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Thermodynamic formalism

In this chapter we develop the ergodic theory of expanding maps on compact
metric spaces. This theory evolved from the kind of ideas in statistical
mechanics that we discussed in Section 10.3.4 and, for that reason, is
often called thermodynamic formalism. We point out, however, that this last
expression is much broader, encompassing not only the original setting of
mathematical physics but also applications to other mathematical systems,
such as the so-called uniformly hyperbolic diffeomorphisms and flows (in this
latter regard, see the excellent monograph of Rufus Bowen [Bow75a]).

The main result in this chapter is the following theorem of David Ruelle,
which we prove in Section 12.1 (the notion of Gibbs state is also introduced in
Section 12.1):

Theorem 12.1 (Ruelle). Let f : M → M be a topologically exact expanding
map on a compact metric space and ϕ : M → R be a Hölder function. Then
there exists a unique equilibrium state μ for ϕ. Moreover, the measure μ is
exact, it is supported on the whole of M and is a Gibbs state.

Recall that an expanding map is topologically exact if (and only if) it is
topologically mixing (Exercise 11.2.2). Moreover, a topologically exact map
is necessarily surjective.

In the particular case when M is a Riemannian manifold and f is differ-
entiable, the equilibrium state of the potential ϕ = − log |detDf | coincides
with the absolutely continuous invariant measure given by Theorem 11.1.2.
In particular, it is the unique physical measure of f . These facts are proved in
Section 12.1.8.

The theorem of Livšic that we present in Section 12.2 complements the
theorem of Ruelle in a very elegant way. It asserts that two potentials ϕ and
ψ have the same equilibrium state if and only if the difference between them
is cohomologous to a constant. In other words, this happens if and only if
ϕ−ψ = c+u◦ f−u for some c∈R and some continuous function u. Moreover,
and remarkably, it suffices to check this condition on the periodic orbits of f .
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12.1 Theorem of Ruelle 381

In Section 12.3 we show that the system (f ,μ) exhibits exponential decay of
correlations in the space of Hölder functions, for every equilibrium state μ of
any Hölder potential.

We close this chapter (Section 12.4) with an application of these ideas to a
class of geometric and dynamical objects called conformal repellers. We prove
the Bowen–Manning formula according to which the Hausdorff dimension of
the repeller is given by the unique zero of the function t �→ P(f , tϕu).

12.1 Theorem of Ruelle

Let f : M → M be a topologically exact expanding map and ϕ be a Hölder
potential. In what follows, ρ > 0 and σ > 1 are the same constants as in the
definition (11.2.1). Recall that we denote by ϕn the orbital sums of ϕ:

ϕn(x)=
n−1∑
j=0

ϕ(f j(x)) for x ∈M.

Before getting into the details of the proof of Theorem 12.1 let us outline the
main points. The arguments in the proof turn around the transfer operator (or
Ruelle–Perron–Frobenius operator), the linear operator L : C0(M)→ C0(M)
defined in the Banach space C0(M) of continuous complex functions by

Lg(y)=
∑

x∈f−1(y)

eϕ(x)g(x). (12.1.1)

Observe that L is well defined: Lg ∈ C0(M) whenever g ∈ C0(M). Indeed,
as we saw in Lemma 11.2.6, for each y ∈M there exist inverse branches

hi : B(y,ρ)→M, i= 1, . . . ,k

of the transformation f such that
⋃k

i=1 hi(B(y,ρ)) coincides with the pre-image
of the ball B(y,ρ). Then,

Lg=
k∑

i=1

(
eϕg
) ◦ hi (12.1.2)

restricted to B(y,ρ) and, clearly, this expression defines a continuous function.
It is clear from the definition that L is a positive operator: if g(x) ≥ 0 for

every x ∈M then Lg(y)≥ 0 for every y ∈M. It is also easy to check that L is a
continuous operator: indeed,

‖Lg‖ = sup |Lg| ≤ degree(f )esupϕ sup |g| = degree(f )esupϕ‖g‖ (12.1.3)

for every g ∈ C0(M), and that means that ‖L‖ ≤ degree(f )esupϕ ; recall that
degree(f ) was defined in (11.2.4).

According to the theorem of Riesz–Markov (Theorem A.3.12), the dual
space of the Banach space C0(M) may be identified with the space M(M)
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382 Thermodynamic formalism

of all complex Borel measures. Then, the dual of the transfer operator is the
linear operator L∗ : M(M)→M(M) defined by∫

gd
(
L∗η

)= ∫ (Lg
)

dη for every g ∈ C0(M) and η ∈M(M). (12.1.4)

This operator is positive, in the sense that if η is a positive measure then L∗η
is also a positive measure.

The first step in the proof (Section 12.1.1) is to show that L∗ admits a
positive eigenmeasure ν associated with a positive eigenvalue λ. We will see
that such a measure admits a positive Jacobian which is Hölder and whose
support is the whole space M. Moreover (Section 12.1.2), the eigenmeasure ν
is a Gibbs state: there exists a constant P ∈ R and for each ε > 0 there exists
K ≥ 1 such that

K−1 ≤ ν(B(x,n,ε))

exp
(
ϕn(x)− nP

) ≤ K for every x ∈M and every n≥ 1, (12.1.5)

where B(x,n,ε) is the dynamical ball defined in (9.3.2). Actually, P= logλ.
Behind the proof of the Gibbs property are certain results about distortion

control that are also crucial to show (Section 12.1.3) that the transfer operator
itself L admits an eigenfunction associated with the eigenvalue λ. This function
is strictly positive and Hölder. The measure μ= hν is the equilibrium state we
are looking for, although that will take a little while to prove.

It follows easily from the properties of h (Section 12.1.4) that μ is invariant
and a Gibbs state, and its support is the whole of M. Moreover, hμ(f ) +∫
ϕ dμ = P. To conclude that μ is indeed an equilibrium state, we need to

check that P is equal to the pressure P(f ,ϕ). This is done (Section 12.1.5)
with the help of the Rokhlin formula (Theorem 9.7.3), which also allows us
to conclude that if η is an equilibrium state then η/h is an eigenmeasure of
L∗ associated with the eigenvalue λ = logP(f ,ϕ). This last result is the key
ingredient for proving that the equilibrium state is unique (Section 12.1.6).

The distortion control is, again, crucial for checking (Section 12.1.7) that
the system (f ,μ) is exact. Finally, in Section 12.1.8 we comment on the special
case ϕ =− log |det f |, when f is an expanding map on a Riemannian manifold.
In this case, the reference measure ν is the Lebesgue measure on the manifold
itself. Thus, the equilibrium state μ is an invariant measure equivalent to the
Lebesgue measure, and so it coincides with the invariant measure constructed
in Section 11.1.

Before we start to detail these steps, it is convenient to make a couple of
quick comments. First, note that the existence of an equilibrium state follows
immediately from Corollary 10.5.9, since Lemma 11.1.4 asserts that every
expanding map is expansive. However, this fact is not used in the proof:
instead, in Section 12.1.4 we present a much more explicit construction of
the equilibrium state.
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12.1 Theorem of Ruelle 383

The other comment concerns the Rokhlin formula. Let P be any finite
partition of M with diamP < ρ. For each n≥ 1, every element of the partition
Pn = ∨n−1

j=0 f−j(P) is contained in the image hn−1(P) of some P ∈ P by an
inverse branch hn−1 of the iterate f n−1. In particular, diamPn < σ−n+1ρ for
every n. Then, P satisfies the hypotheses of Theorem 9.7.3 at every point.
Hence, the Rokhlin formula holds for every invariant probability measure.

12.1.1 Reference measure

Recall that C0+(M) denotes the cone of positive continuous functions. As
observed previously, this cone is preserved by the transfer operator L. The
dual cone (recall Example 2.3.3) is defined by

C0
+(M)

∗ = {η ∈ C0(M)∗ : η(ψ)≥ 0 for every ψ ∈ C0
+(M)}

and may be seen as the cone of finite positive Borel measures. It follows
directly from (12.1.4) that C0+(M)∗ is preserved by the dual operator L∗.

Lemma 12.1.1. Consider the spectral radius λ = ρ(L∗) = ρ(L). Then there
exists some probability measure ν on M such that L∗ν = λν.

Proof. As we saw in Exercise 2.3.3, the cone C0+(M) is normal. Hence, we
may apply Theorem 2.3.4 with E = C0(M) and C = C0+(M) and T = L. The
conclusion of the theorem means that L∗ admits some eigenvector ν ∈C0+(M)∗

associated with the eigenvalue λ. As we have just explained, ν may be
identified with a finite positive measure. Normalizing ν, we may take it to
be a probability measure.

In Exercise 12.1.2 we propose an alternative proof of Lemma 12.1.1, based
on the Tychonoff–Schauder theorem (Theorem 2.2.3).

Example 12.1.2. Let f : M → M be a local diffeomorphism on a compact
Riemannian manifold M. Consider the transfer operator L associated with the
potential ϕ = − log |detDf |. The Lebesgue measure m (that is, the volume
measure induced by the Riemannian metric) of M is an eigenmeasure of the
transfer operator associated with the eigenvalue λ= 1:

L∗m=m. (12.1.6)

To check this fact, it is enough to show that L∗m(E) = m(E) for every
measurable set E contained in the image of some inverse branch hj : B(y,ρ)→
M (because, M being compact, every measurable set may be written as a finite
disjoint union of subsets E of this kind). Now, using the expression (12.1.2),

L∗m(E)=
∫

XE d(L∗m)=
∫
(LXE)dm=

∫ k∑
i=1

XE

|detDf | ◦ hi dm.
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384 Thermodynamic formalism

Hence, by the choice of E and the formula of change of variables,

L∗m(E)=
∫ k∑

i=1

XE

|detDf | ◦ hi dm=
∫

XE dm=m(E).

This proves that m is, indeed, a fixed point of L∗.
Exercise 12.1.3 gives a similar conclusion for Markov measures.

From now on, we always take ν to be a reference measure, that is, a
probability measure such that L∗ν = λν for some λ > 0. By the end of the
proof of Theorem 12.1 we will find that λ is uniquely determined (in view of
Lemma 12.1.1, that means that λ is necessarily equal to the spectral radius of
L and L∗) and the measure ν itself is also unique.

Initially, we show that f admits a Jacobian with respect to ν, which may be
written explicitly in terms of the eigenvalue λ and the potential ϕ:

Lemma 12.1.3. The transformation f : M→M admits a Jacobian with respect
to ν, given by Jν f = λe−ϕ .

Proof. Let A be any domain of invertibility of f . Let (gn)n be a sequence of
continuous functions converging to the characteristic function of A at ν-almost
every point and such that sup |gn| ≤ 1 for every n (see Exercise A.3.5). Observe
that

L(e−ϕgn)(y)=
∑

x∈f−1(y)

gn(x).

The expression on the right-hand side is bounded by the degree of f , as defined
in (11.2.4), and it converges to χf (A)(y) at ν-almost every point. Hence, using
the dominated convergence theorem, the sequence∫

λe−ϕgn dν =
∫

e−ϕgn d(L%ν)=
∫

L(e−ϕgn)dν

converges to ν(f (A)). Since the expression on the left-hand side converges to∫
Aλe−ϕdν, we conclude that

ν(f (A))=
∫

A
λe−ϕdν,

which proves the claim.

The next lemma applies, in particular, to the reference measure ν:

Lemma 12.1.4. Let f : M →M be a topologically exact expanding map and
η be any Borel probability measure such that there exists Jacobian of f with
respect to η. Then η it is supported on the whole of M.

Proof. Suppose, by contradiction, that there exists some open set U ⊂M such
that η(U)= 0. Note that f is an open map, since it is a local homeomorphism.
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12.1 Theorem of Ruelle 385

Thus, the image f (U) is also an open set. Moreover, we may write U as a finite
disjoint union of domains of invertibility A. For each one of them,

η(f (A))=
∫

A
Jηf dη= 0.

Therefore, η(f (U)) = 0. By induction, it follows that η(f n(U)) = 0 for every
n ≥ 0. Since we take f to be topologically exact, there exists n ≥ 1 such that
f n(U)=M. This contradicts the fact that η(M)= 1.

12.1.2 Distortion and the Gibbs property

In this section we prove certain distortion bounds that have a central role in the
proof of Theorem 12.1. The hypothesis that ϕ is Hölder is critical at this stage:
most of what follows is false, in general, if the potential is only continuous.
As a first application of this distortion control, we prove that every reference
measure ν is a Gibbs state.

Fix constants K0> 0 and α > 0 such that |ϕ(z)−ϕ(w)| ≤K0d(z,w)α for any
z,w ∈M.

Lemma 12.1.5. There exists K1> 0 such that for every n≥ 1, every x∈M and
every y ∈ B(x,n+ 1,ρ),

|ϕn(x)−ϕn(y)| ≤ K1d(f n(x), f n(y))α .

Proof. By hypothesis, d(f i(x), f i(y))<ρ for every 0≤ i≤ n. Then, for each j=
1, . . . ,n, the inverse branch hj : B(f n(x),ρ)→M of f j at the point f n−j(x), which
maps f n(x) to f n−j(x), also maps f n(y) to f n−j(y). Hence, recalling (11.2.6),
d(f n−j(x), f n−j(y))≤ σ−jd(f n(x), f n(y)) for every j= 1, . . . ,n. Then,

|ϕn(x)−ϕn(y)| ≤
n∑

j=1

|ϕ(f n−j(x))−ϕ(f n−j(y))|

≤
n∑

j=1

K0σ
−jαd(f n(x), f n(y))α .

Therefore, we may take any K1 ≥ K0
∑∞

j=0 σ
−jα .

As a consequence of Lemma 12.1.5, we obtain the following variation of
Proposition 11.1.5 where the usual Jacobian with respect to the Lebesgue
measure is replaced by the Jacobian with respect to any reference measure ν:

Corollary 12.1.6. There exists K2 > 0 such that for every n ≥ 1, every x ∈M
and every y ∈ B(x,n+ 1,ρ),

K−1
2 ≤ Jν f n(x)

Jν f n(y)
≤ K2.
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386 Thermodynamic formalism

Proof. From the expression of the Jacobian in Lemma 12.1.3 it follows that
(recall Exercise 9.7.5)

Jν f
n(z)= λne−ϕn(z) for every z ∈M and every n≥ 1. (12.1.7)

Then, Lemma 12.1.5 yields∣∣∣∣ log
Jν f n(x)

Jν f n(y)

∣∣∣∣= ∣∣∣∣ϕn(x)−ϕn(y)

∣∣∣∣≤ K1d(f n(x), f n(y))α ≤ K1ρ
α .

So, it suffices to take K2 = exp(K1ρ
α).

Now we may show that every reference measure ν is a Gibbs state:

Lemma 12.1.7. For every small ε > 0, there exists K3 = K3(ε) > 0 such that,
denoting P= logλ,

K−1
3 ≤ ν(B(x,n,ε))

exp(ϕn(x)− nP)
≤ K3 for every x ∈M and every n≥ 1.

Proof. Consider ε < ρ. Then, f | B(y,ε) is injective for every y ∈ M and,
consequently, f n | B(x,n,ε) is injective for every x ∈M and every n. Then,

ν(f n(B(x,n,ε)))=
∫

B(x,n,ε)
Jν f

n(y)dν(y).

Up to reducing ε, we may assume that d(f (x), f (y)) < ρ whenever d(x,y) < ε.
This implies that B(x,n,ε) ⊂ B(x,n+ 1,ρ) for every x ∈ M and n ≥ 1. Then,
by Corollary 12.1.6, the value of Jν f n at any point y ∈ B(x,n,ε) differs from
Jν f n(x) by a factor bounded by the constant K2. It follows that

K−1
2 ν(f n(B(x,n,ε)))≤ Jν f

n(x)ν(B(x,n,ε))≤ K2ν(f
n(B(x,n,ε))). (12.1.8)

Now, Jν f n(x) = λne−ϕn(x) = exp(nP − ϕn(x)), as we saw in (12.1.7). By
Lemma 11.2.7 we also have that f n(B(x,n,ε))= f (B(f n−1(x),ε)), and so

ν(f n(B(x,n,ε)))=
∫

B(f n−1(x),ε)
Jν f dν (12.1.9)

for every x ∈ M and every n. It is clear that the left-hand side of (12.1.9) is
bounded above by 1. Moreover, Jν f = λe−ϕ is bounded from zero and (by
Exercise 12.1.1 and Lemma 12.1.4) the set {ν(B(y,ε)) : y∈M} is also bounded
from zero. Therefore, the right-hand side of (12.1.9) is bounded below by some
number a> 0. Using these observations in (12.1.8), we obtain

K−1
2 a≤ ν(B(x,n,ε))

exp(ϕn(x)− nP)
≤ K2.

Now it suffices to take K3 =max{K2/a,K2}.
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12.1 Theorem of Ruelle 387

12.1.3 Invariant density

Next, we show that the transfer operator L admits some positive eigenfunction
h associated with the eigenvalue λ. We are going to find h as a Cesàro
accumulation point of the sequence of functions λ−nLn1. To show that there
does exist some accumulation point, we start by proving that this sequence is
uniformly bounded and equicontinuous.

Lemma 12.1.8. There exists K4 > 0 such that

−K4d(y1,y2)
α ≤ log

Ln1(y1)

Ln1(y2)
≤ K4d(y1,y2)

α

for every n≥ 1 and any y1,y2 ∈M with d(y1,y2) < ρ.
Proof. It follows from (12.1.2) that, given any continuous function g,

Lng=
∑

i

(
eϕn g

) ◦ hn
i restricted to each ball B(y,ρ),

where the sum is over all inverse branches hn
i : B(y,ρ)→M of the iterate f n.

In particular,
Ln1(y1)

Ln1(y2)
=
∑

i e
ϕn(hn

i (y1))∑
i e
ϕn(hn

i (y2))
.

By Lemma 12.1.5, for each of these inverse branches hn
i one has

|ϕn(h
n
i (y1))−ϕn(h

n
i (y2))| ≤ K1d(y1,y2)

α .

Consequently,

e−K1d(y1,y2)
α ≤ Ln1(y1)

Ln1(y2)
≤ eK1d(x1,x2)

α
.

Therefore, one may take any K4 ≥ K1.

It follows that the sequence λ−nLn1 is bounded from zero and infinity:

Corollary 12.1.9. There exists K5 > 0 such that K−1
5 ≤ λ−nLn1(x) ≤ K5 for

every n≥ 1 and any x ∈M.

Proof. Start by observing that, for every n≥ 1,∫
Ln1dν =

∫
1d(L∗nν)=

∫
λn dν = λn.

In particular, for every n≥ 1,

min
y∈M

λ−nLn1(y)≤ 1≤max
y∈M

λ−nLn1(y). (12.1.10)

Since f is topologically exact, there exists N ≥ 1 such that f N(B(x,ρ))=M for
every x ∈ M (check Exercise 11.2.3). Now, given any x,y ∈ M, we may find
x′ ∈ B(x,ρ) such that f N(x′)= y. Then, on the one hand,

Ln+N1(y)=
∑

z∈f−N (y)

eϕN (z)Ln1(z)≥ eϕN (x
′)Ln1(x′)≥ e−cNLn1(x′).
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388 Thermodynamic formalism

On the other hand, Lemma 12.1.8 gives that Ln1(x′) ≥ Ln1(x)exp(−K4ρ
α).

Take c= sup |ϕ| and K ≥ exp(K4ρ
α)ecNλN . Combining the previous inequali-

ties, we get that

Ln+N1(y)≥ exp(−K4ρ
α)e−cNLn1(x)≥ K−1λNLn1(x)

for every x,y ∈M. Therefore, for every n≥ 1,

minλ−(n+N)Ln+N1≥ K−1 maxλ−nLn1. (12.1.11)

Combining (12.1.10) and (12.1.11), we get:

maxλ−nLn1≤ K minλ−(n+N)Ln+N1≤ K for every n≥ 1,

minλ−nLn1≥ K−1 maxλ−n+NLn−N1≥ K−1 for every n> N.

To conclude the proof, we only have to extend this last estimate to the values
n= 1, . . . ,N. For that, observe that each Ln1 is a positive continuous function.
Since M is compact, it follows that the minimum of Ln1 is positive for every n.
Then, we may take K5 ≥K such that minλ−nLn1≥K−1

5 for every n= 1, . . . ,N.

It follows immediately from Corollary 12.1.9 that the positive eigenvalue λ
is uniquely determined. By Lemma 12.1.1, this implies that λ= ρ(L)= ρ(L∗).
We are also going to see, in a while, that λ= eP(f ,ϕ).

Lemma 12.1.10. There exists K6 > 0 such that

|λ−nLn1(x)−λ−nLn1(y)| ≤ K6d(x,y)α for any n≥ 1 and x,y ∈M.

In particular, the sequence λ−nLn1 is equicontinuous.

Proof. Initially, suppose that d(x,y) < ρ. By Lemma 12.1.8,

Ln1(x)≤Ln1(y)exp(K4d(x,y)α)

and, hence,

λ−nLn1(x)−λ−nLn1(y)≤ [exp(K4d(x,y)α)− 1
]
λ−nLn1(y).

Take K > 0 such that |exp(K4t)− 1| ≤ K|t| whenever |t| ≤ ρα . Then, using
Corollary 12.1.9,

λ−nLn1(x)−λ−nLn1(y)≤ KK5d(x,y)α .

Reversing the roles of x and y, we conclude that

|λ−nLn1(x)−λ−nLn1(y)| ≤ KK5d(x,y)α whenever d(x,y) < ρ.

When d(x,y)≥ ρ, Corollary 12.1.9 gives that

|λ−nLn1(x)−λ−nLn1(y)| ≤ 2K5 ≤ 2K5ρ
−αd(x,y)α .

Hence, it suffices to take K6 ≥ max{KK5,2K5ρ
−α} to get the first part of the

statement. The second part is an immediate consequence.
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12.1 Theorem of Ruelle 389

We are ready to show that the transfer operator L admits some eigenfunction
associated with the eigenvalue λ. Corollary 12.1.9 and Lemma 12.1.10 imply
that the time average

hn = 1

n

n−1∑
i=0

λ−iLi1

defines an equicontinuous bounded sequence. Then, by the theorem of
Ascoli–Arzelá, there exists some subsequence (hni)i converging uniformly to
a continuous function h.

Lemma 12.1.11. The function h satisfies Lh= λh. Moreover,
∫

hdν = 1 and

K−1
5 ≤ h(x)≤ K5 and |h(x)− h(y)| ≤ K6d(x,y)α for every x,y ∈M.

Proof. Consider any subsequence (hni)i converging to h. As the transfer
operator L is continuous,

Lh= lim
i
Lhni = lim

i

1

ni

ni−1∑
k=0

λ−kLk+11= lim
i

λ

ni

ni∑
k=1

λ−kLk1

= lim
i

λ

ni

ni−1∑
k=0

λ−kLk1+ λ

ni

(
λ−niLni 1− 1

)
.

The first term on the right-hand side converges to λh whereas the second
one converges to zero, because the sequence λ−nLn1 is uniformly bounded.
It follows that Lh= λh, as we stated.

Note that
∫
λ−nLn1dν = ∫ λ−nd(L∗nν)= ∫ 1dν = 1 for every n ∈N, by the

definition of ν. It follows that
∫

hn dν = 1 for every n and, using the dominated
convergence theorem,

∫
hdν = 1. All the other claims in the statement follow,

in an entirely analogous way, from Corollary 12.1.9 and Lemma 12.1.10.

12.1.4 Construction of the equilibrium state

Consider the measure defined by μ= hν, that is,

μ(A)=
∫

A
hdν for each measurable set A⊂M.

We are going to see that μ is an equilibrium state for the potential ϕ and
satisfies all the other conditions in Theorem 12.1.

From Lemma 12.1.11 we get that μ(M) = ∫ hdν = 1 and so μ is a
probability measure. Moreover,

K−1
5 ν(A)≤μ(A)≤ K5ν(A) (12.1.12)

for every measurable set A⊂M. In particular, μ is equivalent to the reference
measure ν. This fact, together with Lemma 12.1.4, gives that suppμ = M. It
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390 Thermodynamic formalism

also follows from the relation (12.1.12), together with Lemma 12.1.7, that μ is
a Gibbs state: taking L= K5K, we find that

L−1 ≤ μ(B(x,n,ε))

exp(ϕn(x)− nP)
≤ L, (12.1.13)

for every x ∈M and every n≥ 1. Recall that P= logλ.

Lemma 12.1.12. The probability measure μ is invariant under f . Moreover, f
admits a Jacobian with respect to μ, given by Jμf = λe−ϕ(h ◦ f )/h.

Proof. Start by noting that L
(
(g1◦ f )g2)= g1Lg2, for any continuous functions

g1,g2 : M→R. Indeed, for every y ∈M,

L
(
(g1 ◦ f )g2

)
(y)=

∑
x∈f−1(y)

eϕ(x)g1(f (x))g2(x)

= g1(y)
∑

x∈f−1(y)

eϕ(x)g2(x)= g1(y)Lg2(y).
(12.1.14)

Thus, for every continuous function g : M→R,∫
(g ◦ f )dμ= λ−1

∫
(g ◦ f )hd(L∗ν)= λ−1

∫
L
(
(g ◦ f )h

)
dν

= λ−1
∫

gLhdν =
∫

ghdν =
∫

gdμ.

In view of Proposition A.3.3, this proves that the probability measure μ is
invariant under f .

To prove the second claim, consider any domain of invertibility A of f . Then,
using Lemma 9.7.4(i),

μ(f (A))=
∫

f (A)
1dμ=

∫
f (A)

hdν =
∫

A
Jν f (h ◦ f )dν =

∫
A

Jν f
h ◦ f

h
dμ.

By Lemma 12.1.3, this means that

Jμf = Jν f
h ◦ f

h
= λe−ϕ

h ◦ f

h
,

as stated.

Corollary 12.1.13. The invariant probability measure μ= hν satisfies

hμ(f )+
∫
ϕ dμ= P.

Proof. Combining the Rokhlin formula (Theorem 9.7.3) with the second part
of Lemma 12.1.12,

hμ(f )=
∫

logJμf dμ= logλ−
∫
ϕ dμ+

∫
(logh ◦ f − logh)dμ.

Since μ is invariant and logh is bounded (Corollary 12.1.9), the last term is
equal to zero. This shows that hμ(f )= P− ∫ ϕ dμ, as stated.
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12.1 Theorem of Ruelle 391

To complete the proof that μ= hν is an equilibrium state, all that we need
to do is to check that P= logλ is equal to the pressure P(f ,ϕ). This is done in
Corollary 12.1.15 below.

12.1.5 Pressure and eigenvalues

Let η be any probability measure invariant under f and such that

hη(f )+
∫
ϕ dη≥ P (12.1.15)

(for example: the probability measure μ constructed in the previous section).
Let gη = 1/Jηf (the Jacobian Jηf does exist, by Exercise 9.7.8) and consider
also the function g= λ−1eϕh/(h ◦ f ). Observe that∑

x∈f−1(y)

g(x)= 1

λh(y)

∑
x∈f−1(y)

eϕ(x)h(x)= Lh(y)

λh(y)
= 1 (12.1.16)

for every y ∈ M. Moreover, since η is invariant under f , Exercise 9.7.4 gives
that ∑

x∈f−1(y)

gη(x)= 1 for η-almost every y ∈M. (12.1.17)

Using (12.1.15) and the Rokhlin formula (Theorem 9.7.3),

0≤ hη(f )+
∫
ϕ dη−P=

∫
(− loggη+ϕ− logλ)dη. (12.1.18)

By the definition of g and the hypothesis that η is invariant, the integral on the
right-hand side of (12.1.18) is equal to∫

(− loggη+ logg+ logh ◦ f − logh)dη=
∫

log
g

gη
dη. (12.1.19)

Recalling the definition of gη, Exercise 9.7.3 gives that∫
log

g

gη
dη=

∫ ( ∑
x∈f−1(y)

gη(x) log
g

gη
(x)

)
dη(y). (12.1.20)

At this point we need the following elementary fact:

Lemma 12.1.14. Let pi, bi, i = 1, . . . ,k be positive real numbers such that∑k
i=1 pi = 1. Then

k∑
i=1

pi logbi ≤ log(
k∑

i=1

pibi),

and the identity holds if and only if the numbers bj are all equal to
∑k

i=1 pibi.

Proof. Take ai = log(pibi) in Lemma 10.4.4. Then the inequality in the
conclusion of Lemma 10.4.4 corresponds exactly to the inequality in the
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392 Thermodynamic formalism

present lemma. Moreover, the identity holds if and only if

pj = eaj∑
i e

ai
⇔ pj = pjbj∑

i pibi
⇔ bj =

∑
i

pibi

for every j= 1, . . . ,n.

For each y ∈M, take pi = gη(xi) and bi = g(xi)/gη(xi), where the xi are the
pre-images of y. The identity (12.1.17) means that

∑
i pi= 1 for η-almost every

y. Then, we may apply Lemma 12.1.14:∑
x∈f−1(y)

gη(x) log
g

gη
(x)≤ log

∑
x∈f−1(y)

gη(x)
g

gη
(x)

= log
∑

x∈f−1(y)

g(x)= 0
(12.1.21)

for η-almost every y; in the last step we used (12.1.16). Combining the relations
(12.1.18) through (12.1.21), we find:

hη(f )+
∫
ϕ dη−P=

∫
log

g

gη
dη= 0. (12.1.22)

Corollary 12.1.15. P(f ,ϕ)= P= logρ(L).

Proof. By (12.1.22), we have that hη(f ) +
∫
ϕ dη = P for every invariant

probability measure η such that hη(f )+
∫
ϕ dη≥P. By the variational principle

(Theorem 10.4.1), it follows that P(f ,ϕ) = P. The second identity has been
observed before, right after Corollary 12.1.9.

At this point we have completed the proof that the measure μ = hν
constructed in the previous section is an equilibrium state for ϕ. The statement
that follows arises from the same kind of ideas and is the basis for proving that
this equilibrium state is unique:

Corollary 12.1.16. If η is an equilibrium state for ϕ then suppη=M and

Jηf = λe−ϕ(h ◦ f )/h and L∗(η/h)= λ(η/h).

Proof. The first claim is an immediate consequence of the second one and
Lemma 12.1.4.

Note that the identity in (12.1.22) also implies that the identity in (12.1.21)
holds for η-almost every y ∈M. According to Lemma 12.1.14, that happens if
and only if the numbers bi= log(g(xi)/gη(xi)) are all equal. In other words, for
η-almost every y ∈M there exists a number c(y) such that

g(x)

gη(x)
= c(y) for every x ∈ f−1(y).
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12.1 Theorem of Ruelle 393

Moreover, recalling the identities (12.1.18) and (12.1.19),

c(y)=
∑

x∈f−1(y)

c(y)gη(x)=
∑

x∈f−1(y)

g(x)= 1

for η-almost every y. It follows that gη = g at η-almost every point, and so the
function 1/g= λe−ϕ(h ◦ f )/h is a Jacobian of f with respect to η. This proves
the second claim.

To prove the third claim, let ξ : M → R be any continuous function. On the
one hand, by the definition of the transfer operator,∫

ξ dL∗
(
η

h

)
=
∫

1

h

(
Lξ
)

dη=
∫

1

h(y)

( ∑
x∈f−1(y)

eϕ(x)ξ(x)

)
dη(y). (12.1.23)

By the definition of the function g,

eϕ(x)

h(y)
= λg(x)

h(x)
.

Replacing this identity in (12.1.23), we obtain:∫
ξ dL∗

(
η

h

)
=
∫ ( ∑

x∈f−1(y)

λgξ

h
(x)

)
dη(y). (12.1.24)

Then, recalling that g = gη = 1/Jηf , we may use Exercise 9.7.3 to conclude
that ∫

ξ dL∗
(
η

h

)
=
∫ ( ∑

x∈f−1(y)

λgξ

h
(x)

)
dη(y)=

∫
λξ

h
dη.

Since the continuous function ξ is arbitrary, this shows that L∗(η/h)= λ(η/h),
as stated.

12.1.6 Uniqueness of the equilibrium state

Let us start by proving the following distortion bound:

Corollary 12.1.17. There exists K7 > 0 such that for every equilibrium state
η, every n≥ 1, every x ∈M and every y ∈ B(x,n+ 1,ρ),

K−1
7 ≤ Jηf n(x)

Jηf n(y)
≤ K7.

Proof. By Corollary 12.1.16,

Jηf
n = λe−ϕn

h ◦ f n

h
= Jν f

n h ◦ f n

h
for each n≥ 1. Then, using Corollary 12.1.6 and Lemma 12.1.11,

K−1
2 K−4

5 ≤ Jηf n(x)

Jηf n(y)
= Jν f n(x)

Jν f n(y)

h(f n(x))h(y)

f (f n(y))h(x)
≤ K2K4

5 .

Therefore, it suffices to take K7 = K2K4
5 .
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394 Thermodynamic formalism

Lemma 12.1.18. All the equilibrium states of ϕ are equivalent measures.

Proof. Let η1 and η2 be equilibrium states. Consider any finite partition P of
M such that every P∈P has non-empty interior and diameter less than ρ. Since
suppη1 = suppη2 =M (by Corollary 12.1.16), the set {ηi(P) : i= 1,2 and P ∈
P} is bounded from zero. Consequently, there exists C1 > 0 such that

1

C1
≤ η1(P)

η2(P)
≤ C1 for every P ∈P . (12.1.25)

We are going to show that this relation extends to every measurable subset of
M, up to replacing C1 by a convenient constant C2 > C1.

For each n ≥ 1, let Qn be the partition of M formed by the images hn(P)
of the elements of P under the inverse branches hn of the iterate f n. By the
definition of Jacobian, ηi(P)=

∫
hn(P) Jηi f

n dηi. Hence, using Corollary 12.1.17,

K−1
7 Jηi f

n(x)≤ ηi(P)

ηi(hn(P))
≤ K7Jηi f

n(x)

for any x∈ hn(P). Recalling that Jη1 f = Jη2 f (Corollary 12.1.16), it follows that

K−2
7 ≤ η2(P)η1(hn(P))

η1(P)η2(hn(P))
≤ K2

7 . (12.1.26)

Combining (12.1.25) and (12.1.26), and taking C2 = C1K2
7 , we get that

1

C2
≤ η1(hn(P))

η2(hn(P))
≤ C2 (12.1.27)

for every P ∈P , every inverse branch hn of f n and every n≥ 1. In other words,
the property in (12.1.25) holds for every element of Qn, with C2 in the place
of C1.

Now observe that diamQn ≤ 2σ−nρ for every n. Given any measurable set
B and any δ > 0, we may use Proposition A.3.2 to find a compact set F ⊂ B
and an open set A⊃ B such that ηi(A \F) < δ for i= 1,2. Let Qn be the union
of all the elements of the partition Qn that intersect F. It is clear that Qn ⊃ F
and, assuming that n is large enough, Qn ⊂ A. Then,

η1(B)≤ η1(A) < η1(Qn)+ δ and η2(B)≥ η2(F) > η2(Qn)− δ.
The relation (12.1.27) gives that η1(Qn) ≤ C2η2(Qn), since Qn is a (disjoint)
union of elements of Qn. Combining these three inequalities, we obtain

η1(B) < C2
(
η2(B)+ δ

)+ δ.
Since δ is arbitrary, we conclude that η1(B)≤C2η2(B) for every measurable set
B⊂M. Reversing the roles of the two measures, we also get η2(B)≤ C2η2(B)
for every measurable set B⊂M.

These inequalities prove that any two equilibrium states are equivalent
measures, with Radon–Nikodym derivatives bounded from zero and infinity.
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12.1 Theorem of Ruelle 395

Combining Lemmas 4.3.3 and 12.1.18 we get that all the ergodic equilib-
rium states are equal. Now, by Proposition 10.5.5, the connected components
of any equilibrium state are also equilibrium states (ergodic, of course). It
follows that there exists a unique equilibrium state, as stated.

There is an alternative proof of the fact that the equilibrium state is unique
that does not use Proposition 10.5.5 and, thus, does not require the theorem of
Jacobs. Indeed, the results in the next section imply that the equilibrium state
μ = hν in Section 12.1.4 is ergodic. By Lemma 12.1.18, that implies that all
the equilibrium states are ergodic. Using Lemma 4.3.3, it follows that all the
equilibrium states must coincide.

As a consequence, the reference measure ν is also unique: if there were two
distinct reference measures, ν1 and ν2, then μ1 = hν1 and μ2 = hν2 would be
distinct equilibrium states. Analogously, the positive eigenfunction h is unique
up to multiplication by a positive constant.

12.1.7 Exactness

Finally, let us prove that the system (f ,μ) is exact. Recall that this means that
if B⊂M is such that there exist measurable sets Bn satisfying B= f−n(Bn) for
every n≥ 1, then B has measure 0 or measure 1.

Let B be such a subset of M and assume that μ(B) > 0. Let P be a finite
partition of M by subsets with non-empty interior and diameter less than ρ.
For each n, let Qn be the partition of M whose elements are the images hn(P)
of the sets P ∈P under the inverse branches hn of the iterate f n.

Lemma 12.1.19. For every ε > 0 and every n≥ 1 sufficiently large there exists
some hn(P) ∈Qn such that

μ
(
B∩ hn(P)

)
> (1− ε)μ(hn(P)). (12.1.28)

Proof. Fix ε > 0. Since the measureμ is regular (Proposition A.3.2), given any
δ > 0 there exist some compact set F ⊂ B and some open set A⊃ B satisfying
μ(A \ F) < δ. Since we assume that μ(B) > 0, this inequality implies that
μ(F) > (1− ε)μ(A), as long as δ > 0 is sufficiently small. Fix δ from now on.
Note that diamQn < σ

−nρ. Then, for every n sufficiently large, any element
hn(P) of Qn that intersects F is contained in A. By contradiction, suppose
that (12.1.28) is false for every hn(P). Then, adding over all the hn(P) that
intersect F,

μ(F)≤
∑
P,hn

μ
(
F∩ hn(P)

)≤∑
P,hn

μ
(
B∩ hn(P)

)
≤ (1− ε)

∑
P,hn

μ(hn(P))≤ (1− ε)μ(A).

This contradiction proves that (12.1.28) is valid for some hn(P) ∈Qn.
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396 Thermodynamic formalism

Consider any hn(P) ∈ Qn such that (12.1.28). Since B = f−n(Bn) and f n ◦
hn = id in its domain, we have that f n

(
hn(P) \ B) = P \ Bn. Then, applying

Corollary 12.1.17 to the measure η=μ,

μ(P \Bn)=
∫

hn(P)\B
Jμf n dμ≤ K7μ(h

n(P) \B)Jμf n(x)

and μ(P)=
∫

hn(P)
Jμf n dμ≥ K−1

7 μ(hn(P))Jμf n(x)

(12.1.29)

for any x ∈ hn(P). Combining (12.1.28) and (12.1.29),

μ(P \Bn)

μ(P)
≤ K2

7
μ(hn(P) \B)

μ(hn(P))
≤ K2

7ε.

In this way we have shown that, given any ε > 0 and any n ≥ 1 sufficiently
large, there exists some P ∈P such that μ(P \Bn)≤ K2

7εμ(P).
Since the partition P is finite, it follows that there exist some P ∈ P and

some sequence (nj)j →∞ such that

μ(P \Bnj)→ 0 when j→∞. (12.1.30)

Let P be fixed from now on. Since, by assumption, P has non-empty interior
and f is topologically exact, there exists N ≥ 1 such that f N(P) = M. Let
P = P1 ∪ ·· · ∪Ps be a finite partition of P into domains of invertibility of f N .
Corollaries 12.1.9 and 12.1.16 give that Jμf N = λNe−ϕN (h ◦ f N)/f is bounded
from zero and infinity. Note also that f N(Pi \ Bnj) = f N(Pi) \ Bnj+N , because
f−n(Bn)= B for every n. Combining these two observations with (12.1.30), we
find that, given any i= 1, . . . ,s, the sequence

μ(f N(Pi) \Bnj+N)=μ(f N(Pi \Bnj))=
∫

Pi\Bnj

Jμf N dμ

converges to zero when j→∞. Now, {f N(Pi) : i= 1, . . . ,s} is a finite cover of
M by measurable sets. Therefore, this last conclusion implies thatμ(M\Bnj+N)

converges to zero, that is, μ(B)= μ(Bnj+N) converges to 1 when j→∞. That
means that μ(B)= 1, of course.

The proof of Theorem 12.1 is complete.

12.1.8 Absolutely continuous measures

In this last section on the theorem of Ruelle we briefly discuss the special
case when f : M → M is a local diffeomorphism on a compact Riemannian
manifold and ϕ =− log |detDf |. It is assumed that f is such that this potential
ϕ is Hölder. The first goal is to compare the conclusions of the theorem of
Ruelle in this case with the results in Section 11.1:

Proposition 12.1.20. The invariant absolutely continuous probability measure
coincides with the equilibrium state μ of the potential ϕ = − log |detDf |.
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12.1 Theorem of Ruelle 397

Consequently, it is equivalent to the Lebesgue measure m, with density dμ/dm
Hölder and bounded from zero and infinity, and it is exact.

Proof. We saw in Example 12.1.2 that the Lebesgue measure m is an
eigenvector of the dual L∗ of the transfer operator associated with the potential
ϕ =− log |detDf |: more precisely,

L∗m=m.

Applying the previous theory (from Lemma 12.1.3 on) with λ= 1 and ν =m,
we find a Hölder function h : M → R, bounded from zero and infinity, such
that Lh = h and the measure μ = hm is the equilibrium state of the potential
ϕ. Recalling Corollary 11.1.15, it follows that μ is also the unique probability
measure invariant under f and absolutely continuous with respect to m. The
fact that h is positive implies that μ and m are equivalent measures. Exactness
was proven in Section 12.1.7.

It is worthwhile pointing out that, while the absolutely continuous invariant
measure is unique (Theorem 11.1.2), the potential ϕ =− log |detDf | depends
on the choice of the Riemannian metric on M, because the determinant does.
So, Proposition 12.1.20 also implies that all the potentials of this form,
corresponding to different choices of the Riemannian metric, have the same
equilibrium state. This type of situation is the subject of Section 12.2 and, in
particular, Exercise 12.2.3.

It also follows from the proof of Theorem 12.1 that

hμ(f )−
∫

log |detDf |dμ= P(f ,− log |detDf |)= logλ= 0. (12.1.31)

Let ϕ̃ be the time average of the function ϕ, given by the Birkhoff ergodic
theorem. Then,∫

log |detDf |dμ=
∫
−ϕ dμ=

∫
−ϕ̃ dμ. (12.1.32)

Moreover,

− ϕ̃(x)= lim
n

1

n

n−1∑
j=0

log |detDf (f j(x))| = lim
n

1

n
log |detDf n(x)| (12.1.33)

at μ-almost every point. In the context of our comments about the Oseledets
theorem (see the relation (c1) in Section 3.3.5) we mentioned that

lim
n

1

n
log |detDf n(x)| =

k(x)∑
i=1

di(x)λi(x), (12.1.34)

where λ1(x), . . . , λk(x)(x) are the Lyapunov exponents of the transformation
f at the point x and d1(x), . . . , dk(x)(x) are the corresponding multiplicities.
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398 Thermodynamic formalism

Combining the relations (12.1.31)–(12.1.34), we find that

hμ(f )=
∫ ( k(x)∑

i=1

di(x)λi(x)

)
dμ(x). (12.1.35)

Since these functions are invariant (see the relation (a1) in Section 3.3.5)
and the measure μ is ergodic, the functions k(x), λi(x) and di(x) are constant
at μ-almost every point. Let us denote by k, λi and di these constants. Then
(12.1.35) translates into the following theorem:

Theorem 12.1.21. Let f : M → M be an expanding map on a compact
Riemannian manifold, such that the derivative Df is Hölder. Let μ be the
unique invariant probability measure absolutely continuous with respect to the
Lebesgue measure on M. Then

hμ(f )=
k∑

i=1

diλi, (12.1.36)

where λi, i= 1, . . . ,k are the Lyapunov exponents of f at μ-almost every point
and di, i= 1, . . . ,k are the corresponding multiplicities.

As we pointed out before, in Section 9.4.4, this is a special instance of the
Pesin entropy formula (Theorem 9.4.5).

12.1.9 Exercises

12.1.1. Show that if η is a Borel measure on a compact metric space then for every
ε > 0 there exists b> 0 such that η(B(y,ε)) > b for every y ∈ suppη.

12.1.2. Let f : M → M be an expanding map. Consider the non-linear operator G :
M1(M) → M1(M) defined in the space M1(M) of all Borel probability
measures by

G(η)= L∗(η)∫ L1dη
.

Use the Tychonoff–Schauder theorem (Theorem 2.2.3) to show that G admits
some fixed point and deduce Lemma 12.1.1.

12.1.3. Let σ : �A → �A be the one-sided shift of finite type associated with a given
transition matrix A (recall Section 10.2.2). Let P be a stochastic matrix such that
Pi,j = 0 whenever Ai,j = 0 and p be a probability vector with positive coefficients
such that P∗p= p. Consider the transfer operator L associated with the locally
constant potential

ϕ(i0, i1, . . . , in, . . . )=− log
pi1

pi0 Pi0,i1

.

Show that the Markov measure μ associated with the matrix P and the vector p
satisfies L∗μ=μ.

12.1.4. Let λ be any positive number and ν be a Borel probability measure
such that L∗ν = λν. Show that, given any u ∈ L1(ν) and any continuous
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12.2 Theorem of Livšic 399

function v : M→R, ∫
(u ◦ f )vdν =

∫
u(λ−1Lv)dν.

12.2 Theorem of Livšic

Now we discuss the following issue: when is it the case that two different
Hölder potentials φ and ψ have the same equilibrium state? Observe that,
since these are ergodic measures, the two equilibrium states μφ and μψ either
coincide or are mutually singular (by Lemma 4.3.3).

Recall that two potentials are said to be cohomologous (with respect to f ) if
the difference between them may be written as u ◦ f − u for some continuous
function u : M→R.

Theorem 12.2.1 (Livšic). A potential ϕ : M → R is cohomologous to zero if
and only if ϕn(x)= 0 for every x ∈ Fix(f n) and every n≥ 1.

Proof. It is clear that if ϕ = u ◦ f − u for some u then

ϕn(x)=
n∑

j=1

u(f j(x))−
n−1∑
j=0

u(f j(x))= 0

for every x ∈M such that f n(x)= x. The converse is a lot more interesting.
Suppose that ϕn(x) = 0 for every x ∈ Fix(f n) and every n ≥ 1. Consider

any point z ∈ M whose orbit is dense in M; such a point exists because f is
topologically exact and, consequently, transitive. Define the function u on the
orbit of z through the following relation:

u(f n(z))= u(z)+ϕn(z), (12.2.1)

where u(z) is arbitrary. Observe that

u(f n+1(z))− u(f n(z))= ϕn+1(z)−ϕn(z)= ϕ(f n(z)) (12.2.2)

for every n≥ 0. In other words, the cohomology relation

φ−ψ = u ◦ f − u (12.2.3)

holds on the orbit of z. To extend this relation to the whole of M, we use the
following fact:

Lemma 12.2.2. The function u is uniformly continuous on the orbit of z.

Proof. Given ε ∈ (0,ρ), take δ > 0 given by the shadowing lemma (Proposi-
tion 11.2.9). Suppose that k ≥ 0 and l ≥ 1 are such that d(f k(z), f k+l(z)) < δ.
Then the periodic sequence (xn)n of period l given by

x0 = f k(z),x1 = f k+1(z), . . . ,xl−1 = f k+l−1(z),xl = f k(z)
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400 Thermodynamic formalism

is a δ-pseudo-orbit. Hence, by Proposition 11.2.9, there exists x ∈ Fix(f l) such
that d(f j(x), f k+j(z)) < ε for every j≥ 0. Since we took ε < ρ, this also implies
that x = hl(f l(x)), where hl : B(f k+l(z),ρ)→M denotes the inverse branch of
f l that maps f k+l(z) to f k(z). By (11.2.6), it follows that

d(f j(x), f k+j(z))≤ σ j−ld(f l(x), f k+l(z)) for every 0≤ j≤ l. (12.2.4)

By the definition (12.2.1),

u(f k+l(z))− u(f k(z))= ϕk+l(z)−ϕk(z)= ϕl(f
k(z)). (12.2.5)

Fix constants C > 0 and ν > 0 such that |ϕ(x)− ϕ(y)| ≤ Cd(x,y)ν for any
x,y ∈M. Then,

∣∣ϕl(f
k(z))−ϕl(x)

∣∣≤ j−1∑
j=0

∣∣ϕ(f k+j(z))−ϕ(f j(x))
∣∣≤∑

j=0

Cd(f j(x), f k+j(z))ν .

Using (12.2.4), it follows that

|ϕl(f
k(z))−ϕl(x)| ≤

∑
j=0

Cσ ν(j−l)d(x, f k+l(z))ν ≤ C1ε
ν , (12.2.6)

where C1 = C
∑∞

i=0 σ
−iν . Recall that, by assumption, ψl(x) = 0. Hence,

combining (12.2.5) and (12.2.6), we find that |u(f k+l(z))− u(f k(z))| ≤ C1ε
ν .

This completes the proof of the lemma.

It follows from Lemma 12.2.2 that u admits a (unique) continuous extension
to the closure of the orbit of z, that is, the ambient space M. Then, by continuity
of ϕ and u, the cohomology relation (12.2.3) extends to the whole M. This
proves Theorem 12.2.1.

Theorem 12.2.3. Let f : M →M be a topologically exact expanding map on
a compact metric space and φ and ψ be two Hölder potentials in M. The
following conditions are equivalent:

(i) μφ =μψ ;
(ii) there exist c ∈R and an arbitrary function u : M→R such that φ−ψ =

c+ u ◦ f − u;
(iii) φ−ψ is cohomologous to some constant c ∈R;
(iv) there exist c ∈ R and a Hölder function u : M → R such that φ −ψ =

c+ u ◦ f − u;
(v) there exists c ∈ R such that φn(x)−ψn(x)= cn for every x ∈ Fix(f n) and

n≥ 1.

Moreover, the constants c ∈ R in (ii), (iii), (iv) and (v) coincide; indeed, they
are all equal to P(f ,φ)−P(f ,ψ).

Proof. It is clear that (iv) implies (iii) and (iii) implies (ii).
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12.2 Theorem of Livšic 401

If φ−ψ = c+ u ◦ f − u for some function u then, given any x ∈ Fix(f n),

φn(x)−ψn(x)=
n−1∑
j=0

(
φ−ψ)(f j(x))=

n−1∑
j=0

(
c+ u(f j+1(x))− u(f j(x))

)
.

Since f n(x) = x, the sum of the last two terms over every j = 0, . . . ,n − 1
vanishes. Therefore, φn(x)−ψn(x)= cn. This proves that (ii) implies (v).

Suppose that φn(x)−ψn(x)= cn for every x ∈ Fix(f n) and every n≥ 0. That
means that the function ϕ = φ−ψ− c satisfies ϕn(x)= 0 for every x ∈ Fix(f n)

and every n ≥ 0. Note also that ϕ is Hölder. Hence, by Theorem 12.2.1, there
exists a continuous function u : M→R such that ϕ = u◦ f −u. In other words,
φ−ψ is cohomologous to c. This shows that (v) implies (iii).

It follows from (10.3.4) and Proposition 10.3.8 that if φ is cohomologous to
ψ + c then

P(f ,φ)= P(f ,ψ + c)= P(f ,ψ)+ c.

On the other hand, given any invariant probability measure ν,

hν(f )+
∫
φ dν = hν(f )+

∫
(ψ + c)dν = hν(f )+

∫
ψ dν+ c.

Therefore, ν is an equilibrium state for φ if and only if ν is an equilibrium state
for ψ . This shows that (iii) implies (i).

If μφ and μψ coincide then they have the same Jacobian, of course. By
Lemma 12.1.12, this means that

λφe−φ
hφ ◦ f

hφ
= λψe−ψ

hψ ◦ f

hψ
. (12.2.7)

Let c = logλφ − logλψ and u = loghφ − loghψ . Both are well defined, since
λφ , λψ , hφ and hψ are all positive. Moreover, since the functions hφ and hψ are
Hölder and bounded from zero and infinity (Corollary 12.1.9), the function u
is Hölder. Finally, (12.2.7) may be rewritten as follows:

φ−ψ = c+ logu ◦ f − u.

This shows that (i) implies (iv). The proof of the theorem is complete.

Here is an interesting consequence in the differentiable setting:

Corollary 12.2.4. Let f : M → M be a differentiable expanding map on a
compact Riemannian manifold such that the Jacobian detDf is Hölder. The
absolutely continuous invariant probability measure μ coincides with the
measure of maximum entropy if and only if there exists c ∈R such that

|detDf n(x)| = ecn for every x ∈ Fix(f n) and every n≥ 1.

Proof. As we saw in Proposition 12.1.20, μ is the equilibrium state of the
potential ϕ = − log |detDf |. It is clear that the measure of maximum entropy
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402 Thermodynamic formalism

μ0 is the equilibrium state of the zero function. Observe that

ϕn(x)=
n−1∑
j=0

log |detDf (f j(x))| = log |detDf n(x)|.

Therefore, Theorem 12.2.3 gives that μ = μ0 if and only if there exists some
number c ∈ R such that log |detDf n(x)| = 0+ cn for every x ∈ Fix(f n) and
every n≥ 1.

12.2.1 Exercises

12.2.1. Consider the two-sided shift σ : � → � in � = {1, . . . ,d}Z. Show that for
every Hölder function ϕ : �→ R, there exists a Hölder function ϕ+ : �→ R,
cohomologous to ϕ and such that ϕ+(x) = ϕ+(y) whenever x = (xi)i∈Z and
y= (yi)i∈Z are such that xi = yi for i≥ 0.

12.2.2. Prove that if the functions ϕ,ψ : M→R are such that there exist constants C,L
satisfying |ϕn(x)−ψn(x)−nC| ≤ L for every x ∈M, then P(f ,ϕ)= P(f ,ψ)+C
and ϕ is cohomologous to ψ +C.

12.2.3. Let f : M→M be a differentiable expanding map on a compact manifold, with
Hölder derivative. Check that any two potentials of the form ϕ =− log |detDf |,
for two different choices of a Riemannian metric on M, are cohomologous.
[Observation: In particular, all such potentials have the same equilibrium state,
namely, the absolutely continuous invariant probability measure. This was
observed before, in Section 12.1.8.]

12.2.4. Given k≥ 2, let f : S1 → S1 be the (expanding) map given by f (x)= kx mod Z.
Let g : S1 → S1 be a differentiable expanding map of degree k. Show that f and
g are topologically conjugate.

12.2.5. Given k≥ 2, let f : S1 → S1 be the map given by f (x)= kx mod Z. Let g : S1 →
S1 be a differentiable expanding map of degree k, with Hölder derivative. Show
that the following conditions are equivalent:
(a) f and g are conjugated by some diffeomorphism;
(b) f and g are conjugated by some absolutely continuous homeomorphism

whose inverse is also absolutely continuous;
(c) (gn)′(p)= kn for every p ∈ Fix(f n).

12.3 Decay of correlations

Let f : M → M be a topologically exact expanding map and ϕ : M → R

be a Hölder potential. As before, we denote by ν the reference measure
(Section 12.1.1) and byμ the equilibrium state (Section 12.1.4) of the potential
ϕ. Recall that μ= hν, where the function h is bounded from zero and infinity
(Corollary 12.1.9). In particular, L1(μ)= L1(ν).

Given b> 0 and β > 0, we say that a function g : M→R is (b,β)-Hölder if

|g(x)− g(y)| ≤ bd(x,y)β for any x,y ∈M. (12.3.1)
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12.3 Decay of correlations 403

We say that g is β-Hölder if it is (b,β)-Hölder for some b > 0. Then we
denote by Hβ(g) the smallest of such constants b. Moreover, fixing ρ > 0 as in
(11.2.1), we denote by Hβ,ρ(g) the smallest constant b such that the inequality
in (12.3.1) holds for any x,y ∈M with d(x,y) < ρ.

The correlations sequence of two functions g1 and g2, with respect to the
invariant measure μ, was defined in (7.1.1):

Cn(g1,g2)=
∣∣∣∣∫ (g1 ◦ f n)g2 dμ−

∫
g1 dμ

∫
g2 dμ

∣∣∣∣.
We also consider a similar notion for the reference measure ν:

Bn(g1,g2)=
∣∣∣∣∫ (g1 ◦ f n)g2 dν−

∫
g1 dμ

∫
g2 dν

∣∣∣∣.
In this section we prove that these sequences decay exponentially.

Theorem 12.3.1 (Exponential convergence to equilibrium). Given β ∈ (0,α],
there exists � < 1 and for every β-Hölder function g2 : M → C there exists
K1(g2) > 0 such that

Bn(g1,g2)≤ K1(g2)�
n
∫
|g1|dν for every g1 ∈ L1(ν) and every n≥ 1.

The proof is presented in Sections 12.3.1 through 12.3.3. It provides an
explicit expression for the factor K1(g2). Observe also that

Bn(g1,g2)=
∣∣∣∣∫ g1 d

(
f n
∗ (g2ν)

)−∫ g1 d

(
μ

∫
g2 dν

)∣∣∣∣.
Then, the conclusion of Theorem 12.3.1 may be interpreted as follows: the
iterates of any measure of the form g2ν converge to the invariant measure
μ
∫

g2 dν exponentially fast.

Theorem 12.3.2 (Exponential decay of correlations). For every β ∈ (0,α]
there exists � < 1 and for every β-Hölder function g2 : M → C there exists
K2(g2) > 0 such that

Cn(g1,g2)≤ K2(g2)�
n
∫
|g1|dμ for every g1 ∈ L1(μ) and every n≥ 1.

In particular, given any pair g1 and g2 of β-Hölder functions, there exists
K(g1,g2) > 0 such that Cn(g1,g2)≤ K(g1,g2)�

n for every n≥ 1.

Proof. Recall that μ = hν and, according to Corollary 12.1.9, the function
h is α-Hölder and satisfies K−1

5 ≤ h ≤ K5 for some K5 > 0. Hence (see
Exercise 12.3.5), g2 is β-Hölder if and only if g2h is β-Hölder. Moreover,

Cn(g1,g2)=
∫
(g1 ◦ f n)g2 dμ−

∫
g1 dμ

∫
g2 dμ

=
∫
(g1 ◦ f n)(g2h)dν−

∫
g1 dμ

∫
(g2h)dν = Bn(g1,g2h).
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404 Thermodynamic formalism

Therefore, it follows from Theorem 12.3.1 that

Cn(g1,g2)≤ K1(g2h)�n
∫
|g1|dν ≤ K1(g2h)/K5�

n
∫
|g1|dμ.

This proves the first part of the theorem, with K2(g2) = K1(g2h)/K5. The
second part is an immediate consequence: if g1 is β-Hölder then g1 ∈ L1(μ)

and it suffices to take K(g1,g2)= K2(g2)
∫ |g1|dμ.

Before we move to prove Theorem 12.3.1, let us make a few quick
comments. The issue of decay of correlations was already discussed in
Section 7.4, from the viewpoint of the spectral gap property. Here we introduce
a different approach. The proof of the theorem that we are going to present
is based on the notion of projective distance associated with a cone, which
was introduced by Garret Birkhoff [Bir67]. This tool allows us to obtain
exponential convergence to equilibrium (which yields exponential decay of
correlations, as we have just shown) without having to analyze the spectrum
of the transfer operator. Incidentally, this can also be used to deduce that the
spectral gap property does hold in the present context. We will come back to
this theme near the end of Section 12.3.

12.3.1 Projective distances

Let E be a Banach space. We call a cone any convex subset C of E such that

tC⊂ C for every t> 0 and C̄∩ (−C̄)= {0}, (12.3.2)

where C̄ denotes the closure of C (previously we considered only closed cones
but at this point it is convenient to loosen that requirement). Given v1,v2 ∈ C,
define

α(v1,v2)= sup{t> 0 : v2− tv1 ∈ C} and β(v1,v2)= inf{s> 0 : sv1− v2 ∈ C}.
Figure 12.1 helps illustrate the geometric meaning of these numbers. By
convention, α(v1,v2)= 0 if v2− tv1 /∈C for every t> 0 and β(v1,v2)=+∞ if
sv1− v2 /∈ C for every s> 0.

0

v1

v2

v2 − α (v1, v2)v1

v1 − β (v1, v2)−1v1

C

Figure 12.1. Defining the projective distance in a cone C
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12.3 Decay of correlations 405

Note that α(v1,v2) is always finite. Indeed, α(v1,v2) = +∞ would mean
that there exists a sequence (tn)n →+∞ with v2− tnv1 ∈ C for every n. Then,
sn= 1/tn would be a sequence of positive numbers converging to zero and such
that snv2 − v1 ∈ C for every n. This would imply that −v1 ∈ C̄, which would
contradict the second condition in (12.3.2). An analogous argument shows that
β(v1,v2) is always positive: β(v1,v2)= 0 would imply −v2 ∈ C̄.

Given any cone C⊂ E and any v1,v2 ∈ C \ {0}, we define

θ(v1,v2)= log
β(v1,v2)

α(v1,v2)
, (12.3.3)

with θ(v1,v2)=+∞ whenever α(v1,v2)= 0 or β(v1,v2)=+∞. The remarks
in the previous paragraph ensure that θ(v1,v2) is always well defined. We call θ
the projective distance associated with the cone C. This terminology is justified
by the proposition that follows, which shows that θ defines a distance in the
projective quotient of C \ {0}, that is, in the set of equivalence classes of the
relation ∼ defined by v1 ∼ v2 ⇔ v1 = tv2 for some t> 0.

Proposition 12.3.3. If C is a cone then

(i) θ(v1,v2)= θ(v2,v1) for any v1,v2 ∈ C;
(ii) θ(v1,v2)+ θ(v2,v3)≥ θ(v1,v3) for any v1,v2,v3 ∈ C;

(iii) θ(v1,v2)≥ 0 for any v1,v2 ∈ C;
(iv) θ(v1,v2)= 0 if and only if there exists t> 0 such that v1 = tv2;
(v) θ(t1v1, t2v2)= θ(v1,v2) for any v1,v2 ∈ C and t1, t2 > 0.

Proof. If α(v2,v1) > 0 then

α(v2,v1)= sup{t> 0 : v1− tv2 ∈ C} = sup

{
t> 0 :

1

t
v1− v2 ∈ C

}
= ( inf{s> 0 : sv1− v2 ∈ C})−1 = β(v1,v2)

−1.

Moreover,

α(v2,v1)= 0⇔ v1− tv2 /∈ C for every t> 0

⇔ sv1− v2 /∈ C for every s> 0⇔ β(v1,v2)=+∞.

Therefore, α(v2,v1)= β(v1,v2)
−1 in all cases. Exchanging the roles of v1 and

v2, we also get that β(v2,v1) = α(v1,v2)
−1 for any v1,v2 ∈ C. Part (i) of the

proposition is an immediate consequence of these observations.
Next, we claim that α(v1,v2)α(v2,v3)≤ α(v1,v3) for any v1,v2,v3 ∈C. This

is obvious if α(v1,v2) = 0 or α(v2,v3) = 0; therefore, we may suppose that
α(v1,v2) > 0 and α(v2,v3) > 0. Then, by definition, there exist increasing
sequences of positive numbers (rn)n → α(v1,v2) and (sn)n → α(v2,v3) such
that

v2− rnv1 ∈ C and v3− snv2 ∈ C for every n≥ 1.
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406 Thermodynamic formalism

Since C is convex, it follows that v3− snrnv1 ∈ C and so snrn ≤ α(v1,v3), for
every n≥ 1. Passing to the limit as n→+∞, we get the claim. An analogous
argument shows that β(v1,v2)β(v2,v3) ≥ β(v1,v3) for any v1,v2,v3 ∈ C. Part
(ii) of the proposition follows immediately from these inequalities.

Part (iii) means, simply, that α(v1,v2)≤β(v1,v2) for any v1,v2 ∈C. To prove
this fact, consider t> 0 and s> 0 such that v2− tv1 ∈C and sv1−v2 ∈C. Then,
by convexity, (s− t)v1 ∈C. If s− t were negative, then we would have−v1 ∈C,
which would contradict the last part of (12.3.2). Therefore, s≥ t for any t and
s as above. This implies that α(v1,v2)≤ β(v1,v2).

Let v1,v2 ∈C be such that θ(v1,v2)= 0. Then, α(v1,v2)= β(v1,v2)= γ for
some γ ∈ (0,+∞). Hence, there exist an increasing sequence (tn)n → γ and a
decreasing sequence (sn)n → γ with

v2− tnv1 ∈ C and snv1− v2 ∈ C for every n≥ 1.

Writing v2 − tnv1 = (v2 − γ v1)+ (γ − tn)v1, we conclude that v2 − γ v1 is in
the closure C̄ of C. Analogously, γ v1−v2 ∈ C̄. By the second part of (12.3.2),
it follows that v2− γ v1 = 0. This proves part (iv) of the proposition.

Finally, consider any t1, t2 > 0 and v1,v2 ∈ C. By definition,

α(t1v1, t2v2)= t2
t1
α(v1,v2) and β(t1v1, t2v2)= t2

t1
β(v1,v2).

Hence, θ(t1v1, t2v2)= θ(v1,v2), as stated in part (v) of the proposition.

Example 12.3.4. Consider the cone C = {(x,y) ∈ E : y> |x|} in E = R2. The
projective quotient of C may be identified with the interval (−1,1), through
(x,1) �→ x. Given −1< x1 ≤ x2 < 1, we have:

α((x1,1),(x2,1))= sup{t> 0 : (x2,1)− t(x1,1) ∈ C}

= sup{t> 0 : 1− t≥ |x2− tx1|} = 1− x2

1− x1
,

and β((x1,1),(x2,1))= x2+ 1

x1+ 1
.

Therefore,

θ((x1,1),(x2,1))= logR(−1,x1,x2,1), (12.3.4)

where

R(a,b,c,d)= (c− a)(d− b)

(b− a)(d− c)

denotes the cross-ratio of four positive numbers a< b≤ c< d.

In Exercise 12.3.2 we invite the reader to check a similar fact when the
interval is replaced by the unit disk D= {z ∈C : |z|< 1}.
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12.3 Decay of correlations 407

Example 12.3.5. Let E = C0(M) be the space of continuous functions on a
compact metric space M. Consider the cone C+ = {g ∈ E : g(x) > 0 for x ∈M}.
For any g1,g2 ∈ C+,

α(g1,g2)= sup

{
t> 0 : (g2− tg1)(x) > 0 for every x ∈M

}
= inf

{
g2

g1
(x) : x ∈M

}
and β(g1,g2)= sup

{
g2

g1
(x) : x ∈M

}
.

Therefore,

θ(g1,g2)= log
sup(g2/g1)

inf(g2/g1)
= logsup

{
g2(x)g1(y)

g1(x)g2(y)
: x,y ∈M

}
. (12.3.5)

This projective distance is complete (Exercise 12.3.3) but that is not always the
case (Exercise 12.3.4).

Next, we observe that the projective distance depends monotonically on the
cone. Indeed, let C1 and C2 be two cones with C1 ⊂ C2 and let αi(·, ·), βi(·, ·),
θi(·, ·), i= 1,2 be the corresponding functions, as defined previously. It is clear
from the definitions that, given any v1,v2 ∈ C2,

α1(v1,v2)≤ α2(v1,v2) and β1(v1,v2)≥ β2(v1,v2)

and, consequently, θ1(v1,v2)≥ θ2(v1,v2).
More generally, let C1 and C2 be cones in Banach spaces E1 and E2,

respectively, and let L : E1 → E2 be a linear operator such that L(C1) ⊂ C2.
Then,

α1(v1,v2)= sup{t> 0 : v2− tv1 ∈ C1}
≤ sup{t> 0 : L(v2− tv1) ∈ C2}
= sup{t> 0 : L(v2)− tL(v1) ∈ C2} = α2(L(v1),L(v2))

and, analogously, β1(v1,v2)≥ β2(L(v1),L(v2)). Consequently,

θ2(L(v1),L(v2))≤ θ1(v1,v2) for any v1,v2 ∈ C1. (12.3.6)

Of course, the inequality (12.3.6) is not strict, in general. However,
according to the next proposition, one does have a strict inequality whenever
L(C1) has finite θ2-diameter in C2; actually, in that case L is a contraction with
respect to the projective distances θ1 and θ2. Recall that the hyperbolic tangent
is defined by

tanhx= 1− e−2x

1+ e−2x
for every x ∈R.

Keep in mind that the function tanh takes values in the interval (0,1).
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408 Thermodynamic formalism

Proposition 12.3.6. Let C1 and C2 be cones in Banach spaces E1 and E2,
respectively, and let L : E1 → E2 be a linear operator such that L(C1) ⊂ C2.
Suppose that D= sup{θ2(L(v1),L(v2)) : v1,v2 ∈ C1} is finite. Then

θ2(L(v1),L(v2))≤ tanh

(
D

4

)
θ1(v1,v2) for any v1,v2 ∈ C.

Proof. Let v1,v2 ∈ C1. It is no restriction to suppose that α1(v1,v2) > 0 and
β1(v1,v2) < +∞, otherwise θ1(v1,v2) = +∞ and there is nothing to prove.
Then there exist an increasing sequence (tn)n → α1(v1,v2) and a decreasing
sequence (sn)n → β1(v1,v2) such that

v2− tn v1 ∈ C1 and sn v1− v2 ∈ C1 .

In particular, θ2(L(v2−tnv1),L(snv1−v2))≤D for every n≥ 1. Fix any D0>D.
Then we may choose positive numbers Tn and Sn such that

L(sn v1− v2)−TnL(v2− tnv1) ∈ C2 and

Sn L(v2− tnv1)−L(sn v1− v2) ∈ C2,
(12.3.7)

and log(Sn/Tn)≤D0 for every n≥ 1. The first part of (12.3.7) gives that

(sn+ tnTn)L(v1)− (1+Tn)L(v2) ∈ C2

and, by definition of β2(·, ·), this implies that

β2(L(v1),L(v2))≤ sn+ tnTn

1+Tn
.

Analogously, the second part of (12.3.7) implies that

α2(L(v1),L(v2))≥ sn+ tnSn

1+ Sn
.

Therefore, θ2(L(v1),L(v2)) cannot exceed

log

(
sn+ tnTn

1+Tn
· 1+ Sn

sn+ tnSn

)
= log

(
sn/tn+Tn

1+Tn
· 1+ Sn

sn/tn+ Sn

)
.

The last term may be rewritten as

log

(
sn

tn
+Tn

)
− log(1+Tn)− log

(
sn

tn
+ Sn

)
+ log(1+ Sn)=

=
∫ log(sn/tn)

0

(
ex dx

ex+Tn
− ex dx

ex+ Sn

)
,

and this expression is less than or equal to

sup
x>0

ex(Sn−Tn)

(ex+Tn)(ex+ Sn)
log

(
sn

tn

)
.

Now we use the following elementary facts:

sup
y>0

y(Sn−Tn)

(y+Tn)(y+ Sn)
= 1−√Tn/Sn

1+√Tn/Sn
≤ 1− e−D0/2

1+ e−D0/2
= tanh

D0

4
.
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12.3 Decay of correlations 409

Indeed, the supremum is attained for y = √
SnTn and the inequality is a

consequence of the fact that log(Sn/Tn)≤D0. This proves that

θ2(L(v1),L(v2))≤ tanh

(
D0

4

)
log

(
sn

tn

)
.

Note also that θ(v1,v2) = limn log(sn/tn), due to our choice of sn and tn.
Hence, taking the limit when n →∞ and then making D0 → D, we obtain
the conclusion of the proposition.

Example 12.3.7. Let C+ be the cone of positive continuous functions in M.
For each L> 1, let C(L)= {g ∈ C+ : sup |g| ≤ L inf |g|}. Then, C(L) has finite
diameter in C+, for every L> 1. Indeed, we have seen in Example 12.3.5 that
the projective distance θ associated with C+ is given by

θ(g1,g2)= logsup

{
g2(x)g1(y)

g1(x)g2(y)
: x,y ∈M

}
.

In particular, θ(g1,g2)≤ 2logL for any g1,g2 ∈ C(L).

12.3.2 Cones of Hölder functions

Let f : M→M be a topologically exact expanding map and ρ > 0 and σ > 1 be
the constants in the definition (11.2.1). Let L : C0(M)→C0(M) be the transfer
operator associated with a Hölder potential ϕ : M →M. Fix constants K0 > 0
and α > 0 such that

|ϕ(x)−ϕ(y)| ≤ K0d(x,y)α for any x,y ∈M.

Given b > 0 and β > 0, we denote by C(b,β) the set of positive functions
g ∈ C0(M) whose logarithm is (b,β)-Hölder on balls of radius ρ, that is, such
that

| logg(x)− logg(y)| ≤ bd(x,y)β whenever d(x,y) < ρ. (12.3.8)

Lemma 12.3.8. For any b> 0 and β > 0, the set C(b,β) is a cone in the space
E= C0(M) and the corresponding projective distance is given by

θ(g1,g2)= log
β(g1,g2)

α(g1,g2)
,

where α(g1,g2) is the infimum and β(g1,g2) is the supremum of the set{
g2

g1
(x),

exp(bd(x,y)β)g2(x)− g2(y)

exp(bd(x,y)β)g1(x)− g1(y)
: x �= y and d(x,y) < ρ

}
.

Proof. It is clear that g ∈ C implies tg ∈ C for every t > 0. Moreover, the
closure of C is contained in the set of non-negative functions and so −C̄ ∩ C̄
contains only the zero function. Now, to conclude that C is a cone, we only
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410 Thermodynamic formalism

have to check that it is convex. Consider any g1,g2 ∈ C(b,β). The definition
(12.3.8) means that

exp(−bd(x,y)β)≤ gi(x)

gi(y)
≤ exp(bd(x,y)β)

for i= 1,2 and any x,y ∈M with d(x,y) < ρ. Then, given t1, t2 > 0,

exp(−bd(x,y)β)≤ t1g1(x)+ t2g2(x)

t1g1(y)+ t2g2(y)
≤ exp(bd(x,y)β)

for any x,y ∈M with d(x,y) < ρ. Hence, t1g1+ t2g2 is in C(b,β).
We proceed to calculate the projective distance. By definition, α(g1,g2)

is the supremum of all the numbers t > 0 satisfying the following three
conditions:

(g2− tg1)(x) > 0⇔ t<
g2

g1
(x)

(g2− tg1)(x)

(g2− tg1)(y)
≤ exp(bd(x,y)β)⇔ t≤ exp(bd(x,y)β)g2(y)− g2(x)

exp(bd(x,y)β)g1(y)− g1(x)

(g2− tg1)(x)

(g2− tg1)(y)
≥ exp(−bd(x,y)β)⇔ t≤ exp(bd(x,y)β)g2(x)− g2(y)

exp(bd(x,y)β)g1(x)− g1(y)

for any x,y ∈M with x �= y and d(x,y) < ρ. Hence, α(g1,g2) is equal to

inf

{
g2(x)

g1(x)
,
exp(bd(x,y)β)g2(x)− g2(y)

exp(bd(x,y)β)g1(x)− g1(y)
: x �= y and d(x,y) < ρ

}
.

Analogously, β(g1,g2) is the supremum of this same set.

The crucial fact that makes the proof of Theorem 12.3.1 work is that the
transfer operator tends to improve the regularity of functions or, more pre-
cisely, their Hölder constants. The next proposition is a concrete manifestation
of this fact:

Lemma 12.3.9. For each β ∈ (0,α] there exists a constant λ0 ∈ (0,1) such that
L(C(b,β))⊂ C(λ0b,β) for every b sufficiently large (depending on β).

Proof. It follows directly from the expression of the transfer operator in
(12.1.1) that Lg is positive whenever g is positive. Therefore, we only have to
check the second condition in the definition of C(λ0b,β). Consider y1,y2 ∈M
with d(y1,y2) < ρ. The expression (12.1.2) gives that

Lg(yi)=
k∑

j=1

eϕ(xi,j)g(xi,j)

for i= 1,2, where the points xi,j ∈ f−1(yi) satisfy d(x1i,x2i) ≤ σ−1d(y1,y2) for
every 1 ≤ j ≤ k. By hypothesis, ϕ is (K0,α)-Hölder. Since we suppose that
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12.3 Decay of correlations 411

β ≤ α, it follows that ϕ is (K,β)-Hölder, with K =K0(diamM)α−β . Therefore,

(Lg)(y1)=
k∑

i=1

eϕ(x1,i)g(x1,i)=
k∑

i=1

eϕ(x2,i)g(x2,i)
g(x1,i)eϕ(x1,i)

g(x2,i)eϕ(x2,i)

≤
k∑

i=1

eϕ(x2,i)g(x2,i)exp
(
bd(x1,i,x2,i)

β +Kd(x1,i,x2,i)
β
)

≤ (Lg)(y2)exp
(
(b+K)σ−βd(y1,y2)

β
)

for every g ∈ C(b,β). Fix λ0 ∈ (σ−β ,1). For every b sufficiently large, (b+
K)σ−β ≤ bλ0. Then the previous relation gives that

(Lg)(y1)≤ (Lg)(y2)exp(λ0bd(y1,y2)
β),

for any y1,y2 ∈ M with d(y1,y2) < ρ. Exchanging the roles of y1 and y2, we
obtain the other inequality.

Next, we use the family of cones C(L) introduced in Example 12.3.7:

Lemma 12.3.10. There exists N ≥ 1 and for every β > 0 and every b> 0 there
exists L> 1 satisfying LN(C(b,β))⊂ C(L).

Proof. By hypothesis, f is topologically exact. Hence, there exists N ≥ 1 such
that f N(B(z,ρ))=M for every z∈M. Fix N once and for all. Given g∈C(b,β),
consider any point z ∈M such that g(z) = supg. Consider y1,y2 ∈M. On the
one hand,

LNg(y1)=
∑

x∈f−N (y1)

eϕN (x)g(x)≤ degree(f N)eN sup |ϕ|g(z).

On the other hand, by the choice of N, there exists x∈B(z,ρ) such that f N(x)=
y2. Then,

LNg(y2)≥ eϕN (x)g(x)≥ e−N sup |ϕ|e−bd(x,z)βg(z)≥ e−N sup |ϕ|−bρβg(z).

Since y1 and y2 are arbitrary, this proves that

supLNg

infLNg
≤ degree(f N)e2N sup |ϕ|+bρβ .

Now it suffices to take L equal to the expression on the right-hand side of this
inequality.

Combining Lemmas 12.3.9 and 12.3.10, we get that there exists N ≥ 1 and,
given β ∈ (0,α] there exists λ0 ∈ (0,1) such that, for every b > 0 sufficiently
large (depending on N and β) there exists L> 1, satisfying

LN(C(b,β))⊂ C(λN
0 b,β)∩C(L). (12.3.9)

In what follows, we write C(c,β,R)=C(c,β)∩C(R) for any c> 0, β > 0 and
R> 1.
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412 Thermodynamic formalism

Lemma 12.3.11. For every c ∈ (0,b) and R > 1, the set C(c,β,R) ⊂
C(b,β) has finite diameter with respect to the projective distance of the cone
C(b,β).

Proof. We use the expression of θ given by Lemma 12.3.8. On the one hand,
the hypothesis that g1,g2 ∈ C(c,β) ensures that

exp
(
bd(x,y)β

)
g2(x)− g2(y)

exp
(
bd(x,y)β

)
g1(x)− g1(y)

= g2(x)

g1(x)

1− exp
(− bd(x,y)β

)(
g2(y)/g2(x)

)
1− exp

(− bd(x,y)β
)(

g1(y)/g1(x)
)

≥ g2(x)

g1(x)

1− exp
(− (b− c)d(x,y)β)

1− exp
(− (b+ c)d(x,y)β

)
≥ g2(x)

g1(x)

1− exp
(− (b− c)ρβ)

1− exp
(− (b+ c)ρβ

)
for any x,y ∈M with d(x,y) < ρ. Denote by r the value of the last fraction on
the right-hand side. Then, observing that r ∈ (0,1),

α(g1,g2)≥ inf

{
g2(x)

g1(x)
,r

g2(x)

g1(x)
: x ∈M

}
= r inf

{
g2(x)

g1(x)
: x ∈M

}
≥ r

infg2

supg1
.

Analogously,

β(g1,g2)≤ sup

{
g2(x)

g1(x)
,
1

r

g2(x)

g1(x)
: x ∈M

}
= 1

r
sup

{
g2(x)

g1(x)
: x ∈M

}
≤ 1

r

supg2

infg1
.

On the other hand, the hypothesis that g1,g2 ∈ C(R) gives that

supg2

infg1
≤ R2 infg2

supg1
.

Combining these three inequalities, we conclude that θ(g1,g2) ≤ log(R2/r2)

for any g1,g2 ∈ C(c,β,R).

Corollary 12.3.12. There exists N ≥ 1 such that for every β ∈ (0,α] and every
b> 0 sufficiently large there exists �0 < 1 satisfying

θ(LNg1,LNg2)≤�0θ(g1,g2) for any g1,g2 ∈ C(b,β).

Proof. Take N ≥ 1, λ0 ∈ (0,1) and L> 1 as in (12.3.9) and consider

c= λN
0 b and R= L. (12.3.10)

Then LN(C(b,β)) ⊂ C(c,β,R) and it follows from Lemma 12.3.11 that the
diameter D of the image LN(C(b,β)) with respect to the projective distance
θ is finite. Take �0 = tanh(D/4). Now the conclusion of the corollary is an
immediate application of Proposition 12.3.6.
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12.3 Decay of correlations 413

12.3.3 Exponential convergence

Fix N ≥ 1, β ∈ (0,α], b > 0 and L > 1 as in Corollary 12.3.12, and then
consider c > 0 and R > 1 given by (12.3.10). As before, we denote by
h the positive eigenfunction (Lemma 12.1.11) and by λ the spectral radius
(Corollary 12.1.15) of the transfer operator L. Recall that h is α-Hölder and
bounded from zero and infinity. Therefore, up to increasing the constants b
and L, if necessary, we may assume that h ∈ C(c,β,R).

The next lemma follows directly from the previous considerations and is a
significant step toward the estimate in Theorem 12.3.1. We continue denoting
by ‖ · ‖ the norm defined in C0(M) by ‖φ‖ = sup{|φ(x)| : x ∈M}.
Lemma 12.3.13. There exists C> 0 and � ∈ (0,1) such that

‖λ−nLng− h
∫

gdν‖ ≤ C�n
∫

gdν for g ∈ C(c,β,R) and n≥ 1.

Proof. Let g∈C(c,β,R). In particular, g> 0 and so
∫

gdν > 0. The conclusion
of the lemma is not affected when we multiply g by any positive number.
Hence, it is no restriction to suppose that

∫
gdν = 1. Then,∫

λ−nLngdν =
∫
λ−ngd(L∗nν)=

∫
gdν = 1=

∫
hdν

and, hence, inf(λ−nLng/h) ≤ 1 ≤ sup(λ−nLng/h) for every n ≥ 1. Now, it
follows from the expressions in Lemma 12.3.8 that

α(λ−jNLjNg,h)≤ inf
λ−jNLjNg

h
≤ 1,

β(λ−jNLjNg,h)≥ sup
λ−jNLjNg

h
≥ 1.

Consequently,

θ(λ−jNLjNg,h)≥ logβ(λ−jNLjNg,h)≥ logsup
λ−jNLjNg

h
,

θ(λ−jNLjNg,h)≥− logα(λ−jNLjNg,h)≥− log inf
λ−jNLjNg

h

for every j ≥ 0. Now let D be the diameter of C(c,β,R) with respect
to the projective distance θ (Lemma 12.3.11). By Proposition 12.3.3 and
Corollary 12.3.12,

θ(λ−jNLjNg,h)= θ(LjNg,LjNh)≤�j
0 θ(g,h)≤�j

0 D

for every j≥ 0. Combining this with the previous two inequalities,

exp(−�j
0 D)≤ inf

λ−jNLjNg

h
≤ sup

λ−jNLjNg

h
≤ exp(�j

0 D)
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414 Thermodynamic formalism

for every j≥ 0. Fix C1 > 0 such that |ex− 1| ≤ C1|x| whenever |x| ≤ D. Then
the previous relation implies that∣∣λ−jNLjNg(x)− h(x)

∣∣≤ h(x)C1�
j
0D for every x ∈M and j≥ 0. (12.3.11)

Take C2 = C1Dsuph and �=�1/N
0 . The inequality (12.3.11) means that

‖λ−jNLjNg− h‖ ≤ C2�
jN for every j≥ 1.

Given any n≥ 1, write n= jN+ r with j≥ 0 and 0≤ r< N. Since the transfer
operator L : C0(M)→ C0(M) is continuous and Lh= λh,

‖λ−nLng− h‖ = ‖λ−rLr(λ−jNLjNg− h)‖ ≤ (‖L‖/λ)r ‖λ−jNLjNg− h‖.
Combining the last two inequalities,

‖λ−nLng− h‖ ≤ (‖L‖/λ)rC2�
n−r.

This proves the conclusion of the lemma, as long as we take C≥C2(‖L‖/(λ�))r
for every 0≤ r< N.

Now we are ready to prove Theorem 12.3.1:

Proof. Start by considering g2 ∈ C(c,β,R). Using the identity in Exer-
cise 12.1.4 and recalling that μ= hν,

Bn(g1,g2)=
∣∣∣∣∫ g1

(
λ−nLng2− h

∫
g2 dν

)
dν

∣∣∣∣
≤
∥∥∥∥λ−nLng2− h

∫
g2 dν

∥∥∥∥∫ |g1|dν.

Therefore, using Lemma 12.3.13,

Bn(g1,g2)≤ C�n
∫
|g1|dν

∫
g2 dν. (12.3.12)

Now let g2 : M→R be any β-Hölder function and H =Hβ(g2). Write g2 =
g+2 − g−2 with

g+2 =
1

2
(|g2|+ g2)+B and g−2 =

1

2
(|g2|− g2)+B,

with B defined by B=max{H/c, sup |g2|/(R−1)}. It is clear that the functions
g±2 are positive: g±2 ≥ B> 0. Moreover, they are (H,β)-Hölder:

|g±2 (x)− g±2 (y)| ≤ |g2(x)− g2(y)| ≤Hd(x,y)β ,

for x,y ∈M. Hence, using the mean value theorem and the fact that B≥H/c,∣∣ logg±2 (x)− logg±2 (y)
∣∣≤ |g±2 (x)− g±2 (y)|

B
≤ Hd(x,y)β

B
≤ cd(x,y)β .

Moreover, since B≥ sup |g2|/(R− 1),

supg±2 ≤ sup |g2|+B≤ RB≤ R infg±2 .
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12.3 Decay of correlations 415

Together with the previous relation, this means that g±2 ∈ C(c,β,R). Then, we
may apply (12.3.12) to both functions:

Bn(g1,g±2 )≤ C�n
∫
|g1|dν

∫
g±2 dν

and, consequently,

Bn(g1,g2)≤ Bn(g1,g+2 )+Bn(g1,g−2 )

≤ C�n
∫
|g1|dν

∫
(g+2 + g−2 )dν.

(12.3.13)

Moreover, by the definition of g±2 ,∫
(g+2 + g−2 )dν =

∫
|g2|dν+ 2B≤

∫
|g2|dν+ 2H

c
+ 2sup |g2|

R− 1

≤ 2

c
Hβ(g2)+ R+ 1

R− 1
sup |g2|.

(12.3.14)

Take C1 = C max{2/c,(R+ 1)/(R− 1)} and define

K1(g2)= 2C1
(

sup |g2|+Hβ(g2)
)
.

The relations (12.3.13) and (12.3.14) give that

Bn(g1,g2)≤ C1�
n
∫
|g1|dν

(
Hβ(g2)+ sup |g2|

)≤ 1

2
K1(g2)�

n
∫
|g1|dν.

This closes the proof of the theorem in the case when g2 is a real function.
The general (complex) case follows easily. Note that K1((g2) ≤ K1(g2),

because sup |(g2| ≤ sup |g2| and Hβ((g2)≤Hβ(g2). Analogously, K1()g2)≤
K1(g2). Therefore, the previous argument yields

Bn(g1,g2)≤ Bn(g1,(g2)+Bn(g1,)g2)≤ 1

2

(
K1((g2)+K1()g2)

)
�n
∫
|g1|dν

≤ K1(g2)�
n
∫
|g1|dν.

This completes the proof of Theorem 12.3.1.

We close this section with a few comments about the spectral gap property.
Let Cβ(M) be the vector space of β-Hölder functions g : M → C. We leave it
to the reader (Exercise 12.3.6) to check the following facts:

(i) The function ‖g‖β,ρ = sup |g|+Hβ,ρ(g) is a complete norm in Cβ(M).
(ii) Cβ(M) is invariant under the transfer operator: L(Cβ(M))⊂ Cβ(M).

(iii) The restriction L : Cβ(M)→ Cβ(M) is continuous with respect to the
norm ‖ · ‖β,ρ .

Note that h∈Cβ(M), since β≤α. Define V={g∈Cβ(M) :
∫

gdν= 0}. Then
Cβ(M)= V ⊕Ch, because every function g ∈ Cβ(M) may be decomposed, in
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416 Thermodynamic formalism

a unique way, as the sum of a function in V with a multiple of h:

g= (g− h
∫

gdν)+ h
∫

gdν.

Moreover, the direct sum Cβ(M) = V ⊕ Ch is invariant under the transfer
operator. Indeed, if g ∈ V then

g ∈ V ⇒
∫

Lgdν =
∫

gdL∗ν = λ
∫

gdν = 0⇒Lg ∈ V .

It follows that the spectrum of L : Cβ(M)→ Cβ(M) is the union of {λ} with
the restriction of L to the hyperplane V . In Exercise 12.3.8 we invite the reader
to show that the spectral radius of L | V is strictly less than λ. Consequently,
L : Cβ(M)→ Cβ(M) has the spectral gap property.

The book of Viviane Baladi [Bal00] contains an in-depth presentation of the
spectral theory of transfer operators and its connections to the issue of decay
of correlations, for differentiable (or piecewise differentiable) expanding maps
and also for uniformly hyperbolic diffeomorphisms.

12.3.4 Exercises

12.3.1. Show that the cross-ratio R(a,x,y,b) is invariant under every Möbius automor-
phism of the real line, that is, R(φ(a),φ(b),φ(c),φ(d)) = R(a,b,c,d) for any
a< b≤ c< d and every transformation of the form φ(x)= (αx+ β)/(γ x+ δ)
with αδ−βγ �= 0.

12.3.2. Consider the cone C = {(z,s) ∈ C×R : s> |z|}. Its projective quotient may be
identified with the unit disk D= {z∈C : |z|< 1} through (z,1) �→ z. Let d be the
distance induced in D, through this identification, by the projective distance of
C. Show that d coincides with the Cayley–Klein distance
, which is defined by


(p,q)= log
|aq| |pb|
|ap| |bq| , for p,q ∈D,

where a and b are the points where the straight line through p and q intersects
the boundary of the disk, denoted in such a way that p is between a and q and
q is between p and b. [Observation: The Cayley–Klein distance is related to the
Poincaré distance in the disk through the map z �→ (2z)/1+|z|2.]

12.3.3. Show that the projective distance associated with the cone C+ in Example 12.3.7
is complete, in the following sense: with respect to the projective distance,
every Cauchy sequence (gn)n converges to some element of C+. Moreover, if
we normalize the functions (for example, fixing any probability measure η on
M and requiring that

∫
gn dη = 1 = ∫ gdη for every n), then (gn)n converges

uniformly to g.
12.3.4. Let M be a compact manifold and C1 be the cone of positive differentiable

functions in M. Show that the corresponding projective distance θ1 is not
complete.

12.3.5. Check that if g1,g2 : M → R are β-Hölder functions, θ : M → M is an
L-Lipschitz transformation and η is a probability measure on M then:
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12.4 Dimension of conformal repellers 417

(a) Hβ(g1g2)≤ sup |g1|Hβ(g2)+ sup |g2|Hβ(g1);
(b)

∫ |g1|dη≤ sup |g1| ≤
∫ |g1|dη+Hβ(g1)(diamM)β ;

(c) Hβ(g ◦ θ)≤ LβHβ(g).
Moreover, the claim in (a) remains true if we replace Hβ by Hβ,ρ . The same
holds for the claim in (c), as long as L≤ 1.

12.3.6. Let Cβ(M) be the vector space of β-Hölder functions on a compact metric space
M. Prove the properties (i), (ii), (iii) stated at the end of Section 12.3.

12.3.7. Endow Cβ(M) with the norm ‖ · ‖β,ρ . Let L : Cβ(M)→ Cβ(M) be the transfer
operator associated with an α-Hölder potential ϕ : M → R, with α ≥ β. Let λ
be the spectral radius, ν be the reference measure, h be the eigenfunction and
μ= hν be the equilibrium state of the potential ϕ. Consider the transfer operator
P : Cβ(M)→ Cβ(M) associated with the potential ψ = ϕ+ logh− logh ◦ f −
logλ.
(a) Check that L is linearly conjugate to λP , and so spec(L) = λspec(P).

Moreover, P1= 1 and P∗μ=μ.
(b) Show that

∫ |Png|dμ ≤ ∫ |g|dμ and sup |Png| ≤ sup |g| and there exist
constants C> 0 and τ < 1 such that Hβ,ρ(Png)≤ τ nHβ,ρ(g)+C sup |g| for
every g ∈ Cβ(M) and every n≥ 1.

12.3.8. The goal of this exercise is to prove that the spectral radius of the restriction of
L to the hyperplane V = {g ∈Cβ(M) :

∫
gdν = 0} is strictly less than λ. By part

(a) of Exercise 12.3.7, it is enough to consider the case L=P (with λ= 1 and
ν =μ and h= 1). Fix b,β,R as in Corollary 12.3.12.
(a) Show that there exist K > 1 and r > 0 such that, for every v ∈ V

with ‖v‖β,ρ ≤ r, the function g = 1 + v is in the cone C(b,β,R) and
satisfies

K−1‖v‖β,ρ ≤ θ(1,g)≤ K‖v‖β,ρ .

(b) Use Corollary 12.3.12 and the previous item to find C > 0 and τ < 1 such
that ‖Pnv‖β,ρ ≤Cτ n‖v‖β,ρ for every v ∈V . Deduce that the spectral radius
of P | V is less or equal than τ < 1.

12.4 Dimension of conformal repellers

In this section we present an application of the theory developed previously
to the calculation of the Hausdorff dimension of certain invariant sets
of expanding maps, that we call conformal repellers. The main result
(Theorem 12.4.3) contains a formula for the value of the Hausdorff dimension
of the repeller in terms of the pressure of certain potentials.

Detailed presentations of the theory of fractal dimensions and its many
applications can be found in the books of Falconer [Fal90], Palis and
Takens [PT93, Chapter 4], Pesin [Pes97] and Bonatti, Dı́az and Viana [BDV05,
Chapter 3].
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418 Thermodynamic formalism

12.4.1 Hausdorff dimension

Let M be a metric space. In this section, we call a cover of M any countable
(possibly finite) family of subsets of M, not necessarily open, whose union is
the whole of M. The diameter of a cover U is the supremum of the diameters
of its elements. For each d> 0 and δ > 0, define

md(M,δ)= inf

{∑
U∈U

diam(U)d : U cover with diamU < δ
}

. (12.4.1)

That is, we consider all possible covers of M by subsets with diameter less than
δ and we try to minimize the sum of the diameters raised to the power d. This
number varies with δ in a monotonic fashion: when δ decreases, the class of
admissible covers decreases and, thus, the infimum can only increase. We call
Hausdorff measure of M in dimension d the limit

md(M)= lim
δ→0

md(M,δ). (12.4.2)

Note that md(M) ∈ [0,∞]. Moreover, it follows directly from the definition
that

md1(M,δ)≤ δd1−d2 md2(M,δ) for every δ > 0 and any d1 > d2 > 0.

Making δ→ 0, it follows that md1(M)= 0 or md2(M)=∞ or both. Therefore,
there exists a unique d(M) ∈ [0,∞] such that md(M)=∞ for every d < d(M)
and md(M)= 0 for every d> d(M). We call d(M) the Hausdorff dimension of
the metric space M.

Example 12.4.1. Consider the usual Cantor set K in the real line. That is,

K =
∞⋂

n=0

Kn

where K0 = [0,1] and every Kn, n ≥ 1 is obtained by removing from each
connected component of Kn−1 the central open subinterval with relative length
1/3. Let d0 = log2/ log3. We are going to show that md0(M) = 1, which
implies that d(M)= d0.

To prove the upper bound, consider, for each n≥ 0, the cover Vn of K whose
elements are the intersections of K with each of the connected components
of Kn. It is clear that the sequence (Vn)n is increasing: Vn−1 ≺ Vn for every
n ≥ 1. Note also that Vn has exactly 2n elements, all with diameter equal to
3−n. Therefore, ∑

V∈Vn

(diamV)d0 = 2n3−nd0 = 1 for every n. (12.4.3)

Since diamVn→ 0 when n→∞, it follows that md0(M)≤ 1 and so d(M)≤ d0.
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12.4 Dimension of conformal repellers 419

The lower bound is a bit more difficult, because one needs to deal with
arbitrary covers. We are going to show that, given any cover U of M,∑

U∈U
(diamU)d0 ≥ 1. (12.4.4)

Clearly, this implies that md0(M)≥ 1 and so d(M)≥ d0.
Let us call an open segment the intersection of K with any interval of the real

line whose endpoints are not in K. It is clear that every subset of K is contained
in some open segment whose diameter is only slightly larger. Hence, given
any cover U , we can always find covers U ′ whose elements are open segments
such that

∑
U′∈U ′(diamU′)d0 is as close to

∑
U∈U (diamU)d0 as we want. So,

it is no restriction to assume from the start that the elements of U are open
segments. Then, since K is compact, we may also assume that U is finite. For
any open segment U there exists n ≥ 0 such that every element of Vm, m ≥ n
that intersects U is contained in U. Since U is finite, we may choose the same
n for all its elements. We claim that∑

U∈U
(diamU)d0 ≥

∑
V∈Vn

(diamV)d0 . (12.4.5)

Clearly, (12.4.3) and (12.4.5) imply (12.4.4). We are left to prove (12.4.5).
The strategy is to modify the cover U successively, in such a way that the

expression on the left-hand side of (12.4.5) never increases and one reaches
the cover Vn after finitely many modifications. For each U ∈ U , let k ≥ 0 be
minimum such that U intersects a unique element V of Vk. The choice of n
implies that k ≤ n: for k > n, if U intersects an element of Vk then U contains
all the 2k−n elements of Vk inside the same element of Vn. Suppose that k< n.
By the choice of k, the set U intersects exactly two elements of Vk+1. Let them
be denoted V1 and V2 and let U1 and U2 be their intersections with U. Then

diamUi ≤ diamVi = 3−k−1 and diamU = diamU1+ 3−k−1+ diamU2.

Hence (Exercise 12.4.1),

(diamU)d0 ≥ (diamU1)
d0 + (diamU2)

d0 .

This means that the value on the left-hand side of (12.4.5) does not increase
when we replace U by U1 and U2 in the cover U . On the one hand, the
new cover satisfies the same conditions as the original: U1 and U2 are open
segments (because V1, V2 and U are open segments) and they contain every
element of Vn that they intersect. On the other hand, by construction, each one
of them intersects a unique element of Vk+1. Therefore, after finitely many
repetitions of this procedure we reduce the initial situation to the case where
k = n for every U ∈ U . Now, the choice of n implies that in that case each
U ∈ U contains the unique V ∈ Vn that it intersects. Observe that this means
that U = V . In particular, any elements of U that correspond to the same
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420 Thermodynamic formalism

V ∈ Vm must coincide. Eliminating such repetitions we obtain the cover Vn.
This completes the calculation.

In general, the Hausdorff measure of a metric space M in its dimension d(M)
may take any value. In many interesting situations, including Example 12.4.1
and the much more general construction that we treat next, this measure is
positive and finite. But there are many other cases where it is either zero or
infinity.

12.4.2 Conformal repellers

Let D,D1, . . . ,DN be compact convex subsets of an Euclidean space R� such
that Di ⊂D for every i and Di ∩Dj = ∅ whenever i �= j. Assume that

vol(D \D∗) > 0, (12.4.6)

where D∗ =D1 ∪ ·· · ∪DN and vol denote the volume measure on R�. Assume
also that there exists a map f : D∗ → D such that the restriction to each Di

is a homeomorphism onto D. See Figure 12.2. Note that the sequence of
pre-images f−n(D) is decreasing. Their intersection

�=
∞⋂

n=0

f−n(D) (12.4.7)

is called a repeller of f . In other words, � is the set of points x whose iterates
f n(x) are defined for every n≥ 1. It is clear that� is compact and f−1(�)=�.

Example 12.4.2. The Cantor set K in Example 12.4.1 is the repeller of the
transformation f : [0,1/3] ∪ [2/3,1] → [0,1] given by f (x)= 3x if x ∈ [0,1/3]
and f (x)= 3x−2 if x∈ [2/3,1]. A more general class of examples in dimension
1 was introduced in Example 11.2.3.

In what follows we take the map f : D∗ → D to be of class C1; for points
on the boundary of the domain this just means that f admits a C1 extension to
some neighborhood. We also make the following additional hypotheses.

DD

f

hi

hj

Di

Dj

Figure 12.2. A repeller
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12.4 Dimension of conformal repellers 421

The first hypothesis is that the map f is expanding: there exists σ > 1 such
that

‖Df (x)v‖ ≥ σ for every x ∈D∗ and every v ∈R�. (12.4.8)

Then it is not difficult to check that the restriction f :�→� to the repeller is
an expanding map in the sense of Section 11.2.

The second hypothesis is that the logarithm of the Jacobian of f is Hölder:
there exist C> 0 and θ > 0 such that

log
|detDf (x)|
|detDf (y)| ≤ C‖x− y‖θ for every x,y ∈D∗. (12.4.9)

Up to choosing C sufficiently large, the inequality is automatically satisfied
when x and y belong to distinct subdomains Di and Dj, because d(Di,Dj) > 0.

The third and last hypothesis is that the map f is conformal:

‖Df (x)‖‖Df (x)−1‖ = 1 for every x ∈D∗. (12.4.10)

It is important to note that this condition is automatic when �= 1. For �= 2, it
holds if and only if the map f is analytic.

All these conditions are satisfied in the case of the Cantor set (Exam-
ples 12.4.1 and 12.4.2). They are also satisfied in Example 11.2.3, as long
as we take the derivative of the corresponding map f to be Hölder.

Theorem 12.4.3 (Bowen–Manning formula). Suppose that f : D∗ → D
satisfies the conditions (12.4.8), (12.4.9) and (12.4.10). Then the Hausdorff
dimension of the repeller is given by

d(�)= d0�,

where d0 ∈ (0,1) is the unique number such that P(f ,−d0 log |detDf |)= 0.

The reader should be warned that we allow ourselves a slight abuse of
language, in order not to overload the notations: throughout this section,
P(f ,ψ) always denotes the pressure of a potential ψ :�→ R with respect to
the restriction f :�→� to the repeller, even if at other points of the arguments
we consider the map f defined on the whole domain D∗.

Before we start proving the theorem, let us mention the following interesting
special case:

Example 12.4.4. Let f : J→[0,1] be a map as in Example 11.2.3 and assume
that the restriction of f to each connected component Ji of J is affine: the
absolute value of the derivative is constant, equal to the inverse of the length
|Ji|. Then the Hausdorff dimension of the repeller K of the map f is the unique
number τ such that ∑

i

|Ji|τ = 1. (12.4.11)
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422 Thermodynamic formalism

To obtain this conclusion from Theorem 12.4.3 it suffices to note that

P(f ,−t log |f ′|)= log
∑

i

|Ji|t for every t. (12.4.12)

We let the reader check this last claim (Exercise 12.4.6).

12.4.3 Distortion and conformality

Let us call an inverse branch of f the inverse hi : D → Di of the restriction
of f to each domain Di. More generally, we call an inverse branch of f n any
composition

hn = hi0 ◦ · · · ◦ hin−1 (12.4.13)

with i0, . . . , in−1 ∈ {1, . . . ,N}. For each n ≥ 1, denote by In the family of all
inverse branches hn of f n. By construction, the images hn(D), hn ∈ In are
pairwise disjoint and their union contains �.

The principal goal in this section is to prove the following geometric
estimate, which is at the heart of the proof of Theorem 12.4.3:

Proposition 12.4.5. There exists C0 > 1 such that for every n≥ 1, every hn ∈
In, every E⊂ hn(D) and every x ∈ hn(D):

1

C0
[diam f n(E)]� ≤ [diamE]�|detDf n(x)| ≤ C0[diam f n(E)]�. (12.4.14)

Starting the proof of this proposition, observe that our hypotheses imply that
every inverse branch hi of f is a diffeomorphism with ‖Dhi‖≤σ−1. Then, since
D is convex, we may use the mean value theorem to conclude that

‖hi(z)− hi(w)‖ ≤ σ−1‖z−w‖ for every z,w ∈D. (12.4.15)

For each inverse branch hn as in (12.4.13), let us consider the sequence of
inverse branches

hn−k = hik ◦ · · · ◦ hin−1 , k= 0, . . . ,n− 1. (12.4.16)

Note that hn−k(D)⊂Dik for each k. It follows from (12.4.15) that each hn−k is
a σ k−n-contraction. In particular,

diamhn−k(D)≤ σ k−n diamD for every k= 0, . . . ,n− 1. (12.4.17)

Recall that the convex hull of a set X ⊂ R� is the union of all the line
segments whose endpoints are in X. It is clear that the convex hull has the
same diameter as the set itself. Since Di is convex for every i, the convex hull
of each hn−k(D) is contained in Dik . In particular, the derivative Df is defined
at every point in the convex hull of every hn−k(D).
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12.4 Dimension of conformal repellers 423

Lemma 12.4.6. There exists C1 > 1 such that, for every n ≥ 1 and every
inverse branch hn ∈ In,

n−1∏
k=0

|detDf (zk)|
|detDf (wk)| ≤ C1

for any zk,wk in the convex hull of hn−k(D) for k= 0, . . . ,n− 1.

Proof. The condition (12.4.9) gives that

log
|detDf (zk)|
|detDf (wk)| ≤ C‖zk−wk‖θ ≤ C[diamhn−k(D)]θ

for each k= 0, . . . ,n− 1. Then, using (12.4.17),

log
n−1∏
k=0

|detDf (zk)|
|detDf (wk)| ≤

n−1∑
k=0

C[diamhn−k(D)]θ ≤ C[diamD]θ
n−1∑
k=0

σ (k−n)θ .

Therefore, it suffices to take C1 = exp
(
C(diamD)θ

∑∞
j=1 σ

−jθ
)
.

The time has come for us to exploit the conformality hypothesis (12.4.10).
Given any linear isomorphism L : R�→R�, it is clear that |detL| ≤ ‖L‖�, and
analogously for the inverse. Therefore,

1= |detL| |detL−1| ≤ (‖L‖‖L−1‖)�.
Hence, ‖L‖‖L−1‖ = 1 implies that |detL| = ‖L‖�, and analogously for the
inverse. Therefore, (12.4.10) implies that

|detDf (y)| = ‖Df (y)‖� for every y ∈D∗. (12.4.18)

Now we are ready to prove Proposition 12.4.5:

Proof of Proposition 12.4.5. Let n, hn, E and x be as in the statement. Let w be
a point of maximum for the norm of Dhn in the domain D. By the mean value
theorem,

‖x1− x2‖ ≤ ‖Dhn(w)‖‖f n(x1)− f n(x2)‖ (12.4.19)

for any x1,x2 in E. Observe that Dhn(w) is the inverse of Df n(z), with z =
hn(w). Hence, by conformality, ‖Dhn(w)‖ = ‖Df n(z)‖−1. Moreover, using
Lemma 12.4.6 and (12.4.18),

|detDf n(x)| ≤ C1|detDf n(z)| = C1‖Df n(z)‖�. (12.4.20)

Combining (12.4.19) and (12.4.20), we obtain

‖x1− x2‖� ≤ C1|detDf n(x)|−1‖f n(x1)− f n(x2)‖�.
Varying x1,x2 ∈ E, it follows that

[diamE]� ≤ C1|detDf n(x)|−1[diam f n(E)]�.
This proves the second inequality in (12.4.14), as long as we take C0 ≥ C1.
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424 Thermodynamic formalism

The proof of the other inequality is similar. For each k = 0, . . . ,n− 1, let
zk be a point of maximum for the norm of Df restricted to the convex hull of
hn−k(D). Then,

‖f k+1(x1)− f k+1(x2)‖ ≤ ‖Df (zk)‖‖f k(x1)− f k(x2)‖
= |detDf (zk)|1/�‖f k(x1)− f k(x2)‖

for every k and any x1,x2 ∈ E. Hence,

‖f n(x1)− f n(x2)‖� ≤
n−1∏
k=0

|detDf (zk)|‖x1− x2‖�. (12.4.21)

By Lemma 12.4.6,

n−1∏
k=0

|detDf (zk)| ≤ C1|detDf n(x)|. (12.4.22)

Combining (12.4.21) and (12.4.22), we obtain

‖y1− y2‖� ≤ C1|detDf n(x)|‖x1− x2‖�.
Varying y1,y2, we conclude that

[diam f n(E)]� ≤ C1|detDf n(x)|[diamE]�.
This proves the first inequality in (12.4.14), for any C0 ≥ C1.

12.4.4 Existence and uniqueness of d0

Now we prove the existence and uniqueness of the number d0 in the statement
of Theorem 12.4.3. Denote φ =− log |detDf | and consider the function

� : R→R, �(t)= P(f , tφ).

We want to show that there exists a unique d0 such that �(d0)= 0.
Uniqueness is easy to prove. Indeed, the hypotheses (12.4.8) and (12.4.10)

imply that

φ = log |detDf−1 ◦ f | = � log‖Df−1 ◦ f‖ ≤−� logσ .

Then, given any s < t, we have tφ ≤ sφ − (t− s)� logσ . Using (10.3.4) and
(10.3.5), it follows that

P(f , tφ)≤ P(f ,sφ)− (t− s)� logσ < P(f ,sφ).

This proves that� is strictly decreasing, and so there exists at most one d0 ∈R
such that �(d0)= 0.

On the other hand, it follows from Proposition 10.3.6 that � is continuous.
Hence, to prove the existence of d0 it is enough to show that�(0) > 0>�(1).
This may be done as follows.
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Let L be the open cover of � whose elements are the images h(�) of �
under all the inverse branches of f . For each n ≥ 1, the iterated sum Ln is
formed by the images hn(�) of � under the inverse branches of f n. It follows
from (12.4.17) that diamLn ≤ σ−n diamD for every n, and so diamLn → 0.
Then, since the elements of L are pairwise disjoint, we may use Exercise 10.3.3
to conclude that

P(f ,ψ)= P(f ,ψ ,L) for every potential ψ . (12.4.23)

In particular,�(0)=P(f ,0,L)= h(f ,L). Note that each family Ln is a minimal
cover of the repeller, that is, no proper subfamily covers�. Therefore, H(Ln)=
log#Ln = n logN for every n and, consequently, h(f ,L) = logN. This proves
that �(0) is positive.

Proposition 12.4.7. �(1)= limn
1
n logvol

(
f−n(D)

)
< 0.

Proof. By (12.4.23), we have that �(1)= P(f ,φ,L). In other words,

�(1)= lim
n

1

n
logPn(f ,φ,L)= lim

n

1

n
log

∑
hn∈In

eφn(hn(�)).

Since φ =− log |detDf |, this means that

�(1)= lim
n

1

n
log

∑
hn∈In

sup
hn(D)

1

|detDf n| . (12.4.24)

On the other hand, by the formula of change of variables,

vol
(
f−n(D)

)= ∑
hn∈In

vol(hn(D))=
∑

hn∈In

∫
D

1

|detDf n| ◦ hn dx.

It follows from Lemma 12.4.6 that

inf
hn(D)

|detDf n| ≤ |detDf n|(hn(z))≤ C1 inf
hn(D)

|detDf n|
for every z ∈ hn(D) and every hn ∈ In. Consequently,

vol
(
f−n(D)

)≤ vol(D)
∑

hn∈In

sup
hn(D)

1

|detDf n| ≤ C1 vol
(
f−n(D)

)
.

Combining these inequalities with (12.4.24), we conclude that

limsup
n

1

n
logvol

(
f−n(D)

)≤�(1)≤ liminf
n

1

n
logvol

(
f−n(D)

)
.

This proves the identity in the statement of the proposition.
It remains to prove that the volume of the pre-images f−n(D) decays

exponentially fast. For that, observe that f−(n+1)(D) = f−n(D∗) is the disjoint
union of the images hn(D∗), with hn ∈ In. Therefore,

vol
(
f−(n+1)(D)

)
vol
(
f−n(D)

) =
∑

hn∈In vol
(
hn(D∗)

)∑
hn∈In vol

(
hn(D)

) ≤ max
hn∈In

vol
(
hn(D∗))

vol
(
hn(D)

) . (12.4.25)
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426 Thermodynamic formalism

By the formula of change of variables,

vol
(
hn(D))=

∫
D

1

|detDf n| ◦ hn dx and

vol
(
hn(D \D∗))=

∫
D\D∗

1

|detDf n| ◦ hn dx.

Hence, using Lemma 12.4.6,

vol
(
hn(D \D∗)

)
vol
(
hn(D)

) ≥ 1

C1

vol
(
D \D∗

)
vol
(
D
) (12.4.26)

for every hn ∈ In. By the hypothesis (12.4.6), the expression on the right-hand
side of (12.4.26) is positive. Fix β > 0 close enough to zero that 1− e−β is
smaller than that expression. Then

vol
(
hn(D) \ hn(D∗)

)
vol
(
hn(D)

) ≥ 1− e−β

for every hn ∈ In. Combining this inequality with (12.4.25) and the fact that
vol(hn(D) \ hn(D∗))= volhn(D)− volhn(D∗), we obtain that

vol
(
f−(n+1)(D)

)
vol
(
f−n(D)

) ≤ e−β for every n≥ 0

(the case n= 0 follows directly from the hypothesis (12.4.6)). Hence,

lim
n

1

n
logvol

(
f−n(D)

)≤−β < 0.

This concludes the proof of the proposition.

Figure 12.3 summarizes the conclusions in this section. Recall that the func-
tion defined by �(t)= P(f ,−t log |detDf |) is convex, by Proposition 10.3.5.

12.4.5 Upper bound

Here we show that d(�) ≤ b� for every b> 0 such that P(f ,bφ) < 0. In view
of the observations in the previous section, this proves that d(�)≤ d0�.

d0

h(f )

0

1

t Ψ(t )

Figure 12.3. Pressure and Hausdorff dimension
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12.4 Dimension of conformal repellers 427

Let L be the open cover of� introduced in the previous section and let b> 0
be such that P(f ,bφ) < 0. The property (12.4.23) implies that

P(f ,bφ,L)= P(f ,bφ) <−κ
for some κ > 0. By the definition (10.3.2), it follows that

Pn(f ,bφ,L)≤ e−κn for every n sufficiently large. (12.4.27)

It is clear that Ln is a minimal cover of �: no proper subfamily covers �.
Hence, recalling the definition (10.3.1), the inequality (12.4.27) implies that∑

L∈Ln

ebφn(L) ≤ e−κn for every n sufficiently large. (12.4.28)

It is clear that every L ∈Ln is compact. Hence, by continuity of the Jacobian,

eφn(L) = sup
L
|detDf n|−1 = |detDf n(x)|−1

for some x ∈ L. It is also clear that f n(L) = � for every L ∈ Ln. Then, taking
E= L in Proposition 12.4.5,

[diamL]�e−φn(L) ≤ C0[diam�]�.
Combining this inequality with (12.4.28), we obtain that∑

L∈Ln

[diamL]b� ≤ Cb
0[diam�]b�

∑
L∈Ln

ebφn(L) ≤ Cb
0[diam�]b�e−κn

for every n sufficiently large. Since the expression on the right-hand side
converges to zero, and the diameter of the covers Ln also converges to zero,
it follows that mb�(M)= 0. Therefore, d(M)≤ b�.

12.4.6 Lower bound

Now we show that d(�)≥ a� for every a such that P(f ,aφ) > 0. This implies
that d(�)≥ d0�, which completes the proof of Theorem 12.4.3.

As observed in the previous section, the cover L realizes the pressure and all
its iterated sums Ln are minimal covers of �. Hence, the choice of a implies
that there exists κ > 0 such that

Pn(f ,aφ,L)=
∑
L∈Ln

eaφn(L) ≥ eκn for every n sufficiently large. (12.4.29)

Fix such an n. Let ε > 0 be a lower bound for the distance between any two
elements of Ln: a lower bound does exist because the elements of Ln are
compact and pairwise disjoint. Fix ρ ∈ (0,εa�). The reason for this choice will
be clear soon. We claim that∑

U∈U
[diamU]al ≥ 2−alρ (12.4.30)
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428 Thermodynamic formalism

for every cover U of �. By definition, this implies that ma�(�) ≥ 2−alρ > 0
and, consequently, d(�) ≥ a�. Therefore, to end the proof of Theorem 12.4.3
it suffices to prove this claim.

Let us suppose that there exists some open cover of�which does not satisfy
(12.4.30). Then, using Exercise 12.4.3, there exists some open cover U of �
with ∑

U∈U
[diamU]al < ρ < εal. (12.4.31)

By compactness, we may suppose that this open cover U is finite. The relation
(12.4.31) implies that every U ∈U has diameter less than ε. Hence, each U ∈U
intersects at most one L ∈ Ln. Since Ln covers � and U is a non-empty subset
of �, we also have that U intersects some L ∈ Ln. This means that U is the
disjoint union of the families

UL =
{
U ∈ U : U∩L �= ∅}, L ∈Ln.

If U ∈ UL then U ⊂ L. Let us consider the families f n(UL) = {f n(U) :
U ∈ UL}. Observe that each one of them is a cover of �. Moreover, using
Proposition 12.4.5,∑

V∈f n(UL)

[diamV]a� =
∑

U∈UL

[diam f n(U)]a� ≤ C0e−aφn(L)
∑

U∈UL

[diamU]a�.
(12.4.32)

Therefore,∑
U∈U

[diamU]a� =
∑
L∈Ln

∑
U∈UL

[diamU]a� ≥
∑
L∈Ln

C−1
0 eaφn(L)

∑
V∈f n(UL)

[diamV]a�.

Let us suppose that∑
V∈f n(UL)

[diamV]a� ≥
∑
U∈U

[diamU]a� for every L ∈Ln.

Then, the previous inequality implies∑
U∈U

[diamU]a� ≥
∑
L∈Ln

C−1
0 eaφn(L)

∑
U∈U

[diamU]a� ≥ C−1
0 eκn

∑
U∈U

[diamU]a�.

This is a contradiction, because eκn > C0. Hence, there exists L ∈Ln such that∑
V∈f n(UL)

[diamV]a� ≤
∑
U∈U

[diamU]a� < ρ.

Figure 12.4. Sierpinski triangle
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12.4 Dimension of conformal repellers 429

Thus, we may repeat the previous procedure with f n(UL) in the place of U .
Observe, however, that #f n(UL)= #UL is strictly less than #U . Therefore, this
process must stop after a finite number of steps. This contradiction proves the
claim 12.4.30.

The proof of Theorem 12.4.3 is complete. However, it is possible to prove an
even stronger result: in the conditions of the theorem, the Hausdorff measure
of � in dimension d(M) is positive and finite. We leave this statement as a
special challenge (Exercise 12.4.7) for the reader who remained with us till the
end of this book!

12.4.7 Exercises

12.4.1. Let d = log2/ log3. Show that (x1+ 1+ x2)
d ≥ xd

1 + xd
2 for every x1,x2 ∈ [0,1].

Moreover, the identity holds if and only if x1 = x2 = 1.
12.4.2. Let f : M→ N be a Lipschitz map, with Lipschitz constant L. Show that

md(f (A))≤ Ldmd(A)

for any d ∈ (0,∞) and any A⊂M. Use this fact to show that if A⊂Rn and t> 0,
then md(tA)= tdmd(A), where tA= {tx : x ∈ A}.

12.4.3. Represent by mo
d(M) and mc

d(M) the numbers defined in the same ways as the
Hausdorff measure md(M) but considering only covers by open sets and covers
by closed sets, respectively. Show that mo

d(M)=mc
d(M)=md(M).

12.4.4. (Mass distribution principle) Let μ be a finite measure on a compact metric
space M and assume that there exist numbers d, K, ρ > 0 such that μ(B) ≤
K(diamU)d for every set B⊂M with diameter less than ρ. Show that if A⊂M
is such that μ(A) > 0 then md(A) > 0 and so d(A)≥ d.

12.4.5. Use the mass distribution principle to show that the Hausdorff dimension of the
Sierpinski triangle (Figure 12.4) is equal to d0 = log3/ log2 and the Hausdorff
measure in dimension d0 is positive and finite.

12.4.6. Check the pressure formula (12.4.12).
12.4.7. Adapting arguments from Exercise 12.4.5, show that in the conditions of

Theorem 12.4.3 one has 0<md(�)(�) <∞.
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