
10

Variational principle

In 1965, the IBM researchers R. Adler, A. Konheim and M. McAn-
drew proposed [AKM65] a notion of topological entropy, inspired by the
Kolmogorov–Sinai entropy that we studied in the previous chapter, but whose
definition does not involve any invariant measure. This notion applies to any
continuous transformation in a compact topological space.

Subsequently, Efim Dinaburg [Din70] and Rufus Bowen [Bow71, Bow75a]
gave a different, yet equivalent, definition for continuous transformations in
compact metric spaces. Despite being a bit more restrictive, the Bowen–
Dinaburg definition has the advantage of making more transparent the meaning
of this concept: the topological entropy is the rate of exponential growth of the
number of orbits that can be distinguished within a certain precision, arbitrarily
small. Moreover, Bowen extended the definition to non-compact spaces, which
is also very useful for applications.

These definitions of topological entropy and their properties are studied in
Section 10.1 where, in particular, we observe that the topological entropy is an
invariant of topological equivalence (topological conjugacy). In Section 10.2
we analyze several concrete examples.

The main result is the following remarkable relation between the topological
entropy and the entropies of the transformation with respect to its invariant
measures:

Theorem 10.1 (Variational principle). If f : M → M is a continuous
transformation in a compact metric space then its topological entropy h(f )
coincides with the supremum of the entropies hμ(f ) of f with respect to all the
invariant probability measures.

This theorem was proved by Dinaburg [Din70, Din71], Goodman [Goo71a]
and Goodwin [Goo71b]. Here, it arises as a special case of a more
general statement, the variational principle for the pressure, which is due to
Walters [Wal75].

The pressure P(f ,φ) is a weighted version of the topological entropy h(f ),
where the “weights” are determined by a continuous function φ : M → R,
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302 Variational principle

which we call a potential. We study these notions and their properties in
Section 10.3. The topological entropy corresponds to the special case when the
potential is identically zero. The notion of pressure was brought from statistical
mechanics to ergodic theory by the Belgium mathematician and theoretical
physicist David Ruelle, one of the founders of differentiable ergodic theory,
and was then extended by the British mathematician Peter Walters.

The variational principle (Theorem 10.1) extends to the setting of the
pressure, as we are going to see in Section 10.4:

P(f ,φ)= sup
{
hμ(f )+

∫
φ dμ :μ is invariant under f

}
(10.0.1)

for every continuous function φ : M →R. An invariant probability measure μ
is called an equilibrium state for the potential φ if it realizes the supremum in
(10.0.1), that is, if hμ(f )+

∫
φ dμ= P(f ,φ). The set of all equilibrium states is

studied in Section 10.5.

10.1 Topological entropy

Initially, we present the definitions of Adler–Konheim–McAndrew and
Bowen–Dinaburg and we prove that they are equivalent when the ambient is a
compact metric space.

10.1.1 Definition via open covers

The original definition of the topological entropy is very similar to that of the
Kolmogorov–Sinai entropy, with open covers in the place of partitions into
measurable sets.

Let M be a compact topological space. An open cover of M is any family
α of open sets whose union is the whole of M. By compactness, every open
cover admits a subcover (that is, a subfamily that is still an open cover) with
finitely many elements. We call the entropy of the open cover α the number

H(α)= logN(α), (10.1.1)

where N(α) is the smallest number such that α admits some finite subcover
with that number of elements.

Given two open covers α and β, we say that α is coarser than β (or β is finer
than α), and we write α≺β, if every element of β is contained in some element
of α. For example, if β is a subcover of α then α ≺ β. By Exercise 10.1.1,

α ≺ β⇒H(α)≤H(β). (10.1.2)

Given open covers α1, . . . ,αn, we denote by α1∨ ·· ·∨αn their sum, that is, the
open cover whose elements are the intersections A1 ∩ ·· · ∩An with Aj ∈ αj for
each j. Note that αj ≺ α1∨ ·· · ∨αn for every j.
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10.1 Topological entropy 303

Let f : M →M be a continuous transformation. If α is an open cover of M
then so is f−j(α)= {f−j(A) : A ∈ α}. For each n≥ 1, let us denote

αn = α∨ f−1(α)∨ ·· ·∨ f−n+1(α).

Using Exercise 10.1.2, we see that

H(αm+n)=H
(
αm∨ f−m(αn)

)≤H(αm)+H(f−m(αn))≤H(αm)+H(αn)

for every m,n ≥ 1. In other words, the sequence H(αn) is subadditive.
Consequently (Lemma 3.3.4),

h(f ,α)= lim
n

1

n
H(αn)= inf

n

1

n
H(αn) (10.1.3)

always exists and is finite. It is called the entropy of f with respect to the open
cover α. The relation (10.1.2) implies that

α ≺ β ⇒ h(f ,α)≤ h(f ,β). (10.1.4)

Finally, we define the topological entropy of f to be

h(f )= sup{h(f ,α) : α is an open cover of M}. (10.1.5)

In particular, if β is a subcover of α then h(f ,α) ≤ h(f ,β). Therefore, the
definition (10.1.5) does not change when one restricts the supremum to the
finite open covers.

Observe that the entropy h(f ) is a non-negative number, possibly infinite
(see Exercise 10.1.6).

Example 10.1.1. Let f : S1 → S1 be any homeomorphism (for example, a
rotation Rθ ) and let α be an open cover of the circle formed by a finite
number of open intervals. Let ∂α be the set consisting of the endpoints of
those intervals. For each n≥ 1, the open cover αn is formed by intervals whose
endpoints are in

∂αn = ∂α∪ f−1(∂α)∪ ·· · ∪ f−n+1(∂α).

Note that #αn ≤ #∂αn ≤ n#∂α. Therefore,

h(f ,α)= lim
n

1

n
H(αn)≤ liminf

n

1

n
log#αn ≤ liminf

n

1

n
logn= 0.

Proposition 10.1.12 below gives that h(f ) = limk h(f ,αk) for any sequence
of open covers αk with diamαk → 0. Then, considering open covers αk by
intervals of length less than 1/k, we conclude from the previous calculation
that h(f )= 0 for every homeomorphism of the circle.

Example 10.1.2. Let � = {1, . . . ,d}N and α be the cover of � by the cylinders
[0;a], a = 1, . . . ,d. Consider the shift map σ : �→ �. For each n, the open
cover αn consists of the cylinders of length n:

αn = {[0;a0, . . . ,an−1] : aj = 1, . . . ,d}.
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304 Variational principle

Therefore, H(αn) = log#αn = logdn and, consequently, h(f ,α) = logd.
Observe also that diamαn converges to zero when n → ∞, relative to the
distance defined by (A.2.7). Then, it follows from Corollary 10.1.13 below
that h(f )= h(f ,α)= logd. The same holds for the two-sided shift σ :�→�

in � = {1, . . . ,d}Z.

Now we show that the topological entropy is an invariant of topological
equivalence. Let f : M →M and g : N → N be continuous transformations in
compact topological spaces M and N. We say that g is a topological factor of
f if there exists a surjective continuous map θ : M→ N such that θ ◦ f = g ◦ θ .
When θ may be chosen to be invertible (a homeomorphism), we say that the
two transformations are topologically equivalent, or topologically conjugate,
and we call θ a topological conjugacy between f and g.

Proposition 10.1.3. If g is a topological factor of f then h(g) ≤ h(f ). In
particular, if f and g are topologically equivalent then h(f )= h(g).

Proof. Let θ : M → N be a surjective continuous map such that θ ◦ f = g ◦ θ .
Given any open cover α of N, the family

θ−1(α)= {θ−1(A) : A ∈ α}
is an open cover of M. Recall that, by definition, the iterated sum αn is the open
cover formed by the sets

⋂n−1
j=0 g−j(Aj) with A0,A1, . . . ,An−1 ∈ α. Analogously,

the iterated sum θ−1(α)n consists of the sets
⋂n−1

j=0 f−j
(
θ−1(Aj)

)
. Clearly,

n−1⋂
j=0

f−j
(
θ−1(Aj)

)= n−1⋂
j=0

θ−1
(
g−j(Aj)

)= θ−1

( n−1⋂
j=0

g−j(Aj)

)
.

Noting that the sets of the form on the right-hand side of this identity constitute
the pre-image θ−1(αn) of αn, we conclude that θ−1(αn)= θ−1(α)n. Since θ is
surjective, a family γ ⊂αn covers N if and only if θ−1(γ ) covers M. Therefore,

H(θ−1(α)n)=H(θ−1(αn))=H(αn).

Since n is arbitrary, it follows that h(f ,θ−1(α)) = h(g,α). Then, taking the
supremum over all the open covers α of N:

h(g)= sup
α

h(g,α)= sup
α

h(f ,θ−1(α))≤ h(f ).

This proves the first part of the proposition. The second part is an immediate
consequence, since in that case f is also a factor of g.

The converse to Proposition 10.1.3 is false, in general. For example, all
the homeomorphisms of the circle have topological entropy equal to zero
(recall Example 10.1.1) but they are not necessarily topologically equivalent
(for example, the identity is not topologically equivalent to any other
homeomorphism).
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10.1 Topological entropy 305

10.1.2 Generating sets and separated sets

Next, we present the definition of topological entropy of Bowen–Dinaburg. Let
f : M→M be a continuous transformation in a metric space M, not necessarily
compact, and let K ⊂M be any compact subset. When M is compact it suffices
to consider K =M, as observed in (10.1.12) below.

Given ε > 0 and n∈N, we say that a set E⊂M (n,ε)-generates K if for every
x ∈K there exists a ∈ E such that d(f i(x), f i(a)) < ε for every i ∈ {0, . . . ,n−1}.
In other words,

K ⊂
⋃
a∈E

B(a,n,ε),

where B(a,n,ε) = {x ∈ M : d(f i(x), f i(a)) < ε for i = 0, . . . ,n − 1} is the
dynamical ball of center a, length n and radius ε. Note that {B(x,n,ε) : x ∈ K}
is an open cover of K. Hence, by compactness, there always exist finite
(n,ε)-generating sets.

Let us denote by gn(f ,ε,K) the smallest cardinality of an (n,ε)-generating
set of K. We define

g(f ,ε,K)= limsup
n

1

n
loggn(f ,ε,K). (10.1.6)

Observe that the function ε �→ g(f ,ε,K) is monotone non-increasing. Indeed,
it is clear from the definition that if ε1 < ε2 then every (n,ε1)-generating set
is also (n,ε2)-generating. Therefore, gn(f ,ε1,K) ≥ gn(f ,ε2,K) for every n ≥ 1
and, taking the limit, g(f ,ε1,K)≥ g(f ,ε2,K). This ensures, in particular, that

g(f ,K)= lim
ε→0

g(f ,ε,K) (10.1.7)

exists. Finally, we define

g(f )= sup{g(f ,K) : K ⊂M compact}. (10.1.8)

We also introduce the following dual notion. Given ε > 0 and n ∈ N,
we say that a set E ⊂ K is (n,ε)-separated if, given x,y ∈ E, there exists
j ∈ {0, . . . ,n− 1} such that d(f j(x), f j(y)) ≥ ε. In other words, if x ∈ E then
B(x,n,ε) contains no other point of E. We denote by sn(f ,ε,K) the largest
cardinality of an (n,ε)-separated set. We define

s(f ,ε,K)= limsup
n

1

n
logsn(f ,ε,K). (10.1.9)

It is clear that if 0 < ε1 < ε2, then every (n,ε2)-separated set is also
(n,ε1)-separated. Therefore, sn(f ,ε1,K) ≥ sn(f ,ε2,K) for every n ≥ 1 and,
taking the limit, s(f ,ε1,K)≥ s(f ,ε2,K). In particular,

s(f ,K)= lim
ε→0

s(f ,ε,K) (10.1.10)

always exists. Finally, we define

s(f )= sup{s(f ,K) : K ⊂M compact}. (10.1.11)
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306 Variational principle

It is clear that g(f ,K1) ≤ g(f ,K2) and s(f ,K1) ≤ s(f ,K2) if K1 ⊂ K2. In
particular,

g(f )= g(f ,M) and s(f )= s(f ,M) if M is compact. (10.1.12)

Another interesting observation (Exercise 10.1.7) is that the definitions
(10.1.8) and (10.1.11) are not affected when we restrict the supremum to
compact sets with small diameter.

Proposition 10.1.4. We have g(f ,K) = s(f ,K) for every compact K ⊂ M.
Consequently, g(f )= s(f ).

Proof. For the proof we need the following lemma:

Lemma 10.1.5. gn(f ,ε,K) ≤ sn(f ,ε,K) ≤ gn(f ,ε/2,K) for every n ≥ 1, every
ε > 0 and every compact K ⊂M.

Proof. Let E ⊂ K be an (n,ε)-separated set with maximal cardinality. Given
any y ∈ K \E, the set E∪ {y} is not (n,ε)-separated, and so there exists x ∈ E
such that d(f i(x), f i(y)) < ε for every i ∈ {0, . . . ,n− 1}. This shows that E is an
(n,ε)-generating set of K. Consequently, gn(f ,ε,K)≤ #E= sn(f ,ε,K).

To prove the other inequality, let E⊂K be an (n,ε)-separated set and F⊂M
be an (n,ε/2)-generating set of K. The hypothesis ensures that, given any x∈E
there exists some y∈F such that d(f i(x), f i(y))<ε/2 for every i∈ {0, . . . ,n−1}.
Let φ : E→F be a map such that each φ(x) is a point y satisfying this condition.
We claim that the map φ is injective. Indeed, suppose that x,z∈ E are such that
φ(x)= y= φ(z). Then

d(f i(x), f i(z))≤ d(f i(x), f i(y))+ d(f i(y), f i(z)) < ε/2+ ε/2
for every i ∈ {0, . . . ,n− 1}. Since E is (n,ε)-separated, this implies that x= z.
Therefore, φ is injective, as we claimed. It follows that #E ≤ #F and, since E
and F are arbitrary, this proves that sn(f ,ε,K)≤ gn(f ,ε/2,K).

Then, given any ε > 0 and any compact K ⊂M,

g(f ,ε,K)= limsup
n

1

n
loggn(f ,ε,K)

≤ limsup
n

1

n
logsn(f ,ε,K)= s(f ,ε,K)

≤ limsup
n

1

n
loggn(f ,

ε

2
,K)= g(f ,

ε

2
,K).

(10.1.13)

Taking the limit when ε→ 0, we get that

g(f ,K)= lim
ε→0

g(f ,ε,K)≤ lim
ε→0

s(f ,ε,K)= s(f ,K)

≤ lim
ε→0

g(f ,
ε

2
,K)= g(f ,K).
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10.1 Topological entropy 307

This proves the first part of the proposition. The second part is an immediate
consequence.

By definition, the diameter of an open cover α of a metric space M is the
supremum of the diameters of all the sets A ∈ α.

Proposition 10.1.6. If M is a compact metric space then h(f )= g(f )= s(f ).

Proof. By Proposition 10.1.4, it suffices to show that s(f )≤ h(f )≤ g(f ).
Start by fixing ε > 0 and n≥ 1. Let E ⊂M be an (n,ε)-separated set and α

be any open cover of M with diameter less than ε. If x and y are in the same
element of αn then

d(f i(x), f i(y))≤ diamα < ε for every i= 0, . . . ,n− 1.

In particular, each element of αn contains at most one element of E.
Consequently, #E ≤ N(αn). Taking E with maximal cardinality, we conclude
that sn(f ,ε,M)≤ N(αn) for every n≥ 1. So,

s(f ,ε,M)= limsup
n

1

n
logsn(f ,ε,M)

≤ lim
n

1

n
logN(αn)= h(f ,α)≤ h(f ).

(10.1.14)

Making ε→ 0, we find that s(f )= s(f ,M)≤ h(f ).
Next, given any open cover α of M, let ε > 0 be a Lebesgue number for

α, that is, a positive number such that every ball of radius ε is contained in
some element of α. Let E ⊂M be an (n,ε)-generating set of M with minimal
cardinality. For each x ∈ E and i = 0, . . . ,n− 1, there exists Ax,i ∈ α such that
B(f i(x),ε) is contained in Ax,i. Then,

B(x,n,ε)⊂
n−1⋂
i=0

f−i(Ax,i).

Therefore, the hypothesis that E is a generating set implies that the family
γ = {⋂n−1

i=0 f−i(Ax,i) : x ∈ E} is an open cover of M. Since γ ⊂ αn, it follows
that N(αn)≤ #E= gn(f ,ε,M) for every n. Therefore,

h(f ,α)= lim
n

1

n
logN(αn)≤ liminf

n

1

n
loggn(f ,ε,M)

≤ limsup
n

1

n
loggn(f ,ε,M)= g(f ,ε,M).

(10.1.15)

Making ε→ 0, we get that h(f ,α)≤ g(f ,M)= g(f ). Since the open cover α is
arbitrary, it follows that h(f )≤ g(f ).

We define the topological entropy of a continuous transformation f :
M → M in a metric space M to be g(f ) = s(f ). Proposition 10.1.6 shows
that this definition is compatible with the one we gave in Section 10.1.1
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308 Variational principle

for transformations in compact topological spaces. A relevant difference is
that, while for compact spaces the topological entropy depends only on the
topology (because h(f ) is defined solely in terms of the open sets), in the
non-compact case the topological entropy may also depend on the distance
function in M. In this regard, see Exercises 10.1.4 and 10.1.5. They also
show that in the non-compact case the topological entropy is no longer
an invariant of topological conjugacy, although it remains an invariant of
uniformly continuous conjugacy.

Example 10.1.7. Assume that f : M →M does not expand distances, that is,
that d(f (x), f (y)) ≤ d(x,y) for every x,y ∈ M. Then the topological entropy
of f is equal to zero. Indeed, the hypothesis implies that B(x,n,ε) = B(x,ε)
for every n ≥ 1. Hence, a set E is (n,ε)-generating if and only if it is
(1,ε)-generating. In particular, the sequence gn(f ,ε,K) does not depend on
n and, hence, g(f ,ε,K)= 0 for every ε > 0 and every compact set K. Making
ε→ 0 and taking the supremum over K we get that g(f ) = 0 (analogously,
s(f )= 0).

There are two important special cases: contractions, such that there exists
λ< 1 satisfying d(f (x), f (y))≤ λd(x,y) for every x,y∈M; and isometries, such
that d(f (x), f (y))= d(x,y) for every x,y∈M. We saw in Lemma 6.3.6 that every
compact metrizable group admits a distance relative to which every translation
is an isometry. Therefore, it also follows from the previous observations that
the topological entropy of every translation in a compact metrizable group is
zero.

Recalling that g(f )= g(f ,M) and s(f )= s(f ,M) when M is compact, we see
that the conclusion of Proposition 10.1.6 may be rewritten as follows:

h(f )= lim
ε→0

limsup
n

1

n
loggn(f ,ε,M)= lim

ε→0
limsup

n

1

n
logsn(f ,ε,M).

From the proof of the proposition we may also obtain the following related
identity:

Corollary 10.1.8. If f : M →M is a continuous transformation in a compact
metric space then

h(f )= lim
ε→0

liminf
n

1

n
loggn(f ,ε,M)= lim

ε→0
liminf

n

1

n
logsn(f ,ε,M).

Proof. The relation (10.1.15) gives that

h(f ,α)≤ liminf
n

1

n
loggn(f ,ε,M)

whenever ε > 0 is a Lebesgue number for the open cover α. Making ε→ 0,
we conclude that

h(f )≤ lim
ε→0

liminf
n

1

n
loggn(f ,ε,M). (10.1.16)
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10.1 Topological entropy 309

The first inequality in Lemma 10.1.5 implies that

lim
ε→0

liminf
n

1

n
loggn(f ,ε,M)≤ lim

ε→0
liminf

n

1

n
logsn(f ,ε,M). (10.1.17)

Also, it is clear that

lim
ε→0

liminf
n

1

n
logsn(f ,ε,M)≤ lim

ε→0
limsup

n

1

n
logsn(f ,ε,M). (10.1.18)

As we have just observed, the expression on the right-hand side is equal to
h(f ). Therefore, the inequalities (10.1.16)–(10.1.18) imply the conclusion.

10.1.3 Calculation and properties

We start by proving a version of Lemma 9.1.13 for the topological entropy.
The proof is a bit more elaborate because, unlike what happens for partitions,
given an open cover α the covers (αk)n and αn+k−1 need not coincide if the
elements of α are not pairwise disjoint.

Example 10.1.9. Let f : M →M be the shift map in M = {1,2,3}N (or M =
{1,2,3}Z) and α be the open cover of M consisting of the cylinders [0; {1,2}]
and [0; {1,3}]. For each n ≥ 1, the cover αn consists of the 2n cylinders of
the form [0;A0, . . . ,An−1] with Aj = [0; {1,2}] or Aj = [0; {1,3}]. In particular,
#α3 = 8. On the other hand, (α2)2 contains 12 elements: the 8 elements of α3

together with the 4 cylinders of the form [0;A0, {1},A2] with Aj = [0; {1,2}] or
Aj = [0; {1,3}] for j= 0 and j= 2. Hence, αn+k−1 �= (αk)n for n= k= 2.

Proposition 10.1.10. Let M be a compact topological space, f : M → M be
a continuous transformation and α be an open cover of M. Then h(f ,α) =
h(f ,αk) for every k ≥ 1. Moreover, if f : M → M is a homeomorphism then
h(f ,α)= h(f ,α±k) for every k≥ 1, where α±k =∨k−1

j=−k f−j(α).

Proof. The main point is to show that the open covers (αk)n and αn+k−1 have
the same entropy, for every n≥ 1. We use the following simple fact, which will
be useful again later:

Lemma 10.1.11. Given any open cover α and any n,k≥ 1,

1. αn+k−1 is a subcover of (αk)n and, in particular, (αk)n ≺ αn+k−1;
2. for any subcover β of (αk)n there exists a subcover γ of αn+k−1 such that

#γ ≤ #β and γ ≺ β.

Proof. By definition, every element αn+k−1 has the form B =⋂n+k−2
l=0 f−l(Bl)

with Bl ∈ α for every l. It is clear that this may be written in the form
B=⋂n−1

i=0 f−i
(⋂k−1

j=0 f−j(Bi+j)
)

and, thus, B∈ (αk)n. This proves the first claim.
Next, let β be a subcover of (αk)n. Every element of β has the form

A=
n−1⋂
i=0

f−i
( k−1⋂

j=0

f−j(Ai,j)
)
=

n+k−2⋂
l=0

f−l
( ⋂

i+j=l

Ai,j

)
,
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310 Variational principle

with Ai,j ∈ α. Consider B=⋂n+k−2
l=0 f−l(Bl), where Bl = Ai,j for some pair (i, j)

such that i+ j= l. Observe that A⊂ B and B ∈ αn+k−1. Therefore, the family γ
formed by all the sets B obtained in this way satisfies all the conditions in the
second claim.

According to the relation (10.1.2), the first part of Lemma 10.1.11 implies
that H((αk)n)≤ H(αn+k−1). Clearly, the second part of the lemma implies the
opposite inequality. Hence,

H(αn+k−1)=H((αk)n) for any n,k≥ 1, (10.1.19)

as we claimed. Therefore,

h(f ,αk)= lim
n

1

n
H((αk)n)= lim

n

1

n
H(αn+k−1)= h(f ,α) for every k.

When f is invertible, it follows from the definitions that α±k = f k(α2k). Using
Exercise 10.1.3, we get that h(f ,α±k)= h(f , f k(α2k))= h(f ,α2k)= h(f ,α).

The next proposition and its corollary simplify the calculation of the
topological entropy significantly in concrete examples. Recall that, when M
is a metric space, the diameter of an open cover is defined to be the supremum
of the diameters of its elements.

Proposition 10.1.12. Assume that M is a compact metric space. Let (βk)k be
any sequence of open covers of M such that diamβk converges to zero. Then

h(f )= sup
k

h(f ,βk)= lim
k

h(f ,βk).

Proof. Given any open cover α, let ε > 0 be a Lebesgue number of α. Take
n ≥ 1 such that diamβk < ε for every k ≥ n. By the definition of Lebesgue
number, it follows that every element of βk is contained in some element of α.
In other words, α ≺ βk and, hence, h(f ,βk)≥ h(f ,α). In view of the definition
(10.1.5), this proves that

liminf
k

h(f ,βk)≥ h(f ).

It is also clear from the definitions that h(f )≥ supk h(f ,βk)≥ limsupk h(f ,βk).
Combining these observations, we obtain the conclusion of the proposition.

Corollary 10.1.13. Assume that M is a compact metric space. If β is an open
cover such that

(1) the diameter of the one-sided iterated sum βk =∨k−1
j=0 f−j(β) converges to

zero when k→∞, or
(2) f : M→M is a homeomorphism and the diameter of the two-sided iterated

sum β±k =∨k−1
j=−k f−j(β) converges to zero when k→∞,

then h(f )= h(f ,β).
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10.1 Topological entropy 311

Proof. In case (1), Propositions 10.1.10 and 10.1.12 yield

h(f )= lim
k

h(f ,βk)= h(f ,β).

The proof in case (2) is analogous.

Next, we check that the topological entropy behaves as one could expect
with respect to positive iterates, at least when the transformation is uniformly
continuous:

Proposition 10.1.14. If f : M →M is a uniformly continuous transformation
in a metric space then h(f k)= kh(f ) for every k ∈N.

Proof. Fix k ≥ 1 and let K ⊂ M be any compact set. Consider any n ≥ 1
and ε > 0. It is clear that if E ⊂ M is an (nk,ε)-generating set of K for the
transformation f then it is also an (n,ε)-generating set of K for the iterate f k.
Therefore, gn(f k,ε,K)≤ gnk(f ,ε,K). Hence,

g(f k,ε,K)= lim
n

1

n
gn(f

k,ε,K)≤ lim
n

1

n
gnk(f ,ε,K)= kg(f ,ε,K).

Making ε→ 0 and taking the supremum over K, we see that h(f k)≤ kh(f ).
The proof of the other inequality uses the assumption that f is uniformly

continuous. Take δ > 0 such that d(x,y) < δ implies d(f j(x), f j(y)) < ε for
every j ∈ {0, . . . ,k− 1}. If E ⊂ M is an (n,δ)-generating set of K for f k then
E is an (nk,ε)-generating set of K for f . Therefore, gnk(f ,ε,K) ≤ gn(f k,δ,K).
This shows that kg(f ,ε,K)≤ g(f k,δ,K). Making ε and δ go to zero, we get that
kg(f ,K)≤ g(f k,K) for every compact set K. Hence, kh(f )≤ h(f k).

In particular, Proposition 10.1.14 holds for every continuous transformation
in a compact metric space. On the other hand, in the case of homeomorphisms
in compact spaces the conclusion extends to negative iterates:

Proposition 10.1.15. If f : M →M is a homeomorphism of a compact metric
space then h(f−1)= h(f ). Consequently, h(f n)= |n|h(f ) for every n ∈ Z.

Proof. Let α be an open cover of M. For every n≥ 1, denote

αn
+ = α∨ f−1(α)∨ ·· · ∨ f−n+1(α) and αn

− = α∨ f (α)∨ ·· ·∨ f n−1(α).

Observe that αn− = f n−1(αn+). Moreover, γ is a finite subcover of αn+ if and only
if f n−1(γ ) is a finite subcover of αn−. Since the two subcovers have the same
number of elements, it follows that H(αn+)=H(αn−). Therefore,

h(f ,α)= lim
n

1

n
H(αn

+)= lim
n

1

n
H(αn

−)= h(f−1,α).

Since α is arbitrary, this proves that h(f ) = h(f−1). The second part of the
statement follows from combining the first part with Proposition 10.1.14.
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312 Variational principle

The claim in Proposition 10.1.15 is generally false when the space M is not
compact:

Example 10.1.16. Let M = R with the distance d(x,y) = |x− y| and take f :
R→R to be given by f (x)= 2x. We are going to check that h(f ) �= h(f−1). Let
K = [0,1] and, given n ≥ 1 and ε > 0, take E ⊂ R to be any (n,ε)-generating
set of K. In particular, every point of f n−1(K)= [0,2n−1] is within less than ε
from some point of f n−1(E). Hence,

2ε#E= 2ε#f n−1(E)≥ 2n−1.

This proves that gn(f ,ε,K)≥ 2n−2/ε for every n and, thus, g(f ,ε,K)≥ log2. It
follows that h(f )≥ g(f ,K)≥ log2. On the other hand, f−1 is a contraction and
so it follows from Example 10.1.7 that its topological entropy h(f−1) is zero.

10.1.4 Exercises

10.1.1. Let M be a compact topological space. Show that if α and β are open covers of
M such that α ≺ β then H(α)≤H(β).

10.1.2. Let f : M → M be a continuous transformation and α,β be open covers of
a compact topological space M. Show that H(α ∨ β) ≤ H(α) + H(β) and
H(f−1(β))≤H(β). Check that if f is surjective then H(f−1(β))=H(β).

10.1.3. Let M be a compact topological space. Show that if f : M →M is a surjective
continuous transformation and β is an open cover of M then h(f ,β) =
h(f , f−1(β)). Moreover, if f is a homeomorphism then h(f ,β)= h(f , f (β)).

10.1.4. Let M= (0,∞) and f : M→M be given by f (x)= 2x. Calculate the topological
entropy of f when one considers in M:
(a) the usual distance d(x,y)= |x− y|;
(b) the distance d(x,y)= | logx− logy|.

[Observation: Hence, in non-compact spaces the topological entropy may
depend on the distance function, not just the topology.]

10.1.5. Consider in M two distances d1 and d2 that are uniformly equivalent: for every
ε > 0 there exists δ > 0 such that

d1(x,y) < δ⇒ d2(x,y) < ε and d2(x,y) < δ⇒ d1(x,y) < ε.

Show that if f : M → M is continuous with respect to either of the two
distances then the value of the topological entropy is the same relative to both
distances.

10.1.6. Let f : M→M and g : N→N be continuous transformations in compact metric
spaces. Show that if there exists a continuous injective mapψ : M→N such that
ψ ◦ f = g◦ψ then h(f )≤ h(g). Use this fact to show that the topological entropy
of the shift map σ : [0,1]Z→[0,1]Z is infinite (thus, the topological entropy of a
homeomorphism of a compact space need not be finite). [Observation: The first
claim remains valid for non-compact spaces, as long as we require the inverse
ψ−1 :ψ(M)→M to be uniformly continuous.]
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10.1.7. Show that if K,K1, . . . ,Kl are compact sets such that K is contained in K1∪·· ·∪
Kl then g(f ,K)≤maxj g(f ,Kj). Conclude that, given any δ > 0,

g(f )= sup{g(f ,K) : K compact with diamK < δ}
and analogously for s(f ).

10.1.8. Prove that the logistic map f : [0,1] → [0,1], f (x) = 4x(1− x) is topologically
conjugate to the map g : [0,1] → [0,1] defined by g(x)= 1− |2x− 1|. Use this
fact to calculate h(f ).

10.1.9. Let A be a finite alphabet and σ : �→ � be the shift map in � = AN. The
complexity of a sequence x ∈ � is defined by c(x) = limn n−1 logcn(x), where
cn(x) is the number of distinct words of length n that appear in x. Show that
this limit exists and coincides with the topological entropy of the restriction
σ : X → X of the shift map to the closure X of the orbit of x. [Observation:
One interesting application we have in mind is in the context of Example 6.3.10,
where x is the fixed point of a substitution.]

10.1.10. Check that if θ is the fixed point of the Fibonacci substitution in A = {0,1}
(see Example 6.3.10) then cn(θ)= n+1 for every n and so the complexity c(θ)
is equal to zero. Hence, the topological entropy of the shift map σ : X → X
associated with the Fibonacci substitution is equal to zero.

10.2 Examples

Let us use a few concrete situations to illustrate the ideas introduced in the
previous section.

10.2.1 Expansive maps

Recall (Section 9.2.3) that a continuous transformation f : M → M in a
compact metric space is said to be expansive if there exists ε0 > 0 such that
d(f j(x), f j(y)) < ε0 for every j ∈ N implies that x = y. When f : M → M is
invertible, we say that it is two-sided expansive if there exists ε0 > 0 such that
d(f j(x), f j(y)) < ε0 for every j ∈Z implies that x= y. In both cases, ε0 is called
a constant of expansivity for f .

Proposition 10.2.1. If ε0 > 0 is a constant of expansivity for f then

(i) h(f )= h(f ,α) for every open cover α with diameter less than ε0;
(ii) h(f )= g(f ,ε,M)= s(f ,ε,M) for every ε < ε0/2.

In particular, h(f ) <∞.

Proof. Let α be any open cover of M with diameter less than ε0. We claim that
limk diamαk= 0. Indeed, suppose that this is not so. It is clear that the sequence
of diameters is non-increasing. Then, there exists δ > 0 and for each k ≥ 1
there exist points xk and yk in the same element of αk such that d(xk,yk) ≥ δ.
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314 Variational principle

By compactness, we may find a subsequence (kj)j such that both x = limj xkj

and y= limj ykj exist. On the one hand, d(x,y) ≥ δ and so x �= y. On the other
hand, the fact that xk and yk are in the same element of αk implies that

d(f i(xk), f
i(yk))≤ diamα for every 0≤ i< k.

Passing to the limit, we get that d(f i(x), f i(y)) ≤ diamα < ε0 for every i ≥ 0.
This contradicts the hypothesis that ε0 is a constant of expansivity for f . This
contradiction proves our claim. Using Corollary 10.1.13, it follows that h(f )=
h(f ,α), as claimed in part (i).

To prove part (ii), let α be the open cover of M formed by the balls of
radius ε. Note that αn contains every dynamical ball B(x,n,ε):

B(x,n,ε)=
n−1⋂
j=0

f−j
(
B(f j(x),ε)

)
and each B(f j(x),ε) ∈ α.

If E is an (n,ε)-generating set of M then {B(a,n,ε) : a ∈ E} is an open cover of
M; in view of what we have just said, it is a subcover of αn. Therefore (recall
also Lemma 10.1.5),

N(αn)≤ gn(f ,ε,M)≤ sn(f ,ε,M) for every n.

Passing to the limit, we get that h(f ,α) ≤ g(f ,ε,M) ≤ s(f ,ε,M). Recall that
s(f ,ε,M)≤ s(f ,M)= h(f ). Since diamα < ε0, the first part of the proposition
yields that h(f )= h(f ,α). These relations imply part (ii).

The last claim in the proposition is a direct consequence, since g(f ,ε,M),
s(f ,ε,M) and h(f ,α) are always finite. Indeed, that h(f ,α) <∞ for every open
cover was observed right after the definition (10.1.3). Then (10.1.14) implies
that s(f ,ε,M) <∞ and (10.1.13) implies that g(f ,ε,M) <∞ for every ε > 0.

Exercise 10.2.8 contains an extension of Proposition 10.2.1 to h-expansive
transformations, due to Rufus Bowen [Bow72]. Exercise 10.1.6 shows that
the topological entropy of a continuous transformation, or even a homeomor-
phism, in a compact metric space may be infinite, if one omits the expansivity
assumption.

Next, we prove that for expansive maps the topological entropy is an upper
bound on the rate of growth of the number of periodic points. Let Fix(f n)

denote the set of all points x ∈M such that f n(x)= x.

Proposition 10.2.2. If M is a compact metric space and f : M → M is
expansive then

limsup
n

1

n
log#Fix(f n)≤ h(f ).

Proof. Let ε0 be a constant of expansivity for f and α be any open cover of
M with diamα < ε0. We claim that every element of αn contains at most one
point of Fix(f n). Indeed, if x,y ∈ Fix(f n) are in the same element of αn then
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d(f i(x), f i(y)) < diamα < ε0 for every i = 0, . . . ,n− 1. Since f n(x) = x and
f n(y) = y, it follows that d(f i(x), f i(y)) < ε0 for every i ≥ 0. By expansivity,
this implies that x= y, which proves our claim. It follows that

limsup
n

1

n
log#Fix(f n)≤ limsup

n

1

n
logN(αn)= h(f ,α).

Taking the limit when the diameter of α goes to zero, we get the conclusion of
the proposition.

In some interesting situations, one can show that the topological entropy
actually coincides with the rate of growth of the number of periodic points:

lim
n

1

n
log#Fix(f n)= h(f ). (10.2.1)

That is the case, for example, for the shifts of finite type, which we are going
to study in Section 10.2.2 (check Proposition 10.2.5 below). More generally,
(10.2.1) holds whenever f : M → M is an expanding transformation in a
compact metric space, as we are going to see in Section 11.3.

10.2.2 Shifts of finite type

Let X = {1, . . . ,d} be a finite set and A = (Ai,j)i,j be a transition matrix, that
is, a square matrix of dimension d ≥ 2 with coefficients in the set {0,1} and
such that no row is identically zero: for every i there exists j such that Ai,j = 1.
Consider the subset �A of � = XN consisting of all the sequences (xn)n ∈ �
that are A-admissible, meaning that

Axn,xn+1 = 1 for every n ∈N. (10.2.2)

It is clear that �A is invariant under the shift map σ : �→ �, in the sense
that σ(�A)⊂�A. Note also that �A is closed in � and, hence, it is a compact
metric space (this is similar to Lemma 7.2.5).

The restriction σA : �A → �A of the shift map σ : �→ � to this invariant
compact set is called the one-sided shift of finite type associated with A. The
two-sided shift of finite type associated with a transition matrix A is defined
analogously, considering � = XZ and requiring (10.2.2) for every n ∈ Z. In
this case, as part of the definition of a transition matrix, we also require the
columns (not just the rows) of A to be non-zero.

The restriction of the shift map σ : �→ � to the support of any Markov
measure is a shift of finite type:

Example 10.2.3. Given a stochastic matrix P= (Pi,j)i,j, define A= (Ai,j)i,j by

Ai,j =
{

1 if Pi,j > 0
0 if Pi,j = 0.

Note that A is a transition matrix: the definition of a stochastic matrix implies
that no row P is identically zero (in the two-sided situation we must assume
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1 2

3 4

Figure 10.1. Graph associated with a transition matrix

that the columns of P are also not zero; this is automatic, for example, if the
matrix P is aperiodic). Comparing (7.2.7) and (10.2.2), we see that a sequence
is A-admissible if and only if it is P-admissible. Let μ be the Markov measure
determined by a probability vector p = (pj)j with positive coefficients and
such that P∗p = p (recall Example 7.2.2). By Lemma 7.2.5, the support of
μ coincides with the set �A =�P of all admissible sequences.

It is useful to associate with any transition matrix A the oriented graph whose
vertices are the points of X = {1, . . . ,d} and such that there exists an edge from
vertex a to vertex b if and only if Aa,b = 1. In other words,

GA = {(a,b) ∈ X×X : Aa,b = 1}.
For example, Figure 10.1 describes the graph associated with the matrix

A=

⎛⎜⎜⎝
0 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1

⎞⎟⎟⎠ .

A path of length l≥ 1 in the graph GA is a sequence a0, . . . ,al in X such that
Aai−1,ai = 1 for every i, that is, such that there always exists an edge connecting
ai−1 to ai. Given a,b∈X and l≥ 1, denote by Al

a,b the number of paths of length
l starting at a and ending at b, that is, with a0 = a and al = b. Observe that:

1. A1
a,b = 1 if there exists an edge connecting a to b and A1

a,b = 0 otherwise. In
other words, A1

a,b = Aa,b for every a,b.
2. The paths of length l+m starting at a and ending at b are the concatenations

of the paths of length l starting at a and ending at some point z ∈ X with the
paths of length m starting at that point z and ending at b. Therefore,

Al+m
a,b =

d∑
z=1

Al
a,zA

m
z,b for every a,b ∈ X and every l,m≥ 1.

It follows, by induction on l, that Al
a,b coincides with the coefficient in row a

and column b of the matrix Al.
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The basic topological properties of shifts of finite type are analyzed in
Exercise 10.2.2. In the proposition that follows we calculate the topological
entropy of these transformations. We need a few prior observations about
transition matrices.

Recall that the spectral radius ρ(B) of a linear map B :Rd →Rd (that is, the
largest absolute value of an eigenvalue of B) is given by

ρ(B)= lim
n
‖Bn‖1/n = lim

n
| trcBn|1/n, (10.2.3)

where trc denotes the trace of the matrix and ‖ · ‖ denotes any norm in
the vector space of linear maps (all norms are equivalent, as we are in
finite dimension). Most of the time, one uses the operator norm ‖B‖ =
sup{‖Bv‖/‖v‖ : v �= 0}, but it will also be useful to consider the norm ‖ · ‖s

defined by

‖B‖s =
d∑

i,j=1

|Bi,j|.

Now take A to be a transition matrix. Since the coefficients of A are
non-negative, we may use the Perron–Frobenius theorem (Theorem 7.2.3)
to conclude that A admits a non-negative eigenvalue λA that is equal to the
spectral radius. By our definition of the transition matrix, we also have that
all the rows of A are non-zero. Then the same is true about An, for any n ≥ 1
(Exercise 10.2.5). This implies that all the coefficients of the vector An(1, . . . ,1)
are positive (and integer) and, thus,

‖An‖ ≥ ‖A
n(1, . . . ,1)‖
‖(1, . . . ,1)‖ ≥ 1 for every n≥ 1.

Using (10.2.3), we get that λA = ρ(A)≥ 1 for every transition matrix A.

Proposition 10.2.4. The topological entropy h(σA) of a shift of finite type σA :
�A →�A is given by h(σA)= logλA, where λA is the largest eigenvalue of the
transition matrix A.

Proof. We treat the case of one-sided shifts; the two-sided case is analogous,
as the reader may readily check. Consider the open cover α of �A formed by
the restrictions

[0;a]A = {(xj)j ∈�A : x0 = a}
of the cylinders [0;a] of �. For each n≥ 1, the open cover αn is formed by the
restrictions

[0;a0, . . . ,an−1]A = {(xj)j ∈�A : xj = aj for j= 0, . . . ,n− 1}
of the cylinders of length n. Observe that [0;a0, . . . ,an−1]A is non-empty if and
only if a0, . . . ,an−1 is a path (of length n−1) in the graph GA: it is evident that
this condition is necessary; to see that it is also sufficient, use the assumption
that for every i there exists j such that Ai,j = 1. Since the cylinders are pairwise
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disjoint, this observation shows that N(αn) is equal to the total number of paths
of length n− 1 in the graph GA. In other words,

N(αn)=
d∑

i,j=1

An−1
i,j = ‖An−1‖s.

By the spectral radius formula (10.2.3), it follows that

h(σA,α)= lim
n

1

n
logN(αn)= lim

n

1

n
log‖An−1‖s = logρ(A)= logλA.

Finally, since diamαn → 0, Corollary 10.1.13 yields that h(σA)= h(σA,α).

Proposition 10.2.5. If σA :�A →�A is a shift of finite type then

h(σA)= lim
n

1

n
log#Fix(σ n

A).

Proof. We treat the case of one-sided shifts, leaving the two-sided case for the
reader. Note that (xk)k ∈ �A is a fixed point of σ n

A if and only if xk = xk−n for
every k≥ n. In particular, every cylinder [0;a0, . . . ,an−1]A contains at most one
element of Fix(σ n

A). Moreover, the cylinder does contain a fixed point if and
only if a0, . . . ,an−1,a0 is a path (of length n) in the graph GA. This proves that

#Fix(σ n
A)=

d∑
i=1

An
i,i = trcAn

for every n. Consequently,

lim
n

1

n
log#Fix(σ n

A)= lim
n

1

n
log trcAn = logρ(A).

Now the conclusion is a direct consequence of the previous proposition.

10.2.3 Topological entropy of flows

The definition of topological entropy extends easily to the context of
continuous flows φ = {φt : M → M : t ∈ R} in a metric space M, as we now
explain.

Given x ∈M and T > 0 and ε > 0, the dynamical ball of center x, length T
and radius ε > 0 is the set

B(x,T ,ε)= {y ∈M : d(φt(x),φt(y)) < ε for every 0≤ t≤ T}.
Let K be any compact subset of M. We say that E ⊂M is a (T ,ε)-generating
set for K if

K ⊂
⋃
x∈E

B(x,T ,ε),

and we say that E⊂ K is a (T ,ε)-separated set if the dynamical ball B(x,T ,ε)
of each x ∈ E contains no other element of E.
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Denote by gT(φ,ε,K) the smallest cardinality of a (T ,ε)-generating set of K
and by sT(φ,ε,K) the largest cardinality of a (T ,ε)-separated set E⊂K. Then,
take

g(φ,K)= lim
ε→0

limsup
T→∞

1

T
loggT(φ,ε,K) and

s(φ,K)= lim
ε→0

limsup
T→∞

1

T
logsT(φ,ε,K)

and define

g(φ)= sup
K

g(φ,K) and s(φ)= sup
K

s(φ,K),

where both suprema are taken over all the compact sets K ⊂M.
The next result, a continuous-time analogue of Proposition 10.1.4, ensures

that these two last numbers coincide. We leave the proof up to the reader
(Exercise 10.2.3). By definition, the topological entropy of the flow φ is the
number h(φ)= g(φ)= s(φ).

Proposition 10.2.6. We have g(φ,K) = s(φ,K) for every compact K ⊂ M.
Consequently, g(φ)= s(φ).

In the statement that follows we take the flow to be uniformly continuous,
that is, such that for every T > 0 and ε > 0 there exists δ > 0 such that

d(x,y) < δ ⇒ d(φt(x),φt(y)) < ε for every t ∈ [−T ,T].
Observe that this is automatic for continuous flows when M is compact.

Proposition 10.2.7. If the flow φ is uniformly continuous then its topological
entropy h(φ) coincides with the topological entropy h(φ1) of its time-1 map.

Proof. It suffices to prove that g(φ,K)= g(φ1,K) for every compact K ⊂M.
It is clear that if E⊂M is (T ,ε)-generating for K relative to the flow φ then

E is also (n,ε)-generating for K relative to the time-1 map, for any n≤ T + 1.
In particular, gn(φ

1,ε,K)≤ gT(φ,ε,K). It follows that

limsup
n

1

n
loggn(φ

1,ε,K)≤ limsup
T→∞

1

T
loggT(φ,ε,K),

and so g(φ1,K)≤ g(φ,K).
The hypothesis of uniform continuity is used for the opposite inequality.

Given ε > 0, fix δ ∈ (0,ε) such that if d(x,y) < δ then d(φt(x),φt(y)) < ε for
every t ∈ [0,1]. If E⊂M is an (n,δ)-generating set of K relative to φ1 then E is
a (T ,ε)-generating set of K relative to the flow φ, for any T ≤ n. In particular,
gT(φ,ε,K)≤ gn(φ

1,δ,K). It follows that

limsup
T→∞

1

T
loggT(φ,ε,K)≤ limsup

n

1

n
loggn(φ

1,δ,K)
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320 Variational principle

(given a sequence (Tj)j that realizes the supremum on the left-hand side,
consider the sequence (nj)j given by nj=[Tj]+1). Making ε→ 0 (then δ→ 0),
we get that g(φ,K)≤ g(φ1,K).

We have seen previously that for transformations the topological entropy is
an invariant of topological (uniformly continuous) conjugacy. The same is true
for flows: this follows from Proposition 10.2.7 and the obvious observation
that any flow conjugacy also conjugates the corresponding time-1 maps.
However, in the continuous-time context, one more often uses the concept
of topological equivalence, which allows for rescaling of time. Clearly,
topological equivalence need not preserve the topological entropy.

10.2.4 Differentiable maps

In this section we take M to be a Riemannian manifold (Appendix A.4.5).
Let f : M →M be a differentiable map and Df (x) : TxM → Tf (x)M denote the
derivative of f at each point x ∈M. Our goal is to prove that the norm of the
derivative, defined by

‖Df (x)‖ = sup

{‖Df (x)v‖
‖v|| : v ∈ TxM and v �= 0

}
,

determines an upper bound for the topological entropy h(f ) of f . For x> 0, we
denote log+ x=max{logx,0}.
Proposition 10.2.8. Let f : M →M be a differentiable map in a Riemannian
manifold of dimension d such that ‖Df‖ is bounded. Then

h(f )≤ d log+ sup‖Df‖<∞.

Proof. Let L= sup{‖Df (x)‖ : x ∈M}. By the mean value theorem,

d(f (x), f (y))≤ Ld(x,y) for every x,y ∈M.

If L ≤ 1 then, as we have seen in Example 10.1.7, the entropy of f is zero.
Thus, from now on we may suppose that L> 1.

Let A be an atlas of the manifold M consisting of charts ϕα : Uα→ Xα with
Xα = (−2,2)d. Given any compact set K ⊂ M, we may find a finite family
AK ⊂A such that {

ϕ−1
α ((−1,1)d) : ϕα ∈AK

}
covers K. Fix B> 0 such that d(u,v)≤ Bd(ϕα(u),ϕα(v)) for all u,v ∈ [−1,1]d
and ϕα ∈AK . Given n≥ 1 and ε > 0, fix δ = (ε/B√d)L−n. Denote by δZd the
set of all points of the form (δk1, . . . ,δkd) with kj ∈Z for every j= 1, . . . ,d. Let
E⊂M be the union of the pre-images ϕ−1

α (δZ
d ∩ (−1,1)d), with ϕα ∈AK .

Note that every point of (−1,1)d is at a distance less than δ
√

d from some
point of δZd ∩ (−1,1)d. Therefore, for any ϕα ∈AK , every x ∈ ϕ−1

α ((−1,1)d)
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is at a distance less than Bδ
√

d from some point a ∈ ϕ(δZd ∩ (−1,1)d). Then,
by the choice of δ,

d(f j(x), f j(a))≤ LjBδ
√

d< LnBδ
√

d= ε
for every j = 0, . . . ,n− 1. This proves that E is an (n,ε)-generating set for K.
On the other hand, by construction,

#E ≤ #AK#
(
δZd ∩ (−1,1)d

)≤ #AK(2/δ)
d ≤ #AK(2B

√
dLn/ε)d,

so the expression on the right-hand side is an upper bound for gn(f ,ε,K).
Consequently,

g(f ,ε,K)≤ limsup
n

1

n
log(2B

√
dLn/ε)d = d logL.

Making ε→ 0 and taking the supremum over K, we get that h(f )≤ d logL.

Combining Propositions 10.1.14 and 10.2.8, we find that

h(f )≤ 1

n
log+ sup‖Df n‖ for every n≥ 1.

When f is a homeomorphism, using Proposition 10.1.15 we also get that

h(f )≤ 1

n
log+ sup‖Df−n‖ for every n≥ 1.

The following conjecture of Michael Shub [Shu74] is central to the theory
of topological entropy:

Conjecture 10.2.9 (Entropy conjecture). If f : M→M is a diffeomorphism of
class C1 in a Riemannian manifold of dimension d, then

h(f )≥ max
1≤k≤d

logρ(fk), (10.2.4)

where each ρ(fk) denotes the spectral radius of the action fk : Hk(M)→Hk(M)
induced by f in the real homology of dimension k.

The full statement of the conjecture remains open to date, but several partial
answers and related results have been obtained, both positive and negative. Let
us summarize what is known in this regard.

It follows from a result of Yano [Yan80] that the inequality (10.2.4) is true
for an open and dense subset of the space of homeomorphisms in any manifold
of dimension d ≥ 2. Moreover, it is true for every homeomorphism in certain
classes of manifolds, such as the spheres or the infranilmanifolds [MP77b,
MP77a, MP08]. On the other hand, Shub [Shu74] exhibited a Lipschitz
homeomorphism, with zero topological entropy, for which (10.2.4) is false.
See Exercise 10.2.7.

A useful way to approach (10.2.4) is by comparing the topological entropy
with each one of the spectral radii ρ(fk). The case k = d is relatively easy.
Indeed, for any continuous map f in a manifold of dimension d, the spectral
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322 Variational principle

radius ρ(fd) is equal to the absolute value |deg f | of the degree of the map. In
particular, the inequality h(f ) ≥ logρ(fd) is trivial for any homeomorphism.
For non-invertible continuous maps, the topological entropy may be less than
the logarithm of the absolute value of the degree. However, it was shown in
[MP77b] that for differentiable maps one always has h(f )≥ log |deg f |.

Anthony Manning [Man75] proved that the inequality h(f ) ≥ logρ(f1) is
true for every homeomorphism in a manifold of any dimension d. It follows
that h(f )≥ logρ(fd−1), since the duality theorem of Poincaré implies that

ρ(fk)= ρ(fd−k) for every 0< k< d.

In particular, the theorem of Manning together with the observations in
the previous paragraph prove that entropy conjecture is true for every
homeomorphisms in any manifold of dimension d ≤ 3.

Rufus Bowen [Bow78] proved that for any homeomorphism in a manifold
the topological entropy h(f ) is greater than or equal to the logarithm of the rate
of growth of the fundamental group. One can show that this rate of growth is
greater than or equal to ρ(f1). Thus, this result of Bowen implies the theorem
of Manning that we have just mentioned.

The main result concerning the entropy conjecture is the theorem of
Yosef Yomdin [Yom87], according to which the conjecture is true for every
diffeomorphism of class C∞. The crucial ingredient in the proof is a relation
between the topological entropy h(f ) and the diffeomorphism’s rate of growth
of volume, which is defined as follows. For each 1 ≤ k < d, let Bk be the unit
ball in Rk. Denote by v(σ ) the k-dimensional volume of the image of any
differentiable embedding σ : Bk →M. Then, define

vk(f )= sup
σ

limsup
n

1

n
logv(f n ◦σ),

where the supremum is taken over all the embeddings σ : Bk →M of class C∞.
Define also v(f )=max{vk(f ) : 1≤ k< d}. It is not difficult to check that

logρ(fk)≤ vk(f ) for every 1≤ k< d. (10.2.5)

On the one hand, Sheldon Newhouse [New88] proved that h(f )≤ v(f ) for every
diffeomorphism of class Cr with r > 1. On the other hand, Yomdin [Yom87]
proved the opposite inequality:

v(f )≤ h(f ), (10.2.6)

for every diffeomorphism of class C∞ (this inequality is false, in general, in the
Cr case with r <∞). Combining (10.2.5) with (10.2.6), one gets the entropy
conjecture (10.2.4) for every diffeomorphism of class C∞.

Concerning systems of class C1, it is also known that the inequality (10.2.4)
is true for every Axiom A diffeomorphism with no cycles [SW75], for certain
partially hyperbolic diffeomorphisms [SX10] and, more generally, for any C1

diffeomorphism far from homoclinic tangencies [LVY13].
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10.2.5 Linear endomorphisms of the torus

In this section we calculate the topological entropy of the linear endomor-
phisms of the torus:

Proposition 10.2.10. Let fA : Td → Td be the endomorphism induced on the
torus Td by some square matrix A of dimension d with integer coefficients and
non-zero determinant. Then

h(fA)=
d∑

j=1

log+ |λj|, (10.2.7)

where λ1, . . . ,λd are the eigenvalues of A, counted with multiplicity.

We have seen in Proposition 9.4.3 that the entropy of fA with respect to
the Haar measure μ is equal to the expression on the right-hand side of
(10.2.7). By the variational principle (Theorem 10.1), whose proof is contained
in Section 10.4 below, the topological entropy is greater than or equal to the
entropy of the transformation with respect to any invariant probability measure.
Thus,

h(fA)≥ hμ(f )=
d∑

j=1

log+ |λj|.

In what follows, we focus on proving the opposite inequality:

h(fA)≤
d∑

j=1

log+ |λj|. (10.2.8)

Initially, assume that A is diagonalizable, that is, that there exists a basis
v1, . . . ,vd of Rd with Avi = λivi for each i. Then, clearly, we may take the
elements of such a basis to be unit vectors. Moreover, up to renumbering the
eigenvalues, we may assume that there exists u∈ {0, . . . ,d} such that |λi|> 1 for
1≤ i≤ u and |λi| ≤ 1 for every i> u. Let e1, . . . ,ed be the canonical basis of Rd

and P : Rd → Rd be the linear isomorphism defined by P(ei) = vi for each i.
Then P−1AP is a diagonal matrix. Fix L > 0 large enough so that P((0,L)d)
contains some unit cube

∏d
i=1[bi,bi + 1]d. See Figure 10.2. Let π : Rd → Td

be the canonical projection. Then πP((0,L)d) contains the whole torus Td.
Given n≥ 1 and ε > 0, fix δ > 0 such that ‖P‖δ√d< ε. Moreover, for each

i= 1, . . . ,d, take

δi =
{
δ|λi|−n if i≤ u
δ if i> u.

Consider the set

E= πP
({
(k1δ1, . . . ,kdδd) ∈ (0,L)d : k1, . . . ,kd ∈ Z

})
.

Observe also that, given any j≥ 0,

f j
A(E)⊂ πP

({
(k1λ

j
1δ1, . . . ,kdλ

j
dδd) : k1, . . . ,kd ∈ Z

})
.
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L

L

P

b1

b2

b1 + 1

b2 + 1

Figure 10.2. Building an (n,ε)-generating set in Td

Consider 0≤ j< n. By construction, |λj
iδi| ≤ δ for every i= 1, . . . ,d. Therefore,

every point of Rd is at a distance less than or equal to δ
√

d from some point
of the form (k1λ

j
1δ1, . . . ,kdλ

j
dδd). Then (see Figure 10.2), for each x ∈ Td we

may find a∈E such that d(f j(x), f j(a))≤‖P‖δ√d<ε for every 0≤ j< n. This
shows that E is an (n,ε)-generating set for Td. On the other hand,

#E ≤
d∏

i=1

L

δi
=
(

L

δ

)d u∏
i=1

|λi|n.

These observations show that gn(fA,ε,Td) ≤ (L/δ)d∏u
i=1 |λi|n for every n ≥ 1

and ε > 0. Hence,

h(f )= lim
ε→0

limsup
n

1

n
gn(fA,ε,Td)≤

u∑
i=1

log |λi| =
d∑

i=1

log+ |λi|.

This proves Proposition 10.2.10 in the case when A is diagonalizable.
The general case may be treated in a similar fashion, writing the matrix A in

its Jordan canonical form. The reader is invited to carry out the details.

10.2.6 Exercises

10.2.1. Let (Mi,di), i = 1,2 be metric spaces and fi : Mi → Mi, i = 1,2 be continuous
transformations. Let M =M1×M2, d be the distance defined in M by

d((x1,x2),(y1,y2))=max{d1(x1,y1),d2(x2,y2)}
and f : M→M be the transformation defined by f (x1,x2)= (f1(x1), f2(x2)). Show
that h(f ) ≤ h(f1)+ h(f2) and the identity holds if at least one of the spaces is
compact.

10.2.2. Let σA : �A → �A be a shift of finite type, either one-sided or two-sided. We

say that a transition matrix A is irreducible if for any i, j ∈ X there exists n ≥ 1

such that An
i,j > 0 and that A is aperiodic if there exists n ≥ 1 such that An

i,j > 0

for every i, j ∈ X. Show that:

(a) If A is irreducible then the set of periodic points of σA is dense in�A.
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10.3 Pressure 325

(b) σA is transitive if and only if A is irreducible.
(c) σA is topologically mixing if and only if A is aperiodic.
[Observation: Condition (b) means that the oriented graph GA is connected:
given any a,b ∈ X there exists some path in GA starting at a and ending
at b.]

10.2.3. Prove Proposition 10.2.6.
10.2.4. Let M be a compact metric space. Show that, given any ε > 0, the restriction

of the topological entropy function f �→ h(f ) to the set of continuous
transformations f : M→M that are ε-expansive is upper semi-continuous (with
respect to the topology of uniform convergence).

10.2.5. Show that if A is a transition matrix then, for every k ≥ 1, no row of Ak is
identically zero. The same is true for the columns of Ak, k ≥ 1, if we assume
that A is a transition matrix in the two-sided sense.

10.2.6. (a) Let f : M → M be a surjective local homeomorphism in a compact metric
space and let d= infy #f−1(y). Prove that h(f )≥ logd.
(b) Let f : S1 → S1 be a continuous map in the circle. Show that h(f ) is greater

than or equal to the logarithm of the absolute value of the degree of f , that
is, h(f )≥ log |deg f |.

[Observation: Misiurewicz and Przytycki [MP77b] proved that h(f )≥ log |deg f |
for every map f : M→M of class C1 in a compact manifold.]

10.2.7. Consider the map f : C→ C defined by f (z)= zd/(2|z|d−1), with d ≥ 2. Prove
that the topological entropy of f is zero, but the degree of f is d. Why is this not
in contradiction with Exercise 10.2.6?

10.2.8. Let f : M→M be a continuous map in a compact metric space M. Given ε > 0,
define

g∗(f ,ε)= sup{g(f ,B(x,∞,ε)) : x ∈M},
where B(x,∞,ε) denotes the set of all y ∈ M such that d(f i(x), f i(y)) ≤ ε for
every n≥ 0. Bowen [Bow72] has shown that, given b> 0 and δ > 0, there exists
c> 0 such that

loggn(f ,δ,B(x,n,ε)) < c+ (g∗(f ,ε)+ b)n for every x ∈M and n≥ 1.

Using this fact, prove that h(f ) ≤ g(f ,ε,M) + g∗(f ,ε). One says that f is
h-expansive if g∗(f ,ε) = 0 for some ε > 0. Conclude that in that case
h(f )= g(f ,ε,M). [Observation: This generalizes Proposition 10.2.1, since every
expansive transformation is also h-expansive.]

10.3 Pressure

In this section we introduce an important extension of the concept of
topological entropy, called (topological) pressure, and we study its main
properties. Throughout, we consider only continuous transformations in
compact metric spaces. Related to this, check Exercises 10.3.4 and 10.3.5.
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10.3.1 Definition via open covers

Let f : M →M be a continuous transformation in a compact metric space. We
call a potential in M any continuous function φ : M → R. For each n ∈ N,
define φn : M→R by φn =∑n−1

i=0 φ ◦ f i. Given an open cover α of M, let

Pn(f ,φ,α)= inf

{∑
U∈γ

sup
x∈U

eφn(x) : γ is a finite subcover of αn

}
. (10.3.1)

This sequence logPn(f ,φ,α) is subadditive (Exercise 10.3.1) and so the limit

P(f ,φ,α)= lim
n

1

n
logPn(f ,φ,α) (10.3.2)

exists. Define the pressure of the potential φ with respect to f to be the limit
P(f ,φ) of P(f ,φ,α) when the diameter of α goes to zero. The existence of this
limit is guaranteed by the following lemma:

Lemma 10.3.1. There exists limdiamα→0 P(f ,φ,α), that is, there exists some
P(f ,φ) ∈ R̄ such that

lim
k

P(f ,φ,αk)= P(f ,φ)

for every sequence (αk)k of open covers with diamαk → 0.

Proof. Let (αk)k and (βk)k be any sequences of open covers with diameters
converging to zero. Given any ε > 0, fix δ > 0 such that |φ(x)− φ(y)| ≤ ε
whenever d(x,y)≤ δ. By assumption, diamαk<δ for every k sufficiently large.
For fixed k, let ρ > 0 be a Lebesgue number for αk. By assumption, diamβl<ρ

for every l sufficiently large. By the definition of Lebesgue number, it follows
that every B ∈ βl is contained in some A ∈ αk. Observe also that

sup
x∈A
φn(x)≤ nε+ sup

y∈B
φn(y)

for every n≥ 1, since diamαk < δ. This implies that

Pn(f ,φ,αk)≤ enεPn(f ,φ,βl) for every n≥ 1

and, hence, P(f ,φ,αk) ≤ ε+P(f ,φ,βl). Making l→∞ and then k→∞, we
get that

limsup
k

P(f ,φ,αk)≤ ε+ liminf
l

P(f ,φ,βl).

Since ε > 0 is arbitrary, it follows that limsupk P(f ,φ,αk)≤ liminfl P(f ,φ,βl).
Exchanging the roles of the two sequences of covers, we conclude that the
limits limk P(f ,φ,αk) and liml P(f ,φ,βl) exist and are equal.

Before we proceed, let us mention a few simple consequences of the
definitions. The first is that the pressure of the zero potential coincides with
the topological entropy. Indeed, it is immediate from (10.3.1) that Pn(f ,0,α)=
N(αn) for every n ≥ 1 and, thus, P(f ,0,α) = h(f ,α) for every open cover α.
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10.3 Pressure 327

Let (αk)k be any sequence of open covers with diameters going to zero. Then,
by Proposition 10.1.12 and the definition of the pressure,

h(f )= lim
k

h(f ,αk)= lim
k

P(f ,0,αk)= P(f ,0). (10.3.3)

Observe, however, that for general potentials P(f ,φ) need not coincide with
the supremum of P(f ,φ,α) over all open covers α (see Exercise 10.3.5).

Given any constant c ∈ R, we have that Pn(f ,φ + c,α) = ecnPn(f ,φ,α) for
every n ≥ 1 and, consequently, P(f ,φ + c,α) = P(f ,φ,α)+ c for any open
cover α. Hence,

P(f ,φ+ c)= P(f ,φ)+ c. (10.3.4)

Analogously, if φ ≤ ψ then Pn(f ,φ,α) ≤ Pn(f ,ψ ,α) for every n ≥ 1, which
implies that P(f ,φ,α)= P(f ,ψ ,α) for every open cover α. That is,

φ ≤ψ⇒ P(f ,φ)≤ P(f ,ψ). (10.3.5)

In particular, since infφ ≤ φ ≤ supφ, we have that

h(f )+ infφ ≤ P(f ,φ)≤ h(f )+ supφ (10.3.6)

for every potential φ. An interesting corollary is that if h(f ) is finite then
P(f ,φ) < ∞ for every potential φ and, otherwise, P(f ,φ) = ∞ for every
potential φ. An example of this last situation is given in Exercise 10.1.6.

Another simple consequence of the definition is that the pressure is an
invariant of topological equivalence:

Proposition 10.3.2. Let f : M→M and g : N →N be continuous transforma-
tions in compact metric spaces. If there exists a homeomorphism h : M → N
such that h ◦ f = g ◦ h then P(g,φ)= P(f ,φ ◦ h) for every potential φ in N.

Proof. The correspondence α �→ h(α) is a bijection between the spaces of
open covers of M and N, respectively. Moreover, since h and its inverse are
(uniformly) continuous, diamαk → 0 if and only if diamh(αk)→ 0. Consider
the potential ψ = φ ◦ h in M. Note that ψn = φn ◦ h and so

sup
x∈U
ψn(x)= sup

y∈h(U)
φn(y)

for every U⊂M and every n≥ 1. Hence, Pn(f ,ψ ,α)=Pn(g,φ,h(α)) for every
n and every open cover α of M. Thus, P(f ,ψ ,α)=P(g,φ,h(α)) and, taking the
limit when the diameter of α goes to zero, P(f ,ψ)= P(g,φ).

One may replace the supremum by the infimum in (10.3.1), that is, replace
Pn(f ,φ,α) with

Qn(f ,φ,α)= inf

{∑
U∈γ

inf
x∈U

eφn(x) : γ is a finite subcover of αn

}
,
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328 Variational principle

although this makes the definition a bit more complicated. In contrast with
logPn(f ,φ,α), the sequence logQn(f ,φ,α) need not be subadditive. Denote

Q−(f ,φ,α)= liminf
n

1

n
logQn(f ,φ,α) and

Q+(f ,φ,α)= limsup
n

1

n
logQn(f ,φ,α).

Clearly, Q−(f ,φ,α) ≤ Q+(f ,φ,α) for every open cover α of M. Furthermore,
Qn(f ,0,α)=Pn(f ,0,α)=N(αn) for every n and so Q−(f ,0,α)=Q+(f ,0,α)=
P(f ,0,α)= h(f ,α).

Corollary 10.3.3. For any potential φ : M→R,

P(f ,φ)= lim
diamα→0

Q+(f ,φ,α)= lim
diamα→0

Q−(f ,φ,α).

Proof. Since φ is (uniformly) continuous, given any ε > 0 there exists δ > 0
such that

inf
x∈C
φn(x)≤ sup

x∈C
φn(x)≤ nε+ inf

x∈C
φn(x)

whenever diamC ≤ δ. So,

Qn(f ,φ,α)≤ Pn(f ,φ,α)≤ enεQn(f ,φ,α)

for every open cover α with diamα ≤ δ. It follows that

limsup
n

1

n
logQn(f ,φ,α)≤ P(f ,φ,α)≤ ε+ liminf

n

1

n
logQn(f ,φ,α).

As the diameter of α goes to zero, we may take ε→ 0. Thus,

lim
diamα→0

Q−(f ,φ,α)= lim
diamα→0

Q+(f ,φ,α)= lim
diamα→0

P(f ,φ,α)= P(f ,φ),

as claimed.

10.3.2 Generating sets and separated sets

Now we present two alternative definitions of pressure, in terms of generating
sets and separated sets. As before, f : M →M is a continuous transformation
in a compact metric space and φ : M→R is a continuous function.

Given n≥ 1 and ε > 0, define

Gn(f ,φ,ε)= inf

{∑
x∈E

eφn(x) : E is an (n,ε)-generating set for M

}
and

Sn(f ,φ,ε)= sup

{∑
x∈E

eφn(x) : E is an (n,ε)-separated set in M

}
.

(10.3.7)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.011
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.011
https://www.cambridge.org/core
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Next, define

G(f ,φ,ε)= limsup
n

1

n
logGn(f ,φ,ε) and

S(f ,φ,ε)= limsup
n

1

n
logSn(f ,φ,ε),

(10.3.8)

and also

G(f ,φ)= lim
ε→0

G(f ,φ,ε) and S(f ,φ)= lim
ε→0

S(f ,φ,ε) (10.3.9)

(these limits exist because the functions are monotonic in ε).
Note that Gn(f ,0,ε) = gn(f ,ε) and Sn(f ,0,ε) = sn(f ,ε) for every n ≥ 1 and

every ε > 0. Therefore (Proposition 10.1.6), G(f ,0) = g(f ) and S(f ,0) = s(f )
coincide with the topological entropy h(f ). In fact,

Proposition 10.3.4. P(f ,φ)=G(f ,φ)= S(f ,φ) for every potential φ in M.

Proof. Consider n ≥ 1 and ε > 0. It is clear from the definitions that every
maximal (n,ε)-separated set is (n,ε)-generating. Then,

Sn(f ,φ,ε)= sup

{∑
x∈E

eφn(x) : E is (n,ε)-separated

}

= sup

{∑
x∈E

eφn(x) : E is (n,ε)-separated maximal

}

≥ inf

{∑
x∈E

eφn(x) : E is (n,ε)-generating

}
=Gn(f ,φ,ε)

(10.3.10)

for every n and every ε. This implies that G(f ,φ,ε)≤ S(f ,φ,ε) for every ε and,
thus, G(f ,φ)≤ S(f ,φ).

Next, we prove that S(f ,φ)≤ P(f ,φ). Let ε and δ be positive numbers such
that d(x,y)≤ δ implies |φ(x)−φ(y)| ≤ ε. Let α be any open cover of M with
diamα < δ and E⊂M be any (n,δ)-separated set. Given any subcover γ of αn,
it is obvious that every point of E is contained in some element of γ . On the
other hand, the hypothesis that E is (n,δ)-separated implies that each element
of γ contains at most one element of E. Therefore,∑

x∈E

eφn(x) ≤
∑
U∈γ

sup
y∈U

eφn(y).

Taking the supremum in E and the infimum in γ , we get that

Sn(f ,φ,δ)≤ Pn(f ,φ,α). (10.3.11)

It follows that S(f ,φ,δ) ≤ P(f ,φ,α). Making δ→ 0 (hence diamα→ 0), we
conclude that S(f ,φ)≤ P(f ,φ), as stated.

Finally, we prove that P(f ,φ) ≤ G(f ,φ). Let ε and δ be positive numbers
such that d(x,y)≤ δ implies |φ(x)−φ(y)| ≤ ε. Let α be any open cover of M
with diamα < δ and ρ > 0 be a Lebesgue number of α. Let E ⊂ M be any
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330 Variational principle

(n,ρ)-generating set for M. For each x ∈ E and i = 0, . . . ,n− 1, there exists
Ax,i ∈ α such that B(f i(x),ρ) is contained in Ax,i. Denote

γ (x)=
n−1⋂
i=0

f−i(Ax,i).

Observe that γ (x) ∈ αn and B(x,n,ρ) ⊂ γ (x). Hence, the hypothesis that E is
(n,ρ)-generating implies that γ = {γ (x) : x ∈ E} is a subcover of α. Observe
also that

sup
y∈γ (x)

φn(y)≤ nε+φn(x) for every x ∈ E,

since diamAx,i < δ for every i. It follows that∑
U∈γ

sup
y∈U

eφn(y) ≤ enε
∑
x∈E

eφn(x).

This proves that Pn(f ,φ,α)≤ enεGn(f ,φ,ρ) for every n≥ 1 and, consequently,

P(f ,φ,α)≤ ε+ liminf
n

1

n
Gn(f ,φ,ρ)≤ ε+G(f ,φ,ρ). (10.3.12)

Making ρ→ 0 we find that P(f ,φ,α) ≤ ε+G(f ,φ). Hence, making ε, δ and
diamα go to zero, P(f ,φ)≤G(f ,φ).

The conclusion of Proposition 10.3.4 may be rewritten as follows:

P(f ,φ)= lim
s→0

limsup
n

1

n
logGn(f ,φ,s)

= lim
s→0

limsup
n

1

n
logSn(f ,φ,s).

(10.3.13)

The relations (10.3.12) and (10.3.10) in the proof also give that

P(f ,φ)≤ lim
s→0

liminf
n

1

n
logGn(f ,φ,s)≤ lim

s→0
liminf

n

1

n
logSn(f ,φ,s).

Combining these observations, we get:

P(f ,φ)= lim
s→0

liminf
n

1

n
logGn(f ,φ,s)

= lim
s→0

liminf
n

1

n
logSn(f ,φ,s).

(10.3.14)

10.3.3 Properties

Properties of the pressure function in the spirit of Proposition 10.1.10
and Corollary 10.1.13 are stated in Exercise 10.3.3. Let us also extend
Propositions 10.1.14 and 10.1.15 to the present context:

Proposition 10.3.5. Let f : M → M be a continuous transformation in a
compact metric space and φ be a potential in M. Then:
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10.3 Pressure 331

(1) P(f k,φk)= kP(f ,φ) for every k≥ 1.
(2) If f is a homeomorphism then P(f−1,φ)= P(f ,φ).

Proof. Given a potential φ : M→R and an open cover α, denoteψ =∑k−1
i=0 φ◦

f i and β =∨k−1
i=0 f−i(α). Let g= f k. It is clear that

n−1∑
j=0

ψ ◦ gj =
kn−1∑
l=0

φ ◦ f l and
n−1∨
j=0

g−j(β)=
nk−1∨
l=0

f−l(α).

Then,

Pn(g,ψ ,β)= inf

{∑
U∈γ

sup
x∈U

e
∑n−1

j=0 ψ(g
j(x)) : γ ⊂

n−1∨
j=0

g−j(β)

}

= inf

{∑
U∈γ

sup
x∈U

e
∑kn−1

l=0 φ(f l(x)) : γ ⊂
nk−1∨
l=0

f−l(α)

}
= Pkn(f ,φ,α).

Consequently, P(f k,ψ ,β) = kP(f ,φ,α) for any α. Making diamα→ 0 (note
that diamβ→ 0), we deduce that P(f k,ψ)= kP(f ,φ). This proves part (1).

Suppose that f is a homeomorphism. Given an open cover α and an integer
number n≥ 1, denote

φ−n =
n−1∑
j=0

φ ◦ f−j and αn
− = α∨ f (α)∨ ·· · ∨ f n−1(α).

It is clear that φ−n = φn ◦ f n−1 and αn− = f n−1(αn). Moreover, γ is a subcover of
αn if and only if δ = f n−1(γ ) is a subcover of αn−. Combining these facts, we
find that

Pn(f
−1,φ,α)= inf

{∑
U∈δ

sup
x∈U

eφ
−
n (x) : γ ⊂ αn

−

}

= inf

{∑
V∈γ

sup
y∈V

eφn(y) : δ ⊂ αn

}
= Pn(f ,φ,α)

for every n ≥ 1. Hence, P(f−1,φ,α) = P(f ,φ,α) for every open cover α.
Making diamα→ 0, we reach the conclusion in part (2).

Next, we fix the transformation f : M → M and we consider P(f , ·) as
a function in the space C0(M) of all continuous functions, with the norm
defined by

‖ϕ‖ = sup{|ϕ(x)| : x ∈M}.
We have seen in (10.3.6) that if the topological entropy h(f ) is infinite then the
pressure function is constant and equal to ∞. In what follows we assume that
h(f ) is finite. Then, P(f ,φ) is finite for every potential φ.

Proposition 10.3.6. The pressure function is Lipschitz, with Lipschitz constant
equal to 1: |P(f ,φ)−P(f ,ψ)| ≤ ‖φ−ψ‖ for any potentials φ and ψ .
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332 Variational principle

Proof. Clearly, φ ≤ ψ + ‖φ −ψ‖. Hence, by (10.3.4) and (10.3.5), we have
that P(f ,φ) ≤ P(f ,ψ)+‖φ−ψ‖. Exchanging the roles of φ and ψ , one gets
the other inequality.

Proposition 10.3.7. The pressure function is convex:

P(f ,(1− t)φ+ tψ)≤ (1− t)P(f ,φ)+ tP(f ,ψ)

for any potentials φ and ψ in M and any 0≤ t≤ 1.

Proof. Write ξ = (1− t)φ+ tψ . Then ξn= (1− t)φn+ tψn for every n≥ 1 and,
thus, sup(ξn |U)≤ (1− t)sup(φn |U)+ t sup(ψn |U) for every U ⊂M. Then,
by the Hölder inequality (Theorem A.5.5),

∑
U∈γ

sup
x∈U

eξn(x) ≤
(∑

U∈γ
sup
x∈U

eφn(x)

)1−t(∑
U∈γ

sup
x∈U

eψn(x)

)t

for any finite family γ of subsets of M. This implies that, given any open
cover α,

Pn(f ,ξ ,α)≤ Pn(f ,φ,α)1−tPn(f ,ψ ,α)t

for every n≥ 1 and, hence, P(f ,ξ ,α)≤ (1− t)P(f ,φ,α)+ tP(f ,ψ ,α). Passing
to the limit when diamα→ 0, we get the conclusion of the proposition.

We say that two potentials φ,ψ : M→R are cohomologous if there exists a
continuous function u : M→R such that φ =ψ+u◦ f −u. Note that this is an
equivalence relation in the space of potentials (Exercise 10.3.6).

Proposition 10.3.8. Let f : M → M be a continuous transformation in a
compact topological space. If φ,ψ : M→R are cohomologous potentials then
P(f ,φ)= P(f ,ψ).

Proof. If ψ = φ + u ◦ f − u then ψn(x) = φn(x)+ u(f n(x))− u(x) for every
n ∈N. Let K = sup |u|. Then |supx∈Cψn(x)− supx∈C φn(x)| ≤ 2K for every set
C⊂M. Hence, for any open cover γ ,

e−2K
∑
U∈γ

sup
x∈U

eφn(x) ≤
∑
U∈γ

sup
x∈U

eψn(x) ≤ e2K
∑
U∈γ

sup
x∈U

eφn(x).

This implies that, given any open cover α of M,

e−2KPn(f ,φ,α)≤ Pn(f ,ψ ,α)≤ e2KPn(f ,φ,α)

for every n. Therefore, P(f ,φ,α) = P(f ,ψ ,α) for every α and, consequently,
P(f ,φ)= P(f ,ψ).
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10.3 Pressure 333

10.3.4 Comments in statistical mechanics

Let us take a pause to explain the relation between the mathematical concept
of pressure and the issues in physics that originated it. This also serves as a
preview to Chapter 12, where this theory will be developed in the context of
expanding maps in metric spaces. The discussion that follows is a combination
of mathematical results and physical considerations, not necessarily rigorous,
and is quite brief: we refer the reader to the classical works of David
Ruelle [Rue04] and Oscar Lanford [Lan73] for actual presentations of the
subject.

The goal of statistical mechanics is to describe the properties of physical
systems consisting of a large number of units that interact with each other. For
example, these units may be particles, such as molecules of a gas, or sites in
a crystal grid, which may or may not be occupied by particles. The constant
of Avogadro 6.022× 1023 illustrates what one means by “large” in specific
situations in this context.

The main challenge in this area of mathematical physics is to understand
the phenomena of phase transitions, that is, sudden changes from one physical
state to another: for example, what happens when liquid water turns into ice?
Why does this occur suddenly, at a given freezing temperature? Mathematical
methods developed for tackling this kind of question turn out to be very
useful in other areas of science, such as quantum field theory and, closer to
the scope of this book, the ergodic theory of hyperbolic dynamical systems
(Bowen [Bow75a]).

In order to formulate these problems in mathematical terms, it is convenient
to assume that the set L of units in the system is actually infinite, because finite
systems do not have genuine phase transitions. The best-studied examples are
the lattice systems, for which L = Zd with d ≥ 1. It is assumed that each unit
has a finite set F of possible values (or “states”). For example, F = {−1,+1}
in the case of spin systems, with ±1 representing the two possible orientations
of the particle’s “spin”, and F= {0,1} in the case of lattice gases: 1 means that
the site k ∈ L is occupied by a gas molecule, whereas 0 means that the site is
empty.

Then, the system’s configuration space is a subset � of the product space
FL. We assume � to be closed in FL and invariant under the shift map

σ n : FL → FL, (ξk)k∈L �→ (ξk+n)k∈L

for every n ∈ L. A state of the system is a probability measure μ on
�: intuitively, one presumes that at the microscopic level the system
oscillates randomly between different configurations ξ ∈ � (for example,
different positions or velocities of the molecules), all corresponding to the
same macroscopic parameters (same temperature, etc.); then, the measure μ
describes the probability distribution of these microscopic configurations.
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334 Variational principle

States corresponding to macroscopic configurations that can be physically
observed, that is, that actually occur in Nature, are called equilibrium states.
This notion has a central role in the theory, in particular, because phase
transitions are associated with the coexistence of more than one equilibrium
state. Under our hypotheses on�, one can show that every equilibrium state μ
is invariant under the shift maps σ n, n ∈ L. Thus, the study of lattice systems is
naturally inserted in the scope of ergodic theory.

According to the variational principle of statistical mechanics, which
goes back to the principle of least action of Maupertuis, the equilibrium
states are characterized by the fact that they minimize a certain fundamental
quantity, called Gibbs free energy, whose definition involves the energy E, the
temperature T and the entropy S of the system’s state. The pressure of that
state is, simply, the product of the Gibbs free energy and a negative factor
−β whose nature will be explained shortly.1 Therefore, the equilibrium states
are also characterized by the fact that they maximize the pressure among all
probability measures invariant under the shift maps σ n, n ∈ L.

From these facts, one can obtain a rather explicit description of the equi-
librium states for lattice systems: under suitable hypotheses, the equilibrium
states are precisely the Gibbs states invariant under the shift maps. In the
remainder of this section we are going to motivate and define this concept
of Gibbs state, which will also allow us to illustrate the ideas outlined in the
previous paragraphs. By the end of the section we briefly comment on the case
of one-dimensional lattice systems, that is, the case d = 1, whose theory is
much simpler and which is more closely related to the topics treated in this
book.

Let us start by considering the particularly simple case of finite systems, that
is, such that the configuration space � is finite. The entropy of a state μ in �
is the number

S(μ)=
∑
ξ∈�
−μ({ξ}) logμ({ξ}).

To each configuration ξ ∈ � corresponds a value E(ξ) for the energy of the
system. Denote by E(μ) the energy of the state μ, that is, the mean

E(μ)=
∑
ξ∈�
μ({ξ})E({ξ }).

Take the system’s absolute temperature T to be constant in time. Then, the
Gibbs free energy is defined by

G(μ)= E(μ)− κTS(μ),

1 From the mathematical point of view, the two quantities are equivalent. Preference for one
denomination or the other has mostly to do with the physical interpretation of the set F: for
spin systems one usually refers to the Gibbs free energy, whereas for lattice gases, where the
elements of F describe the rate of occupation of each site, it is more natural to refer to the
pressure.
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where κ = 1.380× 10−23 m2 kgs−2 K−1 is the Boltzmann constant. In other
words, denoting β = 1/(κT),

−βG(μ)=
∑
ξ∈�
μ({ξ})[−βE(ξ)− logμ({ξ})]. (10.3.15)

This expression is denoted by P(μ) and is called pressure of the state μ.
It is easy to check that the pressure (10.3.15) is maximum (hence, the Gibbs

free energy G(μ) is minimum) if and only if

μ({ξ})= e−βE(ξ)∑
η∈� e−βE(η)

for every ξ ∈� (10.3.16)

(see Lemma 10.4.4 below). Therefore, the Gibbs distribution μ given by
(10.3.16) is the unique equilibrium state of the system. In particular, in this
simple context there are no phase transitions.

Now we sketch how this analysis can be extended to infinite lattice systems,
assuming that the interaction between sites that are far apart is sufficiently
weak. It is part of the hypotheses that the energy associated with each
configuration ξ ∈� comes from the pairwise interactions between the different
sites in the lattice (including self-interactions) and that this interaction is
invariant under the shift maps σ n, n ∈ L. Then, the energy Ek,l resulting from
the action of any site k ∈ L on any other site l∈ L depends only on their relative
position and on the values of ξk and ξl. In other words, there exists a function
� : L×F×F→ R̄ such that

Ek,l =�(k− l,ξk,ξl) for any k, l ∈ L.

It is also assumed that the strength of the interaction decays exponentially
with the distance between the sites, in the following sense: there exist constants
K > 0 and θ > 0 such that

|�(m,a,b)| ≤ Ke−θ |m| for any m ∈ L and a,b ∈ F, (10.3.17)

where |m| =max{|m1|, . . . , |md|}. In particular (Exercise 10.3.9), the energy

ϕ(ξ)=
∑
k∈L

�(k,ξk,ξ0)

resulting from the action of all the sites on the site 0 at the origin is uniformly
bounded.

Initially, given any finite set � ⊂ L, let us consider the system one obtains
by observing only the sites k ∈ � and “switching off” their interactions with
the sites in the complement of �. This is a finite system, as the configuration
space is contained in F�, with energy function given by

E�(x)=
∑
l∈�

∑
k∈�
�(k− l,xk,xl) for every x ∈ F�.
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336 Variational principle

Hence, according to (10.3.16), its Gibbs distribution μ� is given by

μ�({x})= e−βE�(x)∑
y∈F� e−βE�(y)

for each x ∈ F�. (10.3.18)

The notion of Gibbs state is obtained from this one by “switching back on”
the interaction with the sites outside �, in the way we are going to explain.
Denote by r�(x) the expression on the right-hand side of (10.3.18). Observe
that

r�(x)=
[∑

y∈F�

eβE�(x)−βE�(y)

]−1

and recall that

E�(x)−E�(y)=
∑
l∈�

∑
k∈�
�(k− l,xk,xl)−�(k− l,yk,yl).

For ξ ,η ∈ FL, define

E(ξ ,η)=
∑
l∈L

∑
k∈L

�(k− l,ξk,ξl)−�(k− l,ηk,ηl)

=
∑
l∈L

∑
j∈L

�(j,ξj+l,ξl)−�(j,ηj+l,ηl)=
∑
l∈L

ϕ(σ l(ξ))−ϕ(σ l(η)).

It follows from the condition (10.3.17) that this sum converges whenever the
two configurations are such that ξk = ηk for every k in the complement of some
finite set (Exercise 10.3.9). Then,

ρ�(ξ)=
[
β

∑
η|�c=ξ |�c

eβE(ξ ,η)

]−1

is well defined for every ξ ∈ F�.
A probability measure μ supported in �⊂ FL is called a Gibbs state if, for

every finite set � ⊂ L, the disintegration {μ�,θ : θ ∈ F�
c} of μ relative to the

partition {F�×{θ} : θ ∈ F�
c} of the space FL = F�×F�

c
is given by

μ�,θ ({x}× {θ})=
{
ρ�(x,θ) if (x,θ) ∈�
0 otherwise.

To conclude this section, we state one of the main results of this formalism
that we have been describing: one-dimensional lattice systems exhibit no phase
transitions. More precisely:

Theorem 10.3.9 (Ruelle). If d = 1 and the interactions decay exponentially
with the distance, then there exists a unique Gibbs state and it is also the unique
equilibrium state.

The arguments in the proof of this theorem (Ruelle [Rue04]) are at the
basis of the thermodynamic formalism of expanding maps, which we are
going to present in Chapter 12. Let us point out that the theorem is false in
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10.3 Pressure 337

dimension d ≥ 2. Exercise 10.3.10 highlights one of the specificities of the
one-dimensional case that are behind this result.

10.3.5 Exercises

10.3.1. Check that the sequence logPn(f ,φ,α) is subadditive.
10.3.2. Show that if f is a homeomorphism then P(f ,φ, f (α))=P(f ,φ,α), Q+(f ,φ, f (α))=

Q+(f ,φ,α) and Q−(f ,φ, f (α))=Q−(f ,φ,α) for every open cover α.
10.3.3. Show that, for any potential φ : M→R:

(a) If α,β are open covers with α ≺ β then Q+(f ,φ,α) ≤ Q+(f ,φ,β) and
Q−(f ,φ,α)≤Q−(f ,φ,β).

(b) Q+(f ,φ,α) = Q+(f ,φ,αk) and Q−(f ,φ,α) = Q−(f ,φ,αk) for every k ≥ 1
and every open cover α.

(c) Q+(f ,φ,α) = P(f ,φ) = Q−(f ,φ,α) for any open cover α such that
diamαk → 0.

(d) P(f ,φ,α) = P(f ,φ,αk) for every k ≥ 1 and any open cover α whose
elements are pairwise disjoint.

(e) P(f ,φ,α)=P(f ,φ) for any open cover α such that diamαk → 0 and whose
elements are pairwise disjoint.

(f) If f is a homeomorphism, one may replace αk by α±k in statements (b), (c),
(d) and (e).

10.3.4. (Walters). Prove that

P(f ,φ)= sup{Q−(f ,φ,α) : α is an open cover of M}
= sup{Q+(f ,φ,α) : α is an open cover of M}.

[Observation: In particular, the pressure depends only on the topology of M,
not the distance. This also provides a way to extend the definition to continuous
transformations in compact topological spaces.]

10.3.5. Exhibit a homeomorphism f : M → M, a potential φ : M → R and open
covers α and β of a compact metric space M such that α ≺ β and P(f ,φ,α) >
P(f ,φ,β) = P(f ,φ). [Observation: Thus, the conclusions of Exercise 10.3.3(a)
and Exercise 10.3.4 are no longer valid if one replaces Q±(f ,φ,α) by P(f ,φ,α).]

10.3.6. Check that the cohomology relation

φ ∼ψ⇔ψ = φ+ u ◦ f − u for some continuous function u : M→R

is an equivalence relation.
10.3.7. Let fi : Mi→Mi, i= 1,2 be continuous transformations in compact metric spaces

and, for each i, let φi be a potential in Mi. Define

f1× f2 : M1×M2 →M1×M2, f1× f2(x1,x2)= (f1(x1), f2(x2))

φ1×φ2 : M1×M2 →R, φ1×φ2(x1,x2)= φ1(x1)+φ2(x2).

Show that P(f1× f2,φ1×φ2)= P(f1,φ1)+P(f2,φ2).
10.3.8. Consider the transformation f : S1 → S1 defined by f (x) = 2x mod Z. Prove

that if φ : S1 →R is a Hölder function then

P(f ,φ)= lim
n

1

n
log

∑
p∈Fix(f n)

eφn(p).
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338 Variational principle

[Observation: We will get a more general result in Exercise 11.3.4.]
10.3.9. Assuming the conditions in Section 10.3.4, prove that:

(a) There exists C > 0 such that |ϕ(ξ)| ≤ C and |ϕ(ξ)− ϕ(η)| ≤ Ce−θN/2 for
any ξ ,η ∈ FL such that ξk = ηk whenever |k|< N.

(b) For any finite set � ⊂ L, there exists C� > 0 such that |E(ξ ,η)| ≤ C� for
any ξ ,η ∈ FL such that ξk = ηk for every k ∈�c.

10.3.10. Assuming the conditions in Section 10.3.4, prove that if d = 1 then there exists
C > 0 such that |E(ξ ,η)−E�(ξ)+E�(η)| ≤ C for every finite interval �⊂ Z

and any ξ ,η ∈ FZ with ξ |�c = η |�c. Consequently,

e−βC ≤ r�(ξ |�)
ρ�(ξ)

≤ eβC

for every ξ ∈ FZ and every finite interval �. [Observation: Therefore, the
probability distribution of the configurations restricted to each finite interval
is not affected in a significant way by the interactions with the sites outside that
interval.]

10.4 Variational principle

The variational principle for the pressure, which we state below, was proved
originally by Ruelle [Rue73], under more restrictive assumptions, and was then
extended by Walters [Wal75] to the context we consider here:

Theorem 10.4.1 (Variational principle). Let f : M → M be a continuous
transformation in a compact metric space and M1(f ) denote the set of
probability measures invariant under f . Then, for every continuous function
φ : M→R,

P(φ, f )= sup{hν(f )+
∫
φ dν : ν ∈M1(f )}.

Theorem 10.1 corresponds to the special case φ ≡ 0. In particular, it follows
that the topological entropy of f is zero if and only if hν(f ) = 0 for every
invariant probability measure ν. That is the case, for example, for every
circle homeomorphism (Example 10.1.1) and every translation in a compact
metrizable group (Example 10.1.7). The compactness hypothesis is crucial:
as observed in Exercise 10.4.4, there exist transformations (in non-compact
spaces) without invariant measures and whose topological entropy is positive.

In Sections 10.4.1 and 10.4.2 we present a proof of Theorem 10.4.1 that
is due to Misiurewicz [Mis76]. Before that, let us mention a couple of
consequences.

Corollary 10.4.2. Let f : M→M be a continuous transformation in a compact
metric space and Me(f ) denote the set of probability measures invariant and
ergodic. Then

P(φ, f )= sup{hν(f )+
∫
φ dν : ν ∈Me(f )}.
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10.4 Variational principle 339

Proof. Given any ν ∈M1(f ), let {νP : P∈P} be its ergodic decomposition. By
Theorems 5.1.3 and 9.6.2,

hν(f )+
∫
φ dν =

∫ (
hνP(f )+

∫
φ dνP

)
dμ̂(P).

This implies that

sup{hν(f )+
∫
φ dν : ν ∈M1(f )} ≤ sup{hν(f )+

∫
φ dν : ν ∈Me(f )}.

The converse inequality is trivial, since Me(f ) ⊂M1(f ). Now it suffices to
apply Theorem 10.4.1.

Another interesting consequence is that for transformations with finite
topological entropy the pressure function determines the set of all invariant
probability measures:

Corollary 10.4.3 (Walters). Let f : M→M be a continuous transformation in
a compact metric space with topological entropy h(f ) <∞. Let η be any finite
signed measure on M. Then, η is a probability measure invariant under f if
and only if

∫
φ dη≤ P(f ,φ) for every continuous function φ : M→R.

Proof. The “only if” claim is an immediate consequence of Theorem 10.4.1:
if η is an invariant probability measure then

P(f ,φ)≥ hη(f )+
∫
φ dη≥

∫
φ dη

for every continuous function φ. In what follows we prove the converse.
Let η be a finite signed measure such that

∫
φ dη ≤ P(f ,φ) for every φ.

Consider any φ ≥ 0. For any c> 0 and ε > 0,

c
∫
(φ+ ε)dη=−

∫
−c(φ+ ε)dη ≥−P(f ,−c(φ+ ε)).

By the relation (10.3.6), we also have that

P(f ,−c(φ+ ε))≤ h(f )+ sup
(− c(φ+ ε))= h(f )− c inf(φ+ ε).

Therefore, c
∫
(φ + ε)dη ≥ −h(f )+ c inf(φ + ε). When c > 0 is sufficiently

large, the right-hand side of this inequality is positive. Hence,
∫
(φ+ε)dη > 0.

Since ε > 0 is arbitrary, this implies that
∫
φ dη ≥ 0 for every φ ≥ 0. So, η is a

positive measure.
The next step is to show that η is a probability measure. By assumption,∫

cdη≤ P(f ,c)= h(f )+ c

for every c ∈R. For c> 0, this implies that η(M)≤ 1+ h(f )/c. Passing to the
limit when c→+∞, we get that η(M)≤ 1. Analogously, considering c< 0 and
taking the limit when c→−∞, we get η(M)≥ 1. Therefore, η is a probability
measure, as stated.
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340 Variational principle

We are left to prove that η is invariant under f . By assumption, given any
c ∈R and any potential φ,

c
∫
(φ ◦ f −φ)dη ≤ P(f ,c(φ ◦ f −φ)).

By Proposition 10.3.8, the expression on the right-hand side is equal to
P(f ,0)= h(f ). For c> 0, this implies that∫

(φ ◦ f −φ)dη≤ h(f )

c

and, taking the limit when c→+∞, it follows that
∫
(φ ◦ f − φ)dη ≤ 0. The

same argument, applied to the function −φ, shows that
∫
(φ ◦ f − φ)dη ≥ 0.

Hence,
∫
φ ◦ f dη= ∫ φ dη for every φ. By Proposition A.3.3, this implies that

f∗η= η.

10.4.1 Proof of the upper bound

In this section we prove that, given any invariant probability measure ν,

hν(f )+
∫
φ dν ≤ P(f ,φ). (10.4.1)

To do this, let P = {P1, . . . ,Ps} be any finite partition. We are going to show
that if α is an open cover of M with sufficiently small diameter, depending only
on P , then

hν(f ,P)+
∫
φ dν ≤ log4+P(f ,φ,α). (10.4.2)

Making diamα→ 0, it follows that hν(f ,P)+∫ φ dν≤ log4+P(f ,φ) for every
finite partition P . Hence, hν(f )+

∫
φ dν ≤ log4+ P(f ,φ). Now replace the

transformation f by f k and the potential φ by φk. Note that
∫
φk dν = k

∫
φ dν,

since ν is invariant under f . Using Propositions 9.1.14 and 10.3.5, we get that

khν(f ,P)+ k
∫
φ dν ≤ log4+ kP(f ,φ)

for every k ≥ 1. Dividing by k and taking the limit when k →∞, we get the
inequality (10.4.1).

For proving (10.4.2) we need the following elementary fact:

Lemma 10.4.4. Let a1, . . . ,ak be real numbers and p1, . . . ,pk be non-negative
numbers such that p1+·· ·+ pk = 1. Let A=∑k

i=1 eai . Then

k∑
i=1

pi(ai− logpi)≤ logA.

Moreover, the identity holds if and only if pj = eaj/A for every j.
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10.4 Variational principle 341

Proof. Write ti= eai/A and xi= pi/eai . Note that
∑k

i=1 ti= 1. By the concavity
property (9.1.8) of the function φ(x)=−x logx,

k∑
i=1

tiφ(xi)≤ φ(
k∑

i=1

tixi).

Note that tiφ(xi) = (pi/A)(ai − logpi) and
∑k

i=1 tixi = 1/A. So, the previous
inequality may be rewritten as follows:

k∑
i=1

pi

A
(ai− logpi)≤ 1

A
logA.

Multiplying by A we get the inequality in the statement of the lemma.
Moreover, the identity holds if and only if the xi are all equal, that is, if and
only if there exists c such that pi = ceai for every i. Summing over i= 1, . . . ,k
we see that in that case c= 1/A, as stated.

Since the measure ν is regular (Proposition A.3.2), given ε > 0 we may find
compact sets Qi ⊂ Pi such that ν(Pi \Qi) < ε for every i = 1, . . . ,s. Let Q0

be the complement of
⋃s

i=1 Qi and let P0 = ∅. Then Q= {Q0,Q1, . . . ,Qs} is a
finite partition of M such that ν(Pi
Qi) < sε for every i = 0,1, . . . ,s. Hence,
by Lemma 9.1.6,

Hν(P/Q)≤ log2

as long as ε > 0 is sufficiently small (depending only on s). Let ε and Q be
fixed from now on and assume that the open cover α satisfies

diamα <min{d(Qi,Qj) : 1≤ i< j≤ s}. (10.4.3)

By Lemma 9.1.11, we have that hν(f ,P)≤ hν(f ,Q)+Hν(P/Q)≤ hν(f ,Q)+
log2. Hence, to prove (10.4.2) it suffices to show that

hν(f ,Q)+
∫
φ dν ≤ log2+P(f ,φ,α). (10.4.4)

To that end, observe that

Hν(Qn)+
∫
φn dν ≤

∑
Q∈Qn

ν(Q)
(− logν(Q)+ sup

x∈Q
φn(x)

)
for every n≥ 1. Then, by Lemma 10.4.4,

Hν(Qn)+
∫
φn dν ≤ log

( ∑
Q∈Qn

sup
x∈Q

eφn(x)

)
. (10.4.5)

Let γ be any finite subcover of αn. For each Q ∈ Qn, consider any point xQ

in the closure of Q such that φn(xQ) = supx∈Qφn(x). Pick UQ ∈ γ such that
xQ ∈ UQ. Then supx∈Qφn(x) ≤ supy∈UQ

φn(y) for every Q ∈Qn. The condition
(10.4.3) implies that each element of α intersects the closure of not more than
two elements of Q. Therefore, each element of αn intersects the closure of not
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more than 2n elements of Qn. In particular, for each U ∈ γ there exist not more
than 2n sets Q ∈Qn such that UQ =U. Therefore,∑

Q∈Qn

sup
x∈Q

eφn(x) ≤ 2n
∑
U∈γ

sup
y∈U

eφn(y), (10.4.6)

for any finite subcover γ of αn. Combining (10.4.5) and (10.4.6),

Hν(Qn)+
∫
φn dν ≤ n log2+ logPn(f ,φ,α).

Dividing by n and taking the limit when n → ∞, we get (10.4.4). This
completes the proof of the upper bound (10.4.1).

10.4.2 Approximating the pressure

To finish the proof of Theorem 10.4.1, we now show that for every ε > 0 there
exists a probability measure μ invariant under f and such that

hμ(f )+
∫
φ dμ≥ S(f ,φ,ε). (10.4.7)

Clearly, this implies that the supremum of the values of hν(f )+
∫
φ dν when ν

varies in M1(f ) is greater than or equal to S(f ,φ)= P(f ,φ).
For each n≥ 1, let E be an (n,ε)-separated set such that∑

y∈E

eφn(y) ≥ 1

2
Sn(f ,φ,ε). (10.4.8)

Denote by A the expression on the left-hand side of this inequality. Consider
the probability measures νn and μn defined on M by

νn = 1

A

∑
x∈E

eφn(x)δx and μn =
n−1∑
j=0

f j
∗νn.

By the definition (10.3.8), recalling also that the space of probability measures
is compact (Theorem 2.1.5), we may choose a subsequence (nj)j →∞ such
that

1.
1

nj
logSnj(f ,φ,ε) converges to S(f ,φ,ε), and

2. μnj converges, in the weak∗ topology, to some probability measure μ.

We are going to check that such a measure μ is invariant under f and satisfies
(10.4.7). For the reader’s convenience, we split the argument into four steps.

Step 1: First, we prove that μ is invariant. Let ϕ : M → R be any continuous
function. For each n≥ 1,∫

ϕ d(f∗μn)= 1

n

n∑
j=1

∫
ϕ ◦ f j dνn =

∫
ϕ dμn+ 1

n

(∫
ϕ ◦ f n dνn−

∫
ϕ dνn

)
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10.4 Variational principle 343

and, consequently, ∣∣∣∣∫ ϕ d(f∗μn)−
∫
ϕ dμn

∣∣∣∣≤ 2

n
sup |ϕ|.

Restricting to n = nj and taking the limit when j → ∞, we see that∫
ϕ df∗μ=

∫
ϕ dμ for every continuous function ϕ : M→R. This proves (recall

Proposition A.3.3) that f∗μ=μ, as claimed.

Step 2: Next, we estimate the entropy with respect to νn. Let P be any finite
partition of M such that diamP < ε and μ(∂P) = 0, where ∂P denotes the
union of the boundaries ∂P of all sets P ∈ P . The first condition implies that
each element of Pn contains at most one element of E. On the other hand, it is
clear that every element of E is contained in some element of Pn. Hence,

Hνn(Pn)=
∑
x∈E

−νn({x}) logνn({x})=
∑
x∈E

− 1

A
eφn(x) log

(
1

A
eφn(x)

)

= logA− 1

A

∑
x∈E

eφn(x)φn(x)= logA−
∫
φn dνn

(10.4.9)

(the last equality follows directly from the definition of νn).

Step 3: Now we calculate the entropy with respect to μn. Consider 1≤ k< n.
For each r ∈ {0, . . . ,k− 1}, let qr ≥ 0 be the largest integer number such that
r+ kqr ≤ n. In other words, qr = [(n− r)/k]. Then,

Pn =P r ∨
[ qr−1∨

j=0

f−(kj+r)(Pk)

]
∨ f−(kqr+r)(Pn−(kqr+r))

(the first term is void if r= 0 and the third one is void if n= kqr+r). Therefore,

Hνn(Pn)≤
qr−1∑
j=0

Hνn(f
−(kj+r)(Pk))+Hνn(P r)+Hνn(f

−(kqr+r)(Pn−(kqr+r))).

Clearly, #P r ≤ (#P)k. Using Lemma 9.1.3, we find that Hνn(P r) ≤ k log#P .
For the same reason, the last term in the previous inequality is also bounded
by k log#P . Then, using the property (9.1.12),

Hνn(Pn)≤
qr−1∑
j=0

H
f (kj+r)∗ νn

(Pk)+ 2k log#P (10.4.10)

for every r ∈ {0, . . . ,k− 1}. Now, it is clear that every number i ∈ {0, . . . ,n− 1}
may be written in a unique way as i= kj+r with 0≤ j≤ qr−1. Then, summing
(10.4.10) over all the values of r,

kHνn(Pn)≤
n−1∑
i=0

Hf i∗νn
(Pk)+ 2k2 log#P . (10.4.11)
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344 Variational principle

The concavity property (9.1.8) of the function φ(x)=−x logx implies that

1

n

n−1∑
i=0

Hf i∗νn
(Pk)≤Hμn(Pk).

Combining this inequality with (10.4.11), we see that

1

n
Hνn(Pn)≤ 1

k
Hμn(Pk)+ 2k

n
log#P .

On the other hand, by the definition of μn,

1

n

∫
φn dνn = 1

n

n−1∑
j=0

∫
φ ◦ f j dνn =

∫
φ dμn.

Thus, the previous inequality yields

1

n
Hνn(Pn)+ 1

n

∫
φn dνn ≤ 1

k
Hμn(Pk)+

∫
φ dμn+ 2k

n
log#P . (10.4.12)

Step 4: Finally, we translate the previous estimates to the limit measure μ.
From (10.4.9) and (10.4.12), we get

1

k
Hμn(Pk)+

∫
φ dμn ≥ 1

n
logA− 2k

n
log#P .

By the choice of E in (10.4.8), it follows that

1

k
Hμn(Pk)+

∫
φ dμn ≥ 1

n
logSn(f ,φ,ε)− 1

n
log2− 2k

n
log#P . (10.4.13)

The choice of the partition P with μ(∂P) = 0 implies that μ(∂Pk) = 0 for
every k≥ 1, since

∂Pk ⊂ ∂P ∪ f−1(∂P)∪ ·· · ∪ f−k+1(∂P).

In other words, every element of Pk is a continuity set for the measure μ.
According to Exercise 2.1.1, it follows thatμ(P)= limjμnj(P) for every P∈Pk

and, hence,
Hμ(Pk)= lim

j
Hμnj

(Pk) for every k≥ 1.

Since the function φ is continuous, we also have that
∫
φ dμ = limj

∫
φ dμnj .

Therefore, restricting (10.4.13) to the subsequence (nj)j and taking the limit
when j→∞,

1

k
Hμ(Pk)+

∫
φ dμ≥ S(f ,φ,ε).

Taking the limit when k→∞, we find that

hμ(f ,P)+
∫
φ dμ≥ S(f ,φ,ε).

Then, making ε→ 0 (and, consequently, diamP→ 0), we get (10.4.7).
This completes the proof of the variational principle (Theorem 10.4.1).
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10.4.3 Exercises

10.4.1. Let f : M → M be a continuous transformation in a compact metric space M.
Check that P(f ,ϕ)≤ h(f )+ supϕ for every continuous function ϕ : M→R.

10.4.2. Show that if f : M → M is a continuous transformation in a compact metric
space and X ⊂M is a forward invariant set, meaning that f (X) ⊂ X, then P(f |
X,ϕ | X)≤ P(f ,ϕ).

10.4.3. Give an alternative proof of Proposition 10.3.8, using the variational principle.
10.4.4. Exhibit a continuous transformation f : M →M in a non-compact metric space

M such that f has no invariant probability measure and yet the topological
entropy h(f ) is positive. [Observation: Thus, the variational principle need not
hold when the ambient space is not compact.]

10.4.5. Given numbers α,β > 0 such that α+β < 1, define

g : [0,α] ∪ [1−β,1]→ [0,1] g(x)=
{

x/α if x ∈ [0,α]
(x− 1)/β+ 1 if x ∈ [1−β,1].

Let K ⊂ [0,1] be the Cantor set formed by the points x such that gn(x) is defined
for every n≥ 0 and f : K → K be the restriction of g. Calculate the function ψ :
R→R defined byψ(t)=P(f ,−t logg′). Check thatψ is convex and decreasing
and admits a (unique) zero in (0,1). Show that hμ(f ) <

∫
logg′ dμ for every

probability measure μ invariant under f .
10.4.6. Let f : M→M be a continuous transformation in a compact metric space, such

that the set of ergodic invariant probability measures is finite. Show that for
every potential ϕ : M → R there exists some invariant probability measure that
realizes the supremum in (10.0.1).

10.5 Equilibrium states

Let f : M →M be a continuous transformation and φ : M →M be a potential
in a compact metric space. In this section we study the fundamental properties
of the set E(f ,φ) formed by the equilibrium states, that is, the invariant
probability measures μ such that

hμ(f )+
∫
φ dμ= P(φ, f )= sup{hν(f )+

∫
φ dν : ν ∈M1(f )}.

In the special case φ ≡ 0 the elements of E(f ,φ) are also called measures of
maximal entropy. Let us start with a few simple examples.

Example 10.5.1. If f : M → M has zero topological entropy then every
invariant probability measure μ is a measure of maximal entropy: hμ(f ) =
0= h(f ). For any potential φ : M→R,

P(f ,φ)= sup{
∫
φ dν : ν ∈M1(f )}.
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346 Variational principle

Hence, ν is an equilibrium state if and only if ν maximizes the integral of
φ. Since the function ν �→ ∫

φ dν is continuous and M1(f ) is compact, with
respect to the weak∗ topology, maxima do exist for every potential φ.

Example 10.5.2. Let fA : M →M be the linear endomorphism induced in Td

by some matrix A with integer coefficients and non-zero determinant. Let μ be
the Haar measure on Td. By Propositions 9.4.3 and 10.2.10,

hμ(fA)=
d∑

i=1

log+ |λi| = h(f ),

where λ1, . . . ,λd are the eigenvalues of A. In particular, the Haar measure is a
measure of maximal entropy for f .

Example 10.5.3. Let σ :�→� be the shift map in � = {1, . . . ,d}N and μ be
the Bernoulli measure associated with a probability vector p= (p1, . . . ,pd). As
observed in Example 9.1.10,

hμ(σ ,P)= lim
n

1

n
Hμ(Pn)=

d∑
i=1

−pi logpi.

We leave it to the reader (Exercise 10.5.1) to check that this function attains
its maximum precisely when the coefficients pi are all equal to 1/d. Moreover,
in that case hμ(σ ) = logd. Recall also (Example 10.1.2) that h(σ ) = logd.
Therefore, the Bernoulli measure associated with the vector p= (1/d, . . . ,1/d)
is the only measure of maximal entropy among the Bernoulli measures. In fact,
it follows from the theory that we develop in Chapter 12 that μ is the unique
measure of maximal entropy among all invariant measures.

Let us start with the following extension of the variational principle:

Proposition 10.5.4. For every potential φ : M→R,

P(f ,φ)= sup{hμ(f )+
∫
φ dμ :μ invariant and ergodic for f }.

Proof. Consider the function � : M1(f ) → R given by �(μ) = hμ(f ) +∫
φ dμ. For each invariant probability measure μ, let {μP : P ∈ P} be the

corresponding ergodic decomposition. It follows from Theorem 9.6.2 that

�(μ)=
∫
�(μP)dμ̂(P). (10.5.1)

This implies that the supremum of� over all the invariant probability measures
is less than or equal to the supremum of � over the ergodic invariant
probability measures. Since the opposite inequality is obvious, it follows that
the two suprema coincide. By the variational principle (Theorem 10.4.1), the
supremum of � over all the invariant probability measures is equal to P(f ,φ).
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10.5 Equilibrium states 347

Proposition 10.5.5. Assume that h(f ) <∞. Then the set of equilibrium states
for any potential φ : M→R is a convex subset of M1(f ): more precisely, given
t ∈ (0,1) and μ1,μ2 ∈M1(f ),

(1− t)μ1+ tμ2 ∈ E(f ,φ) ⇔ {μ1,μ2} ⊂ E(f ,φ).

Moreover, an invariant probability measure μ is in E(f ,φ) if and only if almost
every ergodic component of μ is in E(f ,φ).

Proof. As we have seen in (10.3.6), the hypothesis that the topological entropy
is finite ensures that P(f ,φ) <∞ for every potential φ. Let us consider the
functional �(μ) = hμ(f ) +

∫
φ dμ introduced in the proof of the previous

result. By Proposition 9.6.1, this functional is convex:

�((1− t)μ1+ tμ2)= (1− t)�(μ1)+ t�(μ2)

for every t ∈ (0,1) and any μ1,μ2 ∈M1(f ). Then, �((1− t)μ1+ tμ2) is equal
to the supremum of � if and only if both �(μ1) and �(μ2) are. This proves
the first part of the proposition. The proof of the second part is analogous: the
relation (10.5.1) implies that �(μ)= sup� if and only if �(μP)= sup� for
μ̂-almost every P.

Corollary 10.5.6. If E(f ,φ) is non-empty then it contains ergodic invariant
probability measures. Moreover, the extremal elements of the convex set E(f ,φ)
are precisely the ergodic measures contained in it.

Proof. To get the first claim it suffices to consider the ergodic components of
any element of E(f ,φ). Let us move on to proving the second claim. If μ ∈
E(f ,φ) is ergodic then (Proposition 4.3.2) μ is an extremal element of M1(f )
and so it must be an extremal element of E(f ,φ). Conversely, if μ ∈ E(f ,φ) is
not ergodic then we may write

μ= (1− t)μ1+ tμ2, with 0< t< 1 and μ1,μ2 ∈M1(f ).

By Proposition 10.5.5 we have that μ1,μ2 ∈ E(f ,φ), which implies that μ is
not an extremal element of the set E(f ,φ).

In general, the set of equilibrium states may be empty. The first example
of this kind was given by Gurevič. The following construction is taken from
Walters [Wal82]:

Example 10.5.7. Let fn : Mn → Mn be a sequence of homeomorphisms in
compact metric spaces such that the sequence (h(fn))n is increasing and
bounded. We are going to build a metric space M and a homeomorphism
f : M→M with the following features:

• M is the union of all Mn with an additional point, denoted as ∞, endowed
with a distance function relative to which (Mn)n converges to∞.
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348 Variational principle

• f fixes the point ∞ and its restriction to each Mn coincides with fn.

Then we are going to check that f : M→M has no measure of maximal entropy.
Let us explain how this is done.

Denote by dn the distance in each metric space Mn. It is no restriction to
assume that dn ≤ 1 for every n. Define M =⋃n Mn ∪ {∞} and consider the
distance d defined in M by:

d(x,y)=
⎧⎨⎩

n−2dn(x,y) if x ∈ Xn and y ∈ Xn with n≥ 1∑m
i=n i−2 if x ∈ Xn and y ∈ Xm with n<m∑∞
i=n i−2 if x ∈ Xn and y=∞.

We leave it to the reader to check that d is indeed a distance in M and that (M,d)
is a compact space. Let β = supn h(fn). Since the sets {∞} and Mn, n ≥ 1 are
invariant and cover the whole of M, any ergodic probability measure μ of f
satisfies either μ({∞}) = 1 or μ(Mn) = 1 for some n ≥ 1. In the first case,
hμ(f )= 0. In the second, μ may be viewed as a probability measure invariant
under fn and, consequently, hμ(f ) ≤ h(fn). In particular, hμ(f ) < β for every
ergodic probability measure μ of f . The previous observation also shows that

sup{hμ(f ) :μ invariant and ergodic for f }
= sup

n
sup{hμ(f ) :μ invariant and ergodic for fn}.

According to Proposition 10.5.4, this means that h(f ) = supn h(fn) = β.
Thus, no ergodic invariant measure of f realizes the topological entropy. By
Proposition 10.5.5, it follows that f has no measure of maximal entropy.

Nevertheless, there is a broad class of transformations for which equilibrium
states do exist for every potential:

Lemma 10.5.8. If the entropy function ν �→ hν(f ) is upper semi-continuous
then E(f ,φ) is compact, relative to the weak∗ topology, and non-empty, for any
potential φ : M→R.

Proof. Let (μn)n be a sequence in M1(f ) such that

hμn(f )+
∫
φ dμn converges to P(f ,φ).

Since M1(f ) is compact (Theorem 2.1.5), there exists some accumula-
tion point μ. The assumption implies that ν �→ hν(f ) +

∫
φ dν is upper

semi-continuous. Consequently,

hμ(f )+
∫
φ dμ≥ liminf

n
hμn(f )+

∫
φ dμn = P(f ,φ)

and so μ is an equilibrium state, as stated. Analogously, taking any sequence
(νn)n in E(f ,φ) we see that every accumulation point ν is an equilibrium state.
This shows that E(f ,φ) is closed and, thus, compact.
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10.5 Equilibrium states 349

Corollary 10.5.9. Assume that f : M → M is an expansive continuous
transformation in a compact metric space M. Then every potential φ : M→R

admits some equilibrium state.

Proof. Just combine Corollary 9.2.17 with Lemma 10.5.8.

The conclusions of Corollaries 9.2.17 and 10.5.9 remain valid when f is
just h-expansive, in the sense of Exercise 10.2.8. See Bowen [Bow72]. Misi-
urewicz [Mis73] noted that the same is still true when f is just asymptotically
h-expansive, meaning that g∗(f ,ε)→ 0 when ε→ 0. Buzzi [Buz97] proved that
every C∞ diffeomorphism is asymptotically h-expansive. The corresponding
statement for h-expansivity is false: Burguet, Liao and Yang [BLY] found open
sets, in the C2 topology, formed by diffeomorphisms that are not h-expansive;
C∞ diffeomorphisms are dense in such sets.

Combining these results of Misiurewicz and Buzzi, one gets the following
theorem of Newhouse [New90]: for every C∞ diffeomorphism f , the entropy
function ν �→ hν(f ) is upper semi-continuous and so equilibrium states always
exist. Yomdin [Yom87] also proved that the topological entropy function
f �→ h(f ) is upper semi-continuous in the realm of C∞ diffeomorphisms. Both
conclusions, Newhouse’s and Yomdin’s, are usually false for Cr diffeomor-
phisms with r <∞, according to Misiurewicz [Mis73]. But Liao, Viana and
Yang [LVY13] proved that they both extend to C1 diffeomorphisms away
from homoclinic tangencies and any such diffeomorphism is h-expansive. In
particular, equilibrium states always exist in that generality.

Uniqueness of equilibrium states is a much more delicate problem. It is
very easy to exhibit transformations with infinitely many ergodic equilibrium
states. For example, let f : S1 → S1 be a circle homeomorphism with infinitely
many fixed points. The Dirac measures on those points are ergodic invariant
probability measures. Since the topological entropy h(f ) is equal to zero
(Example 10.5.1), each of those measures is an equilibrium state for any
potential that attains its maximum at the corresponding point.

This type of example is trivial, of course, because the transformation is not
transitive. A more interesting question is whether an indivisibility property,
such as transitivity or topological mixing, ensures uniqueness of the equilib-
rium state. It turns out that this is also not true. The first counter-example
(called Dyck shift) was exhibited by Krieger [Kri75]. Next, we present a
particularly transparent and flexible construction, due to Haydn [Hay]. Other
interesting examples were studied by Hofbauer [Hof77].

Example 10.5.10. Let X = {∗,1,2,3,4} and consider the subsets E = {2,4}
(the even symbols) and O= {1,3} (the odd symbols). We are going to exhibit a
compact H⊂XZ invariant under the shift map in XZ such that the restriction σ :
H→H is topologically mixing and yet admits two mutually singular invariant
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350 Variational principle

measures, μv and μa, such that

hμv (σ )= hμa(σ )= log2= h(σ ).

Let us describe this example. By definition, H = EZ ∪OZ ∪H∗, where H∗
consists of the sequences x ∈ XZ that satisfy the following rule: Whenever one
block with m symbols of one type, even or odd, is followed by another block
with n symbols of the other type, odd or even, the two of them are separated
by a block of no less than m+ n symbols ∗. In other words, the following
configurations are admissible in sequences x ∈H∗:

x=(. . . ,∗,e1, . . . ,em,∗, . . . ,∗︸ ︷︷ ︸
k

,o1, . . . ,on,∗ . . . ) or

x=(. . . ,∗,o1, . . . ,om,∗, . . . ,∗︸ ︷︷ ︸
k

,e1, . . . ,en,∗ . . . ),

with ei ∈ E, oj ∈ O and k ≥ m+ n. Observe that a sequence x ∈H∗ may start
and/or end with an infinite block of ∗ but it can neither start nor end with an
infinite block of either even or odd type. It is clear that H is invariant under the
shift map. Haydn [Hay] proved that (see Exercise 10.5.6):

(i) the shift map σ : H→H is topologically mixing;
(ii) h(σ )= log2.

We know that EZ and OZ support Bernoulli measures μv and μa with entropy
equal to log2. Then, μv and μa are measures of maximal entropy for σ : H→
H and they are mutually singular.

Clearly, this construction may be modified to yield transformations with any
given number of ergodic measures of maximal entropy. Haydn [Hay] has also
shown how to adapt it to construct examples with multiple equilibrium states
for other potentials as well.

In Chapters 11 and 12 we study a class of transformations, called expanding,
for which every Hölder potential admits exactly one equilibrium state. In
particular, these transformations are intrinsically ergodic, that is, they have
a unique measure of maximal entropy.

10.5.1 Exercises

10.5.1. Show that, among the Bernoulli measures of the shift map σ : �→ � in the
space�={1, . . . ,d}Z, the one with the largest entropy is given by the probability
vector (1/d, . . . ,1/d).

10.5.2. Let σ : � → � be the shift map in � = {1, . . . ,d}Z and φ : � → R be a
locally constant potential, that is, such that φ is constant on each cylinder [0; i].
Calculate P(f ,φ) and show that there exists some equilibrium state that is a
Bernoulli measure.
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10.5 Equilibrium states 351

10.5.3. Let σ : �→ � be the shift map in � = {1, . . . ,d}N. An invariant probability
measure μ is called a Gibbs state for a potential ϕ :�→R if there exist P ∈R

and K > 0 such that

K−1 ≤ μ(C)

exp(ϕn(x)− nP)
≤ K (10.5.2)

for every cylinder C = [0; i0, . . . , in−1] and any x ∈ C. Prove that if μ is a Gibbs
state then hμ(σ )+

∫
ϕ dμ coincides with the constant P in (10.5.2). Therefore,

μ is an equilibrium state if and only if P= P(σ ,ϕ). Prove that for each choice
of the constant P there exists at most one ergodic Gibbs state.

10.5.4. Let f : M → M be a continuous transformation in a compact metric space
and φ : M → R be a continuous function. If μ is an equilibrium state for
φ, then the functional Fμ : C0(M)→ R defined by Fμ(ψ) =

∫
ψ dμ is such

that Fμ(ψ) ≤ P(f ,φ+ψ)−P(f ,φ) for every ψ ∈ C0(M). Conclude that if the
pressure function P(f , ·) : C0(M)→ R is differentiable in every direction at a
point φ then φ admits at most one equilibrium state.

10.5.5. Let f : M → M be a continuous transformation in a compact metric space.
Show that the subset of functions φ : M → R for which there exists a unique
equilibrium state is residual in C0(M).

10.5.6. Check the claims (i) and (ii) in Example 10.5.10.
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