
Hints or solutions for selected exercises

1.1.2. Use Exercise A.3.5 to approximate characteristic functions by continuous
functions.

1.2.5. Show that if N > 1/μ(A), then there exists j ∈ VA with 0 ≤ j ≤ N. Adapting
the proof of the previous statement, conclude that if K is a set of non-negative
integers with #K > 1/μ(A), then we may find k1,k2 ∈ K and n ∈ VA such that
n = k1 − k2. That is, the set K − K = {k1 − k2;k1,k2 ∈ K} intersects VA. To
conclude that S is syndetic assume, by contradiction, that for every n∈N there
is some number ln such that {ln, ln+1, . . . , ln+n}∩VA=∅. Consider an element
k1 /∈ VA and construct, recursively, a sequence kj+1 = lkj + kj. Prove that the set
K = {k1, . . . ,kN} is such that (K−K)∩VA = ∅.

1.2.6. Otherwise, there exists k ≥ 1 and b > 1 such that the set B = {x ∈ [0,1] :
n|f n(x)− x|> b for every n ≥ k} has positive measure. Let a ∈ B be a density
point of B. Consider E = B∩B(a,r), for r small. Get a lower estimate for the
return time to E of any point of x ∈ E and use the Kac̆ theorem to reach a
contradiction.

1.3.5. Consider the sequence log10 an, where log10 denotes the base 10 logarithm, and
observe that log10 2 is an irrational number.

1.3.12. Consider orthonormal bases {v1, . . . ,vd}, at x, and {w1, . . . ,wd}, at f (x), such
that v1 and w1 are orthogonal to Hc. Check that gradH(f (x)) · Df (x)v =
gradH(x) ·v for every v. Deduce that the matrix of Df (x) with respect to those
bases has the form

Df (x)=

⎛⎜⎜⎜⎜⎝
α 0 · · · 0
β2 γ2,2 · · · γ2,d

...
...

. . .
...

βd γd,2 · · · γd,d

⎞⎟⎟⎟⎟⎠ ,

with ‖gradH(f (x))‖|α| = ‖gradH(x)‖. Note that � = (γi,j)i,j is the matrix of
D(f | Hc) and observe that |det�| = ‖gradH(x)‖/‖gradH(f (x))‖. Using the
formula of change of variables, conclude that f | Hc preserves the measure
ds/‖gradH‖.

1.4.4. Choose a set E ⊂M with measure less than ε/n and, for each k ≥ 1, let Ek be
the set of points x∈E that return to E in exactly k iterates. Take for B the union
of the sets Ek, with k≥ n, of the n-th iterates of the sets Ek with k≥ 2n, and so
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on. For the second part, observe that if (f ,μ) is aperiodic then μ cannot have
atoms.

1.4.5. By assumption, f τ (y) ∈ Hn−τ (y) whenever y ∈ Hn with n > τ(y). Therefore,
T(y) ∈ H if y ∈ H. Consider An = {1 ≤ j ≤ n : x ∈ Hj} and Bn = {l ≥ 1 :∑l

i=0 τ(T
i(x)) ≤ n}. Show, by induction, that #An ≤ #Bn and deduce that

limsupn #Bn/n ≥ θ . Now suppose that liminfk(1/k)
∑k−1

i=0 τ(T
i(x)) > (1/θ).

Show that there exists θ0 < θ such that #Bn < θ0n, for every n sufficiently
large. This contradicts the previous conclusion.

1.5.5. Observe that the maps f , f 2, . . . , f k commute with each other and then use the
Poincaré multiple recurrence theorem.

1.5.6. By definition, the complement of �(f1, . . . , fq)
c is an open set. The Birkhoff

multiple recurrence theorem ensures that the non-wandering set is
non-empty.

2.1.6. Consider the image V∗μ of the measure μ under V . Check that V∗μ((a,b])=
F(b)− F(a) for every a < b. Consequently, V∗μ({b}) = F(b)− lima→b F(a).
Therefore, (−∞,b] is a continuity set for V∗μ if and only if b is a continuity
point for F. Using Theorem 2.1.2, it follows that if (Vk∗μ)k converges to V∗μ
in the weak∗ topology then (Vk)k converges to V in distribution. Conversely,
if (Vk)k converges to V in distribution then Vk∗μ((a,b]) = Fk(b) − Fk(a)
converges to F(b) − F(a) = V∗μ((a,b]), for any continuity points a < b
of F. Observing that such intervals (a,b] generate the Borel σ -algebra
of the real lines, conclude that (Vk∗μ)k converges to V∗μ in the weak∗

topology.
2.1.8. (Billingsley [Bil68]) Use the hypothesis to show that if (Un)n is an increasing

sequence of open subsets of M such that
⋃

n Un=M then, for every ε > 0 there
exists n such that μ(Un) ≥ 1− ε for every μ ∈ K. Next, imitate the proof of
Proposition A.3.7.

2.2.2. For the first part of the statement use induction in q. The case q = 1
corresponds to Theorem 2.1. Consider continuous transformations fi : M→M,
1 ≤ i ≤ q + 1 commuting with each other. By the induction hypothesis,
there exists a probability ν invariant under fi for 1 ≤ i ≤ q. Define μn =
(1/n)

∑n−1
j=0 (fq+1)

j
∗(ν). Note that (fi)∗μn = μn for every 1≤ i≤ q and every n.

Hence, every accumulation point of (μn)n is invariant under every fi, 1≤ i≤ q.
By compactness, there exists some accumulation point μ ∈M1(M). Check
that μ is invariant under fq+1. For the second part, denote by Mq ⊂M1(M)
the set of probability measures invariant under fi, 1 ≤ i ≤ q. Then, (Mq)q
is a non-increasing sequence of closed non-empty subsets of M1(M). By
compactness, the intersection

⋂
q Mq is non-empty.

2.2.6. Define μ in each iterate f j(W), j ∈ Z by letting μ(A) = m(f−j(A)) for each
measurable set A⊂ f j(W).

2.3.2. Clearly, convergence in norm implies weak convergence. To prove the
converse, assume that (xk)k converges to zero in the weak topology but not
in the norm topology. The first condition implies that, for every fixed N, the
sum

∑N
n=0 |xk

n| converges to zero when k →∞. The second condition means
that, up to restricting to a subsequence, there exists δ > 0 such that ‖xk‖ > δ
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for every k. Then, there exists some increasing sequence (lk)k such that

lk−1∑
n=0

|xk
n| ≤

1

k
but

lk∑
n=0

|xk
n| ≥ ‖xk‖− 1

k
≥ δ− 1

k
for every k.

Take an = xk
n/|xk

n| for each lk−1 < n≤ lk. Then, for every k,∣∣∣∣ ∞∑
n=0

anxk
n

∣∣∣∣≥ ∑
lk−1<n≤lk

|xk
n|−

∑
n≤lk−1

|xk
n|−

∑
n>lk

|xk
n| ≥ ‖xk‖− 4

k
≥ δ− 4

k
.

This contradicts the hypotheses. Now take xk
n= 1 if k= n and xk

n= 0 otherwise.
Given any (an)n ∈ c0, we have that

∑
n anxk

n = ak converges to zero when k→
∞. Therefore, (xk)k converges to zero in the weak∗ topology. But ‖xk‖ = 1 for
every k, hence (xk)k does not converge to zero in the norm topology.

2.3.6. Take W =U(H)⊥ and V = (⊕∞
n=0 Un(W))⊥.

2.3.7. Suppose that there exist tangent functionals T1 and T2 with T1(v) > T2(v) for
some v ∈ E. Show that φ(u+ tv)+ φ(u− tv)− 2φ(u) ≥ t(T1(u)− T2(u)) for
every t and deduce that φ is not differentiable in the direction of v.

2.4.1. Consider the set P of all probability measures on X ×M of the form νZ ×
η. Note that P is compact in the weak∗ topology and is invariant under the
operator F∗.

2.4.2. The condition p̂ ◦ g = f̂ ◦ p̂ entails f̂ n ◦ p̂ = p̂ ◦ gn for every n ∈ Z. Using π ◦
p̂ = p, it follows that π ◦ f̂ n ◦ p̂ = p ◦ gn for every n ≤ 0. Therefore, p̂(y) =(
p(gn(y))

)
n≤0

. This proves the existence and uniqueness of p̂. Now suppose
that p is surjective. The hypotheses of compactness and continuity ensure that(

g−n(p−1({xn}))
)

n≤0

is a nested sequence of compact sets, for every (xn)n≤0 ∈ M̂. Take y in the
intersection and note that p̂(y)= (xn)n≤0.

2.5.2. Fix q and l. Assume that for every n≥ 1 there exists a partition {Sn
1, . . . ,Sn

l } of
the set {1, . . . ,n} such that no subset of Sn

j contains an arithmetic progression of
length q. Consider the function φn :N→{1, . . . , l} given by φn(i)= j if i∈ Sj and
φn(i)= l if i> n. Take (nk)k →∞ such that the subsequence (φnk )k converges
at every point to some function φ : N→ {1, . . . , l}. Consider Sj = φ−1(j) for
j = 1, . . . , l. Some Sj contains some arithmetic progression of length q. Then
Snk

j contains that arithmetic progression for every k sufficiently large.

2.5.4. Consider � = {1, . . . , l}Nk
with the distance d(ω,ω′) = 2−N where N ≥ 0 is

largest such that ω(i1, . . . , ik)= ω′(i1, . . . , ik) for every i1, . . . , ik < N. Note that
� is a compact metric space. Given q ≥ 1, let Fq = {(a1, . . . ,ak) : 1 ≤ ai ≤
q and 1 ≤ i ≤ k}. Let e1, . . . ,em be an enumeration of the elements of Fq. For
each j= 1, . . . ,m, consider the shift map σj :�→� given by (σjω)(n)=ω(n+
ej) for n∈Nk. Consider the point ω ∈� defined by ω(n)= i⇔ n∈ Si. Let Z be
the closure of {σ l1

1 · · ·σ lm
m (ω) : l1, . . . , lm ∈N}. Note that Z is invariant under the

shift maps σj. By the Birkhoff multiple recurrence theorem, there exist ζ ∈ Z
and s≥ 1 such that d(σ s

j (ζ ),ζ ) < 1 for every j= 1, . . . ,m. Let e= (1, . . . ,1) ∈
Nk. Then ζ(e) = ζ(e+ se1) = ·· · = ζ(e+ sem). Consider σ l1

1 · · ·σ lm
m (ω) close

enough to ζ that ω(b)= ω(b+ se1)= ·· · = ω(b+ sem), where b= e+ l1e1+
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· · · + lmem. It follows that if i = ω(b), then b+ sFq ⊂ Si. Given that there are
only finitely many sets Si, some of them must contain infinitely many sets of
the type b+ sFq, with q arbitrarily large.

3.1.1. Mimic the proof of Theorem 3.1.6.
3.1.2. Suppose that for every k∈N there exists nk ∈N such that μ(A∩ f−j(A))= 0 for

every nk + 1 ≤ j ≤ nk + k. It is no restriction to assume that (nk)k →∞. Take
ϕ = XA. By Exercise 3.1.1, (1/k)

∑nk+k
j=nk+1 ϕ · ϕ ◦ f j → ϕ ·P(ϕ). The left-hand

side is identically zero and the right-hand side is equal to ‖P(ϕ)‖2. Hence, the
time average P(ϕ)= 0 and so μ(A)= ∫ P(ϕ)dμ= 0.

3.2.3. (a) Consider ε = 1 and let C = sup{|ϕ(l)| : |l| ≤ L(1)}. Given n ∈ Z, fix s ∈ Z

such that sL(1) < n ≤ (s+ 1)L(1). By hypothesis, there exists τ ∈ {sL(1)+
1, . . . ,(s+ 1)L(1)} such that |ϕ(k+ τ)− ϕ(k)| < 1 for every k ∈ Z. Take k =
n− τ and observe that |k| ≤ L(1). It follows that |ϕ(n)| < 1+ C. (b) Take
ρε> 2L(ε)sup |ϕ|. For every n∈Z there exists some ε-quasi-period τ = nρ+r
with 1≤ r ≤ L(ε). Then,∣∣∣∣ (n+1)ρ∑

j=nρ+1

ϕ(j)−
ρ−r∑

j=1−r

ϕ(j)

∣∣∣∣< ρε and

∣∣∣∣ ρ−r∑
j=1−r

ϕ(j)−
ρ∑

j=1

ϕ(j)

∣∣∣∣≤ 2r sup |ϕ|< ρε.

(c) Given ε > 0, take ρ as in part (b). For each n ≥ 1, write n = sρ + r, with
1≤ r ≤ ρ. Then,

1

n

n∑
j=1

ϕ(j)= ρ

sρ+ r

s−1∑
i=0

1

ρ

(i+1)ρ∑
l=iρ+1

ϕ(l)+ 1

n

sρ+r∑
l=sρ+1

ϕ(l).

For s large, the first term on the right-hand side is close to (1/ρ)
∑ρ−1

j=0 ϕ(j)
(by part (b)) and the last term is close to zero (by part (a)). Conclude that the
left-hand side of the identity is a Cauchy sequence. (d) Observe that∣∣∣∣1n

n∑
j=1

ϕ(x+ k)− 1

n

n∑
j=1

ϕ(j)

∣∣∣∣≤ 2|x|
n

sup |ϕ|

and use parts (a) and (c).
3.3.3. Let μ be a probability measure invariant under a flow f t : M→M, t ∈R and let

(ϕs)s>0 be a family of functions, indexed by the positive real numbers, such that
ϕs+t ≤ ϕt+ϕs ◦ f t and the function�= sup0<s<1 ϕ

+
s is in L1(μ). Then, (1/T)ϕT

converges at μ-almost every point to a function ϕ such that ϕ+ ∈ L1(μ)

and
∫
ϕ dμ = limT→∞(1/T)

∫
ϕT dμ. To prove this, take ϕ = limn(1/n)ϕn

(Theorem 3.3.3). For T > 0 non-integer, write T = n + s with N ∈ N and
s ∈ (0,1). Then,

ϕT ≤ ϕn+ϕs ◦ f n ≤ ϕn+� ◦ f n and ϕT ≥ ϕn+1−ϕ1−s ◦ f T ≥ ϕn−� ◦ f T .

Using Lemma 3.2.5, the first inequality shows that limsupT→∞(1/T)ϕT ≤ ϕ.
Analogously, using the version of Lemma 3.2.5 for continuous time, the
second inequality above gives that liminfT→∞(1/T)ϕT ≥ ϕ. It also follows that
limT→∞(1/T)

∫
ϕT dμ coincides with limn(1/n)

∫
ϕn dμ. By Theorem 3.3.3,

this last limit is equal to
∫
ϕ dμ.
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3.3.6. Since log+ ‖φ‖ ∈ L1(μ), for every ε > 0 there exists δ > 0 such that μ(B) < δ
implies

∫
B log+ ‖θ‖dμ < ε. Using that log+ ‖φn‖ ≤∑n−1

j=0 log+ ‖θ‖ ◦ f j, one
gets that

μ(E) < δ⇒ 1

n

∫
E

log+ ‖φn‖dμ≤ 1

n

n−1∑
j=0

∫
f−j(E)

log+ ‖θ‖dμ≤ ε.

3.4.3. Consider local coordinates x = (x1,x2, . . . ,xd) such that � is contained in
{x1 = 0}. Write ν = ψ(x)dx1dx2 . . .dxd. Then ν� = ψ(y)dx2 . . .dxd with
y = (0,x2, . . . ,xd). Given A ⊂ � and δ > 0, the map ξ : (t,y) �→ gt(y) is
a diffeomorphism from [0,δ] × A to Aδ . Therefore, ν(Aδ) =

∫
[0,δ]×A(ψ ◦

ξ)|detDξ |dtdx2 . . .dxd and, consequently,

lim
δ→0

ν(Aδ)

δ
=
∫

A
ψ(y)|detDξ |(y)dx2 . . .dxd.

Next, note that |detDξ |(y)= |X(y) · (∂/∂t)| = φ(y) for every y ∈�. It follows
that the flux of ν coincides with the measure η = φν� . In particular, η is
invariant under the Poincaré map.

4.1.2. Use the theorem of Birkhoff and the dominated convergence theorem.
4.1.8. Assume that Ufϕ = λϕ. Since Uf is an isometry, |λ| = 1. If λn = 1 for some n

then ϕ ◦ f n= ϕ and, by ergodicity, ϕ is constant almost everywhere. Otherwise,
given any c �= 0, the sets ϕ−1(λ−kc), k ≥ 0 are pairwise disjoint. Since they all
have the same measure, this measure must be zero. Finally, the set ϕ−1(c) is
invariant under f and, consequently, its measure is either zero or total.

4.2.4. Let K be such a set. We may assume that K contains an infinite sequence of
periodic orbits (On)n with period going to infinity. Let Y ⊂ K be the set of
accumulation points of that sequence. Show that Y cannot consist of a single
point. Let p �= q be periodic points in Y and z be a heteroclinic point, that is,
such that σ n(z) converges to the orbit of p when n→−∞ and to the orbit of q
when n→+∞. Show that z ∈ Y and deduce the conclusion of the exercise.

4.2.10. Let Jk = (0,1/k), for each k ≥ 1. Check that the continued fraction expansion
of x is of bounded type if and only if there exists k ≥ 1 such that Gn(x) /∈ Jk

for every n. Observe that μ(Jk) > 0 for every k. Deduce that for every k and
μ-almost every x there exists n≥ 1 such that Gn(x) ∈ Jk. Conclude that L has
zero Lebesgue measure.

4.2.11. For each L ∈ N, consider ϕL(x) = min{φ(x),L}. Then, ϕL ∈ L1(μ) and, by
ergodicity, ϕ̃L =

∫
ϕL dμ at μ-almost every point. To conclude, observe that

φ̃ ≥ φ̃L for every L and
∫
φL dμ→+∞.

4.3.7. Let M = {0,1}N and, for each n, let μn be the invariant measure supported on
the periodic orbit αn = (αn

k )k, with period 2n, defined by αn
k = 0 if 0 ≤ k < n

and αn
k = 1 if n ≤ k < 2n. Show that (μn)n converges to (δ0 + δ1)/2, where 0

and 1 are the fixed points of the shift map.
4.3.9. (a) Take k ≥ 1 such that every cylinder of length k has diameter less than δ.

Take y= (yj) defined by yj+ni = xi
j for each 0≤ j<mi+ k. (b) Take δ > 0 such

that d(z,w) < δ implies |ϕ(z)− ϕ(w)| < ε and consider k ≥ 1 given by part
(a). Choose mi, i= 1, . . . ,s such that mi/ns ≈ αi for every i. Then take y as in
part (a). (c) By the ergodic theorem,

∫
ϕ dμ= ∫ ϕ̃ dμ. Take x1, . . . ,xs ∈� and

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316422601.015
Downloaded from https://www.cambridge.org/core. Max-Planck-Institut fuer Mathematik, on 17 Nov 2018 at 13:33:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316422601.015
https://www.cambridge.org/core


Hints or solutions for selected exercises 487

α1, . . . ,αs such that
∫
ϕ̃ dμ≈∑iαiϕ̃(xi). Note that ϕ̃(y)= ∫ ϕ dνy, where νy is

the invariant measure supported on the orbit of y. Recall Exercise 4.1.1.
4.4.3. On each side of the triangle, consider the foot of the corresponding height, that

is, the orthogonal projection of the opposite vertex. Show that the trajectory
defined by those three points is a periodic orbit of the billiard.

4.4.5. Using (4.4.10) and the twist condition, we get that for each θ ∈ R there
exists exactly one number ρθ ∈ (a,b) such that "(θ ,ρθ ) = θ . The function
θ �→ ρθ is continuous and periodic, with period 1. Consider its graph � =
{(θ ,ρθ ) : θ ∈ S1}. Every point in � ∩ f (�) is fixed under f : if (θ ,ρθ ) =
f (γ ,ργ )=

(
"(γ ,ργ ),R(γ ,ργ )

)
then, since"(γ ,ργ )= γ , it follows that θ = γ

and so ρθ = ργ . Since f preserves the area measure, none of the connected
components of A \ � may be mapped inside itself. This implies that f (�)
intersect � at no less than two points.

4.4.7. Taking inspiration from Example 4.4.12, show that the billiard map in �
extends to a Dehn twist in the annulus A = S1 × [−π/2,π/2], that is, a
homeomorphism f : A→ A that coincides with the identity on both boundary
components but is homotopically non-trivial: actually, f admits a lift F : R×
[−π/2,π/2]→R×[−π/2,π/2] such that F(s,−π/2)= (s− 2π ,−π/2) and
F(s,π/2)= (s,π/2) for every s. Consider rational numbers pn/qn ∈ (−2π ,0)
with qn →∞. Use Exercise 4.4.6 to show that g has periodic points of period
qn. One way to ensure that these periodic points are all distinct is to take the
qn mutually prime.

5.1.7. The statement does not depend on the choice of the ergodic decomposition,
since the latter is essentially unique. Consider the construction in Exer-
cise 5.1.6. The set M0 is saturated by the partition W s, that is, if x ∈M0 then
W s(x) ⊂ M0. Moreover, the map y �→ μy is constant on each W s(x). Since
the partition P is characterized by P(x) = P(y)⇔ μx = μy, it follows that
P ≺W s restricted to M0.

5.2.1. Consider the canonical projections πP : M → P and πQ : M → Q, the
quotient measures μ̂P = (πP )∗μ and μ̂Q = (πQ)∗μ and the disintegrations
μ= ∫ μP dμ̂P (P) and μ= ∫ μQ dμ̂Q(Q). Moreover, for each P ∈P , consider
μ̂P,Q = (πQ)∗μP and the disintegration μP =

∫
μP,Q dμ̂P,Q(Q). Observe that∫

μ̂P,Q dμ̂P (P)= μ̂Q: given any B⊂Q,∫
μ̂P,Q(B)dμ̂P(P)=

∫
μP(π

−1
Q (B))dμ̂P(P)=μ(π−1

Q (B))= μ̂Q(B).

To check thatμπ(Q),Q is a disintegration ofμwith respect to Q: (a)μP,Q(Q)= 1
for μ̂P,Q-almost every Q and μ̂P -almost every P. Moreover, μP,Q = μπ(Q),Q
for μ̂P,Q-almost every Q and μ̂P -almost every P, because μP(P) = 1 for
μ̂P-almost every P. By the previous observation, it follows that μπ(Q),Q(Q)= 1
for μ̂Q-almost every Q. (b) P �→ μP(E) is measurable, up to measure zero,
for every Borel set E ⊂ M. By construction (Section 5.2.3), there exists a
countable generating algebra A such that μP,Q(E)= limnμP(E∩Qn)/μP(Qn)

for every E ∈A (where Qn is the element of Qn that contains Q). Deduce that
P �→ μπ(Q),Q(E) is measurable, up to measure zero, for every E ∈ A. Extend
this conclusion to every Borel set E, using the monotone class argument in
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Section 5.2.3. (c) Note that μ= ∫ μP dμ̂P (P)=
∫ ∫

μP,Q dμ̂P,Q(Q)dμ̂P (P)=∫ ∫
μπ(Q),Q dμ̂P,Q(Q)dμ̂P (P)=

∫
μπ(Q),Q dμ̂Q(Q).

5.2.2. Argue that the partition Q of the space M1(M) into points is measurable.
Given any disintegration {μP : P ∈ P}, consider the measurable map M �→
M1(M), x �→ μP(x). The pre-image of Q under this map is a measurable
partition. Check that this pre-image coincides with P on a subset with full
measure.

6.1.3. The function ϕ is invariant.
6.2.5. Denote by X the closure of the orbit of x. If X is minimal, for each y ∈ X there

exists n(y) ≥ 1 such that d(f n(y)(y),x) < ε. Then, by continuity, y admits an
open neighborhood V(y) such that d(f n(y)(z),x) < ε for every z ∈ V(y). Take
y1, . . . ,ys such that X ⊂⋃i V(yi) and let m=maxi n(yi). Given any k ≥ 1, take
i such that f k(x) ∈ V(yi). Then, d(f k+ni(x),x) < ε, that is, k + ni ∈ Rε . This
proves that, given any m+1 consecutive integers, at least one of them is in Rε .
Hence, Rε is syndetic. Now assume that X is not minimal. Then, there exists a
non-empty, closed invariant set F properly contained in X. Note that x /∈ F and
so, for every ε sufficiently small, there exists an open set U that contains F and
does not intersect B(x,ε). On the other hand, since Rε is syndetic, there exists
m≥ 1 such that for any k ≥ 1 there exists n ∈ {k, . . . ,k+m} satisfying f n(x) ∈
B(x,ε). Take k such that f k(x) ∈ U1, where U1 = U ∩ f−1(U)∩ ·· · ∩ f−m(U),
and find a contradiction.

6.2.6. By Exercise 6.2.5, the set Rε = {n ∈ N : d(x, f n(x)) < ε} is syndetic for every
ε > 0. If y is close to x then {n ∈ N : d(f n(x), f n(y)) < ε} contains blocks of
consecutive integers with arbitrary length, no matter the choice of ε > 0. Let U1

be any neighborhood of x. It follows from the previous observations that there
exist infinitely many values of n∈N such that f n(x), f n(y) are in U1. Fix n1 with
this property. Next, consider U2 = U1 ∩ f−n1(U1). By the previous step, there
exists n2 > n1 such that f n2(x), f n2(y) ∈ U2. Continuing in this way, construct
a non-increasing sequence of open sets Uk and an increasing sequence of
natural numbers nk such that f nk (Uk+1) ⊂ Uk and f nk (x), f nk (y) ∈ Uk. Check
that f ni1+···+nik (x) and f ni1+···+nik (y) are in U1 for any i1 < · · ·< ik, k≥ 1.

6.2.7. Consider the shift map σ : �→ � in � = {1,2, . . . ,q}N. The partition N =
S1∪· · ·∪Sq defines a certain element α= (αn)∈�, given by αn = i if and only
if n ∈ Si. Consider β in the closure of the orbit of α such that α and β are near
and the closure of the orbit of β is a minimal set. Apply Exercise 6.2.6 with
x= β, y= α and U = [0;α0] to obtain the result.

6.3.6. Write g= (a11,a12,a2,a22). Then,

Eg(x11,x12,x21,x22)= (a11x11+a12x21,a11x12+a12x22,a21x11+a22x21,a21x12+a22x22).

Write the right-hand side as (y11,y12,y21,y22). Use the formula of change of
variables, observing that det(y11,y12,y21,y22)= (detg)det(x11,x12,x21,x22) and

dy11dy12dy21dy22 = (detg)2dx11dx12dx21dx22.

In the complex case, take∫
GL(2,R)

ϕ dμ=
∫

ϕ(z11,z12,z21,z22)

|det(z11,z12,z21,z22)|4 dx11dy11dx12dy12dx21dy21dx22dy22,
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where zjk = xjk + yjki. [Observation: Generalize these constructions to any
dimension!]

6.3.9. Given x ∈ M, there exists a unique number 0 ≤ r < 10k such that f r(x) ∈
[b0, . . . ,bk−1]. Moreover, f n(x) ∈ [b0, . . . ,bk−1] if and only if n− r is a multiple
of 10k. Use this observation to conclude that

τ([b0, . . . ,bk−1],x)= 10−k for every x ∈M.

Conclude that if f admits an ergodic probability measure μ then μ([b0, . . . ,
bk−1])= 10−k for every b0, . . . ,bk−1. This determines μ uniquely. To conclude,
show that μ is well defined and invariant.

6.3.11. Consider the sequence of words wn defined inductively by w1 = α and
s(wn+1) = wn for n ≥ 1. Decompose the word s(α) = w2 = αr1 and prove,
by induction, that wn+1 may be decomposed as wn+1 = wnrn, for some word
rn with length greater than or equal to n, such that s(rn) = rn+1. Define
w = αr1r2 · · · and note that s(w) = s(α)s(r1)s(r2) · · · = αr1r2r3 · · · = w. This
proves existence. To prove uniqueness, let γ ∈� be a sequence starting with α
and such that S(γ )= γ . Decompose γ as γ = αγ1γ2γ3 · · · , in such a way that
γi and ri have the same length. Note that S(α) = αγ1 = αr1, and so γ1 = r1.
Conclude by induction.

6.4.2. Given any 0≤ α < β ≤ 1, we have that
√

n ∈ (α,β) in the circle if and only if
there exists some integer k ≥ 1 such that k2+ 2kα+α2 < n< k2+ 2kβ + β2.
For each k the number of values of n that satisfy this inequality is equal to the
integer part of 2k(β−α)+ (β2−α2). Therefore,

#{1≤ n< N2 :
√

n ∈ (α,β)} ≤
N−1∑
k=1

2k(β−α)+ (β2−α2)

and the difference between the term on the right and the one on the left is less
than N. Hence,

lim
1

N2
#{1≤ n< N2 :

√
n ∈ (α,β)} = β−α.

A similar calculation shows that the sequence (logn mod Z)n is not equidis-
tributed in the circle. [Observation: But it does admit a continuous (non-constant)
limit density. Calculate that density!]

6.4.3. Define φn = an + (−1/a)n. Check that (φn)n is the Fibonacci sequence and,
in particular, φn ∈ N for every n ≥ 1. Now observe that (−1/a)n converges to
zero. Hence, {n ≥ 1 : an mod Z ∈ I} is finite, for any interval I ⊂ S1 whose
closure does not contain zero.

7.1.1. It is clear that the condition is necessary. To see that it is sufficient: Given
A, consider the closed subspace V of L2(μ) generated by the functions 1
and Xf−k(A), k ∈ N. The hypothesis ensures that limn Un

f (XA) ·Xf−k(A) = (XA ·
1)(Xf−k(A) · 1) for every k. Conclude that limn Un

f (XA) · φ = (XA · 1)(φ · 1) for
every φ ∈ V . Given a measurable set B, write XB = φ + φ⊥ with φ ∈ V and
φ⊥ ∈ V⊥ to conclude that limn Un

f (XA) ·XB = (XA · 1)(XB · 1).
7.1.2. Assuming that E exists, decompose (1/n)

∑n−1
j=0 |aj| into two terms, one over j∈

E and the other over j /∈E. The hypotheses imply that the two terms converge to
zero. Conversely, assume that (1/n)

∑n−1
j=0 |aj| converges to zero. Define Em =
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{j≥ 0 : |aj|≥ (1/m)} for each m≥ 1. The sequence (Em)m is increasing and each
Em has density zero; in particular, there exists �m ≥ 1 such that (1/n)#

(
Em ∩

{0, . . . ,n− 1})< (1/m) for every n ≥ �m. Choose (�m)m increasing and define
E =⋃m(Em ∩ {�m, . . . ,�m+1 − 1}). For the second part of the exercise, apply
the first part to both sequences, (an)n and (a2

n)n.
7.1.6. (Pollicott and Yuri [PY98]) It is enough to treat the case when

∫
ϕj dμ = 0

for every j. Use induction on the number k of functions. The case k = 1 is
contained in Theorem 3.1.6. Use the inequalities

1

N

n∑
n=1

an ≤ 1

N

N−m+1∑
n=1

( 1

m

m−1∑
j=0

an+j

)
+ m

N

(
max
1≤i≤m

|ai|+ max
N−m≤i≤N

|ai|
)

( 1

N

N∑
n=1

bn

)2 ≤ (1/N)
N∑

n=1

|bn|2

to conclude that
∫ ∣∣(1/N)∑N−1

j=0 (ϕ1 ◦ f n) · · ·(ϕk ◦ f kn)
∣∣2dμ is bounded above by

1

N

N∑
n=1

(∫
| 1

m

m−1∑
j=0

(
ϕ1◦f n+j

) · · ·(ϕk◦f k(n+j)
)∣∣2dμ+

(2m

N
+m2

N2

)(
max
1≤i≤k

supess |ϕi|
)2

.

The integral is equal to

m−1∑
i=0

m−1∑
j=0

∫ k∏
l=1

(
ϕl

(
ϕl ◦ f l(j−i)

)) ◦ f l(n+i) dμ.

By the induction hypothesis,

1

N

N∑
n=1

k∏
l=2

(
ϕl

(
ϕl ◦ f l(j−i)

)) ◦ f l(n+i)→
k∏

l=2

∫
ϕl

(
ϕl ◦ f l(j−i)

)
dμ

in L2(μ), when N →∞. Therefore,

1

N

N∑
n=1

∫ k∏
l=1

(
ϕl

(
ϕl ◦ f l(j−i)

)) ◦ f l(n+i) dμ→
k∏

l=1

∫
ϕl

(
ϕl ◦ f l(j−i)

)
dμ

in L2(μ), when N →∞. Combining these estimates,

limsup
N

∫ ∣∣ 1

N

N∑
n=1

(
ϕ1◦f n

) · · ·(ϕk◦f kn
)∣∣2 dμ≤ 1

m2

m−1∑
i=0

m−1∑
j=0

k∏
l=1

∫
ϕl(ϕl◦f l(j−i)

)
dμ.

Since (f ,μ) is weak mixing,
∫
ϕl(ϕl ◦ f lr

)
dμ converges to 0 when r →∞,

restricted to a set of values of l with density 1 at infinity (recall Exercise 7.1.2).
Therefore, the expression on the right-hand side is close to zero when m is
large.

7.2.5. The first statement is analogous to Exercise 7.2.1. The definition ensures that
μk has memory k. Given ε > 0 and any (uniformly) continuous function ϕ :
�→ R, there exists κ ≥ 1 such that |∫C ϕ dη− ϕ(x)η(C)| ≤ εη(C) for every
x ∈C, every cylinder C of length l≥ κ and every probability measure η. Since
μ = μk for cylinders of length k, it follows that |∫ ϕ dμk −

∫
ϕ dμ| ≤ ε for

every k≥ κ . This proves that (μk)k converges to μ in the weak∗ topology.
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7.2.6. (a) Use that Pn1+n2
i,i = ∑

j P
n1
i,j Pn2

j,i . All the terms in this expression are
non-negative and the term corresponding to j= i is positive. (b) Up to replacing
R by R/κ , we may suppose that κ = 1. Start by showing that if S⊂Z is closed
under addition and subtraction then S = aZ, where a is the smallest positive
element of S. Use that fact to show that if a1, . . . ,as are positive integers with
greatest common divisor equal to 1 then there exist integers b1, . . . ,bs such that
b1a1+·· ·+ bsas = 1. Now take a1, . . . ,as ∈ R such that their greatest common
divisor is equal to 1. Using the previous observation, and the hypothesis that R
is closed under addition, conclude that there exists p,q∈ R such that p−q= 1.
To finish, show that R contains every integer n ≥ pq. (c) Consider any i, j ∈ X
and let κi,κj be the greatest common divisors of R(i),R(j), respectively. By
irreducibility, there exist k, l≥ 1 such that Pk

i,j > 0 and Pl
j,i > 0. Deduce that if

n ∈ R(i) then n+ k+ l ∈ R(j). In view of (b), this is possible only if κi ≥ κj.
Exchanging the roles of i and j, it also follows that κi ≤ κj. If κ ≥ 2 then, given
any i, we have Pn

i,i = 0 for n arbitrarily large and so P cannot be aperiodic.
Now suppose that κ = 1. Then, using (b) and the hypothesis that X is finite,
there exists m ≥ 1 such that Pn

i,i > 0 for every i ∈ X and every n ≥ m. Then,
since P is irreducible and X is finite, there exists k ≥ 1 such that for any i, j
there exists l ≤ k such that Pl

i,j > 0. Deduce that Pm+k
i,j > 0 for every i, j and

so P is aperiodic. (d) Fix any i ∈ X and, for each r ∈ {0, . . . ,κ − 1}, define
Xr = {j ∈ X : there exists n ≡ r mod κ such that Pn

i,j > 0}. Check that these
sets Xr cover X and are pairwise disjoint. Show that the restriction of Pκ to
each of them is aperiodic.

7.3.1. By the theorem of Darboux, there exist coordinates (x1,x2) in the neighbor-
hood of any point of S such that ω = dx1 ∧ dx2. Consider the expression of
the vector field in those coordinates: X = X1(∂/∂x1)+ X2(∂/∂x2). Show that
β = X1dx−2−X2dx1 and so dβ = (divX)dx1∧dx2. Hence, β is closed if and
only if the divergent of X vanishes.

7.3.5. Observe that f is invertible and if A is a d-adic interval of level r ≥ 1 (that is,
an interval of the form A= [id−r,(i+ 1)d−r]), then there exists s≥ r such that
f (A) consists of ds−r d-adic intervals of level s. Deduce that f preserves the
Lebesgue measure. Show also that if A and B are d-adic intervals then, since σ
has no periodic points, m(f k(A)∩B)=m(A)m(B) for every large k.

7.4.2. (a) Given y1,y2 ∈M, write f−1(yi)= {xi
1, . . . ,xi

d} with d(x1
j ,x2

j )≤ σ−1d(y1,y2).
Then,

|Lϕ(y1)−Lϕ(y2)| = 1

d

d∑
j=1

|ϕ(x1
j )−ϕ(x2

j )| ≤ Kθ (ϕ)σ
−θd(y1,y2)θ .

(b) It follows that ‖Lϕ‖ ≤ sup |ϕ| + σ−θKθ (ϕ) ≤ ‖ϕ‖ for every ϕ ∈ E , and
the identity holds if and only if ϕ is constant. Hence, ‖L‖ = 1. (c) Let
Jn = [infLnϕ, supLnϕ]. By part (a), the sequence (Jn)n is decreasing and the
diameter of Jn converges to zero exponentially fast. Take νϕ to be the point in
the intersection and note that ‖Lnϕ−νϕ‖= sup |Lnϕ−νϕ |+Kθ (Lnϕ). (d) The
constant functions are eigenvectors of L, associated with the eigenvalue λ= 1.
It follows that νϕ+c = νϕ + c for every ϕ ∈ E and every c ∈ R. Then, H = {ϕ :
νϕ = 0} is a hyperplane of E transverse to the line of constant functions. This
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hyperplane is invariant under L and, by part (c), the spectral radius of L | H
is less or equal than σ−θ < 1. (e) By part (b), ‖Lnϕ−Lnψ‖ ≤ ‖Lkϕ−Lkψ‖
for every n ≥ k ≥ 1. Making n →∞, we get that |νϕ − νψ | ≤ ‖Lkϕ −Lkψ‖
for every k ≥ 1. Using part (a) and making k →∞, we get that |νϕ − νψ | ≤
sup |ϕ −ψ |. Therefore, the linear operator ψ �→ νψ is continuous, relative to
the norm in the space C0(M).

8.1.2. Denote Xi = X∩[0; i] and pi =μ([0; i]), for i= 1, . . . ,k. Since μ is a Bernoulli
measure, μ(Xi) = piμ(f (Xi)). Hence,

∑
i piμ(f (Xi)) = 1. Since

∑
i pi = 1, it

follows that μ(f (Xi))= 1 for every i. Consequently,
⋂

i f (Xi) has full measure.
Take x in that intersection. If (f ,μ) and (g,ν) are ergodically equivalent, there
exists a bijection φ : X → Y between full measure invariant subsets such that
φ ◦ f = g◦φ. Take x ∈ X with k pre-images x1, . . . ,xk in X. The points φ(xi) are
pre-images of φ(x) for the transformation g. Hence, k ≤ l; by symmetry, we
also have that l≤ k.

8.2.5. Assume that (f ,μ) is not weak mixing. By Theorem 8.2.1, there exists a
non-constant function ϕ such that Ufϕ = λϕ for some λ= e2π iθ . By ergodicity,
the absolute value of ϕ is constant μ-almost everywhere. Using that f n is
ergodic for every n (Exercise 4.1.8), θ is irrational and any set where ϕ
is constant has measure zero. Given α < β in [0,2π ], consider A = {x ∈
C : α ≤ arg(ϕ(x)) ≤ β}. Show that for every ε > 0 there exists n such that
μ(f−n(A) \A) < ε. Show that, by choosing |β−α| sufficiently small, one gets
to contradict the inequality in the statement.

8.2.7. Note that fn+1(x) = fn(x) for every x ∈ Jn that is not on the top of Sn. Hence,
(for example, arguing as in Exercise 6.3.10), f (x) = fn(x) for every x ∈ [0,1)
and every n sufficiently large; moreover, f preserves the Lebesgue measure.
Let an = #Sn be the height of each pile Sn. Denote by {Ie, Ic, Id} the partition
of each I ∈ Sn into subintervals of equal length, ordered from left to right. (a)
If A is a set with m(A) > 0 then for every ε > 0 there exists n ≥ 1 and some
interval I ∈Sn such that m(A∩ I)≥ (1−ε)m(I). If A is invariant, it follows that
m(A∩ J)≥ (1− ε)m(J) for every J ∈ Sn. (b) Assume that Ufϕ = λϕ. Since Uf

is an isometry, |λ| = 1. By ergodicity, |ϕ| is constant almost everywhere; we
may suppose that |ϕ| ≡ 1. Initially, assume that there exists n and some interval
I ∈ Sn such that the restriction of ϕ to I is constant. Take x ∈ Ie and y ∈ Ic and
z ∈ Id. Then, ϕ(x) = ϕ(y) = ϕ(z) and ϕ(y) = λanϕ(x) and ϕ(z) = λan+1ϕ(y).
Hence, λ= 1 and, by ergodicity, ϕ is constant. In general, use the theorem of
Lusin (Theorems A.3.5–A.3.9) to reach the same conclusion. (c) A is a union
of intervals Ij in the pile Sn for each n≥ 2. Then, f an(Ie

j )= Ic
j for every j. Hence,

m(f an(A)∩A)≥m(A)/3= 2/27.
8.3.1. Let {vj : j∈I} be a basis of H formed by eigenvectors with norm 1 and λj be the

eigenvalue associated with each eigenvector vj. The hypothesis ensures that we
may consider I =N. Show that for every δ > 0 and every k≥ 1 there exists n≥
1 such that |λn

j − 1| ≤ δ for every j ∈ {1, . . . ,k} (use the pigeonhole principle).
Decompose ϕ =∑j cjvj, with cj ∈C. Observe that Un

f ϕ =
∑

j∈N cjλ
n
j vj, and so

‖Un
f ϕ−ϕ‖2

2 ≤
k∑

j=1

|cj(λ
n
j − 1)|2+

∞∑
j=k+1

2|cj|2 ≤ δ2‖ϕ‖2
2+

∞∑
j=k+1

2|cj|2.
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Given ε > 0, we may choose δ and k in such a way that each one of the terms
on the right-hand side is less than ε/2.

8.4.3. Let U : H → H be a non-invertible isometry. Recalling Exercise 2.3.6, show
that there exist closed subspaces V and W of H such that U : H→H is unitarily
conjugate to the operator U1 : V⊕WN→ V⊕WN given by U1 | V =U | V and
U1 |WN = id . Let U2 : V ⊕WZ → V ⊕WZ be the linear operator defined by
U1 | V = U | V and U1 | WZ = id . Check that U2 is a unitary operator such
that U2 ◦ j = j ◦U1, where j : V ⊕WN → V ⊕WZ is the natural inclusion.
Show that if E⊂ V⊕WN satisfies the conditions in the definition of Lebesgue
spectrum for U1 then j(E) satisfies those same conditions for U2. Conclude
that the rank of U1 is well defined.

8.4.6. The lemma of Riemann–Lebesgue ensures that F takes values in c0. The
operator F is continuous: ‖F(ϕ)‖ ≤ ‖ϕ‖ for every ϕ ∈ L1(λ). Moreover,
F is injective: if F(ϕ) = 0 then

∫
ϕ(z)ψ(z)dλ(z) = 0 for every linear

combination ψ(z) = ∑
|j|≤l ajzj, aj ∈ C. Given any interval I ⊂ S1, the

sequence ψN =∑|n|≤N cnzn, cn =
∫

I z−n dλ(z) of partial sums of the Fourier
series of the characteristic function XI is bounded (see [Zyg68, page 90]).
Using the dominated convergence theorem, it follows that F(ϕ) = 0 implies∫

I ϕ(z)dλ(z)= 0, for any interval I. Hence, ϕ = 0. If F were bijective then, by
the open mapping theorem, its inverse would be a continuous linear operator.
Then, there would be c> 0 such that ‖F(ϕ)‖ ≥ c‖ϕ‖ for every ϕ ∈ L1(λ). But
that is false: consider DN(z)=∑|n|≤N zn for N ≥ 0. Check that F(DN)= (aN

n )n
with aN

n = 1 if |n| ≤ N and aN
n = 0 otherwise. Hence, ‖F(DN)‖ = 1 for every

N. Writing z = e2π it, check that DN(z) = sin((2N + 1)π t)/sin(π t). Conclude
that ‖DN‖=

∫ |DN(z)|dλ(z) converges to infinity when N→∞. [Observation:
One can also give explicit examples. For instance, if (an)n converges to zero
and satisfies

∑∞
n=1 an/n =∞ then the sequence (αn)n given by αn = an/(2i)

for n ≥ 1 and αn + α−n = 0 for every n ≥ 0 may not be written in the form
αn =

∫
zn dν(z). See Section 7.3.4 of Edwards [Edw79].]

8.5.3. By Exercise 8.5.2, f̃ is always injective. Conclude that if f̃ is surjective then
it is invertible: there exists a homomorphism of measure algebras h : B̃→ B̃
such that h ◦ f̃ = f̃ ◦ h = id . Use Proposition 8.5.6 to find g : M → M such
that g ◦ f = f ◦ g at μ-almost every point. The converse is easy: if (f ,μ) is
invertible at almost every point then the homomorphism of measure algebras g̃
associated with g= f−1 satisfies g̃◦ f̃ = f̃ ◦ g̃= id ; in particular, f̃ is surjective.

8.5.6. Check that the unions of elements of
⋃

nPn are pre-images, under the inclusion
ι, of an open subset of K. Use that fact to show that if the chains have measure
zero then for each δ > 0 there exists an open set A ⊂ K such that m(A) < δ
and every point outside A is in the image of the inclusion: in other words,
K \ ι(MP) ⊂ A. Conclude that ι(MP ) is a Lebesgue measurable set and its
complement in K has measure zero. For the converse, use the fact that (a)
implies (c) in Exercise A.1.13.

9.1.1. Hμ(P/R) ≤ Hμ(P ∨Q/R) = Hμ(Q/R) + Hμ(P/Q ∨R) ≤ Hμ(Q/R) +
Hμ(P/Q).

9.1.3. Let g= f k. Then Hμ(
∨k−1

i=0 f−i(P)/∨n
j=k f−j(P))=Hμ(Pk/

∨n−k
i=1 g−i(Pk)). By

Lemma 9.1.12, this expression converges to hμ(g,Pk). Now use Lemma 9.1.13.
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9.2.5. Write Qn =∨n−1
j=0 f−j(Q) for each n and let A be the σ -algebra generated by⋃

nQn. Check that f is measurable with respect to the σ -algebra A. Show
that the hypothesis implies that P ⊂ A. By Corollary 9.2.4, it follows that
Hμ(P/Qn) converges to zero. By Lemmas 9.1.11 and 9.1.13, we have that
hμ(f ,P)≤ hμ(f ,Q)+Hμ(P/Qn) for every n.

9.2.7. The set A of all finite disjoint of rectangles Ai×Bi, with Ai ⊂M and Bi ⊂ N,
is an algebra that generates the σ -algebra of M ×N. Given partitions P and
Q of M and N, respectively, the family P ×Q= {P×Q : P ∈ P and Q ∈Q}
is a partition of M × N contained in A and such that hμ×ν(f × g,P ×Q) =
hμ(f ,P)+ hν(g,Q). Conversely, given any partition R ⊂ A of M×N, there
exist partitions P and Q such that R ≺ P × Q and so hμ×ν(f × g,R) ≤
hμ(f ,P)+ hν(g,Q). Conclude using Exercise 9.2.6.

9.3.3. It is clear that B(x,n,ε) ⊂ B(f (x),n− 1,ε). Hence, hμ(f ,x) ≥ hμ(f , f (x)) for
μ-almost every x. On the other hand,

∫
hμ(f ,x)dμ(x) = ∫ hμ(f , f (x))dμ(x)

since the measure μ is invariant under f .
9.4.2. Use the following consequence of the Jordan canonical form: there exist

numbers ρ1, . . . ,ρl > 0, there exists an A-invariant decomposition Rd = E1 ⊕
·· ·⊕El and, given α > 0, there exists an inner product in Rd relative to which
the subspaces Ej are orthogonal and satisfy e−αρj‖v‖ ≤ ‖Av‖ ≤ eαρj‖v‖ for
every v ∈ Ej. Moreover, the ρi are the absolute values of the eigenvalues of A
and they satisfy

∑d
i=1 log+ |λi| =∑l

j=1 dimEj log+ ρj.
9.4.3. Consider any countable partition P with {B,Bc} ≺ P . Let Q be the restriction

of P to the set B. Write Pn = ∨n−1
j=0 f−j(P) and Qk = ∨k−1

j=0 g−j(Q). Check
that, for every x ∈ B and k ≥ 1, there exists nk ≥ 1 such that Qk(x)= Pnk (x).
Moreover, by ergodicity, limk k/nk = τ(B,x)=μ(B) for almost every x. By the
theorem of Shannon–McMillan–Breiman,

hν(g,Q,x)= lim
k
−1

k
logν(Qk(x)) and hμ(f ,P ,x)= lim

k
− 1

nk
logμ(Pnk (x)).

Conclude that hν(f ,Q,x)=μ(B)hν(g,Q,x) for almost every x∈ B. Varying P ,
deduce that hν(f )=μ(B)hν(g).

9.5.2. Consider A ∈⋂n f−n(B) with m(A) > 0. Then, for each n there exists An ∈ B
such that A= f−n(An). Consider the intervals Ij,n =

(
(j− 1)/10n, j/10n

)
. Then,

m(A∩ Ij,n)

m(Ij,n)
= m(An)

m((0,1))
=m(A) for every 1≤ j≤ 10n.

Making n→∞, conclude that Ac has no points of density. Hence, m(Ac)= 0.
9.5.6. Assume that hμ(f ,P) = 0. Use Lemma 9.5.4 to show that P ≺∨∞

j=1 f−jk(P)
for every k≥ 1. Deduce that, up to measure zero, P is contained in f−k(B) for
every k≥ 1. Conclude that the partition P is trivial.

9.6.1. Uniqueness is immediate. To prove the existence, consider the functional �
defined by �(ψ) = ∫ (∫ ψ dη

)
dW(η) in the space of bounded measurable

functions ψ : M → R. Note that � is linear and non-negative and satisfies
�(1) = 1. Use the monotone convergence theorem to show that if Bn, n ≥ 1
are pairwise disjoint measurable subsets of M then �(X⋃

n Bn) =
∑

n�(XBn).
Conclude that ξ(B) = �(XB) defines a probability measure in the σ -algebra
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of measurable subsets of M. Show that
∫
ψ dξ = �(ψ) for every bounded

measurable function. Take bar(W)= ξ .
9.6.5. For the penultimate identity one would need to know that n−1 logμP(Qn(x)) is

a dominated sequence (for example).
9.7.4. By Exercise 9.7.3, given any bounded measurable function ψ ,∫

(ψ ◦ f )dη=
∫
ψ(x)

( ∑
z∈f−1(x)

1

Jηf
(z)
)

dη(x).

Deduce the first part of the statement. For the second part, note that if
η is invariant then η(f (A)) = η(f−1(f (A))) ≥ η(A) for every domain of
invertibility A.

9.7.7. The “if” part of the statement is easy: we may exhibit the ergodic equivalence
explicitly. Assume that the two systems are ergodically equivalent. The fact
that k= l follows from Exercise 8.1.2. To prove that p and q are permutations
of one another, use the fact that the Jacobian is invariant under ergodic
equivalence (Exercise 9.7.6), together with the expressions of the Jacobians
given by Example 9.7.1.

10.1.6. Note that ψ(M) is compact and the inverse ψ−1 : ψ(M)→M is (uniformly)
continuous. Hence, given ε > 0 there exists δ > 0 such that if E ⊂ M is
(n,ε)-separated for f then ψ(E) ⊂ N is (n,δ)-separated for g. Conclude that
s(f ,ε,M)≤ s(g,δ,N) and deduce that h(f )≤ h(g). [Observation: The statement
remains valid in the non-compact case, as long as we assume the inverse
ψ−1 :ψ(M)→M to be uniformly continuous.]

For the second part, consider the distance defined in � by

d
(
(xn)n,(yn)n

)=∑
n∈Z

2−|n||xn− yn|.

Consider a discrete set A⊂ [0,1] with n elements. Check that the restriction to
AZ of the distance of [0,1]Z is uniformly equivalent to the distance defined in
(9.2.15). Using Example 10.1.2, conclude that the topological entropy of σ is
at least logn, for any n.

10.1.10. (Carlos Gustavo Moreira) Let θ1 = 0, θ2 = 01 and, for n≥ 2, θn+1 = θnθn−1. We
claim that, for every n≥ 1, there exists a word τn such that θnθn+1 = τnαn and
θn+1θn = τnβn, where αn = 10 and βn = 01 if n is even and αn = 01 and βn = 10
if n is odd. That holds for n= 1 with τ1 = 0 and for n= 2 with τ2 = 010. If it
holds for a given n, then θn+1θn+2 = θn+1θn+1θn = θn+1τnβn = τn+1αn+1 and also
θn+2θn+1= θn+1θnθn+1= θn+1τnαn= τn+1βn+1, as long as we take τn+1= θn+1τn.
This proves the claim. It follows that the last letters of θn and θn+1 are distinct.

Now, we claim that θ = limn θn is not pre-periodic. Indeed, suppose that θ
were pre-periodic and let m be its period. Since the length of θn is Fn+1 (where
Fk is the k-th Fibonacci number), we may take n large such that m divides
Fn+1 and the pre-period (that is, the length of the non-periodic part) of θ is less
than Fn+2. Then, θ starts with θn+3 = θn+2θn+1 = θn+1θnθn+1. However, since
the length Fn+1 of θn is a multiple of the period m, the Fm+2-th letter of θ ,
which is the last letter of θn+1, must coincide with the (Fm+2+Fn+1)-th letter
of θ , which is the last letter of θn. This would contradict the conclusion of the
previous paragraph.
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Next, we claim that ck+1(θ) > ck(θ) for every k. Indeed, suppose that
ck+1(θ) = ck(θ) for some k. Then, every subword of length k can have only
one continuation of length k+ 1. Hence, we have a transformation in the set
of subwords of length k, assigning to each subword its unique continuation,
without the first letter. Since the domain is finite, all the orbits of this
transformation are pre-periodic. In particular, θ is also pre-periodic, which
contradicts the conclusion in the previous paragraph.

Since c1(θ) = 2, it follows that ck(θ) ≥ k + 1 for every k. We claim that
cFn+1 (θ) ≤ Fn+1 + 1 for every n > 1. To prove that fact, note that θ may
be written as a concatenation of words belonging to {θn,θn+1} because (by
induction) every θr with r ≥ n may be written as a concatenation of words
belonging to {θn,θn+1}. Thus, any subword of θ of length Fn+1 (which is the
length of θn) is a subword of θnθn+1 or θn+1θn. Since θnθn+1 = θnθnθn−1, is a
subword of θnθnθn−1θn−2 = θnθnθn, there are at most |θn| = Fn+1 subwords of
length |θn| = Fn+1 of θnθnθn and, hence, of θnθn+1. Since θnθn+1 = τnαn and
θn+1θn = τnβn, and θn+1θn ends with θn and |βn| = 2, the unique subword
of θn+1θn of length |θn| = Fn+1 that may not be a subword of θnθn+1 is the
subword that ends with the first letter of βn (that is, one position before the end
of θn+1θn). Hence, cFn+1(θ)≤ Fn+1+ 1 as stated.

We are ready to obtain the statement of the exercise. Assume that ck(θ) >

k+1 for some k. Taking n such that Fn+1> k, we would have cFn+1(θ)−ck(θ)<

Fn+1 + 1− (k + 1) = Fn+1 − k and that would imply that cm+1(θ) ≤ cm(θ)

for some m with k ≤ m < Fn+1. This would contradict the conclusion in the
previous paragraph.

10.2.4. By Proposition 10.2.1, h(f )= g(f ,δ,M)whenever f is ε-expansive and δ <ε/2.
Show that if d(f ,h) < δ/3 then g(h,δ/3,M) ≤ g(f ,δ,M). Deduce that if (fk)k
converges to f then limsupk h(fk)= limsupk g(fk,δ/3,M)≤ g(f ,δ,M)= h(f ).

10.2.8. (Bowen [Bow72]) Write a= g∗(f ,ε). Observe that if E is an (n,δ)-generating
set of M, with δ < ε, then M =⋃x∈E B(x,n,ε). Combining this fact with the
result of Bowen, show that gn(f ,δ,M) ≤ #Eec+(a+b)n. Take b→ 0 to conclude
the inequality.

10.3.3. (a) The hypothesis implies that for every n and every subcover δ of βn

there exists a subcover γ of αn such that γ ≺ δ. Taking γ minimal, #γ ≤
#δ and

∑
U∈γ infx∈U eφn(x) ≤ ∑V∈δ infy∈V eφn(y). It follows that Qn(f ,φ,α) ≤

Qn(f ,φ,β) for every n. (b) Lemma 10.1.11 gives that αn+k−1 is a subcover
of (αk)n. A variation of the argument in part (a) gives that Qn(f ,φ,αk) ≤
e(k−1)sup |φ|Qn+k−1(f ,φ,α) for every n. Hence, Q±(f ,φ,αk) ≤ Q±(f ,φ,α).
[Observation: Analogously, P(f ,φ,αk) ≤ P(f ,φ,α).] By the second part of
Lemma 10.1.11, for every subcover β of (αk)n there exists a subcover
γ of αn+k−1 such that γ ≺ β, #γ ≤ #β and

∑
U∈γ infx∈U eφn+k−1(x) ≤

e(k−1)sup |φ|∑
V∈β infy∈V eφn(y) (taking γ minimal). Deduce that Qn+k−1(f ,φ,α)≤

e(k−1)sup |φ|Qn(f ,φ,αk). Hence, Q±(f ,φ,α) ≤ Q±(f ,φ,αk). (c) Follows from
part (b) and Corollary 10.3.3. (d) If the elements of α are disjoint then
(αk)n = αn+k−1 and so

Pn(f ,φ,αk)= inf{
∑
U∈γ

sup
x∈U

eφn(x) : γ ⊂ (αk)n} = inf{
∑
U∈γ

sup
x∈U

eφn(x) : γ ⊂ αn+k−1}.
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It follows that e−(k−1)sup |φ|Pn(f ,φ,αk)≤Pn+k−1(f ,φ,α)≤ e(k−1)sup |φ|Pn(f ,φ,αk).
(e) Follows from part (d) and the definition of pressure (Lemma 10.3.1). (f)
Note that α±k = f k(α2k) and use Exercise 10.3.2.

10.3.8. Show that given ε > 0 there exists κ ≥ 1 such that every dynamical ball
B(x,n,ε) has diameter equal to ε2−n and contains some periodic point pn

x of
period n+ κ . Show that given C,θ > 0 there exists K > 0 such that |φn(y)−
φn(pn

x)| ≤ K for every y ∈ B(x,n,ε), every n ≥ 1 and every (C,θ)-Hölder
function φ : S1 → R. Use this fact to replace generating (or separated) sets
by sets of periodic points in the definition of pressure.

10.3.10. Since ξ |�c = η |�c,∣∣E(ξ ,η)−E�(ξ |�)+E�(η |�)
∣∣= ∣∣∣∣ ∑

(k,l)∈�×�c
⋃
�c×�

�(k− l,ξk,ξl)

−�(k− l,ηk,ηl)

∣∣∣∣
≤

∑
(k,l)

∑
(k,l)∈�×�c⋃�c×�

2Ke−θ |k−l|.

Recalling that � is an interval, the cardinal of {(k, l) ∈ �×�c ∪�c ×� :
|k− l| = n} is less than or equal to 4n for every n≥ 1. Hence,∣∣E(ξ ,η)−E�(ξ |�)+E�(η |�)

∣∣≤ ∞∑
n=1

8Kne−θn <∞.

The second part of the statement is an immediate consequence of the first one.
10.4.4. Consider the shift map σ in the space � = {0,1}N. Consider the function φ :

�→R defined by φ(x)= 0 if x0 = 0 and φ(x)= 1 if x0 = 1. Let N be the set
of points x ∈� such that the time average in the orbit of x does not converge.
Check that N is invariant under σ and is non-empty: for each finite sequence
(z0, . . . ,zk) one can find x ∈ N with xi = zi for i = 0, . . . ,k. Deduce that the
topological entropy of the restriction f | Nφ is equal to log2. Justify that N
does not support any probability measure invariant under f .

10.4.5. Consider the open cover ξ of K whose elements are K ∩ [0,α] and K ∩ [1−
β,1]. Check that P(f ,φ)= P(f ,φ,ξ) for every potential φ. Moreover,

Pn(f ,−t logg′,ξ)=
∑
U∈αn

[(gn)′]−t(U)= (αt+β t)n.

Conclude that ψ(t)= log(αt + β t). Check that ψ ′ < 0 and ψ ′′ > 0 (convexity
also follows from Proposition 10.3.7). Moreover, ψ(0) > 0 > ψ(1). By the
variational principle, the last inequality implies that hμ(f )−

∫
logg′ dμ< 0.

10.5.3. The Gibbs property gives that limn(1/n) logμ(Cn(x)) = ϕ̃(x) − P, where
Cn(x) is the cylinder of length n that contains x. Combine this identity with
the theorem of Brin–Katok (Theorem 9.3.3) and the theorem of Birkhoff to
get the first claim. Now assume that μ1 and μ2 are two ergodic Gibbs states
with the same constant P. Observe that there exists C such that C−1μ1(A) ≤
μ2(A)≤Cμ1(A) for every A in the algebra formed by the finite disjoint unions
of cylinders. Using the monotone class theorem (Theorem A.1.18), deduce
that C−1μ1(A) ≤ μ2(A) ≤ Cμ1(A) for any measurable set A. This implies
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that μ1 and μ2 are equivalent measures. Using Lemma 4.3.1, it follows that
μ1 =μ2.

10.5.5. By Proposition 10.3.7, the pressure function is convex. By Exercise A.5.1, it
follows that it is also continuous. By the smoothness theorem of Mazur (recall
Exercise 2.3.7), there exists a residual subset R⊂C0(M) such that the pressure
function is differentiable at every ϕ ∈R. Apply Exercise 10.5.4.

11.1.3. Adapt the arguments in Section 9.4.2, as follows. Start by checking that the
iterates of f have bounded distortion: there exists K > 1 such that

1

K
≤ |Df n(x)|
|Df n(y)| ≤ K,

for every n ≥ 1 and any points x,y with Pn(x) = Pn(y). Consider the
sequence μn = (1/n)∑n−1

j=0 f j
∗m of averages of the iterates of the Lebesgue

measure m. Show that the Radon–Nikodym derivatives dμn/dm are uniformly
bounded and are Hölder, with uniform Hölder constants. Deduce that every
accumulation point μ of that sequence is an invariant probability measure
absolutely continuous with respect to the Lebesgue measure. Show that the
Radon–Nikodym derivative ρ = dμ/dm is bounded from zero and infinity (in
other words, logρ is bounded). Show that ρ and logρ are Hölder.

11.1.5. Check that Jμf = (ρ ◦ f )|f ′|/ρ and use the Rokhlin formula (Theorem 9.7.3).
11.2.4. Take � = {2−n : n ≥ 0} mod Z. The restriction f : � → � cannot be an

expanding map because 1/2 is an isolated point in � but 1 = f (1/2) is not.
[Observation: Note that � = S1 \⋃∞

n=0 f−n(I), where I = (1/2,1) mod Z.
Modifying suitably the choice of I, one finds many other examples, possibly
with � uncountable.]

11.3.3. Let a= ∫ ϕ dμ1 and b= ∫ ϕ dμ2. Assume that a< b and write r = (b− a)/5.
By the ergodic decomposition theorem, we may assume that μ1 and μ2 are
ergodic. Then, there exist x1 and x2 such that ϕ̃(x1)= a and ϕ̃(x2)= b. Using
the hypothesis that f is topologically exact, construct a pseudo-orbit (zn)n≥0

alternating (long) segments of the orbits of x1 and x2 in such a way that the
sequence of time averages of ϕ along the pseudo-orbit (zn)n oscillates from
a+ r to b− r (meaning that liminf≤ a+ r and limsup≥ b− r). Next, use the
shadowing lemma to find x ∈M whose orbit shadows this pseudo-orbit. Using
that ϕ is uniformly continuous, conclude that the sequence of time averages of
ϕ along the orbit of x oscillates from a+ 2r to b− 2r.

12.1.2. Theorem 2.1.5 gives that M1(M) is weak∗ compact and it is clear that it
is convex. Check that the operator L : C0(M)→ C0(M) is continuous and
deduce that its dual L∗ : M(M)→M(M) is also continuous. If (ηn)n → η in
the weak∗ topology then (

∫ L1dηn)n →
∫ L1dη. Conclude that the operator

G : M1(M) → M1(M) is continuous. Hence, by the Tychonoff–Schauder
theorem, G has some fixed point ν. This means that L∗ν = λν, where
λ = ∫ L1dν. Since λ > 0, this proves that ν is a reference measure. Using
Corollary 12.1.9, check that λ = limsupn

n
√‖Ln1‖ and deduce that λ is the

spectral radius of L.
12.2.4. Fix in S1 the orientation induced by R. Consider the fixed point p0 = 0 of f and

let p1, . . . ,pd be its pre-images, ordered cyclically, with pd = p0. Analogously,
let q0 be a fixed point of g and q1, . . . ,qd be its pre-images, ordered cyclically,
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with qd = q0. Note that f maps each [pi−1,pi] and g maps each [qi−1,qi] onto
S1. Then, for each sequence (in)n ∈ {1, . . . ,d}N there exists exactly one point
x ∈ S1 and one point y ∈ S1 such that f n(x) ∈ [pin−1,pin ] and gn(y) ∈ [qin−1,qin ]
for every n. Clearly, the maps (in)n �→ x and (in)n �→ y are surjective. Consider
two sequences (in)n and (jn)n to be equivalent if there exists N ∈ N ∪ {∞}
such that (1) in = jn for every n ≤ N and either (2a) in = 1 and jn = d for
every n> N or (2b) in = d and jn = 1 for every n> N. Show that the points x
corresponding to (in)n and (jn)n coincide if and only if the two sequences are
equivalent and a similar fact holds for the points y corresponding to the two
sequences. Conclude that the map φ : x �→ y is well defined and is a bijection
in S1 such that φ(f (x)) = g(φ(x)) for every x. Observe that φ preserves the
orientation of S1 and, thus, is a homeomorphism.

12.2.5. (a) ⇒ (b): Trivial. (b) ⇒ (c): Let μa be the absolutely continuous invariant
probability measure and μm be the measure of maximum entropy of f ; let νa

and νm be the corresponding measures for g. Show that μa =μm. Let φ : S1 →
S1 be a topological conjugacy. Show that νm = φ∗μm and νa = φ∗μa if φ is
absolutely continuous. Use Corollary 12.2.4 to conclude that in the latter case
|(gn)′(x)|= kn for every x∈Fix(f n). (c)⇒ (a): The hypothesis implies that νa=
νm and so νa = φ∗μa. Recall (Proposition 12.1.20) that the densities dμa/dm
and dνa/dm are continuous and bounded from zero and infinity. Conclude that
φ is differentiable, with φ′ = (dμ/dm)

/
(dν/dm) ◦φ.

12.3.2. Consider A= (a,1), P= (p,1), Q= (q,1), B= (b,1), O= (0,0) ∈C×R. Let
A′ (respectively, B′) be the point where the line parallel to OQ (respectively,
OP) passing through P (respectively, Q) intersects the boundary of C. Note
that all these points belong to the plane determined by P, Q and O; note also
that A′ ∈OA and B′ ∈OB. By definition, α(P,Q)= |B′Q|/|OP| and β(P,Q)=
|OQ|/|A′P|. Check that |AP|/|AQ| = |A′P|/|OQ| and |BQ|/|BP| = |B′Q|/|OP|.
Hence,

θ(P,Q)= log
β(P,Q)

α(P,Q)
= log

|OQ| |OP|
|A′P| |B′Q| = log

|AQ| |BP|
|AP| |BQ| .

In other words, d(p,q)= log(|aq| |bp|)/(|ap| |bq|)=
(p,q), for any p,q ∈D.
12.3.4. Consider the cone C0 of positive continuous functions in M. The corresponding

projective distance θ0 is given in Example 12.3.5. Check that θ1 is the
restriction of θ0 to the cone C1. Consider a sequence of positive differentiable
functions converging uniformly to a (continuous but) non-differentiable
function g0 . Show that (gn)n converges to g0 with respect to the distance θ0

and, thus, is a Cauchy sequence for θ0 and θ1. Argue that (gn)n cannot be
convergent for θ1.

12.3.8. (a) It is clear that logg is (b,β)-Hölder and supg/ infg is close to 1 if the norm
‖v‖β,ρ is small; this will be implicit in all that follows. Then, g∈C(b,β,R). To
estimate θ(1,g), use the expression given by Lemma 12.3.8. Observe that

β(1,g)= sup

{
g(x),

exp(bδ)g(x)− g(y)

exp(bδ)− 1
: x �= y,d(x,y)<ρ

}
where δ = d(x,y)β .
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500 Hints or solutions for selected exercises

Clearly, g(x)≤ 1+ sup |v|. Moreover,

exp(bδ)g(x)− g(y)

exp(bδ)− 1
≤ exp(bδ)g(y)+ exp(bδ)Hβ,ρ(v)δ− g(y)

exp(bδ)− 1

= g(y)+ δ exp(bδ)

exp(bδ)− 1
Hβ,ρ(v).

Take K1>K2>0, depending only on b,β,ρ, such that K1≥ exp(bs)s/(exp(bs)−
1) ≥ K2 for every s ∈ [0,ρβ ]. Then, the term on the right-hand side of the
previous inequality is bounded by 1+sup |v|+K1Hβ,ρ(v). Hence, logβ(1,g)≤
log(1+ sup |v| +K1Hβ,ρ(v)) ≤ K ′

1 ‖v‖β,ρ , where K ′
1 = max{K1,1}. Varying x

and y in the previous arguments, we also find that β(1,g) ≥ 1+ sup |v| and
β(1,g)≥ 1− sup |v|+K2Hβ,ρ(v). Deduce that

logβ(1,g)≥max
{

log(1+ sup |v|), log(1− sup |v|+K2Hβ,ρ(v))
}≥K ′

2 ‖v‖β,ρ ,

where the constant K ′
2 depends only on K2, β and ρ. Analogously, there exist

constants K ′
3>K ′

4> 0 such that−K ′
3 ‖v‖β,ρ ≤ logα(1,g)≤−K ′

4 ‖v‖β,ρ . Fixing

K ≥max{(K1+K3),1/(K2+K4)},
it follows that K−1 ‖v‖β,ρ ≤ θ(1,g)≤K ‖v‖β,ρ . (b) It is no restriction to assume
that ‖v‖β,ρ < r. Note that Png= 1+Pnv for every n. Corollary 12.3.12 gives
that

θ(PkNg,1)≤�k
0θ(1,g) for every k,

with �0 < 1. By part (a), it follows that ‖PkNv‖ ≤ K2�k
0 for every k. This

yields the statement, with τ =�1/k
0 and C= K2‖P‖N�−1

0 .
12.4.4. Consider 0< δ ≤ ρ. For every cover U of A with diameter less than δ, we have∑

U∈U
(diamU)d ≥

∑
U∈U

K−1μ(U)≥ K−1μ(A).

Taking the infimum over U , we get that md(A,δ) ≥ K−1μ(A). Making δ→ 0,
we find that md(A) > K−1μ(A); hence, d(A)≥ d.

12.4.7. Consider � = 1. Then, D,D1, . . . ,DN (Section 12.4.3) are compact intervals.
It is no restriction to assume that D = [0,1]. Write Din = hi0 ◦ · · · ◦ hin−1(D)
for each in = (i0, . . . , in−1) in {1, . . . ,N}n. Starting from the bounded distortion
property (Proposition 12.4.5), prove that there exists c> 0 such that, for every
in and every n,

(i) c≤ |(f n)′(x)|diamDin ≤ c−1 for every x ∈Din ;
(ii) d(Din ,Djn)≥ cdiamDin for every jn �= in;

(iii) diamDin+1 ≥ cdiamDin for every in, where in+1 = (i0, . . . , in−1, in).
Let ν be the reference measure of the potential ϕ=−d0 log |f ′|. Since P(f ,ϕ)=
0, it follows from Lemma 12.1.3 and Corollary 12.1.15 that Jν f = |f ′|d0 .
Deduce that c ≤ |(f n)′(x)|d0ν(Din) ≤ c−1 for any x ∈ Din and, using (i) once
more, conclude that

c2 ≤ diam(Din)
d0

ν(Din)
≤ c−2 for every in and every n.

It follows that
∑

in diam(Din)
d0 ≤ c−2

∑
in ν(Din)= c−2. Since the diameter of

Din converges uniformly to zero when n→∞, this implies that md0(�)≤ c−2.
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For the lower estimate, let us prove that ν satisfies the hypothesis of the
mass distribution principle (Exercise 12.4.4). Given any U with diamU <

cmin{diamD1, . . . ,diamDN}, there exist n≥ 1 and in such that Din intersects U
and cdiamDin > diamU. By (ii), we have that ν(U)≤ ν(Din)≤ c−2 diamDd0

in .
Take n maximum. Then, using (iii), diamU ≥ cdiamDin+1 ≥ c2 diamDin

for some choice of in. Combining the two inequalities, we get ν(U) ≤
c−2−2d0 (diamU)d0 . Then, by the mass distribution principle, md0(�)≥ c2+2d0 .
Finally, extend these arguments to any dimension �≥ 1.

A.1.9. Given A1 ⊃ ·· · ⊃ Ai ⊃ ·· · , take A =⋂∞
i=1 Ai. For j ≥ 1, consider A′j = Aj \ A.

By Theorem A.1.14, we have that μ(A′j)→ 0 and so μ(Aj)→ μ(A). Given
A1 ⊂ ·· · ⊂ Ai ⊂ ·· · , take A =⋃∞

i=1 Ai. For each j, consider A′j = A \ Aj. By
Theorem A.1.14, we have that μ(A′j)→ 0, that is, μ(Aj)→ μ(A).

A.1.13. (Royden [Roy63]) (b)⇒ (a) Assume that there exist Borel sets B1,B2 such that
B1 ⊂ E ⊂ B2 and m(B2 \B1)= 0. Deduce that m∗(E \B1)= 0, hence E \B1 is
a Lebesgue measurable set. Conclude that E is a Lebesgue measurable set. (a)
⇒ (c) Let E be a Lebesgue measurable set such that m∗(E) <∞. Given ε > 0,
there exists a cover by open rectangles (Rk)k such that

∑
k m∗(Rk)<m∗(E)+ε.

Then, A=⋃k Rk is an open set containing E and such that m∗(A)−m∗(E) < ε.
Using that E is a Lebesgue measurable set, deduce that m∗(A \ E) < ε. For
the general case, write E as a disjoint union of Lebesgue measurable sets with
finite exterior measure. (c) ⇔ (d) It is clear that E is a Lebesgue measurable
set if and only if its complement is. (c) and (d)⇒ (b) For each k≥ 1, consider
a closed set Fk ⊂E and an open set Ak ⊃E such that m∗(E\Fk) and m∗(Ak \E)
are less than 1/k. Then, B1 = ∪Fk and B2 = ⋂k Ak are Borel sets such that
B1 ⊂ E ⊂ B2 and m∗(E \ B1) = m∗(B2 \ E) = 0. Conclude that m(B2 \ B1) =
m∗(B2 \B1)= 0.

A.1.18. Show that x �→ 1
n #{0≤ j≤ n− 1 : aj = 5} is a simple function for each n≥ 1.

By Proposition A.1.31, it follows that ω5 is measurable.
A.2.8. (a) Assume that F is uniformly integrable. Consider C > 0 corresponding to

α = 1 and take L = C + 1. Check that
∫ |f |dμ < L for every f ∈ F . Given

ε > 0, consider C > 0 corresponding to α = ε/2 and take δ = ε/(2C). Check
that

∫
A |f |dμ < ε for every f ∈ F and every set with μ(A) < δ. Conversely,

given α > 0, take δ > 0 corresponding to ε = α and let C = L/δ. Show that∫
|f |>C |f |dμ< α. (b) Applying Exercise A.2.5 to the function |g|, show that F

satisfies the criterion in (a). (c) Let us prove three facts about f = limn fn. (i) f is
finite at almost every point: Consider L as in (a). Note that μ({x : |fn(x)| ≥ k})≤
L/k for every n,k≥ 1 (Exercise A.2.4) and deduce thatμ({x : |f (x)| ≥ k})≤L/k
for every k ≥ 1. (ii) f is integrable: Fix K > 0. Given any ε > 0, take δ as in
(a). Take n sufficiently large that μ({x : |fn(x)− f (x)|> ε}) < δ. Note that

∫
|f |≤K

|f |dμ≤
∫
|fn−f |≤ε

|f |dμ+
∫
|f |≤K,|fn−f |>ε

|f |dμ≤ (L+ ε)+Kδ.

Deduce that
∫
|f |≤K |f |dμ≤ L for every K and

∫ |f |dμ≤ L. (iii) (fn)n converges
to f in L1(μ): Show that given ε > 0 there exists K > 0 such that

∫
|f |>K |f |dμ<

ε and
∫
|f |>K |fn|dμ< ε for every n. Take δ as in part (a) and n large enough that
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μ({x : |fn(x)− f (x)|> ε}) < δ. Then∫
|f |≤K

|fn− f |dμ≤
∫
|fn−f |≤ε

|fn− f |dμ+
∫
|fn−f |>ε

|fn|dμ+
∫
|fn|≤K,|fn−f |>ε

|f |dμ.

The right-hand side is bounded above by 2ε + Kδ. Combining these
inequalities,

∫ |fn− f |dμ< 4ε+Kδ for every n sufficiently large.
A.2.14. It is no restriction to assume that the Bn are pairwise disjoint. For each n,

consider the measure ηn defined in Bn by ηn(A)= η(f (A)). Then, ηn � (η | Bn)

and, by the theorem of Radon–Nikodym, there exists ρn : Bn → [0,+∞] such
that

∫
Bn
φ dηn =

∫
Bn
φρn dη for every bounded measurable function φ : Bn →R.

Define Jη | Bn = ρn. The essential uniqueness of Jη is a consequence of the
essential uniqueness of the Radon–Nikodym derivative.

A.3.5. Given any Borel set B ⊂ M, use Proposition A.3.2 and Lemma A.3.4 to
construct Lipschitz functions ψn : M → [0,1] such that μ({x ∈ M : ψn(x) �=
XB(x)})≤ 2−n for every n. Conclude that the claim in the exercise is true for ev-
ery simple function. Extend the conclusion to every bounded measurable func-
tion, using the fact that it is a uniform limit of simple functions. Finally, for any
integrable function, use the fact that the positive part and the negative part are
monotone pointwise limits of bounded measurable functions. Now consider
M= [0,1] and assume that there exists a sequence of continuous functions ψn :
M → R converging to the characteristic function ψ of M ∩Q at every point.
Consider the set R =⋂m

⋃
n>m{x ∈M : ψn(x) > 1/2}. On the one hand, R =

Q∩M; on the other hand, R is a residual subset of M; this is a contradiction.
A.4.6. By the inverse function theorem, for every x ∈ M there exist neighborhoods

U(x) ⊂ M of x and V(x) ⊂ N of f (x) such that f maps U(x) diffeomor-
phically onto V(x). This implies that the function y �→ #f−1(y) is lower
semi-continuous. Moreover, this function is bounded. Indeed, if there were
yn ∈ N with #f−1(yn) ≥ n for every n ≥ 1 then, since M is compact, we could
find xn,x′n ∈ f−1(yn) distinct with d(xn,x′n)→ 0. Let x be any accumulation
point of either sequence. Then f would not be injective in the neighborhood of
x, contradicting the hypothesis. Let k be the maximum value of #f−1(y). The
set Bk of points y ∈ N such that #f−1(y) = k is open, closed and non-empty.
Since N is connected, it follows that Bk =M.

A.4.9. Consider local charts ϕα : Uα→Xα , x �→ϕα(x) of M and ϕα : TUαM→Xα×Rd,
(x,v) �→ (ϕα ,Dϕα(x)v) of TM. Note that ϕα ◦ π ◦ Dϕ−1

α is the canonical
projection Xα×Rd →Xα , which is infinitely differentiable. Since M is of class
Cr and TM is of class Cr−1, it follows that π is of class Cr−1.

A.5.2. (a) Use the fact that the exponential function is convex. (b) Starting from the
Young inequality, show that

∫ |f ḡ|dμ≤ 1 whenever ‖f‖p = ‖g‖q = 1. Deduce
the general case of the Hölder inequality. (c) Start by noting that |f + g|p ≤
|f ||f + g|p−1 + |g||f + g|p−1. Apply the Hölder inequality to each of the terms
on the right-hand side of this inequality to obtain the Minkowski inequality.

A.5.6. (Rudin [Rud87, Theorem 6.16]) Note that �(g) ∈ Lp(μ)∗ and ‖�(g)‖ ≤ ‖g‖q:
for q < ∞, that follows from the Hölder inequality; the case q = ∞ is
immediate. It is clear that� is linear. To see that it is injective, given g such that
�(g)= 0, consider a function β with values on the unit circle such that βg=
|g|. Then, φ(g)β= ∫ |g|dμ= 0, hence g= 0. We are left to prove that for every
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φ ∈ Lp(μ)∗ there exists g ∈ Lq(μ) such that φ = �(g) and ‖g‖q = ‖φ‖. For
each measurable set B⊂M, define η(B)= φ(XB). Check that η is a complex
measure (to prove σ -additivity one needs p<∞) and observe that η�μ. Con-
sider the Radon–Nikodym derivative g= (dη/dμ). Then, φ(XB)=

∫
B gdμ for

every B; conclude that φ(f )= ∫ fgdμ for every f ∈ L∞(μ). In the case p= 1,
this construction yields |∫B gdμ| ≤ ‖φ‖μ(B) for every measurable set. Deduce
that ‖g‖∞ ≤ ‖φ‖. Now suppose that 1< p<∞. Take fn =XBnβ|g|q−1, where
Bn = {x : |g(x)| ≤ n}. Observe that fn ∈ L∞(μ) and |fn|p = |g|q in the set Bn and∫

Bn

|g|q dμ=
∫

fngdμ= φ(fn)≤‖φ‖
(∫

|fn|p dμ

)1/p

≤‖φ‖
(∫

Bn

|g|q dμ

)1/p

.

This yields
∫

Bn
|g|q dμ ≤ ‖φ‖q for every n and, thus, ‖g‖q ≤ ‖φ‖. Finally,

φ(f ) = ∫ fgdμ for every f ∈ Lp(μ), since the two sides are continuous
functionals and they coincide on the dense subset L∞.

A.6.5. By definition, u ·Lv = L∗u · v and u ·L∗v = (L∗)∗u · v for any u and v. Hence,
v · (L∗)∗u= L∗v ·u for any u and v. Reversing the roles of u and v, we see that
L= (L∗)∗. Note that ‖L∗u ·v‖≤‖L‖‖u‖‖v‖ for every u and v. Taking v= L∗u,
it follows that ‖L∗u‖≤‖L‖‖u‖ for every u and so ‖L∗‖≤‖L‖. Since L= (L∗)∗,
it follows that ‖L‖ ≤ ‖L∗, hence the two norms coincide. Since the operator
norm is submultiplicative, ‖L∗L‖ ≤ ‖L‖2. On the other hand, u ·L∗Lu= ‖Lu‖2

and so ‖L∗L‖‖u‖2 ≥ ‖Lu‖2, for every u. Deduce that ‖L∗L‖ ≥ ‖L‖2 and so the
two expressions coincide. Analogously, ‖LL∗‖ = ‖L‖2.

A.6.8. Assume that v ∈ H and (un)n is a sequence in E such that un · v→ u · v for
every v ∈H. Considering v ∈ E⊥, conclude that v ∈ (E⊥)⊥. By Exercise A.6.7,
it follows that u∈E. Therefore, E is closed in the weak topology. Now consider
any sequence (vn)n in U(E) converging to some v ∈ H. For each n, take
un = h−1(vn) ∈ E. Since h is an isometry, ‖um− un‖ = ‖vm− vn‖ for any m,n.
It follows that (un)n is a Cauchy sequence in E and so it admits a limit u ∈ E.
Hence, v = h(u) is in U(E).

A.7.1. The inverse of T +H is given by the equation (T +H)(T−1+ J)= id , which
may be rewritten as a fixed point equation J = −L−1HL−1 + L−1HJ. Use the
hypothesis to show that this equation admits a (unique) solution. Hence, T+H
is an isomorphism. Deduce that L− λid whenever λ > ‖L‖. Therefore, the
spectrum of L is contained in the disk of radius ‖L‖. It also follows from the
previous observation that if L− λid is an isomorphism then the same is true
for L−λ′id if λ′ is sufficiently close to λ.

A.7.4. (a) Observe that L − λid = ∫ (z − λ)dE(z) and use Lemma A.7.4. By the
continuity from below property (Exercise A.1.9), E({λ})= limn E({z : |z−λ| ≤
1/n}). It follows that E({λ})v = v. (b) It follows from Exercise A.7.3 that
E(B)E({λ}) = E({λ}) if λ ∈ B and E(B)E({λ}) = E(∅) = 0 otherwise. Since
L= ∫ zdE(z), we get that Lv = λE({λ})v = λv.
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