since it concerns solely the transformation.

This also means that these properties may be used to try to distinguish
systems that are not ergodically equivalent. Still, that is usually a difficult
task. For example, nothing of what was said so far is of much help towards
answering the following question: are the shift maps

σ : {1,2}Z→{1,2}Z and ζ : {1,2,3}Z→{1,2,3}Z, (8.1.1)

endowed with the corresponding Bernoulli measures giving the same weights
to all the symbols, ergodically equivalent? It is easy to see that σ and ζ are
not topologically conjugate (for example: ζ has three fixed points, whereas
σ has only two), but the existence of an ergodic equivalence is a much more
delicate issue. In fact, this type of question motivates most of the content of
the present chapter and also leads to the notion of entropy, which is the subject
of Chapter 9.

Example 8.1.2. Let σ : M → M be the shift map in M = XN and let μ =
νN be a Bernoulli measure. Let σ̂ : M̂ → M̂ be the natural extension of σ
and μ̂ be the lift of μ (Section 2.4.2). Moreover, let σ̃ : M̃ → M̃ be the shift
map in M̃ = XZ and μ̃ = νZ be the corresponding Bernoulli measure. Then,
(σ̂ , μ̂) is ergodically equivalent to (σ̃ , μ̃). An equivalence may be constructed
as follows.

By definition, M̂ is the space of pre-orbits of σ : M → M, that is, of all
the sequences x̂ = (. . . ,x−n, . . . ,x0) in M such that σ(x−j) = x−j+1 for every
j≥ 1. Moreover, each x−j is a sequence (x−j,i)i∈N in X. So, the previous relation
means that

x−j,i+1 = x−j+1,i for every i, j ∈N. (8.1.2)
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216 Equivalent systems

Consider the map φ : M̂→ M̃, x̂ �→ x̃ given by

x̃n = x0,n = x−1,n+1 = ·· · and x̃−n = x−n,0 = x−n−1,1 = ·· · .
We leave it to the reader to check that φ is indeed an ergodic equivalence
between the natural extension (σ̂ , μ̂) and the two-sided shift map (σ̃ , μ̃).

8.1.1 Exercises

8.1.1. Let f : [0,1]→ [0,1] be the transformation defined by f (x)= 2x−[2x] and m be
the Lebesgue measure on [0,1]. Exhibit a map g : [0,1]→ [0,1] and a probability
measure ν invariant under g such that (g,ν) is ergodically equivalent to (f ,μ) and
the support of ν has empty interior.

8.1.2. Let f : {1, . . . ,k}N→{1, . . . ,k}N and g : {1, . . . , l}N→{1, . . . , l}N be one-sided shift
maps, endowed with Bernoulli measures μ and ν, respectively. Show that, for
every set X ⊂ {1, . . . ,k}N with f−1(X)= X and μ(X)= 1, there exists x ∈ X such
that #(X ∩ f−1(x)) = k. Conclude that if k �= l then (f ,μ) and (g,ν) cannot be
ergodically equivalent.

8.1.3. Let X = {1, . . . ,d} and consider the shift map σ : XN → XN endowed with
a Markov measure μ. Given any cylinder C = [0;c0, . . . ,cl] in XN, let μC

be the normalized restriction of μ to C. Show that there exists an induced
transformation σC : C → C (see Section 1.4.2) preserving μC and such that
(σC,μC) is ergodically equivalent to a Bernoulli shift (σN,ν) in NN.

8.2 Spectral equivalence

Let f : M → M and g : N → N be transformations preserving probability
measures μ and ν, respectively. Let Uf : L2(μ)→ L2(μ) and Ug : L2(ν)→
L2(ν) be the corresponding Koopman operators. We say that (f ,μ) and (g,ν)
are spectrally equivalent if there exists some unitary operator L : L2(μ)→
L2(ν) such that

Ug ◦L= L ◦Uf . (8.2.1)

We leave it to the reader to check that the relation defined in this way is, indeed,
an equivalence relation.

It is easy to see that if two systems are ergodically equivalent then they
are spectrally equivalent. Indeed, suppose that there exists an invertible map
h : M→ N such that φ∗μ= ν and φ ◦ f = g ◦φ. Then, the Koopman operator

Uφ : L2(ν)→ L2(μ), Uφ(ψ)=ψ ◦φ
is an isometry and is invertible: the inverse is the Koopman operator associated
with φ−1. In other words, Uφ is a unitary operator. Moreover,

Uf ◦Uφ =Uφ◦f =Ug◦φ =Uφ ◦Ug.

Therefore, L=Uφ is a spectral equivalence between the two systems.
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8.2 Spectral equivalence 217

The converse is false, as will be clear from the sequel. For example,
all countably generated two-sided Bernoulli shifts are spectrally equivalent
(Corollary 8.4.12); however, not all have the same entropy (Example 9.1.10)
and so not all are ergodically equivalent.

8.2.1 Invariants of spectral equivalence

Recall that the spectrum spec(A) of a bounded linear operator A : E → E in a
complex Banach space E consists of the complex numbers λ such that A−λid
is not invertible. We say that λ ∈ spec(A) is an eigenvalue if A− λid is not
injective, that is, if there exists v �= 0 such that Av = λv. Then, the dimension
of the kernel of A−λid is called the multiplicity of the eigenvalue.

By definition, the spectrum of a system (f ,μ) is the spectrum of the
corresponding Koopman operator Uf : L2(μ)→ L2(μ). If (f ,μ) is spectrally
equivalent to (g,ν) then the two systems have the same spectrum: the relation
(8.2.1) implies that

(Ug−λ id)= L ◦ (Uf −λ id) ◦L−1 (8.2.2)

and, consequently, Ug−λ id is invertible if and only if Uf −λ id is invertible.
In fact, the spectrum itself is a poor invariant: in particular, all the invertible

ergodic systems with no atoms have the same spectrum (Exercise 8.2.1).
However, the associated spectral measure does provide very useful invariants,
as we are going to see. The simplest one is the set of atoms of the spectral
measure, that is, the set of eigenvalues of the Koopman operator. Note that
(8.2.2) also shows that a given λ is an eigenvalue of Uf if and only if it is an
eigenvalue of Ug; besides, in that case the two multiplicities are equal.

Observe that 1 is always an eigenvalue of the Koopman operator, since
Ufϕ = ϕ for every constant function ϕ. By Proposition 4.1.3(v), the system
(f ,μ) is ergodic if and only if this eigenvalue has multiplicity 1 for Uf . Thus,
it follows from what we have just said that (f ,μ) is ergodic if and only if any
system (g,ν) spectrally equivalent to it is ergodic. In other words, ergodicity is
an invariant of spectral equivalence.

Analogously, suppose that the system (f ,μ) is mixing. Then, by Proposi-
tion 7.1.12,

lim
n

Un
f ϕ ·ψ =

∫
ϕ dμ

∫
ψ dμ

for every ϕ,ψ ∈ L2(μ). Now suppose that (g,ν) is spectrally equivalent
to (f ,μ). Let L be the unitary operator in (8.2.1). The inverse L−1 maps
eigenvectors of Ug associated with the eigenvalue 1 to eigenvectors of Uf

associated with the same eigenvalue 1. Since the two systems are ergodic
(use the previous paragraph), this means that L−1 maps constant functions to
constant functions. Since L−1 is unitary,

Un
gϕ ·ψ = L−1(Un

gϕ) ·L−1ψ =Un
f (L

−1ϕ) ·L−1ψ
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218 Equivalent systems

and, hence, limn Un
gϕ ·ψ =

∫
L−1ϕ dμ

∫
L−1ψ dμ for every ϕ,ψ ∈ L2(ν). Also,∫

L−1ϕ dμ= L−1ϕ · 1= L−1ϕ ·L−11= ϕ · 1=
∫
ϕ dν

and, analogously,
∫

L−1ψ dμ= ∫ ψ dμ. In this way, we have shown that

lim
n

Un
gϕ ·ψ =

∫
ϕ dμ

∫
ψ dμ,

for every ϕ,ψ ∈ L2(ν), that is, (g,ν) is also mixing. This shows that the mixing
property is an invariant of spectral equivalence.

The same argument may be used for the weak mixing property, though the
theorem that we prove in Section 8.2.2 below gives us a more interesting proof
of the fact that weak mixing is an invariant of spectral equivalence.

8.2.2 Eigenvalues and weak mixing

As we have seen, the Koopman operator Uf : L2(μ)→ L2(μ) of a system (f ,μ)
is an isometry, that is, it satisfies U∗

f Uf = id . If f is invertible then the Koopman
operator is unitary, that is, it satisfies U∗

f Uf =Uf U∗
f = id . In particular, in that

case Uf is a normal operator. Then the property of weak mixing admits the
following interesting characterization:

Theorem 8.2.1. An invertible system (f ,μ) is weak mixing if and only if the
constant functions are the only eigenvectors of the Koopman operator.

In particular, a system (f ,μ) is weak mixing if and only if it is ergodic and
1 is the unique eigenvalue of Uf .

Proof. Suppose that (f ,μ) is weak mixing. Let ϕ ∈ L2(μ) be any (non-zero)
eigenfunction of Uf and λ be the corresponding eigenvalue. Then∫

ϕ dμ=
∫

Ufϕ dμ= λ
∫
ϕ dμ,

and this implies that
∫
ϕ dμ= 0 or λ= 1. In the first case,

Cj(ϕ, ϕ̄)=
∣∣∣∣∫ (Uj

fϕ)ϕ̄ dμ

∣∣∣∣= ∣∣∣∣λj
∫
ϕϕ̄ dμ

∣∣∣∣= ∫ |ϕ|2 dμ

for every j≥ 1 (recall that |λ| = 1). But then

lim
n

1

n

n−1∑
j=0

Cj(ϕ, ϕ̄)=
∫
|ϕ|2 dμ> 0,

contradicting the hypothesis that the system is weak mixing. In the second
case, using that the system is ergodic, we find that ϕ is constant at μ-almost
every point. This shows that if the system is weak mixing then the constant
functions are the only eigenvectors.
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8.2 Spectral equivalence 219

Now suppose that the only eigenvectors of Uf are the constant functions. To
conclude that (f ,μ) is weak mixing, we must show that

1

n

n−1∑
j=0

Cj(ϕ,ψ)2 → 0 for any ϕ,ψ ∈ L2(μ)

(recall Exercise 7.1.2). It follows immediately from the definition that

Cj(ϕ,ψ)= Cj(ϕ
′,ψ) where ϕ ′ = ϕ−

∫
ϕ dμ

and the integral of ϕ ′ vanishes. Hence, it is no restriction to suppose that∫
ϕ dμ = 0. Then, using the relation (A.7.6) for the unitary operator L = Uf ,

we get:

Cj(ϕ,ψ)2 =
∣∣∣∣∫ (Uj

fϕ)ψ dμ

∣∣∣∣2 = ∣∣∣∣∫
C

zj dθ(z)

∣∣∣∣2,

where θ = Eϕ ·ψ . The expression on the right-hand side may be rewritten as
follows: ∫

C

zj dθ(z)
∫
C

z̄j dθ̄ (z)=
∫
C

∫
C

zjw̄j dθ(z)dθ̄ (w).

Therefore, given any n≥ 1,

1

n

n−1∑
j=0

Cj(ϕ,ψ)2 =
∫
C

∫
C

1

n

n−1∑
j=0

(zw̄)j dθ(z)dθ̄ (w). (8.2.3)

We claim that the measure θ = Eϕ ·ψ is non-atomic. In fact, suppose that
there exists λ ∈ C such that θ({λ}) �= 0. Then, E({λ}) �= 0 and then we may
use Proposition A.7.8 to conclude that the function E({λ})ϕ is an eigenvector
of Uf . By the hypothesis about the operator Uf , this implies that E({λ})ϕ is
constant at μ-almost every point. Hence,

E({λ})ϕ ·ϕ = E({λ})ϕ
∫
ϕ̄ dμ= 0.

Lemma A.7.3 also gives that

E({λ})ϕ ·ϕ = E({λ})2ϕ ·ϕ = E({λ})ϕ ·E({λ})ϕ.

Putting these two identities together, we conclude that E({λ})ϕ = 0, which
contradicts the hypothesis. Thus, our claim is proved.

The sequence n−1∑n−1
j=0 (zw̄)

j in (8.2.3) is bounded and (see Exercise 8.2.6)
converges to zero on the complement of the diagonal 
 = {(z,w) : z = w}.
Moreover, the diagonal has measure zero:

(θ × θ̄ )(
)=
∫
θ({y})dθ̄ (y)= 0,

because θ is non-atomic. Then we may use the monotone convergence theorem
to conclude that (8.2.3) converges to zero when n→∞. This proves that (f ,μ)
is weak mixing if Uf has no non-constant eigenvectors.
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220 Equivalent systems

Suppose that M is a topological space. We say that a continuous map
f : M → M is topologically weak mixing if the Koopman operator Uf has
no non-constant continuous eigenfunctions. The following fact is an easy
consequence of Theorem 8.2.1:

Corollary 8.2.2. If (f ,μ) is weak mixing then the restriction of f to the support
of μ is topologically weak mixing.

Proof. Let ϕ be a continuous eigenfunction of Uf . By Theorem 8.2.1, the
function ϕ is constant at μ-almost every point. Hence, by continuity, ϕ is
constant (at every point) on the support of μ.

We mentioned in Section 7.3 that almost every interval exchange is weak
mixing but not mixing. In the following we describe an explicit construction,
based on an extension of ideas that were hinted at in Example 6.3.9. The reader
may find this and other variations of those ideas in Section 7.4 of Kalikow and
McCutcheon [KM10].

Example 8.2.3 (Chacon). Consider the sequence (Sn)n of piles defined as
follows. First, S1 = {[0,2/3)}. Next, for each n≥ 1, let Sn be the pile obtained
by dividing Sn−1 into three columns, with the same width, and piling those
columns up on top of each other, with an additional interval inserted between
the second pile and the third one, as illustrated in Figure 8.1.

For example, S2 = {[0,2/9), [2/9,4/9), [6/9,8/9), [4/9,6/9)} and

S3 = {[0,2/27), [6/27,8/27), [18/27,20/27), [12/27,14/27), [2/27,4/27),

[8/27,10/27), [20/27,22/27), [14/27,16/27), [24/27,26/27),

[4/27,6/27), [10/27,12/27), [22/27,24/27), [16/27,18/27)}.
Note that each Sn is a pile in the interval Jn = [0,1− 3−n). The sequence (fn)n
of transformations associated with such piles converges at every point to a
transformation f : [0,1)→ [0,1) that preserves the Lebesgue measure m. This
system (f ,m) is weak mixing but not mixing (Exercise 8.2.7).

I0

Ik–1

Figure 8.1. Constructing a weak mixing system that is not mixing
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8.2 Spectral equivalence 221

8.2.3 Exercises

8.2.1. Let (f ,μ) be an invertible ergodic system with no atoms. Show that every λ in the
unit circle {z∈C : |z| = 1} is an approximate eigenvalue of the Koopman operator
Uf : L2(μ)→ L2(μ): there exists some sequence (ϕn)n such that ‖ϕn‖ → 1 and
‖Ufϕn − λϕn‖ → 0. In particular, the spectrum of Uf coincides with the unit
circle.

8.2.2. Let m be the Lebesgue measure on the circle and Uα : L2(m) → L2(m) be
the Koopman operator of the irrational rotation Rα : S1 → S1. Calculate the
eigenvalues of Uα and deduce that (Rα ,m) and (Rβ ,m) are spectrally equivalent
if and only if α = ±β. [Observation: Corollary 8.3.6 provides a more complete
statement.]

8.2.3. Let m be the Lebesgue measure on the circle and, for each integer number k≥ 2,
let Uk : L2(m)→ L2(m) be the Koopman operator of the transformation fk : S1 →
S1 given by fk(x)= kx mod Z. Check that if p �= q then (fp,m) and (fq,m) are not
ergodically equivalent. Show that, for any k≥ 2,

L2(m)= {constants}⊕
∞⊕

j=0

Uj
k(Hk),

where Hk = {∑n∈Z ane2π inx : an = 0 if k | n} and the terms in the direct sum are
pairwise orthogonal. Conclude that (fp,m) and (fq,m) are spectrally equivalent
for any p and q.

8.2.4. Let f : S1 → S1 be the transformation given by f (x) = kx mod Z and μ be the
Lebesgue measure. Show that (f ,μ) is weak mixing if and only if |k| ≥ 2.

8.2.5. Prove that, for any invertible transformation f , if μ is ergodic for every iterate f n

and there exists C> 0 such that

limsup
n

μ
(
f−n(A)∩B

)≤ Cμ(A)μ(B),

for any measurable sets A and B, then μ is weak mixing. [Observation: This
statement is due to Ornstein [Orn72]. In fact, he proved more: under these
hypotheses the system is (strongly) mixing.]

8.2.6. Let z and w be two complex numbers with absolute value 1. Check that

(a) lim
n

1

n

n−1∑
j=0

|zj− 1| = 0 if and only if z= 1;

(b) lim
n

1

n

n−1∑
j=0

(zw̄)j = 0 if z �=w.

8.2.7. Consider the system (f ,m) in Example 8.2.3. Show that
(a) the system (f ,m) is ergodic;
(b) the only eigenvalues of the Koopman operator Uf : L1(m)→ L1(m) are the

constant functions, and hence (f ,m) is weak mixing;
(c) limsupn m(f n(A)∩A)≥ 2/27 if we take A= [0,2/9); in particular, (f ,m) is

not mixing.
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222 Equivalent systems

8.3 Discrete spectrum

In this section and the next we study two extreme cases, in terms of the type
of spectral measure of the Koopman operator: systems with discrete spectrum,
whose spectral measure is purely atomic, and systems with Lebesgue spectrum,
whose spectral measure is equivalent to the Lebesgue measure on the unit
circle.

We begin by describing some properties of the eigenvalues and eigenvectors
of the Koopman operator. It is clear that all the eigenvalues are in the unit
circle, since Uf is an isometry.

Proposition 8.3.1. If ϕ1,ϕ2 ∈L2(μ) satisfy Ufϕ1=λ1ϕ1 and Ufϕ2=λ2ϕ2 with
λ1 �= λ2, then ϕ1 ·ϕ2 = 0. Moreover, the eigenvalues of Uf form a subgroup of
the unit circle.

If the system (f ,μ) is ergodic then every eigenvalue of Uf is simple and the
absolute value of every eigenfunction is constant at μ-almost every point.

Proof. The first claim follows from the identity

ϕ1 ·ϕ2 =Ufϕ1 ·Ufϕ2 = λ1ϕ1 ·λ2ϕ2 = λ1λ̄2(ϕ1 ·ϕ2)= λ1λ
−1
2 (ϕ1 ·ϕ2),

since λ1λ
−1
2 �= 1. This identity also shows that the set of all eigenvalues is

closed under the operation (λ1,λ2) �→ λ1λ
−1
2 . Recalling that 1 is always an

eigenvalue, it follows that this set is a multiplicative group.
Now assume that (f ,μ) is ergodic and suppose that Ufϕ = λϕ. Then

Uf (|ϕ|) = |Ufϕ| = |λϕ| = |ϕ| at μ-almost every point. By ergodicity, this
implies that |ϕ| is constant at μ-almost every point. Next, suppose that Ufϕ1 =
λϕ1, Ufϕ2 = λϕ2 and the functions ϕ1 and ϕ2 are not identically zero. Since
|ϕ2| is constant at μ-almost every point, ϕ2(x) �= 0 for μ-almost every x. Then
ϕ1/ϕ2 is well defined. Moreover,

Uf

(
ϕ1

ϕ2

)
= Uf (ϕ1)

Uf (ϕ2)
= λϕ1

λϕ2
= ϕ1

ϕ2
.

By ergodicity, it follows that the quotient is constant at μ-almost every point.
That is, ϕ1 = cϕ2 for some c ∈C.

We say that a system (f ,μ) has discrete spectrum if the eigenvectors
of the Koopman operator Uf : L2(μ) → L2(μ) generate the Hilbert space
L2(μ). Observe that this implies that Uf is invertible and, hence, is a unitary
operator. This terminology is justified by the following observation (recall also
Theorem A.7.9):

Proposition 8.3.2. A system (f ,μ) has discrete spectrum if and only if its
Koopman operator Uf has a spectral representation of the form

T :
⊕

j

L2(σj)
χj →

⊕
j

L2(σj)
χj , (ϕj,l)j,l �→

(
z �→ zϕj,l(z)

)
j,l, (8.3.1)

where each σj is a Dirac measure at a point in the unit circle.
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8.3 Discrete spectrum 223

Proof. Suppose that Uf admits a spectral representation of the form (8.3.1)
with σj = δλj for some λj in the unit circle. Each L2(σj)

χj may be canonically
identified with a subspace in the direct sum. The restriction of T to that
subspace coincides with λj id , since

zϕj,l(z)= λjϕj,l(z) at σj-almost every point. (8.3.2)

Let (vj,l)l be a Hilbert basis of L2(σj)
χj . Then (vj,l)j,l is a Hilbert basis of the

direct sum formed by eigenvectors of T . Since T is unitarily conjugate to Uf ,
it follows that L2(μ) admits a Hilbert basis formed by eigenvectors of the
Koopman operator.

Now suppose that (f ,μ) has discrete spectrum. Let (λj)j be the eigenvalues
of Uf and, for each j, let σj = δλj and χj be the Hilbert dimension of the
eigenspace ker(Uf − λj id). Note that the space L2(σj) is 1-dimensional, since
every function is constant at σj-almost every point. Therefore, the Hilbert
dimension of L2(δλj)

χj is also equal to χj. Hence, there exists some unitary
isomorphism

Lj : ker(Uf −λj id)→ L2(δλj)
χj .

It is clear that Lj ◦Uf ◦ L−1
j = λj id . In other words, recalling the observation

(8.3.2),

Lj ◦Uf ◦L−1
j : (ϕj,l)l �→

(
z �→ λjϕj,l(z)

)
l =
(
z �→ zϕj,l(z)

)
l. (8.3.3)

The eigenspaces ker(Uf − λj id) generate L2(μ), by hypothesis, and they
are pairwise orthogonal, by Proposition 8.3.1. Hence, we may combine the
operators Lj to obtain a unitary isomorphism L : L2(μ)→⊕

j L
2(σj)

χj . The
relation (8.3.3) gives that

L ◦Uf ◦L−1 : (ϕj,l)j,l �→
(
z �→ zϕj,l(z)

)
l

is a spectral representation of Uf of the form we are looking for.

Example 8.3.3. Let m be the Lebesgue measure on the torus Td. Consider the
Fourier basis {φk(x)= e2π ik·x : k ∈ Zd} of the Hilbert space L2(m). Let f be the
rotation Rθ : Td → Td corresponding to a given vector θ = (θ1, . . . ,θd). Then,

Ufφk(x)= φk(x+ θ)= e2π ik·θφk(x) for every x ∈ Td.

This shows that every φk is an eigenvector of Uf and, hence, (f ,m) has discrete
spectrum. Note that the group of eigenvalues is

Gθ = {e2π ik·θ : k ∈ Zd}, (8.3.4)

that is, the subgroup of the unit circle generated by {e2π iθj : j= 1, . . . ,d}.
More generally, every ergodic translation in a compact abelian group has

discrete spectrum. Conversely, every ergodic system with discrete spectrum is
ergodically isomorphic to a translation in a compact abelian group (the notion
of ergodic isomorphism is discussed in Section 8.5). Another interesting result

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.009
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:06, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.009
https://www.cambridge.org/core


224 Equivalent systems

is that every subgroup of the unit circle is the group of eigenvalues of some
ergodic system with discrete spectrum. These facts are proved in Section 3.3
of the book of Peter Walters [Wal82].

Proposition 8.3.4. Suppose that (f ,μ) and (g,ν) are ergodic and have discrete
spectrum. Then (f ,μ) and (g,ν) are spectrally equivalent if and only if their
Koopman operators Uf : L2(μ)→ L2(μ) and Ug : L2(ν)→ L2(ν) have the
same eigenvalues.

Proof. It is clear that if the Koopman operators are conjugate then they have
the same eigenvalues. To prove the converse, let (λj)j be the eigenvalues of the
two operators. By Proposition 8.3.2, the eigenvalues are simple. For each j,
let uj and vj be unit vectors in ker(Uf −λj id) and ker(Ug−λj id), respectively.
Then (uj)j and (vj)j are Hilbert bases of L2(μ) and L2(ν), respectively. Consider
the isomorphism L : L2(μ)→ L2(ν) defined by L(uj) = vj. This operator is
unitary, since it maps a Hilbert basis to a Hilbert basis, and it satisfies

L ◦Uf (uj)= L(λjuj)= λjvj =Ug(vj)=Ug ◦L(uj)

for every j. By linearity, it follows that L ◦Uf = Ug ◦ L. Therefore, (f ,μ) and
(g,ν) are spectrally equivalent.

Corollary 8.3.5. If (f ,μ) is ergodic, invertible and has discrete spectrum then
(f ,μ) is spectrally equivalent to (f−1,μ).

Proof. It is clear that λ is an eigenvalue of Uf if and only if λ−1 is an eigenvalue
of Uf−1 ; moreover, in that case the eigenvectors are the same. Since the sets
of eigenvalues are groups, it follows that the two operators have the same
eigenvalues and the same eigenvectors. Apply Proposition 8.3.4.

Let m be the Lebesgue measure on the torus Td. Proposition 8.3.4 also
allows us to classify the irrational rotations on the torus up to equivalence,
ergodic and spectral:

Corollary 8.3.6. Let θ = (θ1, . . . ,θd) and τ = (τ1, . . . ,τd) be rationally
independent vectors and Rθ and Rτ be the corresponding rotations on the torus
Td. The following conditions are equivalent:

(i) (Rθ ,m) and (Rτ ,m) are ergodically equivalent;
(ii) (Rθ ,m) and (Rτ ,m) are spectrally equivalent;

(iii) there exists L ∈ SL(d,Z) such that θ = Lτ mod Zd.

We leave the proof to the reader (Exercise 8.3.2). In the special case of the
circle, we get that two irrational rotations Rθ and Rτ are equivalent if and only
if either Rθ = Rτ or Rθ = R−1

τ . See also Exercise 8.3.3.
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8.4 Lebesgue spectrum 225

8.3.1 Exercises

8.3.1. Suppose that (f ,μ) has discrete spectrum and the Hilbert space L2(μ) is separable
(this is the case, for instance, if the σ -algebra of measurable sets is countably
generated). Show that there exists a sequence (nk)k converging to infinity such
that ‖Unk

f ϕ−ϕ‖2 converges to zero when k→∞, for every ϕ ∈ L2(μ).
8.3.2. Prove Corollary 8.3.6.
8.3.3. Let m be the Lebesgue measure on S1 and θ = p/q and τ = r/s be two rational

numbers, with gcd(p,q) = 1 = gcd(r,s). Show that the rotations (Rθ ,m) and
(Rτ ,m) are ergodically equivalent if and only if the denominators q and s are
equal.

8.4 Lebesgue spectrum

This section is devoted to the class of systems whose Koopman operator has
the following property (the reason for the terminology will become clear in
Proposition 8.4.10):

Definition 8.4.1. Let U : H → H be an isometry in a Hilbert space. We say
that U has Lebesgue spectrum if there exists some closed subspace E⊂H such
that

(i) U(E)⊂ E;
(ii)

⋂
n∈N Un(E)= {0};

(iii)
∑

n∈N U−n(E)=H.

Given a probability measure μ, we denote by L2
0(μ) = L2

0(M,B,μ) the
orthogonal complement, inside the space L2(μ)= L2(M,B,μ), of the subspace
of constant functions. In other words,

L2
0(μ)= {ϕ ∈ L2(μ) :

∫
ϕ dμ= 0}.

Note that L2
0(μ) is invariant under the Koopman operator: ϕ ∈ L2

0(μ) if and
only if Ufϕ ∈ L2

0(μ). We say that the system (f ,μ) has Lebesgue spectrum if
the restriction of the Koopman operator to L2

0(μ) has Lebesgue spectrum.

8.4.1 Examples and properties

We start by observing that all Bernoulli shifts have Lebesgue spectrum. It is
convenient to treat one-sided shifts and the two-sided shifts separately.

Example 8.4.2. Consider a one-sided shift map σ : XN → XN and a
Bernoulli measure μ = νN on XN. Let E = L2

0(μ). Conditions (i) and (iii) in
Definition 8.4.1 are obvious. To prove condition (ii), consider any function
ϕ ∈ L2

0(μ) in the intersection, that is, such that for every n ∈ N there exists a
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226 Equivalent systems

function ψn ∈ L2
0(μ) satisfying ϕ =ψn ◦σ n. We want to show that ϕ is constant

at μ-almost every point. For each c ∈R, consider

Ac = {x ∈ XN : ϕ(x) > c}.
For each n∈N, we may write Ac= σ−n({x∈XN :ψn(x)> c}). Then Ac belongs
to the σ -algebra generated by the cylinders of the form [n;Cn, . . . ,Cm] with
m≥ n. Consequently, μ(Ac∩C)=μ(Ac)μ(C) for every cylinder C of the form
C = [0;C0, . . . ,Cn−1]. Since n is arbitrary and the cylinders are a generating
family, it follows thatμ(Ac∩B)=μ(Ac)μ(B) for every measurable set B⊂XN.
Taking B=Ac we conclude that μ(Ac)=μ(Ac)

2; in other words, μ(Ac)∈ {0,1}
for every c∈R. This proves that ϕ is constant atμ-almost every point, as stated.

Example 8.4.3. Now consider a two-sided shift map σ : XZ → XZ and a
Bernoulli measure μ= νZ. Let A be the σ -algebra generated by the cylinders
of the form [0;C0, . . . ,Cm] with m ≥ 0. Denote by L2

0(X
Z,A,μ) the space of

all functions ϕ ∈ L2
0(μ) that are measurable with respect to the σ -algebra A

(in other words, ϕ(x) depends only on the coordinates xn, n ≥ 0 of the point).
Take E= L2

0(X
Z,A,μ). Condition (i) in Definition 8.4.1 is obvious. Condition

(ii) follows from the same arguments that we used in Example 8.4.2. To prove
condition (iii), note that

⋃
n U−n

σ (E) contains the characteristic functions of all
the cylinders. Therefore, it contains all the linear combinations of characteristic
functions of sets in the algebra generated by the cylinders. This implies that the
union is dense in L2

0(μ), as we wanted to prove.

Lemma 8.4.4. If (f ,μ) has Lebesgue spectrum then limn Un
f ϕ ·ψ = 0 for every

ϕ ∈ L2
0(μ) and every ψ ∈ L2(μ).

Proof. Observe that the sequence Un
f ϕ · ψ is bounded. Indeed, by the

Cauchy–Schwarz inequality (Theorem A.5.4):

|Un
f ϕ ·ψ | ≤ ‖Un

f ϕ‖2‖ψ‖2 = ‖ϕ‖2‖ψ‖2 for every n.

So, it is enough to prove that every convergent subsequence U
nj
f ϕ ·ψ converges

to zero. Furthermore, the set {Un
f ϕ : n ∈N} is bounded in L2(μ), because Uf is

an isometry. By the theorem of Banach–Alaoglu (Theorems A.6.1 and 2.3.1),
every sequence in that set admits some weakly convergent subsequence.
Hence, it is no restriction to suppose that U

nj
f ϕ converges weakly to some

ϕ̂ ∈ L2(μ).
Let E be a subspace satisfying the conditions in Definition 8.4.1. Initially,

suppose that ϕ ∈ U−k
f (E) for some k. Then U

nj
f ϕ ∈ U

nj−k
f (E). Hence, given

any l ∈ N, we have that U
nj
f ϕ ∈ Ul

f (E) for every j sufficiently large. It follows
(see Exercise A.6.8) that ϕ̂ ∈ Ul

f (E) for every l ∈ N. By condition (ii) in
the definition, this implies that ϕ̂ = 0 at μ-almost every point. In particular,
limj U

nj
f ϕ ·ψ = ϕ̂ ·ψ = 0.
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8.4 Lebesgue spectrum 227

Now consider any ϕ ∈ L2
0(μ). By condition (iii) in the definition, for every

ε > 0 there exist k ∈ N and ϕk ∈ U−k
f (E) such that ‖ϕ − ϕk‖2 ≤ ε. Using the

Cauchy–Schwarz once more inequality:

|Un
f ϕ ·ψ −Un

f ϕk ·ψ | ≤ ‖ϕ−ϕk‖2 ‖ψ‖2 ≤ ε‖ψ‖2

for every n. Recalling that limn Un
f ϕk ·ψ = 0 (by the previous paragraph), we

find that

−ε‖ψ‖2 ≤ liminf
n

Un
f ϕ ·ψ ≤ limsup

n
Un

f ϕ ·ψ ≤ ε‖ψ‖2.

Making ε→ 0, it follows that limn Un
f ϕ ·ψ = 0, as we wanted to prove.

Corollary 8.4.5. If (f ,μ) has Lebesgue spectrum then (f ,μ) is mixing.

Proof. It suffices to observe that

Cn(ϕ,ψ)= |Un
f ϕ ·ψ −

(∫
ϕ dμ

)
·ψ | = |Un

f

(
ϕ−

∫
ϕ dμ

)
·ψ |

and the function ϕ ′ = ϕ− ∫ ϕ dμ is in L2
0(μ).

The converse to Corollary 8.4.5 is false, in general: in Example 8.4.13 we
present certain mixing systems that do not have Lebesgue spectrum.

The class of systems with Lebesgue spectrum is invariant under spectral
equivalence. Indeed, suppose that (f ,μ) has Lebesgue spectrum and (g,ν) is
spectrally equivalent to (f ,μ). Let L : L2(μ)→ L2(ν) be a unitary operator
conjugating the Koopman operators Uf and Ug. It follows from the hypothesis
and Corollary 8.4.5 that (f ,μ) is weak mixing. Hence, by Theorem 8.2.1, the
constant functions are the only eigenvectors of Uf . Then the same holds for
Ug and so the conjugacy L maps constant functions to constant functions.
Then, as L is unitary, its restriction to the orthogonal complement L2

0(μ) is a
unitary operator onto L2

0(ν). Now, given any subspace E⊂ L2
0(μ) satisfying the

conditions (i), (ii), (iii) in Definition 8.4.1 for Uf , it is clear that the subspace
L(E) ⊂ L2

0(ν) satisfies the corresponding conditions for Ug. Hence, (g,ν) has
Lebesgue spectrum.

Given closed subspaces V ⊂W of a Hilbert space H, we denote by W "V
the orthogonal complement of V inside W, that is,

W"V =W ∩V⊥ = {w ∈W : v ·w= 0 for every v ∈ V}.
The proof of the following fact is discussed in the next section:

Proposition 8.4.6. If U : H →H is an isometry and E1 and E2 are subspaces
satisfying the conditions in Definition 8.4.1, then the orthogonal complements
E1"U(E1) and E2"U(E2) have the same Hilbert dimension.

This leads to the following definition: the rank of an operator U : H → H
with Lebesgue spectrum is the Hilbert dimension of E"U(E) for any subspace
E satisfying the conditions in Definition 8.4.1.
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228 Equivalent systems

Then we define the rank of a system (f ,μ) with Lebesgue spectrum to be
the rank of the associated Koopman operator restricted to L2

0(μ). It is clear that
the rank is less than or equal to the Hilbert dimension of L2

0(μ). In particular,
if L2(μ) is separable then the rank is countable, possibly finite. The majority
of interesting examples fall into this category:

Example 8.4.7. Suppose that the probability space (M,B,μ) is countably
generated, that is, there exists a countable family G of measurable subsets
such that every element of B coincides, up to measure zero, with some
element of the σ -algebra generated by G. Then L2(μ) is separable: the algebra
A generated by G is countable and the linear combinations with rational
coefficients of characteristic functions of elements of A form a countable dense
subset of L2(μ).

It is interesting to point out that no examples are known of systems with
Lebesgue spectrum of finite rank. For Bernoulli shifts, the rank coincides with
the dimension of the corresponding L2(μ):

Example 8.4.8. Let (σ ,μ) be a one-sided Bernoulli shift (similar considera-
tions apply in the two-sided case). As we have seen in Example 8.4.2, we may
take E= L2

0(μ). Then, denoting x= (x1, . . . ,xn, . . . ) and recalling that μ= νN,

ϕ ∈ E"Uσ (E)⇔
∫
ϕ(x0,x)ψ(x)dμ(x0,x)= 0 ∀ψ ∈ L2

0(μ)

⇔
∫ (∫

ϕ(x0,x)dν(x0)

)
ψ(x)dμ(x)= 0 ∀ψ ∈ L2

0(μ).

Hence, E"Uσ (E)=
{
ϕ ∈ L2(μ) :

∫
ϕ(x0,x)dν(x0)= 0 for μ-almost every x

}
.

We claim that dim(E " Uσ (E)) = dimL2(μ). The inequality ≤ is obvious.
To prove the other inequality, fix any measurable function φ : X → R with∫
φ dν = 0 and

∫
φ2 dν = 1. Consider the linear map I : L2(μ) → L2(μ)

associating with each ψ ∈ L2(μ) the function Iψ(x0,x) = φ(x0)ψ(x). The
assumptions on φ imply that

Iψ ∈ E"Uσ (E) and ‖Iψ‖2 = ‖ψ‖2 for every ψ ∈ L2(μ).

This shows that E"Uσ (E) contains a subspace isometric to L2(μ) and, hence,
dimE"Uσ (E)≥ dimL2(μ). This concludes the argument.

We say that the shift is of countable type if the probability space X
is countably generated. This is automatic, for example, if X is finite, or
even countable. In that case, the space � = XN (or � = XZ) is also
countably generated: if G is a countable generator of X then the cylinders
[m;Cm, . . . ,Cn]with Cj ∈G form a countable generator of�. Then, as observed
in Example 8.4.7, the space L2(μ) is separable. Therefore, it follows from
Example 8.4.8 that every Bernoulli shift of countable type has Lebesgue
spectrum with countable rank.
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8.4 Lebesgue spectrum 229

8.4.2 The invertible case

In this section we take the system (f ,μ) to be invertible. In this context, the
notion of Lebesgue spectrum may be formulated in a more transparent way:

Proposition 8.4.9. Let U : H → H be a unitary operator in a Hilbert space
H. Then U has Lebesgue spectrum if and only if there exists a closed subspace
F ⊂H such that the iterates Uk(F), k ∈ Z are pairwise orthogonal and satisfy

H =
⊕
k∈Z

Uk(F).

Proof. Suppose that there exists some subspace F as in the statement. Take
E=⊕∞

k=0 Uk(F). Condition (i) in Definition 8.4.1 is immediate:

U(E)=
∞⊕

k=1

Uk(F)⊂ E.

As for condition (ii), note that ϕ ∈⋂∞
n=0 Un(E)means that ϕ ∈⊕∞

k=n Uk(F) for
every n≥ 0. This implies that ϕ is orthogonal to Uk(F) for every k ∈Z. Hence,
ϕ = 0. Finally, by hypothesis, we may write any ϕ ∈ H as an orthogonal sum
ϕ =∑k∈Zϕk with ϕk ∈Uk(F) for every k. Then

∞∑
k=−n

ϕk ∈
∞⊕

k=−n

Uk(F)=U−n(E)

for every n and the sequence on the left-hand side converges to ϕ when n→∞.
This gives condition (iii) in the definition.

Now we prove the converse. Given E satisfying the conditions (i), (ii) and
(iii) in the definition, take F = E"U(E). It is easy to see that the iterates of F
are pairwise orthogonal. We claim that

∞⊕
k=0

Uk(F)= E. (8.4.1)

Indeed, consider any v ∈ E. It follows immediately from the definition of F
that there exist sequences vn ∈Un(F) and wn ∈Un(E) such that v = v0+·· ·+
vn−1 +wn for each n ≥ 1. We want to show that (wn)n converges to zero, to
conclude that v =∑∞

j=0 vn. For that, observe that

‖v‖2 =
n−1∑
j=0

‖vj‖2+‖wn‖2 for every n

and, thus, the series
∑∞

j=0 ‖vj‖2 is summable. Given ε > 0, fix m≥ 1 such that
the sum of the terms with j≥m is less than ε. For every n≥m,

‖wm−wn‖2 = ‖vm+·· ·+ vn−1‖2 = ‖vm‖2+·· ·+‖vn−1‖2 < ε.

This proves that (wn)n is a Cauchy sequence in H. Let w be its limit. Since
wn ∈Un(E)⊂Um(E) for every m≤ n, taking the limit we get that w ∈Um(E)
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230 Equivalent systems

for every m. By condition (ii) in the hypothesis, this implies that w = 0.
Therefore, the proof of the claim (8.4.1) is complete. To conclude the proof
of the proposition it suffices to observe that

∞⊕
k∈Z

Uk(F)=
∞∑

n=0

∞⊕
k=−n

Uk(F)=
∞∑

n=0

U−n(E).

Condition (iii) in the hypothesis implies that this subspace coincides with H.

In particular, an invertible system (f ,μ) has Lebesgue spectrum if and only
if there exists a closed subspace F ⊂ L2

0(μ) such that

L2
0(μ)=

⊕
k∈Z

Uk
f (F). (8.4.2)

The next result is the reason why systems with Lebesgue spectrum are
denominated in this way, and it also leads naturally to the notion of rank:

Proposition 8.4.10. Let U : H → H be a unitary operator in a Hilbert space.
Let λ denote the Lebesgue measure on the unit circle. Then U has Lebesgue
spectrum if and only if it admits a spectral representation

T : L2(λ)χ → L2(λ)χ (ϕα)α �→ (z �→ zϕα(z))α

for some cardinal χ . Moreover, χ is uniquely determined by U.

Proof. Let us start by proving the “if” claim. As we know, the Fourier family
{zn : n∈Z} is a Hilbert basis of the space L2(λ). Let Vn be the one-dimensional
subspace generated by ϕ(z)= zn. Then, L2(λ)=⊕n∈Z Vn and, consequently,

L2(λ)χ =
(⊕

n∈Z
Vn

)χ
=
⊕
n∈Z

Vχn (8.4.3)

(Wχ denotes the orthogonal direct sum of χ copies of a space W). Moreover,
the restriction of T to each Vχn is a unitary operator onto Vχn+1. Take F′ =
Vχ0 . The relation (8.4.3) means that the iterates Tn(F′) = Vχn are pairwise
orthogonal and their orthogonal direct sum is the space L2(λ)χ . Using the
conjugacy of T to the Koopman operator in L2

0(μ), we conclude that there
exists a subspace F in the conditions of Proposition 8.4.9.

Conversely, suppose that there exists F in the conditions of Proposi-
tion 8.4.9. Let {vq : q ∈Q} be a Hilbert basis of F. Then {Un(vq) : n ∈Z,q ∈Q}
is a Hilbert basis of H. Given q ∈ Q, denote by δq the element of the space
L2(λ)Q that is equal to 1 in the coordinate q and identically zero in all the other
coordinates. Define

L : H→ L2(λ)Q, L(Un(vq))= znδq for each n ∈ Z and q ∈Q.

Observe that L is a unitary operator, since {znδq} is a Hilbert basis of L2(λ)Q.
Observe also that LU = TL. This provides the spectral representation in the
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8.4 Lebesgue spectrum 231

statement of the proposition, with χ equal to the cardinal of the set Q, that is,
equal to the Hilbert dimension of the subspace F.

Let E ⊂ H be any subspace satisfying the conditions in Definition 8.4.1.
Then the orthogonal difference F = E " U(E) satisfies the conclusion of
Proposition 8.4.9, as we saw during the proof of that proposition. Moreover,
according to the proof of Proposition 8.4.10, we may take the cardinal χ equal
to the Hilbert dimension of F. Since χ is uniquely determined, the same holds
for the Hilbert dimension of E"U(E). This proves Proposition 8.4.6 in the
invertible case. In Exercise 8.4.3 we invite the reader to prove the general case.

We have just shown that the rank of a system with Lebesgue spectrum is
well defined. Next, we are going to see that for invertible systems the rank is a
complete invariant of spectral equivalence:

Corollary 8.4.11. Two invertible systems with Lebesgue spectrum are spec-
trally equivalent if and only if they have the same rank.

Proof. It is clear that two invertible systems are spectrally equivalent if and
only if they admit the same spectral representation. By Proposition 8.4.10, this
happens if and only if the value of the cardinal χ is the same, that is, if the rank
is the same.

Corollary 8.4.12. All two-sided Bernoulli shifts of countable type are
spectrally equivalent.

Proof. As we saw in the previous section, all Bernoulli shifts of countable type
have countable rank.

Proofs of the facts that are quoted in the following may be found in
Mañé [Mañ87, Section II.10]:

Example 8.4.13 (Gaussian shifts). Let A= (ai,j)i,j∈Z be an infinite real matrix.
We say that A is positive definite if every finite restriction Am,n = (ai,j)m≤i,j<n

is positive definite, for any m < n. We say that A is symmetric if ai,j = aj,i

for any i, j ∈ Z. Let μ be a Borel probability measure on � = RZ (similar
considerations hold for � =RN). We say that μ is a Gaussian measure if there
exists some symmetric positive definite matrix A such thatμ([m;Bm, . . . ,Bn−1])
is equal to

1

(detAm,n)1/2
1

(2π)(n−m)/2

∫
Bm×···×Bn−1

exp

(
−1

2
(A−1

m,nz · z)
)

dz

for any m < n and any measurable sets Bm, . . . ,Bn−1 ⊂ R. The reason for the
factor on the left-hand side is explained in Exercise 8.4.4. A is called the
covariance matrix of μ. It is uniquely determined by

ai,j =
∫

xixj dμ(x) for each i, j ∈ Z.
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232 Equivalent systems

For each symmetric positive definite matrix A there exists a unique Gaussian
probability measure μ that has A as its covariance matrix. Moreover, μ is
invariant under the shift map σ : �→ � if and only if ai,j = ai+1,j+1 for any
i, j ∈ Z. In that case, the properties of the system (σ ,μ) are directly related to
the behavior of the covariance sequence

αn = an,0 =Un
σ x0 · x0 for each n≥ 0.

In particular, (f ,μ) is mixing if and only if the covariance sequence converges
to zero.

Now, Exercise 8.4.5 shows that if (f ,μ) has Lebesgue spectrum then the
covariance sequence is generated by some absolutely continuous probability
measure ν on the unit circle, in the following sense:

αn =
∫

zndν(z) for each n≥ 0.

(The Riemann–Lebesgue lemma asserts that if ν is a probability measure
absolutely continuous with respect to the Lebesgue measure λ on the unit
circle then the sequence

∫
zn dν(z) converges to zero when n → ∞.) But

Exercise 8.4.6 shows that not every sequence that converges to zero is of this
form. Therefore, there exist Gaussian shifts (σ ,μ) that are mixing but do not
have Lebesgue spectrum.

8.4.3 Exercises

8.4.1. Show that every mixing Markov shift has Lebesgue spectrum with countable
rank. [Observation: In Section 9.5.3 we mention stronger results.]

8.4.2. Let μ be the Haar measure on Td and fA :Td →Td be a surjective endomorphism.
Assume that no eigenvalue of the matrix A is a root of unity. Check that every
orbit of At in the set Zd \ {0} is infinite and use this fact to conclude that (fA,μ)
has Lebesgue spectrum. Conversely, if (fA,μ) has Lebesgue spectrum then no
eigenvalue of A is a root of unity.

8.4.3. Complete the proof of Proposition 8.4.6, using Exercise 2.3.6 to reduce the
general case to the invertible one.

8.4.4. Check that
∫
R

e−x2/2 dx = √2π . Use this fact to show that if A is a symmetric
positive definite matrix of dimension d ≥ 1 then∫

Rd
exp
(− (A−1z · z)/2)dz= (detA)1/2(2π)d/2.

8.4.5. Let (f ,μ) be an invertible system with Lebesgue spectrum. Show that for every
ϕ ∈ L2

0(μ) there exists a probability measure ν absolutely continuous with respect
to the Lebesgue measure λ on the unit circle {z ∈ C : |z| = 1} and such that
Un

f ϕ ·ϕ =
∫

zn dν(z) for every n ∈ Z.
8.4.6. Let λ be the Lebesgue measure in the unit circle. Consider the linear operator

F : L1(λ)→ c0 defined by

F(ϕ)=
(∫

znϕ(z)dλ(z)

)
n

.
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8.5 Lebesgue spaces and ergodic isomorphism 233

Show that F is continuous and injective but not surjective. Therefore, not every
sequence of complex numbers (αn)n converging to zero may be written as αn =∫

zn dν(z) for n ≥ 0, for some probability measure ν absolutely continuous with
respect to λ.

8.5 Lebesgue spaces and ergodic isomorphism

The main subject this section are the Lebesgue spaces (also called standard
probability spaces), a class of probability spaces introduced by the Russian
mathematician Vladimir A. Rokhlin [Rok62]. These spaces have a distin-
guished role in measure theory, for two reasons: on the one hand, they exhibit
much better properties than a general probability space; on the other hand,
they include most interesting examples. In particular, every complete separable
metric space endowed with a Borel probability measure is a Lebesgue
space.

Initially, we discuss yet another notion of equivalence, intermediate to
ergodic equivalence and spectral equivalence, that we call ergodic isomor-
phism. One of the highlights is that for transformations in Lebesgue spaces
the notions of ergodic equivalence and ergodic isomorphism turn out to
coincide.

8.5.1 Ergodic isomorphism

Let (M,B,μ) be a probability space. We denote by B̃ the quotient of the
σ -algebra by the equivalence relation A ∼ B ⇔ μ(A
B) = 0. Observe that
if Ak ∼ Bk for every k ∈N then

⋃
k Ak ∼⋃k Bk,

⋂
k Ak ∼⋂k Bk and Ac

k ∼ Bc
k for

every k ∈ N. Therefore, the basic operations of set theory are well defined in
the quotient B̃. Moreover, the measure μ induces a measure μ̃ on B̃. The pair
(B̃, μ̃) is called the measure algebra of the probability space.

Now let (M,B,μ) and (N,C,ν) be two probability spaces, and (B̃, μ̃) and
(C̃, ν̃) be their measure algebras. A homomorphism of measure algebras is
a map H : B̃ → C̃ that preserves the operations of union, intersection and
complement and also preserves the measures:μ(B)= ν(H(B)) for every B∈ B̃.
If H is a bijection, we call it an isomorphism of measure algebras. In that case
the inverse H−1 is also an isomorphism of measure algebras.

Every measurable map h : M → N satisfying h∗μ = ν defines a homo-
morphism h̃ : C̃ → B̃, through B �→ h−1(B). Moreover, if h is invertible
then h̃ is an isomorphism. In the same way, transformations f : M → M and
g : N → N preserving the measures in the corresponding probability spaces
define homomorphisms f̃ : B̃→ B̃ and g̃ : C̃→ C̃, respectively. We say that the
systems (f ,μ) and (g,ν) are ergodically isomorphic if these homomorphisms
are conjugate, that is, if f̃ ◦H =H ◦ g̃ for some isomorphism H : C̃→ B̃.
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234 Equivalent systems

Ergodically equivalent systems are always ergodically isomorphic: given
any ergodic equivalence h, it suffices to take H= h̃. We also have the following
relation between ergodic isomorphism and spectral equivalence:

Proposition 8.5.1. If two systems (f ,μ) and (g,ν) are ergodically isomorphic
then they are spectrally equivalent.

Proof. Let H : C̃→ B̃ be an isomorphism such that f̃ ◦H=H ◦ g̃. Consider the
linear operator L : L2(ν)→ L2(μ) constructed as follows. Initially, L(XC) =
XH(C) for every B ∈ C̃. Note that ‖L(XC)‖= ‖XC‖. Extend the definition to the
set of simple functions, preserving linearity:

L

⎛⎝ k∑
j=1

cjXCj

⎞⎠= k∑
j=1

cjXH(Cj) for any k≥ 1, cj ∈R and Cj ∈ C̃.

The definition does not depend on the representation of the simple function
as a linear combination of characteristic functions (Exercise 8.5.1). Moreover,
‖L(ϕ)‖= ‖ϕ‖ for every simple function. Recall that the set of simple functions
is dense in L2(ν). Then, by continuity, L extends uniquely to a linear isometry
defined on the whole of L2(ν). Observe that this isometry is invertible: the
inverse is constructed in the same way, starting from the inverse of H. Finally,

Uf ◦L(XC)=Uf (XH(C))=Xf̃ (H(C)) =XH(g̃(C)) = L(Xg̃(C))= L ◦Ug(XC)

for every C ∈ C̃. By linearity, it follows that Uf ◦ L(ϕ) = L ◦Ug(ϕ) for every
simple function; then, by continuity, the same holds for every ϕ ∈ L2(ν).

Summarizing these observations, we have the following relation between
the three equivalence relations:

ergodic equivalence ⇒ ergodic isomorphism ⇒ spectral equivalence.

In what follows we discuss some partial converses, starting with the relation
between ergodic isomorphism and spectral equivalence.

The following result of Paul Halmos and John von Neumann [HvN42]
broadens Proposition 8.3.4 and shows that for systems with discrete spectrum
the notions of ergodic isomorphism and spectral equivalence coincide. The
reader may find a proof in Section 3.2 of Walters [Wal75].

Theorem 8.5.2 (Discrete spectrum). If (f ,μ) and (g,ν) are ergodic systems
with discrete spectrum then the following conditions are equivalent:

1. (f ,μ) and (g,ν) are spectrally equivalent;
2. the Koopman operators of (f ,μ) and (g,ν) have the same eigenvalues;
3. (f ,μ) and (g,ν) are ergodically isomorphic.

In particular, every invertible ergodic system with discrete spectrum is
ergodically isomorphic to its inverse.
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8.5 Lebesgue spaces and ergodic isomorphism 235

8.5.2 Lebesgue spaces

Let (M,B,μ) be any probability space. Initially, suppose that the measure μ is
non-atomic, that is, that μ({x})= 0 for every x∈M. Let P1 ≺ ·· · ≺Pn ≺ ·· · be
an increasing sequence of finite partitions of M into measurable sets. We call
the sequence separating if, given any two different points x,y ∈M, there exists
n≥ 1 such that Pn(x) �= Pn(y). In other words, the non-empty elements of the
partition

∨∞
n=1Pn contain a unique point.

Let MP be the subset one obtains by removing from M all the P ∈⋃nPn

with measure zero. Observe that MP has full measure. We denote by BP and
μP the restrictions of B and μ, respectively, to MP . Let m be the Lebesgue
measure on R. The next proposition means that the separating sequence allows
one to represent the probability space (MP ,BP ,μP) as a kind of subspace of
the real line. We say “kind of” because, in general, the image ι(MP) is not a
measurable subset of R.

Proposition 8.5.3. Given any separating sequence (Pn)n, there exists a
compact totally disconnected set K⊂R and there exists a measurable injective
map ι : MP → K such that the closure of the image ι(P) of every P ∈⋃nPn

is an open and closed subset of K with m(ι(P)) = μ(P). In particular, ι∗μ
coincides with the restriction of the Lebesgue measure m to the set K.

Proof. Let αn = 1+ 1/n for n ≥ 1. We are going to construct a sequence of
bijective maps ψn : Pn → In, n≥ 1 satisfying:

(i) each In is a finite family of compact pairwise disjoint intervals;
(ii) each element of In, n> 1 is contained in some element of In−1;

(iii) m(ψn(P))= αnμ(P) for every P ∈Pn and every n≥ 1.

To do this, we start by writing P1 = {P1, . . . ,PN}. Consider any family I1 =
{I1, . . . , IN} of compact pairwise disjoint intervals such that m(Ij)= α1μ(Pj) for
every j. Letψ1 :P1→I1 be the map associating with each Pj the corresponding
Ij. Now suppose that, for a given n≥ 1, we have already constructed maps ψ1,
. . . ,ψn satisfying (i), (ii), (iii). For each P∈Pn, let I=ψn(P) and let P1, . . . ,PN

be the elements of Pn+1 contained in P. Take compact pairwise disjoint
intervals I1, . . . , IN ⊂ I satisfying m(Ij)= αn+1μ(Pj) for each j= 1, . . . ,N. This
is possible because, by the induction hypothesis,

m(I)= αnμ(P)= αn

N∑
j=1

μ(Pj) > αn+1

N∑
j=1

μ(Pj).

Then, define ψn+1(Pj)= Ij for each j= 1, . . . ,N. Repeating this procedure for
each P ∈ Pn, we complete the definition of ψn+1 and In+1. It is clear that the
conditions (i), (ii), (iii) are preserved. This finishes the construction.
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236 Equivalent systems

Now, let K =⋂n

⋃
I∈In

I. It is clear that K is compact and its intersection
with any I ∈ In is an open and closed subset of K. Moreover,

max{m(I) : I ∈ In} = αn max{μ(P) : P ∈Pn}→ 0 when n→∞ (8.5.1)

because the sequence (Pn)n is separating and the measure μ is non-atomic.
Hence, K is totally disconnected. For each x ∈ MP , the intervals ψn(Pn(x))
form a decreasing sequence of compact sets whose lengths decrease to zero.
Define ι(x) to be the unique point in

⋂
nψn(Pn(x)). The hypothesis that the

sequence is separating ensures that ι is injective: if x �= y then there exists
n ≥ 1 such that Pn(x)∩Pn(y)= ∅ and, thus, ι(x) �= ι(y). By construction, the
pre-image of K ∩ I is in

⋃
nPn for every I ∈⋃nIn. Consider the algebra A

formed by the finite disjoint unions of sets K ∩ I of this form. This algebra is
generating and we have just checked that ι−1(A) is a measurable set for every
A ∈A. Therefore, the transformation ι is measurable.

To check the other properties in the statement of the proposition, begin by
noting that, for every n≥ 1 and P ∈Pn,

ι(P)=
∞⋂

k=n

⋃
Q

ψk(Q), (8.5.2)

where the union is over all the Q ∈ Pk that are contained in P. To get the
inclusion ⊂ it suffices to note that ι(P)=⋃Q ι(Q) and ι(Q)⊂ψ(Q) for every
Q ∈ Pk and every k. The converse follows from the fact that ι(P) intersects
every ψk(Q) (the intersection contains ι(Q)) and the length of the ψk(Q)
converges to zero when k→∞. In this way, (8.5.2) is proven. It follows that

m(ι(P))= lim
k

m

(⋃
Q

ψk(Q)

)
= lim

k

∑
Q

αkμ(Q)= lim
k
αkμ(P)=μ(P).

Moreover, (8.5.2) means that ι(P) = ⋂∞
k=n

⋃
I I, where the union is over all

the I ∈ Ik that are contained in ψn(P). The right-hand side of this equality
coincides with K∩ψn(P) and, hence, is an open and closed subset of K. It also
follows from the construction that ι−1(ι(P)) = P. Consequently, ι∗μ(ι(P)) =
μ(P) = m(ι(P)) for every P ∈ ⋃nPn. Since the algebra of finite pairwise
disjoint unions of sets ι(P) generates the measurable structure of K, we
conclude that ι∗μ=m | K.

We say that a probability space without atoms (M,B,μ) is a Lebesgue space
if, for some separating sequence, the image ι(MP) is a Lebesgue measurable
set. Actually, this property does not depend on the choice of the generating
sequence (nor on the families In in the proof of Proposition 8.5.3), but we
do not prove this fact here: the reader may find a proof in [Rok62, §2.2].
Exercise 8.5.6 shows that it is possible to define Lebesgue space in a more
direct way, without using Proposition 8.5.3.
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8.5 Lebesgue spaces and ergodic isomorphism 237

Note that if ι(MP) is measurable then ι(P)= ι(MP)∩ψn(P) is measurable
for every P ∈ Pn and every n. Hence, the inverse ι−1 is also a measurable
transformation. Moreover, m(ι(MP))= μ(MP)= 1=m(K). Therefore, every
Lebesgue space (M,B,μ) is isomorphic, as a measure space, to a measurable
subset of a compact totally disconnected subset of the real line.

Observe that if the cardinal of M is strictly larger than the cardinal of the
continuum then (M,B,μ) admits no separating sequence and, thus, cannot
be a Lebesgue space. In Exercise 8.5.8 we propose another construction of
probability spaces that are not Lebesgue spaces. Despite examples such as
these, practically all the probability spaces we deal with are Lebesgue spaces:

Theorem 8.5.4. If M is a complete separable metric space and μ is a Borel
probability measure with no atoms then (M,B,μ) is a Lebesgue space.

Proof. Let X ⊂ M be a countable dense subset and {Bn : n ∈ N} be an
enumeration of the set of balls B(x,1/k) with x ∈ X and k≥ 1. We are going to
construct an increasing sequence (Pn)n of finite partitions such that

(i) Pn is finer than {B1,Bc
1}∨ · · · ∨ {Bn,Bc

n}, and
(ii) En = {x ∈M : Pn(x) is not compact} satisfies μ(En)≤ 2−n.

We start by considering Q1 = {B1,Bc
1}. By Proposition A.3.7, there exist

compact sets K1 ⊂ B1 and K2 ⊂ Bc
1 such that μ(B1 \ K1) ≤ 2−1μ(B1) and

μ(Bc
1 \ K2) ≤ 2−1μ(Bc

1). Then take P1 = {K1,B1 \ K1,K2,Bc
1 \ K2}. Now, for

each n ≥ 1, assume that one has already constructed partitions P1 ≺ ·· · ≺ Pn

satisfying (i) and (ii). Consider the partition Qn+1 = Pn ∨ {Bn+1,Bc
n+1} and

let Q1, . . . ,Qm be its elements. By Proposition A.3.7, there exist compact sets
Kj ⊂Qj such that μ(Qj \Kj)≤ 2−(n+1)μ(Qj) for every j= 1, . . . ,m. Take

Pn+1 = {K1,Q1 \K1, . . . ,Km,Qm \Km}.
It is clear that Pn+1 satisfies (i) and (ii). Therefore, our construction is
complete.

All that is left is to show that the existence of such a sequence (Pn)n
implies the conclusion of the theorem. Property (i) ensures that the sequence is
separating. Let ι : MP →K be a map as in Proposition 8.5.3. Fix any N ≥ 1 and
consider any point y ∈ K \ ι(MP). For each n> N, let In be the interval in the
family In that contains y and let Pn be the element of Pn such that ψn(Pn)= In.
Note that (Pn)n is a decreasing sequence. If they were all compact, there would
be x ∈ ⋂n>N Pn and, by definition, ι(x) would be equal to y. Since we are
assuming that y is not in the image of ι, this proves that there exists l>N such
that Pl is not compact. Take l > N minimum and let Il = ψl(Pl). Recall that
m(Il) = αlμ(Pl) ≤ 2μ(Pl). Let ĨN and P̃N be the unions of all these Il and Pl,
respectively, when we vary y on the whole K \ ι(MP). On the one hand, ĨN

contains K \ ι(MP); on the other hand, P̃N is contained in
⋃

l>N El. Moreover,
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238 Equivalent systems

the Il are pairwise disjoint (because we took l minimum) and the same holds
for the Pl. Hence,

m
(
ĨN
)≤ 2μ

(
P̃N
)≤ 2μ

(⋃
l>N

El

)
≤ 2−N+1.

Then the intersection
⋂

N ĨN has Lebesgue measure zero and contains K \
ι(MP). Since K is a Borel set, this shows that ι(MP) is a Lebesgue measurable
set.

The next result implies that all the Lebesgue spaces with no atoms are
isomorphic:

Proposition 8.5.5. If (M,B,μ) is a Lebesgue space with no atoms, there exists
an invertible measurable map h : M → [0,1] (defined between subsets of full
measure) such that h∗μ coincides with the Lebesgue measure on [0,1].
Proof. Let ι : MP → K be a map as in Proposition 8.5.3. Consider the map
g : K → [0,1] defined by g(x) = m([a,x] ∩ K), where a = minK. It follows
immediately from the definition that g is non-decreasing and Lipschitz:

g(x2)− g(x1)=m
([x1,x2] ∩K

)≤ x2− x1,

for any x1 < x2 in K. In particular, g is measurable. By monotonicity, the
pre-image of any interval [y1,y2] ⊂ [0,1] is a set of the form [x1,x2] ∩K with
x1,x2 ∈ K and g(x1)= y1 and g(x2)= y2. In particular,

m
([x1,x2] ∩K

)= g(x2)− g(x1)= y2− y1 =m([y1,y2]).
This shows that g∗(m | K) = m | [0,1]. Let Y be the set of points y ∈ [0,1]
such that g−1({y})= [x1,x2] ∩K with x1,x2 ∈ K and x1 < x2. Let X = g−1(Y).
Then m(X) = m(Y) = 0 because Y is countable. Moreover, the restriction g :
K \X→[0,1] \Y is bijective. Its inverse is non-decreasing and, consequently,
measurable. Now, take h= g◦ ι. It follows from the previous observations that

h : MP \ ι−1(X)→ g(ι(MP)) \Y

is a measurable bijection with measurable inverse such that h∗μ=m | [0,1].
Now we extend this discussion to general probability spaces (M,B,μ),

possibly with atoms. Let A⊂M be the set of all the atoms; note that A is at most
countable, possibly finite. If the space is purely atomic, that is, if μ(A) = 1,
then, by definition, it is a Lebesgue space. More generally, let M′ =M \A, let
B′ be the restriction of B to M′ and let μ′ be the normalized restriction of μ
to B′. By definition, (M,B,μ) is a Lebesgue space if (M′,B′,μ′) is a Lebesgue
space.

It is clear that Theorem 8.5.4 remains valid in the general case: every
complete separable metric space endowed with a Borel probability measure,
possibly with atoms, is a Lebesgue space. Moreover, Proposition 8.5.5 has the
following extension to the atomic case: if (M,B,μ) is a Lebesgue space and
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8.5 Lebesgue spaces and ergodic isomorphism 239

A⊂M denotes the set of atoms of the measure μ, then there exists an invertible
measurable map h : M →[0,1−μ(A)] ∪A such that h∗μ coincides with m on
the interval [0,1−μ(A)] and coincides with μ on A.

Proposition 8.5.6. Let (M,B,μ) and (N,C,ν) be two Lebesgue spaces and
H : C̃→ B̃ be an isomorphism between the corresponding measure algebras.
Then there exists an invertible measurable map h : M → N such that h∗μ= ν
and H = h̃ for every C ∈ C̃. Moreover, h is essentially unique: any two maps
satisfying these conditions coincide at μ-almost every point.

We are going to sketch the proof of this proposition in the non-atomic case.
The arguments are based on the ideas and use the notations in the proof of
Proposition 8.5.3.

Let us start with the uniqueness claim. Let h1,h2 : M→ N be any two maps
such that (h1)∗μ = (h2)∗μ = ν. Suppose that h1(x) �= h2(x) for every x in a
set E ⊂ M with μ(E) > 0. Let (Qn)n be a separating sequence in (N,C,ν).
Then Qn(h1(x)) �= Qn(h2(x)) for every x ∈ E and every n sufficiently large.
Hence, we may fix n (large) and E′ ⊂ E with μ(E′) > 0 such that Qn(h1(x)) �=
Qn(h2(x)) for every x ∈ E′. Consequently, there exist Q ∈ Qn and E′′ ⊂ E′

with μ(E′′) > 0 such that Qn(h1(x))=Q and Qn(h2(x)) �=Q for every x ∈ E′′.
Therefore, E′′ ⊂ h−1

1 (Q)\h−1
2 (Q). This implies that h̃1(Q) �= h̃2(Q) and, hence,

h̃1 �= h̃2.
Next we comment on the existence claim. Let (P ′n)n and (Q′

n)n be separating
sequences in (M,B,μ) and (N,C,ν), respectively. Define Pn=P ′n∨H(Q′

n) and
Qn =Q′

n∨H−1(Pn). Then (Pn)n and (Qn)n are also separating sequences and
Pn = H(Qn) for each n. Let ι : MP → K be a map as in Proposition 8.5.3 and
ψn : Pn → In, n ≥ 1 be the family of bijections used in its construction. Let
j : NQ → L and ϕn : Qn → Jn be corresponding objects for (N,C,ν). Since
we are assuming that (M,B,μ) and (N,C,ν) are Lebesgue spaces, ι and j are
invertible maps over subsets with full measure. Recall also that m(ψn(P)) =
αnμ(P) for each P∈Pn and, analogously, m(ϕn(Q))=αnν(Q) for each Q∈Qn.
Hence, m(ψn(P))=m(ϕn(Q)) if P=H(Q). Then, for each n,

ψn ◦H ◦ϕ−1
n : Jn → In (8.5.3)

is a bijection that preserves length. Given z∈K and n≥ 1, let In be the element
of In that contains z and let Jn be the corresponding element of Jn, via (8.5.3).
By construction, (Jn)n is a nested sequence of compact intervals whose length
converges to zero. Let φ(z) be the unique point in the intersection. In this way,
one has defined a measurable map φ : K → L that preserves the Lebesgue
measure. It is clear from the construction that φ is invertible and the inverse is
also measurable. Now it suffices to take h= j−1 ◦φ ◦ ι.

All that is left is to check that h is invertible. Applying the construction in the
previous paragraph to the inverse H−1 we find h′ : N →M such that h′∗ν = μ
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240 Equivalent systems

and H−1 = h̃′. Then, h̃′ ◦ h= h̃◦ h̃′ = id and h̃ ◦ h′ = h̃′ ◦ h̃= id . By uniqueness,
it follows that h′ ◦ h= id and h ◦ h′ = id at almost every point.

Corollary 8.5.7. Let (M,B,μ) and (N,C,ν) be two Lebesgue spaces and
let f : M → M and g : N → N be measurable transformations preserving
the measures in their corresponding domains. Then (f ,μ) and (g,ν) are
ergodically equivalent if and only if they are ergodically isomorphic.

Proof. We only need to show that if the systems are ergodically isomorphic
then they are ergodically equivalent. Let H : C̃→ B̃ be an ergodic isomorphism.
By Proposition 8.5.6, there exists an invertible measurable map h : M→N such
that h∗μ= ν and H = h̃. Then,

h̃ ◦ f = f̃ ◦ h̃= f̃ ◦H =H ◦ g̃= h̃ ◦ g̃= g̃ ◦ h.

By the uniqueness part of Proposition 8.5.6, it follows that h ◦ f = g ◦ h at
μ-almost every point. This shows that h is an ergodic equivalence.

8.5.3 Exercises

8.5.1. Let H : C̃→ B̃ be a homomorphism of measure algebras. Show that

l∑
i=1

biXBi =
k∑

j=1

cjXCj ⇒
l∑

i=1

biXH(Bi) =
k∑

j=1

cjXH(Cj).

8.5.2. Check that the homomorphism of measure algebras g̃ : C → B induced by a
measure-preserving map g : M → N is injective. Suppose that N is a Lebesgue
space. Show that, given another measure-preserving map h : M → N, the
corresponding homomorphisms g̃ and h̃ coincide if and only if g = h at almost
every point.

8.5.3. Let f : M → M be a measurable transformation in a Lebesgue space (M,B,μ),
preserving the measure μ. Show that (f ,μ) is invertible at almost every point
(that is, there exists an invariant full measure subset restricted to which f is a
measurable bijection with measurable inverse) if and only if the corresponding
homomorphism of measure algebras f̃ : B̃→ B̃ is surjective.

8.5.4. Show that the Koopman operator of a system (f ,μ) is surjective if and only if
the corresponding homomorphism of measure algebras f̃ : B̃→ B̃ is surjective.
In Lebesgue spaces this happens if and only if the system is invertible at almost
every point.

8.5.5. Show that every system (f ,μ) with discrete spectrum in a Lebesgue space is
invertible at almost every point.

8.5.6. Given a separating sequence P1 ≺ ·· · ≺ Pn ≺ ·· · , we call a chain any sequence
(Pn)n with Pn ∈ Pn and Pn+1 ⊂ Pn for every n. We say that a chain is empty if⋂

n Pn =∅. Consider the map ι : MP →K constructed in Proposition 8.5.3. Show
that the image ι(MP ) is a Lebesgue measurable set and m(K \ ι(MP))= 0 if and
only if the empty chains have zero measure in the following sense: for every δ > 0
there exists B ⊂ M such that B is a union of elements of

⋃
nPn with μ(B) < δ

and every empty chain (Pn)n has Pn ⊂ B for every n sufficiently large.
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8.5 Lebesgue spaces and ergodic isomorphism 241

8.5.7. Prove the following extension of Proposition 2.4.4: If f : M → M preserves a
probability measure μ and (M,μ) is a Lebesgue space then μ admits a (unique)
lift μ̂ to the natural extension f̂ : M̂→ M̂.

8.5.8. Let M be a subset of [0,1] with exterior measure m∗(M) = 1 but which is not a
Lebesgue measurable set. Consider the σ -algebra M of all sets of the form M∩B,
where B is a Lebesgue measurable subset of R. Check that μ(M ∩ B) = m(B)
defines a probability measure on (M,M) such that (M,M,μ) is not a Lebesgue
space.
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