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Entropy

The word entropy was invented in 1865 by the German physicist and mathe-
matician Rudolf Clausius, one of the founding pioneers of thermodynamics. In
the theory of systems in thermodynamical equilibrium, the entropy quantifies
the degree of “disorder” in the system. The second law of thermodynamics
states that, when an isolated system passes from an equilibrium state to another,
the entropy of the final state is necessarily bigger than the entropy of the initial
state. For example, when we join two containers with different gases (oxygen
and nitrogen, say), the two gases mix with one another until reaching a new
macroscopic equilibrium, where they are both uniformly distributed in the two
containers. The entropy of the new state is larger than the entropy of the initial
equilibrium, where the two gases were separate.

The notion of entropy plays a crucial role in different fields of science.
An important example, which we explore in our presentation, is the field of
information theory, initiated by the work of the American electrical engineer
Claude Shannon in the mid 20th century. At roughly the same time, the
Russian mathematicians Andrey Kolmogorov and Yakov Sinai were proposing
a definition of the entropy of a system in ergodic theory. The main purpose
was to provide an invariant of ergodic equivalence that, in particular, could
distinguish two Bernoulli shifts. This Kolmogorov–Sinai entropy is the subject
of this chapter.

In Section 9.1 we define the entropy of a transformation with respect to an
invariant probability measure, by analogy with a similar notion in information
theory. The theorem of Kolmogorov–Sinai, which we discuss in Section 9.2, is
a fundamental tool for the actual calculation of the entropy in specific systems.
In Section 9.3 we analyze the concept of entropy from a more local viewpoint,
which is more closely related to Shannon’s formulation of this concept. Next,
in Section 9.4, we illustrate a few methods for calculating the entropy, by
means of concrete examples.

In Section 9.5 we discuss the role of the entropy as an invariant of
ergodic equivalence. The highlight is the theorem of Ornstein (Theorem 9.5.2),
according to which any two-sided Bernoulli shifts are ergodically equivalent
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9.1 Definition of entropy 243

if and only if they have the same entropy. In that section we also introduce
the class of Kolmogorov systems, which contains the Bernoulli shifts and is
contained in the class of systems with Lebesgue spectrum. In both cases the
inclusion is strict.

In the last couple of sections we present two complementary topics that will
be useful later. The first one (Section 9.6) is the theorem of Jacobs, according
to which the entropy behaves in an affine way with respect to the ergodic
decomposition. The other (Section 9.7) concerns the notion of the Jacobian
and its relations with the entropy.

9.1 Definition of entropy

To motivate the definition of Kolmogorov–Sinai entropy, let us look at the
following basic situation in information theory. Consider some communication
channel transmitting symbols from a certain alphabet A, one after the other.
This could be a telegraph transmitting group of dots and dashes, according
to the old Morse code, an optical fiber, transmitting packets of zeros and
ones, according to the ASCII binary code, or any other process of sequential
transmission of information, such as our reader’s going through the text of this
book, one letter after the other. The objective is to measure the entropy of the
channel, that is, the mean quantity of information it carries, per unit of time.

9.1.1 Entropy in information theory

It is assumed that each symbol has a given frequency, that is, a given
probability of being used at any time in the communication. For example, if
the channel is transmitting a text in English then the letter E is more likely
to be used than the letter Z, say. The occurrence of rarer symbols, such as Z,
restricts the kind of word or sentence in which they appear and, hence, is more
informative than the presence of commoner symbols, such as E.

This suggests that information should be a function of probability: the more
unlikely a symbol (or a word, defined as a finite sequence of symbols) is, the
more information it carries.

The situation is actually more complicated, because for most communica-
tion codes the probability of using a given symbol also depends on the context.
For example, still assuming that the channel transmits in English, any sequence
of symbols S, Y , S, T , E must be followed by an M: in this case, in view of the
symbols transmitted previously, this letter M is unavoidable, which also means
that it carries no additional information.1

1 We once participated in a “treasure hunt” that consisted in searching the woods for hidden
letters that would form the name of a mathematical object. It just so happened that the first
three letters that were found were Z, Z and Z. That unfortunate circumstance ended the game
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244 Entropy

On the other hand, in those situations where symbols are transmitted at
random, independently of each other, the information carried by each symbol
simply adds to the information conveyed by the previous ones. For example, if
the transmission reflects the outcomes of the successive flipping of a fair coin,
then the amount of information associated with the outcome (Head, Tail, Tail)
must be equal to the sum of the amounts of information associated with each of
the symbols Head, Tail and Tail. Now, by independence, the probability of the
event (Head, Tail, Tail) is the product of the probabilities of the events Head,
Tail and Tail.

This suggests that information should be defined in terms of the logarithm of
the probability. In information theory it is usual to consider base 2 logarithms,
because essentially all the communication channels one finds in practice are
binary. However, there is no reason to stick to that custom in our setting: we
will consider natural (base e) logarithms instead.

By definition, the quantity of information associated with a symbol a ∈A is
given by

I(a)=− logpa, (9.1.1)

where pa is the probability (frequency) of the symbol a. The mean information
associated with the alphabet A is given by

I(A)=
∑
a∈A

paI(a)=
∑
a∈A

−pa logpa. (9.1.2)

More generally, the quantity of information associated with a word
a1 . . .an is

I(a1 . . .an)=− logpa1...an , (9.1.3)

where pa1...an denotes the probability of the word. In the independent case this
coincides with the product pa1 . . .pan of the probabilities of the symbols, but
not in general. Denoting by An the set of all the words of length n, we define

I(An)=
∑

a1,...,an

pa1...an I(a1, . . . ,an)=
∑

a1,...,an

−pa1...an logpa1...an . (9.1.4)

Finally, the entropy of the communication channel is defined by:

I = lim
n

1

n
I(An). (9.1.5)

We invite the reader to check that the sequence I(An) is subadditive and, thus,
the limit in (9.1.5) does exist. This is also contained in the much more general
theory that we are about to present.

prematurely, since at that point the remaining letters could add no information: there is only
one mathematical object whose name includes the letter Z three times (the Yoccoz puzzle).
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9.1 Definition of entropy 245

9.1.2 Entropy of a partition

We want to adapt these ideas to our context in ergodic theory. The main
difference is that, while in information theory the alphabet A is usually discrete
(finite or, at most, countable), that is not the case for the domain (space of
states) of most interesting dynamical systems. That issue is dealt with by using
partitions of the domain.

Let (M,B,μ) be a probability space. In this chapter, by partition we always
mean a countable (finite or infinite) family P of pairwise disjoint measurable
subsets of M whose union has full measure. We denote by P(x) the element of
the partition that contains a given point x. The sum P ∨Q of two partitions P
and Q is the partition whose elements are the intersections P∩Q with P ∈ P
and Q ∈ Q. More generally, given any countable family of partitions Pn, we
define ∨

n

Pn =
{⋂

n

Pn : Pn ∈Pn for each n

}
.

With each partition P we associate the corresponding information function

IP : M→R, IP(x)=− logμ(P(x)). (9.1.6)

It is clear that the function IP is measurable. By definition, the entropy of the
partition P is the mean of its information function, that is,

Hμ(P)=
∫

IP dμ=
∑
P∈P

−μ(P) logμ(P). (9.1.7)

We always abide to the usual (in the theory of Lebesgue integration)
convention that 0 log0= limx→0 x logx= 0. See Figure 9.1.

Consider the function φ : (0,∞)→ R given by φ(x) = −x logx. One can
readily check that φ′′ < 0. Therefore, φ is strictly concave:

t1φ(x1)+·· ·+ tkφ(xk)≤ φ(t1x1+·· ·+ tkxk) (9.1.8)

for every x1, . . . ,xk > 0 and t1, . . . , tk > 0 with t1 + ·· · + tk = 1; moreover, the
identity holds if and only if x1 = ·· · = xk. This observation will be useful on
several occasions.

1

Figure 9.1. Graph of the function φ(x)=−x logx
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246 Entropy

We say that two partitions P and Q are independent ifμ(P∩Q)=μ(P)μ(Q)
for every P∈P and every Q∈Q. Then, IP∨Q= IP+IQ and, therefore, Hμ(P∨
Q) = Hμ(P)+Hμ(Q). In general, one has the inequality ≤, as we are going
to see in a while.

Example 9.1.1. Let M = [0,1] be endowed with the Lebesgue measure. For
each n ≥ 1, consider the partition Pn of the interval M into the subintervals(
(i− 1)/10n, i/10n

]
with 1≤ i≤ 10n. Then,

Hμ(Pn)=
10n∑
i=1

−10−n log10−n = n log10.

Example 9.1.2. Let M = {1, . . . ,d}N be endowed with a product measure μ=
νN. Denote pi = ν({i}) for each i ∈ {1, . . . ,d}. For each n ≥ 1, let Pn be the
partition of M into the cylinders [0;a1, . . . ,an] of length n. The entropy of Pn is

Hμ(Pn)=
∑

a1,...,an

−pa1 . . .pan log
(
pa1 . . .pan

)
=
∑

j

∑
a1,...,an

−pa1 . . .paj . . .pan logpaj

=
∑

j

∑
aj

−paj logpaj

∑
ai,i�=j

pa1 . . .paj−1 paj+1 . . .pan .

The last sum is equal to 1, since
∑

i pi = 1. Therefore,

Hμ(Pn)=
n∑

j=1

d∑
aj=1

−paj logpaj =
n∑

j=1

d∑
i=1

−pi logpi =−n
d∑

i=1

pi logpi.

Lemma 9.1.3. Every finite partition P has finite entropy: Hμ(P)≤ log#P and
the identity holds if and only if μ(P)= 1/#P for every P ∈P .

Proof. Let P = {P1,P2, . . . ,Pn} and consider ti = 1/n and xi = μ(Pi). By the
concavity property (9.1.8):

1

n
Hμ(P)=

n∑
i=1

tiφ(xi)≤ φ
( n∑

i=1

tixi

)
= φ

(
1

n

)
= logn

n
.

Therefore, Hμ(P)≤ logn. Moreover, the identity holds if and only if μ(Pi)=
1/n for every i= 1, . . . ,n.

Example 9.1.4. Let M = [0,1] be endowed with the Lebesgue measure μ.
Observe that the series

∑∞
k=1 1/(k(logk)2) is convergent. Let c be the value

of the sum. Then, we may partition [0,1] into intervals Pk with μ(Pk) =
1/(ck(logk)2) for every k. Let P be the partition formed by these subintervals.
Then,

Hμ(P)=
∞∑

k=1

logc+ logk+ 2log logk

ck(logk)2
.
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9.1 Definition of entropy 247

By the ratio convergence criterion, the series on the right-hand side has the
same behavior as the series

∑∞
k=1 1/(k logk) which, as we know (use the

integral convergence criterion), is divergent. Therefore, Hμ(P)=∞.

This shows that infinite partitions may have infinite entropy. From now, for
the rest of the chapter, we always consider (countable) partitions with finite
entropy.

The conditional entropy of a partition P with respect to another partition Q
is the number

Hμ(P/Q)=
∑
P∈P

∑
Q∈Q

−μ(P∩Q
)

log
μ
(
P∩Q

)
μ(Q)

. (9.1.9)

Intuitively, it measures the amount of information provided by the partition
P in addition to the information provided by the partition Q. It is clear
that Hμ(P/M) = Hμ(P) for every P , where M denotes the trivial partition
M= {M}. Moreover, if P and Q are independent then Hμ(P/Q)=Hμ(P). In
general, one has the inequality ≤, as we are going to see later.

Given two partitions P and Q, we say that P is coarser than Q (or,
equivalently, Q is finer than P) and we write P ≺ Q, if every element of Q
is contained in some element of P , up to measure zero. The sum P ∨Q may
also be defined as the coarsest of all the partitions R such that P ≺ R and
Q≺R.

Lemma 9.1.5. Let P , Q and R be partitions with finite entropy. Then,

(i) Hμ(P ∨Q/R)=Hμ(P/R)+Hμ(Q/P ∨R);
(ii) if P ≺Q then Hμ(P/R)≤Hμ(Q/R) and Hμ(R/P)≥Hμ(R/Q);

(iii) P ≺Q if and only if Hμ(P/Q)= 0.

Proof. By definition,

Hμ
(
P ∨Q/R

)=∑
P,Q,R

−μ(P∩Q∩R
)

log
μ
(
P∩Q∩R

)
μ(R)

=
∑
P,Q,R

−μ(P∩Q∩R
)

log
μ
(
P∩Q∩R

)
μ
(
P∩R

)
+
∑
P,Q,R

−μ(P∩Q∩R
)

log
μ
(
P∩R

)
μ(R)

.

The sum on the right-hand side may be rewritten as∑
S∈P∨R,Q∈Q

−μ(S∩Q
)

log
μ
(
S∩Q

)
μ(S)

+
∑

P∈P ,R∈R
−μ(P∩R

)
log
μ
(
P∩R

)
μ(R)

=Hμ
(
Q/P ∨R

)+Hμ(P/R).
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248 Entropy

This proves part (i). Next, observe that if P ≺Q then

Hμ(P/R)=
∑

P

∑
R

∑
Q⊂P

−μ(Q∩R
)

log
μ
(
P∩R

)
μ(R)

≤
∑

P

∑
R

∑
Q⊂P

−μ(Q∩R
)

log
μ
(
Q∩R

)
μ(R)

=Hμ(Q/R).

This proves the first half of claim (ii). To prove the second half, note that for
any P ∈P and R ∈R,

μ
(
R∩P

)
μ(P)

=
∑
Q⊂P

μ(Q)

μ(P)

μ
(
R∩Q

)
μ(Q)

.

It is clear that
∑

Q⊂Pμ(Q)/μ(P)= 1. Therefore, by (9.1.8),

φ

(
μ
(
R∩P

)
μ(P)

)
≥
∑
Q⊂P

μ(Q)

μ(P)
φ

(
μ
(
R∩Q

)
μ(Q)

)
for every P ∈P and R ∈R. Consequently,

Hμ(R/P)=
∑
P,R

μ(P)φ

(
μ
(
R∩P

)
μ(P)

)
≥
∑
P,R

μ(P)
∑
Q⊂P

μ(Q)

μ(P)
φ

(
μ
(
R∩Q

)
μ(Q)

)

=
∑
Q,R

μ(Q)φ

(
μ
(
R∩Q

)
μ(Q)

)
=Hμ(R/Q).

Finally, it follows from the definition in (9.1.9) that Hμ(P/Q)= 0 if and only if

μ
(
P∩Q

)= 0 or else
μ
(
P∩Q

)
μ(Q)

= 1

for every P ∈ P and every Q ∈Q. In other words, either Q is disjoint from P
(up to measure zero) or else Q is contained in P (up to measure zero). This
means that Hμ(P/Q)= 0 if and only if P ≺Q.

In particular, taking Q=M in part (ii) of the lemma we get that

Hμ(R/P)≤Hμ(R) for any partitions R and P . (9.1.10)

Moreover, taking R=M in part (i) we find that

Hμ
(
P ∨Q

)=Hμ(P)+Hμ(Q/P)≤Hμ(P)+Hμ(Q). (9.1.11)

Let f : M → N be a measurable transformation and μ be a probability
measure on M. Then, f∗μ is a probability measure on N. Moreover, if P is a
partition of N then f−1(P)={f−1(P) : P∈P} is a partition of M. By definition,

Hμ(f
−1(P))=

∑
P∈P

−μ(f−1(P)) logμ(f−1(P))

=
∑
P∈P

−f∗μ(P) log f∗μ(P)=Hf ∗μ(P).
(9.1.12)
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9.1 Definition of entropy 249

In particular, if M = N and the measure μ is invariant under f then

Hμ(f
−1(P))=Hμ(P) for every partition P . (9.1.13)

We also need the following continuity property:

Lemma 9.1.6. Given k≥ 1 and ε > 0 there exists δ > 0 such that, for any finite
partitions P = {P1, . . . ,Pk} and Q= {Q1, . . . ,Qk},

μ(Pi
Qi) < δ for every i= 1, . . . ,k ⇒ Hμ(Q/P) < ε.

Proof. Fix ε > 0 and k ≥ 1. Since φ : [0,1] → R, φ(x) = −x logx is a
continuous function, there exists ρ > 0 such that φ(x) < ε/k2 for every
x∈ [0,ρ)∪(1−ρ,1]. Let δ=ρ/k. Given partitions P and Q as in the statement,
denote by R the partition whose elements are the intersections Pi∩Qj with i �= j
and also the set

⋃k
i=1 Pi ∩Qi. Note that μ(Pi ∩Qj)≤ μ(Pi
Qi) < δ for every

i �= j and

μ

( k⋃
i=1

Pi ∩Qi

)
≥

k∑
i=1

(
μ(Pi)−μ(Pi
Qi)

)
>

k∑
i=1

(
μ(Pi)− δ

)= 1−ρ.

Therefore,
Hμ(R)=

∑
R∈R

φ(μ(R)) < #R ε

k2
≤ ε.

It is clear from the definition that P ∨Q = P ∨R. Then, using (9.1.11) and
(9.1.10),

Hμ(Q/P)=Hμ
(
P ∨Q

)−Hμ(P)=Hμ
(
P ∨R

)−Hμ(P)
=Hμ(R/P)≤Hμ(R) < ε.

This proves the lemma.

9.1.3 Entropy of a dynamical system

Let f : M → M be a measurable transformation preserving a probability
measure μ. The notion of the entropy of the system (f ,μ) that we introduce in
what follows is inspired by (9.1.5).

Given a partition P of M with finite entropy, denote

Pn =
n−1∨
i=0

f−i(P) for each n≥ 1.

Observe that the element Pn(x) that contains x ∈M is given by:

Pn(x)=P(x)∩ f−1(P(f (x)))∩ ·· · ∩ f−n+1(P(f n−1(x))).

It is clear that the sequence Pn is non-decreasing, that is, Pn ≺ Pn+1 for
every n. Therefore, the sequence of entropies Hμ(Pn) is also non-decreasing.
Another important fact is that this sequence is subadditive:
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250 Entropy

Lemma 9.1.7. Hμ(Pm+n)≤Hμ(Pm)+Hμ(Pn) for every m,n≥ 1.

Proof. By definition, Pm+n = ∨m+n−1
i=0 f−i(P) = Pm ∨ f−m(Pn). Therefore,

using (9.1.11),

Hμ(Pm+n)≤Hμ(Pm)+Hμ(f
−m(Pn)). (9.1.14)

On the other hand, since the measure μ is invariant under f , the property
(9.1.13) implies that Hμ(f−m(Pn))= Hμ(Pn) for every m,n. Substituting this
fact in (9.1.14) we get the conclusion of the lemma.

In view of Lemma 3.3.4, it follows from Lemma 9.1.7 that the limit

hμ(f ,P)= lim
n

1

n
Hμ(Pn) (9.1.15)

exists and coincides with the infinitum of the sequence on the left-hand side.
We call hμ(f ,P) the entropy of f with respect to the partition P . Observe that
this entropy is a non-decreasing function of the partition:

P ≺Q ⇒ hμ(f ,P)≤ hμ(f ,Q). (9.1.16)

Indeed, if P ≺Q then Pn ≺Qn for every n. Using Lemma 9.1.5, it follows that
Hμ(Pn)≤Hμ(Qn) for every n, and this implies (9.1.16).

Finally, the entropy of the system (f ,μ) is defined by

hμ(f )= sup
P

hμ(f ,P), (9.1.17)

where the supremum is taken over all the partitions with finite entropy. A useful
observation is that the definition is not affected if we take the supremum only
over the finite partitions (see Exercise 9.1.2).

Example 9.1.8. Suppose that the invariant measure μ is supported on a
periodic orbit. In other words, there exist x ∈M and k ≥ 1 such that f k(x)= x
and the measure μ is given by

μ= 1

k

(
δx+ δf (x)+·· ·+ δf k−1(x)

)
.

Note that this measure takes only a finite number of values (because the Dirac
measure takes only the values 0 and 1). Hence, the entropy function P �→
Hμ(P) also takes only finitely many values. In particular, limn n−1Hμ(Pn)= 0
for every partition P . This proves that hμ(f )= 0.

Example 9.1.9. Consider the decimal expansion map f : [0,1]→ [0,1], given
by f (x) = 10x − [10x]. As observed previously, f preserves the Lebesgue
measure μ on the interval. Let P be the partition of [0,1] into the intervals
of the form

(
(i− 1)/10, i/10] with i= 1, . . . ,10. Then, Pn is the partition into

the intervals of the form
(
(i − 1)/10n, i/10n] with i = 1, . . . ,10n. Using the
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9.1 Definition of entropy 251

calculation in Example 9.1.1, we get that

hμ(f ,P)= lim
n

1

n
Hμ(Pn)= log10.

Using the theory in Section 9.2 (the theorem of Kolmogorov–Sinai and its
corollaries), one can easily check that this is also the value of the entropy hμ(f ),
that is, P realizes the supremum in the definition (9.1.17).

Example 9.1.10. Consider the shift map σ : �→ � in � = {1, . . . ,d}N (or
� = {1, . . . ,d}Z), with a Bernoulli measure μ= νN (respectively, μ= νZ). Let
P be the partition of � into the cylinders [0;a] with a= 1, . . . ,d. Then, Pn is
the partition into cylinders [0;a1, . . . ,an] of length n. Using the calculation in
Example 9.1.2 we conclude that

hμ(σ ,P)= lim
n

1

n
Hμ(Pn)=

d∑
i=1

−pi logpi. (9.1.18)

The theory presented in Section 9.2 permits us to prove that this is also the
value of the entropy hμ(σ ).

It follows from expression (9.1.18) that for every x > 0 there exists some
Bernoulli shift (σ ,μ) such that hμ(σ )= x. We use this observation a few times
in what follows.

Lemma 9.1.11. hμ(f ,Q) ≤ hμ(f ,P)+Hμ(Q/P) for any partitions P and Q
with finite entropy.

Proof. By Lemma 9.1.5, for every n≥ 1,

Hμ
(
Qn+1/Pn+1

)=Hμ
(
Qn∨ f−n(Q)/Pn∨ f−n(P)

)
≤Hμ

(
Qn/Pn

)+Hμ
(
f−n(Q)/f−n(P)

)
.

The last term is equal to Hμ(Q/P), because the measure μ is invariant under f .
Therefore, the previous relation proves that

Hμ
(
Qn/Pn

)≤ nHμ
(
Q/P

)
for every n≥ 1. (9.1.19)

Using Lemma 9.1.5 once more, it follows that

Hμ(Qn)≤Hμ
(
Pn∨Qn

)=Hμ(Pn)+Hμ(Qn/Pn)≤Hμ(Pn)+ nHμ(Q/P).

Dividing by n and taking the limit when n→∞, we get the conclusion of the
lemma.

Lemma 9.1.12. hμ(f ,P)= limn Hμ(P/
∨n

j=1 f−j(P)) for any partition P with
finite entropy.
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252 Entropy

Proof. Using Lemma 9.1.5(i) and the fact that the measure μ is invariant
under f , we get that

Hμ

( n−1∨
j=0

f−j(P)
)
=Hμ

( n−1∨
j=1

f−j(P)
)
+Hμ

(
P/

n−1∨
j=1

f−j(P)
)

=Hμ

( n−2∨
j=0

f−j(P)
)
+Hμ

(
P/

n−1∨
j=1

f−j(P)
)

for every n. By recurrence, it follows that

Hμ

( n−1∨
j=0

f−j(P)
)
=Hμ(P)+

n−1∑
k=1

Hμ

(
P/

k∨
j=1

f−j(P)
)

.

Therefore, hμ(f ,P) is given by the Cesàro limit

hμ(f ,P)= lim
n

1

n
Hμ

( n−1∨
j=0

f−j(P)
)
= lim

n

1

n

n−1∑
k=1

Hμ

(
P/

k∨
j=1

f−j(P)
)

.

On the other hand, Lemma 9.1.5(ii) ensures that Hμ(P/
∨n

j=1 f−j(P)) is a
non-increasing sequence. In particular, limn Hμ(P/

∨n
j=1 f−j(P)) exists and,

consequently, coincides with the Cesàro limit in the previous identity.

Recall that Pn = ∨n−1
j=0 f−j(P). When f : M → M is invertible, we also

consider P±n =∨n−1
j=−n f−j(P).

Lemma 9.1.13. Let P be a partition with finite entropy. For every k ≥ 1, we
have hμ(f ,P)= hμ(f ,Pk) and, if f is invertible, hμ(f ,P)= hμ(f ,P±k).

Proof. Observe that, given any n≥ 1,

n−1∨
j=0

f−j(Pk)=
n−1∨
j=0

f−j

( k−1∨
i=0

f−i(P)
)
=

n+k−2∨
l=0

f−l(P)=Pn+k−1.

Therefore,

hμ
(
f ,Pk

)= lim
n

1

n
Hμ
(
Pn+k−1

)= lim
n

1

n
Hμ
(
Pn
)= hμ

(
f ,P
)
.

This proves the first part of the lemma. To prove the second part, note that

n−1∨
j=0

f−j(P±k)=
n−1∨
j=0

f−j

( k−1∨
i=−k

f−i(P)
)
=

n+k−2∨
l=−k

f−l(P)= f−k
(
Pn+2k−1)

for every n and every k. Therefore,

hμ
(
f ,P±k

)= lim
n

1

n
Hμ
(
f−k(Pn+2k−1)

)= lim
n

1

n
Hμ
(
Pn+2k−1

)= hμ
(
f ,P
)

(the second equality uses the fact that μ is invariant under f ).
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9.1 Definition of entropy 253

Proposition 9.1.14. One has hμ(f k)= khμ(f ) for every k ∈N. If f is invertible
then hμ(f k)= |k|hμ(f ) for every k ∈ Z.

Proof. It is clear that the identity holds for k= 0, since f 0 = id and hμ(id)= 0.
Take k to be non-zero from now on. Let g = f k and P be any partition of M
with finite entropy. Recalling that Pk = P ∨ f−1(P)∨ ·· · ∨ f−k+1(P), we see
that

Pkm =
km−1∨
j=0

f−j(P)=
m−1∨
i=0

f−ki

( k−1∨
j=0

f−j(P)
)
=

m−1∨
i=0

g−i(Pk).

Therefore,

khμ
(
f ,P
)= lim

m

1

m
Hμ
(
Pkm

)= hμ
(
g,Pk

)
. (9.1.20)

Since P ≺Pk, this implies that hμ(g,P)≤ khμ(f ,P)≤ hμ(g) for any P . Taking
the supremum over these partitions P , it follows that hμ(g)≤ khμ(f )≤ hμ(g).
This proves that khμ(f )= hμ(g), as stated.

Now suppose that f is invertible. Let P be any partition of M with finite
entropy. For any n≥ 1,

Hμ
( n−1∨

j=0

f−j(P)
)
=Hμ

(
f−n+1

( n−1∨
i=0

f i(P)
))
=Hμ

( n−1∨
i=0

f i(P)
)

,

because the measure μ is invariant under f . Dividing by n and taking the limit
when n→∞, we get that

hμ(f ,P)= hμ(f
−1,P). (9.1.21)

Taking the supremum over these partitions P , it follows that hμ(f )= hμ(f−1).
Replacing f with f k and using the first half of the proposition, we get that
hμ(f−k)= hμ(f k)= khμ(f ) for every k ∈N.

9.1.4 Exercises

9.1.1. Prove that Hμ(P/R)≤Hμ(P/Q)+Hμ(Q/R) for any partitions P , Q and R.
9.1.2. Show that the supremum of hμ(f ,P) over the finite partitions coincides with the

supremum over all the partitions with finite entropy.
9.1.3. Check that limn Hμ(

∨k−1
i=0 f−i(P)/∨n

j=k f−j(P)) = kh(f ,P) for every partition P
with finite entropy and every k≥ 1.

9.1.4. Let f : M → M be a measurable transformation preserving a probability
measure μ.
(a) Assume that there exists an invariant set A ⊂ M with μ(A) ∈ (0,1). Let

μA and μB be the normalized restrictions of μ to the sets A and B = Ac,
respectively. Show that hμ(f )=μ(A)hμA(f )+μ(B)hμB(f ).

(b) Suppose that μ is a convex combination μ=∑n
i=1 aiμi of ergodic measures

μ1, . . . , μn. Show that hμ(f )=∑n
i=1 aihμi(f ).

[Observation: In Section 9.6 we prove much stronger results.]
9.1.5. Let (M,B,μ) and (N,C,ν) be probability spaces and f : M→M and g : N→N be

measurable transformations preserving the measures μ and ν, respectively. We

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.010
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.010
https://www.cambridge.org/core


254 Entropy

say that (g,ν) is a factor of (f ,μ) if there exists a measurable map, not necessarily
invertible, φ : (M,B)→ (N,C) such that φ∗μ= ν and φ ◦ f = g◦φ at almost every
point. Show that in that case hν(g)≤ hμ(f ).

9.2 Theorem of Kolmogorov–Sinai

In general, the main difficulty in calculating the entropy lies in the calculation
of the supremum in (9.1.17). The methods that we develop in this section
permit the simplification of that task in many cases, by identifying certain
partitions P that realize the supremum, that is, such that hμ(f ,P) = hμ(f ).
The main result is:

Theorem 9.2.1 (Kolmogorov–Sinai). Let P1 ≺ ·· · ≺ Pn ≺ ·· · be a non-
decreasing sequence of partitions with finite entropy such that

⋃∞
n=1Pn

generates the σ -algebra of measurable sets, up to measure zero. Then,

hμ(f )= lim
n

hμ(f ,Pn).

Proof. The limit always exists, for property (9.1.16) implies that the sequence
hμ(f ,Pn) is non-decreasing. The inequality ≥ in the statement is a direct
consequence of the definition of entropy. Therefore, we only need to show
that hμ(f ,Q)≤ limn hμ(f ,Pn) for every partition Q with finite entropy. We use
the following fact, which is interesting in itself:

Proposition 9.2.2. Let A be an algebra that generates the σ -algebra of
measurable sets, up to measure zero. For every partition Q with finite
entropy and every ε > 0 there exists some finite partition P ⊂ A such that
Hμ(Q/P) < ε.

Proof. The first step is to reduce the statement to the case when Q is finite.
Denote by Qj, j= 1,2, . . . the elements of Q. For each k≥ 1, consider the finite
partition

Qk =
{

Q1, . . . ,Qk,M \
k⋃

j=1

Qj

}
.

Lemma 9.2.3. If Q is a partition with finite entropy then limk Hμ(Q/Qk)= 0.

Proof. Denote Q0 =M \⋃k
j=1 Qj. By definition,

Hμ(Q/Qk)=
k∑

i=0

∑
j≥1

−μ(Qi ∩Qj
)

log
μ
(
Qi ∩Qj

)
μ(Qi)

.

All the terms with i≥ 1 vanish, since in that case μ(Qi∩Qj) is equal to zero if
i �= j and is equal to μ(Qi) if i= j. For i= 0 we have that μ(Qi ∩Qj) is equal
to zero if j≤ k and is equal to μ(Qj) if j> k. Therefore,

Hμ(Q/Qk)=
∑
j>k

−μ(Qj) log
μ(Qj)

μ(Q0)
≤
∑
j>k

−μ(Qj) logμ(Qj).
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9.2 Theorem of Kolmogorov–Sinai 255

The hypothesis that Q has finite entropy means that the expression on the
right-hand side converges to zero when k→∞.

Given ε > 0, fix k ≥ 1 such that Hμ(Q/Qk) < ε/2. Consider any δ > 0. By
the approximation theorem (Theorem A.1.19), for each i= 1, . . . ,k there exists
Ai ∈A such that

μ(Qi
Ai) < δ/(2k2). (9.2.1)

Define P1 = A1 and Pi = Ai \⋃i−1
j=1 Aj for i = 2, . . . ,k and P0 = M \⋃k−1

j=1 Aj.
It is clear that P = {P1, . . . ,Pk,P0} is a partition of M and also that Pi ∈A for
every i. For i= 1, . . . ,k, we have Pi
Ai = Pi \Ai = Ai ∩

(⋃i−1
j=1 Aj

)
. For any x

in this set, there is j< i such that x ∈ Ai ∩Aj. Since Qi ∩Qj = ∅, it follows that
x ∈ (Ai \Qi)∪ (Aj \Qj). This proves that

Pi
Ai ⊂
i⋃

j=1

(Aj \Qj)⊂
i⋃

j=1

(Aj
Qj),

and so μ(Pi
Ai) < iδ/(2k2)≤ δ/(2k). Together with (9.2.1), this implies that

μ(Pi
Qi) < δ/(2k2)+ δ/(2k)≤ δ/k for i= 1, . . . ,k. (9.2.2)

Moreover, P0
Q0 ⊂⋃k
i=1 Pi
Qi since P and Qk are partitions of M. Hence,

(9.2.2) implies that
μ(P0
Q0) < δ. (9.2.3)

By Lemma 9.1.6, the relations (9.2.2) and (9.2.3) imply that Hμ(Qk/P) <
ε/2, as long as we take δ > 0 sufficiently small. Then, by the inequality in
Exercise 9.1.1,

Hμ(Q/P)≤Hμ(Q/Qk)+Hμ(Qk/P) < ε,
as stated.

Corollary 9.2.4. If (Pn)n is a sequence of partitions as in Theorem 9.2.1 then
limn Hμ(Q/Pn)= 0 for every partition Q with finite entropy.

Proof. For each n, let An be the algebra generated by
⋃n

j=1Pj. Then (An)n is a
non-decreasing sequence and the union A=⋃nAn is the algebra generated by⋃

nPn. Consider any ε > 0. By Proposition 9.2.2, there exists a finite partition
P ⊂ A such that Hμ(Q/P) < ε. Hence, since P is finite, there exists m ≥ 1
such that P ⊂Am and, thus, P is coarser than Pm. Then, using Lemma 9.1.5,

Hμ(Q/Pn)≤Hμ(Q/Pm)≤Hμ(Q/P) < ε for every n≥m.

This completes the proof of the corollary.

We are ready to conclude the proof of Theorem 9.2.1. By Lemma 9.1.11,

hμ(f ,Q)≤ hμ(f ,Pn)+Hμ(Q/Pn) for every n.

Taking the limit as n →∞, we get that hμ(f ,Q) ≤ limn hμ(f ,Pn) for every
partition Q with finite entropy.
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256 Entropy

9.2.1 Generating partitions

In this section and the ones that follow, we deduce several useful consequences
of Theorem 9.2.1.

Corollary 9.2.5. Let P be a partition with finite entropy such that the union of
the iterates Pn =∨n−1

j=0 f−j(P), n ≥ 1 generates the σ -algebra of measurable
sets, up to measure zero. Then, hμ(f )= hμ(f ,P).

Proof. It suffices to apply Theorem 9.2.1 to the sequence Pn and to recall that
hμ(f ,Pn)= hμ(f ,P) for every n, by Lemma 9.1.13.

Corollary 9.2.6. Assume that the system (f ,μ) is invertible. Let P be a
partition with finite entropy such that the union of the iterates P±n =∨n−1

j=−n f−j(P), n≥ 1 generates the σ -algebra of measurable sets, up to measure
zero. Then, hμ(f )= hμ(f ,P).

Proof. It suffices to apply Theorem 9.2.1 to the sequence P±n and to recall
that hμ(f ,P±n)= hμ(f ,P) for every n, by Lemma 9.1.13.

In particular, Corollaries 9.2.5 and 9.2.6 complete the calculation of the
entropy of the decimal expansion and the Bernoulli shifts that we started in
Examples 9.1.9 and 9.1.10, respectively.

In both situations, Corollary 9.2.5 and Corollary 9.2.6, we say that P is
a generating partition or, simply, a generator of the system. Note, however,
that this contains a certain abuse of language, since the conditions in the
two corollaries are not equivalent. For example, for the shift map in M =
{1, . . . ,d}Z, the partition P into cylinders {[0;a] : a= 1, . . . ,d} is such that the
union of the two-sided iterates P±n generates the σ -algebra of measurable sets
but the union of the one-sided iterates Pn does not. Whenever it is necessary to
distinguish between these two concepts, we talk of a one-sided generator and
a two-sided generator, respectively.

In this regard, let us point out that certain invertible systems admit one-sided
generators. For example, if f : S1 → S1 is an irrational rotation and P = {I,S1 \
I} is a partition of the circle into two complementary intervals, then P is a
one-sided generator (and also a two-sided generator, of course). However, this
kind of situation is possible only for systems with entropy zero:

Corollary 9.2.7. Assume that the system (f ,μ) is invertible and there exists a
partition P with finite entropy such that

⋃∞
n=1Pn generates the σ -algebra of

measurable sets, up to measure zero. Then, hμ(f )= 0.

Proof. Combining Lemma 9.1.12 and Corollary 9.2.5, we get that

hμ(f )= hμ(f ,P)= lim
n

Hμ(P/f−1(Pn)).
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9.2 Theorem of Kolmogorov–Sinai 257

Since
⋃

nPn generates the σ -algebra B of measurable sets,
⋃

n f−1(Pn)

generates the σ -algebra f−1(B). Now notice that f−1(B) = B, since f is
invertible. Hence, Corollary 9.2.4 implies that Hμ(P/f−1(Pn)) converges to
zero when n→∞. It follows that hμ(f )= hμ(f ,P)= 0.

Now take M to be a metric space and μ to be a Borel probability measure.

Corollary 9.2.8. Let P1 ≺ ·· · ≺ Pn ≺ ·· · be a non-decreasing sequence of
partitions with finite entropy such that diamPn(x)→ 0 for μ-almost every
x ∈M. Then,

hμ(f )= lim
n

hμ(f ,Pn).

Proof. Let U be any non-empty open subset of M. The hypothesis ensures that
for each x ∈ U there exists n(x) such that the set Px = Pn(x)(x) is contained in
U. It is clear that Px belongs to the algebra A generated by

⋃
nPn. Observe

also that A is countable, since it consists of the finite unions of elements of the
partitions Pn together with the complements of such unions. In particular, the
map x �→ Px takes only countably many values. It follows that U =⋃x∈U Px is
in the σ -algebra generated by A. This proves that the σ -algebra generated by
A contains all the open sets and, thus, all the Borel sets. Now, the conclusion
follows directly from Theorem 9.2.1.

Example 9.2.9. Let f : S1 → S1 be a homeomorphism and μ be any invariant
probability measure. Given a finite partition P of S1 into subintervals, denote
by x1, . . . ,xm their endpoints. For any j≥ 1, the partition f−j(P) consists of the
subintervals of S1 determined by the points f−j(xi). This implies that, for each
n≥ 1, the elements of Pn have their endpoints in the set

{f−j(xi) : j= 0, . . . ,n− 1 and i= 1, . . . ,m}.
In particular, #Pn ≤mn. Then, using Lemma 9.1.3,

hμ(f ,P)= lim
n

1

n
Hμ(Pn)≤ lim

n

1

n
log#Pn = lim

n

1

n
logmn= 0.

It follows that hμ(f ) = 0: to see that, it suffices to consider any sequence
of finite partitions into intervals with diameter going to zero and to apply
Corollary 9.2.8.

Corollary 9.2.10. Let P be a partition with finite entropy such that we have
diamPn(x)→ 0 for μ-almost every x ∈M. Then, hμ(f )= hμ(f ,P).

Proof. It suffices to apply Corollary 9.2.8 to the sequence Pn, recalling that
hμ(f ,Pn)= hμ(f ,P) for every n.

Analogously, if f is invertible and P is a partition with finite entropy and
such that diamP±n(x)→ 0 for μ-almost every x ∈M, then hμ(f )= hμ(f ,P).
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258 Entropy

It is known that generators do exist in most interesting cases, although it
may be difficult to exhibit a generator explicitly. Indeed, suppose that the
ambient M is a Lebesgue space. Rokhlin [Rok67a, §10] proved that if a
system is aperiodic (that is, the set of periodic points has measure zero) and
almost every point has a countable (finite or infinite) set of pre-images, then
there exists some generator. In particular, every invertible aperiodic system
admits some countable generator. In general, this generator may have infinite
entropy. But Rokhlin also showed that every invertible aperiodic system with
finite entropy admits some two-sided generator with finite entropy. Moreover
(Krieger [Kri70]), this generator may be chosen to be finite if the system is
ergodic.

9.2.2 Semi-continuity of the entropy

Next, we examine some properties of the entropy function that associates
with each invariant measure μ of a given transformation f the value of
the corresponding entropy hμ(f ). We are going to see that this function is
usually not continuous. However, under quite broad assumptions, it is upper
semi-continuous: given any ε > 0, one has hν(f ) ≤ hμ(f ) + ε for every ν
sufficiently close toμ. That holds, in particular, for the class of transformations
that we call expansive. These facts have important consequences, some of
which are explored in Sections 9.2.3 and 9.6. Moreover, we return to this
subject in Section 10.5.

Let us start by showing, through an example, that the entropy function may
be discontinuous:

Example 9.2.11. Let f : [0,1] → [0,1] be the decimal expansion map. As we
saw in Example 9.1.9, the entropy of f with respect to the Lebesgue measure
m is hm(f ) = log10. For each k ≥ 1, denote by Fk the set of fixed points of
the iterate f k. Observe that Fk is an invariant set with #Fk = 10k. Observe
also that these sets are equidistributed, in the following sense: each interval
[(i− 1)/10k, i/10k] contains exactly one point of Fk. Consider the sequence of
measures

μk = 1

10k

∑
x∈Fk

δx.

The previous observations imply (check!) that each μk is an invariant
probability measure and the sequence (μk)k converges to the Lebesgue
measure m in the weak∗ topology. Since μk is supported on a finite set, the
same argument as in Example 9.1.8 proves that hμk(f ) = 0 for every k. In
particular, we have that limk hμk(f )= 0< hm(f ).
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9.2 Theorem of Kolmogorov–Sinai 259

On the other hand, in general, consider any finite partition P of M whose
boundary

∂P =
⋃
P∈P

∂P

satisfies μ(∂P)= 0. By Theorem 2.1.2 or, more precisely, by the fact that the
topology (2.1.5) is equivalent to the weak∗ topology, the function ν �→ ν(P) is
continuous at the point μ, for every P ∈P . Consequently, the function

ν �→Hν(P)=
∑
P∈P

−ν(P) logν(P)

is also continuous at μ. The hypothesis on P also implies that μ(∂Pn)= 0 for
every n≥ 1, since

∂Pn ⊂ ∂P ∪ f−1(∂P)∪ ·· · ∪ f−n+1(∂P).

Thus, the same argument shows that ν �→Hν(Pn) is continuous for every n.

Proposition 9.2.12. Let P be a finite partition such that μ(∂P)= 0. Then the
function ν �→ hν(f ,P) is upper semi-continuous at μ.

Proof. Recall that, by definition,

hν(f ,P)= inf
n

1

n
Hν(f ,P).

It is a well-known easy fact that the infimum of any family of continuous
functions is an upper semi-continuous function.

Corollary 9.2.13. Assume that there exists a finite partition P such that
μ(∂P)= 0 and

⋃
nPn generates the σ -algebra of measurable sets of M, up to

measure zero. Then the function η �→ hη(f ) is upper semi-continuous at μ.

Proof. By Proposition 9.2.12, given ε > 0 there exists a neighborhood U of μ
such that hν(f ,P) ≤ hμ(f ,P)+ ε for every ν ∈ V . By definition, hμ(f ,P) ≤
hμ(f ). By Corollary 9.2.5, the hypothesis implies that hν(f ,P) = hν(f ) for
every ν. Therefore, hν(f )≤ hμ(f )+ ε for every ν ∈ V .

Now let us suppose that M is a compact metric space. As before, take μ
to be a Borel probability measure. By definition, the diameter diamP of a
partition P is the supremum of the diameters of its elements. Then we have the
following more specialized version of the previous corollary:

Corollary 9.2.14. Assume that there exists ε0 > 0 such that every finite
partition P with diamP<ε0 satisfies limn diamPn= 0. Then, the functionμ �→
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260 Entropy

hμ(f ) is upper semi-continuous. Consequently, that function is bounded and its
supremum is attained for some measure μ.

Proof. As we saw in Corollary 9.2.10, the property limn diamPn = 0 implies
that

⋃
nPn generates the σ -algebra of measurable sets. On the other hand,

given any invariant probability measure μ, it is easy to choose2 a partition
P with diameter smaller than ε0 and such that μ(∂P)= 0. It follows from the
previous corollary that the entropy function is upper semi-continuous at μ and,
since μ is arbitrary, this gives the first claim in the statement.

The other claims are general consequences of semi-continuity and the fact
that the domain of the entropy function, that is, the space M1(f ) of all invariant
probability measures, is compact.

When f is invertible we may replace Pn by P±n = ∨n−1
j=−n f−j(P) in

the statement of Corollaries 9.2.13 and 9.2.14. The proof is analogous,
using Corollary 9.2.5 and the version of Corollary 9.2.10 for invertible
transformations.

9.2.3 Expansive transformations

Next, we discuss a rather broad class of transformations that satisfy the
conditions in Corollary 9.2.14.

A continuous transformation f : M → M in a metric space is said to be
expansive if there exists ε0 > 0 (called a constant of expansivity) such that,
given any x,y ∈M with x �= y, there exists n ∈N such that d(f n(x), f n(y))≥ ε0.
That is, any two distinct orbits of f may be distinguished, at a macroscopic
scale, at some stage of the iteration.

When f is invertible, there is also a two-sided version of the notion of
expansivity, defined as follows: there exists ε0> 0 such that, given any x,y∈M
with x �= y there exists n ∈ Z such that d(f n(x), f n(y)) ≥ ε0. It is clear that
(one-sided) expansive homeomorphisms are also two-sided expansive.

Example 9.2.15. Let σ :�→� be the shift map in�= {1, . . . ,d}N. Consider
in � the distance defined by d((xn)n,(yn)n) = 2−N , where N is the smallest
value of n such that xn �= yn. Note that d(σN(x),σN(y)) = 20 = 1 if x = (xn)n
and y = (yn)n are distinct. This shows that σ is an expansive transformation,
with ε0 = 1 as a constant of expansivity.

Analogously, the two-sided shift map σ : � → � in � = {1, . . . ,d}Z is
two-sided expansive (but not one-sided expansive).

2 For example: for each x choose rx ∈ (0,ε0) such that the boundary of the ball of center x and
radius rx has measure zero. Then let U be a finite cover of M by such balls and take for P the
partition defined by U , that is, the partition whose elements are the maximal sets that, for each
U ∈ U , are either contained in U or disjoint from U; see Figure 2.1.
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9.2 Theorem of Kolmogorov–Sinai 261

We leave it to the reader to check (Exercise 9.2.1) that the decimal expansion
transformation f (x)= 10x− [10x] is also expansive. On the other hand, torus
rotations are never expansive.

Proposition 9.2.16. Let f : M → M be an expansive transformation in a
compact metric space and let ε0 > 0 be a constant of expansivity. Then
limn diamPn = 0 for every finite partition P with diamP < ε0.

Proof. It is clear that the sequence diamPn is non-increasing. Suppose that its
infimum δ is positive. Then, for every n ≥ 1 there exist points xn and yn such
that d(xn,yn) > δ/2 but xn and yn belong to the same element of Pn and, thus,
satisfy

d(f j(xn), f
j(yn))≤ diamP < ε0 for every 0≤ j< n.

By compactness, there exists a sequence (nj)j → ∞ such that (xnj)j and
(ynj)j converge to points x and y, respectively. Then, d(x,y) ≥ δ/2 > 0 but
d(f j(x), f j(y)) ≤ diamP < ε0 for every j ≥ 0. This contradicts the hypothesis
that ε0 is a constant of expansivity.

Corollary 9.2.17. If f : M →M is an expansive transformation in a compact
metric space then the entropy function is upper semi-continuous. Moreover,
there exist invariant probability measures μ whose entropy hμ(f ) is maximum
among all the invariant probability measures of f .

Proof. Combine Proposition 9.2.16 with Corollary 9.2.14.

If the transformation f is invertible and two-sided expansive, we may replace
Pn by P±n in Proposition 9.2.16 and the conclusion of Corollary 9.2.17 also
remains valid as stated.

9.2.4 Exercises

9.2.1. Show that the decimal expansion f : [0,1] → [0,1], f (x) = 10x − [10x] is
expansive and exhibit a constant of expansivity.

9.2.2. Check that for every s> 0 there exists some Bernoulli shift (σ ,μ) whose entropy
is equal to s.

9.2.3. Let X = {0} ∪ {1/n : n ≥ 1} and consider the space � = XN endowed with the
distance d((xn)n,(yn)n)= 2−N |xN − yN |, where N =min{n ∈N : xn �= yn}.
(a) Verify that the shift map σ :�→� is not expansive.
(b) For each k ≥ 1, let νk be the probability measure on X that assigns weight

1/2 to each of the points 1/k and 1/(k+ 1). Use the Bernoulli measures
μk = νNk to conclude that the entropy function of the shift is not upper
semi-continuous.

(c) Let μ be the Bernoulli measure associated with any probability vector
(px)x∈X such that

∑
x∈X−px logpx =∞. Show that hμ(σ ) is infinite.

9.2.4. Let f : S1 → S1 be a covering map of degree d≥ 2 and μ be a probability measure
invariant under f . Show that hμ(f )≤ logd.
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262 Entropy

9.2.5. Let P and Q be two partitions with finite entropy. Show that if P is coarser than∨∞
j=0 f−j(Q) then hμ(f ,P)≤ hμ(f ,Q).

9.2.6. Show that if A is an algebra that generates the σ -algebra of measurable sets, up
to measure zero, then the supremum of hμ(f ,P) over the partitions with finite
entropy (or even the finite partitions) P ⊂A coincides with hμ(f ).

9.2.7. Consider transformations f : M → M and g : N → N preserving probability
measures μ and ν, respectively. Consider f × g : M × N → M × N defined by
(f × g)(x,y)= (f (x),g(y)). Show that f × g preserves the product measure μ× ν
and that hμ×ν(f × g)= hμ(f )+ hν(g).

9.3 Local entropy

The theorem of Shannon–McMillan–Breiman, which we discuss in this
section, provides a complementary view of the concept of entropy, more
detailed and more local in nature. We also mention a topological version of
that idea, which is due to Brin–Katok.

Theorem 9.3.1 (Shannon–McMillan–Breiman). Given any partition P with
finite entropy, the limit

hμ(f ,P ,x)= lim
n
−1

n
logμ(Pn(x)) exists at μ-almost every point. (9.3.1)

The function x �→ hμ(f ,P ,x) is μ-integrable, and the limit in (9.3.1) also holds
in L1(μ). Moreover, ∫

hμ(f ,P ,x)dμ(x)= hμ(f ,P).

If (f ,μ) is ergodic then hμ(f ,P ,x)= hμ(f ,P) at μ-almost every point.

Recall that Pn(x) = P(x) ∩ f−1(P(f (x))) ∩ ·· · ∩ f−n+1(P(f n−1(x))), that
is, Pn(x) is formed by the points whose trajectories remain “close” to the
trajectory of x during n iterates, in the sense that they visit the same elements
of P . Theorem 9.3.1 states that the measure of this set has a well-defined
exponential rate of decay: at μ-almost every point,

μ(Pn(x))≈ e−nhμ(f ,P ,x) for every large n.

The proof of the theorem is presented in Section 9.3.1.
The theorem of Brin–Katok that we state in the sequel belongs to the same

family of results, but uses a different notion of proximity.

Definition 9.3.2. Let f : M → M be a continuous map in a compact metric
space. Given x ∈ M, n ≥ 1 and ε > 0, we call the dynamical ball of length n
and radius ε around x the set

B(x,n,ε)= {y ∈M : d(f j(x), f j(y)) < ε for every j= 0,1, . . . ,n− 1}.
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9.3 Local entropy 263

In other words,

B(x,n,ε)= B(x,ε)∩ f−1(B(f (x),ε))∩ ·· · ∩ f−n+1(B(f n−1(x),ε)).

Define

h+μ(f ,ε,x)= limsup
n

−1

n
logμ(B(x,n,ε)) and

h−μ(f ,ε,x)= liminf
n

−1

n
logμ(B(x,n,ε)).

Theorem 9.3.3 (Brin–Katok). Let μ be a probability measure invariant under
f . The limits

lim
ε→0

h+μ(f ,ε,x) and lim
ε→0

h−μ(f ,ε,x)

exist and are equal, for μ-almost every point. Denoting by hμ(f ,x) their
common value, the function hμ(f , ·) is integrable and

hμ(f )=
∫

hμ(f ,x)dμ(x).

The proof of this result may be found in the original paper of Brin and
Katok [BK83], and is not presented here.

Example 9.3.4 (Translations in compact groups). Let G be a compact
metrizable group and μ be its Haar measure. Every translation of G has zero
entropy with respect to μ. Indeed, consider in G any distance d that is invariant
under all the translations (recall Lemma 6.3.6). Relative to such a distance,

Lj
g(B(x,ε))= B(Lj

g(x),ε)

for every g ∈ G and j ∈ Z. Consequently, B(x,n,ε) = B(x,ε) for every n ≥ 1.
Then,

h±μ(Lg,ε,x)= lim
n
−1

n
logμ(B(x,ε))= 0

for every ε > 0 and x ∈ G. By the theorem of Brin–Katok, it follows
that hμ(Lg) = 0 for every g ∈ G. The same argument applies to every
right-translation Rg.

9.3.1 Proof of the Shannon–McMillan–Breiman theorem

Consider the sequence of functions ϕn : M→R defined by

ϕn(x)=− log
μ(Pn(x))

μ(Pn−1(f (x)))
.

By telescopic cancellation,

− 1

n
logμ(Pn(x))=−1

n
logμ(P(f n−1(x)))+ 1

n

n−2∑
j=0

ϕn−j(f
j(x)) (9.3.2)

for every n and every x.
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264 Entropy

Lemma 9.3.5. The sequence −n−1 logμ(P(f n−1(x))) converges to zero μ-
almost everywhere and in L1(μ).

Proof. Start by noting that the function x �→ − logμ(P(x)) is integrable:∫
| logμ(P(x))|dμ(x)=

∫
− logμ(P(x))dμ(x)=Hμ(P) <∞.

Using Lemma 3.2.5, it follows that−(n−1)−1 logμ(P(f n−1(x))) converges to
zero at μ-almost every point. Moreover, it is clear that this conclusion is not
affected if one replaces n− 1 by n in the denominator. This proves the claim
of μ-almost everywhere convergence. Next, using the fact that the measure μ
is invariant and Hμ(P) <∞,∥∥∥∥− 1

n
logμ(P(f n−1(x)))

∥∥∥∥
1

= 1

n

∫
− logμ(P(f n−1(x)))dμ(x)= 1

n
Hμ(P)

converges to zero when n→∞. This proves the convergence in L1(μ).

Next, we show that the last term in (9.3.2) also converges μ-almost
everywhere and in L1(μ).

Lemma 9.3.6. The limit ϕ(x)= limnϕn(x) exists at μ-almost every point.

Proof. For each n> 1, denote by Qn the partition of M defined by

Qn(x)= f−1(Pn−1(f (x)))= f−1(P(f (x)))∩ ·· · ∩ f−n+1(P(f n−1(x))).

Note that μ(Pn−1(f (x))=μ(Qn(x)) and Pn(x)=P(x)∩Qn(x). Therefore,

μ(Pn(x))

μ(Pn−1(f (x)))
= μ(P(x)∩Qn(x))

μ(Qn(x))
. (9.3.3)

For each P ∈ P and n > 1, consider the conditional expectation (recall
Section 5.2.1)

en(XP,x)= 1

μ(Qn(x))

∫
Qn(x)

XP dμ= μ(P∩Qn(x))

μ(Qn(x))
.

Comparing with (9.3.3) we see that

en(XP,x)= μ(Pn(x))

μ(Pn−1(f (x)))
for every x ∈ P.

By Lemma 5.2.1, the limit e(XP,x)= limn en(XP,x) exists for μ-almost every
x∈M and, in particular, for μ-almost every x∈P. Since P∈P is arbitrary, this
proves that

lim
n

μ(Pn(x))

μ(Pn−1(f (x)))

exists forμ-almost every point. Taking logarithms, we get that limnϕn(x) exists
for μ-almost every point, as stated.
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9.3 Local entropy 265

Lemma 9.3.7. The function �= supnϕn is integrable.

Proof. As in the previous lemma, let us consider the partitions Qn defined by
Qn(x)= f−1(Pn−1(f (x))). Fix any P ∈P . Given x ∈ P and t> 0, it is clear that
�(x) > t if and only if ϕn(x) > t for some n. Moreover,

ϕn(x) > t ⇔ μ
(
P∩Qn(x)

)
< e−tμ(Qn(x))

and, in that case, ϕn(y) > t for every y ∈ P∩Qn(x). Therefore, we may write
the set {x∈P :�(x) > t} as a disjoint union

⋃
j(P∩Qj), where each Qj belongs

to some partition Qn(j) and

μ
(
P∩Qj

)
< e−tμ(Qj) for every j.

Consequently, for every t> 0 and P ∈P ,

μ({x ∈ P :�(x) > t})=
∑

j

μ
(
P∩Qj

)
< e−t

∑
j

μ(Qj)≤ e−t. (9.3.4)

Then (see Exercise 9.3.1),∫
�dμ=

∑
P∈P

∫
P
�dμ=

∑
P∈P

∫ ∞

0
μ({x ∈ P :�(x) > t})dt

≤
∑
P∈P

∫ ∞

0
min{e−t,μ(P)}dt.

The last integral may be rewritten as follows:∫ − logμ(P)

0
μ(P)dt+

∫ ∞

− logμ(P)
e−t dt=−μ(P) logμ(P)+μ(P).

Combining these two relations:∫
�dμ≤

∑
P∈P

−μ(P) logμ(P)+μ(P)=Hμ(P)+ 1<∞.

This proves the lemma, since � is non-negative.

Lemma 9.3.8. The function ϕ is integrable and (ϕn)n converges to ϕ in L1(μ).

Proof. We saw in Lemma 9.3.6 that (ϕn)n converges to ϕ at μ-almost every
point. Since 0≤ ϕn ≤� for every n, we also have that 0≤ ϕ ≤�. In particular,
ϕ is integrable. Moreover, |ϕ−ϕn| ≤� for every n and, thus, we may use the
dominated convergence theorem (Theorem A.2.11) to conclude that

lim
n

∫
|ϕ−ϕn|dμ=

∫
lim

n
|ϕ−ϕn|dμ= 0.

This proves the convergence in L1(μ).
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266 Entropy

Lemma 9.3.9. At μ-almost every point and in L1(μ),

lim
n

1

n

n−2∑
j=0

ϕn−j(f
j(x))= lim

n

1

n

n−2∑
j=0

ϕ(f j(x)).

Proof. By the Birkhoff ergodic theorem (Theorem 3.2.3), the limit on the
right-hand side exists at μ-almost every point and in L1(μ), indeed, it is equal
to the time average of the function ϕ. Therefore, it is enough to show that the
difference

1

n

n−2∑
j=0

(ϕn−j−ϕ) ◦ f j (9.3.5)

converges to zero at μ-almost every point and in L1(μ). Since the measure μ
is invariant, ‖(ϕn−j−ϕ) ◦ f j‖1 = ‖ϕn−j−ϕ‖1 for every j. Hence,∥∥∥∥1

n

n−2∑
j=0

(ϕn−j−ϕ) ◦ f j

∥∥∥∥
1

≤ 1

n

n−2∑
j=0

‖ϕn−j−ϕ‖1.

By Lemma 9.3.8 the sequence on the right-hand side converges to zero. This
implies that (9.3.5) converges to zero in L1(μ). We are left to prove that the
sequence converges at μ-almost every point.

For each fixed k ≥ 2, consider �k = supi>k |ϕi− ϕ|. Note that �k ≤� and,
thus, �k ∈ L1(μ). Moreover,

1

n

n−2∑
j=0

|ϕn−j−ϕ| ◦ f j = 1

n

n−k−1∑
j=0

|ϕn−j−ϕ| ◦ f j+ 1

n

n−2∑
j=n−k

|ϕn−j−ϕ| ◦ f j

≤ 1

n

n−k−1∑
j=0

�k ◦ f j+ 1

n

n−2∑
j=n−k

� ◦ f j.

By the Birkhoff ergodic theorem, the first term on the right-hand side converges
to the time average �̃k at μ-almost every point. By Lemma 3.2.5, the last term
converges to zero at μ-almost every point: the lemma implies that n−1� ◦ f n−i

converges to zero for any fixed i. Hence,

limsup
n

1

n

n−2∑
j=0

|ϕn−j−ϕ|(f j(x))≤ �̃k(x) at μ-almost every point. (9.3.6)

We claim that limk �̃k(x)= 0 at μ-almost every point. Indeed, the sequence
(�k)k is non-increasing and, by Lemma 9.3.6, it converges to zero at μ-almost
every point. By the monotone convergence theorem (Theorem A.2.9), it
follows that

∫
�k dμ→ 0 when k →∞. Another consequence is that (�̃k)k

is non-increasing. Hence, using the monotone convergence theorem together
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9.3 Local entropy 267

with the Birkhoff ergodic theorem,∫
lim

k
�̃k dμ= lim

k

∫
�̃k dμ= lim

k

∫
�k dμ= 0.

Since �̃k is non-negative, it follows that limk �̃k = 0 at μ-almost every point,
as we claimed. Therefore, (9.3.6) implies that

lim
n

1

n

n−2∑
j=0

|ϕn−j−ϕ| ◦ f j = 0

at μ-almost every point. This completes the proof of the lemma.

It follows from (9.3.2) and Lemmas 9.3.5 and 9.3.9 that

hμ(f ,P ,x)= lim
n
−1

n
logμ(Pn(x))

exists at μ-almost every point and in L1(μ): in fact, it coincides with the time
average ϕ̃(x) of the function ϕ. Then, in particular,∫

hμ(f ,P ,x)dμ(x)= lim
n

1

n

∫
− logμ(Pn(x))dμ(x)

= lim
n

1

n
Hμ(Pn)= hμ(f ,P).

Moreover, if (f ,μ) is ergodic then h(f ,P ,x) = ϕ̃(x) is constant at μ-almost
every point. That is, in that case hμ(f ,P ,x) = hμ(f ,P) for μ-almost every
point. This closes the proof of Theorem 9.3.1.

9.3.2 Exercises

9.3.1. Check that, for any measurable function ϕ : M→ (0,∞),∫
ϕ dμ=

∫ ∞

0
μ({x ∈M : ϕ(x) > t})dt.

9.3.2. Use Theorem 9.3.1 to calculate the entropy of a Bernoulli shift in�={1, . . . ,d}N.
9.3.3. Show that the function hμ(f ,x) in Theorem 9.3.3 is f -invariant. Conclude that if

(f ,μ) is ergodic, then hμ(f )= hμ(f ,x) for μ-almost every x.
9.3.4. Suppose that (f ,μ) is ergodic and let P be a partition with finite entropy. Show

that given ε > 0 there exists k ≥ 1 such that for every n≥ k there exists Bn ⊂Pn

such that

e−n(hμ(f ,P)+ε) < μ(B) < e−n(hμ(f ,P)−ε) for every B ∈ Bn,

and the measure of the union of the elements of Bn is larger than 1− ε.
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9.4 Examples

In this section we illustrate the previous results through a few examples.

9.4.1 Markov shifts

Let � = {1, . . . ,d}N and σ : �→ � be the shift map. Let μ be the Markov
measure associated with a stochastic matrix P= (Pi,j)i,j and a probability vector
p= (pi)i. We are going to prove:

Proposition 9.4.1. hμ(σ )=∑d
a=1 pa

∑d
b=1−Pa,b logPa,b.

Proof. Consider the partition P of � into cylinders [0;a], a = 1, . . . ,d. For
each n, the iterate Pn is the partition into cylinders [0;a1, . . . ,an] of length n.
Recalling that μ([0;a1, . . . ,an])= pa1 Pa1,a2 · · ·Pan−1,an , we see that

Hμ(Pn)=
∑

a1,...,an

−pa1 Pa1,a2 · · ·Pan−1,an log
(
pa1 Pa1,a2 · · ·Pan−1,an

)
=
∑

a1

−pa1 logpa1

∑
a2,...,an

Pa1,a2 · · ·Pan−1,an

+
n−1∑
j=1

∑
aj,aj+1

− logPaj,aj+1

∑
pa1 Pa1,a2 · · ·Pan−1,an ,

(9.4.1)

where the last sum is over all the values of a1, . . . ,aj−1,aj+2, . . . ,an. On the one
hand, ∑

a2,...,an

Pa1,a2 · · ·Pan−1,an =
∑

an

Pn
a1,an

= 1,

because Pn is a stochastic matrix. On the other hand,∑
pa1 Pa1,a2 · · ·Pan−1,an =

∑
a1,an

pa1 Pj
a1,aj

Paj,aj+1 Pn−j−1
aj+1,an

=
∑

a1

pa1 Pj
a1,aj

Paj,aj+1 = paj Paj,aj+1 ,

because Pn−j−1 is a stochastic matrix and pPj = P∗jp = p. Replacing these
observations in (9.4.1), we get that

Hμ(Pn)=
∑

a1

−pa1 logpa1 +
n−1∑
j=1

∑
aj,aj+1

−paj Paj,aj+1 logPaj,aj+1

=
∑

a

−pa logpa+ (n− 1)
∑
a,b

−paPa,b logPa,b.

It follows that hμ(σ ,P)=∑a,b−paPa,b logPa,b. Since the family of all cylin-
ders [0;a1, . . . ,an] generates the σ -algebra of�, it follows from Corollary 9.2.5
that hμ(σ )= hμ(σ ,P). This completes the proof of theorem.
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This conclusion remains valid for two-sided Markov shifts as well, that is,
when � = {1, . . . ,d}Z. The argument is analogous, using Corollary 9.2.6.

9.4.2 Gauss map

Now we calculate the entropy of the Gauss map G(x)= (1/x)−[1/x] relative
to the invariant probability measure

μ(E)= 1

log2

∫
E

dx

1+ x
, (9.4.2)

which was already studied in Sections 1.3.2 and 4.2.4. The method that
we are going to present extends to a much broader class of systems,
including the expanding maps of the interval that are defined and discussed
in Example 11.1.16.

Let P be the partition of (0,1) into the subintervals (1/(m+ 1),1/m) with
m≥ 1. As before, we denote Pn =∨n−1

j=0 G−j(P). The following facts are used
in what follows:

(A) Gn maps each Pn ∈Pn diffeomorphically onto (0,1), for each n≥ 1.
(B) diamPn → 0 when n→∞.
(C) There exists C> 1 such that |(Gn)′(y)|/|(Gn)′(x)| ≤C for every n≥ 1 and

any x and y in the same element of the partition Pn.
(D) There exist c1,c2> 0 such that c1m(Pn)≤μ(Pn)≤ c2m(Pn) for every n≥ 1

and every Pn ∈Pn, where m denotes the Lebesgue measure.

It is immediate from the definition that each P ∈ P is mapped by G
diffeomorphically onto (0,1). Property (A) is a consequence, by induction
on n. Using (A) and Lemma 4.2.12, we get that

diamPn ≤ sup
x∈Pn

1

|(Gn)′(x)| ≤ 2−[n/2]

for every n≥ 1 and every Pn ∈ Pn. This implies (B). Property (C) is given by
Lemma 4.2.13. Finally, (D) follows directly from (9.4.2).

Proposition 9.4.2. hμ(G)=
∫

log |G′|dμ.

Proof. Consider the function ψn(x)=− logμ(Pn(x)), for each n≥ 1. Observe
that

Hμ(Pn)=
∑

Pn∈Pn

−μ(Pn) logμ(Pn)=
∫
ψn(x)dμ(x).

Property (D) gives that

− logc1 ≥ψn(x)+ logm(Pn(x))≥− logc2.

By property (A), we have logm(Pn(x))=− log |(Gn)′(y)| for some y ∈Pn(x).
Using property (C), it follows that

− logc1+ logC ≥ψn(x)− log |(Gn)′(x)| ≥ − logc2− logC
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270 Entropy

for every x and every n. Consequently,

− log(c1/C)≥Hμ(Pn)−
∫

log |(Gn)′|dμ≥ log(c2C) (9.4.3)

for every n. Since the measure μ is invariant under G,∫
log |(Gn)′|dμ=

n−1∑
j=0

∫
log |G′| ◦Gj dμ= n

∫
|G′|dμ.

Then, dividing (9.4.3) by n and taking the limit when n→∞,

hμ(f ,P)= lim
n

1

n
Hμ(Pn)=

∫
log |G′|dμ.

Now, property (B) ensures that we may apply Corollary 9.2.10 to conclude that

hμ(G)= hμ(G,P)=
∫

log |G′|dμ.

This completes the proof of the proposition.

The integral in the statement of the proposition may be calculated explicitly:
we leave it to the reader to check (using integration by parts and the fact that∑∞

j=1 1/j2 = π2/6) that

hμ(G)=
∫

log |G′|dμ=
∫ 1

0

−2logxdx

(1+ x) log2
= π2

6 log2
≈ 5.46 . . .

Then, recalling that (G,μ) is ergodic (Section 4.2.4), it follows from the
theorem of Shannon–McMillan–Breiman (Theorem 9.3.1) that

lim
n
−1

n
logμ(Pn(x))= π2

6 log2
for μ-almost every x.

As the measure μ is comparable to the Lebesgue measure, up to a constant
factor, this means that

diamPn(x)≈ e−
π2n

6log2 (up to a factor e±εn)

for μ-almost every x and every n sufficiently large. Observe that Pn(x) is
formed by the points y whose continued fraction expansion coincide with the
continued fraction expansion of x up to order n.

9.4.3 Linear endomorphisms of the torus

Given a real number x > 0, we denote log+ x = max{logx,0}. In this section
we prove the following result:

Proposition 9.4.3. Let fA : Td → Td be the endomorphism induced on the
torus Td by some invertible matrix A with integer coefficients. Let μ be the
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Haar measure of Td. Then

hμ(fA)=
d∑

i=1

log+ |λi|,

where λ1, . . . ,λd are the eigenvalues of A, counted with multiplicity.

Initially, let us suppose that the matrix A is diagonalizable. Let v1, . . . ,vd be
a normed basis of Rd such that Avi = λivi for each i. Let u be the number of
eigenvalues of A with absolute value strictly larger than 1. We may take the
eigenvalues to be numbered in such a way that |λi| > 1 if and only if i ≤ u.
Given x ∈ Td, every point y in a neighborhood of x may be written in the form

y= x+
d∑

i=1

tivi

with t1, . . . , td close to zero. Given ε > 0, denote by D(x,ε) the set of points y of
this form with |ti|<ε for every i= 1, . . . ,d. Moreover, for each n≥ 1, consider

D(x,n,ε)= {y ∈ Td : f j
A(y) ∈D(f j

A(x),ε) for every j= 0, . . . ,n− 1}.
Observe that f j

A(y)= f j
A(x)+

∑d
i=1 tiλ

j
ivi for every n≥ 1. Therefore,

D(x,n,ε)=
{

x+
d∑

i=1

tivi : |λn
i ti|< ε for i≤ u and |ti|< ε for i> u

}
.

Hence, there exists a constant C1 > 1 that depends only on A, such that

C−1
1 ε

d
u∏

i=1

|λi|−n ≤μ(D(x,n,ε))≤ C1ε
d

u∏
i=1

|λi|−n

for every x ∈ Td, n ≥ 1 and ε > 0. It is also clear that there exists a constant
C2 > 1 that depends only on A, such that

B(x,C−1
2 ε)⊂D(x,ε)⊂ B(x,C2ε)

for x ∈ Td and ε > 0 small. Then, B(x,n,C−1
2 ε) ⊂ D(x,n,ε) ⊂ B(x,n,C2ε) for

every n ≥ 1. Combining these two observations and taking C = C1Cd
2 , we get

that

C−1εd
u∏

i=1

|λ−n
i | ≤μ(B(x,n,ε))≤ Cεd

u∏
i=1

|λ−n
i |

for every x ∈ Td, n≥ 1 and ε > 0. Then,

h+μ(f ,ε,x)= h−μ(f ,ε,x)= lim
n

1

n
logμ

(
B(x,n,ε)

)= u∑
i=1

log |λi|

for x ∈ T and ε > 0 small. Hence, using the theorem of Brin–Katok
(Theorem 9.3.3),

hμ(f )= hμ(f ,x)=
u∑

i=1

log |λi|
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272 Entropy

for μ-almost every point x. This proves Proposition 9.4.3 in the diagonalizable
case.

The general case may be treated analogously, through writing the matrix A
in canonical Jordan form. We leave this task to the reader (Exercise 9.4.2).

9.4.4 Differentiable maps

Here we take M to be a Riemannian manifold (check Appendix A.4.5) and
f : M → M to be a local diffeomorphism, that is, a C1 map whose derivative
Df (x) : TxM→ Tf (x)M at each point x is an isomorphism. We are going to state
and discuss two important theorems, the Margulis–Ruelle inequality and the
Pesin entropy formula, that relate the entropy hμ(f ) of an invariant measure to
the Lyapunov exponents of the derivative Df .

Let μ be any probability measure invariant under f . According to the
multiplicative ergodic theorem of Oseledets (see Section 3.3.5), for μ-almost
every point x ∈M there exist k(x)≥ 1, real numbers λ1(x) > · · ·> λk(x) and a
filtration Rd = V1

x > · · ·> Vk(x)
x > Vk(x)+1

x = {0} such that

Df (x)Vi
x = Vi

f (x) and lim
n

1

n
log‖Df n(x)v‖ = λi(x)

for every v ∈ Vi
x \ Vi+1

x , every i ∈ {1, . . . ,k(x)} and μ-almost every x ∈ M.
Moreover, all these objects depend measurably on the point x ∈M. When the
measure μ is ergodic, the number k(x), the Lyapunov exponents λi(x) and their
multiplicities mi(x)= dimVi

x− dimVi+1
x are all constant on a full measure set.

Define ρ+(x) to be the sum of all positive Lyapunov exponents, counted
with multiplicity:

ρ+(x)=
k(x)∑
i=1

mi(x)λ
+
i (x) with λ+i (x)=max{λi(x),0}.

The Margulis–Ruelle inequality asserts that the average of ρ+ is always an
upper bound for the entropy of (f ,μ). Proofs can be found in Ruelle [Rue78]
and Mañé [Mañ87, Section 4.12].

Theorem 9.4.4 (Margulis–Ruelle inequality).

hμ(f )≤
∫
ρ+ dμ.

It may happen that all the Lyapunov exponents are positive: that is the
case, for instance, for the expanding differentiable maps in Section 11.1. Then,
ρ+(x) is simply the sum of all Lyapunov exponents, counted with multiplicity.
Now, it is also part of the theorem of Oseledets (property (c1) in Section 3.3.5)
that

k(x)∑
i=1

mi(x)λi(x)= lim
n

1

n
log |detDf n(x)|
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at μ-almost every point. Observe that the right-hand side of this identity is a
Birkhoff time average:

lim
n

1

n
log |detDf n(x)| = lim

n

1

n

n−1∑
j=0

log |detDf |(f j(x)).

So, by the Birkhoff ergodic theorem, the integral of ρ+ coincides with the
integral of the function log |detDf |. Thus, in this case the Margulis–Ruelle
inequality becomes:

hμ(f )≤
∫

log |detDf |dμ.

Another interesting particular case is when f is a diffeomorphism. It follows
from the version of the Oseledets theorem for invertible maps (also stated in
Section 3.3.5) that the Lyapunov exponents of Df−1 are the numbers −λi(x),
with multiplicities mi(x). Then, applying Theorem 9.4.4 to the inverse and
recalling (Proposition 9.1.14) that hμ(f )= hμ(f−1), we get that

hμ(f )≤
∫
ρ− dμ, (9.4.4)

where ρ−(x)=∑k(x)
i=1 mi(x)max{−λi(x),0}.

Now let us suppose that the invariant measure μ is absolutely continuous
with respect to the volume measure associated with the Riemannian structure
of M (check Appendix A.4.5). In this case, assuming just a little bit more
regularity, we have a much stronger result:

Theorem 9.4.5 (Pesin entropy formula). Assume that the derivative Df is
Hölder and the invariant measure μ is absolutely continuous. Then

hμ(f )=
∫
ρ+ dμ.

This fundamental result was originally proven by Pesin [Pes77]. See also
Mañé [Mañ87, Section 4.13] for an alternative proof.

The expression for the entropy of the Haar measure of a linear torus
endomorphism, given in Proposition 9.4.3, is a special case of Theorem 9.4.5.
Indeed, one can check that the Lyapunov exponents of a linear endomorphism
fA at every point coincide with the logarithms log |λi| of the absolute values
of the eigenvalues of the matrix A, with the same multiplicities. Thus, in this
context

ρ+(x)≡
d∑

i=1

log+ |λi|.

Of course, the Haar measure is absolutely continuous. Another special
case of the Pesin entropy formula will appear in Section 12.1.8: see
(12.1.31)–(12.1.36).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.010
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.010
https://www.cambridge.org/core


274 Entropy

Finally, let us point out that the assumption of absolute continuity is
too strong: the conclusion of Theorem 9.4.5 still holds if the invariant
measure is just “absolutely continuous along unstable manifolds”. Roughly
speaking, this technical condition means that the conditional probabilities
of μ with respect to a certain measurable partition, whose elements are
unstable disks,3 are absolutely continuous with respect to the volume measures
induced on each of the disks by the Riemannian metric of M. Moreover,
and most striking, this sufficient condition is also necessary for the Pesin
entropy formula to hold. For precise statements, related results and proofs,
see [LS82, Led84, LY85a, LY85b].

9.4.5 Exercises

9.4.1. Show that every rotation Rθ : Td → Td has entropy zero with respect to the Haar
measure of the torus Td. [Observation: This is a special case of Example 9.3.4
but for the present statement we do not need the theorem of Brin–Katok.]

9.4.2. Complete the proof of Proposition 9.4.3.
9.4.3. Let f : M →M be a measurable transformation and μ be an ergodic probability

measure. Let B ⊂ M be a measurable set with μ(B) > 0, g : B → B be the
first-return map of f to B and ν be the normalized restriction of μ to the set B
(recall Section 1.4.1). Show that hμ(f )= ν(B)hν(g).

9.4.4. Let f : M → M be a measure-preserving transformation in a Lebesgue space
(M,μ). Let f̂ : M̂ → M̂ be the natural extension of f and μ̂ be the lift of μ
(Exercise 8.5.7). Show that hμ(f )= hμ̂(f̂ ).

9.4.5. Prove that if f is the time-1 of a smooth flow on a surface M then hμ(f )= 0 for
every invariant ergodic measure μ. [Observation: Using Theorem 9.6.2 below, it
follows that the entropy is zero for every invariant measure.]

9.5 Entropy and equivalence

The notion of entropy was originally introduced in ergodic theory as a means
to distinguish systems that are not ergodically equivalent, especially in the case
of systems that are spectrally equivalent and, thus, cannot be distinguished by
spectral invariants. It is easy to see that the entropy is, indeed, an invariant of
ergodic equivalence:

Proposition 9.5.1. Let f : M → M and g : N → N be transformations
preserving probability measures μ in M and ν in N, respectively. If (f ,μ) is
ergodically equivalent to (g,ν), then hμ(f )= hν(g).

3 Unstable disks are differentiably embedded disks that are contracted exponentially under
negative iteration; in the non-invertible case, the definition is formulated in terms of the natural
extension of the transformation.
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9.5 Entropy and equivalence 275

Proof. Let φ : M → N be an ergodic equivalence between the two systems.
This means that φ∗μ= ν and there exist full measure subsets X⊂M and Y ⊂N
such that φ is a measurable bijection from X to Y , with measurable inverse.
Moreover, as observed in Section 8.1, the sets X and Y may be chosen to be
invariant. Given any partition P of M with finite entropy for μ, let PX be its
restriction to X and QY = φ(PX) be the image of PX under φ. Then Q =
QY ∪{Yc} is a partition of N and, since X and Y are full measure subsets,

Hν(Q)=
∑

Q∈QY

−ν(Q) logν(Q)=
∑

P∈PX

−μ(P) logμ(P)=Hμ(P).

Since X and Y are both invariant, Pn
X is the restriction of Pn to the subset X and

Qn =Qn
Y ∪{Yc} for every n. Moreover,

Qn
Y =

n−1∨
j=0

g−j(QY)= φ
( n−1∨

j=0

f−j(PX)
)
= φ(Pn

X)

for every n. Thus, the previous argument proves that Hν(Qn) = Hμ(Pn) for
every n and so

hν(g,Q)= lim
n

1

n
Hν(Qn)= lim

n

1

n
Hμ(Pn)= hμ(f ,P).

Taking the supremum over P , we conclude that hν(g) ≥ hμ(f ). The converse
inequality is entirely analogous.

Using this observation, Kolmogorov and Sinai concluded that not all
two-sided Bernoulli shifts are ergodically equivalent despite their being
spectrally equivalent, as we saw in Corollary 8.4.12. This also shows that
spectral equivalence is strictly weaker than ergodic equivalence. In fact, as
observed in Exercise 9.2.2, for every s > 0 there exists some two-sided
Bernoulli shift (σ ,μ) such that hμ(σ ) = s. Therefore, a sole class of spectral
equivalence may contain a whole continuum of ergodic equivalence classes.

9.5.1 Bernoulli automorphisms

The converse to Proposition 9.5.1 is false, in general. Indeed, we saw
in Example 9.2.9 (and Corollary 9.2.7) that all the circle rotations have
entropy zero. But an irrational rotation is never ergodically equivalent to a
rational rotation, since the former is ergodic and the latter is not. Besides,
Corollary 8.3.6 shows that irrational rotations are also not ergodically
equivalent to each other, in general. The case of rational rotations is treated
in Exercise 8.3.3.

However, a remarkable result due to Donald Ornstein [Orn70] states that the
entropy is a complete invariant for two-sided Bernoulli shifts:

Theorem 9.5.2 (Ornstein). Two-sided Bernoulli shifts in Lebesgue spaces are
ergodically equivalent if and only if they have the same entropy.
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We call Bernoulli automorphism any system that is ergodically equivalent
to a two-sided Bernoulli shift. In the sequel we find several examples of
such systems. The theorem of Ornstein may be reformulated as follows: two
Bernoulli automorphisms in Lebesgue spaces are ergodically equivalent if and
only if they have the same entropy.

Let us point out that the theorem of Ornstein does not extend to one-sided
Bernoulli shifts. Indeed, Exercise 8.1.2 shows that in the non-invertible case
there are other invariants of ergodic equivalence, including the degree of the
transformation (the number of pre-images).

William Parry and Peter Walters [PW72b, PW72a, Wal73] proved, among
other results, that one-sided Bernoulli shifts corresponding to probability
vectors p = (p1, . . . ,pk) and q = (q1, . . . ,ql) are ergodically equivalent if and
only if k= l and the vector p is a permutation of the vector q. In Exercise 9.7.7,
after introducing the notion of the Jacobian, we invite the reader to prove this
fact.

9.5.2 Systems with entropy zero

In this section we study some properties of systems whose entropy is equal to
zero. The main result (Proposition 9.5.5) is that such systems are invertible at
almost every point, if the ambient space is a Lebesgue space. It is worthwhile
comparing this statement with Corollary 9.2.7. At the end of the section we
briefly discuss the spectral types of systems with entropy zero.

In what follows, (M,B,μ) is a probability space and f : M → M is a
measure-preserving transformation. In the second half of the section we take
(MB,μ) to be a Lebesgue space.

Lemma 9.5.3. For every ε > 0 there exists δ > 0 such that if P and Q are
partitions with finite entropy and Hμ(P/Q) < δ then for every P ∈ P there
exists a union P′ of elements of Q satisfying μ(P
P′) < ε.

Proof. Let s= 1− ε/2 and δ =−(ε/2) logs. For each P ∈P consider

S = {Q ∈Q :μ
(
P∩Q

)≥ sμ(Q)}.
Let P′ be the union of all the elements of S . On the one hand,

μ(P′ \P)=
∑
Q∈S

μ(Q \P)≤
∑
Q∈S
(1− s)μ(Q)≤ ε

2
. (9.5.1)

On the other hand,

Hμ(P/Q)=
∑
R∈P

∑
Q∈Q

−μ(R∩Q
)

log
μ(R∩Q)

μ(Q)

≥
∑
Q/∈S

−μ(P∩Q
)

logs=−μ(P \P′) logs.
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This implies that

μ(P \P′)≤ Hμ(P/Q)
− logs

<
δ

− logs
= ε

2
. (9.5.2)

Putting (9.5.1) and (9.5.2) together, we get the conclusion of the lemma.

The next lemma means that the rate hμ(f ,P) of information (relative to the
partition P) generated by the system at each iteration is zero if and only if the
future determines the present, in the sense that information relative to the 0-th
iterate may be deduced from the ensemble of information relative to the future
iterates.

Lemma 9.5.4. Let P be a partition with finite entropy. Then, hμ(f ,P) = 0 if
and only if P ≺∨∞

j=1 f−j(P).
Proof. Suppose that hμ(f ,P) is zero. Using Lemma 9.1.12, we obtain that
Hμ(P/

∨n
j=1 f−j(P)) converges to zero when n→∞. Then, by Lemma 9.5.3,

for each l≥ 1 and each P ∈ P there exist nl ≥ 1 and a union Pl of elements of
the partition

∨nl
j=1 f−j(P) such that μ(P
Pl) < 2−l. It is clear that every Pl is a

union of elements of
∨∞

j=1 f−j(P) and, thus, the same is true for every
⋃∞

l=n Pl

and also for P∗ =⋂∞
n=1

⋃∞
l=n Pl. Moreover,

μ
(

P \
∞⋃

l=n

Pl

)
= 0 and μ

( ∞⋃
l=n

Pl \P
)
≤ 2−n

for every n and, consequently, μ(P
P∗)= 0. This shows that every element of
P coincides, up to measure zero, with a union of elements of

∨∞
j=1 f−j(P), as

claimed in the “only if” half of the statement.
The argument to prove the converse is similar to the one in Proposition 9.2.2.

Suppose that P ≺∨∞
j=1 f−j(P). Write P ={Pj : j= 1,2, . . . } and, for each k≥ 1,

consider the finite partition Pk = {P1, . . . ,Pk,M \⋃k
j=1 Pj}. Given any ε > 0,

Lemma 9.2.3 ensures that Hμ(P/Pk) < ε/2 for every k sufficiently large. Fix
k in these conditions and write P0 = M \⋃k

j=1 Pj. For each n ≥ 1 and each
j = 1, . . . ,k, let Qn

i be the union of the elements of
∨n

j=1 f−j(P) that intersect
Pi. The hypothesis ensures that each (Qn

i )n is a decreasing sequence whose
intersection coincides with Pi up to measure zero. Then, given δ > 0 there
exists n0 such that

k∑
i=1

μ(Qn
i \Pi) < δ for every n≥ n0. (9.5.3)

Define Rn
i =Qn

i \
⋃i−1

j=1 Qn
j for i= 1, . . . ,k and also Rn

0 =M \⋃k
j=1 Qn

j . It is clear
from the construction that Rn= {Rn

1, . . . ,Rn
k ,Rn

0} is a partition of M coarser than∨n
j=1 f−j(P). Since Rn

i ⊂ Qn
i and Pi ⊂ Qn

i , and the elements of P are pairwise
disjoint,

Rn
i \Pi ⊂Qn

i \Pi and Pi \Rn
i = Pi ∩

( i−1⋃
j=1

Qn
j

)⊂ i−1⋃
j=1

(
Qn

j \Pj
)
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278 Entropy

for i= 1, . . . ,k. Similarly, Rn
0⊂P0 and P0 \Rn

0=P0∩⋃k
j=1 Qn

i =
⋃k

j=1(Q
n
j \Pj).

Therefore, the relation (9.5.3) implies that

μ(Pi
Rn
i ) < δ for every i= 0,1, . . . ,k and every n≥ n0.

Then, assuming that δ > 0 is small, it follows from Lemmas 9.1.5 and 9.1.6
that

Hμ

(
Pk/

n∨
j=1

f−j(P)
)
≤Hμ(Pk/Rn) < ε/2

for every n ≥ n0. Using Exercise 9.1.1, we get that Hμ
(
P/
∨n

j=1 f−j(P)
)
< ε

for every n ≥ n0. In this way, it is shown that Hμ
(
P/
∨n

j=1 f−j(P)
)→ 0. By

Lemma 9.1.12, it follows that hμ(f ,P)= 0.

As a consequence, we get that every system with entropy zero is invertible
at almost every point:

Proposition 9.5.5. Let (M,B,μ) be a Lebesgue space and f : M → M be a
measure-preserving transformation. If hμ(f )= 0 then (f ,μ) is invertible: there
exists a measurable transformation g : M →M that preserves the measure μ
and satisfies f ◦ g= g ◦ f = id at μ-almost every point.

Proof. Consider the homomorphism f̃ : B̃→ B̃ induced by f in the measure
algebra of B (these notions were introduced in Section 8.5). Recall that f̃ is
always injective (Exercise 8.5.2). Given any B ∈ B, consider the partition P =
{B,Bc}. The hypothesis hμ(f )= 0 implies that hμ(f ,P)= 0. By Lemma 9.5.4,
it follows that P ≺ ∨∞

j=1 f−j(P). This implies that P ⊂ f−1(B), because
f−j(P)⊂ f−1(B) for every j≥ 1. Varying B, we conclude that B ⊂ f−1(B). In
other words, the homomorphism f̃ is surjective. Hence, f̃ is an isomorphism
of measure algebras. Then, by Proposition 8.5.6, there exists a measurable
map g : M → M preserving the measure μ and such that the corresponding
homomorphism of measure algebra g̃ : B̃ → B̃ is the inverse of f̃ . In other
words, f̃ ◦ g̃= g̃ ◦ f̃ = id . Then, (Exercise 8.5.2) f ◦ g= g ◦ f = id , as claimed.

These arguments also prove the following fact, which will be useful in a
while:

Corollary 9.5.6. In the conditions of Proposition 9.5.5, every σ -algebra A⊂
B that satisfies f−1(A) ⊂A up to measure zero also satisfies f−1(A) =A up
to measure zero.

Exercise 9.1.5 implies that if (f ,μ) has entropy zero then the same is true
for any factor. Therefore, the following fact is also an immediate consequence
of the proposition:

Corollary 9.5.7. In the conditions of Proposition 9.5.5, every factor of (f ,μ)
is invertible at almost every point.
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9.5 Entropy and equivalence 279

It is not completely understood how entropy relates to the spectrum type of a
system, but there are several partial results, especially for systems with entropy
zero.

Rokhlin [Rok67a, § 14] proved that every ergodic system with discrete
spectrum defined in a Lebesgue space has entropy zero. This may also be
deduced from the fact that, as we mentioned in Section 8.3, every ergodic
system with discrete spectrum is ergodically isomorphic to a translation
in a compact abelian group. As we saw in Corollary 8.5.7, in Lebesgue
spaces ergodic isomorphism implies ergodic equivalence. Recall also that
systems with discrete spectrum in Lebesgue spaces are always invertible
(Exercise 8.5.5).

In that same work of Rokhlin it is shown that invertible systems with
singular spectrum defined in Lebesgue spaces have entropy zero and the same
holds for systems with Lebesgue spectrum of finite rank (if they exist). The
case of infinite rank is the focus of the next section. We are going to see that
there are systems with Lebesgue spectrum of infinite rank and entropy zero.
On the other hand, we introduce the important class of so-called Kolmogorov
systems, for which the entropy is necessarily positive, in a strong sense.

9.5.3 Kolmogorov systems

Let (M,B,μ) be a non-trivial probability space, that is, one such that not all
measurable sets have measure 0 or 1. We use

∨
α Uα to denote the σ -algebra

generated by any family of subsets Uα of B. Let f : M→M be a transformation
preserving the measure μ.

Definition 9.5.8. We say that (f ,μ) is a Kolmogorov system if there exists
some σ -algebra A⊂ B such that

(i) f−1(A)⊂A up to measure zero;
(ii)

⋂∞
n=0 f−n(A)= {∅,M} up to measure zero;

(iii)
∨∞

n=0{B ∈ B : f−n(B) ∈A} = B up to measure zero.

We leave it to the reader to check that this property is an invariant of ergodic
equivalence (it is not an invariant of spectral equivalence, as will be explained
shortly).

If (f ,μ) is a Kolmogorov system then (f k,μ) is a Kolmogorov system, for
every k ≥ 1. Indeed, if A satisfies condition (i) then the sequence f−j(A) is
non-increasing and, in particular, f−k(A) ⊂ A. Then, the conditions (ii) and
(iii) imply that

∞⋂
n=0

f−kn(A)=
∞⋂

n=0

f−n(A)= {∅,M} and
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∞∨
n=0

{B ∈ B : f−kn(B) ∈A} =
∞∨

n=0

{B ∈ B : f−n(B) ∈A} = B

up to measure zero. We say that (f ,μ) is a Kolmogorov automorphism if it
is invertible and a Kolmogorov system. Then the inverse (f−1,μ) is also a
Kolmogorov system, as we will see.

Proposition 9.5.9. Every Kolmogorov system has Lebesgue spectrum of
infinite rank. If the σ -algebra B is countably generated then the rank is
countable.

Proof. Let A⊂ B be a σ -algebra satisfying the conditions in Definition 9.5.8.
Let E = L2

0(M,A,μ) be the subspace of functions ϕ ∈ L2
0(M,B,μ) that are

A-measurable, that is, such that the pre-image ϕ−1(B) of every measurable set
B⊂R is in A up to measure zero. We are going to show that E satisfies all the
conditions in Definition 8.4.1.

Start by observing that Uf (L2
0(M,A,μ)) = L2

0(M, f−1(A),μ). Indeed, it is
clear that if ϕ is A-measurable then Ufϕ = ϕ ◦ f is f−1(A)-measurable. The
inclusion ⊂ follows immediately. Conversely, given any B ∈ f−1(A), take A ∈
A such that B= f−1(A) and let c= μ(A)= μ(B). Then, XB− c=Uf (XA− c)
is in Uf (L2

0(M,A,μ)). This gives the other inclusion. So, the hypothesis that
f−1(A)⊂A up to measure zero ensures that Uf (E)⊂ E.

It also follows that Un
f (L

2
0(M,A,μ)) = L2

0(M, f−n(A),μ) for every n ≥ 0.
Then,

∞⋂
n=0

Un
f

(
L2

0(M,A,μ)
)= L2

0

(
M,

∞⋂
n=0

f−n(A),μ
)

.

Hence, the hypothesis that
⋂∞

n=0 f−n(A) = {0,M} up to measure zero implies
that

⋂∞
n=0 Un

f (E)= {0}.
Now consider An = {B ∈ B : f−n(B) ∈ A)}. The sequence (An)n is

non-decreasing, because f−1(A) ⊂ A. Moreover, each ϕ is An-measurable if
and only if Un

f ϕ=ϕ◦ f n is A-measurable. This shows that U−n
f (L

2
0(M,A,μ))=

L2
0(M,An,μ) for every n≥ 0. Observe also that

∞∑
n=0

L2
0

(
M,An,μ

)= L2
0

(
M,

∞∨
n=0

An,μ
)

. (9.5.4)

Indeed, it is clear that L2
0(M,Ak,μ)⊂ L2

0(M,
∨∞

n=0An,μ) for every k, since Ak

is contained in
∨∞

n=0An. The inclusion ⊂ in (9.5.4) is an immediate conse-
quence of this observation, since L2

0(M,
∨∞

n=0An,μ) is a Banach space. Now
consider any A ∈ ∨∞

n=0An. The approximation theorem (Theorem A.1.19)
implies that for each ε > 0 there exist n and An ∈An such that μ(A
An) < ε.
Then (XAn)n converges to XA in the L2-norm, and so XA ∈∑∞

n=0 L2
0(M,An,μ).
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9.5 Entropy and equivalence 281

This proves the inclusion ⊃ in (9.5.4). In this way, we have shown that
∞∑

n=0

U−n
f (L

2
0(M,A,μ))= L2

0

(
M,

∞∨
n=0

An,μ
)

.

Therefore, the hypothesis that
∨∞

n=0An = B up to measure zero implies that∑∞
n=0 U−n

f (E)= L2
0(M,B,μ).

This concludes the proof that (f ,μ) has Lebesgue spectrum. To prove that
the rank is infinite, we need the following lemma:

Lemma 9.5.10. Let A be any σ -algebra satisfying the conditions in Defini-
tion 9.5.8. Then for every A ∈ A with μ(A) > 0 there exists B ⊂ A such that
0<μ(B) < μ(A).

Proof. Suppose that A has any element A with positive measure that does not
satisfy the conclusion of the lemma. We claim that A ∩ f−k(A) has measure
zero for every k≥ 1. Then,

μ
(

f−i(A)∩ f−j(A)
)
=μ

(
A∩ f−j+i(A)

)
= 0 for every 0≤ i< j.

Since μ(f−j(A)) = μ(A) for every j ≥ 0, this implies that the measure μ is
infinite, which is a contradiction. This contradiction reduces the proof of the
lemma to proving our claim.

To do that, note that condition (i) implies that f−k(A) ∈ f−k(A)⊂A. Then it
follows from the choice of A that A∩ f−k(A) must have either zero measure or
full measure in A:

μ
(

A∩ f−k(A)
)
= 0 or else μ(A \ f−k(A))= 0.

So, to prove the claim it suffices to exclude the second possibility. Suppose
that μ(A \ f−k(A)) = 0. Then (Exercise 1.1.4), there exists B ∈ A such that
μ(A
B)= 0 and f−k(B)= B. It follows that B= f−nk(B) for every n≥ 1 and,
thus,

B ∈
⋂
n∈N

f−nk(A)=
⋂
n∈N

f−n(A).

By condition (ii), this means that the measure of B is either 0 or 1. Since
μ(B)=μ(A) is positive, it follows that μ(A)=μ(B)= 1. Then, the hypothesis
about A implies that the σ -algebra A contains only sets with measure 0 or 1.
By condition (iii), it follows that the same is true for the σ -algebra B, which
contradicts the assumption that the probability space is non-trivial.

On the way toward proving that the orthogonal complement F = E"Uf (E)
has infinite dimension, let us start by checking that F �= {0}. Indeed, otherwise
we would have Uf (E)= E and, thus, Un

f (E)= E for every n≥ 1. By condition
(ii), that would imply that E =⋂n Un

f (E) = {0}. Then, by condition (iii), we
would have L2

0(M,B,μ)= {0} and that would contradict the hypothesis that the
probability space is non-trivial.
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282 Entropy

Let ϕ be any non-zero element of F, fixed once and for all, and let N be the
set of all x∈M such that ϕ(x) �= 0. Then, N ∈A and μ(N) > 0. It is convenient
to consider the space E′ = L2(M,A,μ) = E ⊕ {constants}. Observe that F
coincides with E′ "Uf (E′), because the Koopman operator preserves the line
of constant functions. Let E′N be the subspace of functions ψ ∈ E′ that vanish
outside N, that is, such that ψ(x) = 0 for every x ∈ Nc. By Lemma 9.5.10,
we may find sets Aj ∈ A, j ≥ 1 with positive measure, contained in N and
pairwise disjoint. Then, XAj is in E′N for every j. Moreover, Ai ∩Aj = ∅ yields
XAi ·XAj = 0 for every i �= j. This implies that E′N has infinite dimension.

Now denote by Uf (E′)N the subspace of functions ψ ∈ Uf (E′) that vanish
outside N. Denote FN = E′N "Uf (E′)N . The fact that dimE′N =∞ ensures that
dimFN =∞ or dimUf (E′)N =∞ (or both). We are going to show that any of
these alternatives implies that dimF =∞.

To treat the first alternative, it suffices to show that FN ⊂ F. For that, since
it is clear that FN ⊂ E′, it suffices to check that FN is orthogonal to Uf (E′).
Consider any ξ ∈ FN and η ∈ E′. The function (Ufη)XN = Uf (ηXf−1(N)) is in
Uf (E′) and vanishes outside N. In other words, it is in Uf (E′)N . Then ξ ·Ufη=
ξ · (Ufη)XN = 0, because ξ vanishes outside N and is orthogonal to Uf (E′)N .
This completes the argument in this case.

Now we treat the second alternative. Given any Ufη ∈ Uf (E′)N and any
n∈N, let ηn= ηXRn with Rn= {x∈M : |η(x)| ≤ n}. Then (ηn)n is a sequence of
bounded functions converging to η in E′. Moreover, every ηn vanishes outside
f−1(N), because η does. Then, (Ufηn)n is a sequence of bounded functions
that vanish outside N and, recalling that Uf is an isometry, this sequence
converges to Ufη in E′. This proves that the subspace of bounded functions
is dense in Uf (E′)N . Then, since we are assuming that dimUf (E′)N =∞, this
subspace must also have infinite dimension. Choose {ξk : k ≥ 1} ⊂ E′ such
that {Uf ξk : k ≥ 1} is a linearly independent subset of Uf (E′)N consisting of
bounded functions. Observe that the products ϕ(Uf ξk), k ≥ 1 form a linearly
independent subset of E′. Moreover, given any η ∈ E′,

ϕ(Uf ξk) · (Ufη)=
∫
ϕ (ξk ◦ f )(η̄ ◦ f )dμ=

∫
ϕ (ξkη̄) ◦ f dμ= ϕ ·Uf (ξ̄kη).

This last expression is equal to zero because ξ̄kη ∈ E′ and the function ϕ ∈ F is
orthogonal to Uf (E′). Varying η ∈ E′, we conclude that ϕ(Uf ξk) is orthogonal
to Uf (E′) for every k. This shows that {ϕ(Uf ξk) : k ≥ 1} is contained in F and,
thus, dimF =∞ also in this case.

This completes the proof that (f ,μ) has infinite rank. When B is countably
generated, L2

0(M,B,μ) is separable (Example 8.4.7) and so the rank is
necessarily countable.

We say that a partition of (M,B,μ) is trivial if all its elements have measure
0 or 1. Keep in mind that in the present chapter all partitions are assumed to be
countable.
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9.5 Entropy and equivalence 283

Proposition 9.5.11. A system (f ,μ) in a Lebesgue space is a Kolmogorov
system if and only if hμ(f ,P) > 0 for every non-trivial partition with finite
entropy. In particular, every Kolmogorov system has positive entropy.

This result is due to Pinsker [Pin60] and to Rokhlin and Sinai [RS61]. The
proof may also be found in Rokhlin [Rok67a, §13]. Let us point out, however,
that the last part of the statement is an immediate consequence of the ideas in
Section 9.5.2. Indeed, suppose that (f ,μ) is a Kolmogorov system with zero
entropy. By Corollary 9.5.6, any σ -algebra A that satisfies condition (i) in
Definition 9.5.8 also satisfies f−1(A)=A up to measure zero. Then, condition
(ii) implies that A is trivial and, by condition (iii), the σ -algebra B itself is
trivial (contradicting the assumption we made at the beginning of this section).

It follows from Proposition 9.5.11 and the relation (9.1.21) that the
inverse of a Kolmogorov automorphism is also a Kolmogorov automorphism.
Unlike what happens for Bernoulli automorphisms (Exercise 9.5.1), in the
Kolmogorov case the two systems (f ,μ) and (f−1,μ) need not be ergodically
equivalent.

Example 9.5.12. The first example of an invertible system with countable
Lebesgue spectrum that is not a Kolmogorov system was found by Girsanov
in 1959, but was never published. Another example, a factor of a certain
Gaussian shift (recall Example 8.4.13) with countable Lebesgue spectrum
but whose entropy vanishes, was exhibited a few years later by Newton
and Parry [NP66]. Also, Gurevič [Gur61] proved that the horocyclic flow
on surfaces with constant negative curvature has entropy zero; sometime
before, Parasyuk [Par53] had shown that such flows have countable Lebesgue
spectrum.

As we saw in Theorem 8.4.11, all systems with countable Lebesgue
spectrum are spectrally equivalent. Therefore, the fact that systems as in
Example 9.5.12 do exist has the interesting consequence that being a
Kolmogorov system is not an invariant of spectral equivalence.

Example 9.5.13. We saw in Examples 8.4.2 and 8.4.3 that all the Bernoulli
shifts have Lebesgue spectrum. In both cases, one-sided and two-sided, we
exhibited subspaces of L2

0(M,B,μ) of the form E = L2
0(M,A,μ) for some

σ -algebra A ⊂ B. Therefore, the same argument proves that every Bernoulli
shift is a Kolmogorov system. In particular, every Bernoulli automorphism is
a Kolmogorov automorphism.

There exist Kolmogorov automorphisms that are not Bernoulli automor-
phisms. The first example, found by Ornstein, is quite elaborate. The following
simple construction is due to Kalikow [Kal82]:

Example 9.5.14. Let σ : �→ � be the shift map in � = {1,2}Z and μ be
the Bernoulli measure associated with the probability vector p = (1/2,1/2).
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284 Entropy

Consider the map f :�×�→�×� defined as follows:

f
(
(xn)n,(yn)n

)= (σ((xn)n),σ
±1((yn)n)

)
where the sign is− if x0= 1 and is+ if x0= 2. This map preserves the product
measure μ×μ. Kalikow showed that (f ,μ) is a Kolmogorov automorphism
but not a Bernoulli automorphism.

Consider any Kolmogorov automorphism that is not a Bernoulli au-
tomorphism and let s > 0 be its entropy. Consider any Bernoulli au-
tomorphism whose entropy is equal to s (see Exercise 9.2.2). The two
systems have the same entropy but they cannot be ergodically equiv-
alent, since being a Bernoulli automorphism is an invariant of ergodic
equivalence. Therefore, the entropy is not a complete invariant of ergodic
equivalence for Kolmogorov automorphisms. Actually (see Ornstein and
Shields [OS73]), there exists a non-countable family of Kolmogorov au-
tomorphisms that have the same entropy and, yet, are not ergodically
equivalent.

The properties of Bernoulli automorphisms described in Exercise 9.5.1 do
not extend to the Kolmogorov case: there exist Kolmogorov automorphisms
that are not ergodically equivalent to their inverses (see Ornstein and
Shields [OS73]), and there are also Kolmogorov automorphisms that admit
no k-th root for any value of k≥ 1 (Clark [Cla72]).

Closing this section, let us discuss the Kolmogorov property for two specific
classes of systems: Markov shifts and automorphisms of compact groups.

Concerning the first class, Friedman and Ornstein [FO70] proved that
every two-sided mixing Markov shift is a Bernoulli automorphism. Recall
(Theorem 7.2.11) that a Markov shift is mixing if and only if the corresponding
stochastic matrix is aperiodic. It follows from the theorem of Friedman and
Ornstein that the entropy is still a complete invariant of ergodic equivalence
in the context of two-sided mixing Markov shifts. Another interesting
consequence is that every two-sided mixing Markov shift is a Kolmogorov
automorphism. Observe, however, that this consequence admits a relatively
easy direct proof (see Exercise 9.5.4).

As for the second class, every ergodic automorphism of a compact group
is a Kolmogorov automorphism. This was proven by Rokhlin [Rok67b] for
abelian groups and by Yuzvinskii [Yuz68] in the general case. In fact, ergodic
automorphisms of metrizable compact groups are Bernoulli automorphisms
(Lind [Lin77], Miles and Thomas [MT78]). In particular, every ergodic
linear automorphism of the torus Td is a Bernoulli automorphism; this had
been proved by Katznelson [Kat71]. Recall (Theorem 4.2.14) that a linear
automorphism fA is ergodic if and only if no eigenvalue of the matrix A is a
root of unity.
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9.5 Entropy and equivalence 285

9.5.4 Exact systems

We say that a Kolmogorov system is exact if one may take the σ -algebra A in
Definition 9.5.8 to be the σ -algebra B of all measurable sets. Note that in this
case the conditions (i) and (iii) are automatically satisfied. Therefore, a system
(f ,μ) is exact if and only if the σ -algebra B is such that

⋂∞
n=0 f−n(B) is trivial,

meaning that it only contains sets with measure 0 or 1. Equivalently, (f ,μ) is
exact if and only if

∞⋂
n=0

Un
f

(
L2

0(M,B,μ)
)= {0}.

This observation also implies that, unlike the Kolmogorov property, exactness
is an invariant of spectral equivalence.

We saw in Example 8.4.2 that every one-sided Bernoulli shift has Lebesgue
spectrum. In order to do that, we considered the subspace E = L2

0(M,B,μ).
Therefore, the same argument proves that every one-sided Bernoulli shift is an
exact system. A much larger class of examples, expanding maps endowed with
their equilibrium states, is studied in Chapter 12.

It is immediate that invertible systems are never exact: in the invertible case
f−n(B)= B up to measure zero, for every n; therefore, the exactness condition
corresponds to saying that the σ -algebra B is trivial (which is excluded, by
hypothesis).

Figure 9.2 summarizes the relations between the different classes of systems
studied in this book. It is organized in three columns: systems with zero entropy
(which are necessarily invertible, as we saw in Proposition 9.5.5), invertible
systems with positive entropy and non-invertible systems.

B2

Bernoulliaut.

Kolmogorovsyst.

Lebesguespec.

mixingsyst.

ergodicsyst.

B1

exactsyst.

non-invertible

discretespec.discretespec.

h = 0 h > 0, invertible

RT

discretespec.

Figure 9.2. Relations between various of classes of systems (B1/B2 =
one-sided/two-sided Bernoulli shifts, RT = irrational rotations on tori)
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9.5.5 Exercises

9.5.1. Show that if (f ,μ) is a Bernoulli automorphism then it is ergodically equivalent
to its inverse (f−1,μ). Moreover, for every k ≥ 1 there exists a Bernoulli
automorphism (g,ν) that is a k-th root of (f ,μ), that is, such that (gk,ν)
is ergodically equivalent to (f ,μ). [Observation: Ornstein [Orn74] proved
that, conversely, every k-th root of a Bernoulli automorphism is a Bernoulli
automorphism.]

9.5.2. Use the notion of density point to show that the decimal expansion map f (x) =
10x−[10x] is exact, relative to the Lebesgue measure.

9.5.3. Show that the Gauss map is exact, relative to its absolutely continuous invariant
measure μ.

9.5.4. Show that the two-sided Markov shift associated with any aperiodic stochastic
matrix P is a Kolmogorov automorphism.

9.5.5. Show that the one-sided Markov shift associated with any aperiodic stochastic
matrix P is an exact system.

9.5.6. Prove that if (f ,μ) is exact then hμ(f ,P) > 0 for every non-trivial partition P
with finite entropy.

9.6 Entropy and ergodic decomposition

It is not difficult to show that the entropy hμ(f ) is always an affine function of
the invariant measure μ:

Proposition 9.6.1. Let μ and ν be probability measures invariant under a
transformation f : M→M. Then, htμ+(1−t)ν(f )= thμ(f )+(1− t)hν(f ) for every
0< t< 1.

Proof. Define φ(x) = −x logx for x > 0. On the one hand, since the function
φ is concave,

φ(tμ(B)+ (1− t)ν(B))≥ tφ(μ(B))+ (1− t)φ(ν(B))

for every measurable set B⊂M. On the other hand, given any measurable set
B⊂M,

φ
(
tμ(B)+ (1− t)ν(B)

)− tφ
(
μ(B)

)− (1− t)φ
(
ν(B)

)
=−tμ(B) log

tμ(B)+ (1− t)ν(B)

μ(B)
− (1− t)ν(B) log

tμ(B)+ (1− t)ν(B)

ν(B)

≤−tμ(B) log t− (1− t)ν(B) log(1− t)

because the function− log is decreasing. Therefore, given any partition P with
finite entropy,

Htμ+(1−t)ν(P)≥ tHμ(P)+ (1− t)Hν(P) and

Htμ+(1−t)ν(P)≤ tHμ(P)+ (1− t)Hν(P)− t log t− (1− t) log(1− t).
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9.6 Entropy and ergodic decomposition 287

Consequently,

htμ+(1−t)ν(f ,P)= thμ(f ,P)+ (1− t)hν(f ,P). (9.6.1)

It follows, immediately, that htμ+(1−t)ν(f ) ≤ thμ(f )+ (1− t)hν(f ). Moreover,
the relations (9.1.16) and (9.6.1) imply that

htμ+(1−t)ν

(
f ,P1∨P2

)
≥ thμ(f ,P1)+ (1− t)hν(f ,P2)

for any partitions P1 and P2. Taking the supremum on P1 and P2 we obtain
that htμ+(1−t)ν(f )≥ thμ(f )+ (1− t)hν(f ).

In particular, given any invariant set A⊂M, we have that

hμ(f )=μ(A)hμA(f )+μ(Ac)hμAc (f ), (9.6.2)

where μA and μAc denote the normalized restrictions of μ to the set A and
its complement, respectively (this fact was obtained before, in Exercise 9.1.4).
Another immediate consequence is the following version of Proposition 9.6.1
for finite convex combinations:

μ=
n∑

i=1

tiμi ⇒ hμ(f )=
n∑

i=1

tihμi(f ), (9.6.3)

for any invariant probability measures μ1, . . . ,μn and any positive numbers
t1, . . . , tn with

∑n
i=1 ti = 1.

A much deeper fact, due to Konrad Jacobs [Jac60, Jac63], is that the affinity
property extends to the ergodic decomposition given by Theorem 5.1.3:

Theorem 9.6.2 (Jacobs). Suppose that M is a complete separable metric
space. Given any invariant probability measure μ, let {μP : P ∈ P} be its
ergodic decomposition. Then, hμ(f ) =

∫
hμP(f )dμ̂(P) (if one side is infinite,

so is the other side).

We are going to deduce this result from a general theorem about affine
functionals in the space of probability measures, that we state in Section 9.6.1
and prove in Section 9.6.2.

9.6.1 Affine property

Let M be a complete separable metric space. We saw in Lemma 2.1.3 that the
weak∗ topology in the space of probability measures M1(M) is metrizable.
Moreover (Exercise 2.1.3), the metric space M1(M) is separable.

Let W be a probability measure on the Borel σ -algebra of M1(M). The
barycenter of W is the probability measure bar(W) ∈M1(M) given by∫

ψ d bar(W)=
∫ (∫

ψ dη

)
dW(η) (9.6.4)
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288 Entropy

for every bounded measurable function ψ : M→R. We leave it to the reader to
check that this relation determines bar(W) uniquely (Exercise 9.6.1) and that
the barycenter is an affine function of the measure (Exercise 9.6.2).

Example 9.6.3. If W is a Dirac measure, that is, if W = δν for some
ν ∈M1(M), then bar(W) = ν. Using Exercise 9.6.2, we get the following
generalization: if W =∑∞

i=1 tiδνi with ti ≥ 0 and
∑∞

i=1 ti = 1 and νi ∈M1(M)
for every i, then bar(W)=∑∞

i=1 tiνi.

Example 9.6.4. Let {μP : P∈P} be the ergodic decomposition of a probability
measure μ invariant under a measurable transformation f : M →M and μ̂ be
the associated quotient measure in P (recall Section 5.1.1). Let W =  ∗μ̂ be
the image of the quotient measure μ̂ under the map  : P →M that assigns
to each P ∈P the conditional probability μP. Then (Exercise 5.1.4),∫

ψdμ=
∫ (∫

ψ dμP

)
dμ̂(P)=

∫ (∫
ψ dη

)
dW(η)

for every bounded measurable function ψ : M → R. This means that μ is the
barycenter of W.

A set M ⊂M1(M) is said to be strongly convex if
∑∞

i=1 tiνi ∈M for any
νi ∈M and ti ≥ 0 with

∑∞
i=1 ti = 1.

Theorem 9.6.5. Let M be a strongly convex subset of M1(M) and H : M→
R be a non-negative affine functional. If H is upper semi-continuous then

H(bar(W))=
∫

H(η)dW(η)

for any probability measure W on M1(M) with W(M)= 1 and bar(W) ∈M.

Before proving this result, let us explain how Theorem 9.6.2 may be
obtained from it. The essential step is the following lemma:

Lemma 9.6.6. hμ(f ,Q)= ∫ hμP(f ,Q)dμ̂(P) for any finite partition Q of M.

Proof. Let M =M1(f ), the subspace of invariant probability measures, and
H : M → R be the functional defined by H(η) = hη(f ,Q). Let W be the
image of the quotient measure μ̂ by the map  : P → M that assigns to
each P ∈ P the conditional probability μP. It is clear that M is strongly
convex, W(M) = 1 and (recall Example 9.6.4) the barycenter bar(W) = μ
is in M. Proposition 9.6.1 shows that H is affine and it is clear that H is
non-negative. In order to apply Theorem 9.6.5, we also need to check that
H is upper semi-continuous.

Initially, suppose that f is the shift map in a space � = XN, where X is a
finite set, and Q is the partition of � into cylinders [0;a], a ∈ X. The point
with this partition is that its elements are both open and closed subsets of �.
In other words, ∂Q=∅ for every Q ∈Q. By Proposition 9.2.12, it follows that
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9.6 Entropy and ergodic decomposition 289

the map η �→ H(η)= hη(f ,Q) is upper semi-continuous at every point of M.
So, we may indeed apply Theorem 9.6.5 to the functional H. In this way we
get that

hμ(f ,Q)=H(μ)=H(bar(W))=
∫

H(η)dW(η)

=
∫

H(μP)dμ̂(P)=
∫

hμP(f ,Q)dμ̂(P).

Now we treat the general case of the lemma, by reduction to the previous
paragraph. Given any finite partition Q, let � =QN and

h : M→�, h(x)= (Q(f n(x))
)

n∈N.

Observe that h ◦ f = σ ◦ h, where σ : �→ � denotes the shift map. To each
measure η on M we may assign the measure η′ = h∗η on �. The previous
relation ensures that if η is invariant under f then η′ is invariant under σ .
Moreover, if η is ergodic for f then η′ is ergodic for σ . Indeed, if B′ ⊂ � is
invariant under σ then B = h−1(B′) is invariant under σ . Assuming that η is
ergodic, it follows that η′(B′)= η(B) is either 0 or 1; hence, η′ is ergodic.

By construction, Q= h−1(Q′), where Q′ denotes the partition of � into the
cylinders [0;Q], Q ∈ Q. More generally,

∨n−1
j=0 f−j(Q) = h−1(

∨n−1
j=0 σ

−j(Q′))
and, thus,

Hη

( n−1∨
j=0

f−j(Q)
)
=Hη′

( n−1∨
j=0

σ−j(Q′)
)

for every n ∈N. Dividing by n and taking the limit,

hη(f ,Q)= hη′(σ ,Q′) for every η ∈M. (9.6.5)

Denote μ′ = h∗μ and μ′P = h∗(μP) for each P. For every bounded measurable
function ψ :�→R,∫

ψ dμ′ =
∫
(ψ ◦ h)dμ=

∫ (∫
(ψ ◦ h)dμP

)
dμ̂(P)

=
∫ (∫

ψ dμ′P

)
dμ̂(P).

(9.6.6)

As the measures μ′P are ergodic, the relation (9.6.6) means that {μ′P : P ∈ P}
is an ergodic decomposition of μ′. Then, according to the previous paragraph,
hμ′(σ ,Q′)= ∫ hμ′P(σ ,Q′)dμ̂(P). By the relation (9.6.5) applied to η = μ and
to η=μP, this may be rewritten as

hμ(σ ,Q)=
∫

hμP(σ ,Q)dμ̂(P),

which is precisely what we wanted to prove.

Proceeding with the proof of Theorem 9.6.2, consider any increasing
sequence Q1 ≺ ·· · ≺ Qn ≺ ·· · of finite partitions of M such that diamQn(x)
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290 Entropy

converges to zero at every x ∈ M (such a sequence may be constructed, for
instance, from a family of balls centered at the points of a countable dense
subset, with radii converging to zero). By Lemma 9.6.6,

hμ(f ,Qn)=
∫

hμP(f ,Qn)dμ̂(P) (9.6.7)

for every n. According to (9.1.16), the sequence hη(f ,Qn) is non-decreasing,
for any invariant measure η. Moreover, by Corollary 9.2.5, its limit is equal to
hη(f ). Then, we may pass to the limit in (9.6.7) with the aid of the monotone
convergence theorem. In this way we get that

hμ(f )=
∫

hμP(f )dμ̂(P),

as we wanted to prove. Note that the argument remains valid even when either
of the two sides of this identity is infinite (then the other one is also infinite).

In this way, we reduced the proof of Theorem 9.6.2 to proving Theo-
rem 9.6.5.

9.6.2 Proof of the Jacobs theorem

Now we prove Theorem 9.6.5. Let us start by proving that the barycenter
function has the following continuity property: if W is concentrated in a
neighborhood V of a given measure ν then the barycenter of W is close to
ν. More precisely:

Lemma 9.6.7. Let W be a probability measure on M1(M) and ν ∈M1(M).
Given any finite set�= {φ1, . . . ,φN} of bounded continuous functions and any
ε > 0, let V =V(ν,�,ε) be as defined in (2.1.1). If W(V)= 1, then bar(W)∈V.

Proof. Consider any i = 1, . . . ,N. By the definition of barycenter and the
hypothesis that the complement of V has measure zero,∣∣∣∣∫ φi d bar(W)−

∫
φi dν

∣∣∣∣= ∣∣∣∣∫ (∫ φi dη

)
dW(η)−

∫ (∫
φi dν

)
dW(η)

∣∣∣∣
≤
∫

V

∣∣∣∣(∫ φi dη−
∫
φi dν

)∣∣∣∣dW(η).

By the definition of V , the last expression is smaller than ε. Therefore,∣∣∣∣∫ φi d bar(W)−
∫
φi dν

∣∣∣∣< ε
for every i= 1, . . . ,N. In other words, bar(W) ∈ V .

We also use the following simple property of non-negative affine
functionals:
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9.6 Entropy and ergodic decomposition 291

Lemma 9.6.8. For any non-negative affine functional H :M→R, probability
measures νi ∈M, i≥ 1 and non-negative numbers ti, i≥ 1 with

∑∞
i=1 ti = 1,

H

( ∞∑
i=1

tiνi

)
≥

∞∑
i=1

tiH(νi).

Proof. Define sn =∑n
i=1 ti for every n ≥ 1. Let Rn = (1− sn)

−1∑
i>n tiνi if

sn < 1; otherwise, pick Rn arbitrarily. Then,
∞∑

i=1

tiνi =
n∑

i=1

tiνi+ (1− sn)Rn.

Since H is affine and the expression on the right-hand side is a (finite) convex
combination, it follows that

H

( ∞∑
i=1

tiνi

)
=

n∑
i=1

tiH(νi)+ (1− sn)H(Rn)≥
n∑

i=1

tiH(νi)

for every n. Now just make n go to infinity.

Corollary 9.6.9. If H : M→ R is a non-negative affine functional then H is
bounded.

Proof. Suppose that H is not bounded: there exist νi ∈M such that H(νi)≥ 2i

for every i≥ 1. Consider ν =∑∞
i=1 2−iνi. By Lemma 9.6.8,

H(ν)≥
∞∑

i=1

2−iH(νi)=∞.

This contradicts the fact that H(ν) is finite.

Now we are ready to prove the inequality ≥ in Theorem 9.6.5. Let us write
μ= bar(W). By the hypothesis of semi-continuity, given any ε > 0 there exist
δ > 0 and a finite family � = {φ1, . . . ,φN} of bounded continuous functions
such that

H(η) <H(μ)+ ε for every η ∈M∩V(μ,�,δ). (9.6.8)

Since M1(M) is a separable metric space, it admits a countable basis of open
sets, and then so does any subspace. Let {V1, . . . ,Vn, . . . } be a basis of open sets
of M, with the following properties:

(i) every Vn is contained in M∩V(νn,�,δ) for some νn ∈M;
(ii) H(η) <H(νn)+ ε for every η ∈ Vn.

Consider the partition {P1, . . . ,Pn, . . . } of the space M defined by P1 = V1 and
Pn = Vn \ (V1∪·· ·∪Vn−1) for every n> 1. It is clear that the properties (i) and
(ii) remain valid if we replace Vn by Pn. We claim that∑

n

W(Pn)νn ∈ V(μ,�,δ). (9.6.9)
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292 Entropy

Indeed, observe that∣∣∣∣∫ φi dμ−
∑

n

W(Pn)

∫
φi dνn

∣∣∣∣= ∣∣∣∣∑
n

∫
Pn

(∫
φi dη−

∫
φi dνn

)
dW(η)

∣∣∣∣
for every i. Therefore, property (i) ensures that∣∣∣∣∫ φi dμ−

∑
n

W(Pn)

∫
φi dνn

∣∣∣∣<∑
n

δW(Pn)= δ for every i,

which is precisely what (9.6.9) means. Then, combining (9.6.8), (9.6.9) and
Lemma 9.6.8,∑

n

W(Pn)H(νn)≤H

(∑
n

W(Pn)νn

)
<H(μ)+ ε.

On the other hand, property (ii) implies that∫
H(η)dW(η)−

∑
n

W(Pn)H(νn)=
∑

n

∫
Pn

(
H(η)−H(νn)

)
dWμ(η)

<
∑

n

εW(Pn)= ε.

Adding the last two inequalities, we get that
∫

H(η)dW(η)<H(μ)+2ε. Since
ε > 0 is arbitrary, this implies that H(μ)≥ ∫ H(η)dW(η).

Now we prove the inequality ≤ in Theorem 9.6.5. Consider any sequence
(Pn)n of finite partitions of M such that, for every ν ∈ M, the diameter
of Pn(ν) converges to zero when n goes to infinity. For example, Pn =∨n

i=1{Vi,Vc
i }, where {Vn : n ≥ 1} is any countable basis of open sets of M.

For each fixed n, consider the normalized restriction WP of the measure W to
each set P ∈ Pn (we consider only sets with positive measure: the union of
all the elements of

⋃
nPn with W(P) = 0 has measure zero and so may be

neglected):

WP(A)= W(A∩P)

W(P)
for each measurable set A⊂M.

It is clear that W =∑P∈Pn
W(P)WP. Since the barycenter is an affine function

(Exercise 9.6.2), it follows that

bar(W)=
∑

P∈Pn

W(P)bar(WP)

and, therefore,
H(bar(W))=

∑
P∈Pn

W(P)H(bar(WP)).

Define Hn(η)=H(bar(WPn(η))), for each η ∈M. Then the last identity above
may be rewritten as follows:

H(bar(W))=
∫

Hn(η)dW(η) for every n. (9.6.10)
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9.6 Entropy and ergodic decomposition 293

It follows directly from the definition of Hn that 0≤Hn(η)≤ supH for every
n and every η. Recall that supH <∞ (Corollary 9.6.9). We also claim that

limsup
n

Hn(η)≤H(η) for every η ∈M. (9.6.11)

This may be seen as follows. Given any neighborhood V = V(η,�,ε) of η, we
have that Pn(η)⊂V for every large n, because the diameter of Pn(η) converges
to zero. Then, assuming always that W(Pn(η)) is positive,

WPn(η)(V)≥WPn(η)(Pn(η))= 1.

By Lemma 9.6.7, it follows that bar(WPn(η))∈V for every large n. Now (9.6.11)
is a direct consequence of the hypothesis that H is upper semi-continuous.

Applying the lemma of Fatou to the sequence −Hn+ supH, we deduce that

limsup
n

∫
Hn(η)dW(η)≤

∫
limsup

n
Hn(η)dW(η)≤

∫
H(η)dW(η). (9.6.12)

Combining the relations (9.6.10) and (9.6.12), we get that

H(bar(W))≤
∫

H(η)dW(η),

as we wanted to prove.
Now the proof of Theorems 9.6.2 and 9.6.5 is complete.

9.6.3 Exercises

9.6.1. Check that, given any probability measure W on M1(M), there exists a unique
probability measure bar(W) ∈M1(M) on M that satisfies (9.6.4).

9.6.2. Show that the barycenter function is strongly affine: if Wi, i ≥ 1 are probability
measures on M1(M) and ti, i ≥ 1 are non-negative numbers with

∑∞
i=1 ti = 1,

then

bar(
∞∑

i=1

tiWi)=
∞∑

i=1

ti bar(Wi).

9.6.3. Show that if M ⊂M1(M) is a closed convex set then M is strongly convex.
Moreover, in that case W(M)= 1 implies that bar(W) ∈M.

9.6.4. Check that the inequality ≥ in Theorem 9.6.2 may also be obtained through the
following, more direct, argument:
(1) Recalling that the function φ(x)=−x logx is concave, show that Hμ(Q)≥∫

HμP(Q)dμ̂(P) for every finite partition Q.
(2) Deduce that hμ(f ,Q)≥ ∫ hμP(f ,Q)dμ̂(P) for every finite partition Q.
(3) Conclude that hμ(f )≥

∫
hμP(f )dμ̂(P).

9.6.5. The inequality ≤ in Theorem 9.6.2 is based on the fact that hμ(f ,Q) ≤∫
hμP(f ,Q)dμ̂(P) for every finite partition Q, which is part of Lemma 9.6.6.

Find what is wrong with the following “alternative proof”:
Let Q be a finite partition. The theorem of Shannon–McMillan–Breiman

ensures that hμ(f ,Q)= ∫ hμ(f ,Q,x)dμ(x), where

hμ(f ,Q,x)= lim
n
−1

n
logμ(Qn(x))= lim

n
−1

n
log
∫
μP(Qn(x))dμ̂(P).
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294 Entropy

By the Jensen inequality applied to the convex function ψ(x)=− logx,

lim
n
−1

n
log
∫
μP(Qn(x))dμ̂(P)≤ lim

n

∫
−1

n
logμP(Qn(x))dμ̂(P).

Using the fact that hμP(f ,Q) = hμP(f ,Q,x) at almost every point (because the
measure μP is ergodic),

lim
n

∫
−1

n
logμP(Qn(x))dμ̂(P)=

∫
lim

n
−1

n
logμP(Qn(x))dμ̂(P)

=
∫

hμP(f ,Q)dμ̂(P).

This shows that hμ(f ,Q,x) ≤ ∫ hμP(f ,Q)dμ̂(P) for every finite partition Q and
μ-almost every x. Consequently, hμ(f ,Q) ≤ ∫ hμP(f ,Q)dμ̂(P) for every finite
partition Q.

9.7 Jacobians and the Rokhlin formula

Let U be an open subset and m be the Lebesgue measure of Rd. Let f : U→U
be a local diffeomorphism. By the formula of change of variables,

m(f (A))=
∫

A
|detDf (x)|dx (9.7.1)

for any measurable subset A of a small ball restricted to which f is injective.
The notion of a Jacobian that we present in this section extends this kind
of relation to much more general transformations and measures. Besides
introducing this concept, we are going to show that Jacobians do exist under
quite general hypotheses. Most important, it is possible to express the system’s
entropy explicitly in terms of the Jacobian. Actually, we already encountered
an interesting manifestation of this fact in Proposition 9.4.2.

Let f : M → M be a measurable transformation. We say that f is locally
invertible if there exists some countable cover {Uk : Uk ≥ 1} of M by
measurable sets such that f (Uk) is a measurable set and the restriction f | Uk :
Uk → f (Uk) is a bijection with measurable inverse, for every k ≥ 1. Every
measurable subset of some Uk is called an invertibility domain. Note that the
image f (A) of any invertibility domain A is a measurable set. It is also clear that
if f is locally invertible then the pre-image f−1(y) of any y ∈M is countable: it
contains at most one point in each Uk.

Let η be a probability measure on M, not necessarily invariant under f . A
measurable function ξ : M→[0,∞) is a Jacobian of f with respect to η if the
restriction of ξ to any invertibility domain A is integrable with respect to η and
satisfies

η(f (A))=
∫

A
ξ dη. (9.7.2)

It is important to note (see Exercise 9.7.1) that the definition does not depend
on the choice of the family {Uk : k≥ 1}.
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9.7 Jacobians and the Rokhlin formula 295

Example 9.7.1. Let σ :�→� be the shift map in�= {1,2, . . . ,d}N and μ be
the Bernoulli measure associated with a probability vector p= (p1, . . . ,pd). The
restriction of σ to each cylinder [0;a] is an invertible map. Moreover, given any
cylinder [0;a,a1, . . . ,an] ⊂ [0;a],

μ
(
σ([0;a,a1, . . . ,an])

)= pa1 · · ·pan =
1

pa
μ
([0;a,a1, . . . ,an]

)
.

We invite the reader to deduce that μ
(
σ(A)

) = (1/pa)μ(A) for every
measurable set A ⊂ [0;a]. Therefore, the function ξ((xn)n) = 1/px0 is a
Jacobian of σ with respect to μ.

We say that a measure η is non-singular with respect to the transformation
f : M→M if the image of any invertibility domain with measure zero also has
measure zero: if η(A) = 0 then η(f (A)) = 0. For example, if f : U → U is a
local diffeomorphism of an open subset of Rd and η is the Lebesgue measure,
then η is non-singular. For any locally invertible transformation, every invariant
probability measure is non-singular restricted to some full measure invariant
set (Exercise 9.7.8).

It follows immediately from the definition (9.7.2) that if f admits a Jacobian
with respect to a measure η then this measure is non-singular. The converse is
also true:

Proposition 9.7.2. Let f : M →M be a locally invertible transformation and
η be a measure on M, non-singular with respect to f . Then there exists some
Jacobian of f with respect to η and it is essentially unique: any two Jacobians
coincide at η-almost every point.

Proof. We start by proving existence. Given any countable cover {Uk : k ≥ 1}
of M by invertibility domains of f , define P1 = U1 and Pk = Uk \ (U1 ∪ ·· · ∪
Uk−1) for each k > 1. Then P = {Pk : k ≥ 1} is a partition of M formed by
invertibility domains. For each Pk ∈ P , denote by ηk the measure defined on
Pk by ηk(A) = η(f (A)). Equivalently, ηk is the image under (f | Pk)

−1 of the
measure η restricted to f (Pk). The hypothesis that η is non-singular implies
that every ηk is absolutely continuous with respect to η restricted to Pk:

η(A)= 0 ⇒ ηk(A)= η(f (A))= 0

for every measurable set A⊂Pk. Let ξk= dηk/d(η |Pk) be the Radon–Nikodym
derivative (Theorem A.2.18). Then, ξk is a function defined on Pk, integrable
with respect to η and satisfying

η(f (A))= ηk(A)=
∫

A
ξk dη (9.7.3)

for every measurable set A⊂ Pk. Consider the function ξ : M→[0,∞) whose
restriction to each Pk ∈ P is given by ξk. Every subset of Uk may be written
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296 Entropy

as a (disjoint) union of subsets of P1, . . . ,Pk. Applying (9.7.3) to each one of
these subsets and summing the corresponding equalities, we get that

η(f (A))=
∫

A
ξ dη for every measurable set A⊂Uk and k≥ 1.

This proves that ξ is a Jacobian of f with respect to η.
Now suppose that ξ and ζ are Jacobians of f with respect to η and there

exists B ⊂ M with η(B) > 0 such that ξ(x) �= ζ(x) for every x ∈ B. Up to
replacing B by a suitable subset, and exchanging the roles of ξ and ζ if
necessary, we may suppose that ξ(x) < ζ(x) for every x ∈ B. Similarly, we
may suppose that B is contained in some Uk. Then,

η(f (B))=
∫

B
ξ dη <

∫
B
ζ dη= η(f (B)).

This contradiction proves that the Jacobian is essentially unique.

From now on, we denote by Jηf the (essentially unique) Jacobian of a locally
invertible transformation f : M→M with respect to a measure η, when it exists.

By definition, Jηf is integrable on each invertibility domain. If f is such
that the number of pre-images of any y ∈ M is bounded then the Jacobian is
(globally) integrable: if �≥ 1 is the maximum number of pre-images then∫

Jηf dη=
∑

k

∫
Pk

Jηf dη=
∑

k

η(f (Pk))≤ �,

because every point y ∈M is in no more than � images f (Pk).
The following observation will be useful in the sequel. Let Z ⊂M be the set

of points where the Jacobian Jηf vanishes. Covering Z with a countable family
of invertibility domains and using (9.7.2), we see that f (Z) is a measurable set
and η(f (Z))= 0. In other words, the set of points y ∈M such that Jμf (x) > 0
for every x ∈ f−1(y) has total measure for η. When the probability measure
η is invariant under f , it also follows that η(f−1(f (Z))) = η(f (Z)) = 0 and so
η(Z)= 0.

The main result in this section is the following formula for the entropy of an
invariant measure:

Theorem 9.7.3 (Rokhlin formula). Let f : M → M be a locally invertible
transformation and μ be a probability measure invariant under f . Assume
that there is some partition P with finite entropy such that

⋃
nPn generates

the σ -algebra of M, up to measure zero, and every P ∈ P is an invertibility
domain of f . Then hμ(f )=

∫
logJμf dμ.

Proof. Let us consider the sequence of partitions Qn = ∨n
j=1 f−j(P). By

Corollary 9.2.5 and Lemma 9.1.12,

hμ(f )= hμ(f ,P)= lim
n

Hμ(P/Qn). (9.7.4)
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9.7 Jacobians and the Rokhlin formula 297

By definition (as before, φ(x)=−x logx),

Hμ(P/Qn)=
∑
P∈P

∑
Qn∈Qn

−μ(P∩Qn
)

log
μ(P∩Qn)

μ(Qn)

=
∑
P∈P

∑
Qn∈Qn

μ(Qn)φ

(
μ(P∩Qn)

μ(Qn)

)
.

(9.7.5)

Let en(ψ ,x) be the conditional expectation of a function ψ with respect to the
partition Qn and e(ψ ,x) be its limit when n goes to infinity (these notions were
introduced in Section 5.2.1: see (5.2.1) and Lemma 5.2.1). It is clear from the
definition that

μ(P∩Qn)

μ(Qn)
= en(XP,x) for every x ∈Qn and every Qn ∈Qn.

Therefore,∑
P∈P

∑
Qn∈Qn

μ(Qn)φ

(
μ(P∩Qn)

μ(Qn)

)
=
∑
P∈P

∫
φ(en(XP,x))dμ(x). (9.7.6)

By Lemma 5.2.1, the limit e(XP,x) = limn en(XP,x) exists at μ-almost every
x. So, observing that the function φ is bounded, we may use the dominated
convergence theorem to deduce from (9.7.4)–(9.7.6) that

hμ(f )=
∑
P∈P

∫
φ(e(XP,x))dμ(x). (9.7.7)

Now we need to relate the expression inside the integral to the Jacobian. This
we do by means of Lemma 9.7.5 below. Beforehand, let us prove the following
change of variables formulas:

Lemma 9.7.4. For any probability measure η non-singular with respect to f ,
and any invertibility domain A⊂M of f :

(i)
∫

f (A) ϕ dη= ∫A(ϕ ◦ f )Jηf dη for any measurable function ϕ : f (A)→R such
that the integrals are defined (possibly ±∞).

(ii)
∫

Aψ dη= ∫f (A)(ψ/Jηf )◦ (f | A)−1 dη for any measurable function ψ : A→
R such that the integrals are defined (possibly ±∞).

Proof. The definition (9.7.2) means that the formula in part (i) holds for the
characteristic function ϕ =Xf (A) for any invertibility domain A. Thus, it holds
for the characteristic function of any measurable subset of f (A), since such a
subset may be written as f (B) for some invertibility domain B⊂ A. Hence, by
linearity, the identity extends to every simple function defined on f (A). Using
the monotone convergence theorem, we conclude that the identity holds for
every non-negative measurable function. Using linearity once more, we get
the general statement of part (i).
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298 Entropy

To deduce the claim in (ii), apply (i) to the function ϕ = (ψ/Jηf )◦ (f | A)−1.
Note that this function is well defined at η-almost every point for, as observed
before, Jηf (x) > 0 for every x in the pre-image of η-almost every y ∈M.

Lemma 9.7.5. For every bounded measurable function ψ : M→R and every
probability measure η invariant under f ,

e(ψ ,x)= ψ̂(f (x)) for η-almost every x, where ψ̂(y)=
∑

z∈f−1(y)

ψ

Jηf
(z).

Proof. Recall that Qn = ∨n
j=1 f−j(P), that is, Qn(x) =

n⋂
j=1

f−1(P(f i(x))) for

each x. We also use the sequence of partitions Pn=∨n−1
j=0 f−j(P). Observe that

Qn(x) = f−1(Pn−1(f (x))) and Pn(x) = P(x)∩Qn(x) for every n and every x.
Then, ∫

Pn−1(f (x))
ψ̂ dη=

∑
P∈P

∫
f (P)∩Pn−1(f (x))

ψ

Jηf
◦ (f | P)−1 dη.

Using the formula of change of variables in Lemma 9.7.4(ii), the expression
on the right-hand side may be rewritten as∑

P∈P

∫
P∩Qn(x)

ψ(z)dη(z)=
∫
Qn(x)

ψ dη.

Therefore, ∫
Pn−1(f (x))

ψ̂ dη=
∫
Qn(x)

ψ dη. (9.7.8)

Let e′n−1(ψ̂ ,x) be the conditional expectation of ψ̂ with respect to the partition

Pn−1, as defined in Section 5.2.1, and let e′(ψ̂ ,x) be its limit when n goes to
infinity, given by Lemma 5.2.1. The hypothesis that η is invariant gives that
η
(
Pn−1(f (x))

)= η(Qn(x)
)
. Dividing both sides of (9.7.8) by this number, we

get that

e′n−1(ψ̂ , f (x))= en(ψ ,x) for every x and every n> 1. (9.7.9)

Then, taking the limit, e′(ψ̂ , f (x))= e(ψ ,x) for η-almost every x. On the other
hand, according to Exercise 5.2.3, the hypothesis implies that e′(ψ̂ ,y)= ψ̂(y)
for η-almost every y ∈M.

Let us apply this lemma to ψ =XP and η= μ. Since f is injective on every
element of P , each intersection P∩ f−1(y) either is empty or contains exactly
one point. Therefore, it follows from Lemma 9.7.5 that e(XP,x) = X̂P(f (x)),
with

X̂P(y)=
{

1/Jμf
(
(f | P)−1(y)

)
if y ∈ f (P)

0 if y /∈ f (P).
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9.7 Jacobians and the Rokhlin formula 299

Then, recalling that the measure μ is assumed to be invariant,∫
φ(e(XP,x))dμ(x)=

∫
φ(X̂P(y))dμ(y)

=
∫

f (P)

(
1

Jμf
logJμf

)
◦ (f | P)−1 dμ =

∫
P

logJμf dμ

(the last step uses the identity in part (ii) of Lemma 9.7.4). Replacing this
expression in (9.7.7), we get that

hμ(f )=
∑
P∈P

∫
P

logJμf dμ=
∫

logJμf dμ,

as stated in the theorem.

9.7.1 Exercises

9.7.1. Check that the definition of a Jacobian does not depend on the choice of the cover
{Uk : k≥ 1} by invertibility domains.

9.7.2. Let σ : � → � be the shift map in � = {1,2, . . . ,d}N and μ be the Markov
measure associated with an aperiodic matrix P. Find the Jacobian of f with
respect to μ.

9.7.3. Let f : M → M be a locally invertible transformation and η be a probability
measure on M, non-singular with respect to f . Show that for every bounded
measurable function ψ : M→R,∫

ψ dη=
∫ ∑

z∈f−1(x)

ψ

Jηf
(z)dη(x).

9.7.4. Let f : M → M be a locally invertible transformation and η be a probability
measure on M, non-singular with respect to f . Show that η is invariant under
f if and only if ∑

z∈f−1(x)

1

Jηf (z)
= 1 for η-almost every x ∈M.

Moreover, if η is invariant under f then Jηf ≥ 1 at μ-almost every point.
9.7.5. Let f : M → M be a locally invertible transformation and η be a probability

measure on M, non-singular with respect to f . Show that, for every k ≥ 1, there
exists a Jacobian of f k with respect to η and it is given by

Jηf
j(x)=

k−1∏
j=0

Jηf (f
j(x)) for η-almost every x.

Assuming that f is invertible, what can be said about the Jacobian of f−1 with
respect to η?

9.7.6. Let f : M → M and g : N → N be locally invertible transformations and let μ
and ν be probability measures invariant under f and g, respectively. Assume that
there exists an ergodic equivalence φ : M → N between the systems (f ,μ) and
(g,ν). Show that Jμf = Jνg ◦φ at μ-almost every point.
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300 Entropy

9.7.7. Let σk :�k →�k and σl :�l →�l be the shift maps in�k = {1, . . . ,k}N and �l =
{1, . . . , l}N. Let μk and μl be the Bernoulli measures on �k and �l, respectively,
associated with probability vectors p = (p1, . . . ,pk) and q = (q1, . . . ,ql). Show
that the systems (σk,μk) and (σl,μl) are ergodically equivalent if and only if
k = l and the vectors p and q are obtained from one another by permutation of
the components.

9.7.8. Let μ be a probability measure invariant under a locally invertible trans-
formation f : M →M. Show that there exists a full measure set N ⊂M such that
N ⊂ f−1(N) and μ restricted to N is non-singular with respect to the restriction
f : N → N. Conclude that f admits a Jacobian with respect to μ.
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