
Appendix A

Topics in measure theory, topology
and analysis

In this series of appendices we recall several basic concepts and facts in
measure theory, topology and functional analysis that are useful throughout
the book. Our purpose is to provide the reader with a quick, accessible source
of references to measure and integration, general and differential topology
and spectral theory, to try and make this book as self-contained as possible.
We have not attempted to make the material in these appendices completely
sequential: it may happen that a notion mentioned in one section is defined or
discussed in more depth in a later one (check the index).

As a general rule, we omit the proofs. For Appendices A.1, A.2 and A.5,
the reader may find detailed information in the books of Castro [Cas04],
Fernandez [Fer02], Halmos [Hal50], Royden [Roy63] and Rudin [Rud87]. The
presentation in Appendix A.3 is a bit more complete, including the proofs of
most results, but the reader may find additional relevant material in the books
of Billingsley [Bil68, Bil71]. We recommend the books of Hirsch [Hir94]
and do Carmo [dC79] to all those interested in going further into the topics
in Appendix A.4. For more information on the subjects of Appendices A.6
and A.7, including proofs of the results quoted here, check the book of
Halmos [Hal51] and the treatise of Dunford and Schwarz [DS57, DS63],
especially Section IV.4 of the first volume and the initial sections of the second
volume.

A.1 Measure spaces

Measure spaces are the natural environment for the definition of the Lebesgue
integral, which is the main topic to be presented in Appendix A.2. We begin by
introducing the notions of algebra and σ -algebra of subsets of a set, which lead
to the concept of measurable space. Next, we present the notion of measure on
a σ -algebra and we analyze some of its properties. In particular, we mention a
few results on the construction of measures, including Lebesgue measures in
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A.1 Measure spaces 431

Euclidean spaces. The last part is dedicated to measurable maps, which are the
maps that preserve the structure of measurable spaces.

A.1.1 Measurable spaces

Given a set X, we often denote by Ac the complement X \A of each subset A.

Definition A.1.1. An algebra of subsets of a set X is a family B of subsets of
X that contains the empty set and is closed under the elementary operations of
set theory:

(i) ∅ ∈ B;
(ii) A ∈ B implies Ac ∈ B;

(iii) A ∈ B and B ∈ B implies A∪B ∈ B;
(iv) A ∈ B and B ∈ B implies A∩B ∈ B;
(v) A ∈ B and B ∈ B implies A \B ∈ B.

The two last properties are immediate consequences of the previous ones,
since A ∩ B = (Ac ∪ Bc)c and A \ B = A ∩ Bc. Moreover, by associativity,
properties (iii) and (iv) imply that the union and the intersection of any finite
family of elements of B are also in B.

Definition A.1.2. A σ -algebra of subsets of a set X is an algebra B of subsets
of X that is also closed under countable unions:

Aj ∈ B for j= 1, . . . ,n, . . . implies
∞⋃

j=1

Aj ∈ B.

Then B is also closed under countable intersections:

Aj ∈ B for j= 1, . . . ,n, . . . implies
∞⋂

j=1

Aj =
( ∞⋃

j=1

Ac
j

)c ∈ B.

Definition A.1.3. A measurable space is a pair (X,B) where X is a set and B
is a σ -algebra of subsets of X. The elements of B are called measurable sets.

Next, we describe a few examples of constructions of σ -algebras.

Example A.1.4. For any set X, the following families of subsets are
σ -algebras:

{∅,X} and 2X = { all subsets of X}.
Moreover, clearly, if B is any algebra of subsets of X then {∅,X} ⊂B⊂ 2X . So,
{∅,X} is the smallest and 2X is the largest of all algebras of subsets of X.

In the statement that follows, I is an arbitrary set whose sole use is to index
the elements of the family of σ -algebras.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.014
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.014
https://www.cambridge.org/core


432 Measure theory, topology and analysis

Proposition A.1.5. Consider any non-empty family {Bi : i ∈ I} of σ -algebras
of subsets of the same set X. Then the intersection B = ⋂i∈I Bi is also a
σ -algebra of subsets of X.

Given any family E of subsets of X, we may apply Proposition A.1.5 to
the family of all σ -algebras that contain E . Note that this family is non-empty,
since it contains the σ -algebra 2X of all subsets of X. According to the previous
proposition, the intersection of all these σ -algebras is also a σ -algebra. By
construction, this σ -algebra contains E and is contained in every σ -algebra
that contains E . In other words, it is the smallest σ -algebra that contains E .
This leads to the following definition:

Definition A.1.6. The σ -algebra generated by a family E of subsets of X is
the smallest σ -algebra σ(E) that contains E or, in other words, the intersection
of all the σ -algebras that contain E .

Recall that a topological space is a pair (X,τ) where X is a set and τ
is a family of subsets of X that contains {∅,X} and is closed under finite
intersections and arbitrary unions. Such a family τ is called a topology and
its elements are called open subsets of X. In this book we take all topological
spaces to be Hausdorff, that is, such that for any pair of distinct points there
exists a pair of disjoint open subsets each of which contains one of the points.

Definition A.1.7. The Borel σ -algebra of a topological space is the σ -algebra
σ(τ) generated by the topology τ , that is, the smallest σ -algebra that contains
all the open subsets of X. The elements of σ(τ) are called Borel subsets of X.
The closed subsets of X, being the complements of the open subsets, are also
in the Borel σ -algebra.

Analogously to Proposition A.1.5, the intersection of any non-empty family
{τi : i ∈ I} of topologies of the same set X is also a topology of X. Then, by
the same argument as we used before for σ -algebras, given any family E of
subsets of X there exists a smallest topology τ(E) that contains E . We call it
the topology generated by E .

Example A.1.8. Let (X,B) be a measurable space. The limit superior of a
sequence of sets En ∈ B is the set limsupn En formed by the points x ∈ X such
that x ∈ En for infinitely many values of n. Analogously, the limit inferior of
(En)n is the set liminfn En of points x ∈ X such that x ∈ En for every value of n
sufficiently large. In other words,

liminf
n

En =
⋃
n≥1

⋂
m≥n

Em and limsup
n

En =
⋂
n≥1

⋃
m≥n

Em.

Observe that liminfn En ⊂ limsupn En and both sets are in B.

Example A.1.9. The extended line R̄= [−∞,∞] is the union of the real line
R= (−∞,+∞) with the two points ±∞ at infinity. This space has a natural
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A.1 Measure spaces 433

topology, generated by the intervals [−∞,b) and (a,+∞], with a,b ∈ R. It
is easy to see that the extended line is homeomorphic to a compact interval
in the real line: for example, the function arctan : R→ (−π/2,π/2) extends
straightforwardly to a homeomorphism (that is, a continuous bijection whose
inverse is also continuous) between R̄ and [−π/2,π/2]. We always consider
on the extended line the Borel σ -algebra associated with this topology.

Of course, the real line R is a subspace (measurable as well as topological)
of the extended line. The Borel subsets of the real line constitute a large family
and one might even be led to think that every subset of R is a Borel subset.
However, this is not true: a counterexample is constructed in Exercise A.1.4.

A.1.2 Measure spaces

Let (X,B) be a measurable space. The following notions have a central role in
this book:

Definition A.1.10. A measure on (X,B) is a function μ : B→ [0,+∞] such
that μ(∅)= 0 and

μ

( ∞⋃
j=1

Aj

)
=

∞∑
j=1

μ(Aj)

for any countable family of pairwise disjoint sets Aj ∈ B. This last property is
called countable additivity or σ -additivity. Then the triple (X,B,μ) is called
a measure space. If μ(X) <∞ then we say that μ is a finite measure and if
μ(X) = 1 then we call μ a probability measure. In this last case, (X,B,μ) is
called a probability space.

Example A.1.11. Let X be an arbitrary set, endowed with the σ -algebra B =
2X . Given any p ∈ X, consider the function δp : 2X →[0,+∞] defined by:

δp(A)=
{

1 if p ∈ A

0 if p /∈ A.

It is easy to see that δp is a measure. It is usually called the Dirac measure, or
Dirac mass at p.

Definition A.1.12. We say that a measure μ is σ -finite if there exists a
sequence A1, . . . ,An, . . . of subsets of X such that μ(Ai) <∞ for every i ∈ N

and

X =
∞⋃

i=1

Ai.

We say that a function μ : B→[0,+∞] is finitely additive if

μ

( N⋃
j=1

Aj

)
=

N∑
j=1

μ(Aj)
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434 Measure theory, topology and analysis

for any finite family A1, . . . ,AN ∈ B of pairwise disjoint subsets. Note that if μ
is σ -additive then it is also finitely additive. Moreover, if μ is finitely additive
and is not constant equal to +∞ then μ(∅)= 0.

The main tool for constructing measures is the following theorem:

Theorem A.1.13 (Extension). Let A be an algebra of subsets of X and let
μ0 :A→[0,+∞] be a σ -additive function with μ0(X) <∞. Then there exists
a unique measure μ defined on the σ -algebra B generated by A that is an
extension of μ0, meaning that it satisfies μ(A)=μ0(A) for every A ∈A.

Theorem A.1.13 remains valid for σ -finite measures. Moreover, there is a
version for finitely additive functions: if μ0 is finitely additive then it admits
a finitely additive extension to σ -algebra B generated by A. However, in this
context the extension need not be unique.

The most useful criterion for proving that a given function is σ -additive is
provided by the following theorem:

Theorem A.1.14 (Continuity at the empty set). Let A be an algebra of subsets
of X and μ :A→[0,+∞) be a finitely additive function with μ(X) <∞. Then
μ is σ -additive if and only if

lim
n
μ
(
An
)= 0 (A.1.1)

for every sequence A1 ⊃ ·· · ⊃ Aj ⊃ ·· · of elements of A with
⋂∞

j=1 Aj = ∅.

The proof of this theorem is proposed in Exercise A.1.7. Exercise A.1.9
deals with some variations of the statement.

Definition A.1.15. We say that an algebra A is compact if any decreasing
sequence A1 ⊃ ·· · ⊃ An ⊃ ·· · of non-empty elements of A has non-empty
intersection.

An open cover of a topological space is a family of open subsets whose
union is the whole of K. A subcover is just a subfamily of elements of a
cover whose union is still the whole space. A topological space is compact
if every open cover admits some finite subcover. A subset K of a topological
space X is compact if the topology of X restricted to K turns the latter into a
compact topological space. Every closed subset of a compact space is compact.
Conversely, (assuming X is a Hausdorff space) then every compact subset is
closed. Another important fact is that the intersection

⋂
n Kn of any decreasing

sequence K1 ⊃ ·· · ⊃ Kn ⊃ ·· · of compact subsets is non-empty.

Example A.1.16. It follows from what we have just said that if X is a
(Hausdorff) topological space and every element of the algebra A is compact
then A is a compact algebra.

It follows from Theorem A.1.14 that if A is a compact algebra then every
finitely additive function μ : A → [0,+∞) with μ(X) < ∞ is σ -additive.
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A.1 Measure spaces 435

Hence, by Theorem A.1.13, μ extends uniquely to a measure defined on the
σ -algebra generated by A.

Definition A.1.17. We say that a non-empty family C of subsets of X is a
monotone class if C contains X and is closed under countable monotone unions
and intersections:

• if A1 ⊂ A2 ⊂ ·· · are in C then
⋃

n≥1 An ∈ C, and
• if A1 ⊃ A2 ⊃ ·· · are in C then

⋂
n≥1 An ∈ C.

Clearly, the two families {∅,X} and 2X are monotone classes. Moreover, if
{Ci : i ∈ I} is any family of monotone classes then the intersection

⋂
i∈I Ci

is a monotone class. Thus, for every subset A of 2X there exists the smallest
monotone class that contains A.

Theorem A.1.18 (Monotone class). The smallest monotone class that con-
tains an algebra A coincides with the σ -algebra σ(A) generated by A.

Another important result about σ -algebras that will be useful later states that
every element of a σ -algebra B generated by an algebra A is approximated by
the elements of A, in the sense that the measure of the symmetric difference

A
B= (A \B)∪ (B \A)= (A∪B
) \ (A∩B

)
can be made arbitrarily small. More precisely:

Theorem A.1.19 (Approximation). Let (X,B,μ) be a probability space and
A be an algebra A of subsets of X that generates the σ -algebra B. Then, for
every ε > 0 and every B ∈ B there exists A ∈A such that μ(A
B) < ε.

Definition A.1.20. A measure space is complete if every subset of a
measurable set with zero measure is also measurable.

It is possible to transform any measure space (X,B,μ) into a complete space,
as follows. Let B̄ be the family of all subsets A⊂X such that there exist B1,B2 ∈
B with B1 ⊂ A⊂ B2 and μ(B2 \B1)= 0. Then B̄ is a σ -algebra and it contains
B. Consider the function μ̄ : B̄→[0,+∞] defined by μ̄(A)=μ(B1)=μ(B2),
for any B1,B2 ∈ B as before. The function μ̄ is well defined, it is a measure
on B̄ and its restriction to B coincides with μ. By construction, (X, B̄, μ̄) is a
complete measure space. It is called the completion of (X,B,μ).

Given subsets U1 and U2 of the σ -algebra B, we say that U1 ⊂ U2 up to
measure zero if for every B1 ∈U1 there exists B2 ∈U2 such that μ(B1
B2)= 0.
By definition, U1 = U2 up to measure zero if U1 ⊂ U2 up to measure zero and
U2⊂U1 up to measure zero. We say that a set U ⊂B generates the σ -algebra B
up to measure zero if the σ -algebra generated by U is equal to B up to measure
zero. Equivalently, U generates B up to measure zero if the completion of the
σ -algebra generated by U coincides with the completion of B.
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436 Measure theory, topology and analysis

By definition, a measure takes values in [0,∞]. Whenever it is convenient
to stress that fact, we speak of positive measure instead. But it is possible to
weaken that requirement and, indeed, such generalizations are useful for our
purposes.

We call a signed measure on a measurable space (X,B) any σ -additive
function μ : B→ [−∞,∞] such that μ(∅) = 0. More precisely, μ may take
either the value −∞ or the value +∞, but not both; this is to avoid the
“indetermination” ∞−∞ in the additivity condition.

Theorem A.1.21 (Hahn decomposition). If μ is a signed measure then there
exist measurable sets P,N ⊂ X such that P∪N = X and P∩N = ∅, and

μ(E)≥ 0 for every E⊂ P and μ(E)≤ 0 for every E⊂ N.

This means that we may write μ = μ+ − μ−, where μ+ and μ− are the
(positive) measures defined by

μ+(E)=μ(E∩P
)

and μ−(E)=−μ(E∩N
)
.

In particular, the sum |μ| =μ++μ− is also a positive measure; it is called the
total variation of the signed measure μ.

If μ takes values in (−∞,∞) only, we call it a finite signed measure. In
this case, the measures μ+ and μ− are finite. The set M(X) of finite signed
measures is a real vector space and the function ‖μ‖ = |μ|(X) is a complete
norm in this space (see Exercise A.1.10). In other words, (M(X),‖ · ||) is a
real Banach space. When X is a compact metric space, this Banach space
is isomorphic to the dual of the space C0(X) of continuous real functions X
(theorem of Riesz–Markov).

More generally, we call a complex measure on a measurable space (X,B) any
σ -additive function μ : B→C. Observe that μ(∅) is necessarily zero. Clearly,
we may write μ = (μ+ i)μ, where the real part (μ and the imaginary part
)μ are finite signed measures. The total variation of μ is the finite measure
defined by

|μ|(E)= sup
P

∑
P∈P

|μ(P)|,

where the supremum is taken over all countable partitions of the measurable
set E into measurable subsets (this definition coincides with the one we gave
previously in the special case when μ is real). The function ‖μ‖ = |μ|(X)
defines a norm in the vector space of complex measures on X, which we also
denote as M(X). Moreover, this norm is complete. When X is a compact
metric space, the complex Banach space (M(X),‖ · ‖) is isomorphic to the
dual of the space C0(X) of continuous complex functions on X (theorem of
Riesz–Markov).
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A.1 Measure spaces 437

A.1.3 Lebesgue measure

The notion of Lebesgue measure corresponds to the notion of volume of
subsets of the Euclidean space Rd. It is defined as follows.

Let X= [0,1] and A be the family of all subsets of the form A= I1∪·· ·∪ IN

where I1, . . . , IN are pairwise disjoint intervals. It is easy to check that A is an
algebra of subsets of X. Let m0 : A→ [0,1] be the function defined on this
algebra by

m0
(
I1 ∪ ·· · ∪ IN

)= |I1|+ · · ·+ |IN |,
where |Ij| represents the length of each interval Ij. Note that m0(X) = 1. In
Exercise A.1.8 we ask the reader to show that m0 is σ -additive.

Note that the σ -algebra B generated by A coincides with the Borel σ -algebra
of X, since every open subset is a countable union of pairwise intervals. So, by
Theorem A.1.13, there exists a unique probability measure m defined on B that
is an extension of m0. It is called the Lebesgue measure on [0,1].

More generally, one defines the Lebesgue measure m on the cube X= [0,1]d
of any dimension d ≥ 1, in the following way. First, we call a rectangle in X
any subset of the form R = I1 × ·· · × Id where the Ij are intervals. Then we
define:

m0(R)= |I1|× · · ·× |Id|.
Next, we consider the algebra A of subsets of X of the form A= R1∪·· ·∪RN ,
where R1, . . . ,RN are pairwise disjoint rectangles, and we define

m0(A)=m0(R1)+·· ·+m0(RN)

for every A in that algebra. The σ -algebra generated by A coincides with the
Borel σ -algebra of X. The Lebesgue measure on the cube X = [0,1]d is the
extension of m0 to that σ -algebra.

In order to define the Lebesgue measure on the whole Euclidean space Rd,
we decompose the space into cubes of unit size:

Rd =
⋃
k1∈Z

· · ·
⋃

kd∈Z
[k1,k1+ 1)×·· ·× [kd,kd+ 1).

Each cube [k1,k1+1)×·· ·×[kd,kd+1)may be identified with [0,1)d through
the translation Tk1,...,kd (x) = x − (k1, . . . ,kd) that maps (k1,k2, . . . ,kd) to the
origin. That allows us to define a measure mk1,k2,...,kd on C, by setting

mk1,k2,...,kd (B)=m0
(
Tk1,...,kd (B)

)
for every measurable set B ⊂ C. Finally, given any measurable set B ⊂ Rd,
define:

m(B)=
∑
k1∈Z

· · ·
∑
kd∈Z

mk1,...,kd

(
B∩ [k1,k1+ 1)×·· ·× [kd,kd+ 1)

)
.

Note that this measure m is σ -finite but not finite.
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438 Measure theory, topology and analysis

Example A.1.22. It is worthwhile outlining a classical alternative construction
of the Lebesgue measure (see Chapter 2 of Royden [Roy63] for details). We
call the Lebesgue exterior measure of an arbitrary set E⊂Rd the number

m∗(E)= inf
∑

k

m0(Rk),

where the infimum is taken over all countable covers (Rk)k of E by open
rectangles. The function E �→ m(E) is defined for every E ⊂ Rd, but is not
finitely additive (although it is countably subadditive). We say that E is a
Lebesgue measurable set if

m∗(A)=m∗
(
A∩E

)+m∗
(
A∩Ec

)
for every A⊂Rd.

Every rectangle R is a Lebesgue measurable set and satisfies m∗(R)= m0(R).
The family M of all Lebesgue measurable sets is a σ -algebra. Moreover, the
restriction of m∗ to M is σ -additive and, hence, a measure. By the previous
observation, M contains every Borel set of Rd. The restriction of m∗ to the
Borel σ -algebra B of Rd coincides with the Lebesgue measure on Rd.

Actually, M coincides with the completion of the Borel σ -algebra of Rd

with respect to the Lebesgue measure. This and other related properties are
part of Exercise A.1.13.

Example A.1.23. Let φ : [0,1] →R be a positive continuous function. Given
any interval I, with endpoints 0≤ a< b≤ 1, define

μφ(I)=
∫ b

a
φ(x)dx (Riemann integral).

Next, extend the definition of μφ to the algebra A formed by the finite unions
A= I1 ∪ ·· · ∪ Ik of pairwise disjoint intervals, through the relation

μφ(A)=
k∑

j=1

μφ(Ij).

The basic properties of the Riemann integral ensure that μφ is finitely
additive. We leave it to the reader to check that the measure μφ is
σ -additive in the algebra A (see Exercise A.1.7). Moreover, μφ(∅) = 0 and
μφ([0,1]) <∞, because φ is continuous and, hence, bounded. With the help
of Theorem A.1.13, we may extend μφ to the whole Borel σ -algebra of [0,1].

The measure μφ that we have just constructed has the following special
property: if a set A ⊂ [0,1] has Lebesgue measure zero then μφ(A) = 0. This
property is called absolute continuity (with respect to the Lebesgue measure)
and is studied in a lot more depth in Appendix A.2.4.

Here is an example of a measure that is positive on any open set but is not
absolutely continuous with respect to Lebesgue measure:
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A.1 Measure spaces 439

Example A.1.24. Fix any enumeration {r1,r2, . . . } of the set Q of rational
numbers. Consider the measure μ defined on R by

μ(A)=
∑
ri∈A

1

2i
.

On the one hand, the measure of any non-empty open subset of the real line is
positive, for such a subset must contain some ri. On the other hand, the measure
of Q is

μ(Q)=
∑
ri∈Q

1

2i
= 1.

Since Q has Lebesgue measure zero (because it is a countable set), this implies
that μ is not absolutely continuous with respect to the Lebesgue measure.

This example also motivates the concept of the support of a measure on a
topological space (X,τ), which we introduce next. For that, we must recall a
few basic ideas from topology.

A subset τ ′ of the topology τ is a basis of the topology, or a basis of open
sets, if for every x ∈ X and every open set U containing x there exists U′ ∈ τ ′
such that x ∈ U′ ⊂ U. We say that the topological space admits a countable
basis of open sets if such a subset τ ′ may be chosen to be countable. A set
V ⊂ X is a neighborhood of a point x ∈ X if there exists some open set U such
that x ∈ U ⊂ V . Thus, a subset X is open if and only if it is a neighborhood of
each one of its points. A family υ ′ of subsets of X is a basis of neighborhoods
of a point x∈X if for every neighborhood V there exists some V ′ ∈ υ ′ such that
x ∈ V ′ ⊂ V . We say that x admits a countable basis of neighborhoods if υ ′ may
be chosen to be countable. If the topological space admits a countable basis of
open sets then every x ∈ X admits a countable basis of neighborhoods, namely,
the family of elements of the countable basis of open sets that contain x.

Definition A.1.25. Let (X,τ) be a topological space and μ be a measure on the
Borel σ -algebra of X. The support of the measure μ is the set suppμ formed
by the points x ∈ X such that μ(V) > 0 for any neighborhood V of x.

It follows immediately from the definition that the support of a measure is a
closed set. In Example A.1.24 above, the support of μ is the whole real line,
despite the fact that μ(Q)= 1.

Proposition A.1.26. If X is a topological space with a countable basis of
open sets and μ is a non-zero measure on X, then the support suppμ is non-
empty.

Proof. If suppμ is empty then for each point x ∈ X we may find an open
neighborhood Vx such that μ(Vx) = 0. Let {Aj : j = 1,2, . . . } be a countable
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440 Measure theory, topology and analysis

basis of the topology of X. Then, for each x ∈ X we may choose i(x) ∈N such
that x ∈ Ai(x) ⊂ Vx. Hence,

X =
⋃
x∈X

Vx =
⋃
x∈X

Ai(x)

and so

μ(X)=μ
(⋃

x∈X

Ai(x)

)
≤

∞∑
i=1

μ(Ai)= 0.

This is a contradiction, and so suppμ cannot be empty.

A.1.4 Measurable maps

Measurable maps play a role in measure theory similar to the role of continuous
maps in topology: measurability corresponds to the idea that the map preserves
the family of measurable subsets, just as continuity means that the family of
open subsets is preserved by the map.

Definition A.1.27. Given measurable spaces (X,B) and (Y ,C), we say that a
map f : X→ Y is measurable if f−1(C) ∈ B for every C ∈ C.

In general, the family of sets C∈C such that f−1(C)∈B is a σ -algebra. So, to
prove that f is measurable it suffices to show that f−1(C0) ∈ B for every set C0

in some family C0 ⊂ C that generates the σ -algebra C. See also Exercise A.1.1.

Example A.1.28. A function f : X → [−∞,∞] is measurable if and only
if the set f−1((c,+∞]) belongs to B for every c ∈ R. This follows from
the previous observation, since the family of intervals (c,+∞] generates the
Borel σ -algebra of the extended line (recall Example A.1.9). In particular, if
a function f takes values in (−∞,+∞) then it is measurable if and only if
f−1((c,+∞)) belongs to B for every c ∈R.

Example A.1.29. If X is a topological space and B is the corresponding Borel
σ -algebra, then every continuous function f : X → R is measurable. Indeed,
continuity means that the pre-image of every open subset of R is an open subset
of X and, hence, is in B. Since the family of open sets generates the Borel
σ -algebra of R, it follows that the pre-image of every Borel subset of the real
line is also in B.

Example A.1.30. The characteristic function XB : X → R of a set B ⊂ X is
defined by:

XB(x)=
{

1, if x ∈ B;
0, otherwise.

Observe that the function XB is measurable if and only if B is a measurable
subset: indeed, X−1

B (A) ∈ {∅,B,X \B,X} for any A⊂R.

Among the basic properties of measurable functions, let us highlight:
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A.1 Measure spaces 441

Proposition A.1.31. Let f ,g : X → [−∞,+∞] be measurable functions and
let a,b ∈R. Then the following functions are also measurable:

(af + bg)(x)= af (x)+ bg(x) and (f · g)(x)= f (x) · g(x).
Moreover, if fn : X → [−∞,+∞] is a sequence of measurable functions, then
the following functions are also measurable:

s(x)= sup{fn(x) : n≥ 1} and i(x)= inf{fn(x) : n≥ 1},
f ∗(x)= limsup

n
fn(x) and f∗(x)= liminf

n
fn(x).

In particular, if f (x)= lim fn(x) exists then f is measurable.

The linear combinations of characteristic functions form an important class
of measurable functions:

Definition A.1.32. We say that a function s : X → R is simple if there exist
constants α1, . . . ,αk ∈ R and pairwise disjoint measurable sets A1, . . . ,Ak ∈ B
such that

s=
k∑

j=1

αjXAj , (A.1.2)

where XA is the characteristic function of the set A.

Note that every simple function is measurable. In the converse direction,
the result that follows asserts that every measurable function is the limit of
a sequence of simple functions. This fact will be very useful in the next
appendix, when defining the Lebesgue integral.

Proposition A.1.33. Let f : X → [−∞,+∞] be a measurable function. Then
there exists a sequence (sn)n of simple functions such that |sn(x)| ≤ |f (x)| for
every n and

lim
n

sn(x)= f (x) for every x ∈ X.

If f takes values in R, we may take every sn with values in R. If f is bounded,
the sequence (sn)n may be chosen such that the convergence is uniform. If f is
non-negative, we may take 0≤ s1 ≤ s2 ≤ ·· · ≤ f .

In Exercise A.1.16 the reader is invited to prove this proposition.

A.1.5 Exercises

A.1.1. Let X be a set and (Y ,C) be a measurable space. Show that, for any
transformation f : X → Y there exists some σ -algebra B of subsets of X such
that the transformation is measurable with respect to the σ -algebras B and C.

A.1.2. Let X be a set and consider the family of subsets

B0 = {A⊂ X : A is finite or Ac is finite}.
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442 Measure theory, topology and analysis

Show that B0 is an algebra. Moreover, B0 is a σ -algebra if and only if the set X
is finite. Show also that, in general,

B1 = {A⊂ X : A is finite or countable or Ac is finite or countable}
is the σ -algebra generated by the algebra B0.

A.1.3. Prove Proposition A.1.5.
A.1.4. The purpose of this exercise is to exhibit a non-Borel subset of the real line.

Let α be any irrational number. Consider the following relation on R : x∼ y⇔
there are m,n ∈ Z such that x− y = m+ nα. Check that ∼ is an equivalence
relation and every equivalence class intersects [0,1). Let E0 be a subset of [0,1)
containing exactly one element of each equivalence class (the existence of such
a set is a consequence of the Axiom of Choice). Show that E0 is not a Borel set.

A.1.5. Let (X,B,μ) be a measure space. Show that if A1,A2, . . . are in B then

μ
( ∞⋃

j=1

Aj

)
≤

∞∑
j=1

μ(Aj).

A.1.6. (Lemma of Borel–Cantelli). Let (En)n be a countable family of measurable sets.
Let F be the set of points that belong to En for infinitely many values of n, that
is, F= limsupn En=⋂∞

k=1

⋃∞
n=k En. Show that if

∑
nμ(En)<∞ thenμ(F)= 0.

A.1.7. Prove Theorem A.1.14.
A.1.8. Let A be the collection of subsets of X = [0,1] that may be written as finite

unions of pairwise disjoint intervals. Check that A is an algebra of subsets of
X. Let m0 : A→[0,1] be the function defined on this algebra by

m0

(
I1 ∪ ·· · ∪ IN

)= |I1|+ · · ·+ |IN |,
where |Ij| represents the length of Ij. Show that m0 is σ -additive.

A.1.9. Let B be an algebra of subsets of X and μ : B→[0,+∞) be a finitely additive
function with μ(X) <∞. Show that μ is σ -additive if and only if any one of
the following conditions holds:
(a) limnμ(An) = μ(⋂∞

j=1 Aj) for any decreasing sequence A1 ⊃ ·· · ⊃ Aj ⊃ ·· ·
of elements of B;

(b) limnμ(An) = μ(⋃∞
j=1 Aj) for any increasing sequence A1 ⊂ ·· · ⊂ Aj ⊂ ·· ·

of elements of B.
A.1.10. Show that ‖μ‖ = |μ|(X) defines a complete norm in the vector space of finite

signed measures on a measurable space (X,B).
A.1.11. Let X = {1, . . . ,d} be a finite set, endowed with the discrete topology, and let

M = XI with I =N or I = Z.
(a) Check that (A.2.7) defines a distance on M and that the topology defined

by this distance coincides with the product topology on M. Describe the
open balls and the closed balls around any point x ∈ XI .

(b) Without using the theorem of Tychonoff, show that (M,d) is a compact
space.

(c) Let A be the algebra generated by the elementary cylinders of M. Show
that every additive function μ : A→ [0,1] with μ(M) = 1 extends to a
probability measure on the Borel σ -algebra of M.
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A.1.12. Let K ⊂ [0,1] be the Cantor set, that is, K =⋂∞
n=0 Kn where K0 = [0,1] and

each Kn is the set obtained by removing from each connected component C of
Kn−1 the open interval whose center coincides with the center of C and whose
length is one third of the length of C. Show that K has Lebesgue measure equal
to zero.

A.1.13. Given a set E⊂Rd, prove that the following conditions are equivalent:
(a) E is a Lebesgue measurable set.
(b) E belongs to the completion of the Borel σ -algebra relative to the

Lebesgue measure, that is, there exist Borel sets B1,B2 ⊂ Rd such that
B1 ⊂ E⊂ B2 and m(B2 \B1)= 0.

(c) (Approximation from above by open sets) Given ε > 0 we can find an open
set A such that E⊂ A and m∗(A \E) < ε.

(d) (Approximation from below by closed sets) Given ε > 0 we can find a
closed set F such that F ⊂ E and m∗(E \F) < ε.

A.1.14. Prove Proposition A.1.31.
A.1.15. Let gn : M → R, n ≥ 1 be a sequence of measurable functions such that

f (x)=∑∞
n=1 gn(x) converges at every point. Show that the sum f is a measurable

function.
A.1.16. Prove Proposition A.1.33.
A.1.17. Let f : X→ X be a measurable transformation and ν be a measure on X. Define

(f∗ν)(A)= ν(f−1(A)). Show that f∗ν is a measure and note that it is finite if and
only if ν itself is finite.

A.1.18. Let ω5 : [0,1] → [0,1] be the function assigning to each x ∈ [0,1] the upper
frequency of the digit 5 in the decimal expansion of x. In other words, writing
x= 0.a0a1a2 . . . with ai �= 9 for infinitely many values of i,

ω5(x)= limsup
n

1

n
#{0≤ j≤ n− 1 : aj = 5}.

Prove that the function ω5 is measurable.

A.2 Integration in measure spaces

In this appendix we define the Lebesgue integral of a measurable function
with respect to a measure. This generalizes the notion of Riemann integral that
is usually presented in calculus or introductory analysis courses to a much
broader class of functions. Indeed, the Riemann integral is not defined for
many useful functions, for example the characteristic functions of arbitrary
measurable sets (see Example A.2.5 below). In contrast, the Lebesgue integral
makes sense for the whole class of measurable functions, which, as we have
seen in Proposition A.1.31, is closed under all the main operations in analysis.

Also in this appendix, we state some important results about the behavior
of the (Lebesgue) integral under limits of sequences. Moreover, we describe
the product of any finite family of finite measures; for probability measures we
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444 Measure theory, topology and analysis

even extend this construction to countable families. Near the end, we discuss
the related notions of absolute continuity and Lebesgue derivation.

A.2.1 Lebesgue integral

Throughout this section, we always take (X,B,μ) to be a measure space. We
are going to introduce the notion of Lebesgue integral in a certain number of
steps. The first one deals with the integral of a simple function:

Definition A.2.1. Let s =∑k
j=1αjXAj be a simple function. The integral of s

is given by: ∫
s dμ=

k∑
j=1

αjμ(Aj).

It is easy to check (Exercise A.2.1) that this definition is consistent: if
two different linear combinations of characteristic functions define the same
function then the values of the integrals obtained from those two linear
combinations are equal.

The next step is to define the integral of a non-negative measurable function.
The idea is to approximate the function by a monotone sequence of simple
functions, using Proposition A.1.33:

Definition A.2.2. Let f : X → [0,∞] be a non-negative measurable function.
Then ∫

fdμ= lim
n

∫
sndμ,

where s1 ≤ s2 ≤ . . . is a non-decreasing sequence of simple functions such that
limn sn(x)= f (x) for every x ∈ X.

It is not difficult to check (Exercise A.2.2) that this definition is consistent:
the value of the integral does not depend on the choice of the sequence (sn)n.

Next, to extend the definition of integral to an arbitrary measurable function,
let us observe that given any function f : X→[−∞,+∞] we can always write
f = f+ − f− with

f+(x)=max{f (x),0} and f−(x)=max{−f (x),0}.
It is clear that the functions f+ and f− are non-negative. Moreover, by
Proposition A.1.31, they are measurable whenever f is measurable.

Definition A.2.3. Let f : X→[−∞,+∞] be a measurable function. Then∫
f dμ=

∫
f+ dμ−

∫
f− dμ,

as long as at least one of the integrals on the right-hand side is finite (with
the usual conventions that (+∞)− a = +∞ and a− (+∞) = −∞ for every
a ∈R).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.014
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.014
https://www.cambridge.org/core


A.2 Integration in measure spaces 445

Definition A.2.4. A function f : X → [−∞,+∞] is integrable if it is
measurable and its integral is a real number. We denote the set of all integrable
functions as L1(X,B,μ) or, simply, as L1(μ).

Given a measurable function f : X → [−∞,∞] and a measurable set E, we
define the integral of f over E to be∫

E
fdμ=

∫
fXE dμ,

where XE is the characteristic function of the set E.

Example A.2.5. Consider X = [0,1] endowed with the Lebesgue measure m.
Let f = XB, where B is the subset of rational numbers. Then m(B) = 0 and
so, using Definition A.2.2, the Lebesgue integral of f is equal to zero. On the
other hand, a direct calculation shows that every lower Riemann sum of f is
equal to 0, while every upper Riemann sum of f is equal to 1. So, the Riemann
integral of f does not exist. Indeed, more generally, the Riemann integral of the
characteristic function of a measurable set exists if and only if the boundary of
the set has zero Lebesgue measure. Note that in the present case the boundary
is the whole of [0,1], which has positive Lebesgue measure.

Example A.2.6. Let x1, . . . ,xm ∈ X and p1, . . . ,pm > 0 with p1+ ·· · + pm = 1.
Let μ be the probability measure μ defined on 2X by

μ=
m∑

i=1

piδxi where δxi is the Dirac mass at xi.

In other words, μ(A)=∑xi∈A pi for every subset A of X. Then, for any function
f : X→[−∞,+∞], ∫

f dμ=
m∑

i=1

pif (xi).

Proposition A.2.7. The set L1(μ) of all real integrable functions is a real
vector space. Moreover, the map I : L1(μ)→ R given by I(f ) = ∫ f dμ is a
positive linear functional:

(1)
∫

af + bgdμ= a
∫

f dμ+ b
∫

gdμ, and
(2)

∫
f dμ≥ ∫ gdμ if f (x)≥ g(x) for every x.

In particular, |∫ f dμ| ≤ ∫ |f |dμ if |f | ∈ L1(μ). Moreover, |f | ∈ L1(μ) if and
only if f ∈L1(μ).

The notion of the Lebesgue integral may be extended to an even broader
class of functions, in two different ways. On the one hand, we may consider
complex functions f : X → C. In this case, we say that f is integrable if and
only if the real part (f and the imaginary part )f are both integrable. Then, by
definition, ∫

f dμ=
∫
(f dμ+ i

∫
)f dμ.
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446 Measure theory, topology and analysis

On the other hand, we may consider functions that are not necessarily
measurable but coincide with some measurable function on a subset of the
domain with total measure. To explain this, we need the following notion,
which is used frequently throughout the text:

Definition A.2.8. We say that a property holds at μ-almost every point (or
μ-almost everywhere) if the subset of points of X for which it does not hold is
contained in some zero measure set.

For example, we say that a sequence of functions (fn)n converges to some
function at μ-almost every point if there exists some measurable set N ⊂ X
with μ(N)= 0 such that f (x)= limn fn(x) for every x ∈ X \N. Analogously, we
say that two functions f and g are equal at μ-almost every point if there exists a
measurable set N ⊂ X with μ(N)= 0 such that f (x)= g(x) for every x ∈ X \N.
Clearly, this is an equivalence relation in the space of functions defined on X.
Moreover, assuming that the two functions are integrable, it implies that the
two integrals coincide:∫

f dμ=
∫

gdμ if f = g at μ-almost every point.

This observation permits the definition of the integral for any function f ,
possibly non-measurable, that coincides at μ-almost every point with some
measurable function g: it suffices to take

∫
f dμ= ∫ gdμ.

To close this section, let us observe that the notion of integral may also be
extended to signed measures and even complex measures, as follows. Let μ be
a signed measure and μ= μ+ −μ− be its Hahn decomposition. We say that a
function φ is integrable with respect to μ if it is integrable with respect to both
μ+ and μ−. Then we define:∫

φ dμ=
∫
φ dμ+ −

∫
φ dμ−.

Similarly, let μ be a complex measure. By definition, a function φ is integrable
with respect to μ if it is integrable with respect to both the real part (μ and
the imaginary part )μ. Then we define:∫

φ dμ=
∫
φ d(μ−

∫
φ d)μ.

A.2.2 Convergence theorems

Next, we mention three important results concerning the convergence of
functions under the integral sign. The first one deals with monotone sequences
of functions:

Theorem A.2.9 (Monotone convergence). Let fn : X → [−∞,+∞] be a
non-decreasing sequence of non-negative measurable functions. Consider the
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A.2 Integration in measure spaces 447

function f : X→[−∞,+∞] defined by f (x)= limn fn(x). Then

lim
n

∫
fn dμ=

∫
f (x)dμ.

The next result applies to much more general sequences, not necessarily
monotone:

Theorem A.2.10 (Lemma of Fatou). Let fn : X → [0,+∞] be a sequence
of non-negative measurable functions. Then the function f : X → [−∞,+∞]
defined by f (x)= liminfn fn(x) is integrable and satisfies∫

liminf
n

fn(x)dμ≤ liminf
n

∫
fn dμ.

The most powerful of the results in this section is the dominated convergence
theorem, which asserts that we may take the limit under the integral sign
whenever the sequence of functions is bounded by some integrable function:

Theorem A.2.11 (Dominated convergence). Let fn : X → R be a sequence
of measurable functions and assume that there exists some integrable function
g : X→R such that |fn(x)| ≤ |g(x)| forμ-almost every x in X. Assume moreover
that the sequence (fn)n converges at μ-almost every point to some function
f : X→R. Then f is integrable and satisfies

lim
n

∫
fn dμ=

∫
f dμ.

In Exercise A.2.7 we invite the reader to deduce the dominated convergence
theorem from the Lemma of Fatou.

A.2.3 Product measures

Let (Xj,Aj,μj), j= 1, . . . ,n be finite measure spaces, that is, such that μj(Xj) <

∞ for every j. One can endow the Cartesian product X1 × ·· · × Xn with the
structure of a finite measure space in the following way. Consider on X1 ×
·· ·×Xn the σ -algebra generated by the family of all subsets of the form A1×
·· · ×An with Aj ∈Aj. This is called the product σ -algebra and is denoted by
A1⊗·· ·⊗An.

Theorem A.2.12. There exists a unique measure μ on the measurable space
(X1× ·· ·×Xn,A1⊗ ·· ·⊗An) such that μ(A1× ·· ·×An)= μ1(A1) · · ·μn(An)

for every A1 ∈A1, . . . , An ∈An. In particular, μ is a finite measure.

The proof of this result (see Theorem 35.B in Halmos [Hal50]) combines
the extension theorem (Theorem A.1.13) with the monotone convergence
theorem (Theorem A.2.9). The measure μ in the statement is the product of
the measures μ1, . . . , μn and is denoted by μ1 × ·· · × μn. In this way one
defines the product measure space

(X1×·· ·×Xn,A1⊗·· ·⊗An,μ1×·· ·×μn).
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448 Measure theory, topology and analysis

Theorem A.2.12 remains valid when the measures μj are just σ -finite, except
that in this case the product measure μ is also only σ -finite.

Next, we describe the product of a countable family of measure spaces.
Actually, for now we restrict ourselves to the case of probability spaces. Let
(Xj,Bj,μj), j∈ I be probability measure spaces with μj(Xj)= 1 for every j∈ I.
What follows holds for both I =N and I =Z. Consider the Cartesian product

� =
∏
j∈I

Xj = {(xj)j∈I : xj ∈ Xj}. (A.2.1)

We call cylinders of � all subsets of the form

[m;Am, . . . ,An] = {(xj)j∈I : xj ∈ Aj for m≤ j≤ n}, (A.2.2)

where m ∈ I and n ≥ m and Aj ∈ Bj for each m ≤ j ≤ n. Note that X itself is
a cylinder: we may write X = [1;X1], for example. By definition, the product
σ -algebra on � is the σ -algebra B generated by the family of all cylinders.
The family A of all finite unions of pairwise disjoint cylinders is an algebra
and it generates the product σ -algebra B.

Theorem A.2.13. There exists a unique measure μ on (�,B) such that

μ([m;Am, . . . ,An])=μm(Am) · · ·μn(An) (A.2.3)

for every cylinder [m;Am, . . . ,An]. In particular, μ is a probability measure.

The proof of this theorem (see Theorem 38.B in Halmos [Hal50]) uses the
extension theorem (Theorem A.1.13) together with the theorem of continuity
at the empty set (Theorem A.1.14). The probability measure μ is called the
product of the measures μj and is denoted as

∏
j∈I μj. The probability space

(�,B,μ) is called the product of the spaces (Xj,Bj,μj), j ∈ I.
An important special case is when the spaces (Xi,Bi,μi) are all equal to

a given (X,C,ν). The corresponding product space may be used to model
a sequence of identical random experiments such that the outcome of each
experiment is independent of all the others. To explain this, take X to be
the set of possible outcomes of each experiment and let ν be the probability
distribution of those outcomes. In this context, the measure μ = νI =∏

j∈I ν is usually called the Bernoulli measure defined by ν. Property (A.2.3)
corresponds to the identity

μ([m;Am, . . . ,An])=
n∏

j=m

ν(Aj), (A.2.4)

which may be read in the following way: the probability of any composite
event {xm ∈ Am, . . . ,xn ∈ An} is equal to the product of the probabilities of
the individual events xi ∈ Ai. So, (A.2.4) does reflect the assumption that the
successive experiments are mutually independent.
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A.2 Integration in measure spaces 449

We have a special interest in the case when X is a finite set, endowed with
the σ -algebra C = 2X of all its subsets. In this case, it is useful to consider the
elementary cylinders

[m;am, . . . ,an] = {(xj)j∈I ∈ X : xm = am, . . . ,xn = an}, (A.2.5)

corresponding to subsets Aj consisting of a single point aj. Observe that
every cylinder is a finite union of pairwise disjoint elementary cylinders. In
particular, the σ -algebra generated by the elementary cylinders coincides with
the σ -algebra generated by all the cylinders, and the same is true for the
generated algebra. Moreover, the relation (A.2.4) may be written as

μ([m;am, . . . ,an])= pam , · · ·pan where pa = ν({a}) for a ∈ X. (A.2.6)

Consider the finite set X endowed with the discrete topology. The product
topology on � = XI coincides with the topology generated by the elementary
cylinders. Moreover (see Exercise A.1.11), it coincides with the topology
associated with the distance defined by

d
(
(xi)i∈I ,(yi)i∈I

)= θN , (A.2.7)

where θ ∈ (0,1) is fixed and N = N((xi)i∈I ,(yi)i∈I) ≥ 0 is the largest integer
such that xi = yi for every i ∈ I with |i|< N.

A.2.4 Derivation of measures

Let m be the Lebesgue measure on Rd. Given a measurable subset A of Rd, we
say that a ∈ Rd is a density point of A if the subset A occupies most of every
small neighborhood of a, in the following sense:

lim
δ→0

m(B(a,δ)∩A)

m(B(a,δ))
= 1. (A.2.8)

Theorem A.2.14. Let A be a measurable subset of Rd with Lebesgue measure
m(A) positive. Then m-almost every a ∈ A is a density point of A.

In Exercise A.2.11 we propose a proof of this result. It is also a direct
consequence of the theorem that we state next. We say that a function f :Rd →
R is locally integrable if the product fXK is integrable for every compact set
K ⊂Rd.

Theorem A.2.15 (Lebesgue derivation). Let X = Rd and B be a Borel
σ -algebra and m be the Lebesgue measure on Rd. Let f : X → R be a locally
integrable function. Then

lim
r→0

1

m(B(x,r))

∫
B(x,r)

|f (y)− f (x)|dm= 0 at m-almost every point x.
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450 Measure theory, topology and analysis

In particular,

lim
r→0

1

m(B(x,r))

∫
B(x,r)

f (y)dm= f (x) at m-almost every point x.

The crucial ingredient in the proof of these results is the following geometric
fact:

Theorem A.2.16 (Lemma of Vitali). Let m be the Lebesgue measure on Rd

and suppose that for every x ∈ R one is given a sequence (Bn(x))n of balls
centered at x with radii converging to zero. Let A ⊂ Rd be a measurable set
with m(A) > 0. Then, for every ε > 0 there exist sequences (xj)j in R and (nj)j
in N such that

1. the balls Bnj(xj) are pairwise disjoint;

2. m
(⋃

j Bnj(xj) \A
)
< ε and m

(
A \⋃j Bnj(xj)

)
= 0.

This theorem remains valid if, instead of balls, we take for (Bn(x))n any
sequence of sets such that

⋂
n Bn(x)= {x} and

sup
x,n

sup{d(x,y) : y ∈ Bn(x)}
inf{d(x,z) : z /∈ Bn(x)} <∞.

The set of measures defined on the same measurable space possesses a
natural partial order relation:

Definition A.2.17. Let μ and ν be two measures in the same measurable
space (X,B). We say that ν is absolutely continuous with respect to μ if every
measurable set E that satisfies μ(E)= 0 also satisfies ν(E)= 0; then we write
ν � μ. We say that μ and ν are equivalent if each one of them is absolutely
continuous with respect to the other; then we write μ∼ ν. In other words, two
measures are equivalent if they have exactly the same zero measure sets.

Another very important result, known as the theorem of Radon–Nikodym,
asserts that if ν � μ then the measure ν may be seen as the product of μ by
some measurable function ρ:

Theorem A.2.18 (Radon–Nikodym). If μ and ν are finite measures such that
ν � μ then there exists a measurable function ρ : X → [0,+∞] such that
ν = ρμ, meaning that∫

φ dν =
∫
φρ dμ for any bounded measurable function φ : X→R.

(A.2.9)
In particular, ν(E)= ∫E ρ dμ for every measurable set E ⊂ X. Moreover, ρ is
essentially unique: any two functions satisfying (A.2.9) coincide at μ-almost
every point.
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A.2 Integration in measure spaces 451

We call ρ the density, or Radon–Nikodym derivative, of ν relative to μ and
we write

ρ = dν

dμ
.

Definition A.2.19. Let μ and ν be two measures in the same measurable
space (X,B). We say that μ and ν are mutually singular if there exist disjoint
measurable subsets A and B such that A∪B= X and μ(A)= 0 and ν(B)= 0.
Then we write μ⊥ ν.

The Lebesgue decomposition theorem states that, given any two finite
measures μ and ν in the same measurable space, we may write ν = νa + νs

where νa and νs are finite measures such that νa � μ and νs ⊥ μ. Combining
this with the theorem of Radon–Nikodym, we get:

Theorem A.2.20 (Lebesgue decomposition). Given any finite measures μ and
ν, there exist a measurable function ρ : X → [0,+∞] and a finite measure η
such that ν = ρμ+η and η⊥μ.

A.2.5 Exercises

A.2.1. Prove that the integral of a simple function is well defined: if two linear
combinations of characteristic functions define the same function, then the
values of the integrals obtained from the two combinations coincide.

A.2.2. Show that if (rn)n and (sn)n are non-decreasing sequences of non-negative
functions converging at μ-almost every point to the same function f : M →
[0,+∞), then limn

∫
rn dμ= limn

∫
sn dμ.

A.2.3. Prove Proposition A.2.7.
A.2.4. (Tchebysheff–Markov inequality) Let f : M → R be a non-negative function

integrable with respect to a finite measure μ. Then, given any real number
a> 0,

μ
({x ∈M : f (x)≥ a})≤ 1

a

∫
X

f dμ.

In particular, if
∫ |f |dμ= 0 then μ

({x ∈ X : f (x) �= 0})= 0.
A.2.5. Let f be an integrable function. Show that for every ε > 0 there exists δ > 0

such that |∫E f dμ|< ε for every measurable set E with μ(E) < δ.
A.2.6. Let ψ1, . . . ,ψN : M → R be bounded measurable functions defined on a

probability space (M,B,μ). Show that for any ε > 0 there exist x1, . . . ,xs ∈M
and positive numbers α1, . . . ,αs such that

∑s
j=1αj = 1 and∣∣∣∣∫ ψi dμ−

s∑
j=1

αjψi(xj)

∣∣∣∣< ε for every i= 1, . . . ,N.

A.2.7. Deduce the dominated convergence theorem (Theorem A.2.11) from the
Lemma of Fatou (Theorem A.2.10).
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A.2.8. A set F of measurable functions f : M → R is said to be uniformly integrable
with respect to a probability measure μ if for every α > 0 there exists C > 0
such that

∫
{|f |>C} |f |dμ< α for every f ∈F . Show that

(a) F is uniformly integrable with respect to μ if and only if there exists L> 0
and for every ε > 0 there exists δ > 0 such that

∫ |f |dμ< L and
∫

A |f |dμ<
ε for every f ∈F and every measurable set A with μ(A) < δ.

(b) If there exists a function g : M →R integrable with respect to μ such that
|f | ≤ |g| for every f ∈F (we say that F is dominated by g) then the set F
is uniformly integrable with respect to μ.

(c) If the set F is uniformly integrable with respect to μ then limn

∫
fn dμ =∫

lim fn dμ for any sequence (fn)n in F such that limn fn exists at μ-almost
every point.

A.2.9. Show that a is a density point of a set A⊂Rd if and only if

lim
δ→0

inf

{
m(B∩A)

m(B)
: B a ball with a ∈ B⊂ B(a,δ)

}
= 1. (A.2.10)

A.2.10. Let Pn, n ≥ 1 be a sequence of countable partitions of Rd into measurable
subsets. Assume that the diameter diamPn = sup{diamP : P ∈ Pn} converges
to zero when n→∞. Show that, given any measurable set A⊂Rd with positive
Lebesgue measure, it is possible to choose sets Pn ∈ Pn, n ≥ 1 in such a way
that m(A∩Pn)/m(Pn)→ 1 when n→∞.

A.2.11. Prove Theorem A.2.14.
A.2.12. Consider x1, x2 ∈M and p1, p2, q1, q2 > 0 with p1 + p2 = q1 + q2 = 1. Let μ

and ν be the probability measures given by

μ(A)=
∑
xi∈A

pi, ν(A)=
∑
xi∈A

qi,

that is, μ= p1δx1 + p2δx2 and ν = q1δx1 + q2δx2 . Check that ν� μ and μ� ν

and calculate the corresponding Radon–Nikodym derivatives.
A.2.13. Construct a probability measure μ on [0,1] absolutely continuous with respect

to the Lebesgue measure m and such that there exists a measurable set K⊂[0,1]
with μ(K) = 0 and m(K) = 1/2. In particular, m is not absolutely continuous
with respect to μ. Could we require that m(K)= 1?

A.2.14. Assume that f : X → X is such that there exists a countable cover of M by
measurable sets Bn, n≥ 1, such that the restriction of f to each Bn is a bijection
onto its image, with measurable inverse. Let η be a probability measure on M
such that A ⊂ Bn and η(A) = 0 implies η(f (A)) = 0. Show that there exists a
function Jη : X→[0,+∞] such that∫

f (Bn)

ψ dη=
∫

Bn

(ψ ◦ f )Jη dη

for every bounded measurable function ψ : X → R and every n. Moreover, Jη
is essentially unique.

A.2.15. Let μ = μ+ − μ− be the Hahn decomposition of a finite signed measure μ.
Show that there exist functions ρ± and τ± such that μ+ = ρ+|μ| = τ+μ and
μ− = ρ−|μ| = τ−μ. Which functions are these?
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A.3 Measures in metric spaces 453

A.2.16. Let (μn)n and (νn)n be two sequences of measures such that μ =∑nμn and
ν =∑n νn are finite measures. Let μ̂n =∑n

i=1μi and ν̂n =∑n
i=1 νi. Show that

if μ̂n � ν̂n for every n then μ� ν and

dμ

dν
= lim

n

dμ̂n

dν̂n
at ν-almost every point.

A.3 Measures in metric spaces

In this appendix, unless stated otherwise, μ is a Borel probability measure on
a metric space M, that is, a probability measure defined on the Borel σ -algebra
of M. Most of the results extend immediately to finite Borel measures, in fact.

Recall that a metric space is a pair (M,d)where M is a set and d is a distance
in M, that is, a function d : M×M→R satisfying:

1. d(x,y)≥ 0 for any x,y and the equality holds if and only if x= y;
2. d(x,y)= d(y,x) for any x,y;
3. d(x,y)≤ d(x,z)+ d(z,y) for any x,y,z.

We denote B(x,r)= {y∈M : d(x,y) < r} and call it the ball of center x∈M and
radius r> 0.

Every metric space has a natural structure of a topological space where the
family of balls centered at each point is a basis of neighborhoods for that
point. Equivalently, a subset of M is open if and only if it contains some ball
centered at each one of its points. In the converse direction, one says that a
topological space is metrizable if its topology can be defined in this way, from
some distance function.

A.3.1 Regular measures

A first interesting fact is that any probability measure on a metric space is
completely determined by the values it takes on the open subsets (or the closed
subsets) of the space.

Definition A.3.1. A (Borel) measure μ on a topological space is regular if for
every measurable subset B and every ε > 0 there exists a closed set F and an
open set A such that F ⊂ B⊂ A and μ(A \F) < ε.

Proposition A.3.2. Any probability measure on a metric space is regular.

Proof. Let B0 be the family of all Borel subsets B for which the condition in
the definition holds, that is, such that for every ε > 0 there exist a closed set
F and an open set A satisfying F ⊂ B⊂ A and μ(A \F) < ε. Begin by noting
that B0 contains all the closed subsets of M. Indeed, let B be any closed set
and let Bδ denote the (open) set of points whose distance to B is less than δ.
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454 Measure theory, topology and analysis

By Theorem A.1.14, we have that μ(Bδ \B)→ 0 when δ→ 0. Hence, we may
take F = B and A= Bδ for δ > 0 sufficiently small.

It is immediate that the family B0 is closed under taking the complement,
that is, Bc ∈ B0 whenever B ∈ B0. Furthermore, consider any countable family
Bn, n = 1,2, . . . of elements of B0 and let B = ⋃∞

n=1 Bn. By hypothesis, for
every n ∈N and ε > 0 there exist a closed set Fn and an open set An satisfying
Fn ⊂ Bn ⊂ An and μ(An \Fn) < ε/2n+1. The union A=⋃∞

n=1 An is an open set
and any finite union F =⋃m

n=1 Fn is a closed set. Fix m large enough that

μ

( ∞⋃
n=1

Fn \F

)
< ε/2

(recall Theorem A.1.14). Then F ⊂ B⊂ A and

μ
(
A \F

)≤ ∞∑
n=1

μ
(
An \Fn

)+μ( ∞⋃
n=1

Fn \F
)
<

∞∑
n=1

ε

2n+1
+ ε

2
= ε.

This shows that B ∈ B0. In this way, we have shown that B0 is a σ -algebra.
Hence, B0 contains all the Borel subsets of M.

It follows that, as stated above, the values that the probability measure μ
takes on the closed subsets of M determine μ completely: if ν is another
probability measure such that μ(F)= ν(F) for every closed set F then, taking
the complement, μ(A) = ν(A) for every open set A and, using the theorem,
μ(B)= ν(B) for every Borel set B. In other words, μ= ν. The same argument
shows that the values of μ on the open sets also determine the measure
completely.

The proposition that we state and prove next implies that the values of the
integrals of the bounded continuous functions also determine the probability
measure completely. Indeed, the same is true for the (smaller) set of bounded
Lipschitz functions.

Recall that a map h : M→N is Lipschitz if there exists some constant C> 0
such that d(h(x),h(y)) ≤ Cd(x,y) for every x,y ∈ M. When it is necessary to
specify the constant, we say that the function h is C-Lipschitz. More generally,
we say that h is Hölder if there exist C,θ > 0 such that d(h(x),h(y))≤Cd(x,y)θ

for every x,y ∈M. Then we also say that h is θ -Hölder or even (C,θ)-Hölder.

Proposition A.3.3. If μ and ν are probability measures on a metric space M
with

∫
ϕ dμ = ∫ ϕ dν for every bounded Lipschitz function ϕ : M → R then

μ= ν.

Proof. We are going to use the following simple topological fact:

Lemma A.3.4. Given any closed subset F of M and any δ > 0, there exists
a Lipschitz function gδ : M → [0,1] such that gδ(x) = 1 for every x ∈ F and
gδ(x)= 0 for every x ∈M such that d(x,F)≥ δ.
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Proof. Consider the function h : R→ [0,1] given by h(s) = 1 if s ≤ 0 and
h(s)= 0 if s≥ 1 and h(s)= 1− s if 0≤ s≤ 1. Define

g : M→[0,1], g(x)= h
(1

δ
d(x,F)

)
.

Note that g is Lipschitz, since it is a composition of Lipschitz functions. The
other properties in the lemma follow immediately from the definition.

Now we may finish the proof of Proposition A.3.3. Let F be any closed
subset of M and, for every δ > 0, let gδ : M → [0,1] be a function as in the
lemma above. By assumption,∫

gδ dμ=
∫

gδ dν for every δ > 0.

Moreover, by the dominated convergence theorem (Theorem A.2.11),

lim
δ→0

∫
gδ dμ=μ(F) and lim

δ→0

∫
gδ dν = ν(F).

This shows that μ(F)= ν(F) for every closed subset F. As pointed out before,
the latter implies μ= ν.

As observed in Example A.1.29, continuous maps are automatically
measurable relative to the Borel σ -algebra. The result that we prove next
asserts that, under a simple condition on the metric space, there is a kind of
converse: measurable maps are continuous, restricted to certain subsets with
almost full measure.

A subset of a topological space M is dense if it intersects every open subset
of M. We say that the space M is separable if it admits some countable dense
subset. In the special case of metric spaces this is equivalent to saying that the
topology admits a countable basis of open sets (Exercise A.3.1).

Theorem A.3.5 (Lusin). Let ϕ : M → N be a measurable map with values
in some separable metric space N. Given any ε > 0, there exists a closed set
F ⊂M such that μ(M \F) < ε and the restriction of ϕ to F is continuous.

Proof. Let {xn : n ∈ N} be a countable dense subset of N and, for every k ≥ 1,
let Bn,k be the ball of center xn and radius 1/k. Fix ε > 0. By Proposition A.3.2,
for every (n,k) we may find an open set An,k ⊂ M containing ϕ−1(Bn,k) and
satisfying μ(An,k \ϕ−1(Bn,k)) < ε/2n+k+1. Define

E=
∞⋂

n,k=1

(
ϕ−1(Bn,k)∪Ac

n,k

)
.

On the one hand,

μ(M \E)≤
∞∑

n,k=1

μ(An,k \ϕ−1(Bn,k)) <

∞∑
n,k=1

ε

2n+k+1
= ε

2
.
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On the other hand, every ϕ−1(Bn,k) is an open subset of ϕ−1(Bn,k)∪Ac
n,k, since

the complement is the closed set Ac
n,k. Consequently, ϕ−1(Bn,k) is open in E

for every (n,k). This shows that the restriction of ϕ to the set E is continuous.
To conclude the proof it suffices to use Proposition A.3.2 once more to find a
closed set F ⊂ E such that μ(E \F) < ε/2.

A.3.2 Separable complete metric spaces

Next, we discuss another important property of measures on metric spaces that
are both separable and complete. Recall that the latter means that every Cauchy
sequence converges.

Definition A.3.6. A (Borel) measure μ on a topological space is tight if for
every ε > 0 there exists a compact subset K such that μ(Kc) < ε.

Since every closed subset of a compact metric space is also compact, it
follows immediately from Proposition A.3.2 that every probability measure on
a compact metric space is tight. However, this conclusion is a lot more general:

Proposition A.3.7. Every probability measure on a separable complete metric
space is tight.

Proof. Let {pk : k∈N} be a countable dense subset of M. Then, for every n≥ 1,
the closed balls B̄(pk,1/n), k ∈ N form a countable cover of M. Given ε > 0
and n≥ 1, fix k(n)≥ 1 in such a way that the (closed) set

Ln =
k(n)⋃
k=1

B̄(pk,1/n)

satisfies μ(Ln) > 1− ε/2n. Take K =⋂∞
n=1 Ln. Note that K is closed and

μ(Kc)≤μ
( ∞⋃

n=1

Lc
n

)
<

∞∑
n=1

ε

2n
= ε.

It remains to check that K is compact. For that, it is enough to show that every
sequence (xi)i in K admits some Cauchy subsequence (since M is complete,
this subsequence converges). Such a subsequence may be found as follows.
Since xi ∈ L1 for every i, there exists l(1)≤ k(1) such that the set of indices

I1 = {i ∈N : xi ∈ B(pl(1),1)}
is infinite. Let i(1) be the smallest element of I1. Next, since xi ∈ L2 for every
i, there exists l(2)≤ k(2) such that

I2 = {i ∈ I1 : xi ∈ B(pl(2),1/2)}
is infinite. Let i(2) be the smallest element of I2 \ {i(1)}. Repeating this
procedure, we construct a decreasing sequence In of infinite subsets of N, and
an increasing sequence i(1) < i(2) < · · · < i(n) < · · · of integers such that
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i(n) ∈ In and all the xi, i ∈ In are contained in the same closed ball of radius
1/n. In particular,

d(xi(a),xi(b))≤ 2/n for every a,b≥ n.

This shows that the subsequence (xi(n))n is indeed Cauchy.

Corollary A.3.8. Assume that M is a separable complete metric space and μ
is a probability measure on M. For every ε > 0 and every Borel set B⊂M there
exists a compact set L⊂ B such that μ(B \L) < ε.

Proof. By Proposition A.3.2, we may find some closed set F ⊂ B such that
μ(B\F) < ε/2. By Theorem A.3.5, there exists a compact subset K ⊂M such
that μ(M \K) < ε/2. Take L= F∩K. Then L is compact and μ(B \L) < ε.

Analogously, when the metric space M is separable and complete we can
improve the statement of Lusin’s theorem, replacing “closed” with “compact”
in the conclusion:

Theorem A.3.9 (Lusin). Assume that M is a separable complete metric space
and μ is a probability measure on M. Let ϕ : M → N be a measurable map
with values in a separable metric space N. Then, given any ε > 0 there exists
a compact set K ⊂M such that μ(M \K) < ε and the restriction of ϕ to K is
continuous.

We close this section with another important fact about measures on
separable complete metric spaces. A measure μ is called atomic if there exists
some point x such that μ({x})> 0; any such point is called an atom. Otherwise,
the measure μ is said to be non-atomic.

The next theorem states that every non-atomic probability measure on a
separable complete metric space is equivalent to the Lebesgue measure in the
interval. The proof is given in Section 8.5.

Theorem A.3.10. Let M be a separable complete metric space and μ be a
non-atomic probability measure on M. Then there exists a measurable map
ψ : M→[0,1] such that ψ is a bijection with measurable inverse, restricted to
a subset with full measure, and ψ∗μ is the Lebesgue measure on [0,1].

A.3.3 Space of continuous functions

Let M be a compact metric space. We are going to describe some important
properties of the vector space C0(M) of continuous functions, real or complex,
defined on M. We consider on this space the norm of uniform convergence,
given by:

‖φ‖ = sup{|φ(x)| : x ∈M}.
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458 Measure theory, topology and analysis

This norm is complete and, hence, endows C0(M) with the structure of a
Banach space.

The conclusions of the previous sections hold in this setting, since every
compact metric space is separable and complete. Another useful fact about
compact metric spaces is that every open cover admits some Lebesgue number,
that is, some number ρ > 0 such that for every x∈M there exists some element
of the cover that contains the ball B(x,ρ).

A linear functional � : C0(M) → C is said to be positive if �(ϕ) ≥ 0
for every function ϕ ∈ C0(M) with ϕ(x) ≥ 0 for every x ∈ M. The theorem
of Riesz–Markov (see Theorem 6.19 in Rudin [Rud87]) shows that the only
positive linear functionals on C0(M) are the integrals:

Theorem A.3.11 (Riesz–Markov). Let M be a compact metric space. Con-
sider any positive linear functional� : C0(M)→C . Then there exists a unique
finite Borel measure μ on M such that

�(ϕ)=
∫
ϕ dμ for every ϕ ∈ C0(M).

Moreover, μ is a probability measure if and only if �(1)= 1.

The next result, which is also known as the theorem of Riesz–Markov, gives
an analogous representation for continuous linear functionals in C0(M), not
necessarily positive. Recall that the norm of a linear functional� : C0(M)→C

is defined by

‖�‖ = sup
{ |�(ϕ)|
‖ϕ‖ : ϕ �= 0

}
(A.3.1)

and that � is continuous if and only if the norm is finite.

Theorem A.3.12 (Riesz–Markov). Let M be a compact metric space. Con-
sider any continuous linear functional� : C0(M)→C. Then there exists some
complex Borel measure μ on M such that

�(ϕ)=
∫
ϕ dμ for every ϕ ∈ C0(M).

The norm ‖μ‖ = |μ|(X) of the measure μ coincides with the norm ‖�‖ of the
functional �. Moreover, μ takes values in [0,∞) if and only if � is positive
and μ takes values in R if and only if �(ϕ) ∈R for every real function ϕ.

In other words, this last theorem asserts that the dual space of C0(M) is
isometrically isomorphic to M(M). Theorems A.3.11 and A.3.12 extend to
locally compact topological spaces, with suitable assumptions on the behavior
of the functions at infinity. In this context the measure μ is still regular, but not
necessarily finite.

We also use the fact that the space C0(M) has countable dense subsets
(Exercise A.3.6 is a particular instance):
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A.3 Measures in metric spaces 459

Theorem A.3.13. If M is a compact metric space then C0(M) is separable.

Proof. We treat the case of real functions; the complex case is entirely
analogous. Every compact metric space is separable. Let {xk : k ∈ N} be a
countable dense subset of M. For each k ∈N, consider the function fk : M→R

defined by fk(x)= d(x,xk). Represent by A the set of all functions f : M → R

of the form
f = c+

∑
k1,...,ks

ck1,...,ks fk1 · · · fks (A.3.2)

with c ∈ R and ck1,...,ks ∈ R for every k1, . . . ,ks ∈ N. It is clear that A contains
all constant functions. Observe also that A is an algebra of functions, that
is, it is closed under the operations of addition and multiplication (including
multiplication by any constant). Moreover, A separates the points of M, in the
sense that for any x �= y there exists some f ∈A such that f (x) �= f (y). To see
that, fix ε > 0 such that d(x,y) > 2ε, consider k ∈ N such that d(x,xk) < ε

and then take f = fk. Note that f (x) = d(x,xk) < ε while, by the triangle
inequality, f (y)= d(y,xk)≥ d(x,y)− d(x,xk) > ε. So, the algebra of functions
A is separating, as we claimed. Now, the theorem of Stone–Weierstrass (see
[DS57, Theorem 4.6.16]) asserts that every separating subalgebra of the space
of continuous functions that contains the constant function 1 is dense in C0(M).
The previous observations show that this applies to A. It follows that the
(countable) set of functions of the form (A.3.2) with c ∈ Q and ck1,...,ks ∈ Q

is also dense in C0(M).

A.3.4 Exercises

A.3.1. Let M be a metrizable topological space. Justify that every point of M admits
a countable basis of neighborhoods. Check that M is separable if and only if it
admits a countable basis of open sets. Give examples of separable metric spaces
and non-separable metric spaces.

A.3.2. Let μ be a finite measure on a metric space M. Show that for every closed set
F ⊂M there exists some finite or countable set E⊂ (0,∞) such that

μ({x ∈M : d(x,F)= r})= 0 for every r ∈ (0,∞) \E.

A.3.3. Let μ be a finite measure on a separable metric space M. Show that for every ε >
0 there exists a countable partition of M into measurable subsets with diameter
less than ε and whose boundaries have measure zero.

A.3.4. Let μ be a probability measure on [0,1] and φ : [0,1] → [0,1] be the function
given by φ(x) = μ([0,x]). Check that φ is continuous if and only if μ is
non-atomic. Check that φ is absolutely continuous if and only if μ is absolutely
continuous with respect to the Lebesgue measure.

A.3.5. Let μ be a probability measure on some metric space M. Show that for every
integrable function ψ : M → R there exists a sequence ψn : M → R, n ≥ 1
of uniformly continuous functions converging to ψ at μ-almost every point.
Moreover, if ψ is bounded then we may choose the sequence in such a way
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460 Measure theory, topology and analysis

that sup |ψn| ≤ sup |ψ | for every n. Do these claims remain true if we require
convergence at every point?

A.3.6. Without using Theorem A.3.13, show that the space C0([0,1]d) of continuous
functions, real or complex, on the compact unit cube is separable, for every d≥ 1.

A.4 Differentiable manifolds

In this appendix we review some fundamental notions and facts from
differential topology and Riemannian geometry.

A.4.1 Differentiable manifolds and maps

A differentiable manifold of dimension d is a (Hausdorff) topological space
M endowed with a differentiable atlas of dimension d, that is, a family of
homeomorphisms ϕα : Uα→ Xα such that

1. each Uα is an open subset of M and each Xα is an open subset of Rd and
M =⋃αUα;

2. the map ϕβ ◦ ϕ−1
α : ϕα(Uα ∩Uβ)→ ϕβ(Uα ∩Uβ) is differentiable, for any

α and β such that Uα ∩Uβ �= ∅.

More generally, instead of Rd we may consider any Banach space E. Then we
say that M is a differentiable manifold modelled on the space E.

The homeomorphisms ϕα are called local charts, or local coordinates,
and the transformations ϕβ ◦ ϕ−1

α are called coordinate changes. Exchanging
the roles of α and β, we see that the inverse (ϕβ ◦ ϕ−1

α )
−1 = ϕα ◦ ϕ−1

β is
also differentiable. So, the definition of a differentiable manifold requires the
coordinate changes to be diffeomorphisms between open subsets of Euclidean
space.

Unless explicitly stated otherwise, we only consider manifolds such that M
admits a countable basis of open sets and is connected. The latter means that
no subset of M is both open and closed, except for M and ∅.

Let r ∈ N ∪ {∞}. If every coordinate change is of class Cr (that is, all its
partial derivatives up to order r exist and are continuous), we say that the
manifold M (and the atlas {ϕα : Uα → Xα}) are of class Cr. Clearly, every
manifold of class Cr is also of class Cs for every s≤ r.

Example A.4.1. The following are manifolds of class C∞ and dimension d:

Euclidean space Rd: consider the atlas consisting of a unique map, namely, the
identity map Rd →Rd.
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A.4 Differentiable manifolds 461

Sphere Sd = {(x0,x1, . . . ,xd) ∈Rd+1 : x2
0+ x2

1+·· ·+ x2
d = 1}: consider the atlas

formed by the two stereographic projections:

Sd \ {(1,0, . . . ,0)}→Rd, (x0,x1, . . . ,xd) �→ (x1, . . . ,xd)/(1− x0)

Sd \ {(−1,0, . . . ,0)}→Rd, (x0,x1, . . . ,xd) �→ (x1, . . . ,xd)/(1+ x0).

Torus Td = Rd/Zd: consider the atlas formed by the inverses of the maps gz :
(0,1)d → Td, defined by gz(x)= z+ x mod Zd for every z ∈Rd.

Example A.4.2 (Grassmannian manifolds). Given 0 ≤ k ≤ d, denote by
Gr(k,d) the set of all vector subspaces of dimension k of the Euclidean space
Rd. For each j1 < · · · < jk, denote by Gr(k,d, j1, . . . , jk) the subset of elements
of Gr(k,d) that are transverse to {(xj)j ∈ Rd : xj1 = ·· · = xjk = 0}. For every
V ∈Gr(k,d, j1, . . . , jk) there exists a unique matrix (ui,j)i,j with (d− k) rows and
k columns such that

V = {(xj)j ∈Rd : xi = ui,j1 xj1 +·· ·+ ui,jk xjk for every i /∈ {j1, . . . , jk}
}
.

The maps Gr(k,d, j1, . . . , jk)→R(d−k)k associating with each V the correspond-
ing matrix (ui,j)i,j constitute an atlas of class C∞ for Gr(k,d). So, every Gr(k,d)
is a manifold of class C∞ and dimension (d− k)k.

Let M be a manifold of dimension d and A = {ϕα : Uα → Xα} be the
corresponding atlas. Let S be a subset of M. We say that S is a submanifold
of dimension k < d if there exists some atlas B = {ψβ : Vβ → Yβ} of M such
that

(i) A and B are compatible: the coordinate changes ψβ ◦ ϕ−1
α and ϕα ◦ψ−1

β

are differentiable in their domains, for every α and every β;
(ii) for every β, the local chart ψβ maps V ′β = Vβ ∩ S onto an open subset Y ′β

of Rk×{0d−k}.
Identifying Rk×{0d−k} ,Rk, we get that the family formed by the restrictions
ψβ : V ′β→ Y ′β constitutes an atlas for S. Hence, S is a manifold of dimension k.
If M is a manifold of class Cr and the atlases A and B are Cr-compatible, that
is, if all the coordinate changes in (i) are of class Cr, then S is a (sub)manifold
of class Cr.

We say that a map f : M→ N between two manifolds is differentiable if

ψβ ◦ f ◦ϕ−1
α : ϕα(Uα ∩ f−1(Vβ))→ψβ

(
Vβ ∩ f (Uα)

)
(A.4.1)

is a differentiable map for every local chart ϕα : Uα→ Xα of M and every local
chart ψβ : Vβ → Yβ of N with f (Uα)∩Vβ �= ∅. Moreover, we say that f is of
class Cr if M and N are manifolds of class Cr and every map ψβ ◦ f ◦ ϕ−1

α in
(A.4.1) is of class Cr. A diffeomorphism f : M→ N is a bijection between two
manifolds such that both f and f−1 are differentiable. If both maps are of class
Cr then we say that the diffeomorphism is of class Cr.
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462 Measure theory, topology and analysis

Let Cr(M,N) be the space of maps of class Cr between two manifolds M
and N. We are going to introduce in this space a certain topology, called the
Cr topology, for which two maps are close if and only if they are uniformly
close and the same is true for their derivatives up to order r. The definition
may be given in a very broad context (see Section 2.1 of Hirsch [Hir94]), but
we restrict ourselves to the case when M and N are compact. In this case, the
Cr topology may be defined in the following way.

Fix finite families of local charts ϕi : Ui → Xi of M and ψj : Vj → Yj of N,
such that

⋃
i Ui =M and

⋃
j Vj = N. Let δ > 0 be a Lebesgue number for the

open cover {Ui ∩ f−1(Vj)} of M. For each pair (i, j) such that Ui ∩ f−1(Vj) �= ∅,
let Ki,j be the set of points whose distance to the complement of Ui∩ f−1(Vj) is
greater than or equal to δ. Then Ki,j is a compact set contained in Ui ∩ f−1(Vj)

and the union
⋃

i,j Ki,j is the whole M. Consider

U(f )= {g ∈ Cr(M,N) : g(Ki,j)⊂ Vj for any i, j}.
It is clear that f ∈ U(f ). For each g ∈ U(f ) and each pair (i, j) such that Ki,j is
non-empty, denote by gi,j the restriction of ψj ◦ g ◦ ϕ−1

i to the set ϕi(Ki,j). For
each r ∈N and ε > 0, define

U r(f ,ε)= {g ∈ U(f ) : sup
s,x,i,j

‖Dsfi,j(x)−Dsgi,j(x)‖< ε}, (A.4.2)

where the supremum is over every s ∈ {1, . . . ,r}, every x ∈ ϕi(Ki,j) and every
pair (i, j) such that Ki,j �= ∅. By definition, the family {U r(f ,ε) : ε > 0} is a basis
of neighborhoods of each f ∈ Cr(M,N) relative to the Cr topology. Also by
definition, the family {U r(f ,ε) : ε > 0 and r ∈ N} is a basis of neighborhoods
of f ∈ C∞(M,N) relative to the C∞ topology.

The Cr topology has very nice properties: in particular, it admits a countable
basis of open sets and is completely metrizable, that is, it is generated by some
complete distance. An interesting consequence is that Cr(M,N) is a Baire
space: every intersection of a countable family of open dense subsets is dense
in the space. The set Diffeor(M) of diffeomorphisms of class Cr is an open
subset of Cr(M,M) relative to the Cr topology.

A.4.2 Tangent space and derivative

Let M be a manifold. For each p ∈M, consider the set C(p) of all the curves
c : I →M whose domain is some open interval I containing 0 ∈ R, such that
c(0) = p and c is differentiable at the point 0. The latter means that the map
ϕα ◦ c is differentiable at the point 0 for every local chart ϕα : Uα→ Xα with
p ∈ Uα . We say that two curves c1,c2 ∈ C(p) are equivalent if (ϕα ◦ c1)

′(0) =
(ϕα ◦ c2)

′(0) for every local chart ϕα : Uα→ Xα with p ∈ Uα . Actually, if the
equality holds for some local chart then it holds for all the other charts as well.
We denote by [c] the equivalence class of any curve c ∈ C(p).
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A.4 Differentiable manifolds 463

The tangent space to the manifold M at the point p is the set of such
equivalence classes. We denote this set by TpM. For any fixed local chart
ϕα : Uα→ Xα with p ∈Uα , the map

Dϕα(p) : TpM→Rd, [c] �→ (ϕα ◦ c)′(0)

is well defined and is a bijection. We may use this bijection to identify TpM
with Rd. In this way, the tangent space acquires the structure of a vector space,
transported from Rd via Dϕα(p). Although this identification Dϕα(p) depends
on the choice of the local chart, the vector space structure on TpM does not.
That is because, for any other local chart ϕβ : Uβ → Xβ with p ∈ Uβ , the
corresponding map Dϕβ(p) is given by

Dϕβ(p)=D
(
ϕβ ◦ϕ−1

α

)
(ϕα(p)) ◦Dϕα(p).

Since D
(
ϕβ ◦ ϕ−1

α

)
(ϕα(p)) is a linear isomorphism, it follows that the vector

space structures transported from Euclidean space to TpM by Dϕα(p) and
Dϕβ(p) coincide, as we stated.

If f : M → N is a differentiable map, its derivative at a point p ∈ M is the
linear map Df (p) : TpM→ Tf (p)N defined by

Df (p)=Dψβ(f (p))
−1 ◦D

(
ψβ ◦ f ◦ϕ−1

α

)
(ϕα(p)) ◦Dϕα(p),

where ϕα : Uα→ Xα is a local chart of M with p ∈ Uα and ψβ : Vβ → Yβ is a
local chart of N with f (p) ∈ Vβ . The definition does not depend on the choice
of these local charts.

The tangent bundle to M is the (disjoint) union TM =⋃p∈M TpM of all the
tangent spaces to M. For each local chart ϕα : Uα → Xα , consider the union
TUαM =⋃p∈Uα

TpM and the map

Dϕα : TUαM→ Xα×Rd

that associates with each [c] ∈ TUαM the pair

((ϕα ◦ c)(0),(ϕα ◦ c)′(0)) ∈ Xα×Rd.

We consider on TM the (unique) topology that turns every Dϕα into a
homeomorphism. Assuming that the atlas {ϕα : Uα→ Xα} of the manifold M
is of class Cr, the coordinate change

Dϕβ ◦Dϕ−1
α : ϕα

(
Uα ∩Uβ

)×Rd → ϕβ
(
Uα ∩Uβ

)×Rd

is a map of class Cr−1 for any α and β such that Uα ∩Uβ �= ∅. So, the tangent
bundle TM is endowed with the structure of a manifold of class Cr−1 and
dimension 2d.

The derivative Df : TM→ TN of a differentiable map f : M→N is the map
whose restriction to each tangent space TpM is given by Df (p). If f is of class
Cr then Df is of class Cr−1, relative to the manifold structure on the tangent
bundles TM and TN that we introduced in the previous paragraph. For example,
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464 Measure theory, topology and analysis

the canonical projection π : TM→M, associating with each v ∈ TM the unique
point p ∈M such that v ∈ TpM, is a map of class Cr−1 (Exercise A.4.9).

A vector field on a manifold M is a map that associates with each point
p ∈M an element X(p) of the tangent space TpM, that is, a map X : M → TM
such that π ◦X = id . We say that the vector field is of class Ck, with k≤ r−1,
if this map is of class Ck.

Assuming that k≥ 1, we may apply the theorem of existence and uniqueness
of solutions of ordinary differential equations to conclude that for every point
p ∈M there exists a unique curve cp : Ip →M such that

• cp(0)= p and c′p(t)= X(c(t)) for every t ∈ Ip, and
• Ip is the largest open interval where such a curve can be defined.

If M is compact then Ip = R for any p ∈M. Moreover, the maps f t : M →M
defined by f t(p) = cp(t) are diffeomorphisms of class Ck, with f 0 = id and
f s ◦ f t = f s+t for any s, t ∈ R. The family {f t : t ∈ R} is called the flow of the
vector field X.

A.4.3 Cotangent space and differential forms

The cotangent space T∗p M to a manifold M at a point p is the dual of the tangent
space TpM, that is, the space of linear functionals ξ : TpM →R. For any local
chart ϕα : Uα→Xα with p∈Uα , the isomorphism Dϕα(p) : TpM→Rd induces
an isomorphism

Dϕ∗α(p) : T∗p M→Rd

as follows. For each i = 1, . . . ,d, let dxi = πi ◦Dϕα(p), where πi : Rd → R is
the projection to the i-th coordinate. Then dxi ∈ T∗p M and, in fact, the family
{dx1, . . . ,dxd} is a basis of T∗p M. For each ξ ∈ T∗p M, define

Dϕ∗α(p)ξ = (ξ1, . . . ,ξd) ⇔ ξ =
d∑

i=1

ξidxi.

The cotangent bundle of M is the (disjoint) union T∗M =⋃p∈M T∗p M of all
the cotangent spaces to M. For each local chart ϕα : Uα → Xα , consider the
union T∗UαM =⋃p∈Uα

T∗p M and the map

Dϕ∗α : T∗UαM→ Xα×Rd

defined by Dϕ∗αξ = (ϕα(p),Dϕ∗α(p)ξ) if ξ ∈ T∗PM. It is clear that this is a
bijection. We consider on T∗M the unique topology that turns every Dϕ∗α into
a homeomorphism. If {ϕα : Uα→ Xα} is an atlas of class Cr for the manifold
M then

{Dϕ∗α : T∗UαM→ Xα×Rd}
is an atlas of class Cr−1 for T∗M. So, the cotangent bundle T∗M is also
endowed with the structure of a manifold of class Cr−1 and dimension 2d.
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A.4 Differentiable manifolds 465

Moreover, the canonical map π∗ : T∗M → M defined by π∗ | T∗p M = p is of
class Cr−1.

A differential 1-form in M is a differentiable map θ : M → T∗M such that
π∗ ◦ θ = id . In other words, θ assigns to each point p ∈M a linear functional
(or linear form) θp : TpM→R that depends differentiably on the point.

More generally, for any 0 ≤ k ≤ d, an alternate k-linear form in TpM is a
map1

θp : (TpM)k →R, (v1, . . . ,vk) �→ θp(v1, . . . ,vk)

such that θp is linear on each variable vi and

θp(v1, . . . ,vi,vi+1, . . . ,vk)=−θp(v1, . . . ,vi+1,vi, . . . ,vk)

for any 1≤ i< k and any (v1, . . . ,vk) ∈ (TpM)k.
Let {dx1, . . . ,dxd} be the basis of the cotangent space associated with a local

chart ϕα : Uα→Xα and let {∂/∂x1, . . . ,∂/∂xd} be the dual basis of TpM, defined
by

dxi(∂/∂xj)=
{

1 if i= j
0 if i �= j.

If i1 . . . , ik ∈ {1, . . . ,d} are all distinct, there exists a unique alternate k-linear
form dxi1 ∧ ·· ·∧ dxik such that

• dxi1 ∧ ·· ·∧ dxik (∂/∂xi1 , . . . ,∂/∂xik)= 1, and
• dxi1 ∧ ·· ·∧ dxik (∂/∂xj1 , . . . ,∂/∂xjk)= 0 when {i1, . . . , ik} �= {j1, . . . , jk}.

The family {dxi1 ∧·· ·∧dxik : 1≤ i1< · · ·< ik ≤ d} is a basis of the vector space
of alternate k-linear forms in TpM.

A differential k-form in M is a map θ assigning to each point p ∈ M an
alternate k-linear form in the tangent space TpM that depends differentiably on
the point. In local coordinates, this may be written as

θp =
∑

1≤i1<···<ik≤d

ai1,...,ik(p)dxi1 ∧ ·· ·∧ dxik .

The differentiability condition means that the coefficients ai1,...,ik(p) depend
differentiably on the point p.

Assuming that k < d, the exterior derivative of θ is the differential
(k+ 1)-form dθ determined by

dθp =
∑

1≤i1<···<ik≤d

∑
j

∂ai1,...,ik

∂xj
(p)dxj∧ dxi1 ∧ ·· · ∧ dxik ,

where the second sum is over all j /∈ {i1, . . . , ik}; one can check that the
expression on the right-hand side does not depend on the choice of the local
chart. A differential k-form θ is closed if dθ = 0 (or else k= d) and it is exact if

1 An alternate 0-linear form is just a real number.
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466 Measure theory, topology and analysis

there exists some (k− 1)-form η such that dη= θ (or else k= 0). Every exact
differential form is closed.

For much more information on the subject of differential forms, see the book
of Henri Cartan [Car70].

A.4.4 Transversality

The result that we state next is an important tool for constructing new
manifolds. We say that y∈N is a regular value of a differentiable map f : M→
N if the derivative Df (x) : TxM → TyN is surjective for every x ∈ f−1(y). Note
that this holds, automatically, if y is not in the image of f , that is, if f−1(y) is
the empty set. On the other hand, in order that some point y∈ f (M) is a regular
value of f it is necessary that dimM ≥ dimN.

Theorem A.4.3. Let f : M→N be a map of class Cr and y∈ f (M) be a regular
value of f . Then f−1(y) is a submanifold (not necessarily connected) of class
Cr of M, with dimension equal to dimM− dimN.

Example A.4.4. For any d ≥ 1, the space of square matrices of dimension d
with real coefficients is isomorphic to the Euclidean space R(d

2) and, hence,
it is a manifold of dimension d2 and class C∞. The linear group GL(d,R)
of invertible matrices is an open subset of that space and, hence, it is also a
manifold of dimension d2 and class C∞. The function det : GL(d,R)→ R

that maps each matrix to its determinant is of class C∞ and y= 1 is a regular
value (see Exercise A.4.5). Using Theorem A.4.3, it follows that the special
linear group SL(d,R) formed by the matrices with determinant equal to 1 is a
submanifold of class C∞ of GL(d,R), with dimension equal to d2− 1.

It is possible to generalize Theorem A.4.3, using the notion of transversality.
We say that a submanifold S of N is transverse to f if

Df (x)
(
TxM

)+Tf (x)S= Tf (x)N for every x ∈ f−1(S). (A.4.3)

For example, if S is a submanifold of dimension zero, that is, if it consists of a
unique point, then S is transverse to f if and only if that point is a regular value
of f . Therefore, the following statement generalizes Theorem A.4.3:

Theorem A.4.5. Let f : M→N be a map of class Cr and let S be a submanifold
of class Cr of N transverse to f . Then f−1(S) is a submanifold (not necessarily
connected) of class Cr of M, with dimension equal to dimM− dimN+ dimS.

The next theorem asserts that, for every map f : M → N of class Cr with r
sufficiently high, “almost all” points y ∈ N are regular values. We say that a
set X ⊂ N is residual if it contains some countable intersection of open and
dense subsets. Every residual set is dense in the manifold, because manifolds
are Baire spaces. We say that a set Z ⊂ N has volume zero if for every local
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A.4 Differentiable manifolds 467

chart ψβ : Vβ → Yβ the image ψβ(Z ∩Vβ) is a subset of the Euclidean space
with volume zero, that is, it may be covered by balls in such a way that the sum
of the volumes of those balls is arbitrarily small.

Theorem A.4.6 (Sard). Assume that f : M → N is a map of class Cr with
r > max{0,dimM − dimN}. Then the set of regular points of f is a residual
subset of N and its complement has volume zero.

A.4.5 Riemannian manifolds

A Riemannian metric on a manifold M is a map that associates with each point
p ∈M an inner product in the tangent space TpM, that is, a symmetric bilinear
map

·p : TpM×TpM→R

such that v ·p v> 0 for every non-zero vector v ∈ TpM. As part of the definition,
this inner product is required to vary in a differentiable way with the point p, in
the following sense. Consider any local chart ϕα : Uα→Xα of M. As explained
previously, for every p ∈ Uα we may identify TpM with Rd, through the map
Dϕα(p). Thus, we may view ·p as an inner product in the Euclidean space. Let
e1, . . . ,ed be a basis of Rd. Then the functions gα,i,j(p)= ei ·p ej are required to
be differentiable, for every pair (i, j) and any choice of the local chart ϕα and
the basis e1, . . . ,ed.

We call a Riemannian manifold any manifold endowed with a Riemannian
metric. Every submanifold S of a Riemannian manifold M inherits the structure
of a Riemannian manifold, given by the restriction of the inner product ·p of
M to the tangent subspace TpS of each point p ∈ S. Every compact manifold
admits (infinitely many) Riemannian metrics. That follows from the theorem
of Whitney (see Section 1.3 of Hirsch [Hir94]), according to which every
compact manifold may be realized as a submanifold of some Euclidean space.
Actually, this remains true in the much larger class of paracompact manifolds
(which we do not define here): every paracompact manifold of dimension
d is diffeomorphic to some submanifold of R2d. In particular, paracompact
manifolds are always metrizable.

Starting from the Riemannian metric, we may define the length of a
differentiable curve γ : [a,b]→M, by

length(γ )=
∫ b

a
‖γ ′(t)‖γ (t) dt, where ‖v‖p = (v ·p v)1/2.

This also allows us to define on the manifold M the following distance
associated with the Riemannian metric: the distance d(p,q) between two points
p,q∈M is the infimum of the lengths of all the differentiable curves connecting
the two points. We say that a differentiable curve γ : [a,b]→M is minimizing
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468 Measure theory, topology and analysis

if it realizes the distance between its endpoints, that is, if

length(γ )= d(γ (a),γ (b)).

Any two points p,q ∈ M are connected by some minimizing curve; in other
words, the infimum in the definition of d(p,q) is always realized.

A differentiable curve γ : I → M defined on an open interval I is called
a geodesic if it is locally minimizing, in the following sense: for every c ∈ I
there exists δ > 0 such that the restriction of γ to the interval [c− δ,c+ δ] is
minimizing. Every minimizing curve is a geodesic, but the converse is not true:
for example, the great circles are geodesics on the sphere S2, but closed curves
cannot be minimizing. An important fact is that if γ is a geodesic then the norm
‖γ ′(t)‖γ (t) is constant on the domain I. The theory of ordinary differentiable
equations may be used to show that for every p ∈M and every v ∈ TpM there
exists a unique geodesic γp,v : Ip,v →M such that γp,v(0)= p, γ ′p,v(0)= v and
Ip,v is a maximal interval such that γp,v is locally minimizing.

If the manifold M is compact then Ip,v = R for every p ∈M and every v ∈
TpM. Then we define the exponential map at each point p ∈M:

expp : TpM→M, v �→ γp,v(1).

This is a differentiable map and its derivative at v = 0 is the identity
transformation on the tangent space TpM. We also define the geodesic flow
on the tangent bundle:

f t : TM→ TM, (p,v) �→ (γp,v(t),γ
′
p,v(t)).

Most of the time, one considers the restriction of the geodesic flow to the unit
tangent bundle T1M = {(p,v) ∈ TM : ‖v‖p = 1}. This is well defined since,
as we mentioned before, the norm of the velocity vector of any geodesic is
constant.

A.4.6 Exercises

A.4.1. Check that every set X with the cardinality of R may be endowed with the
structure of a differentiable manifold of class C∞ and dimension d, for any d≥ 1.

A.4.2. Consider the differentiable manifolds M = (R,A) and N = (R,B), where A is
the atlas consisting of the map φ(x)= x and B is the atlas consisting of the map
ψ(x)= x3. Is the map f : M→N defined by f (x)= x a diffeomorphism between
these manifolds?

A.4.3. A topological space is path connected if any two points are connected by some
continuous curve. Show that every (connected) manifold is path connected.

A.4.4. For each d≥ 2, the projective space of dimension d is the set Pd of all subspaces
of Rd+1 with dimension 1. Equivalently, Pd is the quotient space of Rd+1 \ {0}
for the equivalence relation defined by:

(x0, . . . ,xd)∼ (y0, . . . ,yd)⇔ there exists c �= 0 such that xi = cyi for every i.
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A.5 Lp(μ) spaces 469

Show that the family of maps ϕi : Ui →Rd, i= 0, . . . ,d defined by

Ui = {[x0 : · · · : xd] ∈ Pd : xi �= 0}
(where [x0 : · · · : xd] denotes the equivalence class of (x0, . . . ,xd)) and

ϕi([x0 : · · · : xd])=
(

x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xd

xi

)
,

constitutes an atlas of class C∞ and dimension d for Pd.
A.4.5. Check the claims in Example A.4.4.
A.4.6. Let M and N be two compact (connected) manifolds with the same dimension.

A map f : M → N of class C1 is a local diffeomorphism if the derivative Df (x) :
TxM → Tf (x)N is an isomorphism for every x ∈M. Show that in that case there
exists an integer k≥ 1 such that every y ∈M has exactly k pre-images:

#f−1(y)= k for every y ∈ N.

[Observation: The number k is called the degree of f and is denoted degree(f ).]
A.4.7. Consider on R+ = {x ∈ R : x > 0} the Riemannian metric defined by u ·x v =

uv/x2. Calculate the distance d(a,b) between any two points a,b ∈R+.
A.4.8. Let M and N be submanifolds of Rm+n with dimM = m and dimN = n. Show

that there exists a set Z ⊂ Rm+n with volume zero such that, for every v in the
complement of Z, the translate M+ v is transverse to N:

Tx(M+ v)+TxN =Rd for every x ∈ (M+ v)∩N.

A.4.9. Show that if M is a manifold of class Cr then the canonical projection π : TM→
M is a map of class Cr−1.

A.5 Lp(µ) spaces

In this appendix we review certain Banach spaces formed by functions with
special integrability properties. Throughout, (X,B,μ) is a measure space.
Recall that a Banach space is a vector space endowed with a norm relative
to which the space is complete. We also state some properties of the norms in
these spaces.

A.5.1 Lp(µ) spaces with 1 ≤ p < ∞
Given any p ∈ [1,∞), we say that a function f : X → C is p-integrable with
respect to μ if the function |f |p is integrable with respect to μ. For p= 1 this
is the same as saying that the function f is integrable (Definition A.2.4 and
Proposition A.2.7).

Definition A.5.1. We denote by Lp(μ) the set of all complex functions
p-integrable with respect to μ, modulo the equivalence relation that identifies
any two functions that are equal at μ-almost every point.
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470 Measure theory, topology and analysis

Note that if the measure μ is finite, which is the case in most of our
examples, then all bounded measurable functions are in Lp(μ):∫

|f |p dμ≤ (sup |f |)p m(X) <∞.

In particular, if X is a compact topological space then every continuous
function is in Lp(μ). In other words, the space C0(X) of all continuous
functions is contained in Lp(μ) for every p≥ 1.

For every function f ∈ Lp(μ), define the Lp-norm of f by:

‖f‖p =
(∫

|f |p dμ

) 1
p

.

The next theorem asserts that ‖ · ‖p turns Lp(μ) into a Banach space:

Theorem A.5.2. The set Lp(μ) is a complex vector space. Moreover, ‖ · ‖p is
a norm in Lp(μ) and this norm is complete.

The most interesting part of the proof of this theorem is to establish the
triangle inequality, which in this context is known as the Minkowski inequality:

Theorem A.5.3 (Minkowski inequality). Let f ,g ∈ Lp(μ). Then:(∫
|f + g|p dμ

) 1
p

≤
(∫

|f |p dμ

) 1
p

+
(∫

|g|p dμ

) 1
p

.

In Exercises A.5.2 and A.5.5 we invite the reader to prove the Minkowski
inequality and to complete the proof of Theorem A.5.2.

A.5.2 Inner product in L2(µ)

The case p = 2 deserves special attention. The reason is that the norm ‖ · ‖2

introduced in the previous section arises from an (Hermitian) inner product.
Indeed, consider:

f · g=
∫

f ḡdμ. (A.5.1)

It follows from the properties of the Lebesgue integral that this expression does
define an inner product on L2(μ). Moreover, this product gives rise to the norm
‖ · ‖2 through:

‖f‖2 = (f · f )1/2.

In particular, we have the Cauchy–Schwarz inequality:

Theorem A.5.4 (Cauchy–Schwarz Inequality). For every f ,g∈ L2(μ) we have
that f ḡ ∈ L1(μ) and∣∣∣∣∫ f ḡdμ

∣∣∣∣≤ ∫ |f ḡ|dμ≤
(∫

|f |2 dμ

)1/2(∫
|g|2 dμ

)1/2

.
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A.5 Lp(μ) spaces 471

This inequality has the following interesting consequence. Assume that the
measure μ is finite and consider any f ∈ L2(μ). Then, taking g≡ 1,∫

|f |dμ=
∫
|f ḡ|dμ≤

(∫
|f |2 dμ

)1/2(∫
1dμ

)1/2

<∞. (A.5.2)

This proves that every function in L2(μ) is also in L1(μ). In fact, when the
measure μ is finite one has Lp(μ)⊂ Lq(μ) whenever p≥ q (Exercise A.5.3).

The next result is a generalization of the Cauchy–Schwarz inequality for all
values of p> 1:

Theorem A.5.5 (Hölder inequality). Given 1< p<∞, consider q> 1 defined
by the relation 1

p + 1
q = 1. Then, for every f ∈ Lp(μ) and every g ∈ Lq(μ), we

have that f ḡ ∈ L1(μ) and∫
|f ḡ|dμ≤

(∫
|f |p dμ

) 1
p
(∫

|g|q dμ

) 1
q

.

A.5.3 Space of essentially bounded functions

Next, we extend the definition of Lp(μ) to the case p =∞. For that we need
the following notion. We say that a function f : X → C is essentially bounded
with respect to μ if there exists some constant K > 0 such that |f (x)| ≤ K at
μ-almost every point. Then the infimum of all such constants K is called the
essential supremum of f and is denoted by supessμ(f ).

Definition A.5.6. We denote by L∞(μ) the set of all complex functions
essentially bounded with respect to μ, identifying any two functions that
coincide at μ-almost every point.

We endow L∞(μ) with the following norm:

‖f‖∞ = supessμ(f ).

The conclusion of Proposition A.5.2 remains valid for p=∞ (Exercise A.5.5):
the space L∞(μ) is a Banach space for the norm ‖ · ‖∞. Clearly, if μ is a finite
measure then L∞(μ)⊂ Lp(μ) for any p≥ 1.

The dual of a complex Banach space E is the space E∗ of all continuous
linear functionals φ : E→C, endowed with the norm

‖φ‖ = sup
{ |φ(v)|
‖v‖ : v ∈ E \ {0}}. (A.5.3)

The Hölder inequality (Theorem A.5.5) leads to the following explicit
characterization of the dual space of Lp(μ) for every p<∞:

Theorem A.5.7. For each p ∈ [1,∞) consider q ∈ (1,∞] defined by the
relation 1

p + 1
q = 1. The map Lq(μ)→ Lp(μ)∗ defined by g �→ [

f �→ ∫
fgdμ

]
is

an isomorphism and an isometry between Lq(μ) and the dual space of Lp(μ).
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This statement is false for p=∞: in general, the dual space of L∞(μ) is not
isomorphic to L1(μ).

A.5.4 Convexity

We say that a function φ : I → R defined on an interval I of the real line is
convex if

φ(tx+ (1− t)y)≤ tφ(x)+ (1− t)φ(y)

for every x,y ∈ I and t ∈ [0,1]. Moreover, we say that φ is concave if −φ
is convex. For functions that are twice differentiable we have the following
practical criterion (Exercise A.5.1): φ is convex if φ′′(x) ≥ 0 for every x ∈ I
and it is concave if φ′′(x)≤ 0 for every x ∈ I.

Theorem A.5.8 (Jensen inequality). Let φ : I → R be a convex function. If μ
is a probability measure on X and f ∈ L1(μ) is such that

∫
f dμ ∈ I, then:

φ

(∫
f dμ

)
≤
∫
φ ◦ f dμ.

Example A.5.9. For any probability measure μ and any integrable positive
function f , we have

log
∫

f dμ≥
∫

log f dμ.

Indeed, this corresponds to the Jensen inequality for the function φ : (0,∞)→
R given by φ(x)=− logx. Note that φ is convex: φ′′(x)= 1/x2> 0 for every x.

Example A.5.10. Let φ : R→ R be a convex function, (λi)i be a sequence
of non-negative real numbers satisfying

∑∞
i=1λi ≤ 1 and (ai)i be a bounded

sequence of real numbers. Then

φ

( ∞∑
i=1

λiai

)
≤

∞∑
i=1

λiφ(ai). (A.5.4)

This may be seen as follows. Consider X = [0,1] endowed with the Lebesgue
measure μ. Let f : [0,1]→R be a function of the form f =∑∞

i=1 aiXEi , where
the Ei are pairwise disjoint measurable sets such that μ(Ei) = λi. The Jensen
inequality applied to this function f gives precisely the relation (A.5.4).

A.5.5 Exercises

A.5.1. Consider any function ϕ : (a,b)→ R. Show that if ϕ is twice differentiable and
φ′′ ≥ 0 then ϕ is convex. Show that if ϕ is convex then it is continuous.

A.5.2. Consider p,q> 1 such that 1/p+ 1/q= 1. Prove:
(a) The Young inequality: ab≤ ap/p+ aq/q for every a,b> 0.
(b) The Hölder inequality (Theorem A.5.5).
(c) The Minkowski inequality (Theorem A.5.3).
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A.5.3. Show that if μ is a finite measure then we have Lq(μ)⊂ Lp(μ) for every 1≤ p<
q≤∞.

A.5.4. Let μ be a finite measure and f ∈ L∞(μ) be different from zero. Show that

‖f‖∞ = lim
n

∫ |f |n+1 dμ∫ |f |n dμ
.

A.5.5. Show that a normed vector space (V ,‖ · ‖) is complete if and only if every
series

∑
k vk that is absolutely summable (meaning that

∑
k ‖vk‖ converges) is

convergent. Use this fact to show that if μ is a probability measure then ‖ · ‖p is
a complete norm on Lp(μ) for every 1≤ p≤∞.

A.5.6. Show that if μ is a finite measure and 1/p+ 1/q = 1 with 1 ≤ p <∞ then the
map � : Lq(μ)→ Lp(μ)∗, �(g)f = ∫ fgdμ is an isomorphism and an isometry.

A.5.7. Show that if X is a metric space then, given any Borel probability measure μ,
the set C0(X) of all continuous functions is dense in Lp(μ) for every 1 ≤ p ≤
∞. Indeed, the same holds for the subset of all uniformly continuous bounded
functions.

A.5.8. Let f ,g : X→R be two positive measurable functions such that f (x)g(x)≥ 1 for
every x. Show that

∫
f dμ

∫
gdμ≥ 1 for every probability measure μ.

A.6 Hilbert spaces

Let H be a vector space, real or complex. An (Hermitian) inner product on H
is a map (u,v) �→ u · v from H ×H to the scalar field (R or C, respectively)
satisfying: for any u,v,w ∈H and any scalar λ,

1. (u+w) · v = u · v+w · v and u · (v+w)= u · v+ u ·w;
2. (λu) · v = λ(u · v) and u · (λv)= λ̄(u · v);
3. u · v = v · u;
4. u · u≥ 0 and u · u= 0 if and only if u= 0.

Then we can define the norm of a vector u ∈H to be ‖u‖ = (u · u)1/2.
A Hilbert space is a vector space endowed with an inner product whose

norm ‖ · ‖ is complete: relative to ‖ · ‖ every Cauchy sequence is convergent.
Thus, in particular, (H,‖·‖) is a Banach space. A standard example of a Hilbert
space is the space L2(μ) of square-integrable functions that we introduced in
Appendix A.5.2.

Given v ∈H and any family (vα)α of vectors of H, we say that v=∑α vα if
for every ε > 0 there exists a finite set I such that∥∥∥∥v−∑

β∈J

vβ

∥∥∥∥≤ ε for every finite set J ⊃ I.

Given any family (Hα)α of subspaces of H, the set of all vectors of the form
v =∑α vα with vα ∈ Hα for every α is a subspace of H (see Exercise A.6.2).
It is called the sum of the family (Hα)α and it is denoted by

∑
αHα .
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A.6.1 Orthogonality

Let H be a Hilbert space. Two vectors u,v ∈ H are said to be orthogonal if
u · v = 0. We call a subset of H orthonormal if its elements have norm 1 and
are pairwise orthogonal.

A Hilbert basis of H is an orthonormal subset B= {vβ} such that the set of
all (finite) linear combinations of elements of B is dense in H. For example,
the Fourier basis

{x �→ e2π ikx : k ∈ Z} (A.6.1)

is a Hilbert basis of the space L2(m) of all measurable functions on the unit
circle whose square is integrable with respect to the Lebesgue measure.

A Hilbert basis B = {vβ} is usually not a basis of the vector space in the
usual sense (Hammel basis): it is usually not true that every vector of H is a
finite linear combination of the elements of B. However, every v ∈ H may be
written as an infinite linear combination of the elements of the Hilbert basis:

v =
∑
β

(v · vβ)vβ and, moreover, ‖v‖2 =
∑
β

|v · vβ |2.

In particular, v · vβ = 0 except, possibly, for a countable subset of values of β.
Every orthonormal subset of H may be extended to a Hilbert basis. In

particular, Hilbert bases always exist. Moreover, any two Hilbert bases have
the same cardinal, which is called the Hilbert dimension of H. The Hilbert
dimension depends monotonically on the space: if H1 is a subspace of H2 then
dimH1 ≤ dimH2. We say that two Hilbert spaces are isometrically isomorphic
if there exists some isomorphism between the two that also preserves the inner
product. A necessary and sufficient condition is that the two spaces have the
same Hilbert dimension.

A Hilbert space is said to be separable if it admits some countable subset
that is dense for the topology defined by the norm. This happens if and only if
the Hilbert dimension is either finite or countable. In particular, all separable
Hilbert spaces with infinite Hilbert dimension are isometrically isomorphic.
For this reason, one often finds in the literature (especially in the area of
mathematical physics) mentions of the Hilbert space, as if there were only one.

Given any family (Hα)α of Hilbert spaces, we denote by
⊕

αHα their
orthogonal direct sum, that is, the vector space of all (vα)α ∈∏αHα such that∑
α ‖vα‖2

α <∞ (this implies that vα = 0 except, possibly, for a countable set
of values of α), endowed with the inner product

(vα)α · (wα)α =
∑
α

vαw̄α .

The orthogonal complement of a subset S of a Hilbert space H is the set S⊥

of all the vectors of H that are orthogonal to every vector of S. It is easy to
see that S⊥ is a closed subspace of H (Exercise A.6.7). If S itself is a closed
subspace of H then S= (S⊥)⊥ and every vector v ∈H may be decomposed as a

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.014
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.014
https://www.cambridge.org/core


A.6 Hilbert spaces 475

sum v= s+ s⊥ of some s∈ S and some s⊥ ∈ S⊥. Moreover, this decomposition
is unique and the vectors s and s⊥ are the elements of S and S⊥, respectively,
that are closest to v.

A.6.2 Duality

A linear functional on a Hilbert space H (or, more generally, on a Banach
space) is a linear map from H to the scalar field (R or C). It is said to be
bounded if

‖φ‖ = sup
{ |φ(v)|
‖v‖ : v �= 0

}
<∞.

This is equivalent to saying that the linear functional is continuous, relative to
the topology defined by the norm of H (see Exercise A.6.3). The dual space
of a Hilbert space H is the vector space H∗ formed by all the bounded linear
functionals. The function φ �→ ‖φ‖ is a complete norm on H∗ and, hence, it
endows the dual with the structure of a Banach space. The map

h : H→H∗, w �→ [
v �→ v ·w] (A.6.2)

is a bijection between the two spaces and it preserves the norms. In particular,
h is a homeomorphism. Moreover, it satisfies h(w1+w2)= h(w1)+h(w2) and
h(λw)= λ̄h(w).

The weak topology in H is the smallest topology relative to which all the
linear functionals v �→ v ·w are continuous. In terms of sequences, it can be
characterized as follows:

(wn)n →w weakly ⇔ (v ·wn)n → v ·w for every v ∈H.

The weak∗ topology in the dual space H∗ is the smallest topology relative to
which φ �→ φ(v) is continuous for every v ∈H.

It is known from the theory of Banach spaces (theorem of Banach–Alaoglu)
that every bounded closed subset of the dual space is compact for the weak∗

topology. In the special case of Hilbert spaces, the weak topology in the space
H is homeomorphic to the weak∗ topology in the dual space H∗: the map h in
(A.6.2) is also a homeomorphism for these topologies. Since h preserves the
class of bounded sets, it follows that the weak topology in the space H itself
enjoys the property in the theorem of Banach–Alaoglu:

Theorem A.6.1 (Banach–Alaoglu). Every bounded closed subset of a Hilbert
space H is compact for the weak topology in H.

A linear operator L : H1 →H2 between two Hilbert spaces is continuous (or
bounded) if

‖L‖ = sup

{ |L(v)|
‖v‖ : v �= 0

}
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476 Measure theory, topology and analysis

is finite. The adjoint of a continuous linear operator is the linear operator L∗ :
H2 →H1 defined by

v ·Lw= L∗v ·w for every v,w ∈H.

The adjoint operator is continuous, with ‖L∗‖ = ‖L‖ and ‖L∗L‖ = ‖LL∗‖ =
‖L‖2. Moreover, (L∗)∗ = L and (L1 + L2)

∗ = L∗1 + L∗2 and (λL)∗ = λ̄L∗ (in
Exercise A.6.5 we invite the reader to prove these facts).

A continuous linear operator L : H → H is self-adjoint if L = L∗. More
generally, L is normal if it satisfies L∗L= LL∗. We are especially interested in
the case when L is unitary, that is, L∗L = id = LL∗. We call linear isometry
to every linear operator L : H → H such that L∗L = id . Hence, the unitary
operators are the linear isometries that are also normal operators.

A.6.3 Exercises

A.6.1. Let H be a Hilbert space. Prove:
(a) That every ball (either open or closed) is a convex subset of H.
(b) The parallelogram identity: ‖v+w‖2 +‖v−w‖2 = ‖v‖2 +‖w‖2 for any

v,w ∈H.
(c) The polarization identity: 4(v ·w) = ‖v +w‖2 − ‖v −w‖2 (real case) or

4(v ·w) = (‖v +w‖2 − ‖v −w‖2)+ i(‖v + iw‖2 − ‖v − iw‖2) (complex
case).

A.6.2. Show that, given any family (Hα)α of subspaces of a Hilbert space H, the set
of all the vectors of the form v =∑α vα with vα ∈ Hα for every α is a vector
subspace of H.

A.6.3. Show that a linear operator L : E1 → E2 between two Banach spaces is
continuous if and only if there exists C> 0 such that ‖L(v)‖2 ≤C‖v‖1 for every
v ∈ E1, where ‖ · ‖i denotes the norm in the space Ei (we say that L is a bounded
operator).

A.6.4. Consider the Hilbert space L2(μ). Let V be the subspace formed by the constant
functions. What is the orthogonal complement of V? Determine the (orthogonal)
projection to V of an arbitrary function g ∈ L2(μ).

A.6.5. Prove that if L : H → H is a bounded operator on a Hilbert space H then the
adjoint operator L∗ is also bounded and ‖L∗‖ = ‖L‖ and ‖L∗L‖ = ‖LL∗‖ = ‖L‖2

and (L∗)∗ = L.
A.6.6. Show that if K is a closed convex subset of a Hilbert space then for every z ∈H

there exists a unique v ∈ K such that ‖z− v‖ = d(z,K).
A.6.7. Let S be a subspace of a Hilbert space H. Prove that:

(a) The orthogonal complement S⊥ of S is a closed subspace of H and it
coincides with the orthogonal complement of the closure S̄. Moreover,
(S⊥)⊥ = S̄.

(b) Every v ∈ H may be written, in a unique fashion, as a sum v = s+ s⊥ of
some s ∈ S̄ and some s⊥ ∈ S⊥. The two vectors s and s⊥ are the elements of
S and S⊥ that are closest to v.
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A.6.8. Let E be a closed subspace of a Hilbert space H. Show that E is also closed in the
weak topology. Moreover, U(E) is a closed subspace of H, for every isometry
U : H→H.

A.6.9. Show that a linear operator L : H→H on a Hilbert space H is an isometry if and
only if ‖L(v)‖ = ‖v‖ for every v ∈ H. Moreover, L is a unitary operator if and
only if L is an isometry and is invertible.

A.7 Spectral theorems

Let H be a complex Hilbert space. The spectrum of a continuous linear operator
L : H → H is the set spec(L) of all numbers λ ∈ C such that L − λ id is
not an isomorphism. The spectrum is closed and it is contained in the closed
disk of radius ‖L‖ around 0 ∈ C. In particular, spec(L) is a compact subset
of the complex plane. When H has finite dimension, spec(L) consists of the
eigenvalues of L, that is, the complex numbers λ such that L − λ id is not
injective. In general, the spectrum is strictly larger than the set of eigenvalues
(see Exercise A.7.2).

A.7.1 Spectral measures

By definition, a projection in H is a continuous linear operator P : H → H
that is idempotent (P2 = P) and self-adjoint (P∗ = P). Then the image and the
kernel of P are closed subspaces of H and they are orthogonal complements to
each other. In fact, the image coincides with the set of all fixed points of P.

Consider any map E associating with each measurable subset of the plane
C a projection in H. Such a map is called a spectral measure if it satisfies
E(C)= id and

E

(⋃
n∈N

Bn

)
=
∑
n∈N

E(Bn)

whenever the Bn are pairwise disjoint (σ -additivity). Then, given any v,w ∈H,
the function

Ev ·w : B �→ E(B)v ·w (A.7.1)

is a complex measure in C. Clearly, it depends on the pair (v,w) in a bilinear
fashion.

We call the support of a spectral measure E the set suppE of all the points
z ∈C such that E(V) �= 0 for every neighborhood V of z. Note that the support
is always a closed set. Moreover, the support of the complex measure Ev ·w is
contained in suppE for every v,w ∈H.

Example A.7.1. Consider {λ1, . . . ,λs} ⊂C and let V1, . . . ,Vs be a finite family
of subspaces of Cd, pairwise orthogonal and such that Cd = V1 ⊕ ·· · ⊕ Vs.
For each set J ⊂ {1, . . . ,s}, denote by PJ the projection in Cd whose image is

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.014
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.014
https://www.cambridge.org/core


478 Measure theory, topology and analysis⊕
j∈J Vj. For each measurable set B⊂C define

E(B) : Cd →Cd, E(B)= PJ(B),

where J(B) is the set of all j ∈ {1, . . . ,s} such that λj ∈ B. The function E is a
spectral measure.

Example A.7.2. Let μ be a probability measure in C and H = L2(μ) be the
space of all complex functions whose square is integrable with respect to μ.
For each measurable set B⊂C, let

E(B) : L2(μ)→ L2(μ), ϕ �→XBϕ.

Each E(B) is a projection and the function E is a spectral measure.

The next lemma collects a few simple properties of the spectral measures:

Lemma A.7.3. Let E be a spectral measure and A,B be measurable subsets of
C. Then:

1. E(∅)= 0 and E(suppE)= id ;
2. if A⊂ B then E(A)≤ E(B) and E(B \A)= E(B)−E(A);
3. E(A∪B)+E(A∩B)= E(A)+E(B);
4. E(A)E(B)= E(A∩B)= E(B)E(A).

In what follows we always assume that E is a spectral measure with compact
support. Then the support of every complex measure Ev ·w is also compact.
Consequently, the integral

∫
zd(E(z)v ·w) is well defined and it is a bilinear

function of (v,w). Hence, there exists a bounded linear operator L : H → H
such that

Lv ·w=
∫

zd(E(z)v ·w) for every v,w ∈H. (A.7.2)

We write, in shorter form:

L=
∫

zdE(z). (A.7.3)

More generally, given any bounded measurable function ψ in the support of
the spectral measure E, there exists a bounded linear operator ψ(L) : H → H
that is characterized by

ψ(L)v ·w=
∫
ψ(z)d(E(z)v ·w) for every v,w ∈H. (A.7.4)

We write

ψ(L)=
∫
ψ(z)dE(z). (A.7.5)

Lemma A.7.4. Let E be a spectral measure with compact support. Given
bounded measurable functions ϕ,ψ and numbers α,β ∈C,

(1)
∫
(αϕ+βψ)(z)dE(z)= α ∫ ϕ dE(z)+β ∫ ψ dE(z);

(2)
∫
ϕ̄(z)dE(z)= (∫ ϕ(z)dE(z)

)∗
;
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A.7 Spectral theorems 479

(3)
∫
(ϕψ)(z)dE(z)= (∫ ϕ(z)dE(z)

) ◦ (∫ ψ(z)dE(z)
)
.

In particular, by part (3) of this lemma,

Lj =
(∫

zdE(z)

)j

=
∫

zj dE(z) for every j ∈N. (A.7.6)

Analogously, using also part (2) of the lemma,

LL∗ =
(∫

zdE(z)

)(∫
z̄ dE(z)

)
=
∫
|z|2 dE(z)

=
(∫

z̄ dE(z)

)(∫
zdE(z)

)
= L∗L.

(A.7.7)

Consequently, the linear operator defined by (A.7.3) is normal. Conversely, the
spectral theorem asserts that every normal operator may be written in this way:

Theorem A.7.5 (Spectral). For every normal operator L : H→H there exists
a spectral measure E such that L = ∫ zdE(z). This measure is unique and its
support coincides with the spectrum of L. In particular, L is unitary if and only
if suppE is contained in the unit circle {z ∈C : |z| = 1}.
Example A.7.6 (Spectral theorem in finite dimension). Let H be a complex
Hilbert space with finite dimension. Then for every normal operator L : H→H
there exists a basis of H formed by eigenvectors of L. Let λ1, . . . , λs be the
eigenvalues of L. The eigenspaces Vj = ker(L−λjid) are pairwise orthogonal,
because L is normal. Moreover, by Theorem A.7.5, the direct sum

⊕s
j=1 Vj is

the whole of H. So

L=
s∑

j=1

λjπj

where πj denotes the orthogonal projection to Vj. In other words, the spectral
measure E of the operator L is given by E({λj})= πj for every j= 1, . . . ,s and
E(B)= 0 if B contains no eigenvalue of L.

Example A.7.7. Let (σα)α∈A be any family of finite measures in the unit circle
{z ∈C : |z| = 1}. Consider H =⊕α∈A L2(σα) and the linear operator

L : H→H, (ϕα)α �→ (z �→ zϕα(z))α .

Consider the spectral measure E given by

E(B) : H→H, (ϕα)α �→ (XBϕα)α

(compare with Example A.7.2). Then, L= ∫ zdE(z). Indeed, the definition of
E gives that Eϕ ·ψ =∑α ϕαψ̄α σα for every ϕ = (ϕα)α and ψ = (ψα)α in the
space H. Then,

Lϕ ·ψ =
∑
α

∫
zϕα(z)ψ̄α(z)dσα(z)=

∫
zd(E(z)ϕ ·ψ) (A.7.8)

for every ϕ,ψ .

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.014
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.014
https://www.cambridge.org/core


480 Measure theory, topology and analysis

We say that λ ∈ C is an atom of the spectral measure if E({λ}) �= 0 or,
equivalently, if there exists some non-zero vector ω ∈H such that E({λ})ω �= 0.
The proof of the next proposition is outlined in Exercise A.7.4.

Proposition A.7.8. Every eigenvalue of L is an atom of the spectral measure
E. Conversely, if λ is an atom of E then λ is an eigenvalue of the operator L
and every non-zero vector of the form v = E({λ})ω is an eigenvector.

A.7.2 Spectral representation

Theorem A.7.5 shows that normal linear operators on a Hilbert space are
essentially the same thing as spectral measures in that space. Theorems of
this type, establishing a kind of dictionary between two classes of objects that
a priori do not seem to be related, are among the most fascinating results in
mathematics. Of course, just how useful such a dictionary is to study one of
those classes (normal linear operators, say) depends on to what extent we are
capable of understanding the other one (spectral measures, in this case). In the
present situation this is handled, in a most satisfactory way, by the next result,
which exhibits a canonical form (inspired by Example A.7.2) in which every
normal linear operator may be written.

As before, we use ⊕ to denote the orthogonal direct sum of Hilbert spaces.
Given any cardinal χ , finite or infinite, and a Hilbert space V , we denote by
Vχ the orthogonal direct sum of χ copies of V .

Theorem A.7.9 (Spectral representation). Let L : H → H be a normal linear
operator. Then there exist mutually singular finite measures (σj)j with support
in the spectrum of L, there exist cardinals (χj)j and there exists a unitary
operator U : H→⊕

j L
2(σj)

χj , such that the conjugate ULU−1=T is given by:

T :
⊕

j

L2(σj)
χj →

⊕
j

L2(σj)
χj , (ϕj,l)j,l �→

(
z �→ zϕj,l(z)

)
j,l. (A.7.9)

We call (A.7.9) the spectral representation of the normal operator L. Let us
point out that the measures σj in Theorem A.7.9 are not uniquely determined.
However, the spectral representation is unique, in the following sense.

Call the multiplicity function of the operator L the function associating with
each finite measure θ in C the smallest cardinal χj such that the measures θ
and σj are not mutually singular. One can prove that this function is uniquely
determined by the operator L, that is, it does not depend on the choice of the
measures σj in the statement. Moreover, two normal operators are conjugate by
some unitary operator if and only if they have the same multiplicity function.

Example A.7.10 (Spectral representation in finite dimension). Let us go back
to the setting of Example A.7.6. For each j= 1, . . . ,s, let σj be the Dirac mass
at the eigenvalue λj and χj be the dimension of the eigenspace Vj. Note that
the space L2(σj) has dimension 1. Hence, we may choose a unitary operator
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Uj : Vj → L2(σj), for each j= 1, . . . ,s. Since L= λj id restricted to Vj, we have
that Tj =UjLU−1

j = λj id , that is,

Tj :
(
(ϕα)α

) �→ (
z �→ λjϕα(z)

)
α
= (z �→ zϕα(z)

)
α
.

In this way, we have found a unitary operator

U : Cd →
s⊕

j=1

L2(σj)
χj

such that T =ULU−1 is a spectral representation of L.

A.7.3 Exercises

A.7.1. Let T : E → E be a Banach space isomorphism, that is, a continuous linear
bijection whose inverse is also continuous. Show that T +H is a Banach space
isomorphism for every continuous linear map H : E→ E such that ‖H‖‖T−1‖<
1. Use this fact to prove that the spectrum of every continuous linear operator
L : E→E is a closed set and is contained in the closed disk of radius ‖L‖ around
the origin.

A.7.2. Show that if L : H → H is a linear operator in a Hilbert space H with finite
dimension then spec(L) consists of the eigenvalues of L, that is, the complex
numbers λ for which L − λid is not injective. Give an example, in infinite
dimension, such that the spectrum is strictly larger than the set of eigenvalues.

A.7.3. Prove Lemma A.7.3.
A.7.4. Prove Proposition A.7.8, along the following lines:

(a) Assume that Lv = λv for some v �= 0. Consider the functions

ϕn(z)=
{
(z−λ)−1 if |z−λ|> 1/n
0 otherwise.

Show that ϕn(L)(L−λid)=E({z : |z−λ|> 1/n}) for every n. Conclude that
E({λ})v = v and, consequently, λ is an atom of E.

(b) Assume that there exists w ∈ H such that v = E({λ})w is non-zero. Show
that, given any measurable set B⊂C,

E(B)v =
{

v if λ ∈ B
0 if λ /∈ B.

Conclude that Lv = λv and, consequently, λ is an eigenvalue of L.
A.7.5. Let (σj)j be the family of measures given in Theorem A.7.9. Given any

measurable set B ⊂ C, check that E(B) = 0 if and only if σj(B) = 0 for every
j. Therefore, given any measure η in C, we have that E� η if and only if σj � η

for every j.
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