
11

Expanding maps

The distinctive feature of the transformations f : M →M that we study in the
last two chapters of this book is that they expand the distance between nearby
points: there exists a constant σ > 1 such that

d(f (x), f (y))≥ σd(x,y)

whenever the distance between x and y is small (a precise definition will be
given shortly). There is more than one reason why this class of transformations
has an important role in ergodic theory.

On the one hand, as we are going to see, expanding maps exhibit very rich
dynamical behavior, from the metric and topological point of view as well as
from the ergodic point of view. Thus, they provide a natural and interesting
context for utilizing many of the ideas and methods that have been introduced
so far.

On the other hand, expanding maps lead to paradigms that are useful
for understanding many other systems, technically more complex. A good
illustration of this is the ergodic theory of uniformly hyperbolic systems, for
which an excellent presentation can be found in Bowen [Bow75a].

An important special case of expanding maps are the differentiable
transformations on manifolds such that

‖Df (x)v‖ ≥ σ‖v‖
for every x ∈ M and every vector v tangent to M at the point x. We focus on
this case in Section 11.1. The main result (Theorem 11.1.2) is that, under the
hypothesis that the Jacobian detDf is Hölder, the transformation f admits a
unique invariant probability measure absolutely continuous with respect to the
Lebesgue measure. Moreover, that probability measure is ergodic and positive
on the open subsets of M.

In Section 11.2 we extend the notion of an expanding map to metric spaces
and we give a global description of the topological dynamics of such maps,
starting from the study of their periodic points. The main objective is to show
that the global dynamics may always be reduced to the topologically exact
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11.1 Expanding maps on manifolds 353

case (Theorem 11.2.15). In Section 11.3 we complement this analysis by
showing that for these transformations the topological entropy coincides with
the growth rate of the number of periodic points.

The study of expanding maps will proceed in Chapter 12, where we will
develop the so-called thermodynamic formalism for such systems.

11.1 Expanding maps on manifolds

Let M be a compact manifold and f : M→M be a map of class C1. We say that
f is expanding if there exists σ > 1 and some Riemannian metric on M such
that

‖Df (x)v‖ ≥ σ‖v‖ for every x ∈M and every v ∈ TxM. (11.1.1)

In particular, f is a local diffeomorphism: the condition (11.1.1) implies that
Df (x) is an isomorphism for every x ∈M. In what follows, we call Lebesgue
measure on M the volume measure m induced by such a Riemannian metric.
The precise choice of the metric is not very important, since the volume
measures induced by different Riemannian metrics are all equivalent.

Example 11.1.1. Let fA : Td → Td be the linear endomorphism of the torus
induced by some matrix A with integer coefficients and determinant different
from zero. Assume that all the eigenvalues λ1, . . . ,λd of A are larger than 1 in
absolute value. Then, given any 1< σ < infi |λi|, there exists an inner product
in Rd relative to which ‖Av‖ ≥ σ‖v‖ for every v. Indeed, suppose that the
eigenvalues are real. Consider any basis of Rd that sets A in canonical Jordan
form: A = D + εN where N is nilpotent and D is diagonal with respect to
that basis. The inner product relative to which such basis is orthonormal has
the required property, as long as ε > 0 is small enough. The reader should
have no difficulty extending this argument to the case when there are complex
eigenvalues. This shows that the transformation fA is expanding.

It is clear from the definition that any map sufficiently close to an expanding
one, relative to the C1 topology, is still expanding. Thus, the observation in
Example 11.1.1 provides a whole open set of examples of expanding maps.
A classical result of Michael Shub [Shu69] asserts a (much deeper) kind of
converse: every expanding map on the torus Td is topologically conjugate to
an expanding linear endomorphism fA.

Given a probability measure μ invariant under a transformation f : M→M,
we call the basin of μ the set B(μ) of all points x ∈M such that

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))=
∫
ϕ dμ
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354 Expanding maps

for every continuous function ϕ : M → R. Note that the basin is always an
invariant set. If μ is ergodic then B(μ) is a full measure set (Exercise 4.1.5).

Theorem 11.1.2. Let f : M → M be an expanding map on a compact
(connected) manifold M and assume that the Jacobian x �→ detDf (x) is Hölder.
Then f admits a unique invariant probability measure μ absolutely continuous
with respect to Lebesgue measure m. Moreover, μ is ergodic, its support
coincides with M and its basin has full Lebesgue measure in M.

First, let us outline the strategy of the proof of Theorem 11.1.2. The details
will be given in the forthcoming sections. The conclusion is generally false if
one omits the hypothesis of Hölder continuity: see Quas [Qua99].

It is easy to check (Exercise 11.1.1) that the pre-image under f of any set
with zero Lebesgue measure m also has zero Lebesgue measure. This means
that the image f∗ν under f of any measure ν absolutely continuous with respect
to m is also absolutely continuous with respect to m. In particular, the n-th
image f n∗m is always absolutely continuous with respect to m.

In Proposition 11.1.7 we prove that the density (that is, the Radon–Nikodym
derivative) of each f n∗m with respect to m is bounded by some constant
independent of n≥ 1. We deduce from this fact that every accumulation point
of the sequence

1

n

n−1∑
j=0

f j
∗m,

with respect to the weak∗ topology, is an invariant probability measure
absolutely continuous with respect to Lebesgue measure, with density bounded
by that same constant.

An additional argument, using the fact that M is connected, proves that the
accumulation point is unique and has all the properties in the statement of the
theorem.

11.1.1 Distortion lemma

Starting the proof of Theorem 11.1.2, let us prove the following elementary
fact:

Lemma 11.1.3. Let f : M→M be a local diffeomorphism of class Cr, r≥ 1 on
a compact Riemannian manifold M and σ > 0 be such that ‖Df (x)v‖ ≥ σ‖v‖
for every x ∈M and every v ∈ TxM. Then there exists ρ > 0 such that, for any
pre-image x of any point y ∈M, there exists a map h : B(y,ρ)→M of class Cr

such that f ◦ h= id , h(y)= x and

d(h(y1),h(y2))≤ σ−1 d(y1,y2) for every y1,y2 ∈ B(y,ρ). (11.1.2)

Proof. By the inverse function theorem, for every ξ ∈ M there exist open
neighborhoods U(ξ) ⊂ M of ξ and V(ξ) ⊂ N of f (ξ) such that f maps U(ξ)
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11.1 Expanding maps on manifolds 355

diffeomorphically onto V(ξ). Since M is compact, it follows that there exists
δ > 0 such that d(ξ ,ξ ′) ≥ δ whenever f (ξ) = f (ξ ′). In particular, we may
choose these neighborhoods in such a way that U(ξ) ∩U(ξ ′) = ∅ whenever
f (ξ)= f (ξ ′). For each η ∈M, let

W(η)=
⋂

ξ∈f−1(η)

V(ξ).

Since f−1(η) is finite (Exercise A.4.6), every W(η) is an open set. Fix ρ > 0
such that 2ρ is a Lebesgue number for the open cover {W(η) : η ∈ M} of M.
In particular, for every y ∈M there exists η ∈M such that B(y,ρ) is contained
in W(η), that is, it is contained in V(ξ) for all ξ ∈ f−1(η). Since the U(ξ) are
pairwise disjoints and #f−1(y) = degree(f ) = #f−1(η), given any x ∈ f−1(y)
there exists exactly one ξ ∈ f−1(η) such that x ∈U(ξ). Let h be the restriction
to B(y,ρ) of the inverse of f : U(ξ)→ V(ξ). By construction, f ◦ h = id and
h(y)= x. Moreover, ‖Dh(z)‖ = ‖Df (h(z))−1‖ ≤ σ−1 for every z in the domain
of h. By the mean value theorem, this implies that h has the property (11.1.2).

Transformations h as in this statement are called inverse branches of the
local diffeomorphism f . Now assume that f is an expanding map. The condition
(11.1.1) means that in this case we may take σ > 1 in the hypothesis of the
lemma. Then the conclusion (11.1.2) implies that the inverse branches are
contractions, with uniform contraction rate.

In particular, we may define inverse branches hn of any iterate f n, n≥ 1, as
follows. Given y∈M and x∈ f−n(y), let h1, . . . ,hn be inverse branches of f with

hj(f
n−j+1(x))= f n−j(x)

for every 1≤ j≤ n. Since every hj is a contraction, its image is contained in a
ball around f n−j(x) with radius smaller than ρ. Then hn = hn ◦ · · · ◦ h1 is well
defined on the closure of the ball of radius ρ around y. It is clear that f n◦hn= id
and hn(y)= x. Moreover, each hn is a contraction:

d(hn(y1),h
n(y2))≤ σ−n d(y1,y2) for every y1,y2 ∈ B(y,ρ).

Lemma 11.1.4. If f : M →M is a C1 expanding map on a compact manifold
then f is expansive.

Proof. By Lemma 11.1.3, there exists ρ > 0 such that, for any pre-image x of a
point y∈M, there exists a map h : B(y,ρ)→M of class C1 such that f ◦h= id ,
h(y)= x and

d(h(y1),h(y2))≤ σ−1 d(y1,y2) for every y1,y2 ∈ B(y,ρ).

Hence, if d(f n(x), f n(y))≤ ρ for every n≥ 0 then

d(x,y)≤ σ−n d(f n(x), f n(y))≤ σ−nρ,

which immediately implies that x= y.
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356 Expanding maps

The next result provides a good control of the distortion of the iterates of f
and their inverse branches, which is crucial for the proof of Theorem 11.1.2.
This is the only step of the proof where we use the hypothesis that the Jacobian
x �→ detDf (x) is Hölder. Note that, since f is a local diffeomorphism and M is
compact, the Jacobian is bounded from zero and infinity. Hence, the logarithm
log |detDf | is also Hölder: there exist C0 > 0 and ν > 0 such that∣∣ log |detDf (x)|− log |detDf (y)|∣∣≤ C0d(x,y)ν for any x,y ∈M.

Proposition 11.1.5 (Distortion lemma). There exists C1 > 0 such that, given
any n≥ 1, any y ∈M and any inverse branch hn : B(y,ρ)→M of f n,

log
|detDhn(y1)|
|detDhn(y2)| ≤ C1d(y1,y2)

ν ≤ C1(2ρ)
ν

for every y1,y2 ∈ B(y,ρ).

Proof. Write hn as a composition hn = hn ◦ · · · ◦ h1 of inverse branches of f .
Analogously, hi = hi ◦ · · · ◦ h1 for 1≤ i< n and h0 = id . Then,

log
|detDhn(y1)|
|detDhn(y2)| =

n∑
i=1

log |detDhi(h
i−1(y1))|− log |detDhi(h

i−1(y2))| .

Note that log |detDhi| = − log |detDf | ◦ hi and recall that every hj is a
σ−1-contraction. Hence,

log
|detDhn(y1)|
|detDhn(y2)| ≤

n∑
i=1

C0 d(hi(y1),h
i(y2))

ν ≤
n∑

i=1

C0 σ
−iνd(y1,y2)

ν .

Therefore, to prove the lemma it suffices to take C1 = C0
∑∞

i=1 σ
−iν .

The geometric meaning of this proposition is made even more transparent
by the following corollary:

Corollary 11.1.6. There exists C2 > 0 such that, for every y ∈ M and any
measurable sets B1,B2 ⊂ B(y,ρ),

1

C2

m(B1)

m(B2)
≤ m(hn(B1))

m(hn(B2))
≤ C2

m(B1)

m(B2)
.

Proof. Take C2 = exp(2C1(2ρ)ν). It follows from the Proposition 11.1.5 that

m(hn(B1))=
∫

B1

|detDhn|dm≤ exp(C1(2ρ)
ν)|detDhn(y)|m(B1) and

m(hn(B2))=
∫

B2

|detDhn|dm≥ exp(−C1(2ρ)
ν)|detDhn(y)|m(B2).

Dividing the two inequalities, we get that

m(hn(B1))

m(hn(B2))
≤ C2

m(B1)

m(B2)
.

Inverting the roles of B1 and B2 we get the other inequality.
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11.1 Expanding maps on manifolds 357

The next result, which is also a consequence of the distortion lemma,
asserts that the iterates f n∗m of the Lebesgue measure have uniformly bounded
densities:

Proposition 11.1.7. There exists C3 > 0 such that (f n∗m)(B) ≤ C3m(B) for
every measurable set B⊂M and every n≥ 1.

Proof. It is no restriction to suppose that B is contained in a ball B0=B(z,ρ) of
radius ρ around some point in the pre-image of z ∈M. Using Corollary 11.1.6,
we see that

m(hn(B))

m(hn(B0))
≤ C2

m(B)

m(B0)

for every inverse branch hn of f n at the point z. Moreover, (f n∗m)(B) =
m(f−n(B)) is the sum of m(hn(B)) over all the inverse branches, and
analogously for B0. In this way, we find that

(f n∗m)(B)

(f n∗m)(B0)
≤ C2

m(B)

m(B0)
.

It is clear that (f n∗m)(B0)≤ (f n∗m)(M)= 1. Moreover, the Lebesgue measure of
the balls with a fixed radius ρ is bounded from zero for some constant α0 > 0
that depends only on ρ. So, to get the conclusion of the proposition it suffices
to take C3 = C2α0.

We also need the auxiliary result that follows. Recall that, given a function ϕ
and a measure ν, we denote by ϕν the measure defined by (ϕν)(B)= ∫Bϕ dν.

Lemma 11.1.8. Let ν be a probability measure on a compact metric space X
and ϕ : X→[0,+∞) be an integrable function with respect to ν. Let μi, i≥ 1,
be a sequence of probability measures on X converging, in the weak∗ topology,
to a probability measure μ. If μi ≤ ϕν for every i≥ 1 then μ≤ ϕν.

Proof. Let B be any measurable set. For each ε > 0, let Kε be a compact subset
of B such that μ(B\Kε) and (ϕν)(B\Kε) are both less than ε (such a compact
set does exist, by Proposition A.3.2). Fix r > 0 small enough that the measure
of Aε \Kε is also less than ε, for both μ and ϕν, where Aε = {z : d(z,Kε) < r}.
The set of values of r for which the boundary of Aε has positive μ-measure is at
most countable (Exercise A.3.2). Hence, up to changing r slightly if necessary,
we may suppose that the boundary of Aε has measure zero. Then μ = limiμi

implies that μ(Aε)= limiμi(Aε)≤ (ϕν)(Aε). Making ε→ 0, we conclude that
μ(B)≤ (ϕν)(B).

Applying this lemma to our present situation, we obtain

Corollary 11.1.9. Every accumulation point μ of the sequence n−1∑n−1
j=0 f j

∗m
is an invariant probability measure for f absolutely continuous with respect to
the Lebesgue measure.
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358 Expanding maps

Proof. Take ϕ constant equal to C3 and let ν = m. Choose a subsequence
(ni)i such that μi = n−1

i

∑ni−1
j=0 f j

∗m converges to some probability measure μ.
Proposition 11.1.7 ensures that μi ≤ ϕν. Then, by Lemma 11.1.8, we also have
μ≤ ϕν = C3m. This implies that μ�m with density bounded by C3.

11.1.2 Existence of ergodic measures

Next, we show that the measure μ we have just constructed is the unique
invariant probability measure absolutely continuous with respect to the
Lebesgue measure and, moreover, it is ergodic for f .

Start by fixing a finite partition P0 = {U1, . . . ,Us} of M into regions with
non-empty interior and diameter less than ρ. Then, for each n ≥ 1, define Pn

to be the partition of M into the images of the Ui, 1≤ i≤ s, under the inverse
branches of f n. The diameter of each Pn, that is, the supremum of the diameters
of its elements, is less than ρσ−n.

Lemma 11.1.10. Let Pn, n ≥ 1, be a sequence of partitions in a compact
metric space M, with diameters converging to zero. Let ν be a probability
measure on M and B be any measurable set with ν(B) > 0. Then there exist
Vn ∈Pn, n≥ 1, such that

ν(Vn) > 0 and
ν(B∩Vn)

ν(Vn)
→ 1 when n→∞.

Proof. Given any 0<ε<ν(B), let Kε ⊂B be a compact set with ν(B\Kε) < ε.
Let Kε,n be the union of all the elements of Pn that intersect Kε. Since the
diameters of the partitions converge to zero, ν(Kε,n \ Kε) < ε for every n
sufficiently large. By contradiction, suppose that

ν
(
Kε ∩Vn

)≤ ν(B)− ε
ν(B)+ ε ν(Vn)

for every Vn ∈Pn that intersects Kε. It would follow that

ν(Kε)≤
∑
Vn

ν
(
Kε ∩Vn

)≤∑
Vn

ν(B)− ε
ν(B)+ ε ν(Vn)= ν(B)− ε

ν(B)+ ε ν(Kε,n)

≤ ν(B)− ε
ν(B)+ ε (ν(Kε)+ ε)≤ ν(B)− ε < ν(Kε).

This contradiction shows that there must exist some Vn ∈Pn such that

ν(Vn)≥ ν
(
B∩Vn

)≥ ν(Kε ∩Vn
)
>
ν(B)− ε
ν(B)+ ε ν(Vn)

and, consequently, ν(Vn) > 0. Making ε→ 0 we get the claim.

In the statements that follow, we say that a measurable set A⊂M is invariant
under f : M → M if f−1(A) = A up to zero Lebesgue measure. According
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11.1 Expanding maps on manifolds 359

to Exercise 11.1.1, then we also have that f (A) = A up to zero Lebesgue
measure.

Lemma 11.1.11. If A ⊂ M satisfies f (A) ⊂ A and has positive Lebesgue
measure then A has full Lebesgue measure inside some Ui ∈ P0, that is, there
exists 1≤ i≤ s such that m(Ui \A)= 0.

Proof. By Lemma 11.1.10, we may choose Vn ∈ Pn so that m(Vn \A)/m(Vn)

converges to zero when n →∞. Let Ui(n) = f n(Vn). By Proposition 11.1.5
applied to the inverse branch of f n that maps Ui(n) to Vn, we get that

m(Ui(n) \A)

m(Ui(n))
≤ m(f n(Vn \A))

m(f n(Vn))
≤ exp

(
C1(2ρ)

ν
)m(Vn \A)

m(Vn)

also converges to zero. Since P0 is finite, there must be 1 ≤ i ≤ s such that
i(n)= i for infinitely many values of n. Then m(Ui \A)= 0.

Corollary 11.1.12. The transformation f : M → M admits some ergodic
invariant probability measure absolutely continuous with respect to the
Lebesgue measure.

Proof. It follows from the previous lemma there exist at most s= #P0 pairwise
disjoint invariant sets with positive Lebesgue measure. Therefore, M may be
partitioned into a finite number of minimal invariant sets A1, . . . ,Ar, r ≤ s
with positive Lebesgue measure, where by minimal we mean that there are no
invariant sets Bi⊂Ai with 0<m(Bi)<m(Ai). Given any absolutely continuous
invariant probability measure μ, there exists some i such that μ(Ai) > 0. The
normalized restriction

μi(B)= μ(B∩Ai)

μ(Ai)

of μ to any such Ai is invariant and absolutely continuous. Moreover, the
assumption that Ai is minimal implies that μi is ergodic.

11.1.3 Uniqueness and conclusion of the proof

The previous argument also shows that there exist only a finite number of
absolutely continuous ergodic probability measures. The last step is to show
that, in fact, such a probability measure is unique. For that we use the fact that
f is topologically exact:

Lemma 11.1.13. Given any non-empty open set U ⊂ M, there exists N ≥ 1
such that f N(U)=M.

Proof. Let x ∈ U and r > 0 be such that the ball of radius r around x is
contained in U. Given any n ≥ 1, suppose that f n(U) does not cover the
whole manifold. Then there exists some curve γ connecting f n(x) to a point
y∈M\f n(U), and that curve may be taken with length smaller than diamM+1.
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360 Expanding maps

Lifting1 γ by the local diffeomorphism f n, we obtain a curve γn connecting x
to some point yn ∈M \U. Then r ≤ %(γn) ≤ σ−n(diamM+ 1). This provides
an upper bound on the possible value of n. Hence, f n(U) = M for every n
sufficiently large, as claimed.

Corollary 11.1.14. If A ⊂ M has positive Lebesgue measure and satisfies
f (A)⊂ A then A has full Lebesgue measure in the whole manifold M.

Proof. Let U be the interior of a set Ui as in Lemma 11.1.11 and N ≥ 1 be
such that f N(U) =M. Then m(U \ A) = 0 and, using the fact that f is a local
diffeomorphism, it follows that M \ A = f N(U) \ f N(A) ⊂ f N(U \ A) also has
Lebesgue measure zero.

The next statement completes the proof of Theorem 11.1.2:

Corollary 11.1.15. Let μ be any absolutely continuous invariant probability
measure. Then μ is ergodic and its basin B(μ) has full Lebesgue measure in
M. Consequently, μ is unique. Moreover, its support is the whole manifold M.

Proof. If A is an invariant set then, by Corollary 11.1.14, either A or its
complement Ac has Lebesgue measure zero. Since μ is absolutely continuous,
it follows that either μ(A) = 0 or μ(Ac) = 0. This proves that μ is ergodic.
Then μ(B(μ))= 1 and, in particular, m(B(μ)) > 0. Since B(μ) is an invariant
set, it follows that it has full Lebesgue measure. Analogously, since the support
of μ is a compact set with positive Lebesgue measure and f (suppμ)⊂ suppμ,
it must coincide with M.

Finally, let μ and ν be any two absolutely continuous invariant probability
measures. It follows from what we have just said that the two measures are
ergodic and their basins intersect each other. Given any point x in B(μ)∩B(ν),
the sequence

1

n

n−1∑
j=0

δf j(x)

converges to both μ and ν in the weak∗ topology. Thus, μ= ν.

In general, we say that an invariant probability measure μ of a local
diffeomorphism f : M → M is a physical measure if its basin has positive
Lebesgue measure. It follows from Corollary 11.1.15 that in the present context
there exists a unique physical measure, which is the absolutely continuous
invariant measure μ, and its basin has full Lebesgue measure. This last fact
may be expressed as follows:

1

n

n−1∑
j=0

δf j(x)→μ for Lebesgue almost every x.

1 Note that any local diffeomorphism from a compact manifold to itself is a covering map.
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11.1 Expanding maps on manifolds 361

In Chapter 12 we will find this absolutely continuous invariant probability
measure μ through a different approach (Proposition 12.1.20) that also shows
that the density h = dμ/dm is Hölder and bounded away from zero. In
particular, μ is equivalent to the Lebesgue measure m, not just absolutely
continuous. Moreover (Section 12.1.7), the system (f ,μ) is exact, not just
ergodic. In addition (Lemma 12.1.12), its Jacobian is given by Jμf =
|detDf |(h ◦ f )/h. Hence, by the Rokhlin formula (Theorem 9.7.3),

hμ(f )=
∫

logJμf dμ=
∫

log |detDf |dμ+
∫

log(h ◦ f )dμ−
∫

loghdμ.

Since μ is invariant, this means that

hμ(f )=
∫

log |detDf |dμ.

Actually, the facts stated in the previous paragraph can already be proven
with the methods available at this point. We invite the reader to do just that
(Exercises 11.1.3 through 11.1.6), in the context of expanding maps of the
interval, which are technically a bit simpler than expanding maps on a general
manifold.

Example 11.1.16. We say that a transformation f : [0,1] → [0,1] is an
expanding map of the interval if there exists a countable (possibly finite)
family P of pairwise disjoint open subintervals whose union has full Lebesgue
measure in [0,1] and which satisfy:

(i) The restriction of f to each P ∈ P is a diffeomorphism onto (0,1); denote
by f−1

P : (0,1)→ P its inverse.
(ii) There exist C> 0 and θ > 0 such that, for every x,y and every P ∈P ,∣∣ log |D(f−1

P )(x)|− log |D(f−1
P )(y)|∣∣≤ C|x− y|θ .

(iii) There exist c> 0 and σ > 1 such that, for every n and every x,

|Df n(x)| ≥ cσ n (whenever the derivative is defined.)

This class of transformations includes the decimal expansion and the Gauss
map as special cases. Its properties are analyzed in Exercises 11.1.3
through 11.1.5.

Exercise 11.1.6 deals with a slightly more general class of transformations,
where we replace condition (i) by

(i′) There exists δ > 0 such that the restriction of f to each P ∈ P is a
diffeomorphism onto some interval f (P) of length larger than δ that
contains every element of P that it intersects.

11.1.4 Exercises

11.1.1. Let f : M →M be a local diffeomorphism in a compact manifold and m be the
Lebesgue measure on M. Check the following facts:
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362 Expanding maps

(a) If m(B)= 0 then m(f−1(B))= 0.
(b) If B is measurable then f (B) is measurable.
(c) If m(B)= 0 then m(f (B))= 0.
(d) If A= B up to zero Lebesgue measure zero then f (A)= f (B) and f−1(A)=

f−1(B) up to zero Lebesgue measure.
(e) If A is an invariant set then f (A)= A up to zero Lebesgue measure.

11.1.2. Let f : M →M be a transformation of class C1 such that there exist σ > 1 and
k ≥ 1 satisfying ‖Df k(x)v‖ ≥ σ‖v‖ for every x ∈M and every v ∈ TxM. Show
that there exists θ > 1 and a Riemannian norm 〈·〉 equivalent to ‖ · ‖ such that
〈Df (x)v〉 ≥ θ〈v〉 for every x ∈M and every v ∈ TxM.

11.1.3. Show that if f : [0,1] → [0,1] is an expanding map of the interval and m is the
Lebesgue measure on [0,1] then there exists a function ρ : (0,1)→ (0,∞) such
that logρ is bounded and Hölder and μ= ρm is a probability measure invariant
under f .

11.1.4. Show that the measure μ in Exercise 11.1.3 is exact and is the unique invariant
probability measure of f absolutely continuous with respect to the Lebesgue
measure m.

11.1.5. Show that the measure μ in Exercise 11.1.3 satisfies the Rokhlin formula:
assuming that log |f ′| ∈ L1(μ), we have that hμ(f )=

∫
log |f ′|dμ.

11.1.6. Prove the following generalization of Exercises 11.1.3 and 11.1.4: if f
satisfies the conditions (i′), (ii) and (iii) in Example 11.1.16 then there exists
a finite (non-empty) family of absolutely continuous invariant probability
measures ergodic for f and such that every absolutely continuous invariant
probability measure is a convex combination of those ergodic probability
measures.

11.2 Dynamics of expanding maps

In this section we extend the notion of an expanding map to compact metric
spaces and we mention a few interesting examples. In this general setup, an
expanding map need not be transitive, let alone topologically exact (compare
Lemma 11.1.13). However, Theorems 11.2.14 and 11.2.15 assert that the
dynamics may always be reduced to the topologically exact case. This is
relevant because for the main results in this section we need the transformation
to be topologically exact or, equivalently (Exercise 11.2.2), topologically
mixing.

A continuous transformation f : M →M in a compact metric space M is an
expanding map if there exist constants σ > 1 and ρ > 0 such that for every
p ∈M the image of the ball B(p,ρ) contains a neighborhood of the closure of
B(f (p),ρ) and

d(f (x), f (y))≥ σd(x,y) for every x,y ∈ B(p,ρ). (11.2.1)

Every expanding map on a manifold, in the sense of Section 11.1, is also
expanding in the present sense:
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11.2 Dynamics of expanding maps 363

Example 11.2.1. Let M be a compact Riemannian manifold and f : M →M
be a map of class C1 such that ‖Df (x)v‖ ≥ σ‖v‖ for every x ∈ M and every
v ∈ TxM, where σ is a constant larger than 1. Denote K = sup‖Df‖ (observe
that K > 1). Fix ρ > 0 small enough that the restriction of f to every ball
B(p,2Kρ) is a diffeomorphism onto its image. Consider any y ∈ B(f (p),σρ)
and let γ : [0,1] → B(f (p),σρ) be a minimizing geodesic (that is, such that it
realizes the distance between points) with γ (0) = f (p) and γ (1) = y. By the
choice of ρ, there exists a differentiable curve β : [0,δ] → B(p,ρ) such that
β(0)= p and f (β(t))= γ (t) for every t. Observe that (using �(·) to denote the
length of a curve),

d(p,β(t))≤ �(β | [0, t])≤ σ−1�
(
γ | [0, t])= σ−1td(f (p),y) < tρ

for every t. This shows that we may take δ = 1. Then, β(1) ∈ B(p,ρ) and
f (β(1)) = γ (1) = y. In this way, we have shown that f (B(p,ρ)) contains
B(f (p),σρ), which is a neighborhood of the closure of B(f (p),ρ). Now
consider any x,y ∈ B(p,ρ). Note that d(f (x), f (y)) < 2Kρ. Let γ : [0,1] →
B(f (x),2Kρ) be a minimizing geodesic connecting f (x) to f (y). Arguing as in
the previous paragraph, we find a differentiable curve β : [0,1] → B(x,2Kρ)
connecting x to y and such that f (β(t))= γ (t) for every t. Then,

d(f (x), f (y))= �(γ )≥ σ�(β)≥ σd(x,y).

This completes the proof that f is an expanding map.

The following fact is useful for constructing further examples:

Lemma 11.2.2. Assume that f : M→M is an expanding map and �⊂M is a
compact set such that f−1(�)=�. Then the restriction f :�→� is also an
expanding map.

Proof. It is clear that the condition (11.2.1) remains valid for the restriction.
We are left to check that f (� ∩ B(p,ρ)) contains a neighborhood of � ∩
B(f (p),ρ) inside�. By assumption, f (B(p,ρ)) contains some neighborhood V
of the closure of B(f (p),ρ). Then �∩V is a neighborhood of �∩B(f (p),ρ).
Moreover, given any y ∈ � ∩ V there exists x ∈ B(p,ρ) such that f (x) = y.
Since f−1(�) = �, this point is necessarily in �. This proves that � ∩ V is
contained in the image f (�∩B(p,ρ)). Hence, the restriction of f to the set �
is an expanding map, as stated.

It is not possible to replace the hypothesis of Lemma 11.2.2 by f (�) = �.
See Exercise 11.2.4.

Example 11.2.3. Let J ⊂ [0,1] be a finite union of (two or more) pairwise
disjoint compact intervals. Consider a map f : J → [0,1] such that the
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0

1

1J1 J2 J3

Figure 11.1. Expanding map on a Cantor set

restriction of f to each connected component of J is a diffeomorphism onto
[0,1]. See Figure 11.1. Assume that there exists σ > 1 such that

|f ′(x)| ≥ σ for every x ∈ J. (11.2.2)

Denote � =⋂∞
n=0 f−n(J). In other words, � is the set of all points x whose

iterates f n(x) are defined for every n ≥ 0. It follows from the definition that
� is compact (one can show that K is a Cantor set) and f−1(�) = �. The
restriction f :�→� is an expanding map. Indeed, fix any ρ > 0 smaller than
the distance between any two connected components of J. Then every ball of
radius ρ inside � is contained in a unique connected component of J and so,
by (11.2.2), it is dilated by a factor greater than or equal to σ .

Example 11.2.4. Let σ : �A → �A be the one-sided shift of finite type
associated with a transition matrix A (these notions were introduced in
Section 10.2.2). Consider in �A the distance defined by

d
(
(xn)n,(yn)n

)= 2−N , N = inf{n ∈N : xn �= yn}. (11.2.3)

Then σA is an expanding map. Indeed, fix ρ ∈ (1/2,1) and σ = 2. The open
ball of radius ρ around any point (pn)n ∈ �A is just the cylinder [0;p0]A that
contains the point. The definition (11.2.3) yields

d
(
(xn+1)n,(yn+1)n

)= 2d
(
(xn)n,(yn)n

)
for any (xn)n and (yn)n in the cylinder [0;p0]A. Moreover, σA([0;p0]A) is the
union of all cylinders [0;q] such that Ap0,q = 1. In particular, it contains the
cylinder [0;p1]A. Since the cylinders are both open and closed in�A, this shows
that the image of the ball of radius ρ around (pn)n contains a neighborhood of
the closure of the ball of radius ρ around (pn+1)n. This completes the proof
that every shift of finite type is an expanding map.

Example 11.2.5. Let f : S1 → S1 be a local diffeomorphism of class C2 with
degree larger than 1. Assume that all the periodic points of f are hyperbolic,
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11.2 Dynamics of expanding maps 365

that is, |(f n)′(x)| �= 1 for every x ∈ Fix(f n) and every n ≥ 1. Let � be the
complement of the union of the basins of attraction of all the attracting periodic
points of f . Then the restriction f : �→ � is an expanding map: this is a
consequence of a deep theorem of Ricardo Mañé [Mañ85].

For expanding maps f : M → M in a metric space M, the number of
pre-images of a point y ∈ M may vary with y (unless M is connected; see
Exercises 11.2.1 and A.4.6). For example, for a shift of finite type σ :�A→�A

(Example 11.2.4) the number of pre-images of a point y= (yn)n ∈�A is equal
to the number of symbols i such that Ai,y0 = 1; in general, this number depends
on y0.

On the other hand, it is easy to see that the number of pre-images is always
finite, and even bounded: it suffices to consider a finite cover of M by balls
of radius ρ and to notice that every point has at most one pre-image in
each of those balls. By a slight abuse of language, we call the degree of an
expanding map f : M →M the maximum number of pre-images of any point,
that is,

degree(f )=max{#f−1(y) : y ∈M}. (11.2.4)

11.2.1 Contracting inverse branches

Let f : M → M be an expanding map. By definition, the restriction of
f to each ball B(p,ρ) of radius ρ is injective and its image contains the
closure of B(f (p),ρ). Thus, the restriction to B(p,ρ) ∩ f−1(B(f (p),ρ)) is a
homeomorphism onto B(f (p),ρ). We denote by

hp : B(f (p),ρ)→ B(p,ρ)

its inverse and call it the inverse branch of f at p. It is clear that hp(f (p)) = p
and f ◦ hp = id . The condition (11.2.1) implies that hp is a σ−1-contraction:

d(hp(z),hp(w))≤ σ−1d(z,w) for every z,w ∈ B(f (p),ρ). (11.2.5)

Lemma 11.2.6. If f : M→M is expanding then, for every y ∈M,

f−1(B(y,ρ))=
⋃

x∈f−1(y)

hx(B(y,ρ)).

Proof. The relation f ◦ hx = id implies that hx(B(y,ρ)) is contained in the
pre-image of B(y,ρ) for every x ∈ f−1(y). To prove the other inclusion, let z
be any point such that f (z) ∈ B(y,ρ). By the definition of an expanding map,
f (B(z,ρ)) contains B(f (z),ρ) and, hence, contains y. Let hz : B(f (z),ρ)→M be
the inverse branch of f at z and let x= hz(y). Both z and hx(f (z)) are in B(x,ρ).
Since f is injective on every ball of radius ρ and f (hx(f (z)))= f (z), it follows
that z= hx(f (z)). This completes the proof.
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p f(p) f 2(p)

hp hf(p)

Figure 11.2. Inverse branches of f n

More generally, for any n ≥ 1, we call the inverse branch of f n at p the
composition

hn
p = hp ◦ · · · ◦ hf n−1(p) : B(f n(p),ρ)→ B(p,ρ)

of the inverse branches of f at the iterates of p. See Figure 11.2. Observe that
hn

p(f
n(p)) = p and f n ◦ hn

p = id . Moreover, f j ◦ hn
p = hn−j

f j(p)
for each 0 ≤ j < n.

Hence,
d(f j ◦ hn

p(z), f
j ◦ hn

p(w))≤ σ j−nd(z,w) (11.2.6)

for every z,w ∈ B(f n(p),ρ) and every 0≤ j≤ n.

Lemma 11.2.7. If f : M →M is an expanding map then f n(B(p,n+ 1,ε)) =
B(f n(p),ε) for every p ∈M, n≥ 0 and ε ∈ (0,ρ].
Proof. The inclusion f n(B(p,n+ 1,ε)) ⊂ B(f n(p),ε) is an immediate conse-
quence of the definition of a dynamical ball. To prove the converse, consider
the inverse branch hn

p : B(f n(p),ρ)→ B(p,ρ). Given any y ∈ B(f n(p),ε), let
x= hn

p(y). Then f n(x)= y and, by (11.2.6),

d(f j(x), f j(p))≤ σ j−nd(f n(x), f n(p))≤ d(y, f n(p)) < ε

for every 0≤ j≤ n. This shows that x ∈ B(p,n+ 1,ε).

Corollary 11.2.8. Every expanding map is expansive.

Proof. Assume that d(f n(z), f n(w)) < ρ for every n≥ 0. This implies that z=
hn
w(f

n(z)) for every n≥ 0. Then, the property (11.2.6) gives that

d(z,w)≤ σ−nd(f n(z), f n(w)) < ρσ−n.

Making n→∞, we get that z=w. So, ρ is a constant of expansivity for f .

11.2.2 Shadowing and periodic points

Given δ > 0, we call a δ-pseudo-orbit of a transformation f : M → M any
sequence (xn)n≥0 such that

d(f (xn),xn+1) < δ for every n≥ 0.

We say that the δ-pseudo-orbit is periodic if there is κ ≥ 1 such that xn = xn+κ
for every n ≥ 0. It is clear that every orbit is a δ-pseudo-orbit, for every
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11.2 Dynamics of expanding maps 367

δ > 0. For expanding maps we have a kind of converse: every pseudo-orbit
is uniformly close to (we say that it is shadowed by) some orbit of the
transformation:

Proposition 11.2.9 (Shadowing lemma). Assume that f : M → M is an
expanding map. Then, given any ε > 0 there exists δ > 0 such that for every
δ-pseudo-orbit (xn)n there exists x ∈ M such that d(f n(x),xn) < ε for every
n≥ 0.

If ε is small enough, so that 2ε is a constant of expansivity for f , then the
point x is unique. If, in addition, the pseudo-orbit is periodic then x is a periodic
point.

Proof. It is no restriction to suppose that ε is less than ρ. Fix δ > 0 so that
σ−1ε + δ < ε. For each n ≥ 0, let hn : B(f (xn),ρ)→ B(xn,ρ) be the inverse
branch of f at xn. The property (11.2.5) ensures that

hn
(
B(f (xn),ε)

)⊂ B(xn,σ−1ε) for every n≥ 1. (11.2.7)

Since d(xn, f (xn−1)) < δ, it follows that

hn
(
B(f (xn),ε)

)⊂ B(f (xn−1),ε) for every n≥ 1. (11.2.8)

Then, we may consider the composition hn+1 = h0 ◦ · · · ◦ hn, and (11.2.8)
implies that the sequence of compact sets Kn+1 = hn+1

(
B(f (xn),ε)

)
is nested.

Take x in the intersection. For every n≥ 0, we have that x ∈ Kn+1 and so f n(x)
belongs to

f n ◦ hn+1
(
B(f (xn),ε)

)= hn
(
B(f (xn),ε)

)
.

By (11.2.7), this implies that d(f n(x),xn)≤ σ−1ε < ε for every n≥ 0.
The other claims in the proposition are simple consequences, as we now

explain. If x′ is another point as in the conclusion of the proposition then

d(f n(x), f n(x′))≤ d(f n(x),xn)+ d(f n(x′),xn) < 2ε for every n≥ 0.

Since 2ε is an expansivity constant, it follows that x = x′. Moreover, if the
pseudo-orbit is periodic, with period κ ≥ 1, then

d(f n(f κ(x)),xn)= d(f n+κ(x),xn+κ ) < ε for every n≥ 0.

By uniqueness, it follows f κ(x)= x.

It is worthwhile pointing out that δ depends linearly on ε: the proof of
Proposition 11.2.9 shows that we may take δ = cε, where c> 0 depends only
on σ .

We call pre-orbit of a point x ∈M any sequence (x−n)n≥0 such that x0 = x
and f (x−n)= x−n+1 for every n≥ 1. If x is a periodic point, with period l≥ 1,
then it admits a distinguished periodic pre-orbit (x̄−n)n, such that x̄−kl = x for
every integer k≥ 1.
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368 Expanding maps

Lemma 11.2.10. If d(x,y) < ρ then, given any pre-orbit (x−n)n of x, there
exists a pre-orbit (y−n)n of y asymptotic to (x−n)n, in the sense that d(x−n,y−n)

converges to 0 when n→∞.

Proof. For each n ≥ 1, let hn : B(x,ρ)→ M be the inverse branch of f n with
hn(x)= x−n. Define y−n = hn(y). It is clear that d(x−n,y−n)≤ σ−nd(x,y). This
implies the claim.

Theorem 11.2.11. Let f : M →M be an expanding map in a compact metric
space and � ⊂ M be the closure of the set of all periodic points of f . Then
f (�)=� and the restriction f :�→� is an expanding map.

Proof. On the one hand, it is clear that f (�) is contained in �: if a point x
is accumulated by periodic points pn then f (x) is accumulated by the images
f (pn), which are also periodic points. On the other hand, since f (�) is a
compact set that contains all the periodic points, it must contain�. This shows
that f (�)=�.

Next, we prove that the restriction f :�→� is an expanding map. It is clear
that the property (11.2.1) remains valid for the restriction. So, we only have to
show that there exists r ≤ ρ (we are going to take r = σ−1ρ) such that, for
every x ∈�, the image f (�∩B(x,r)) contains a neighborhood of �∩B(x,r)
inside �. The main ingredient is the following lemma:

Lemma 11.2.12. Let p be a periodic point and hp : B(f (p),ρ)→ B(p,ρ) be
the inverse branch of f at p. If y∈B(f (p),ρ) is a periodic point then hp(y)∈�.

Proof. Write x = hp(y) and q = f (p). Consider any ε > 0 such that 2ε is
a constant of expansivity for f . Take δ > 0 given by the shadowing lemma
(Proposition 11.2.9). By Lemma 11.2.10, there exists a pre-orbit (x−n)n of x
asymptotic to the periodic pre-orbit (p̄−n)n of p. In particular,

d(x−k+1,q)= d(x−k+1, p̄−k+1) < δ (11.2.9)

for every large multiple k of the period of p. Analogously, there exists a
pre-orbit (q−n)n of q asymptotic to the periodic pre-orbit (ȳ−n)n of y. Fix any
multiple l of the period of y such that

d(q−l, f (x))= d(q−l,y) < δ. (11.2.10)

Now consider the periodic sequence (zn)n, with period k+ l, given by

z0 = x,z1 = q−l, . . . ,zl = q−1,zl+1 = x−k+1, . . . ,zl+k−1 = x−1,zk+l = x.

See Figure 11.3. We claim that (zn)n is a δ-pseudo-orbit. Indeed, if n is a
multiple of k+ l then, by (11.2.10),

d(f (zn),zn+1)= d(f (x),q−1)= d(y,q−1) < δ.
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Figure 11.3. Constructing periodic orbits

If n− l is a multiple of k+ l then, by (11.2.9),

d(f (zn),zn+1)= d(f (q−1),x−k+1)= d(q,x−k+1) < δ.

In all the other cases, f (zn) = zn+1. This proves our claim. Now we may use
Proposition 11.2.9 to conclude that there exists a periodic point z such that
d(f n(z),zn) < ε for every n ≥ 0. In particular, d(z,x) < ε. Since ε > 0 is
arbitrary, this shows that x is in the closure of the set of periodic points, as
stated.

Corollary 11.2.13. Let z ∈ � and hz : B(f (z),ρ) → B(z,ρ) be the inverse
branch of f at z. If w ∈�∩B(f (z),ρ) then hz(w) ∈�.

Proof. Since z ∈�, we may find some periodic point p close enough to z that
w ∈ B(f (p),ρ) and hp(w)= hz(w). Since w ∈�, we may find periodic points
yn ∈ B(f (p),ρ) converging to w. By Lemma 11.2.12, we have that hp(yn) ∈�
for every n. Passing to the limit, we conclude that hp(w) ∈�.

We are ready to conclude the proof of Theorem 11.2.11. Take r= σ−1ρ. The
property (11.2.6) implies that hz(B(f (z),ρ)) is contained in B(z,r), for every z∈
�. Then, Corollary 11.2.13 implies that f (�∩B(z,r)) contains �∩B(f (z),ρ),
which is a neighborhood of�∩B(f (z),r) in�. Thus the argument is complete.

Theorem 11.2.14. Let f : M →M be an expanding map in a compact metric
space and �⊂M be the closure of the set of periodic points of f . Then

M =
∞⋃

k=0

f−k(�).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.012
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:06, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.012
https://www.cambridge.org/core


370 Expanding maps

Proof. Given any x ∈ M, let ω(x) denote its ω-limit set, that is, the set of
accumulation points of the iterates f n(x) when n →∞. First, we show that
ω(x)⊂�. Then, we deduce that f k(x) ∈� for some k≥ 0.

Let ε > 0 be such that 2ε is a constant of expansivity for f . Take δ > 0
given by the shadowing lemma (Proposition 11.2.9) and let α ∈ (0,δ) be such
that d(f (z), f (w)) < δ whenever d(z,w) < α. Let y be any point in ω(x). The
definition of the ω-limit set implies that there exist r ≥ 0 and s≥ 1 such that

d(f r(x),y) < α and d(f r+s(x),y) < α.

Consider the periodic sequence (zn), with period s, given by

z0 = y,z1 = f r+1(x), . . . ,zs−1 = f r+s−1(x),zs = y.

Observe that d(f (z0),z1) = d(f (y), f r+1(x)) < δ (because d(y, f r(x)) < α),
d(f (zs−1),zs)= d(f r+s(x),y) < α < δ and f (zn)= zn+1 in all the other cases. In
particular, (zn)n is a δ-pseudo-orbit. Then, by Proposition 11.2.9, there exists
some periodic point z such that d(y,z) < ε. Making ε→ 0, we conclude that y
is accumulated by periodic points, that is, y ∈�.

Let ε > 0 and δ > 0 be as before. It is no restriction to suppose that
δ < ε. Take β ∈ (0,δ/2) such that d(f (z), f (w)) < δ/2 whenever d(z,w) < β.
Since ω(x) is contained in �, there exist k ≥ 1 and points wn ∈ � such that
d(f n+k(x),wn) < β for every n≥ 0. Observe that

d(f (wn),wn+1)≤ d(f (wn), f
n+k+1(x))+ d(f n+k+1(x),wn+1) < δ/2+β < δ

for every n ≥ 0. Therefore, (wn)n is a δ-pseudo-orbit in �. Since the
restriction of f to � is an expanding map (Theorem 11.2.11), it follows from
Proposition 11.2.9 applied to the restriction that there exists w ∈� such that
d(f n(w),wn) < ε for every n≥ 0. Then,

d(f n(f k(x)), f n(w))≤ d(f n+k(x),wn)+ d(wn, f n(w)) < β+ ε < 2ε

for every n≥ 0. Then, by expansivity, f k(x)=w.

11.2.3 Dynamical decomposition

Theorem 11.2.14 shows that for expanding maps the interesting dynamics are
localized in the closure� of the set of periodic points. In particular, suppμ⊂�
for every invariant probability measure f . Moreover (Theorem 11.2.11), the
restriction of f to � is still an expanding map. Thus, up to replacing M by �,
it is no restriction to suppose that the set of periodic points is dense in M.

Theorem 11.2.15 (Dynamical decomposition). Let f : M → M be an
expanding map whose set of periodic points is dense in M. Then there exists a
partition of M into non-empty compact sets Mi,j, with 1≤ i≤ k and 1≤ j≤m(i),
such that:
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11.2 Dynamics of expanding maps 371

(i) Mi =⋃m(i)
j=1 Mi,j is invariant under f , for every i;

(ii) f (Mi,j)=Mi,j+1 if j<m(i) and f (Mi,m(i))=Mi,1, for every i, j;
(iii) each restriction f : Mi →Mi is a transitive expanding map;
(iv) each f m(i) : Mi,j →Mi,j is a topologically exact expanding map.

Moreover, the number k, the numbers m(i) and the sets Mi,j are unique up to
renumbering.

Proof. Consider the relation ∼ defined in the set of periodic points of f as
follows. Given two periodic points p and q, let (p̄−n)n and (q̄−n)n, respectively,
be their periodic pre-orbits. By definition, p ∼ q if and only if there exist
pre-orbits (p−n)n of p and (q−n)n of q such that

d(p−n, q̄−n)→ 0 and d(p̄−n,q−n)→ 0. (11.2.11)

We claim that∼ is an equivalence relation. It is clear from the definition that
the relation ∼ is reflexive and symmetric. To prove that it is also transitive,
suppose that p ∼ q and q ∼ r. Then there exist pre-orbits (q−n)n of q and
(r−n)n of r asymptotic to the periodic pre-orbits (p̄−n)n of p and (q̄−n)n of
q, respectively. Let k ≥ 1 be a multiple of the periods of p and q such that
d(r−k, q̄−k) < ρ. Note that q̄−k = q, since k is a multiple of the period of q.
Then, by Lemma 11.2.10, there exists a pre-orbit (r′−n)n of the point r′ = r−k

such that d(r′−n,q−n)→ 0. Then d(r′−n, p̄−n)→ 0. Consider the pre-orbit (r′′−n)n
of r defined by

r′′−n =
{

r−n if n≤ k
r′−n+k if n> k.

Since k is a multiple of the period of p, we have d(r′′−n, p̄−n)= d(r′−n+k, p̄−n+k)

for every n > k. Therefore, (r′′−n)n is asymptotic to (p̄−n)n. Analogously, one
can find a pre-orbit (p′′−n) of p asymptotic to the periodic pre-orbit (r̄−n)n of r.
Therefore, p∼ r and this proves that the relation ∼ is indeed transitive.

Next, we claim that p∼ q if and only if f (p)∼ f (q). Start by supposing that
p ∼ q, and let (p−n)n and (q−n)n be pre-orbits of p and q as in (11.2.11). The
periodic pre-orbits of p′ = f (p) and q′ = f (q) are given by, respectively,

p̄′−n =
{

f (p) if n= 0
p̄−n+1 if n≥ 1

and q̄′−n =
{

f (q) if n= 0
q̄−n+1 if n≥ 1.

Consider the pre-orbits of p and q given by, respectively,

p′−n =
{

f (p) if n= 0
p−n+1 if n≥ 1

and q′−n =
{

f (q) if n= 0
q−n+1 if n≥ 1.

It is clear that (p′−n)n is asymptotic to (q̄′−n)n and (q′−n)n is asymptotic to (p̄′−n)n.
Hence, f (p) ∼ f (q). Now suppose that f (p) ∼ f (q). The previous argument
shows that f k(p) ∼ f k(q) for every k ≥ 1. When k is a common multiple of
the periods of p and q this means that p ∼ q. This completes the proof of our
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372 Expanding maps

claim. Note that the statement means that the image and the pre-image of any
equivalence class are both equivalence classes.

Observe also that if d(p,q) < ρ then p ∼ q. Indeed, by Lemma 11.2.10
we may find a pre-orbit of q asymptotic to the periodic pre-orbit of p and,
analogously, a pre-orbit of p asymptotic to the periodic pre-orbit of q. It follows
that the equivalence classes are open sets and, since M is compact, they are
finite in number. Moreover, if A and B are two different equivalence classes,
then their closures Ā and B̄ are disjoint: the distance between them is at least
ρ. Since p ∼ q if and only if f (p) ∼ f (q), it follows that the transformation f
permutes the closures of the equivalence classes.

Thus, we may enumerate the closures of the equivalence classes as Mi,j, with
1≤ i≤ k and 1≤ j≤m(i), in such a way that

f (Mi,j)=Mi,j+1 for j<m(i) and f (Mi,m(i))=Mi,1. (11.2.12)

The properties (i) and (ii) in the statement of the theorem are immediate
consequences.

Let us prove property (iii). Since the Mi are pairwise disjoint, it follows
from (11.2.12) that f−1(Mi) = Mi for every i. Hence, Lemma 11.2.2 implies
that f : Mi →Mi is an expanding map. By Lemma 4.3.4, to show that this map
is transitive it suffices to show that given any open subsets U and V of Mi there
exists n≥ 1 such that f n(U) intersects V . It is no restriction to assume that U⊂
Mi,j for some j. Moreover, up to replacing V by some pre-image f−k(V), we
may suppose that V is contained in the same Mi,j. Choose periodic points p∈U
and q ∈ V . By the definition of equivalence classes, there exists some pre-orbit
(q−n)n of q asymptotic to the periodic pre-orbit (p̄−n)n of p. In particular, we
may find n arbitrarily large such that q−n ∈U. Then q ∈ f n(U)∩V . Therefore,
f : Mi →Mi is transitive.

Next, we prove property (iv). Since the Mi,j are pairwise disjoint, it follows
from (11.2.12) that f−m(i)(Mi,j) = Mi,j for every i. Hence (Lemma 11.2.2),
g = f m(i) : Mi,j → Mi,j is an expanding map. We also want to prove that g
is topologically exact. Let U be a non-empty open subset of Mi,j and p be a
periodic point of f in U. By (11.2.12), the period κ is a multiple of m(i), say
κ = sm(i). Let q be any periodic point of f in Mi,j. By the definition of the
equivalence relation ∼, there exists some pre-orbit (q−n)n of q asymptotic to
the periodic pre-orbit (p̄−n)n of p. In particular, d(q−κn,p)→ 0 when n→∞.
Then hκn

q (B(q,ρ)) is contained in U for every n sufficiently large. This implies
that gsn(U)= f κn(U) contains B(q,ρ) for every n sufficiently large. Since Mi,j

is compact, we may find a finite cover by balls of radius ρ around periodic
points. Applying the previous argument to each of those periodic points, we
deduce that gsn(U) contains Mi,j for every n sufficiently large. Therefore, g is
topologically exact.

We are left to prove that k, the m(i) and the Mi,j are unique. Let Nr,s, with
1 ≤ r ≤ l and 1 ≤ s ≤ n(r), be another partition as in the statement. Initially,
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11.2 Dynamics of expanding maps 373

let us consider the partitions M = {Mi : 1 ≤ i ≤ k} and N = {Nr : 1 ≤ r ≤
l}, where Nr = ⋃n(r)

s=1 Nr,s. Given any i and r, the sets Mi and Nr are open,
closed, invariant and transitive. We claim that either Mi ∩Nr = ∅ or Mi = Nr.
Indeed, since the intersection is open, if it is non-empty then it intersects any
orbit that is dense in Mi (or in Nr). Since the intersection is also closed and
invariant, it follows that it contains Mi (and Nr). In other words, Mi = Nr. This
proves our claim. It follows that the partitions M and N coincide, that is, k= l
and Mi = Ni up to renumbering. Now, fix i. The transformation f permutes
the Mi,j and the Ni,s cyclically, with periods m(i) and n(i). Since f m(i)n(i) is
transitive on each Mi,j and each Ni,s, the same argument as in the first part of
this paragraph shows that, given any j and s, either Mi,j∩Ni,s =∅ or Mi,j =Ni,s.
It follows that m(i)= n(i) and the families Mi,j and Ni,s coincide, up to cyclic
renumbering.

The following consequence of the theorem contains Lemma 11.1.13:

Corollary 11.2.16. If M is connected and f : M → M is an expanding map
then the set of periodic points is dense in M and f is topologically exact.

Proof. We claim that � is an open subset of f−1(�). Indeed, consider δ ∈
(0,ρ) such that d(x,y) < δ implies d(f (x), f (y)) < ρ. Assume that x ∈ f−1(�)

is such that d(x,�) < δ. Then there exists z ∈� such that d(x,z) < δ < ρ and
so d(f (x), f (z)) < ρ. Applying Corollary 11.2.13 with w = f (x), we get that
x= hz(w) ∈�. Therefore, � contains its δ-neighborhood inside f−1(�). This
implies our claim.

Then, the set S = f−1(�) \� is closed in f−1(�) and, consequently, it is
closed in M, so f−n(S) is closed in M for every n ≥ 0. By Theorem 11.2.14,
the space M is a countable pairwise disjoint union of closed sets� and f−n(S),
n ≥ 0. By the Baire theorem, some of these closed sets have a non-empty
interior. Since f is an open map, it follows that � has a non-empty interior.

Now consider the restriction f : �→ �. By Theorem 11.2.11, this is an
expanding map. Let {�i,j : 1≤ i≤ k,1≤ j≤m(i)} be the partition of the domain
� given by Theorem 11.2.15. Then some �i,j contains an open subset V of M.
Since f m(i) is topologically exact, f nm(i)(V)=�i,j for some n ≥ 1. Using once
more the fact that f is an open map, it follows that the compact set Mi,j is an
open subset of M. By connectivity, it follows that M =�i,j. This implies that
�=M and f : M→M is topologically exact.

11.2.4 Exercises

11.2.1. Show that if f : M → M is a local homeomorphism in a compact connected
metric space then the number of pre-images #f−1(y) is the same for every y∈M.

11.2.2. Show that if an expanding map is topologically mixing then it is topologically
exact.
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374 Expanding maps

11.2.3. Let f : M → M be a topologically exact transformation in a compact metric
space. Show that for every r > 0 there exists N ≥ 1 such that f N(B(x,r)) =M
for every x ∈M.

11.2.4. Consider the expanding map f : S1 → S1 given by f (x) = 2x mod Z. Give an
example of a compact set�⊂ S1 such that f (�)=� but the restriction f :�→
� is not an expanding map.

11.2.5. Let f : M→M be an expanding map and � be the closure of the set of periodic
points of f . Show that h(f )= h(f |�).

11.2.6. Let f : M→M be an expanding map such that the set of periodic points is dense
in M and let Mi, Mi,j be the compact subsets given by Theorem 11.2.15. Show
that h(f )=maxi h(f |Mi) and

h(f |Mi)= 1

m(i)
h(f m(i) |Mi,j) for any i, j.

11.2.7. Let σA :�A →�A be a shift of finite type. Interpret the decomposition given by
Theorem 11.2.15 in terms of the matrix A.

11.3 Entropy and periodic points

In this section we analyze the distribution of periodic points of an expanding
map f : M →M from a quantitative point of view. We show (Section 11.3.1)
that the rate of growth of the number of periodic points is equal to
the topological entropy; compare this statement with the discussion in
Section 10.2.1. Another interesting conclusion (Section 11.3.2) is that every
invariant probability measure may be approximated, in the weak∗ topology, by
invariant probability measures supported on periodic orbits. These results are
based on the following property:

Proposition 11.3.1. Let f : M →M be a topologically exact expanding map.
Then, given any ε > 0 there exists κ ≥ 1 such that, given any x1, . . . ,xs ∈ M,
any n1, . . . ,ns ≥ 1 and any k1, . . . ,ks ≥ κ , there exists a point p ∈M such that,
denoting mj =∑j

i=1 ni+ ki for j= 1, . . . ,s and m0 = 0,

(i) d(f mj−1+i(p), f i(xj)) < ε for 0≤ i< nj and 1≤ j≤ s, and
(ii) f ms(p)= p.

Proof. Given ε>0, take δ >0 as in the shadowing lemma (Proposition 11.2.9).
Without loss of generality, we may suppose that δ < ε and 2ε is a constant of
expansivity for f (recall Corollary 11.2.8). Since f is topologically exact, given
any z∈M there exists κ ≥ 1 such that f k(B(z,δ))=M for every k≥ κ . Moreover
(see Exercise 11.2.3), since M is compact, we may choose κ depending only
on δ. Let xj,nj,kj ≥ κ , j = 1, . . . ,s be as in the statement. In particular, for
each j = 1, . . . ,s − 1 there exists yj ∈ B(f nj(xj),δ) such that f kj(yj) = xj+1.
Analogously, there exists ys ∈ B(f ns(xs),δ) such that f ks(ys)= x1. Consider the
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11.3 Entropy and periodic points 375

periodic δ-pseudo-orbit (zn)n≥0 defined by

zn =
⎧⎨⎩

f n−mj−1(xj) for 0≤ n−mj−1 < nj and j= 1, . . .s
f n−mj−1−nj(yj) for 0≤ n−mj−1− nj < kj and j= 1, . . . ,s
zn−ms for n≥ms.

By the second part of the shadowing lemma, there exists some periodic point
p ∈M, with period ms, whose trajectory ε-shadows this periodic pseudo-orbit
(zn)n. In particular, the conditions (i) and (ii) in the statement hold.

The property in the conclusion of Proposition 11.3.1 was introduced by
Rufus Bowen [Bow71] and is called specification by periodic points. When
condition (i) holds, but the point p is not necessarily periodic, we say that f has
the property of specification.

11.3.1 Rate growth of periodic points

Let f : M →M be an expanding map. Then f is expansive (by Lemma 11.1.4)
and so it follows from Proposition 10.2.2 that the rate of growth of the number
of periodic points is bounded above by the topological entropy:

limsup
n

1

n
log#Fix(f n)≤ h(f ). (11.3.1)

In this section we prove that, in fact, the identity holds in (11.3.1). We start with
the topologically exact case, where one may even replace the limit superior by
a limit:

Proposition 11.3.2. For any topologically exact expanding map f : M→M,

lim
n

1

n
log#Fix(f n)= h(f ).

Proof. Given ε > 0, fix κ ≥ 1 satisfying the conclusion of Proposition 11.3.1
with ε/2 instead of ε. For each n≥ 1, let E be a maximal (n,ε)-separated set.
According to Proposition 11.3.1, for each x ∈ E there exists p(x) ∈ B(x,n,ε/2)
with f n+κ(p(x)) = p(x). We claim that the map x �→ p(x) is injective. Indeed,
consider any y ∈ E \ {x}. Since the set E was chosen to be (n,ε)-separated,
B(x,n,ε/2)∩B(y,n,ε/2)= ∅. This implies that p(x) �= p(y), which proves our
claim. In particular, it follows that

#Fix(f n+κ)≥ #E= sn(f ,ε,M) for every n≥ 1

(recall the definition (10.1.9) in Section 10.2.1). Then,

liminf
n

1

n
log#Fix(f n+κ)≥ liminf

n

1

n
logsn(f ,ε,M).

Making ε→ 0 and using Corollary 10.1.8, we find that
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376 Expanding maps

liminf
n

1

n
log#Fix(f n+κ)≥ lim

ε→0
liminf

n

1

n
logsn(f ,ε,M)= h(f ). (11.3.2)

Together with (11.3.1), this implies the claim in the proposition.

Proposition 11.3.2 is not true, in general, if f is not topologically exact.
For example, given an arbitrary expanding map g : M →M, consider f : M×
{0,1} → M × {0,1} defined by f (x, i) = (g(x),1− i). Then f is an expanding
map but all its periodic points have even period. In particular, in this case,

liminf
n

1

n
log#Fix(f n)= 0.

However, the next proposition shows that this type of example is the worst that
can happen. The proof also makes it clear when and how the limit may fail to
exist.

Proposition 11.3.3. For any expanding map f : M→M,

limsup
n

1

n
log#Fix(f n)= h(f ).

Proof. By Theorem 11.2.11, the restriction f to the set of periodic points
is an expanding map. According to Exercise 11.2.5 this restriction has the
same entropy as f . Obviously, the two transformations have the same periodic
points. Therefore, up to replacing f by this restriction, we may suppose that
the set of periodic points is dense in M. Then, by the theorem of dynamical
decomposition (Theorem 11.2.11), one may write M as a finite union of
compact sets Mi,j, with 1≤ i≤ k and 1≤ j≤m(i), such that each f m(i) : Mi,j →
Mi,j is a topologically exact expanding map. According to Exercise 11.2.6,
there exists 1≤ i≤ k such that

h(f )= 1

m(i)
h(f m(i) |Mi,1). (11.3.3)

It is clear that

limsup
n

1

n
log#Fix

(
f n
)≥ limsup

n

1

nm(i)
log#Fix

(
f nm(i)

)
≥ 1

m(i)
limsup

n

1

n
log#Fix

(
(f m(i) |Mi,1)

n
)
.

(11.3.4)

Moreover, Proposition 11.3.2 applied to f m(i) : Mi,1 →Mi,1 yields

lim
n

1

n
log#Fix

(
(f m(i) |Mi,1)

n
)= h(f m(i) |Mi,1). (11.3.5)

Combining (11.3.3)–(11.3.5), we find that

limsup
n

1

n
log#Fix

(
f n
)≥ h(f ), (11.3.6)

as we wanted to prove.
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11.3 Entropy and periodic points 377

11.3.2 Approximation by atomic measures

Given a periodic point p, with period n ≥ 1, consider the probability measure
μp defined by

μp = 1

n

(
δp+ δf (p)+·· ·+ δf n−1(p)

)
.

Clearly, μp is invariant and ergodic for f . We are going to show that if f is
expanding then the set of measures of this form is dense in the space M1(f ) of
all invariant probability measures:

Theorem 11.3.4. Let f : M → M be a topologically exact expanding map.
Then every probability measure μ invariant under f can be approximated, in
the weak∗ topology, by invariant probability measures supported on periodic
orbits.

Proof. Let ε > 0 and � = {φ1, . . . ,φN} be a finite family of continuous
functions in M. We want to show that the neighborhood V(μ,�,ε) defined
in (2.1.1) contains some measure μp supported on a periodic orbit. By the
theorem of Birkhoff, for μ-almost every point x ∈M,

φ̃i(x)= lim
n

1

n

n−1∑
t=0

φi(f
t(x)) exists for every i. (11.3.7)

Fix C> sup |φi| ≥ sup |φ̃i| and take δ > 0 such that

d(x,y) < δ ⇒ |φi(x)−φi(y)|< ε
5

for every i. (11.3.8)

Fix κ = κ(δ) ≥ 1 given by the property of specification (Proposition 11.3.1).
Choose points xj ∈ M, 1 ≤ j ≤ s satisfying (11.3.7) and positive numbers αj,
1≤ j≤ s such that

∑
jαj = 1 and∣∣∣∣∫ φ̃i dμ−

s∑
j=1

αjφ̃i(xj)

∣∣∣∣< ε5 for every i (11.3.9)

(use Exercise A.2.6). Take kj ≡ κ and choose integer numbers nj much bigger
than κ , in such a way that ∣∣∣∣ nj

ms
−αj

∣∣∣∣< ε

5Cs
(11.3.10)

(recall that ms =∑j(nj+ kj)= sκ +∑j nj) and, using (11.3.8),∣∣∣∣ nj−1∑
t=0

φi(f
t(xj))− njφ̃i(xj)

∣∣∣∣< ε5nj for 1≤ i≤ N. (11.3.11)

Combining (11.3.9) and (11.3.10) with the fact that
∫
φ̃i dμ=

∫
φi dμ, we get∣∣∣∣∫ φi dμ−

s∑
j=1

nj

ms
φ̃i(xj)

∣∣∣∣< ε5 + ε

5Cs
ssup |φ̃i|< 2ε

5
. (11.3.12)
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378 Expanding maps

By Proposition 11.3.1, there exists some periodic point p ∈M, with period ms,
such that d(f mj−1+t(p), f t(xj))< δ for 0≤ t< nj and 1≤ j≤ s. Then, the property
(11.3.8) implies that∣∣∣∣ nj−1∑

t=0

φi(f
mj−1+t(p))−

nj−1∑
t=0

φi(f
t(xj))

∣∣∣∣< ε5nj for 1≤ j≤ s.

Combining this relation with (11.3.11), we obtain∣∣∣∣ nj−1∑
t=0

φi(f
mj−1+t(p))− njφ̃i(xj)

∣∣∣∣< 2ε

5
nj for 1≤ j≤ s. (11.3.13)

Since
∑

jαj = 1, the condition (11.3.10) implies that

sκ =ms−
s∑

j=1

nj <
ε

5C
ms.

Then (11.3.13) implies that∣∣∣∣ms−1∑
t=0

φi(f
t(p))−

s∑
j=1

njφ̃i(xj)

∣∣∣∣< 2ε

5

s∑
j=1

nj+ sκ sup |φ̃i|< 3ε

5
ms. (11.3.14)

Let μp be the invariant probability measure supported on the orbit of p.
The first term in (11.3.14) coincides with ms

∫
φi dμp. Therefore, adding the

inequalities (11.3.12) and (11.3.14), we conclude that∣∣∣∣∫ φi dμp−
∫
φi dμ

∣∣∣∣< 2ε

5
+ 3ε

5
= ε for every 1≤ i≤ N.

This means that μp ∈ V(μ,�,ε), as we wanted to prove.

11.3.3 Exercises

11.3.1. Let f : M → M be a continuous transformation in a compact metric space
M. Check that if some iterate f l, l ≥ 1 has the property of specification, or
specification by periodic points, then so does f .

11.3.2. Let f : M → M be a continuous transformation in a metric space with the
property of specification. Show that f is topologically mixing.

11.3.3. Let f : M → M be a topologically mixing expanding map and ϕ : M → R

be a continuous function. Assume that there exist probability measures μ1,μ2

invariant under f and such that
∫
ϕ dμ1 �=

∫
ϕ dμ2. Show that there exists x ∈M

such that the time average of ϕ on the orbit of x does not converge. [Observation:
One can show (see [BS00]) that the set Mϕ of points where the time average of
ϕ does not converge has full entropy and full Hausdorff dimension.]

11.3.4. Prove the following generalization of Proposition 11.3.2: if f : M → M is a
topologically exact expanding map then

P(f ,φ)= lim
k

1

k
log

∑
p∈Fix(f k)

eφk(p) for every Hölder function φ : M→R.
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11.3 Entropy and periodic points 379

11.3.5. Let f : M → M be an expanding map of class C1 on a compact manifold M.
Show that f admits:
(a) A neighborhood U0 in the C0 topology (that is, the topology of uniform

convergence) such that f is a topological factor of every g ∈ U0. In
particular, h(g)≥ h(f ) for every g ∈ U0.

(b) A neighborhood U1 in the C1 topology such that every g ∈ U1 is
topologically conjugate to f . In particular, g �→ h(g) is constant on U1.
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