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Foreword

Classical Teichmüller theory concerns moduli spaces of conformal structures on sur-
faces. By the uniformization theorem, any conformal structure on a surface can be
represented by a unique complete Riemannian metric of constant curvature−1, 0 or 1.
From this point of view, Teichmüller theory can also be considered as the study of
moduli spaces of metrics of constant curvature −1, 0 or 1 on surfaces. In most cases
(more precisely, when the Euler characteristic of the surface is negative), the curvature
is negative, and Teichmüller theory can be viewed as the theory of moduli spaces of
hyperbolic structures, that is, metrics of constant curvature −1 on surfaces.

In this multi-volume Handbook, the expression “Teichmüller theory” is used in
a broader sense, namely, as the study of moduli of general geometric structures on
surfaces, with methods inspired or adapted from those of classical Teichmüller theory.
Such a theory has ramifications in group theory, in representation theory, in dynamical
systems, in symplectic geometry, in three- and four-manifolds topology, and in other
domains of mathematics.

The present volume of the Handbook contains four parts, namely:

Part A : The metric and the analytic theory, 2

Part B: The group theory, 2

Part C: Representation spaces and geometric structures, 1

Part D: The Grothendieck–Teichmüller theory

PartsA and B are sequels to parts with the same names inVolume I of the Handbook.
We hope that the various volumes of this Handbook will give the interested reader an

overview of the old and of the recent work on Teichmüller theory and its applications,
that they will open new perspectives and that they will contribute to further research
in that field. In relation to future developments, it is worth mentioning that several
chapters of the present volume contain a discussion of open problems. These include
the chapters by Kojima, Korkmaz & Stipsicz, Möller, Šarić, Fletcher & Markovic, and
Fujiwara.

Finally, let me mention that some of the contributions that were announced to appear
in this volume will appear in later volumes. (At the time where these contributions
were planned, only two volumes of the Handbook were expected.)

I would like to thank againVladimir Turaev for his encouragement in this Handbook
project, and Irene Zimmermann from the EMS publishing House for the seriousness
of her work. Of course, I thank all of the 24 authors who contributed to this volume
for their pleasant and fruitful collaboration.

Strasbourg, February 2009 Athanase Papadopoulos
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This introduction can be considered as a sequel to the introduction that I wrote for
Volume I of the Handbook, and I shall limit myself here to a general presentation of
the material covered in the present volume. The exposition will follow the four-parts
division of the volume, and for each part, its division in chapters.

Beyond the information given on the content of this volume, I hope that the reader
of this introduction will get (if he does not have it yet) an idea of the richness of the
subject of Teichmüller theory.
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All the surfaces considered in this introduction are orientable, unless otherwise
stated. I have tried to give some necessary definitions to make the introduction as
much self-contained as possible.

1 The metric and the analytic theory

Part A of this volume, on the metric and analytic theory of Teichmüller space, con-
tains chapters on Weil–Petersson geometry, on biholomorphic maps between finite
or infinite-dimensional Teichmüller spaces, on the theory of holomorphic families of
Riemann surfaces, on uniformization of algebraic surfaces, on combinatorial classes
in moduli space and on canonical differential forms on that space representing coho-
mology classes.

1.1 Weil–Petersson geometry

Chapter 1 by Scott Wolpert is a review of some recent work on the Weil–Petersson
metric of Tg,n, the Teichmüller space of a surface of genus g ≥ 0 with n ≥ 0 punctures,
with negative Euler characteristic. Let us start by recalling some basic facts about this
metric.

It is well known that the cotangent space to Tg,n at a point represented by a Riemann
surface S can be identified with the spaceQ(S) of holomorphic quadratic differentials
on S that have at most simple poles at the punctures. The Weil–Petersson cometric on
that cotangent space is given by the Hermitian product

∫
S
φ(z)ψ(z)ρ−2(z)|dz|2, for

φ and ψ in Q(S), where ρ is the density form of the length element ρ(z)|dz| of the
unique complete hyperbolic metric that uniformizes the Riemann surface S.1

The Weil–Petersson metric on Tg,n is Kähler, geodesically convex and with nega-
tive and unbounded sectional curvature (its supremum is zero, and its infimum is−∞).
Its Ricci curvature is bounded from above by a negative constant. This metric is not
complete, and a geodesic of bounded length can be obtained by making the hyperbolic
length of a closed geodesic on the surface tend to zero. The last fact explains intu-
itively why the completion of the Weil–Petersson metric gives rise to the augmented
Teichmüller space Tg,n, whose elements are equivalence classes of marked stable Rie-
mann surfaces, that is, marked Riemann surfaces with nodes, with the property that
each connected component of the complement of the nodes is a surface with cusps
which has negative Euler characteristic. The space Tg,n is a stratified space which is
not locally compact and which is a partial compactification of Tg,n. The action of the

mapping class group on Tg,n extends to an action on Tg,n, and the quotient of Tg,n by

1The name Weil–Petersson has been given to this metric because it was André Weil who first noticed that
this product, called the Petersson product and originally introduced by Hans Petersson on the space of modular
forms, gives a metric on Teichmüller space.
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this action is a compact orbifold, known as the Deligne–Mumford stable curve com-
pactification of moduli space. In 1976, H. Masur obtained a beautiful result stating
that the Weil–Petersson metric on Teichmüller space extends to a complete metric on
the augmented Teichmüller space Tg,n. This result is one of the starting points for a
topological approach to the Weil–Petersson metric.

Our knowledge of the Weil–Petersson geometry underwent a profound transfor-
mation at the beginning of 1980s, thanks to the work of Scott Wolpert, who obtained a
series of particularly elegant results on the Weil–Petersson metric and on its associated
symplectic form. New important results on the subject, from various points of view,
were obtained in the last few years by several authors, including Wolpert, Yamada,
Huang, Liu, Sun, Yau, McMullen, Mirzakhani, Brock, Margalit, Daskalopoulos and
Wentworth (there are others). The recent work on Weil–Petersson geometry includes
the study of the CAT(0) geometry of augmented Teichmüller space, that is, the study
of its nonpositive curvature geometry in the sense of Cartan–Alexandrov–Toponogov
(following a terminology introduced by Gromov). We recall that the definition of
a CAT(0) metric space is based on the comparison of distances between points on
the edges of arbitrary triangles in that metric space with distances between corre-
sponding points on “comparison triangles” in the Euclidean plane. It is known that
augmented Teichmüller space, equipped with the extension of the Weil–Petersson met-
ric, is a complete CAT(0) metric space (a result due to Yamada). The Weil–Petersson
isometry group action extends continuously to an action on augmented space. The
Weil–Petersson isometry group coincides with the extended mapping class group of
the surface except for some special surfaces (a result of Masur & Wolf, completed
to some left-out special cases by Brock & Margalit, which parallels a famous re-
sult by Royden for the Teichmüller metric, completed by Earle & Kra). An analysis
of the action of the mapping class group in the spirit of Thurston’s classification
of mapping classes, showing in particular the existence of invariant Weil–Petersson
geodesics for pseudo-Anosov mapping classes, has been carried out by Daskalopou-
los & Wentworth. Brock established that (augmented) Teichmüller space equipped
with the Weil–Petersson metric is quasi-isometric to the pants graph of the surface.

In Chapter 1 of this volume, Wolpert makes a review of the recent results on the
metric aspect (as opposed to the analytical aspect) of the Weil–Petersson metric. He
reports on a parametrization of augmented Teichmüller space using Fenchel–Nielsen
coordinates and on a comparison between the Weil–Petersson metric and the Teich-
müller metric in the thin part of Teichmüller space, using these coordinates. He gives
formulae for the Hessian and for the gradient of the hyperbolic geodesic length func-
tions and for the behaviour of these functions near degenerate hyperbolic surfaces.
He also gives formulae for the Weil–Petersson symplectic form in terms of geodesic
length functions. Weil–Petersson convexity and curvature are also reviewed. The
chapter also contains a section on Alexandrov angles, in relation with Alexandrov tan-
gent cones at points of the augmented Teichmüller space. Wolpert gives estimates on
the exponential map, with applications to the first variation formula for the distance
and to the length-minimizing paths connecting two given points and intersecting a
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prescribed stratum. He displays a table comparing the known metric properties of
the Teichmüller space of a surface of negative Euler characteristic with corresponding
properties of the hyperbolic plane, which, as is well known, is the Teichmüller space
of the torus.

1.2 The quasiconformal theory

In Chapter 2, Alastair Fletcher and Vladimir Markovic study analytic properties of
finite-dimensional as well as infinite-dimensional Teichmüller spaces. They review
some classical properties and they present some recent results, in particular concerning
biholomorphic maps between Teichmüller spaces.

We recall that a Riemann surface is said to be of finite topological type if its
fundamental group is finitely generated. It is said of finite analytical type if it is
obtained (as a complex space) from a closed Riemann surface by removing a finite set
of points. The Teichmüller space T (S) of a Riemann surface S is a Banach manifold
which is finite-dimensional if and only if S is of finite analytical type. (Note that
T (S) can be infinite-dimensional even if S has finite topological type.) A surface with
border has an ideal boundary, which is the union of its ideal boundary curves, and
the Teichmüller space of a surface with nonempty border is infinite-dimensional. The
most important surface with border is certainly the unit disk D ⊂ C, and its Teichmüller
space is called universal Teichmüller space. This space contains all Teichmüller spaces
of Riemann surfaces, as we shall recall below.

In this chapter, S is a surface of finite or infinite type.
The Teichmüller space T (S) of a Riemann surface S is defined as a space of

equivalence classes of marked Riemann surfaces (S′, f ), with the marking f being
a quasiconformal homeomorphism between the base surface S and a Riemann sur-
face S′. We recall that for infinite-dimensional Teichmüller spaces, the choice of a base
Riemann surface is an essential part of the definition, since homeomorphic Riemann
surfaces are not necessarily quasiconformally equivalent. Teichmüller space can also
be defined as a space of equivalence classes of Beltrami differentials on a given base
Riemann surface. The relation between the two definitions stems from the fact that
a quasiconformal mapping from a Riemann surface S to another Riemann surface is
the solution of an equation of the form fz = μfz (called a Beltrami equation), with μ
a Beltrami differential on S.

Fletcher and Markovic also deal with universal Teichmüller space. This is a space
of equivalence classes of normalized quasiconformal homeomorphisms of the unit
disk D. It is well known that quasiconformal maps of D extend to the boundary ∂D of D.
Such quasiconformal maps are normalized so that their extension to the boundary fixes
the points 1,−1 and i, and two quasiconformal self-maps of the disk are considered to
be equivalent if they induce the same map on ∂D. Like the other Teichmüller spaces,
universal Teichmüller space can also be defined as a space of equivalence classes
of Beltrami differentials. By lifting quasiconformal homeomorphisms or Beltrami
differentials from a surface to the universal cover, the Teichmüller space of any surface
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of hyperbolic type embeds in the universal Teichmüller space, and it is in this sense
that the universal Teichmüller space is called “universal”.

The complex Banach structure of each Teichmüller space T (S) can be obtained
from the so-called Bers embedding of T (S) into the Banach space Q(S) of holo-
morphic quadratic differentials on the base surface S. In the case where S is of finite
analytical type, this embedding provides a natural identification between the cotangent
space at a point of T (S) and a Banach space Q of integrable holomorphic quadratic
differentials, and the two spaces are finite-dimensional. In the general case, the spaces
considered are not necessarily finite-dimensional, and the cotangent space at a point
of T (S) is the predual of the Banach space Q, that is, a space whose dual is Q. The
predual of Q is called the Bergman space of S. This distinction, which is pointed out
by Fletcher and Markovic, is an important feature of the theory of infinite-dimensional
Teichmüller spaces.

It is well known that the complex-analytic theory of finite-dimensional Teichmüller
spaces can be developed using more elementary methods than those that involve the
Bers embedding. For instance, for surfaces of finite analytical type,Ahlfors defined the
complex structure of Teichmüller space using period matrices obtained by integrating
systems of independent holomorphic one-forms over a basis of the homology of the
surface. The complex analytic structure on Teichmüller space is then the one that
makes the period matrices vary holomorphically. The description of the complex
structure in the infinite-dimensional case requires more elaborate techniques.

Along the same line, we note some phenomena that occur in infinite-dimensional
Teichmüller theory and not in the finite-dimensional one. There is a “mapping class
group action” on infinite-dimensional Teichmüller spaces, but, unlike the finite dimen-
sional case, this action is not always discrete. (Here, discreteness means that the orbit
of any point under the group action is discrete.) Katsuhiko Matsuzaki studied limit
sets and domains of discontinuity for such actions, in the infinite-dimensional case.
From the metric-theoretic point of view, Zhong Li and Harumi Tanigawa proved that
in each infinite-dimensional Teichmüller space, there are pairs of points that can be
connected by infinitely many distinct geodesic segments (for the Teichmüller metric).
This contrasts with the finite-dimensional case where the geodesic segment connecting
two given points is unique. Li proved non-uniqueness of geodesic segments connect-
ing two points in the universal Teichmüller space, and he showed that there are closed
geodesics in any infinite-dimensional Teichmüller space. He also proved that the
Teichmüller distance function, in the infinite-dimensional case, is not differentiable
at some pairs of points in the complement of the diagonal, in contrast with the finite-
dimensional case where, by a result of Earle, the Teichmüller distance function is
continuously differentiable outside the diagonal.2

The mention of these differences between the finite- and infinite-dimensional cases
will certainly give more importance to the results on isometries and biholomorphic

2The study of the differentiability of the Teichmüller distance function was initiated by Royden, and it was
continued by Earle. More precise results on the differentiability of this function were obtained recently by Mary
Rees.
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maps between infinite-dimensional Teichmüller spaces that are reported on here by
Fletcher and Markovic, since these are results that hold in both the finite- and in
the infinite-dimensional cases. Fletcher and Markovic study biholomorphic maps
between Teichmüller spaces by examining their induced actions on cotangent spaces
(and Bergman spaces). In the finite-dimensional case, the idea of studying the action
on cotangent space is already contained in the early work of Royden. The action of
a biholomorphic map induces a C-linear isometry between Bergman spaces. Fletcher
and Markovic report on a rigidity result, whose most general form is due to Markovic,
and with special cases previously obtained by Earle & Kra, Lakic and Matsuzaki.
The result says that any surjective C-linear isometry between the Bergman spaces
A1(M) and A1(N) of two surfacesM and N is geometric, except in the case of some
elementary surfaces. Roughly speaking, the word “geometric” means here that the
isometry is a composition of two naturally defined isometries between such spaces,
viz. multiplication by a complex number of norm one, and an isometry induced by
the action of a conformal map between the surfaces. A corollary of this result is that
the biholomorphic automorphism group of the Teichmüller space of a surface of non-
exceptional (finite or infinite) type can be naturally identified with the mapping class
group of that surface.

As in the finite-dimensional case, this result reduces the study of biholomorphic
homeomorphisms between Teichmüller spaces to the study of linear isometries be-
tween some Banach spaces. In the course of proving this result, a proof is given of the
fact that the Kobayashi and the Teichmüller metrics on (finite- or infinite-dimensional)
Teichmüller space agree, again generalizing a result obtained by Royden and com-
pleted by Earle & Kra for finite type Riemann surfaces.

Chapter 2 of this volume also contains the proof of a local rigidity result due
to Fletcher, saying that the Bergman spaces of any two surfaces whose Teichmül-
ler spaces are infinite-dimensional are always isomorphic, and that any two infinite-
dimensional Teichmüller spaces are locally bi-Lipschitz equivalent. More precisely,
Fletcher proved that the Teichmüller metric on every Teichmüller space of an infinite-
type Riemann surface is locally bi-Lipschitz equivalent to the Banach space l∞ of
bounded sequences with the supremum norm.

1.3 Holomorphic families

A holomorphic family of Riemann surfaces of type (g, n) is a triple (M, π,B) defined
as follows:

• M is a 2-dimensional complex manifold (topologically, a 4-manifold);
• B is a Riemann surface;
• π : M → B is a holomorphic map;
• for all t ∈ B, the fiber St = π−1(t) is a Riemann surface of genus g with n

punctures;
• the complex structure on St depends holomorphically on the parameter t .
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Chapter 3, by Yoichi Imayoshi, concerns holomorphic families of Riemann surfaces.
In all this chapter, it is assumed that 2g − 2+ n > 0.

Why do we study holomorphic families of Riemann surfaces? One reason is that
one way of investigating the complex analytic structure of Teichmüller space involves
the study of holomorphic families. Another reason is that the study of degeneration
of holomorphic families is related to the study of the stable curve compactification of
moduli space.

To be more precise, we use the following notation: as before, Tg,n is the Teichmüller
space of a surface of type (g, n), that is, of genus g with n punctures and Mg,n is the
corresponding moduli space. A holomorphic family (M, π,B) of type (g, n) gives
rise to a holomorphic map � : B̃ → Tg,n, where B̃ is the universal cover of B, and
to a quotient holomorphic map B̃ → Mg,n called the moduli map of the family.
A basic combinatorial tool in the study of the holomorphic family (M, π,B) is its
topological monodromy, which is a homomorphism from the fundamental group of
the base surface B to the mapping class group �g,n of a chosen Riemann surface
Sg,n of type (g, n). In Chapter 3, this homomorphism is denoted by �∗, because its
definition makes use of the map �. It is defined through the action of the mapping
class group �g,n on the Teichmüller space Tg,n.

Imayoshi reports on an important rigidity theorem stating that if (M1, π1, B) and
(M2, π2, B) are locally non-trivial holomorphic families of Riemann surfaces of type
(g, n) over the same base B, and if (�1)∗ = (�2)∗, then �1 = �2 and (M1, π1, B)

is biholomorphically equivalent to (M2, π2, B).
Imayoshi mentions an application of this rigidity theorem to the proof of the geo-

metric Shafarevich conjecture, which states that there are only finitely many locally
non-trivial and non-isomorphic holomorphic families of Riemann surfaces of fixed
finite type over a Riemann surface B of finite type. This conjecture was proved
by Parshin in the case where B is compact, and by Arakelov in the general case.
Imayoshi and Shiga gave a variant of the proof, using the rigidity theorem stated
above. Imayoshi notes that the same rigidity theorem can be used to give a proof
of the geometric Mordell conjecture, which concerns the existence of holomorphic
sections for holomorphic families.

A large part of the study made in Chapter 3 concerns the case where the base surface
B is the unit disk in C punctured at the origin. We denote by 	∗ this punctured disk.
In many ways, taking as base surface the punctured disk is sufficient for the study of
the degeneration theory of holomorphic families. It may also be useful to recall here
that the Deligne–Mumford stable reduction theorem for the moduli space of curves
reduces the study of the stable (Deligne–Mumford) compactification of moduli space
to that of holomorphic families over the punctured disk which degenerate by producing
surfaces with nodes above the puncture.

In the 1960s, Kodaira began a study of holomorphic families over the punctured
disk, in the special case where the fibers are surfaces of type (1, 0). He studied in
particular the behaviour of singular fibers of such families, that is, fibers obtained by
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extending the family at the puncture. After this work, Kodaira and others considered
singular fibers of more general families. This is also reported on in Chapter 3 of this
Handbook.

In the case where the base surface is the punctured disk 	∗, the topological mon-
odromy is a cyclic group, and it gives rise to an element of the mapping class group of
a fiber, called the topological monodromy around the origin. This element is defined
after a choice of a basepoint s in 	∗ and after the identification of the fiber π−1(s)

above that point with a fixed marked topological surface S. The topological mon-
odromy is then the element of the mapping class group of S that performs the gluing
as one traverses the circle in 	∗ centered at the origin and passing through s. The
topological monodromy of the family is well defined up to conjugacy (the ambiguity
being due to the choice of a surface among the fibers, and of its identification with a
fixed marked surface).

In 1981, Imayoshi studied monodromies of holomorphic families (M, π,	∗) in
connection with the deformation theory of Riemann surfaces with nodes. In particular,
he proved that the topological monodromy of a family (M, π,	∗) is pseudo-periodic3,
which means that this mapping class contains an orientation-preserving homeomor-
phism f that preserves a (possibly empty) collection {C1, . . . , Ck} of disjoint homo-
topically nontrivial and pairwise non-homotopic simple closed curves on the surface,
such that for each i = 1, . . . , k, there exists an integer ni such that a certain power
of f is the composition of ni-th powers of Dehn twists along the Ci’s.

Imayoshi studied a map from the punctured disk to the moduli space Mg,n of S
which is canonically associated to the family (M, π,	∗), and he showed that this
map extends holomorphically to a map from the unit disk	 to the Deligne–Mumford
compactification Mg,n of Mg,n. He showed that algebraic properties of the topological
monodromy (e.g. the fact that it is of finite or infinite order) depend on whether the
image of 0 by the holomorphic map 	→Mg,n lies in Mg,n or in Mg,n −Mg,n. He
also showed that the topological monodromy is of negative type, meaning that it can
be represented by a homeomorphism f of the fiber which is either periodic, or, using
the above notation, such that the Dehn twists around theCi’s are negative Dehn twists.
Chapter 3 of this volume contains a new proof of Imayoshi’s 1981 result.

Y. Matsumoto & J. M. Montesinos-Amilibia and (independently) S. Takamura
proved recently a converse to Imayoshi’s result. More precisely, starting with any
pseudo-periodic self-map of negative type of a Riemann surface Sg,n satisfying 2g −
2 + n > 0, they constructed a holomorphic family of Riemann surfaces over the
punctured disk whose monodromy is the given map up to conjugacy. Matsumoto and
Montesinos-Amilibia showed that the ambiant topological type of the singular fiber
is determined by the monodromy.

3Such a mapping class is of elliptic type or of parabolic type in the Bers terminology of the Thurston
classification of mapping classes.
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1.4 Uniformization

Chapter 4, by Robert Silhol, concerns the problem of uniformization of Riemann
surfaces defined by algebraic equations.

By the classical Poincaré–Koebe uniformization theorem, one can associate to
any compact Riemann surface S of negative Euler characteristic a Fuchsian group,
that is, a discrete subgroup � of PSL(2,R) acting on the hyperbolic plane H

2, such
that S is conformally equivalent to the hyperbolic manifold H

2/�. All the known
proofs of the uniformization theorem are rather involved, and it is not an easy matter
to explicitly exhibit the hyperbolic structure H

2/� that uniformizes a given Riemann
surface S. Silhol discusses this problem for the case where the Riemann surface S is
given explicitly as an algebraic curve over C, that is, as the zero set of a two-variable
polynomial with coefficients in C. We recall that by a result of Riemann, any compact
Riemann surface can be defined as an algebraic curve. We note in passing that the
question of what is the “best” field of coefficients for a polynomial defining a given
Riemann surface can be dealt with in the setting of Grothendieck’s theory of dessins
d’enfants, which is treated in another chapter of this volume. It is also worth noting
that defining Riemann surfaces by algebraic equations does not necessarily reveal all
the aspects of the complex structure of that surface. For instance, the problem of
finding the holomorphic automorphism group of a Riemann surface given by means
of an algebraic equation is not tractable in general.

Silhol presents classical and recent methods that are used in the study of the fol-
lowing two problems, which he calls the uniformization problem and the inverse
uniformization problem respectively:

• given a Riemann surfaceS defined as an algebraic curve over C, find its associated
hyperbolic structure;

• given a discrete subgroup � of PSL(2,R) acting on H
2 and satisfying certain

conditions, find an algebraic curve representing the Riemann surface S = H
2/�.

The methods that are used in the study of these problems involve the Schwarzian
differential equation, theta functions, Poincaré series and other automorphic forms.
The chapter also contains the discussion of explicit examples. The author also reports
on recent work on the uniformization problem, by himself and S. Lelièvre, based
on methods that were introduced by Fricke and Klein. This work concerns the uni-
formization of certain families of complex algebraic curves by hyperbolic surfaces
obtained by gluing hyperbolic triangles or quadrilaterals along their boundaries.

Other questions related to uniformization are addressed in Chapter 18 of this vol-
ume, by Herrlich and Schmithüsen.

1.5 Combinatorial classes

In Chapter 5, Gabriele Mondello gives a detailed survey of the use of ribbon graphs
in Teichmüller theory, in particular in the investigation of combinatorial classes in
moduli space.
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In this chapter, S is a compact oriented surface of genus g ≥ 0 equipped with a
nonempty finite subset of points X of cardinality n satisfying 2g − 2+ n > 0, called
the marked points. As before, Tg,n and Mg,n denote respectively the Teichmüller and
the moduli space of the pair (S,X). A ribbon graph (also called a fatgraph) associated
to (S,X) is a finite graphG embedded in S−X such that the inclusionG ↪→ (S−X)
is a homotopy equivalence.

Mondello describes the two main methods that have been used so far for defining
ribbon graphs in the context of Teichmüller space. One definition uses complex
analysis, namely, Jenkins–Strebel quadratic differentials, and the other definition uses
hyperbolic geometry, more precisely, Penner’s decoration theory.

We recall that a Jenkins–Strebel differential on a Riemann surface with marked
points is a meromorphic quadratic differential with at worst double poles at the marked
points, whose horizontal foliation has all of its regular leaves compact. A Jenkins–
Strebel differential defines a flat metric on the surface, with isolated cone singularities.
The surface, as a metric space, is obtained by gluing a finite collection of Euclidean
cylinders along their boundaries. The combinatorics of this cylinder decomposition
of the surface is encoded by a ribbon graph.

Ribbon graphs, as they are used in Chapter 5 of this Handbook, are equipped with
weights, and are called metric ribbon graphs. The weights, in the case just described,
come from the restriction of the singular flat metric to the cylinders.

In the hyperbolic geometry approach, one considers complete finite area hyperbolic
metrics on the punctured surface S −X. Neighborhoods of punctures are cusps and,
around each cusp, there is a cylinder foliated by closed horocycles, that is, closed leaves
whose lifts to the universal cover of S are pieces of horocycles of H

2. A decoration
on a hyperbolic punctured surface of finite area is the choice of a horocycle around
each puncture. Again, these data are encoded by a metric ribbon graph.

There is a natural combinatorial structure on the space of ribbon graphs, which
encodes the combinatorics of these graphs (valencies, etc.). This structure provides,
via any one of the two constructions that we mentioned above, a cellularization of the
space Tg,n × 	n−1, where 	n−1 is the standard simplex in R

n. This cellularization
is invariant under the action of the mapping class group �g,n, and it gives a quotient
cellularization of Mg,n ×	n−1 (in the orbifold category). The last cellularization is
one of the main tools that have been used in the study of the cohomology of moduli
space and of its intersection theory. The basic work on this cellularization has been
done by Harer–Mumford–Thurston, by Penner and by Bowditch & Epstein.

There is a dual object to a ribbon graph, namely, an arc system on the surface S.
This is a collection of disjoint essential arcs with endpoints in X, which are pairwise
non-homotopic with endpoints fixed.

Arc systems on the pair (S,X) naturally form a flag simplicial complex, where for
each k ≥ 0, a k-simplex is an arc system with k + 1 components. A◦(S,X) denotes
the interior of the complex A(S,X). This is the subset of A(S,X) consisting of arc
systems on S − X that cut this surface into disks or pointed disks. A∞(S,X) =
A(S,X)− A◦(S,X) is called the boundary of A(S,X).
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Penner and Bowditch & Epstein, using decorations on hyperbolic surfaces with
cusps, and Harer–Mumford–Thurston, using flat structures arising from meromorphic
quadratic differentials of Jenkins–Strebel type, proved that there is a �g,n-equivariant
homeomorphism from the geometric realization |A◦(S,X)| to the product space Tg,n×
	n−1. In particular, there is a �g,n-equivariant homotopy equivalence |A◦(S,X)| 

Tg,n. Via the homeomorphism |A◦(S,X)| → Tg,n × 	n−1, the cellular structure of
|A◦(S,X)| is transported to Tg,n × 	n−1 and the homeomorphism |A◦(S,X)| →
Tg,n ×	n−1 induces a homeomorphism |A◦(S,X)|/�g,n→Mg,n ×	n−1.

Remarkable applications of this cellularization include the following results, which
are reported on by Mondello in Chapter 5 of this volume:
• Harer used this cellularization to compute the virtual cohomological dimension

of the mapping class group.
• Harer & Zagier and (independently) Penner used this cellularization to compute

the orbifold Euler characteristic of moduli space.4

• Kontsevich used the homeomorphism |A◦(S,X)|/�g,n→Mg,n ×	n−1 in his
proof of Witten’s conjecture. Roughly speaking, the conjecture states that a certain
formal power series whose coefficients are the intersection numbers of certain tau-
tological classes on moduli space satisfies the classical KdV hierarchy of equations,
that is, the generating series is a zero of certain differential operators that generate a
truncated Virasoro algebra that appears in string theory.5

•Using the homeomorphism |A◦(S,X)|/�g,n→Mg,n×	n−1, Kontsevich, Pen-
ner and Arbarello & Cornalba studied a sequence of combinatorially defined cycles
in moduli space. These cycles, called Witten cycles, are obtained by taking the cells
that correspond to ribbon graphs with vertices of specified valencies. For instance,
maximal cells correspond to trivalent ribbon graphs. Using Poincaré duality, Witten
cycles define cohomology classes inH 2∗(Mg,n;Q). Kontsevich and Penner (in differ-
ent works) defined orientations on the Witten subcomplexes, Kontsevich used matrix
integral techniques to express the volumes of these cycles, and Arbarello & Cornalba
exploited Kontsevich’s techniques to analyze the integrals of the tautological classes
over the combinatorial cycles.
• Chapter 5 also contains a sketch of a proof, obtained by Mondello and Igusa

independently, of the Witten–Kontsevich conjecture (sharpened later by Arbarello &
Cornalba) stating that the Witten cycles are Poincaré duals to some tautological classes
defined in an algebro-geometric way on moduli space.
•Mondello introduced generalized Witten cycles, obtained by allowing some zero

weights on the ribbon graphs that define the Witten cycles. He proved that generalized
Witten cycles and tautological classes generate the same subring of H ∗(Mg,n;Q).
(This result was also obtained by Igusa.) Mondello also showed that there are explicit
formulae that express Witten classes as polynomials in the tautological classes and

4The enumeration methods of ribbon graphs used in their works were first developed by theoretical physicists,
using asymptotic expansions of Gaussian integrals over spaces of matrices.

5A new approach to Witten’s conjecture, which is closer in spirit to the hyperbolic geometry of surfaces, has
been recently developed by Maryam Mirzakhani.
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vice-versa. Mondello’s proof of the Witten–Kontsevich conjecture, claiming that
these cycles are polynomials in the tautological classes, provides a recursive way to
find these polynomials.

The chapter also contains a discussion about the Weil–Petersson form and how
the spine construction for hyperbolic surfaces with geodesic boundary interpolates
between the two cellularizations of Tg,n ×	n−1.

Finally, Mondello recalls Harer’s result on the stability of the cohomology groups
Hk(Mg,n) for g > 3k and fixed n. Without using the result by Igusa/Mondello stated
above, he exhibits a direct proof of the fact that the Witten cycles are stable. It is
not clear whether similar arguments can be used for A∞-classes, that is, cohomology
classes of Mg,n related to certain A∞-algebras (Witten classes correspond to certain
1-dimensional algebras) first defined by Kontsevich, and whether these classes are
tautological.

1.6 Differential forms

In Chapter 6, Nariya Kawazumi considers the problem of constructing “canonical”
forms representing cohomology classes on moduli space. The theory is illustrated
by several interesting examples, and the chapter provides an overview of various
constructions of canonical two-forms.

To explain what this theory is about, Kawazumi recalls the following classical
situation. Harer’s result, saying that the second homology group of the moduli space
Mg of a closed orientable surface S of genus g ≥ 3 is of rank one, implies that there
exists a de Rham cohomology class which is unique up to a constant. Kawazumi’s
question in that case is to find a “canonical” two-form that represents such a class. It
turns out there are several such “canonical” two-forms. One non-trivial 2-cocycle for
Mg is the Meyer cocycle. This cocycle is related to the signature of the total space of
a family of compact Riemann surfaces.

The Morita–Mumford classes are other interesting related cohomology classes. We
recall that for n ≥ 1, the n-th Morita–Mumford class en (also called tautological class)
is an element of the cohomology group H 2n(Mg). These classes play a prominent
role in the stable cohomology of the mapping class group. In 2002, I. Madsen and
M. Weiss proved a conjecture that was made by Mumford, stating that the rational
stable cohomology algebra of the mapping class group is generated by the Morita–
Mumford classes. Kawazumi with co-authors, in a series of papers, made a deep study
of the Morita–Mumford classes and their generalizations. Wolpert showed that the
Weil–Petersson Kähler form ωWP represents the first Morita–Mumford class e1. This
form is an example of a “canonical” representative of e1.

The ideas developed in Chapter 6 of this Handbook use the period map from
Teichmüller space to the Siegel upper half-space. We recall that the Siegel upper half-
space of genus g ≥ 2, denoted by Hg , is the set of symmetric square g×gmatrices with
complex coefficients whose imaginary part is positive definite. The space Hg plays an
important role in number theory, being the domain of some automorphic forms (Siegel
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modular forms). The period map Jac : Tg → Hg is a canonical map from Teichmüller
space into the Siegel upper half-space, and the first Morita–Mumford class e1 is the
pull-back of a canonical two-form on Hg by the period map. More-generally, the
odd Morita–Mumford classes are represented by pull-backs of Sp(2g,R)-invariant
differential forms on Hg , arising from Chern classes of holomorphic vector bundles.
But the even ones are not. Kawazumi describes a higher analogue of the period
map which he calls the harmonic Magnus expansion, which produces other canonical
differential forms on moduli space representing the Morita–Mumford classes en. Some
of the forms that are obtained in this way are related to Arakelov geometry.

2 The group theory

The group theory that is reported on in Part B of this volume concerns primarily the
mapping class group of a surface. This group is studied from the point of view of
quasi-homomorphisms, of measure-equivalence, and in relation to Lefschetz fibra-
tions. Other related groups are also studied, namely, braid groups, Artin groups, and
affine groups of singular flat surfaces. The study of singular flat surfaces is a subject of
investigation which is part of Teichmüller theory, with ramifications in several areas in
mathematics, such as dynamical systems theory, and in physics. Of particular interest
in dynamical systems theory is the so-called Teichmüller geodesic flow, defined on the
moduli space of flat surfaces.

2.1 Quasi-homomorphisms

Chapter 7, by Koji Fujiwara, concerns the theory of quasi-homomorphisms on mapping
class groups. We recall that a quasi-homomorphism on a groupG is a map f : G→ R

satisfying
sup
x,y∈G

|f (xy)− f (x)− f (x)| <∞.

Quasi-homomorphisms on a given group form a vector space. Examples of quasi-
homomorphisms are homomorphisms and bounded maps. These two classes form
vector subspaces of the vector space of quasi-homomorphisms, and their intersection
is reduced to the zero element.

An example of a quasi-homomorphism on G = R is the integral part function,
which assigns to a real number x the smallest integer ≤ x.

The study of quasi-homomorphisms in relation with mapping class groups was
initiated in joint work by Endo & Kotschick.6

In Chapter 7, quasi-homomorphisms on mapping class groups are studied in par-
allel with quasi-homomorphisms on Gromov hyperbolic groups. Although mapping

6We note however that the case of PSL(2,Z), which is the mapping class group of the torus, had already been
studied by several authors.
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class groups are not word-hyperbolic, since they contain subgroups isomorphic to Z
2

(except in some elementary cases), it is always good to find analogies between the two
categories of groups. There is a well-known situation in which mapping class groups
behave like generalized hyperbolic groups. This is through the action of mapping
class groups on curve complexes which, by a result of Masur and Minsky, are Gro-
mov hyperbolic. This action is co-compact but of course not properly discontinuous.
Occasionally in this chapter, parallels are also made with quasi-homomorphisms on
lattices in Lie groups. In the setting studied here, the techniques of proofs of corre-
sponding results for mapping class group, hyperbolic groups and lattices present many
similarities.

Using Fujiwara’s notation, we let Q̃H(G) be the quotient space of the vector space
of quasi-homomorphisms G → R by the subspace generated by bounded maps and
by homomorphisms. The space Q̃H(G) carries a Banach space structure. One of the
primary objects of the theory is to compute the vector space Q̃H(G) for a given group
G, and, first of all, to find conditions under which Q̃H(G) is nonempty. It turns out that
the computation of the group Q̃H(G) uses the theory of bounded cohomology. Indeed
the group Q̃H(G) is the kernel of the homomorphismH 2

b (G;R)→ H 2(G;R), where
H 2
b (G;R) is the second bounded cohomology group of G.

In many known cases, Q̃H(G) is either zero- or infinite-dimensional. One of the
first interesting examples of the latter occurrence is due to R. Brooks, who proved
in the late 1970s that in the case where G is a free group of rank ≥ 2, Q̃H(G) is
infinite-dimensional.

The vector space Q̃H(G) is an interesting object associated to a hyperbolic group
despite the fact that it is not a quasi-isometry invariant. Epstein & Fujiwara proved in
1997 that if G is any non-elementary word hyperbolic group, then Q̃H(G) is infinite-
dimensional. Since free groups of rank ≥ 2 are hyperbolic, this result generalizes
Brooks’ result mentioned above. In 2002, Bestvina & Fujiwara extended the result
of Epstein & Fujiwara to groups acting isometrically on δ-hyperbolic spaces (with no
assumption that the action is properly discontinuous). Using the action of mapping
class groups on curve complexes, Bestvina & Fujiwara proved that ifG is any subgroup
of the mapping class group of a compact orientable surface which is not virtually
abelian, then Q̃H(G) is infinite-dimensional.

Chapter 7 contains a review of these results as well as a short introduction to the
theory of bounded cohomology for discrete groups. The author also surveys some
recent results by Bestvina & Fujiwara on the group Q̃H(G) in the case where G is
the fundamental group of a complete Riemannian manifold of non-positive sectional
curvature. He describes some rank-one properties of mapping class groups related to
quasi-homomorphisms, to some superrigidity phenomena and to the bounded genera-
tion property. We recall that a groupG is said to be boundedly generated if there exists
a finite subset {g1, . . . , gk} of G such that every element of this group can be written
as gn1

1 . . . g
nk
k with n1, . . . , nk in Z. Bounded generation is related to the existence

of quasi-homomorphisms. Mapping class groups are not boundedly generated (Farb–
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Lubotzky–Minsky). Non-elementary subgroups of word-hyperbolic groups are not
boundedly generated (Fujiwara). A discrete subgroup of a rank-1 simple Lie group
that does not contain a nilpotent subgroup of finite index is not boundedly generated
(Fujiwara).

Chapter 7 also contains a survey of the theory of separation by quasi-homomor-
phisms in groups, with applications to mapping class groups, to hyperbolic groups and
to lattices. One of the motivating results in this direction is a result by Polterovich &
Rudnick (2001) saying that if two elements in SL(2,Z) are not conjugate to their
inverses, then they can be separated by quasi-homomorphisms. Recent results on this
subject, by Endo & Kotschick for mapping class groups and by Calegari & Fujiwara
for hyperbolic groups, are presented in this chapter.

2.2 Lefschetz fibrations

Chapter 8, by Mustafa Korkmaz and András Stiepicz, concerns the theory of Lefschetz
pencils and Lefschetz fibrations, a theory which is at the intersection of 4-manifold
theory, algebraic geometry and symplectic topology. Mapping class groups of surfaces
play an essential role in this theory, and it is for this reason that such a chapter is
included in this Handbook.

Lefschetz fibrations are 4-dimensional manifolds that are simple enough to han-
dle, but with a rich enough structure to make them interesting. One may consider
a Lefschetz fibration as a natural generalization of a 4-manifold which is a surface
fibration, a surface fibration being itself a generalization of a Cartesian product of
two surfaces. Lefschetz pencils are slightly more general than Lefschetz fibrations; a
Lefschetz pencil gives rise to a Lefschetz fibration by a “blowing-up” operation.

Lefschetz fibrations and Lefschetz pencils first appeared in algebraic geometry
in the early years of the twentieth century, when Solomon Lefschetz studied such
structures on complex algebraic surfaces, that is, 4-dimensional manifolds defined as
zeroes of a homogeneous polynomial systems with complex coefficients. Lefschetz
constructed a Lefschetz pencil structure on every algebraic surface.

Towards the end of the 1990s, Lefschetz fibrations and Lefschetz pencils played
an important role in the work of Simon Donaldson, who showed that any symplectic
4-manifold has a Lefschetz pencil structure with base the two-sphere. Robert Gompf
showed that conversely, any 4-manifold admitting a Lefschetz pencil structure carries
a symplectic structure.7 In this way, Lefschetz pencils play the role of a topological
analogue of symplectic 4-manifolds.

Let us say things more precisely. A Lefschetz fibration is a compact oriented 4-
dimensional manifold X equipped with a projection π : X → S, where S is a closed
oriented surface, and where π is a fibration if we restrict it to the inverse image of
some finite set of points in S, called the critical values. Furthermore, it is required that

7Gompf’s proof is an extension to the class of Lefschetz pencils of Thurston’s proof of the fact that any
oriented surface bundle over a surface carries a symplectic structure, provided that the homology class of the
fiber is nontrivial in the second homology group of the 4-manifold.
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above a critical value, the local topological model of π is the map (z1, z2) �→ z2
1 + z2

2
from C

2 to C, in the neighborhood of the origin. (In this picture, the criticial value
is the origin.) The fibers of π above the critical values are singular surfaces, and a
singular point on such a surface is called a nodal point. A nonsingular fiber is a closed
orientable surface called a generic fiber. The genus of a Lefschetz fibration is, by
definition, the genus of a regular fiber. (Recall that restricted to the complement of
the critical values, a Lefschetz fibration is a genuine fibration, and therefore all the
generic fibers are homeomorphic.) In some sense, a nodal point is a singularity of the
simplest type in the dimension considered; it is the singularity that appears at a generic
intersection of two surfaces. Such a singularity naturally appears in complex analysis.
In a Lefschetz fibration, a singular fiber is obtained from a nearby fiber by collapsing
to a point a simple closed curve, called a vanishing cycle. The vanishing cycle, when
it is collapsed, becomes the nodal point of the corresponding singular fiber.

A natural way of studying the topology of a Lefschetz fibration π : X → S is to
try to figure out how the fibers π−1(s) are glued together inX when the point s moves
on the surface S, and in particular, near the critical values, since the complication
comes from there. This leads to a combinatorial problem which in general is non-
trivial, and the mapping class group of a generic fiber is an essential ingredient in this
story. It is here that the study of Lefschetz fibrations gives rise to interesting problems
on mapping class groups. For instance, Lefschetz fibrations were the motivation of
recent work by Endo & Kotschick and by Korkmaz on commutator lengths of elements
in mapping class groups. Lefschetz fibrations also motivated the study of questions
related to “factorizations of the identity element” of a mapping class group, that is, an
expansion of this identity as a product of positive Dehn twists.

I would like to say a few words on monodromies and on factorizations, and this
needs some notation.

Let P ⊂ S be the set of critical values of a Lefschetz fibration π : X → S.
We choose a basepoint s0 for the surface S, in the complement of the set P . The
fiber π−1(s0) is then called the base fiber and we identify it with an abstract sur-
face F . There is a natural homomorphism ψ , called the monodromy representation
from (π1(S − P), s0) to the mapping class group of F . This homomorphism is the
main algebraic object that captures the combinatorics of the Lefschetz fibration. It is
defined by considering, for each loop γ : [0, 1] → S based at s0, the fibration induced
on the interval [0, 1] (which is a trivial fibration), and then taking the isotopy class
of the surface homeomorphism that corresponds to the gluing between the fibers of
π above the points γ (0) and γ (1). The resulting monodromy representation is a ho-
momorphism ψ from (π1(S − P), s0) to the mapping class group of F , and it is well
defined up to conjugacy. Two Lefschetz fibrations are isomorphic if and only if they
have the same monodromy representation (up to an isomorphism between the images
induced by inner automorphisms of the mapping class groups of the fibers, and up to
isomorphisms of the fundamental groups of the bases of the fibrations). The detailed
construction of the monodromy representation is recalled in Chapter 8 of this volume.
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The monodromy representation homomorphism in this theory can be compared
to the monodromy which appears in the study of holomorphic families of Riemann
surfaces, as it is presented in Chapter 3 of this volume.

Now a few words about factorizations. The monodromy around a critical value is
the class of the positive Dehn twist along the vanishing cycle on a regular fiber near
the singular fiber. Modulo some standard choices and identifications, the monodromy
associated to a loop that surrounds exactly one time each critical value produces an
element of the mapping class group of the base fiber, which is equal to the identity
word decomposed as a product of positive Dehn twists. Conversely, one can construct
a Lefschetz fibration of genus g from each factorization of the identity element of the
mapping class group of an oriented closed surface of genus g. There is an action of
the braid group on the set of such factorizations, and the induced equivalence relation
is called Hurwitz equivalence. The notion of factorization in this setting leads to a
discussion of commutator length and of torsion length in the mapping class group.
More precisely, it leads to the question of the minimal number of factors needed to
express an element of the mapping class group as a product of commutators and of
torsion elements respectively.

This chapter by Korkmaz and Stiepicz gives a quick overview on Lefschetz fi-
brations, with their relation to the works of Gompf and Donaldson on symplectic
topology, and to the works of Endo & Kotschick and of Korkmaz on commutator
lengths of Dehn twists in mapping class groups. The authors also mention generaliza-
tions of Lefschetz fibrations involving Stein manifolds and contact structures. They
propose a list of open problems on the subject.

2.3 Measure-equivalence

Chapter 9, byYoshikata Kida, considers mapping class groups in analogy with lattices,
that is, discrete subgroups of cofinite volume of Lie groups, in the special setting of
group actions on measure spaces.

Lattice examples are appealing for people studying mapping class groups, because
it is a natural question to search for properties of mapping class groups that are shared
by lattices, and for properties of mapping class groups that distinguish them from
lattices. We already mentioned these facts in connection with Fujiwara’s work in
Chapter 7, and we recall in this respect that PSL(2,Z), which is the mapping class
group of the torus, is a lattice in PSL(2,R).

At the same time, Chapter 9 gives a review of measure-equivalence theory applied
to the study of mapping class groups.

Let us first recall a few definitions. Two discrete groups � and � are said to be
measure-equivalent if there exists a standard Borel space (�,m) (that is, a Borel space
equipped with a σ -finite positive measure which is isomorphic to a Borel subset of the
unit interval) equipped with a measure-preserving action of the direct product �×�,
such that the actions of � and � obtained by restricting the � ×�-action to � × {e}
and {e} ×� satisfy the following two properties:
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• these actions are essentially free, that is, stabilizers of almost all points are trivial;

• these actions have finite-measure fundamental domains.

Measure-equivalence is an equivalence relation on the class of discrete groups. It
was introduced by Gromov in his paper Asymptotic invariants, as a measure-theoretic
analogue of quasi-isometry, the latter being defined on the class of finitely generated
groups. Gromov raised the question of classifying discrete groups up to measure-
equivalence.

From the definitions, it follows easily that isomorphic groups modulo finite ker-
nels and co-kernels are measure-equivalent. In particular, any two finite groups are
measure-equivalent. A group that is measure-equivalent to a finite group is finite. In
any locally compact second countable Lie group, two lattices are measure-equivalent.

Two discrete groups � and � acting on two standard measure spaces (X,μ) and
(Y, ν) are said to be orbit-equivalent if there exists a measure-preserving isomor-
phism f : (X,μ) → (Y, ν) such that f (�x) = �f (x) for almost every x in X.
Orbit-equivalence is an equivalence relation which is weaker than conjugacy, and it is
intimately related to measure-equivalence. The study of orbit-equivalence was started
a few decades ago by D. S. Ornstein and B. Weiss. These authors showed that an
infinite discrete group is measure-equivalent to Z if and only if it is amenable. Their
result was stated in terms of orbit-equivalence. Orbit-equivalence is also related to the
study of von Neumann algebras, and it was studied as such by S. Popa.

In a series of recent papers, Y. Kida made a detailed study of measure-equivalence
in relation to mapping class groups. In particular, he obtained the following results,
reported on in Chapter 9 of this volume.

Let S = Sg,p be a compact surface of genus g with p boundary components
satisfying 3g − 4 + p > 0 and let C(S) be the curve complex of S. If a discrete
group � is measure-equivalent to the mapping class group of S, then there exists
a homomorphism ρ : � → Aut(C(S)) whose kernel and cokernel are both finite.
Using the famous result by Ivanov (completed by Korkmaz and Luo) stating that
(with a small number of exceptional surfaces) the automorphism group of the curve
complex of a surface is the extended mapping class group of that surface, Kida’s result
gives a characterization of discrete groups that are measure-equivalent to mapping
class groups. This result is an analogue of a result by A. Furman which gives a
characterization of discrete groups that are measure-equivalent to higher rank lattices.

Kida also studied the relation of measure-equivalence between surface mapping
class groups, proving that if two pairs of nonnegative integers (p, g) and (p′, g′)
satisfy 3g − 4 + p ≥ 0 and 3g′ − 4 + p′ ≥ 0, and if the mapping class groups
�(Sg,p) and �(Sg′,p′) are measure-equivalent, then either the surfaces Sg,p and Sg′,p′
are homeomorphic or {(g, p), (g′, p′)} is equal to {(0, 5), (1, 2)} or to {(0, 6), (2, 0)}.
He also settled the question of the classification of subgroups of mapping class groups
from the viewpoint of measure-equivalence. An analogous result was known for
lattices in the Lie groups SL(n, R) and SO(n, 1).

Kida showed that there exist no interesting embedding of the mapping class group
as a lattice in a locally compact second countable group. V. Kaimanovich and H. Masur
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had already proved that under the condition 3g − 4 + p ≥ 0, any sufficiently large
subgroup of the mapping class group of Sg,p (and in particular, the mapping class
group itself) is not isomorphic to a lattice in a semisimple Lie group with real rank at
least two.

Inspired by a definition made by R. Zimmer in the setting of lattices, Kida defined
a notion of measure-amenability for actions on the curve complex of a surface. He
proved the following: Let S = Sg,p be a surface satisfying 3g−4+p ≥ 0, letC(S) be
the curve complex of S, let ∂C(S) be its Gromov boundary and let μ be a probability
measure on ∂C(S) such that the action of the extended mapping class group of S on
that measure space in non-singular. Then this action is measure-amenable.

Chapter 9 also contains interesting measure-theoretic descriptions of mapping class
group actions, e.g., a classification of infinite subgroups of the mapping class group
in terms of the fixed points of their actions on the space of probability measures on
Thurston’s space of projective measured foliations.

It is interesting to see that Y. Kida succeeded in replacing by measure-theoretic ar-
guments the topological arguments that were used by various authors in the proofs of
their rigidity results on mapping class group actions on several spaces (e.g., the actions
on the curve complex and on other complexes, the actions on spaces of foliations, alge-
braic actions of the extended mapping class group on itself by conjugation, and so on).
To give an example that highlights the analogy, we recall a result by N. Ivanov stat-
ing that, with the exception of some special surfaces, any isomorphism φ : �1 → �2
between finite index subgroups �1 and �2 of the extended mapping class group is a
conjugation by an element of the extended mapping class group, and in particular,
any automorphism of the extended mapping class group is an inner automorphism.
An important step in Ivanov’s proof of this result is the proof that any automorphism
between �1 and �2 sends a sufficiently high power of a Dehn twist to a power of
a Dehn twist. From this, and since Dehn twists are associated to homotopy classes
of simple closed curves which are vertices of the curve complex, Ivanov obtains an
automorphism of the curve complex induced by the isomorphism φ. He then appeals
to the fact that the automorphism group of the curve complex is the natural image in
that group of the extended mapping class group. To prove that φ sends powers of Dehn
twists to powers of Dehn twists, Ivanov uses an algebraic characterization of Dehn
twists. Moreover, he proves that φ preserves some geometric relations between Dehn
twists; for instance, it sends pairs of commuting Dehn twists to pairs of commuting
Dehn twists. Now the measure-theoretic setting. Kida’s rigidity result is formulated
in the general setting of isomorphisms of discrete measured groupoids. To say it in
few words, Kida needs to show that any isomorphism of discrete measured groupoids
arising from measure-preserving actions of the mapping class group preserves sub-
groupoids generated by Dehn twists. The proof of this fact uses a characterization of
such groupoids in terms of discrete measured groupoid invariants. This is done by
using the measure-amenability of non-singular actions of the extended mapping class
group on the boundary of the curve complex mentioned above, and a subtle charac-
terization of subgroupoids generated by Dehn twists in terms of measure-amenability.
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More precisely, a subgroupoid generated by a Dehn twist is characterized by the fact
that it is an amenable normal subgroupoid of infinite type of some maximal reducible
subgroupoid. Kida concludes using the fact that measure-amenability is an invariant
of isomorphism between groupoid actions.

Kida also obtained a measurable rigidity result for direct products of mapping class
groups, using a technique introduced by N. Monod andY. Shalom in a study they made
of measurable rigidity of direct products of discrete groups.

Recently, D. Gaboriau showed that the sequence of �2-Betti numbers introduced
by Cheeger and Gromov is invariant under measure-equivalence, up to a multiplicative
constant. Using this and results of McMullen and of Gromov, Kida gave formulae for
these Betti numbers.

2.4 Affine groups

In Chapter 10, a flat surface is defined as a pair (S, ω) consisting of a closed Riemann
surface S equipped with a nonzero holomorphic one-form ω (which we shall also call
here an abelian differential). Such a surface S is naturally equipped with a flat (i.e.
Euclidean) structure in the complement of the zeroes ofω. The flat structure is defined,
using the holomorphic local coordinates, by parameters of the formφ(z) = ∫ z

z0
ω, after

a choice of a basepoint z0 in the holomorphic chart. In fact, the surface S is equipped,
in the complement of the zeroes of ω, with an atlas whose transition functions are
better than Euclidean transformations of the plane, since they are translations. For
this reason, a flat surfaces in the sense used here is also called a “translation surface”.
The flat metric in the complement of the zeroes of ω extends at any zero point of
order n to a singular flat metric whose singularity at such a point is locally a Euclidean
cone point with total angle 2π(n+ 1). We note that there are other ways of defining
flat surfaces that do not use the word “holomorphic”. For instance, a flat surface can
be obtained by gluing rational-angled Euclidean polygons along their boundaries by
Euclidean translations.

There is a strong relation between flat surfaces and billiards. In 1975, Zelmyakov &
Katok associated to each rational-angled polygon a uniquely defined flat surface, such
that the billiard flow of the polygon is equivalent to the geodesic flow of the flat surface.

There is a natural action of the group SL(2,R) on the space of flat surfaces, and
this action preserves the space A of unit norm abelian differentials (the norm of a
flat surface (S, ω) being defined by

( ∫
S
|ω|2)1/2). We also recall that the Teichmüller

geodesic flow is the action of the diagonal subgroup of SL(2,R) on the space A.
Flat surfaces appear in many ways in Teichmüller theory. One obvious reason is

that a flat surface has an underlying Riemann surface structure, and it is therefore
natural to study parametrizations of Teichmüller space by flat surfaces. Flat surfaces
also arise from holomorphic quadratic differentials. We recall that a holomorphic
quadratic differential being locally the square of a holomorphic one-form, also gives
rise to a singular Euclidean metric on its underlying Riemann surface. Holomorphic
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quadratic differentials play a prominent role in Teichmüller theory since the work of
Teichmüller himself, in particular because there is a natural identification between the
vector space of quadratic differentials and the cotangent space to Teichmüller space
at each point.

To a flat surface (S, ω) is associated a subgroup of SL(2,R) called its affine
group, and denoted by SL(S, ω). To define this group, one first considers the group
Aff+(S, ω) of orientation-preserving diffeomorphisms of S that act affinely in the
Euclidean charts associated to ω, in the complement of the zeroes of ω. (Such a
diffeomorphism is allowed to permute the zeroes.) An affine map, in a chart, has a
matrix form X �→ AX + B, with A being a constant nonsingular matrix which can
be considered as the derivative of the affine map. Since the coordinate changes of the
Euclidean atlas associated to a flat surface are translations, the matrix A is indepen-
dent of the choice of the chart, and thus is canonically associated to the affine map.
Composing two affine diffeomorphisms of S gives rise to matrix multiplication at the
level of the linear parts. This gives a homomorphism D : Aff+(S, ω) → GL(2,R)
which associates to each affine diffeomorphism its derivative. The image of D lies
in the subgroup SL(2,R) of GL(2,R), as a consequence of the fact that the surface
has finite area. The image of the diffeomorphism D in SL(2,R) is, by definition, the
affine group SL(S, ω) of the flat surface (S, ω). W. Veech observed that the affine
group SL(S, ω) is always a discrete subgroup of SL(2,R). The affine group SL(S, ω)
is sometimes called the Veech group of the flat surface.

There is a nice description of Thurston’s classification of isotopy classes of affine
diffeomorphism. An affine homeomorphism f : S → S is parabolic, elliptic or hy-
perbolic if |Tr(Df )| = 2, < 2, or > 2 respectively. The hyperbolic affine homeo-
morphisms are the pseudo-Anosov affine diffeomorphisms. Beyond their use in this
classification, we shall see below that the set of traces of affine homeomorphisms of
a flat surface play a special role in this theory.

The notion of an affine group of a flat surface first appeared in Thurston’s construc-
tion of a family of pseudo-Anosov homeomorphisms of a surface which are affine with
respect to some flat structure. Indeed, in his paper On the geometry and dynamics of
homeomorphisms of surfaces, Thurston constructed such a family, the flat structure
being obtained by “thickening” a filling pair of transverse systems of simple closed
curves on the surface.

In Chapter 10 of this Handbook, Martin Möller addresses the following natural
problems:

• Which subgroups of SL(2,R) arise as affine groups of flat surfaces?

• What does the affine group of a generic flat surface look like?
Several partial results on these problems have been obtained by various authors.

For instance, Veech constructed flat surfaces whose affine groups are non-arithmetic
lattices. Special types of flat surfaces, called origamis, or square-tiled surfaces, arise
naturally in these kinds of questions. These surfaces are obtained by gluing Euclidean
squares along their boundaries using Euclidean translations. E. Gutkin & C. Judge
showed that the affine group of an origami is a subgroup of finite index in SL(2,Z).
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P. Hubert & S. Lelièvre showed that in any genus g ≥ 2 there are origamis whose
affine groups are non-congruence subgroups of SL(2,R). We note that origamis were
already considered in Volume I of this Handbook, namely in Chapter 6 by Herrlich
and Schmithüsen, where these surfaces are studied in connection with Teichmüller
disks in moduli space. They are also thoroughly studied in relation with the theory
of dessins d’enfants in Chapter 18 of the present volume. Schmithüsen proved that
all congruence subgroups of SL(2,Z) with possibly five exceptions occur as affine
groups of origamis. Möller, in Chapter 10 of this volume, asks the question of whether
there is a subgroup of SL(2,Z) that is not the affine group of an origami.

Another interesting class of flat surfaces is the class of Veech surfaces. These
are the flat surfaces whose affine groups are lattices in SL(2,R). A recent result of
I. Bouw and M. Müller says that all triangle group (m, n,∞) with 1/m + 1/n < 1
and m, n ≤ ∞ occur as affine groups of Veech surfaces.

C. McMullen, and then P. Hubert & T. Schmidt produced flat surfaces whose affine
groups are infinitely generated.

Möller proved that provided the genus of S is ≥ 2, the affine group of a generic
flat surface (S, ω) is either Z/2 or trivial, and that this depends on whether (S, ω) is
in a hyperelliptic component or not, with respect to the natural stratification of the
total space of the vector bundle of holomorphic one-forms minus the zero-section.
(A hyperelliptic component is a component of a stratum that consists exclusively of
hyperelliptic curves.) He also proved that in every stratum there exist flat surfaces
whose affine groups are cyclic groups generated by parabolic elements. He raises the
question of whether there exists a flat surface whose affine group is cyclic generated
by a hyperbolic element.

Müller also discusses the relation between affine groups and closures of SL(2,R)-
orbits of the corresponding flat surfaces in moduli space.

Given an arbitrary subgroup � of SL(2,R), one can define its trace field as the
subfieldK of R generated by the set {Tr(A) : A ∈ �}. Thus, associated to a flat surface
(S, ω) is the trace field of its affine group SL(S, ω). It turns out that the trace field of the
affine group of a flat surface is an interesting object of study. R. Kenyon & J. Smillie
proved that the trace field of the affine group SL(S, ω) has at most degree g over Q.
P. Hubert & E. Lanneau showed that if (S, ω) is given by Thurston’s construction,
then the trace field of SL(S, ω) is totally real. They also showed that there exist flat
surfaces supporting pseudo-Anosov diffeomorphisms whose trace fields are not totally
real. C. McMullen showed that all real quadratic fields arise as trace fields of lattice
affine groups.

2.5 Braid groups

Chapter 11 by Luis Paris is a survey on braid groups and on some of their generaliza-
tions, and on the relations between these groups and mapping class groups.

Braid groups are related to mapping class groups in several ways. A well-known
instance of such a relation is that the braid group on n strands is isomorphic to the
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mapping class group of the surface S0,n, that is, the disk with n punctures. In fact, this
isomorphism can be considered as a first step for a general theory of representations
of braid groups in mapping class groups, which is one of the main subjects reported
on in Chapter 11.

Although braiding techniques have certainly been known since the dawn of hu-
manity (hair braiding, rope braiding, etc.), braid groups as mathematical objects were
formally introduced in 1925, by Emil Artin, and questions about representations of
braid groups immediately showed up. One of the first important results in this repre-
sentation theory is due to Artin himself, who proved that the braid group on n strands
admits a faithful representation (now called the Artin representation) in the automor-
phism group of the free group on n generators.8 Artin’s result can be seen as an
analogue of the result by Dehn, Nielsen and Baer stating that the extended mapping
class group of a closed surface of genus ≥ 1 admits a faithful representation in the
automorphism group of the fundamental group of that surface (and in that case, the
representation is an isomorphism). From Artin’s result one deduces immediately that
braid groups are residually finite and Hopfian. (Recall that a group is said to be Hopfian
if it is not isomorphic to any of its subgroups.)

Historically, results on braid groups were obtained in general before the corre-
sponding results on mapping class groups. This is due to the fact that braid groups
have very simple presentations, with nothing comparable in the case of mapping class
groups. Another possible reason is that homeomorphisms of the punctured disk are
much easier to visualize compared to homeomorphisms of arbitrary surfaces, and
therefore, it is in principle easier to have a geometric intuition on braid groups than on
general surface mapping class groups. It is also safe to say that results on braid group
have inspired research on mapping class groups. Indeed, several results on mapping
class groups were conjectured in analogy with results that were already obtained for
braid groups. Let us mention a few examples:

• Presentations of braid groups have been known since the introduction of these
groups. (In fact, right at the beginning, braid groups were defined by generators
and relators.) But in the case of the mapping class groups, it took several decades
after the question was addressed, to find explicit presentations.

• Automorphism groups of braid groups were computed long before analogous
results were obtained for mapping class groups.

• Several algorithmic problems (conjugacy and word problems, etc.) were solved
for braid groups before results of the same type were obtained for mapping class
groups.

• The existence of a faithful linear representation for braid groups has been obtained
in the year 2000 (by Bigelow and Krammer, independently), settling a question
that had been open for many years. The corresponding question for mapping
class groups is still one of the main open questions in the field.

8B. Perron and J. P. Vannier recently obtained results on the representation of a braid group on n strands in
the automorphism group of the free group on n− 1 generators.
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In Chapter 11 of this volume, the theory of braids is included in a very wide setting
that encompasses mapping class groups, but also other combinatorially defined finitely
presented groups, namely Garside groups, Artin groups and Coxeter groups. To make
things more precise, we take a finite set S of cardinality n and we recall that a Coxeter
matrix over S is an n × n matrix whose coefficients mst (s, t ∈ S) belong to the set
{1, 2, . . . ,∞}, with mst = 1 if and only if s = t . The Coxeter graph � associated
to a Coxeter matrix M = ms,t is a labeled graph whose vertex set is S and where
two distinct vertices s and t are joined by an edge whenever ms,t ≥ 3. If mst ≥ 4,
then the edge is labeled by ms,t . Coxeter graphs are also called Dynkin diagrams.
The Coxeter group of type � is the finitely presented group with generating set S and
relations s2 = 1 for s in S, and (st)mst = 1 for s = t in S. Here, a relation with
mst = ∞ means that the relation does not exist.

The Artin group associated to a Coxeter matrix M = ms,t is a group defined by
generators and relations, where the generators are the elements of S, ordered as a se-
quence {a1, . . . , an} and where the relations are defined by the equalities 〈a1, a2〉m1,2 =
〈a2, a1〉m2,1, . . . , 〈an−1, an〉mn−1,n = 〈an, an−1〉mn,n−1 for all mi,j ∈ {2, 3, . . . ,∞},
where 〈ai, aj 〉 denotes the alternating product of ai and aj taken mi,j times, starting
with ai . (For example, 〈a1, a2〉5 = a1a2a1a2a1.) Artin groups are also used in other
domains of mathematics, for instance in the theory of random walks.

Coxeter groups were introduced by J. Tits in relation with his study ofArtin groups.
Garside groups were introduced by P. Dehornoy and L. Paris, as a generalization of
Artin groups. There are several relations between Artin groups, Coxeter groups and
Garside groups. One important aspect of Garside groups is that these groups are well-
suited to the study of algorithmic problems for braid groups. An Artin group has a
quotient Coxeter group.

There is a geometric interpretation of Artin groups which extends the interpretation
of braid groups in terms of fundamental groups of hyperplane arrangements in C

n. It is
unknown whether mapping class groups areArtin groups and whether they are Garside
groups. Some Artin groups, called Artin groups of spherical type, are Garside groups,
and it is known that Artin groups of spherical type are generalizations of braid groups.

Chapter 11 contains algebraic results, algorithmic results, and results on the rep-
resentation theory of these classes of groups.

From an algebraic point of view, Paris gives an account of known results on the co-
homology of braid groups and ofArtin groups of spherical type. He introduces Salvetti
complexes of hyperplane arrangements. These complexes are simplicial complexes
that arise naturally in the study of hyperplane arrangements; they have natural geo-
metric realizations, and they have been successfully used as a tool in computing the
cohomology of Artin groups.

From the algorithmic point of view, the author reports on Tits’ solution of the word
problem for Coxeter groups, on Garside’s solution of the conjugacy problem for braid
groups, and on recent progress made by Dehornoy and Paris on the extension of this
result to Garside groups.
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Paris also reports on recent progress on linear representations of Artin groups, ex-
tending the work by Bigelow and Krammer on linear representations of braid groups
and the subsequent work on linear representations of certain Artin groups, which was
done by Digne and by Cohen & Wales. The author also presents an algebraic and a
topological approach that he recently developed for the question of linear representa-
tions.

Besides the study of linear representations, Chapter 11 contains a recent study
of geometric representations of Artin groups, that is, representations into mapping
class groups. (Recall the better-than-faithful representation of the braid group on n
strands in the mapping class group of the disk with n punctures.) The chapter contains
the description of a nice construction of geometric representations of Artin groups,
obtained by sending generators to Dehn twists along some curves that realize the
combinatorics of the associated Coxeter graph.

3 Representation spaces and geometric structures

Representation theory makes interesting relations between algebra and geometry.
From our point of view, the subject may be described as the study of geometric struc-
tures by representing them by matrices and algebraic operations on these matrices.

As already mentioned, the geometric structures considered in Part C of this Hand-
book are more general than the structures that are dealt with in the classical Teichmüller
theory (namely, conformal structures and hyperbolic structures). These general struc-
tures include complex projective structures, whose recent study involves techniques
that have been introduced by Thurston in the 1990s. We recall that Thurston introduced
parameters for (equivalence classes of) complex projective structures on a surface in
which the space of measured laminations plays an essential role. In this setting, com-
plex projective structures are obtained by grafting Euclidean annuli on hyperbolic
surfaces along simple closed curves and, more generally, along measured geodesic
laminations. As it is the case for hyperbolic structures, deformations of complex pro-
jective structures can be studied either directly on the surface, or within a space of
representations of the fundamental group of the surface in an appropriate Lie group.
The direct study can be done by considering complex projective structures defined on
some “elementary” surfaces with boundary and then gluing together such surfaces so
as to obtain complex projective structures on larger surfaces. For instance, one can
study complex projective structures on pairs of pants in a way parallel to what is done
classically in the study of hyperbolic structures, and then investigate the gluing be-
tween pairs of pants. Complex projective structures can also be studied in the context
of representations of fundamental groups of surfaces in the Lie group SL(2,C). It is
also well known that the space of SL(2,C)-representations (more precisely, the orbit
space under the action of SL(2,C) by conjugation) can also be studied for itself, as a
generalized Teichmüller space.
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In this part of the Handbook, Bill Goldman gives an exposition of what is usually
referred to as the Fricke–Klein trace parameters, that is, parameters for the represen-
tations of Teichmüller spaces in the character variety of SL(2,C)-representations. He
treats the cases of surfaces with two and three-generator fundamental groups in full
detail. The parameters that are given are explicit. Although the subject is very clas-
sical, such a complete study is done for the first time. Also in this part, Sean Lawton
and Elisha Peterson develop a diagrammatic approach to the study of the structure
of the SL(2,C)-representations character variety for the free group on two genera-
tors using graphs that are called spin networks. Their work sits in the framework of
geometric invariant theory, a theory that develops the idea (first started by Vogt and
Fricke–Klein) of characterizing polynomial functions on SL(2,C) that are invariant
under inner automorphisms, and that are expressible in terms of traces.

Another generalized Teichmüller space that is considered in this volume is the
space of Lorentzian 3-manifolds of constant curvature which are products of surfaces
with the real line, in which Thurston’s hyperbolic geometry techniques (laminations,
earthquakes, grafting and so on) were brought in in the 1990s by Geoffrey Mess.

3.1 Complex projective structures

As already said, the study of moduli of complex projective structure is intimately
related to that of Teichmüller space. Thus it is natural to include in the Handbook a
chapter on complex projective structures.

Complex projective structures on surfaces already appear in a substantial manner in
the work of Poincaré. The relation between complex projective structures on surfaces
and Teichmüller theory was developed by Bers and his collaborators in the 1960s.
For instance, the Bers embedding of Teichmüller space can be described in terms of
complex projective structures.

The model space for complex projective geometry on surfaces is the complex pro-
jective line CP

1, that is, the space of 1-dimensional complex vector subspaces of C
2,

with transformation group induced from the linear transformations of C
2. Equiva-

lently, we can consider the model space of complex projective geometry on surfaces
as the Riemann sphere S

2 = C ∪ {∞} equipped with the group of transformations
of the form z �→ az+b

cz+d with a, b, c, d ∈ C and ad − bc = 0. Such transformations
are called fractional linear transformations, or Möbius transformations, or projective
transformations. A complex projective structure on a surface is then an atlas with
charts in CP

1 whose coordinate changes are restrictions of projective transformations.
Markings of complex projective surfaces are defined as it is usually done in Teich-
müller theory, that is, a marking is a homeomorphism from a fixed base surface to a
surface equipped with a projective structure. There is a natural equivalence relation
on the set of marked projective structures, defined, again as in Teichmüller theory, by
the existence of a projective transformation in the correct homotopy class. If S is a
closed surface of genus≥ 2, we shall denote by P (S) the space of equivalence classes
of marked complex projective structures on S.
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In what follows, “projective” means “complex projective”.
Since the projective transformations of the sphere are holomorphic, a projective

structure on a surface has an underlying conformal structure. In other words, there is a
forgetful map π : P (S)→ T (S) from the space of marked projective structures on S
to the Teichmüller space T (S) of S. This map makes the space P (S) a fiber bundle
over Teichmüller space.

As it is the case for hyperbolic structures, projective structures, through their holon-
omy representation, can be studied in the context of the representation theory of the
fundamental group of the surface S in the group PSL(2,C). There is a complex struc-
ture on the space P (S), and from works of Hejhal, Earle and Hubbard, it follows that
the holonomy map from the space P (S) to the character variety of representations
of π1(S) in PSL(2,C) is a local biholomorphism. Chapter 12 contains a review of
basic properties of holonomy maps of projective structure, as well as a discussion of
other issues of representation theory (discreteness, degeneration, etc.) that have been
studied in depth by various authors, in particular by D. Dumas.

There are several ways of parameterizing projective structures on surfaces, and one
classical way uses Schwarzian derivatives. The Schwarzian derivative is a differential
operator which is invariant under Möbius transformations. It was already studied in
the nineteenth century, in relation with the Schwarzian differential equation w′′(z)+
1
2q(z)w(z) = 0, where z varies in a domain of the Riemann sphere and where q is a
holomorphic function.

We recall that the Schwarzian derivative of a Möbius transformation is zero, and
that, in some sense, the Schwarzian derivative of a conformal map is a measure of how
far this map is from being a Möbius transformation. The Schwarzian derivative can
also be considered as a measure of the difference between two projective structures.

There is an intimate relationship between Schwarzian derivatives and quadratic
differentials, the latter being certainly more familiar to Teichmüller theorists. The
Schwarzian derivative Sf of a holomorphic function f of one complex variable is
defined by the formula

(Sf )(z) = f ′′′(z)
f ′(z)

− 3

2

(
f ′′(z)
f ′(z)

)2

(the formula is not important for what follows). A quadratic differential appears
from a projective structure on a surface by taking the Schwarzian derivative of a
developing map of that structure. Using this fact, Schwarzian derivatives establish
a correspondence between projective structures on a given surface with the space
of holomorphic quadratic differentials on that surface. In this correspondence, each
fiber π−1(X) of the map π : P (S) → T (S) over a point X in T (S) is identified
with the vector space of holomorphic quadratic differentials on a Riemann surface
representing X. Since the vector space of holomorphic quadratic differentials over a
surface is also the cotangent space to Teichmüller space at the corresponding point, the
theory of the Schwarzian derivative makes an identification between the space P (S)
and the cotangent bundle T ∗T (S) of Teichmüller space.
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By the Riemann–Roch theorem, the space of quadratic differentials on a closed
Riemann surface of genus g ≥ 2 is a complex vector space of dimension 3g − 3. As
a consequence, the space of projective structures is a fiber bundle over Teichmüller
space, with fiber a complex vector space of dimension 3g − 3. This directly shows
that P (S) is homeomorphic to a cell of complex dimension 6g − 6.

The parametrization of P (S) by the fiber bundle of quadratic differentials obtained
via the Schwarzian derivative is called the Schwarzian parametrization of P (S).

Thurston produced another parametrization for the space P (S), whose definition
uses the techniques of hyperbolic geometry and of measured laminations. This is a
parametrization by ML(S) × T (S), where the Teichmüller space T (S) is seen as
a space of (equivalence classes) of hyperbolic structures and where ML(S) is the
space of measured laminations on S.9 The homeomorphism ML(S)×T (S) 
 P (S)
uses Thurston’s general grafting operation, which is one of the main tools in the
geometric study of complex projective structures. This operation produces from a
measured lamination on a hyperbolic surface, considered as a projective structure,
a new projective structure. Grafting is first defined when the measured lamination
is a weighted simple closed geodesic. In this case, one cuts the surface along that
closed geodesic, and introduces between the two boundary components thus obtained a
Euclidean annulus whose circumference is equal to the common length of the geodesic
boundary components and whose width is determined by the transverse measure of
the closed geodesic (seen as an element of MF ) that we started with. Grafting a
hyperbolic structure over an arbitrary measured laminationμ is then defined by taking
a sequence of weighted simple closed geodesics converging to μ and showing that
there is a limiting complex projective structure, which is well defined independently of
the approximating sequence. The resulting homeomorphism Gr : ML(S)×T (S)→
P (S) is called the grafting homeomorphism. Continuity, smoothness, properness and
other properties of various maps that are associated to the grafting construction were
studied by Tanigawa, Scannell, Wolf, Dumas and others, and they are discussed by
David Dumas in Chapter 12 of this volume.

Thurston defined a conformal Kobayashi-like distance on each projective surface,
which we call the Thurston distance. There is an infinitesimal version of the Thurston
distance, in which the norm of a tangent vector v is the infimum of the norm of all
vectors v′ in the Poincaré disk, such that there exists a complex projective immersion of
this disk into the surface, sending v′ to v. This definition is analogous to the definition
of the infinitesimal Kobayashi distance on a complex space, where one also takes the
infimum over all holomorphic immersions of the Poincaré disk. When the projective
surface is obtained by a simple grafting operation (that is, the operation of inserting a
Euclidean annulus in a hyperbolic surface), the Thurston metric is the one induced by
the length structure associated to the constant-curvature structures on the parts.

Chapter 12 of this volume contains a detailed exposition of the Schwarzian and of
the grafting parametrizations of the space P (S) of equivalence classes of projective

9Thurston’s work on that subject is essentially unpublished, and one proof of the isomorphism ML(S) ×
T (S) 
 P (S) was written by Y. Kamishima and S. P. Tan.
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structures, and a study of the various relations between these two parametrizations.
This involves an analysis of the relation between quadratic differentials and grafting
as well as a study of the asymptotic aspects of P (S) related to the two parametriza-
tions. The chapter also contains a report on fundamental relations between holonomy
homomorphisms of projective structures and the grafting construction. It also con-
tains a description of the holonomy representation of a projective structure in terms of
convex hulls, pleating loci and the bending deformation in 3-dimensional hyperbolic
space. These constructions are at the basis of the beautiful relations between complex
projective geometry on surfaces and 3-manifold topology, whose study was started by
Sullivan and Thurston and which later on was developed by Epstein & Marden.

Chapter 12 also contains an exposition of results by Dumas on a grafting map com-
pactification of the space P (S), and a description of a fiber of the map P (S)→ T (S)
with respect to this compactification. For a given point X in Teichmüller space, this
description involves a beautiful map ix : PML(S)→ PML(S) called the antipodal
involution, obtained by transporting the involution φ �→ −φ defined on the space
Q(X) of quadratic differentials using the Hubbard–Masur parametrization of Q(X)
by the space of measured foliations ML(S) on the surface S. Dumas also studied
another compactification of fibers of P (S)→ T , which he calls the Schwarzian com-
pactification. It is obtained by attaching a copy of the projective space of quadratic
differentials of a Riemann surface representing the given point in T (S) by taking
limits of Schwarzian derivatives. He presents a result that compares the two compact-
ifications of the fibers.

3.2 Circle packings

In Chapter 13 of this Handbook, Sadayoshi Kojima reports on rigidity and on flexibility
properties of circle packings on complex projective surfaces, and on the relation of
circle packings with Teichmüller space.

A circle in the complex projective line CP
1 = S

2 can be viewed as either a ge-
ometric circle for the canonical metric on the sphere S

2, or, using the stereographic
projection that identifies S

2 with C∪{∞}, as a Euclidean circle or a straight line in C.
Circles are invariant by complex projective transformations. As a matter of fact, com-
plex transformations are characterized by the fact that they send circles to circles. This
shows that we have a natural local notion of a “circle” on a complex projective sur-
face. In this sense, on a hyperbolic surface, geodesics, horocycles, hypercycles and
geometric circles are all circles with respect to the underlying projective structure.
This can be clearly seen by taking one of the usual models of hyperbolic space.

In Chapter 13, Kojima studies circles and circle packings on projective Riemann
surfaces. Here, the definition of a circle is more restrictive, and one calls circle a
homotopically trivial simple closed curve that is locally contained in a circle of S

2,
the term “locally” referring to the image of the curve under the local charts of the
projective structure. A circle packing is a collection of circles meeting tangentially,
with the property that all the complementary regions are curvilinear triangles.
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Although interesting problems on circle packings were already noticed by Koebe
in the 1930s (and probably before), it is certainly William Thurston who made this into
a subject in itself; first in his 1976 Princeton Notes, and then in 1985, when he made
the conjecture that certain maps between circle packings converge to conformal maps.
This conjecture was proved in 1987 by Burton Rodin and Dennis Sullivan, and it can
be considered now as being at the heart of the theory of discrete conformal maps.

Chapter 13 first gives a report on Thurston’s reconstruction and generalization of
Andreev’s theorem on circle packings, following Chapter 13 of Thurston’s Princeton
1976 Notes. Andreev’s theorem, as revisited by Thurston, is an existence and unique-
ness result. The existence part says that a given graph on a Riemann surface determines
a constant curvature surface equipped with a circle packing whose combinatorics is
encoded by the graph. The uniqueness part says that two such structures encoded by
the same graph are related by a global projective map. The only requirement on the
graph is that its lift to the universal cover of the surface is a genuine triangulation.

The question of the realization of circle packings on Riemann surfaces was already
studied by Koebe in the 1930s. Andreeev’s work on the subject was published in 1970.
The results by Koebe and Andreev concern the case of the closed surface of genus
zero (that is, the sphere). Thurston worked out the case of arbitrary genus. In the
case of genus ≥ 2, Thurston’s result states that there is a unique hyperbolic structure
equipped with a circle packing, realizing the given combinatorics.

Kojima then reports on flexibility results whose starting point is a work by R. Brooks
who studied, instead of circle packings, more general circle patterns of circles, where
complementary regions are allowed to be either triangles or quadrilaterals. Kojima
reports on a method due to Brooks of parametrizing these generalized circle patterns
by continued fractions, in the case where one of the complementary components is a
quadrilateral. The idea is natural, and it consists in trying to fill in the quadrilateral
region by successively inserting circles tangent to the rest of the configuration. Adding
a new circle creates in general a new quadrilateral, but there are exceptional cases where
the added circle is tangent to all the boundary sides of the quadrilateral. In this case
the result is a genuine circle pattern, which, as was said before, is a rigid object, and
the process ends there. Brooks continued fraction parameter is a projective invariant.

Kojima also outlines recent work on the moduli spaces of pairs (S, P )where S is a
projective surfaces and P a circle packing whose combinatorics is fixed. He describes
a projective invariant for such pairs, based on the cross ratio, which was worked out
in joint work by Kojima, Mizushima & Tan. The deformation space has a natural
structure of a semi-algebraic space. In the last part of Chapter 13, Kojima formulates
and motivates a conjecture that states a precise relation between this parameter space
and Teichmüller space.
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3.3 Lorentzian geometry

A few words about Lorentzian geometry are in order.
A Lorentzian n-manifold M is a smooth n-dimensional manifold equipped with a

nondegenerate bilinear symmetric form of signature (−,+, . . . ,+) at the tangent
space at each point of M . A Lorentzian n-manifold is a pseudo-Riemnnian manifold
of signature (1, n − 1). Denoting the bilinear form by 〈. , .〉, if v is a tangent vector,
then the real number 〈v, v〉 (and not its square root) is called the norm of x.

Lorentzian manifolds are the most important pseudo-Riemannian manifolds after
the Riemannian ones. This is due in part to the use of Lorentzian manifolds in physics.
Indeed, 4-dimensional Lorentzian geometry is the setting of general relativity. As a
consequence, the language of Lorentzian geometry is often borrowed from the lan-
guage of physics. For instance, the local parameters in a Lorentzian 4-manifold are
seen as three spatial parameters and one temporal parameter.

From the mathematical point of view, the basic problems of general relativity can
be stated in terms of finding Lorentzian metrics on some given manifold that satisfy
some partial differential equation (namely, Einstein’s equations) involving the Ricci
and the scalar curvature tensors.

As in Riemannian geometry, there is a notion of norm-preserving parallel vector
transport in Lorentzian geometry. A Lorentzian manifold has a unique affine torsion-
free connection which preserves the Lorentzian metric, which is also called the Levi-
Civita connection. There are associated notions of curvature, of geodesics and of
exponential map. However, the intuition that we have in Riemannian geometry may
be misleading in Lorentzian geometry, partly because norms of vectors in a Lorentzian
manifold can be negative. One consequence is that in general, geodesics are not
distance-minimizing.

We need to recall some more terminology. A tangent vector to a Lorentzian mani-
fold is said to be time-like (respectively space-like) if its norm is negative (respectively
positive). A nonzero vector of zero norm is said to be a light vector. A causal vector
is either a time-like vector or a light vector. A C1 curve in a Lorentzian manifold is
time-like (respectively, space-like, etc.) if all of its tangent vectors are time-like (re-
spectively, space-like, etc.). A hypersurface in a Lorentzian manifold is space-like if
the restriction of the Lorentzian metric tensor to the tangent space at each point of that
hypersurface is Riemannian. A flat spacetime is an oriented Lorentzian manifold to-
gether with an orientation for every causal curve. A Cauchy surface in a flat spacetime
is a codimension-one isometrically immersed Riemannian submanifold which inter-
sects in exactly one point every maximally extended causal curve. A flat spactime is
said to be globally hyperbolic if it admits a Cauchy surface. The concept of Cauchy
surface was introduced by physicists working in general relativity, and it turned out
to be a fundamental concept in Lorentzian geometry, as we shall see below. From the
physics point of view, the existence of a Cauchy surface has to do with the so-called
“causality condition", which says that there are no time-like closed curves, as it is
expected in reality.
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Unlike the case of Riemannian manifolds, it is not true that any smooth manifold
admits a Lorentzian structure. On the other hand, an important feature of Lorentzian
geometry which parallels the Riemannian case is that two Lorentzian manifolds of the
same dimension and having the same constant curvature are locally isometric.

Minkowski n-space, that is, the vector space R
n equipped with a nondegenerate

symmetric bilinear form of signature (−,+, . . . ,+), is a linear model for Lorentzian
n-manifolds. The Minkowski model of (n− 1)-dimensional hyperbolic geometry sits
inside Minkowski n-space as one sheet of a hyperboloid with two sheets. This is a
hypersurface that consists of future-directed time-like vectors. In fact, Minkowski
Lorentzian n-space is foliated by (n− 1)-Riemannian manifolds of constant negative
curvature. This should be a hint for a strong relationship between Lorentzian geometry
and hyperbolic geometry.

In each dimension n and for every real number κ , there is a “model Lorentzian
manifold” X, that is, a unique simply connected Lorentzian manifold of dimension
n and of constant curvature κ . Furthermore, such a space X has the “analytic con-
tinuation property”, that is, every isometry between two open sets of X extends to a
global isometry of X. Using this fact, a Lorentzian manifold of constant curvature
can be considered as a homogeneous geometric structure, that is, as a (G,X) mani-
fold in the sense of Ehresmann. Thus, a Lorentzian manifold of constant curvature
can be defined by an atlas whose charts take their values in the model manifold X
and whose coordinate change functions are restrictions of isometries of the model
manifold. Again, as in the Riemannian case, there is a notion of developing map and
of holonomy representation. Restricting to κ ∈ {0,−1, 1}, the model spaces for 3-
dimensional Lorentzian manifolds are called the 3-dimensional Minkowski spacetime
(κ = 0), de Sitter spacetime (κ = 1), and anti de Sitter spacetime (κ = −1). De Sitter
space can be thought of as the space of planes in hyperbolic space.

We now restrict the discussion to 3-dimensional (more commonly called (2+ 1)-
dimensional) Lorentzian manifolds.

In 1990, Geoffrey Mess wrote a fundamental paper, called Lorentz spacetimes
of constant curvature.10 The paper realized a major breakthrough in the field; in
particular because it brought into Lorentzian geometry the techniques that had been
introduced a few years before by Thurston in hyperbolic geometry and in complex pro-
jective geometry (measured laminations, group actions on trees, earthquakes, grafting,
bending, and so on).

To say it in very few words, Mess obtained a classification of the space of Lorentzian
metrics of constant curvature on manifolds which are of the form S × R, where S is
a closed orientable surface S of genus ≥ 2. In other words, Mess gave a geometric
parametrization of the moduli space of (2+1)maximal globally hyperbolic spacetimes
of constant curvature κ , for κ ∈ {−1, 0, 1}, that contain a compact Cauchy surface.
(The case κ = 0 was completed by Kevin Scannell in 1999). The problem that Mess
solved was explicitly posed by Edward Witten in 1989. As it is the case in Teichmüller
theory, there is a natural equivalence relation on the space of Lorentzian metrics of

10For 14 years, this paper was circulated as a preprint; it is now published in Geometriae Dedicata.
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constant curvature, and two metrics on S × R are equivalent if they are isotopic (that
is, if they differ by a diffeomorphism of S×R which is isotopic to the identity). Mess
showed that the space of equivalence classes of metrics satisfying the above properties
is a generalized Teichmüller space parametrized by T ×ML, where T is the (usual)
Teichmüller space of S and ML its space of measured laminations. It is useful to
recall here the following two facts:

• There is a well-known homeomorphism between the space T ×ML and the
cotangent bundle of the Teichmüller space of S, obtained as a consequence of
the result by Hubbard and Masur stating that the space of holomorphic quadratic
differentials on a Riemann surface (which can be naturally identified with the
cotangent space to Teichmüller space at the point represented by that surface)
can be identified with the space of measured laminations on that surface.

• The space T × ML is also reminiscent of the parametrization of the space
of equivalence classes of complex projective structures on S, obtained through
Thurston’s grafting operation. This is not a pure coincidence, and grafting plays
an essential role in this work of Mess.

It is also interesting to note that Mess obtained a new proof of Thurston’s earthquake
theorem for the case of compact surfaces, using his classification of spacetimes.

Generalizing Mess’s work to the case where the surface S is not compact re-
quires more than the grafting operation. The canonical Wick rotation, which has been
introduced in this context by Benedetti and Bonsante, is another basic tool for under-
standing the space of Lorentzian metrics of constant curvature on the product S × R,
and explaining the parametrization by T ×ML. The Wick rotation11 is a transfor-
mation, acting as a π/2-rotation, that relates Lorentzian geometry and Riemannian
geometry. Roughly speaking, the idea is to consider the parameter t in the formula
ds2 = −dt2 + dx2

1 + dx2
2 + · · · + dx2

n−1 defining a Riemannian metric, and the
formula ds2 = dt2 + dx2

1 + dx2
2 + · · · + dx2

n−1, defining a Lorentzian metric, as
restrictions of one complex parameter to the imaginary axis and to the real axis re-
spectively. The Wick rotation was already successfully used in physics. In particular,
it established a relation between the Schrödinger equation of quantum mechanics and
the heat equation of thermodynamics.12

Given a manifold M equipped with a Riemannian metric and a non-vanishing
vector field X, the Wick rotation produces a Lorentzian metric on M for which X
is a timelike vector field. The Lorentzian metric also depends on the choice of two

11Named after the Italian theoretical physicist Gian-Carlo Wick (1909–1992).
12There are several well-known occurrences in geometry where the fact of complexifying a real parameter

turns out to be very fruitful. To stay close to our subject matter, we can just mention here the complexification
of earthquake coordinates which establishes relations between Weil–Petersson geometry, projective structures,
pleated surfaces and quasifuchsian groups (see e.g. the work of McMullen on the extension of earthquake
paths to proper holomorphic maps from disks into Teichmüller space), the complexification of Thurston’s shear
coordinates for measured laminations which also gives a parametrization of the space of hyperbolic 3-manifolds
with fundamental group equal to a surface fundamental group (work of Bonahon), or the complex measures
that define quake-bend maps that appear in the work of Epstein and Marden, where real measures correspond to
earthquakes and imaginary measures correspond to bending.
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positive functions α and β, called rescaling functions. The notion of rescaling is
another fundamental object in the theory that is developed by Riccardo Benedetti and
Francesco Bonsante in Chapter 14 of this volume. Another important tool in this
theory is the notion of cosmological time, introduced in this context by Benedetti and
Guadagnini.

Finally, we mention that the Wick rotation-rescaling theory also provides geometric
relations between spacetimes of different curvatures, and between such spacetimes
and complex projective structures. The theory transforms the various spacetimes into
hyperbolic 3-manifolds that carry at infinity the same projective structure.

3.4 Fricke–Klein coordinates

As is well known, the Teichmüller space of a surface S can be described as a subspace
of a space of conjugacy classes of representations of the fundamental group of S in
Lie groups, in particular the Lie group SL(2,C). This point of view was already
used by R. Fricke and F. Klein in the nineteenth century. It is a well-known fact that
the trace of a 2 × 2 matrix is a conjugacy invariant, and Fricke and Klein studied
the question of parametrizing spaces of conjugacy classes of representations of the
fundamental group of a surface in SL(2,C) by a finite number of traces, viz. traces of
images of base elements of the group and of some of their combinations. The space
of conjugacy classes of representations is referred to here as the character variety.
Trace coordinates are often called Fricke–Klein coordinates. In the case where the
fundamental group of the surface is a free group of rank two, a result of Vogt, Fricke
and Klein, which is quoted in several chapters of this volume, gives a characterization
of two-variable functions that are invariant under the action of SL(2,C) on itself by
conjugation. This characterization leads to a description of the character variety by a
set of polynomial equations, involving the traces of the images of three elements of
the fundamental group.

Chapter 15 of this volume, written by Bill Goldman, considers Fricke–Klein co-
ordinates in detail. Goldman presents the complete results with explicit formulae
in the case of two- and three-generator surface groups. Non-orientable surfaces are
also considered. The chapter also contains an exposition of the background material in
invariant theory and in hyperbolic geometry that is needed in order to obtain the formu-
lae. Goldman also gives formulae relating the trace coordinates to the Fenchel–Nielsen
coordinates in the case of a particular two-generator surface, namely the one-holed
torus.

3.5 Diagrammatic approach

Chapter 16 by Sean Lawton and Elisha Peterson concerns the character variety of
SL(2,C)-representations of the free group F2 on two generators. One obvious relation
with surface geometry stems from the fact that F2 is the fundamental group of the pair
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of pants and of the torus with one hole. The term character variety refers here to the
orbit space of the subset of completely reducible representations under the action of
SL(2,C) by conjugation. As is well known, this character variety is an algebraic set.
It contains the Teichmüller space of the surface as a subspace, and it also contains
moduli spaces of other geometric structures.

The main object of this chapter is to develop a diagrammatic approach to the study
of the character variety. The diagrams that appear here are graphs called spin networks.
These graphs are used as a diagrammatic tool in the description of a natural additive
basis for the coordinate ring of the character variety. The elements of this basis are
the central functions, and the authors make a detailed study of the properties of this
basis. Diagrammatic calculus is used to make explicit the symmetries of this basis.
The authors also give a new constructive proof of results by Vogt and Fricke–Klein
that are considered from a different viewpoint in Chapter 15 by Goldman.

Diagrammatic calculus has been thoroughly used by physicists, the most notable
examples being certainly the diagrams that appear in the works of Richard Feyn-
man and of Roger Penrose. In mathematics, it is known that diagrammatic calculus
considerably simplifies certain proofs and algebraic computations.

Spin networks, as a diagrammatic tool, have been previously used in the description
of quantum angular momentum by Penrose. They also appear, together with central
function bases, in the work of John Baez (1996) in relation to gauge theory. More
recent related work was done by Adam Sikora (2001), who considered graphs similar
to spin networks, and who used the graphical calculus in the deformation theory of
the SL3-character variety of the fundamental group of a 3-manifold, with a view on
applications to quantum invariants of 3-manifolds. We finally mention that Florentino,
Mourão and Nunes (2004) used similar tools in a work that is related to the geometric
quantization of the moduli space of flat connections on a Riemann surface.

4 The Grothendieck–Teichmüller theory

The Grothendieck–Teichmüller theory is an expression that was coined afterAlexandre
Grothendieck wrote his Esquisse d’un programme (1983), a detailed research program
which was part of an application for a researcher position at CNRS. The theory that
is referred to in this expression has several facets, and the Grothendieck–Teichmüller
theory that is reported on in this volume includes the subjects of dessins d’enfants, the
reconstruction principle, and the theory of the solenoid.

Let me start by saying a few words on some of the objects that play important roles
in this theory, namely, dessins d’enfants, the absolute Galois group, towers, profinite
groups and the Grothendieck–Teichmüller modular group.

A dessin d’enfant is a finite graph embedded in an oriented connected surface,
which has the following two properties:

• the complement of the graph is a union of cells;
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• the vertices of the graph are colored black or white in such a way that the endpoints
of any vertex do not have the same color.

One may wonder how such a simple definition leads to important developments, but
in some sense this is often the case in mathematics.

It is good to recall that important ideas in Grothendieck–Teichmüller theory orig-
inate in algebraic geometry.

Grothendieck introduced dessins d’enfants in 1984 as a tool for the study of the
absolute Galois group of the field of rational numbers, and in relation with some
holomorphic branched covers of surfaces called Belyı̆ functions. After that, the use of
dessins d’enfants in Riemann surface theory and in low-dimensional topology has been
highlighted by many authors. It turned out that dessins d’enfants make connections
between several fields of mathematics, e.g. the Galois theory of algebraic numbers,
Riemann surfaces, combinatorial group theory and hyperbolic geometry.

Let us note that dessins d’enfants were already used in two chapters of Volume I
of this Handbook, namely, those written by Harvey and by Herrlich & Schmithüsen,
in relation with Teichmüller disks. It is sometimes useful to have different points of
view on an important topic, written by different authors. In Chapter 18 of the present
volume, dessins d’enfants are considered in more detail, and from a point of view
closer to that of Grothendieck’s original. This point of view heavily uses the language
and techniques of algebraic geometry. Dessins d’enfants are also considered, in the
same chapter, in relation with origamis, which are special classes of Riemann surfaces
on which significant progress has been made recently.

As already stated, the Grothendieck–Teichmüller theory studies actions of the
absolute Galois group Gal(Q/Q) of the field of rational numbers. Here, Q is the field of
algebraic numbers, that is, the algebraic closure of the field Q of rational numbers, and
Gal(Q/Q) is the topological automorphism group of the Galois extension Q/Q. We
note that there is no explicit description of the absolute Galois group Gal(Q/Q), and
partial understanding of this group is obtained by studying its actions on various spaces.

It is also worth noting that the representation theory of the absolute Galois group
plays an important role in Wiles’ proof of Fermat’s Last Theorem.

One relation of Grothendieck’s work with Teichmüller theory stems from the fact
that one of Grothendieck’s approaches to the analysis of the group Gal(Q/Q) is via
the action of that group on the “system” of all moduli spaces Mg,n (for varying g
and n). Grothendieck calls this system the Teichmüller tower. In practice, a tower in
this context is an object obtained either as the inverse limit of spaces, or as a profinite
completion of groups. The word “tower” occurs at several places in the Grothendieck–
Teichmüller theory. For instance, one has “towers of surfaces”, “towers of Teichmüller
spaces”, “towers of fundamental groups”, “towers of mapping class groups” and so
on. The Grothendieck–Teichmüller theory studies automorphisms of these objects,
and makes relations between these objects and actions of the Galois groups on various
associated spaces.

As already mentioned, the notion of profinite group is an important object in this the-
ory. We recall that a profinite group is a Hausdorff, compact and totally disconnected



Introduction to Teichmüller theory, old and new, II 37

topological group which is isomorphic to a projective limit of an inverse system of
finite groups. In some sense, a profinite group is obtained by assembling finite groups,
and hence, profinite groups may be understood by studying their finite quotients. The
absolute Galois group Gal(Q/Q) is itself an example of a profinite group. Indeed, Q

is the union of all the Galois finite normal extensions of Q in C, and Gal(Q/Q) is a
projective limit of the finite Galois groups of these extensions. Algebraic fundamental
groups of schemes, that appear in algebraic geometry, are other examples of profinite
groups. (But fundamental groups in the sense of algebraic topology are not.) Any
group G has a profinite completion Ĝ, defined as the projective limit of the groups
G/N , whereN varies over the finite-index normal subgroups ofG. There is a natural
homomorphism G→ Ĝ, which satisfies a natural universal property, and the image
of G under this homomorphism is dense in Ĝ.

The Grothendieck–Teichmüller modular group has been defined by Drinfel’d in
1991, as an extension of the absolute Galois group Gal(Q/Q). This result by Drinfel’d
somehow gave a natural setting for the action of the Galois group on the Teichmüller
tower that was alluded to by Grothendieck in his Esquisse d’un programme. The
Grothendieck–Teichmüller modular group is also the automorphism group of a tower
of fundamental groupoids of a stack of moduli spaces equipped with tangential base-
points. This group was studied by L. Schneps, P. Lochak, H. Nakamura, H. Tsunogai,
H. Voelklein and T. Shaska and others. L. Schneps identified the Grothendieck–Teich-
müller modular group with the automorphism group a tower of profinite completions
of Artin braid groups. Let us also mention that the Grothendieck–Teichmüller theory
has also applications in conformal field theory, and that there is a work in this direction
done by B. Bakalov and A. Kirillov (related to previous work of Moore and Seiberg).
More recently, P. Hu & I. Kriz worked out new relations between the Grothendieck–
Teichmüller theory and conformal field theory. They described actions of the Galois
group of a number field on the category of modular functors. We shall see in Chap-
ter 18 that the Galois group of Q also acts on origamis, which are closely related to
dessins d’enfants.

The reconstruction principle is another important aspect of Teichmüller theory
that was formulated by Grothendieck, inspired from ideas that originate in algebraic
geometry. Chapter 17 of the present volume contains a detailed overview on that
theory, written by Feng Luo, with an exposition of several important applications of
that principle in low-dimmensional topology. The reconstruction principle is related to
the study of the Teichmüller tower and it gives rise to new kind of geometric structures,
namely, (QP 1, SL(2,Z)) structures, also called modular structures.

I have included the chapter on the Teichmüller space of the solenoid in the part
of this volume dedicated to the Grothendieck–Teichmüller theory, because the study
of the solenoid involves the Teichmüller tower, the mapping class group tower and
other similar objects whose study is inherent in Grothendieck’s program, without the
language of algebraic geometry. This chapter could also have been included in Part A
on the metric and the analytic theory, but I have the feeling that the fact of including
it in the part on the Grothendieck–Teichmüller theory opens up a nice perspective.
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Now let us review in more detail the three chapters that constitute Part D of this
volume.

4.1 The reconstruction principle

Let S be a compact surface of negative Euler characteristic. An essential subsurface
S′ of S is a surface with boundary and with negative Euler characteristic embedded
in S, such that no boundary component of S′ bounds a disk in S or is isotopic to a
boundary component of S. There is a hierarchy on the set of essential subsurfaces of
S, in which the level of a surface S′ is the maximal number of disjoint simple closed
curves that cuts it into pairs of pants. In particular, level-zero surfaces are the pairs of
pants, level-one surfaces are the four-punctured spheres and the one-holed tori, and
level-two surfaces are the two-holed tori and the five-holed spheres.

Grothendieck’s reconstruction principle says that some of the most important ge-
ometric, algebraic and topological objects that are associated to a surface S (e.g.
the Teichmüller space, the mapping class group, the space of measured foliations,
and spaces of representations in SL(2,K) for a given field K) can be reconstructed
from the corresponding spaces associated to the (generally infinite) set of level-zero,
level-one and level-two essential subsurfaces of S. The geometric structures on the
level-zero spaces are the building blocks of the general structures, and the structures
on the level-one and the level-two spaces are the objects that encode the gluing. Para-
phrasing Grothendieck from his Esquisse d’un programme, “the Teichmüller tower
can be reconstructed from level zero to level two, and in this reconstruction, level-one
gives a complete set of generators and level-two gives a complete set of relations”.

Grothendieck’s ideas were inspired by analogous situations in algebraic geometry,
in particular by ideas originating in reductive group theory, where the semi-simple
rank of a reductive group plays the role of “level”.

In a series of extremely interesting and original papers, Feng Luo developed
Grothendieck’s intuition and made it precise. Chapter 17 of this volume, written
by Luo, constitutes a detailed survey of various results in this theory.

A fundamental new object that appears in this theory is the notion of modular
structure, a (QP 1, SL(2,Z)) structure in the usual sense of a geometric structure
defined by an atlas. Here, QP 1 = Q∪ {∞} is seen as the set of rational points on the
unit circle. Luo shows that the set of isotopy classes of essential simple closed curves
on an oriented surface of level at least one is equipped with a modular structure which
is invariant under the action of the mapping class group of the surface. The atlas for
such a structure is obtained through some coordinate charts associated to level-one
essential subsurfaces of the original surface. For these level-one surfaces, coordinate
charts are homeomorphisms onto QP 1. We note that the idea of a modular structure
for the set of isotopy classes of essential simple closed curves on the four-punctured
sphere is already inherent in the work of Max Dehn done in the 1930s. It is easy to
see that there is also a modular structure on the space of essential curves on the torus,
and that this structure is natural with respect to the action of the mapping class group
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of the torus on the space of curves. Luo describes in Chapter 17 a modular structure
on the set of isotopy classes of pair of pants decompositions of a surface.

Another application of the reconstruction principle presented in Chapter 17 con-
cerns characters of SL(2,K)-representations, where K is an arbitrary field. Let us
review the definition.

Let S(S) be the set of isotopy classes of essential simple closed curves on S. An
SL(2,K)-character on S(S) is defined here as the map induced by the trace function
of a representation of π1(S) in SL(2,K). Luo calls an SL(2,K)-trace function on
S(S) a function S(S) → K whose restriction to every subset S(S′) of S(S) is an
SL(2,K)-character on S(S′), where S′ ⊂ S is an essential level-one surface.

From the work of Fricke and Klein to which we already referred at several occa-
sions, it follows that the trace function defined on the fundamental group π1(S) of S,
with respect to an SL(2,K)-representation of π1(S), is determined by the restriction
of this function to the elements of π1(S) that are represented by simple curves.

Luo proves that any SL(2,K)-trace function on S(S) is the SL(2,K)-character
on that set, except for a finite number of cases which he enumerates. The result
was conjectured by Grothendieck. To prove this fact, Luo produces a complete set of
equations that express the fact that a function S(S)→ K is an SL(2,K)-character, and
he proves that these equations are supported on the essential level-two subsurfaces ofS.
The consequence is that the character functions satisfy Grothendieck’s reconstruction
principle, except for a finite number of functions supported on surfaces of genus 0
with n ≥ 5 punctures.

Another application of Grothendieck’s reconstruction principle, which is also due
to Luo, concerns geometric intersection functions defined onS(S). Luo calls a function
f : S(S)→ R a geometric intersection function if there exists a measured lamination
μ on S such that f is the intersection function withμ, that is, f (α) = i(α, μ) for every
α in S. Luo proves that a function S(S) → R is a geometric intersection function
if for every essential level-one subsurface S′ of S, the restriction of f to S(S′) is a
geometric intersection function.

A related result, again due to Luo, is that geometric intersection functions on the
set of isotopy classes of essential curves of a level-one surface are characterized by
two homogeneous equations in the (QP 1, PSL(2,Z))-structure on these subsurfaces.

Applications of the reconstruction principles in the study of Teichmüller spaces,
measured foliation spaces, and mapping class groups are also discussed in the same
chapter.

4.2 Dessins d’enfants

In Chapter 18, Frank Herrlich and Gabriela Schmithüsen give an overview of the
theory of dessins d’enfants, and of another class of combinatorial objects, namely
origamis, and they develop the relation between the two classes.

We already recalled the classical result of Riemann stating that any compact Rie-
mann surface can be defined as an algebraic curve, that is, as the zero set of a two-
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variable polynomial. In this setting, the most useful polynomials are probably those
whose coefficients are in the field Q of algebraic numbers. A celebrated result due to
G. Belyı̆ asserts that any compact Riemann surface represented by an algebraic curve
with coefficients in Q is a ramified meromorphic covering of the Riemann sphere, in
which the ramification occurs over at most three points. This leads to the introduc-
tion of the following important notion: a Belyı̆ morphism X → P

1(C) is a ramified
covering from a Riemann surface X to the complex projective line P

1(C), which is
ramified over at most three points. Using this notion, Belyı̆’s theorem states that the
Riemann surface X can be defined as an algebraic curve over the field Q if and only
if there exists a Belyı̆ morphism X→ P

1(C).
Chapter 18 contains an exposition of the fact that the following categories of objects

are in natural one-to-one correspondence:

• equivalence classes of Belyı̆ morphisms;

• equivalence classes of dessins d’enfants;

• equivalence classes of bipartite ribbon graphs;

• conjugacy classes of finite index subgroups of F2, the free group on two gener-
ators;

• transitive actions of F2 on a symmetric group Sd of permutations of d objects up
to conjugacy in Sd .

From the correspondence between the first two items in this list, it follows that the
absolute Galois group Gal(Q/Q) acts on the class of equivalence classes of dessins
d’enfants. There is still no explicit description of this action, but the correspondence
leads to important results, such as the embedding of Gal(Q/Q) into the Grothendieck–
Teichmüller group ĜT . We also note that L. Schneps described a faithful action of
Gal(Q/Q) on a class of equivalence classes of trees.

Herrlich and Schmithüsen provide a proof of the fact that the action of Gal(Q/Q)
on dessins d’enfants is faithful. They address the question of finding invariants of
the actions mentioned above. In other words, the question is to find properties of
equivalence classes of dessins d’enfants (and of the other related objects) that remain
invariant under the action of the Galois group. There is no complete list of such
invariants, but Herrlich and Schmithüsen study a few invariants such as the genus and
the valency lists of a dessin d’enfants. They explain how the Galois action on dessins
induces an injective group homomorphism of Gal(Q/Q) in the automorphism group
Aut(F̂2) of the profinite completion F̂2 of F2. This is then explained in the general
context of actions of Gal(Q/Q) on algebraic fundamental groups of schemes.

The embedding Gal(Q/Q) → Aut(F̂2) leads to the introduction of the Grothen-
dieck–Teichmüller group ĜT , introduced by Drinfel’d, which is a subgroup of Aut(F̂2)

which contains the image of Gal(Q/Q).
The second part of Chapter 18 deals with origamis. These are surfaces obtained

by taking a finite number of isometric squares in the Euclidean plane and gluing them
along their boundaries by using Euclidean translations. Origamis already appeared in
Volume I of this Handbook, and they are also mentioned in Chapter 10 of the present
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volume, in particular regarding their affine groups. There are several questions on
origamis that are still unsolved, regarding their arithmetic theory, their occurrence as
Teichmüller disks in moduli space, and so on.

In Chapter 18, origamis are studied in parallel with dessins d’enfants. One can see
the relation between these two classes of objects in the following manner: whereas a
dessin d’enfant is associated to a finite unramified covering of the sphere with three
points deleted, an origami is associated to an unramified finite covering of the torus
with one point deleted. It may be useful to note here that the sphere with three
punctures and the torus with one puncture are exactly the surfaces whose fundamental
group is a free group on two generators.

Herrlich and Schmithüsen give a list of classes of objects that are equivalent to
origami curves. This list is analogous to the list that we mentioned above, concerning
dessins d’enfants. Then the authors report on the relation between origami curves and
dessins d’enfants. More precisely, they show that an origami curve can be interpreted
as a dessin d’enfants, and they show by examples how to produce a dessin associated
to an origami curve. Dessins d’enfants can also be associated to a cusp of an origami
curve, that is, a boundary point of the closure of the image of the origami curve in the
Deligne–Mumford compactification of moduli space. Herrlich and Schmithüsen also
study the action of the absolute Galois group on the set of origamis.

4.3 The solenoid

Taking a covering of a Riemann surface leads to a natural operation at the level of
Teichmüller spaces. In fact, there is a contravariant functor from the category of ori-
ented closed surfaces, with finite-degree orientation-preserving covers between them
as morphisms, to the category of finite-dimensional complex manifolds with holomor-
phic embeddings as morphisms. This functor associates to each Riemann surface its
Teichmüller space and to each orientation-preserving covering X→ Y , the naturally
induced holomorphic map T (Y ) → T (X) between the corresponding Teichmüller
spaces obtained by lifting conformal structures on Y to conformal structures on X.
In some sense, the solenoid can be considered as a universal object arising from this
theory of taking covers of surfaces.

The solenoid was introduced by Dennis Sullivan in the early 1990s, as the inverse
limit of a tower of finite sheeted pointed covers of a pointed closed oriented surface
of genus g ≥ 2. In this setting, “pointed” means equipped with a basepoint, all
covers are unbranched, and the order relation between pointed covers is defined by the
existence of a factorizing cover. We note that the fact of specifying basepoints make
factorizations unique whenever they exist.

More precisely, the family C of pointed finite-order covers of a pointed base sur-
face (S0, x0), equipped with the partial order � defined by factorizations of covers,
is inverse directed, and the compact solenoid (also called the universal hyperbolic
solenoid) S is the inverse limit of this family. Thus, a point in the compact solenoid
S is a point y0 on the base surface S0 together with a point yi on each finite covering
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surface πi : Si → S0 such that πi(yi) = y0, with the property that if two covers
πi : Si → S0 and πj : Sj → S0 satisfy πi � πj and if πi,j is the factorizing covering,
then πi,j (yj ) = yi .

The compact solenoid C does not depend on the choice of the base surface (S0, x0).
This is a consequence of the fact that any two finite covers have a common finite cover.

The compact solenoid S is equipped with the subspace topology induced from the
product topology on the infinite product of all pointed closed surfaces that finitely cover
the base surface. With this topology, S is compact, and its local structure is that of a
surface times a Cantor set. Thus, the compact solenoid has the structure of a foliated
space, or a lamination. (These are spaces more general than the familiar foliated
manifolds and laminations on manifolds.) The direction of the Cantor set is called
the transversal direction. Using the language of foliation theory, the path-connected
components of S are called the leaves. In the solenoid, each leaf is homeomorphic to
a disk and is dense in S.

Sullivan introduced the compact solenoid as a sort of “universal dynamical system”.
Independently of Sullivan’s original motivation, the compact solenoid turned out to
be an interesting object that can be studied for itself. Such a study has been carried
out by Sullivan, Biswas and Nag, and, more recently, by Šarić, Markovic, Penner and
others.

Using the correspondence between unbranched covers of a surface and subgroups
of its fundamental group, there is an equivalent definition of the solenoid that uses the
directed set of subgroups of the fundamental group of the base surface, equipped with
the inclusion order relation.

The compact solenoid can also de described as a principalG-bundle over the base
surface, withG being the profinite completion of the fundamental group of the surface
and with fibers homeomorphic to a Cantor set. In this respect, recall that the universal
cover of a pointed surface (S0, x0) is a principal π1(S0, x0)-bundle over that surface,
and that the compact solenoid appears as the principalG-bundle obtained by extending
the structure group of this bundle from the fundamental group to its completion. (We
recall that any group is naturally included in its profinite completion.) From this
description, the compact solenoid can be thought of as a “universal closed surface”.
The compact solenoid S, as a lamination, has an invariant transverse measure which
is induced by the Haar measure on the fiber group. This transverse measure on the
solenoid is important. For instance, it can be used for obtaining a measure on the
solenoid by taking the product of this transverse measure with the area form obtained
from a hyperbolic structure on the leaves. It can also be used for integrating objects
like quadratic differentials which are holomorphic on the leaves, and so on.

The compact solenoid is equipped with a rich variety of natural structures, that
parallel analogous structures associated to compact surfaces. The examples of such
structures that are of main interest for us here are complex structures and hyperbolic
structures, and there is a uniformization theorem that connects them. A complex
structure on S is defined by an atlas whose transition maps are holomorphic when
restricted to the local leaves, and are continuous in the transverse directions. The
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solenoid, equipped with a complex structure, becomes a Riemann surface lamination.
There is a notion of a quasiconformal map between Riemann surface laminations.
Markovic and Šarić proved that any two homotopic quasiconformal maps between
complex solenoids are isotopic by a uniformly quasiconformal isotopy. There is a
space of Beltrami differentials on the compact solenoid, and a corresponding Teich-
müller space T (S). The latter can be defined, as in the case of the Teichmüller space of
a surface, either as a space of equivalence classes of Beltrami differentials, or as a space
of equivalence classes of marked solenoids equipped with complex structures. The
space T (S) is infinite-dimensional and separable (in contrast with infinite-dimensional
Teichmüller spaces of surfaces, which are all non-separable). The space T (S) can
also be naturally embedded as a complex submanifold of the universal Teichmüller
space.

Let us mention that there is another object which has the same flavour as the
Teichmüller space of the compact solenoid, and which was studied by Biswas, Nag &
Sullivan. It is also related to the functor that we mentioned above, between the
categories {closed oriented surfaces, finite covers} and {complex spaces, holomorphic
maps}. This functor leads to a directed system of Teichmüller spaces, with order
relation stemming from existence of holomorphic maps induced from coverings. The
direct limit of this system is called the universal commensurability Teichmüller space,
and it is denoted by T∞. Like the solenoid itself, the space T∞ does not depend on the
choice of the base surface, and it is equipped with a Teichmüller metric, induced from
the Teichmüller metrics of the Teichmüller spaces of the surfaces that were used to
define it. The space T∞ is also equipped with a Weil–Petersson metric. By a result of
Biswas, Nag & Sullivan, the Teichmüller space of the compact solenoid, T (S), is the
completion of the universal commensurability Teichmüller space T∞, with respect to
the Teichmüller metric.

We also mention a relation with algebraic geometry. Biswas, Nag & Sullivan
used their work on the universal commensurability Teichmüller space to obtain a
genus-independent version of determinant line bundles and of connecting Mumford
isomorphisms. This theory provides a natural Mumford isomorphism between genus-
independent line bundles, which is defined over the universal commensurability Teich-
müller space T∞, made out of the Mumford isomorphisms between determinant line
bundles defined at the finite-dimensional levels.

Now back to the compact solenoid.
There is a natural notion of an automorphism group of the Teichmüller space of

the solenoid that was also introduced by Biswas, Nag & Sullivan. These authors
proved in 1996 that this group is isomorphic to the virtual automorphism group of
the fundamental group of the base surface. We recall that the virtual automorphism
group of a group G is the set of isomorphisms between finite index subgroups of
G up to the equivalence relation that identifies two such isomorphisms if they agree
on a finite index subgroup. The virtual automorphism group of G is also called the
abstract commensurator group ofG. For instance, the virtual automorphism group of
Z is the multiplicative group Q

∗. The relation with the solenoid stems from the fact
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that there is a natural correspondence between homotopy classes of homeomorphisms
between finite covers of a surface and elements of the virtual automorphism group
of the fundamental group of that surface. A related natural object of study is the
baseleaf preserving mapping class group of the compact solenoid S, defined (modulo
some technicalities) after the choice of a baseleaf, as the group of isotopy classes of
baseleaf preserving self-homeomorphisms of this space S. C. Odden proved in 2004
that the baseleaf preserving mapping class group of S is naturally isomorphic to the
virtual automorphism group of the fundamental group of the base surface. This result
is considered as an analogue of the Dehn–Nielsen–Baer Theorem that describes the
mapping class group of a closed surface of genus ≥ 1 as the outer automorphism
group of its fundamental group. Markovic & Šarić proved that the baseleaf preserving
mapping class group of the solenoid does not act discretely on T (S), a result which
should be compared to the fact that in general, the mapping class group of surfaces of
infinite type does not act discretely on the corresponding Teichmüller space.

The non-compact solenoid, also called the punctured solenoid, and denoted by Snc,
is defined in analogy with the compact solenoid, as the inverse limit of the system of all
pointed finite sheeted coverings of a base surface S0 of negative Euler characteristic,
except that here, S0 is a punctured surface. A study of the noncompact solenoid was
done by Penner & Šarić, who equipped that space with the various kinds of structures
that exist on the compact solenoid, namely, complex structures, quasiconformal maps
between them, a Teichmüller space, and a mapping class group which is isomorphic to
a subgroup of the commensurator group of the base surface preserving the peripheral
structure (in analogy with the case of the mapping class group of a punctured surface).

Chapter 19 of this Handbook, written by Dragomir Šarić, contains a review of the
theory of the compact solenoid and of recent work on the noncompact solenoid Snc
by Penner & Šarić, as well as work by Bonnot, Penner and Šarić on a cellular action
of the mapping class group of Snc. In analogy with the corresponding situation for
punctured surfaces, there is a decorated Teichmüller space of the noncompact solenoid,
with associated λ-length coordinates, and a convex hull construction of fundamental
domains which gives an interesting combinatorial structure for this Teichmüller space,
generalizing an analogous structure that was developed by Penner for the Teichmüller
space of a punctured surface. An explicit set of generators for the mapping class
group of the noncompact solenoid is also discussed. Note that no such explicit set of
generators for the compact solenoid is known. It is conjectured that the mapping class
groups of the compact and of the noncompact solenoids are not finitely generated.

Chapter 19 ends with a discussion of open problems on the Teichmüller space and
on the mapping class group of the compact and the noncompact solenoids.
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1 Introduction

Our goal is to present a summary introduction for the current understanding of a
Weil–Petersson metric space. With apologies to colleagues, our goal is to present an
exposition following a development of concepts, rather than an exposition following
the order of results discovered. Selected readings and general attributions are provided
at the end of each section.

There are overlapping themes for the current research on finite dimensional Weil–
Petersson metrics. Beginning with the work of Brock and in collaborations, the large-
scale coarse geometry is under extensive investigation [5], [9], [10], [11], [12]. Brock
also initiated the consideration of the comparison to the geometry of quasi-Fuchsian
groups. Beginning with the work of Yamada, the CAT(0) geometry is also under
examination [13], [32], [56], [57], [59]. Beginning with the work of Mirzakhani, the
relationship to the Witten–Kontsevich conjecture and symplectic reduction are under
continuing investigation [38], [39], [46], [47]. The work of Mirzakhani combines
explicit integrals and elements of Thurston’s geometry to find the asymptotic count
of lengths of simple closed geodesics on a hyperbolic surface [37], [36]. Following
the work of Bridgeman and Taylor [7], McMullen has shown that the metric can be
reconstructed from dynamical quantities, such as measures on the unit circle and limit
sets on the sphere [34]. Beginning with the considerations of Weng [50], [51], the
application to an arithmetic Riemann–Roch is being investigated [15]. McMullen [33],
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the collaboration of Liu, Sun and Yau [27], [28], as well as Yeung [61], [60] have
examined comparisons between the metric and the classical metrics for a domain and
have also considered applications. Huang continues a detailed examination of the
curvature of the metric [20], [21], [22], [23].

We present a summary introduction of the metric space geometry. Teichmüller
space and its augmentation are described in terms of the Fenchel–Nielsen coordinates.
The Weil–Petersson metric space basic properties are described. Geodesic-length
functions are introduced and formulas for their gradients and Hessians are presented.
Beginning applications are considered. A description of the Weil–Petersson metric
in Fenchel–Nielsen coordinates is presented. A model metric is discussed. Proper-
ties of Weil–Petersson metric and geodesics, as well as properties of geodesic-length
functions are combined to describe the Alexandrov tangent cone at points of the aug-
mentation. A comparison dictionary is presented between the geometry of the space
of flat tori and Teichmüller space with the Weil–Petersson metric.

2 Basics of Teichmüller theory

Let T be the Teichmüller space for homotopy marked genus g, n-punctured Riemann
surfaces R of negative Euler characteristic. A point of T is the equivalence class of
a pair (R, f ), with f a homeomorphism from a reference topological surface F to
R. By uniformization a conformal structure determines a unique complete compat-
ible hyperbolic metric ds2 for R. The Teichmüller space is a complex manifold of
dimension 3g−3+nwith the cotangent space atR represented byQ(R), the space of
holomorphic quadratic differentials on R with at most simple poles at the punctures.
Weil introduced the Hermitian cometric.

Definition 1. The Weil–Petersson cometric is 〈ϕ,ψ〉 = ∫
R
ϕψ (ds2)−1.

In the 1940s Teichmüller introduced the Finsler metric with conorm given as
‖ϕ‖T =

∫
R
|ϕ|. The Weil–Petersson (WP) dual metric is invariant under the action

of the mapping class group, MCG, the group of orientation preserving homeomor-
phisms modulo the subgroup of homeomorphisms homotopic to the identity relative to
punctures. The WP metric projects to the quotient M = T /MCG, the moduli space
of Riemann surfaces. First properties are that the metric is Kähler, non-complete
with negative sectional curvature κ with supT κ = 0 (except for dim T = 1 where
supT κ < 0) and infT κ = −∞. The metric continues to be the primary metric
for understanding the Kähler geometry of Teichmüller space [33], [27], [28], [54],
[60]. The current exposition focuses on the metric space geometry. In practice and
experience the WP geometry of T corresponds to the hyperbolic geometry of surfaces.

A hyperbolic surface has a thick–thin decomposition with thin the region of injec-
tivity radius below a threshold value. The thin components of a hyperbolic surface
are neighborhoods of cusps or are collars (fixed area tubular neighborhoods of short
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geodesics). Mumford first observed that the set of hyperbolic surfaces with lengths of
closed geodesics bounded below by a constant c > 0 forms a compact subset Mc of
the moduli space M. In general the totality of all thick regions of a given topological
type forms a compact set of metric spaces in the Gromov–Hausdorff topology. The
Teichmüller and WP metrics are comparable on Mc. The Teichmüller and WP geom-
etries of the ends of M −Mc are examined in the references [35], [29], [56], [57], as
well as discussed below.

We consider the following for the reference topological surface F .

Definition 2. A k-simplex of the complex of curves C(F ) is a set of k + 1 distinct
free homotopy classes of non-trivial, non-peripheral, mutually disjoint simple closed
curves of F . The pants graph P(F ) has vertices the maximal simplices of C(F ).
Vertices of P(F ) are connected by an edge provided the corresponding sets of free
homotopy classes differ by replacing a single curve by a curve intersecting the original
curve one or two times.

The vertices of C(F ) are the free homotopy classes of non-trivial, non-peripheral
simple closed curves. The simplices of C(F ) are the convex sums of vertices. The
complex of curves C(F ) is a lattice, partially ordered by inclusion of simplices with
maximal simplices, called pants decompositions, having dimension 3g − 4 + n. A
pants decomposition decomposes a surface into a union of 2g − 2 + n three-holed
spheres. The pants graph P(F ) becomes a metric space by specifying the edges to
have unit-length. Corresponding to a pants decomposition are global coordinates,
Fenchel–Nielsen (FN) coordinates for T given as gluing-parameters for constructing
surfaces from right hyperbolic hexagons. The construction begins with right hexagons
which can be doubled across alternating edges to obtain a pair of pants, a genus zero
hyperbolic surface with three geodesic boundaries with lengths free-parameters in
R>0. Boundaries of pants of a common length can be abutted to construct a larger
surface.

A pants decomposition for F provides a combinatorial scheme to abut boundaries
of pants to obtain a hyperbolic surface of genus g with n punctures. In abutting
boundaries there is the free-parameter of the relative displacement of one boundary
with respect to the other. Overall for each abutting there are two free-parameters.
The first parameter is the common boundary geodesic-length � valued in R>0. The
second parameter is the relative displacement τ valued in R measured in hyperbolic
distance (τ is initially measured between appropriate footpoints and then analytically
continued).

Theorem 3. The FN coordinates
∏
j∈P (�j , τj ) → (R>0 × R)3g−3+n for a pants

decomposition P provide a real analytic equivalence for T . The WP Kähler form is
ωWP = 1

2

∑
j d�j ∧ dτj .

The FN coordinate expression for ωWP is independent of the particular choice of
pants decomposition.
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The augmented Teichmüller space T is a partial compactification in the style of
Bailey–Borel. The space T is important to the understanding of the Deligne–Mumford
compactification of the moduli space M and for the WP geometry. Frontier spaces
are adjoined to T corresponding to allowing geodesic-lengths �j to assume the value
zero with the FN angles θj = 2πτj/�j undefined (in polar coordinates the angle
is undefined at the origin). The vanishing �j = 0 describes a degenerate hexagon
with a side-length vanishing and the adjacent sides meeting at a common point on
the circle at infinity for the hyperbolic plane. The vanishing �j = 0 corresponds
to a degenerate hyperbolic surface with a pair of cusps in place of a simple closed
curve (γj in the pants decomposition is now represented by the horocycles about
the cusps). In general for a simplex σ ⊂ C(F ), the σ -null stratum is the space
of structures S(σ ) = {R degenerate | �α(R) = 0 iff α ∈ σ }. The frontier spaces
FP =⋃

σ⊂P S(σ ) subordinate to a pants decomposition P are adjoined to T with a
neighborhood basis for T ∪ FP prescribed by the specification that

((�β, θβ), �α) : T ∪ S(σ )→∏
β /∈σ (R>0 × R)×∏

α∈σ (R≥0)

is a continuous map. For a simplex σ ⊂ P , P ′, contained in two pants decomposi-
tions, the neighborhood systems are equivalent.

A structural property is that the deformation spaces S(σ ) are products of lower
dimensional Teichmüller spaces and the limit of the tangential component of the WP
metric of T is simply the WP metric of the lower dimensional stratum S(σ ). A
sequence of marked hyperbolic surfaces {Rn} converges in T provided there is a
simplex σ contained in a pants decomposition P with �α(Rn), α ∈ σ limiting to
zero (no convergence condition is placed on θα, α ∈ σ ) and FN parameters (�β, θβ),
β ∈ P − σ converging.

Theorem 4. The augmented Teichmüller space T = T
⋃
σ∈C(F ) S(σ ) is a non locally

compact stratified space. The augmented Teichmüller space is the WP completion of
Teichmüller space.

A point of T −T represents a marked degenerate hyperbolic structure for which a
simplex of C(F ) has each element represented by a pair of cusps. The augmentation is
also described as the Chabauty topology closure of the faithful cofinite representations
of π1(R) into PSL(2;R) modulo conjugacies by PSL(2;R). The quotient T /MCG
is topologically the Deligne–Mumford stable curve compactification of the moduli
space of curves.

We make the comparison between the upper half plane H as the space of marked flat
tori and T as the space of marked hyperbolic structures. The comparison is explored
in the following sections. A point z ∈ H determines the lattice in C with basis vectors
{1, z}. A lattice change of basis is given by the action of the elliptic modular group
PSL(2;Z).

The Farey graph G is realized in H ∪Q by connecting vertices (rational numbers)
p/q and r/s with a geodesic in H provided |ps − qr| = 1. Brock and Margalit
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examine geometric comparisons between the Farey graph and penultimate subsets of
C(F ) [11] (the sets of decompositions containing a given 3g−5+n simplex of C(F )).

flat structures hyperbolic structures

H the space of homotopy marked tori T the space of homotopy marked
hyperbolic metrics

PSL(2;Z) mapping class group MCG

H/PSL(2;Z) moduli space of flat tori M moduli space of Riemann surfaces

H ∪Q with horoball topology T augmented Teichmüller space

H ∪Q/PSL(2;Z) moduli space
of stable elliptic curves

T /MCG Deligne–Mumford moduli
space of stable curves

horoballs {A(z) ≥ c | c < 1/2},
A ∈ PSL(2;Z)

Bers regions

Farey graph G complex of curves C(F ) and pants
graph P(F )

hyperbolic metric WP metric (Kähler with negative curva-
ture)

initial tangents to geodesics ending at Q

are dense
initial tangents to geodesics ending
at maximally degenerate structures
are dense

for A ∈ PSL(2;Z), the function
− log(A(z))

for a closed geodesic α, the root
geodesic-length �1/2

α

gradient μA = grad log(A(z)) with
〈μA,μA〉 = 1

gradient λα = grad �1/2
α with

〈λα, λα〉 = 1/2π +O(�3
α)

for A ∈ PSL(2;Z), hyperbolic
metric given as
(d log(A(z)))2 + (d log(A(z)) � J )2

for a closed geodesic α, WP metric given
as (d�1/2

α )2 + (d�1/2
α � J )2 +O(�3

α)

DU(−μA) = 〈JμA,U 〉JμA DUλα = 3�1/2
α 〈Jλα,U 〉 Jλα +O(�3/2

α )

Hess(− log(A(z)) ≥ 0 Hess �α > 0, Hess �1/2
α > 0

The original reference for the WP metric is [3]. A reference for FN coordinates is
[2] and for the symplectic form in FN coordinates is [55]. A counterpart approach to
coordinates and the symplectic form for surfaces with cusps is extensively investigated
in the works of Penner [42], [43] and also in [40]. The complex of curves is introduced
in [18] with a current introduction presented in the first volume of this Handbook [17]
and its metric space geometry is investigated in the foundational work of Masur and
Minsky [30], [31]. The original references for the augmented Teichmüller space are
[1], [18] with the description in terms of the Chabauty closure of discrete faithful
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representations in [19]. The original reference for analytic consideration of M is [6]
with [29] presenting the first expansion for the metric. A brief survey of WP geometry
current to the year 2002 is presented in the introduction of [56]. Results from [56]
are also presented in the following sections. Current understanding of WP curvature
is presented in [20], [22], [23].

3 The WP CAT(0) geometry

The augmented Teichmüller space with the WP metric is a CAT(0) metric space (a
complete, simply connected, generalized non-positively curved space). In particu-
lar (T , dWP) is a length space, a metric space with unique distance-realizing paths
(geodesics) between pairs of points. Furthermore the WP metric has the Euclidean
triangle comparison property: for a triangle in T and a corresponding triangle in E

2

with corresponding edge lengths, chords of the former (located by endpoints on sides)
have lengths bounded by lengths of corresponding chords of the latter. The conditions
CAT(0) and Gromov hyperbolicity are independent, even though the latter is a gener-
alized negative curvature condition. The strata S(σ ) ⊂ T , σ ∈ C(F ) are intrinsic to
the WP metric geometry and T is an infinite polyhedron as follows.

Theorem 5. T is a stratified metric space with each open stratum characterized
as the union of all geodesics containing a given point as an interior point. The

interior of a geodesic in T is contained in a single stratum (geodesics do not refract at
strata). T itself is characterized as the closed convex hull of the maximally degenerate
hyperbolic structures (the unions of thrice punctured spheres).

The structure of strata provides that the extended MCG (both orientation preserv-
ing and reversing classes) is the full group of isometries of T as follows [32], [56].
(The property does not follow the comparison between flat structures and hyperbolic
structures, since the group of orientation preserving isometries of H is the Lie group
PSL(2;R)). A WP isometry extends to the completion T and preserves the intrin-
sic strata structure, as well as the partial ordering of inclusion of simplices of C(F ).
Ivanov established that order preserving bijections of C(F ) are induced by elements
of the extended MCG [24]. In particular for an orientation preserving isometry there
is a corresponding element of MCG and the two maps agree on the maximally de-
generate structures in T (a maximally degenerate structure is uniquely determined
by its simplex). The two maps agree on T , the closed convex hull of the maximally
degenerate structures. The isometry coincides with the element of MCG.

There is a classification for the action of elements of MCG. A mapping class ι acting
on T has fixed-points or positive translation length realized on a closed convex set Aι,
isometric to a metric space product R×Y . In the latter case the isometry acts on R×Y as
the product of a translation and idY . Following Thurston, a mapping class is irreducible
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(pseudo Anosov) provided no power fixes the free homotopy class of a simple closed
curve. Infinite order non-irreducible mapping classes are reducible, and are first
analyzed in terms of mappings of proper subsurfaces. Each irreducible mapping
class has a unique invariant WP axis and non-commuting irreducible mappings have
divergent axes [13], [56].

The pants graph P(F ) provides a quasi isometric model for T and T as follows.
Bers observed for constants c′ depending on the topological type (g, n) that the sublevel
sets BP = {�γ ≤ c′ for all γ ∈ P } called Bers regions for P a pants decomposition,
cover Teichmüller space. The bounded valence multivalued relation R ∈ T ↔ {P |
R ∈ BP } is the basis for (non-unique) embeddings h : T → P(F ) and k : P(F )→ T .
Brock established that the embeddings are quasi isometries (satisfy d(x, y)/c′ − c′′ ≤
d ′(f (x), f (y)) ≤ c′d(x, y)+ c′′ for positive constants). On considering the edges of
the pants graph P(F ) to have unit-length then Brock and in joint work with Margalit
established the following [9], [11].

Theorem 6. T and T are quasi isometric to P(F ). For the topological types (1, 2)
and (0, 4) the spaces T and T are quasi isometric to the Farey graph.

Degenerate hyperbolic surfaces given as a union of surfaces of penultimate and
ultimate types (1, 2), (0, 4) and (0, 3) are of special interest. For such a simplex
σ ∈ C(F ) with a total of m subsurfaces of type (1, 2) or (0, 4) the corresponding
stratum S(σ ) ⊂ T is quasi isometric to anm-fold product of Farey graphs and contains
a WP isometric image of R

m (a flat) as a product of geodesics from each of the cited
factors. More generally a quasi flat is a quasi isometric embedding of R

p. Quasi
flats are important for understanding a geometry and are a tool for understanding
quasi isometric rigidity in the setting of higher-rank symmetric spaces. Behrstock
and Minsky settled [5] the open question on rank of T showing that the maximal
dimension of a quasi flat in T is

⌊ 3g+n−2
2

⌋
(the maximal possible count of (1, 2) and

(0, 4) subsurfaces). For dim T = 3 Brock and Masur have shown that any quasi
flat is within a bounded distance of a stratum quasi isometric to a product of Farey
graphs [11].

In collaborations Behrstock–Minsky [5] and Behrstock–Kleiner–Minsky–Mosher
[4] have been investigating the asymptotic cones AC of MCG (the Gromov–Hausdorff
limits of rescalings of the group word-metric). The main result of the first work is
that the maximal dimension of a locally-compact subset of AC equals the maximal
dimension of an Abelian subgroup of MCG. In the second work rescaling limits in
AC of flats and quasi flats of MCG, as well as the action on AC of quasi isometries
are examined. Leuzinger shows that the asymptotic cone of the moduli space M
with the Teichmüller metric is bi Lipschitz to the quotient complex C(F )/MCG, [26].
Hamenstädt is also investigating the geometry of MCG [16].

Select readings for the section include the investigations of Brock [9], [10], Daska-
lopoulos–Wentworth [13], [14] and the author [56].
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4 Geodesic-length functions

Associated to each non-trivial, non-peripheral free homotopy class α on a marked
hyperbolic surface is the length �α of the unique geodesic in the free homotopy
class. Geodesic-lengths are explicit with 2 cosh �α/2 = trA for the free homotopy
class α corresponding to the conjugacy class ofA in the deck group within PSL(2;R)
and geodesic-lengths can be combined to provide coordinates for T . Geodesic-
length functions also have a direct relationship to WP geometry. For a simple closed
geodesic α on a hyperbolic surface, the surface can be cut along the geodesic to form
two circle boundaries, which can then be identified by a relative rotation to form a
new surface. A flow on T is defined by considering families of surfaces {Rt } for
which at time t reference points from sides of the original geodesic are displaced by t
on Rt . The infinitesimal generator, the FN vector field tα , and the WP gradient of
geodesic-length satisfy the basic duality 2tα = J grad �α for J the almost complex
structure of T .

The relationship between hyperbolic geometry and WP geometry is displayed in
the formulas for gradients. The twist-length formula is

〈grad �α, J grad �β〉 = 4ωWP(tα, tβ) = −2
∑
p∈α∩β

cos θp

for the geodesics α, β and intersection angles θ∗ on the hyperbolic surface. The
length-length formula for geodesics α, β with corresponding deck transformations A,
B, with corresponding axes α̃, β̃ is

〈grad �α, grad �β〉 = 2

π

(
�αδαβ +

∑′
〈A〉\�/〈B〉

(
u log

u+ 1

u− 1
− 2

))

for the Kronecker delta δ∗, where for C ∈ 〈A〉\�/〈B〉 then u = u(α̃, C(β̃)) is the
cosine of the intersection angle if the lifts α̃ and C(β̃) intersect and is otherwise
cosh d(α̃, C(β̃)); for α = β the double-coset of the identity is omitted from the sum.
In the latter case the values d(α̃, C(β̃)) are the lengths of the shortest representatives
on the surface for the homotopy classes connecting α to β with homotopy relative to
α and relative to β. The above formulas are the result of explicit integration of the
Weil–Petersson product.

Select readings for the section are the investigations [39], [45], [52], [53].

5 WP convexity and curvature

The geodesic-length functions give rise to WP convex functions (functions strictly
convex along geodesics). The length of a geodesic, the square root of length, the
total length of a measured geodesic lamination, as well as for a surface with cusps
the distance between unit-length horocycles are all WP strictly convex functions. In
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particular the geodesic-length sublevel sets, as well as the strata of T are convex sets.
Although a simple counterpart to the above gradient formulas is not yet available,
there are bounds and expansions for the Riemannian Hessian (the intrinsic second
derivative) of geodesic-length.

Expansions for small geodesic-lengths for quantities on T provide important in-
formation. The primary interest are quantities given as integrals on Riemann surfaces.
The WP metric, WP curvature, as well as the gradients and Hessians of geodesic-
length are examples. The approach for an expansion is based on understanding the
integrand on the thick and thin regions of the surface. Commonly the leading term of
the expansion is the contribution of the collar zeroth rotational mode of the integrand
with all other contributions higher order. The expansion for the gradient and Hessian
for small geodesic-lengths are examples.

Theorem 7. The variations of geodesic-length satisfy

〈grad �1/2
α , grad �1/2

β 〉 − δαβ/2π
is positive and bounded by O(�3/2

α �
3/2
β ) and

2�α Hess �α[U,U ] − �̇2
α[U ] − 3�̇2

α[JU ]
is positive and bounded byO(�3

α‖U‖2WP) for a tangent vector U where for c0 positive
the remainder term constants are uniform for �α, �β ≤ c0.

The Hessian is directly related to covariant differentiation by Hessh[U,V ] =
〈DU grad h, V 〉 for a smooth function h and vector fields U,V .

Corollary 8. The WP connection D is described for bounded geodesic-length, root
gradient λα = grad �1/2

α , and a tangent vector U by

DUλα = 3�−1/2
α 〈Jλα,U 〉Jλα +O(�3/2

α ‖U‖WP).

A property of small geodesic-lengths and WP geodesics follows. For a geodesic
γ (t) with tangent field d

dt
the quantity f (t) = 〈

λα,
d
dt

〉2 + 〈
Jλα,

d
dt

〉2 has vanishing
principal term for its first derivative. The quantity f (t) is Lipschitz along γ (t) with
constant O(�3/2

α ).
The estimates for WP sectional curvatures are also examples of small geodesic-

length expansions. The WP curvature of the span {grad �α, J grad �α} is O(−�−1
α ).

Similarly for a pair of deformations approximately supported on different components
of thick the corresponding curvature isO(−�sys) for �sys the smallest geodesic-length.
For a pair of deformations approximately supported in the same component of thick
the corresponding curvature is approximately the curvature for the limiting 2-plane
tangent to a stratum of T .

The section is based on the work [57] on behavior of geodesic-length and the works
[20], [22], [23] on the curvature of the metric.
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6 Approaching degenerate hyperbolic structures

A refined description of geodesic-length functions near degenerate hyperbolic struc-
tures provides further understanding of the WP metric. We consider hyperbolic struc-
tures near a proper stratum S(σ ), σ ∈ C(F ). The closure of S(σ ) in T is a union of
strata

⋃
τ, σ⊆τ S(τ ). A closed convex subset S(σ ) of a CAT(0) space is the base of an

orthogonal projection �
S(σ )

and we also consider the distance d
S(σ )

to the stratum.
The projection is distance non-increasing with fibers fibered by geodesics. For the
k-simplex σ = {α1, . . . , αk+1} there is the overall bound on the distance of R ∈ T to
S(σ )

d
S(σ )

(R) ≤ (2π(�α1(R)+ · · · + �αk+1(R)))
1/2

a consequence of the root geodesic-length convexity and the gradient pairing expansion
in Theorem 7. The bound displays the incompleteness of the metric. The inequality
compares to the formal equation for the hyperbolic plane d(z,∞) = − logz with
the difference between the logarithm and the square root demonstrating the difference
between the complete hyperbolic metric and the incomplete WP metric. With the
covering property of Bers regions it follows that for a constant depending only on
topological type, each point of T is within a fixed distance of a maximally degenerate
structure.

There is an approximation of a long WP geodesic segment
�
pq as follows. At

the ending point q introduce a geodesic to a maximally degenerate structure r and
introduce a third geodesic from the beginning point p to the maximally degenerate
structure r . The triangle �pqr has two long sides and a bounded-length side. The
comparison Euclidean triangle has a small angle at its beginning point. A consequence
of CAT(0) is that the corresponding angle � qpr in T is likewise bounded, the de-
sired approximation. In particular for sufficiently long geodesics the corresponding
angles are sufficiently small. An immediate consequence is that geodesics ending at
maximally degenerate structures are dense in the space of geodesics.

A description of geodesics ending at a point of T − T is available. A geodesic
is projecting to S(σ ) provided its projection is a point or equivalently it is length-
minimizing to S(σ ). Projecting geodesics are almost described as integral curves of a
constant sum of root gradient length functions. In particular for a unit-speed projecting
geodesic ζ to S(σ ) and the root gradients λj = grad �αj there are constants aj such
that the tangent field to the geodesic ζ satisfies

d

dt
= (2π)−1

k+1∑
j=1

ajλj +O(t4)

with (2π)1/2‖(aj )‖Euclid = 1 and the distance satisfies

d
S(σ )
=

(
2π

k+1∑
j=1

�αj

)1/2 +O
( k+1∑
j=1

�5/2
αj

)
.
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The distance formula prefigures the approximation that the WP metric in a neighbor-
hood of S(σ ) compares to the product of the (lower dimensional) WP metric on S(σ )
and a universal metric for the normal bundle. The approximation is discussed in the
next section.

Selected readings for the section are [10], [56], [57]. The basic reference for
CAT(0) geometry is [8].

7 Metrics and Fenchel–Nielsen coordinates

Fenchel–Nielsen coordinates provide a straightforward description of hyperbolic sur-
faces and a parameterization for Teichmüller space. The WP metric does not provide
the structure of a symmetric space (the full isometry group is discrete); the metric
is not expected to have an elementary closed-form expression in FN coordinates.
Expansions and comparisons for the metric provide an alternative to an elementary
expression.

The FN twist-length coordinates (�j , τj )
3g−3+n
j=1 for assembling hyperbolic pants

provide global coordinates for T with the WP Kähler form

ωWP = 1

2

∑
d�j ∧ dτj

and on the Bers region {�j < c′} the metric comparisons

〈 , 〉 �
∑

(d�
1/2
j )2 + (d�1/2

j � J )2 �
∑

Hess �j

for J the almost complex structure with uniform comparability (given c′ > 0 there
exist constants c1, c2 such that the metric is bounded above and below on the Bers
region in terms of the constants and the given expressions). In a neighborhood of the
maximally degenerate structure {�j = 0 | j = 1, . . . , 3g − 3} the WP metric has the
expansions

〈 , 〉 = 2π
∑

(d�
1/2
j )2 + (d�1/2

j � J )2 +O
( ∑

�3
j 〈 , 〉

)

= π

6

∑ Hess �2
j

�j
+O

( ∑
�2
j 〈 , 〉

)
.

There are corresponding expansions for the neighborhood of a general stratum. Metric
incompleteness is immediate.

There is a comparison between the Teichmüller and WP geometry for the ends of
the moduli space. On a Bers region the Teichmüller norm is comparable as follows

‖ ‖2T �
∑(

(d�j )
2 + (d�j � J )2

)
�−2
j .
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Each metric is comparable to a product of model metrics for the tangent planes⋂
k �=j ker d�k ∩ ker d�k � J . The model for the Teichmüller metric is the hyperbolic

metric itself. We now examine the model for the WP metric.
There is a relation between the 1-form d�j �J and the FN angle θj . The definition of

the angle θj = 2πτj/�j requires a pants decomposition. An alternative definition of an
angle is given by starting with the FN vector field tj = 1/2 J grad �j , considering the

WP dual, and defining the FN gauge 1-form ρj = 2π(�3/2
j 〈λj , λj 〉)−1〈 , Jλ〉 for λj =

grad �1/2
j . The FN gauge is determined without the choice of a pants decomposition

and satisfies the essential property ρj (tj ) = dθj (tj ) = 2π/�j . Gauges and angles

agree on the level sets of pants length (�j )
3g−3
j=1 .

The WP metric for geodesic-lengths �j = 2π2r2
j and FN gauges ρj is comparable

as follows
〈 , 〉 �

∑
4dr2

j + r6
j �

2
j

with the expansion

〈 , 〉 = π3
∑

4dr2
j + r6

j �
2
j +O

( ∑
�3
j 〈 , 〉

)
at the maximally degenerate structure. There are corresponding expansions for the
neighborhood of a general stratum. The general expansion is in terms of a product of
model metrics and the WP metric of the stratum.

The model metric 4dr2+r6dϑ2 has Kähler form 2r3drdθ , Riemannian connection
D characterized by

D ∂
∂r

∂
∂r
= 0, D ∂

∂ϑ

∂
∂r
= D ∂

∂r

∂
∂ϑ
= 3

r
∂
∂ϑ

and D ∂
∂ϑ

∂
∂ϑ
= −3

4 r
5 ∂
∂r

and Riemannian curvature −3/2r2. The correspondence between the model and WP
metrics is for ∂

∂rj
corresponding to 23/2π2λj and ∂

∂ϑj
corresponding to the FN angle

variation (2π)−1�j tj . The WP metric, Kähler form and connection have leading terms
exactly corresponding to the expressions for the model metric. The WP curvature is
comparable to the corresponding model curvature. In effect the correspondence of
metrics is a C1 approximation with a bounded C2 comparison.

Readings for the section are [57], [58] with the comparability of the Teichmüller
metric presented in [33] and a refined large scale comparison presented in [35].

8 WP Alexandrov tangent cone

In a CAT(0) metric space there is a well-defined angle between a pair of geodesics
from a common initial point. The angle enters in the definition of the tangent cone
and in the first variation formula for distance. At a point of the Teichmüller space T
the WP Alexandrov angle is given in terms of the Riemannian metric. At a point of a
stratum T (σ ) ⊂ T −T , σ ∈ C(F ), the WP Alexandrov tangent cone AC is isometric
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to a product of a Euclidean orthant and the tangent space TT (σ ) with the WP metric.
The dimension of the Euclidean orthant is the count |σ | of geodesic-lengths trivial on
T (σ ).

A triple of points (p, q, r) in T has Euclidean comparison triangle with angle
� (p, q, r) valued in the interval [0, π ] determined by the Law of Cosines

2d(p, q) d(p, r) cos � (p, q, r) = d(p, q)2 + d(p, r)2 − d(q, r)2.
The Alexandrov angle (p, q, r) �→ � (p, q, r) is upper semi continuous. For constant
speed geodesics γ0(t), γ1(t) with common initial point (from the CAT(0) inequality)
the comparison angle for (γ0(0), γ0(t), γ1(t

′)) is a non-decreasing function of t and t ′.
The Alexandrov angle is defined by the limit

cos � (γ0, γ1) = lim
t→0

d(p, γ0(t))
2 + d(p, γ1(t))

2 − d(γ0(t), γ1(t))
2

2d(p, γ0(t)) d(p, γ1(t))
.

Geodesics at zero angle are said to define the same direction. At zero angle provides
an equivalence relation on the geodesics beginning at a point p with the Alexandrov
angle providing a metric on the space of directions. The Alexandrov tangent cone ACp
is the set of constant speed geodesics beginning at p modulo the equivalence relation
of same speed and at zero angle.

A relative length basis for a point p of T (σ ) is a collection τ of vertices of C(F )
disjoint from the elements of σ such that at p the gradients {grad �β}β∈τ span the
tangent space TT (σ ). A relative length basis can be given as the union of a partition
and a dual partition for R − σ .

We describe for the augmentation point p an isometry between the Alexandrov
tangent cone ACp and the product R

|σ |
≥0 × TpT (σ ) with the first factor the Euclidean

orthant and the second factor the stratum tangent space with WP metric. The mapping
for a geodesic γ (t) terminating at p is given by associating for the lengths L(γ (t)) =
(�

1/2
α , �

1/2
β )α∈σ, β∈τ (γ (t)) the initial one-sided derivatives

� : γ �→ (2π)1/2
dL(γ )

dt
(0)

(convexity provides for existence of the initial derivatives). By hypothesis the tu-
ple (�1/2

β )β∈τ provides local coordinates at p for the stratum T (σ ) and therefore

(2π)1/2
( d�1/2

β (γ )

dt
(0)

)
β∈τ defines a vector in the tangent space TpT (σ ) with WP inner

product. The positive orthant R
|σ |
≥0 ⊂ R

|σ | is considered with the Euclidean inner
product. The Alexandrov tangent cone is given the structure of a cone in an inner
product space through the formal relation 〈γ0, γ1〉 = ‖γ ′0‖‖γ ′1‖ cos � (γ0, γ1).

Theorem 9. The mapping � from the WP Alexandrov tangent cone ACp to

R
|σ |
≥0 ×TpT (σ ) is an isometry of cones with restrictions of inner products. A WP ter-

minating geodesic γ with a root geodesic-length function initial derivative d�
1/2
α (γ )
dt

(0)
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vanishing is contained entirely in the stratum {�α = 0}. Geodesics γ0 and γ1 at zero
Alexandrov angle have comparison angles � (p, γ0(t), γ1(t)) bounded as O(t).

A property for non- positively curved Riemannian manifolds is that the exponential
map is distance non-decreasing. An inverse exponential map exp−1

p : T → ACp is

defined by associating to q ∈ T the unique geodesic connecting p to q with speed
d(p, q). The map is not an injection since geodesics at zero angle with common
speed are mapped to a common element of ACp. The map is distance non-increasing
as follows. From the CAT(0) inequality and definition of the Alexandrov angle, points
on geodesics beginning at p have distance satisfying

d(γ0(t), γ1(t))
2 ≥ d(p, γ0(t))

2 + d(p, γ1(t))
2

− 2d(p, γ0(t)) d(p, γ1(t)) cos � (γ0, γ1).

For equality for a single value the Flat Triangle Lemma provides that the geodesics
are contained in a flat subspace of T . The flat subspaces are classified.

A second application of the Alexandrov angle is the first variation formula for
distance. For the unit-speed geodesic γ (t) the distance d(γ (t), q) to a point not on
the geodesic is convex with initial one-sided derivative satisfying

d

dt
d(γ (t), q)(0) = − cos � (γ, γpq)

for γpq the geodesic connecting p to q. Non refraction of geodesics on T is a conse-
quence: a WP length minimizing path at most changes strata at its endpoints. Consider
a pair of unit-speed geodesics γ0(t), γ1(t) with initial point p such that the reverse
path along γ0 followed by γ1 is length minimizing. The Alexandrov angle between the
tangents at p is π . The distance d(γ0(t), γ1(t)) is at least that of the path from γ0(t)

to p to γ1(t) and thus limt→0 d(γ0(t), γ1(t))/2t = 1 and the angle is π . Elements
of ACp at angle π necessarily lie in the subspace TpT (σ ) and from the theorem are
segments of a single geodesic contained in T (σ ).

A third application is for length-minimizing paths connecting an initial and terminal
point and intersecting a prescribed stratum. Consider a pair of geodesics γ0 and γ1
each with initial pointp on T (σ ), γ0 with endpoint q and γ1 with endpoint r . Consider
that the concatenation γ0 + γ1 is a length-minimizing path connecting q and r to a
point of T (σ ). A geodesic κ beginning at p contained in T (σ ) provides a variation
of the configuration. The initial derivative of the distance d(q, p) + d(r, p) along κ
is− cos � (γ0, κ)− cos � (γ1, κ). The geodesics beginning at p contained in T (σ ) fill
out the Alexandrov tangent cone ACp(T (σ )). It follows that the sum in ACp of the
initial tangents of γ0 and γ1 has vanishing projection onto the subcone ACp(T (σ )),
the desired property.

A further application is for combinatorial harmonic maps. Certain groups acting
on Euclidean buildings and group extensions acting on Cayley graphs satisfying a
Poincaré type inequality for links of points will have a global fixed point for an action
on T .
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The main reading for the section is [57]. Additional readings are [13], [14], [56].
The basic reference for Alexandrov angles is [8]. The readings for combinatorial
harmonic maps are [25], [48], [49].
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Infinite dimensional Teichmüller spaces

Alastair Fletcher and Vladimir Markovic

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2 Quasiconformal mappings and Teichmüller spaces . . . . . . . . . . . . . 66

2.1 Quasiconformality . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2 Teichmüller space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3 Teichmüller metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4 Schwarzian derivatives and quadratic differentials . . . . . . . . . . . 69
2.5 Bers embedding and complex structure on Teichmüller space . . . . . 72

3 Biholomorphic maps between Teichmüller spaces . . . . . . . . . . . . . . 74
3.1 Kobayashi metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 The infinitesimal Teichmüller metric . . . . . . . . . . . . . . . . . . 77
3.3 Isometries of Bergman spaces . . . . . . . . . . . . . . . . . . . . . 77

4 Local rigidity of Teichmüller spaces . . . . . . . . . . . . . . . . . . . . . 81
4.1 Projections on Banach spaces . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Bergman kernels and projections on L1(M) . . . . . . . . . . . . . . 84
4.3 Isomorphisms of Bergman spaces . . . . . . . . . . . . . . . . . . . 86
4.4 Local bi-Lipschitz equivalence of Teichmüller spaces . . . . . . . . . 88

5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

1 Introduction

In this chapter, we consider some analytic properties of Teichmüller spaces, in par-
ticular those of infinite dimension. The Bers embedding maps the Teichmüller space
T (M) of a hyperbolic Riemann surface M biholomorphically onto a subset of a Ba-
nach space Q(M) of holomorphic quadratic differentials. If M is of non-exceptional
analytic type, then the dimension of T (M) is finite if and only if the dimension of
Q(M) is finite if and only if M is of finite analytic type, that is, M is a compact
Riemann surface of genus g with n punctures, where 2g + n ≥ 5. In this case Q(M)
is a finite dimensional vector space over C and is therefore reflexive.

Via the Bers embedding, it can be shown that the cotangent space of T (M) at the
base-point [0] can be identified with the Bergman space A1(M), the pre-dual of Q(M).
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In the finite dimensional case, A1(M) = Q(M). However, when M is of infinite
analytic type, it is no longer true that A1(M) is reflexive, and so A1(M) �= Q(M).

The problem of classifying biholomorphic maps between Teichmüller spaces can
be reduced, via consideration of the Kobayashi and Teichmüller metrics, to a problem
of classifying isometries between the cotangent spaces of the corresponding Riemann
surfaces. The infinite dimensional case requires more machinery because the Bergman
spaces of Riemann surfaces of infinite analytic type are not reflexive.

We will show that if there is a surjective C-linear isometry between A1(M) and
A1(N), then the Riemann surfacesM and N , assumed to be of non-exceptional type,
are conformally equivalent. Note that we do not assume that the Riemann surfaces
M and N are even homeomorphic. This result implies that every biholomorphic map
between Teichmüller spaces T (M) and T (N) is induced by a quasiconformal mapping
between M and N , and therefore the automorphism group of T (M) is equal to the
mapping class group of M .

We also prove a counterpoint to the above result on isometries of Bergman spaces.
Namely, if M and N are any two Riemann surfaces of infinite analytic type, then the
corresponding Bergman spaces are isomorphic. This then implies that the Teichmüller
spaces of any two Riemann surfaces of infinite analytic type are locally bi-Lipschitz
equivalent.

The chapter ends with some open problems that have arisen as a result of work in
this area.

2 Quasiconformal mappings and Teichmüller spaces

2.1 Quasiconformality

A map g : (a, b)→ C is absolutely continuous on the interval (a, b) if

g(x) =
∫ x

a

h(t) dt + g(a)

for x ∈ (a, b) and h ∈ L1
loc(a, b), the space of locally integrable functions. If g is

absolutely continuous, then it is differentiable almost everywhere and g′ = h almost
everywhere.

Let � be a plane domain, f : � → f (�) ⊂ C and let a rectangle R ⊂ � have
sides parallel to the x and y axes. We say that f is absolutely continuous on lines
(ACL) on R if f is absolutely continuous on almost every horizontal and vertical line
in R. The map f is ACL on � if f is ACL on every rectangle R ⊂ �.

Definition 2.1. A homeomorphism f : �→ f (�) is K-quasiconformal if and only
if the following holds:

(i) f is ACL on �,
(ii) |fz| ≤ k|fz| almost everywhere in �, where k = (K − 1)/(K + 1).
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By property (ii), Jf = |fz|2 − |fz|2 ≥ (1− k)|fz|2 > 0 and so a quasiconformal
map is orientation preserving. In particular, f is conformal if and only if f is 1-quasi-
conformal. There are equivalent definitions of quasiconformality, see [7].

Example. The ACL condition is certainly necessary, as we will show here. Let C be
the Cantor set on (0, 1) so that every x ∈ C can be written as

x =
∞∑
i=1

2 · 3−ni

for some subset {ni} of Z
+. The Cantor function F : (0, 1) → (0, 1) is defined by

setting

F(x) =
∞∑
i=1

2−ni

for x ∈ C, and extended to the whole of (0, 1) by requiring that F be monotonically
increasing. Since F is constant on connected components of the complement of C,
F is differentiable almost everywhere, with derivative 0, but is not differentiable at
points of C. Now define the function f : (0, 1)× (−∞,∞)→ C given by

f (x + iy) = F(x)+ x + iy.
Now, F(x) + x is a homeomorphism of (0, 1) onto (0, 2), and so f is a homeo-
morphism, which is differentiable almost everywhere, and in fact fz = 0 almost
everywhere. However f cannot be conformal on (0, 1)× (−∞,∞) because it is not
differentiable at any point of C× (−∞,∞). Moreover, f cannot be quasiconformal,
because if it was, then it would have to be 1-quasiconformal and hence conformal.
In conclusion, if f : � → f (�) is a homeomorphism, differentiable almost every-
where and fz = 0 almost everywhere, then this does not imply that f is conformal or
quasiconformal.

Quasiconformality can also be defined for maps between Riemann surfaces, and
note that in this chapter we are assuming that all our Riemann surfaces are hyperbolic,
that is, they have the unit disk D as the universal cover. The map f : M → N is
said to be K-quasiconformal at p ∈ M if there are coordinate charts (Up, πp) on M
and (Uf (p), πf (p)) on N such that πf (p) 
 f 
 π−1

p is a K-quasiconformal mapping
whose domain is the plane domain πp(Up). The mapping f is then said to be K-
quasiconformal if it is K-quasiconformal at all p ∈ M . Note that this definition is
independent of the choice of coordinate chart, since the transition maps are conformal.

Let μ be a measurable (−1, 1)-form on a Riemann surface M with

|μ(p)| ≤ k < 1

for almost all p ∈ M , so μ ∈ B(M), the open unit ball of L∞(M). Such a μ is called
a Beltrami differential. The Beltrami differential equation is

fz = μfz.
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The solution f (sometimes denoted f μ) of the Beltrami differential equation is a
quasiconformal mapping, and all quasiconformal mappings arise in this way, giving
a correspondence between quasiconformal mappings and Beltrami differentials. The
solution f μ can be lifted to give a quasiconformal self-mapping of D. If the lifted
solution is normalized to fix three points of ∂D, then the correspondence between
quasiconformal mappings and Beltrami differentials is one-to-one. See [7] for the
proof of these statements.

2.2 Teichmüller space

Let F be the family of all quasiconformal self-mappings of D which are normalised so
that their extensions to ∂D fix 1, −1, i. From the solution of the Beltrami differential
equation, there is a one-to-one correspondence between F and the open unit ball
B of L∞(D). Now, we can put an equivalence relation ∼F on elements of F by
declaring that f1 ∼F f2 if and only if the extensions of f1 and f2 to ∂D agree on
∂D. Equivalently, two elements μ1 and μ2 of B are related by ∼F if and only if the
extensions of the normal solutions f μ1 and f μ2 to ∂D agree on ∂D.

Definition 2.2. The set of equivalence classes of F under ∼F is called the universal
Teichmüller space T (D).

The deformation space Def(M) of a Riemann surfaceM is the set of pairs (N, f )
where N is a Riemann surface, and f : M → N is a quasiconformal map. For any
hyperbolic plane domain � with its appropriate Riemann map f , we have (�, f ) ∈
Def(D). An equivalence relation ∼ can be defined on Def(M) by requiring that
(N1, f1) ∼ (N2, f2) if and only if

f1 
 f−1
2 : N2 → N1

is homotopic to a conformal mapg : N2 → N1. Two mapsf andg between hyperbolic
Riemann surfaces are homotopic if they can be lifted to mappings of D which agree
on ∂D.

Definition 2.3. The Teichmüller space T (M) of a Riemann surface M is given by

Def(M)/ ∼ .
The base-point of T (M) is the Teichmüller class of the identity mapping. This

definition agrees with the definition of universal Teichmüller space. To see this, first
note that since all the quasiconformal images of D are conformally equivalent, only
the normalized quasiconformal self-mappings f μ of D need be considered. Then
f μ2 
 (f μ1)−1 is homotopic to a conformal map if and only if f μ2 
 (f μ1)−1 is the
identity mapping on ∂D. Therefore f μ1 agrees with f μ2 on ∂D, which is precisely
the definition for f μ1 and f μ2 to determine the same point of universal Teichmüller
space.
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As in the considerations for the universal Teichmüller space, T (M) can be consid-
ered as a space of Beltrami differentials under the corresponding equivalence relation.
The base-point of T (M) is the Teichmüller class of 0 ∈ B(M). Given a Beltrami
differential μ on a Riemann surfaceM , μ lifts to a Beltrami differential μ̃ on D which
satisfies

μ̃ = (μ̃ 
 g) g
′

g′

for every g in the covering group ofM . We write fμ for the quasiconformal mapping
of the plane which has the complex dilatation μ̃ on D, and 0 on D

∗, where D
∗ = C\D.

Note that D
∗ is the image of D under the reflection in ∂D given by z → 1/z for z ∈ D.

Theorem 2.4. The following are equivalent:
(i) The Beltrami differentials μ and ν on the Riemann surface M are equivalent

under ∼.

(ii) f μ|∂D = f ν |∂D .

(iii) fμ|D∗ = fν |D∗ .

2.3 Teichmüller metric

For [f0], [g0] ∈ T (M), we can define the Teichmüller distance

dT ([f0], [g0]) = 1

2
inf logKg
f−1 (2.1)

where the infimum is taken over all maps f and g in the Teichmüller classes of f0 and
g0 respectively, and whereKf is the maximal dilatation of f . We write dT instead of
dT (M) for brevity where it is clear which Teichmüller space [f ] and [g] are in. We can
replace inf by min in (2.1) and dT is in fact a metric. For the details, we refer to [7].

The Teichmüller metric on B(M) is given by

dB(μ, ν) = 1

2
log

1+ ‖(μ− ν)/(1− μν)‖∞
1− ‖(μ− ν)/(1− μν)‖∞ ,

for μ, ν ∈ B(M). The Teichmüller metric dT can be expressed as the quotient of dB ,

dT ([μ0], [ν0]) = 1

2
inf

μ∈[μ0],ν∈[ν0]
log

1+ ‖(μ− ν)/(1− μν)‖∞
1− ‖(μ− ν)/(1− μν)‖∞ ,

for [μ0], [ν0] ∈ T (M).

2.4 Schwarzian derivatives and quadratic differentials

If f is holomorphic in a domain� and f ′(z) �= 0 in�, then the Schwarzian derivative
of f is

Sf =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

. (2.2)
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If also f (z) �= 0 in �, then a direct computation shows

Sf (z) = S1/f (z)

and this formula shows how to define the Schwarzian derivative of a meromorphic
function at simple poles. Thus the Schwarzian derivative can be defined for locally
injective meromorphic functions, and Sf is itself holomorphic. Let

A(z) = az+ b
cz+ d

be a Möbius transformation, then differentiating gives

A′′(z)
A′(z)

= − 2c

cz+ d
and (

A′′(z)
A′(z)

)′
= 2c2

(cz+ d)2
from which we see that

SA = 0.

Conversely, starting with the equation Sf = 0 and setting g = f ′′/f ′, then (2.2) gives
g′ = g2/2. Solving this differential equation shows that every solution of Sf = 0 is
a Möbius transformation. Schwarzian derivatives satisfy the composition rule

Sf 
g = (Sf 
 g)g′2 + Sg (2.3)

and so if g is a Möbius transformation and Sg = 0 then

Sf 
g = (Sf 
 g)g′2. (2.4)

On the other hand, if f is a Möbius transformation, then

Sf 
g = Sg. (2.5)

To define the Schwarzian derivative at∞, assume that f is locally injective and mero-
morphic in a neighbourhood of∞, then h(z) = f (1/z) is defined in a neighbourhood
of 0. Using (2.4),

z4Sh(z) = Sf (1/z)
and so we can define

Sf (∞) = lim
z→0

z4Sh(z)

and Sf is holomorphic at ∞. Thus the Schwarzian derivative can be defined for a
locally injective meromorphic function f on any domain �. The following theorem
shows that the Schwarzian derivative can be prescribed.
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Theorem 2.5. Let g be a holomorphic function in a simply connected domain�. Then
there is a meromorphic function f in � such that

Sf = g
which is unique up to an arbitrary Möbius transformation.

See [7] for the proof. Let Q(M) be the space of holomorphic quadratic differentials
on a Riemann surface M equipped with the norm

‖ϕ̃‖Q(M) = sup
p∈M

ρ−2
M (p)|ϕ̃(p)|,

where ρM is the hyperbolic density onM , and noting that ρ−2
M |ϕ̃| is a function onM ,

whereas |ϕ̃| is usually not. We will call Q(M) the Bers space, and ‖ · ‖Q(M) the Bers
norm. It is straightforward to see that Q(M) is a Banach space.

Now letf1 andf2 be meromorphic functions on a domain� and also leth : �′ → �

be conformal. Using the invariance property (2.3),

Sf1
h − Sf2
h = (Sf1 
 h− Sg 
 h)h′2.
Since the hyperbolic density is conformally invariant, ρ�′ = (ρ� 
 h)|h′|, then by
writing w = h(z), we have the invariance formula

|Sf1(w)− Sf2(w)|
ρ2
�(w)

= |Sf1
h(z)− Sf2
h(z)|
ρ2
�′(z)

.

In terms of the Bers norm, this is

‖Sf1 − Sf2‖Q(�) = ‖Sf1
h − Sf2
h‖Q(�′).
If f2 = h−1 is a conformal mapping of �, then

‖Sf1 − Sf2‖Q(�) = ‖Sf1
f−1
2
‖Q(f2(�)).

In the special case of f1 being the identity,

‖Sf2‖Q(�) = ‖Sf−1
2
‖Q(f2(�)).

Lastly, if f2 = h−1 is a Möbius transformation, then

‖Sf1‖Q(�) = ‖Sf1
f−1
2
‖Q(f2(�)),

which shows that ‖Sf ‖Q(�) is completely invariant with respect to Möbius transfor-
mations.

Recalling the quasiconformal mappings f μ and fμ, we have that fμ|D∗ is a confor-
mal map, and the set of such maps characterizes T (M). If M � D/G, then for every
g ∈ G, fμ 
 g 
 f−1

μ is a Möbius transformation. Therefore, using the transformation
rules (2.4) and (2.5), we have

Sfμ|D∗ = S(fμ
g
f−1
μ )
fμ|D∗ = Sfμ
g|D∗ = (Sfμ|D∗ 
 g)g

′2.



72 Alastair Fletcher and Vladimir Markovic

This shows that the Schwarzian derivative is a quadratic differential for the group
G acting on D

∗, and its projection is a holomorphic quadratic differential on D
∗/G,

which is the mirror image of the Riemann surface M , denoted by M∗.

2.5 Bers embedding and complex structure on Teichmüller space

We have the mapping
μ → Sfμ|D∗

which maps the open unit ballB(M)of L∞(M) into the space of quadratic differentials
Q(M∗). This induces a mapping

λM : T (M)→ Q(M∗), (2.6)

which is called the Bers embedding. The first thing to note is that if two holomorphic
functions f1 and f2 on D

∗ have the same Schwarzian derivative, then by Theorem 2.5,
one is equal to the other post-composed by a Möbius transformation. Now since both
functions are normalized at 3 points, then f1 and f2 must be identical on D

∗, and
therefore determine the same Teichmüller class. This shows that the mapping λM is
one-to-one onto its image. Further, the image of T (M) under λM is open in Q(M∗),
the proof of which can be found in [7].

In fact, μ → Sfμ|D∗ is a holomorphic map from B(M) into Q(M∗). For a given
μ ∈ B(M), write

Gμ = {f μ 
 g 
 (f μ)−1 : g ∈ G},
whereM � D/G, andMμ � D/Gμ is a Riemann surface which is quasiconformally
equivalent to M . Let α̃μ : B(M)→ B(Mμ) be the mapping given by

f α̃μ(ν) = f ν 
 (f μ)−1

or, by writing out in full,

α̃μ(ν) =
(
ν − μ

1− μν
(
f
μ
z

|f μz |
)2 )

 (f μ)−1.

The function α̃μ maps B(M) bijectively onto B(Mμ), and it follows that α̃μ is holo-
morphic. Note that the induced mapping αμ, given by αμ([ν]) = [α̃μ(ν)] is a bijective
isometry of T (M) onto T (Mμ). For μ ∈ B(M) and ν ∈ B(Mμ) we write


μ(ν) = Sfν |D∗ . (2.7)

This mapping of B(Mμ) into Q((Mμ)∗) is holomorphic. Now, in the ball

Bμ(0, 1/2) = {ϕ ∈ Q((Mμ)∗) : ‖ϕ‖Q < 2},
the mapping (2.7) has a section σμ : Bμ(0, 2)→ B(Mμ). We see that σμ is holomor-
phic. Let π be the canonical projection of B(M) onto T (M), and let λ and λμ be
the Bers embeddings of T (M) and T (Mμ), respectively, into Q(M∗) and Q((Mμ)∗).
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The collection

{Vμ = (π 
 (α̃μ)−1 
 σμ)(Bμ(0, 1/2)) : μ ∈ B(M)}
is an open covering of T (M). Indeed, Vμ is the pre-image of Bμ(0, 1/2) under the
homeomorphism hμ = λμ 
 αμ of T (M) onto Q((Mμ)∗).

Theorem 2.6. The atlas
{(Vμ, hμ) : μ ∈ B(M)} (2.8)

defines a complex structure on Teichmüller space T (M). The Bers embedding [μ] →
Sfμ|D∗ of T (M) into Q(M∗) is holomorphic with respect to this structure.

Proof. Choose two elements μ1, μ2 ∈ B(M) such that Vμ1 ∩ Vμ2 is non-empty. In
hμ1(Vμ1 ∩ Vμ2), we have

hμ2 
 h−1
μ1
= 
μ2 
 α̃μ2 
 (α̃μ1)

−1 
 σμ1 .

We know that all the mappings on the right hand side of this equation are holomorphic,
and so hμ2 
 h−1

μ1
is holomorphic. Switching μ1 and μ2 in this calculation shows that

hμ2 
 h−1
μ1

is biholomorphic, and so (2.8) defines a complex structure for T (M).
To show that the Bers embedding is holomorphic, we have to show that λ 
 h−1

μ is
holomorphic in Bμ(0, 1/2). Now,

λ 
 h−1
μ = 
 
 (α̃μ)−1 
 σμ

and since all the mappings on the right hand side are holomorphic, then λ 
 h−1
μ must

also be holomorphic.

A Riemann surfaceM is said to be of finite analytic type if it is a compact Riemann
surface of genus g with a finite number n of punctures. It has exceptional type if
2g + n < 5. All non-hyperbolic Riemann surfaces have exceptional type.

IfM is of finite analytic type, then Q(M) can be identified with its pre-dual space
A1(M), the subset of L1(M) consisting of holomorphic quadratic differentials onM
with finite norm

‖ϕ‖1 =
∫
M

|ϕ|,

for ϕ ∈ A1(M). The Banach space A1(M) is called the Bergman space. In fact,
every linear functional on A1(M), L : A1(M)→ C has the form

L(ϕ) =
∫
M

ρ−2
M ψϕ

for some ψ ∈ Q(M), and L ≡ 0 if and only if ψ ≡ 0. Let M̃ be a compact Riemann
surface of genus g ≥ 0 and let E be a finite, possibly empty, subset of M̃ which
contains exactly n ≥ 0 points. We assume that 2g + n ≥ 5, so that the Riemann
surface M = M̃ \ E has non-exceptional finite type. Each ϕ ∈ A1(M) can be
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regarded as a quadratic differential on M̃ which is holomorphic except for isolated
singularities at the points of M . The integrability of ϕ implies that the singularities
of ϕ are either removable or simple poles, so A1(M) is the space of meromorphic
quadratic differentials on M̃ whose poles, if any, are simple and belong to E.

Proposition 2.7. Let M = M̃ \ E be as above. Then the dimension of A1(M) is
3g − 3+ n ≥ 2. If x ∈ E, then some ϕ ∈ A1(M) has a pole at x.

The Riemann surface M is of infinite analytic type if M has infinite genus or an
infinite number of punctures. If M is of infinite analytic type, then the dimension of
A1(M) is infinite. For example, ifM has an infinite number of punctures at the points
(zn) for n = 1, 2, . . . , then there exist functions fn, each of which have a simple
pole at zn, and which are linearly independent. This points us in the direction of the
following result, proved in [9].

Theorem 2.8. A Riemann surfaceM is of finite analytic type if and only if the dimen-
sion of A1(M) is finite.

If the dimension of A1(M) is infinite, then A1(M) is a proper subset of Q(M).
Therefore, via the Bers embedding, the dimension of the Teichmüller space T (M) is
infinite if and only if M is not of finite analytic type.

3 Biholomorphic maps between Teichmüller spaces

In this section, we will classify biholomorphic maps between Teichmüller spaces by
reducing the problem to the cotangent space. That is, all surjective linear isometries
between Bergman spaces of Riemann surfaces of non-exceptional type are geometric,
which in particular implies that the two Riemann surfaces are conformally related.

3.1 Kobayashi metric

Let X be any connected complex Banach manifold, and let H(D, X) be the set of all
holomorphic maps from D into X. The Kobayashi function δX : X × X → [0,+∞]
is

δX(x, y) = inf {ρD(0, t) : f (0) = x, f (t) = y for some f ∈ H(D, X)} ,
provided the set of such maps is non-empty, and +∞ otherwise. If X and Y are
connected complex Banach manifolds and f : X→ Y is holomorphic, then

δY (f (x1), f (x2)) ≤ δX(x1, x2),

for all x1, x2 ∈ X, and with equality if f is biholomorphic.
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Definition 3.1. The Kobayashi pseudo-metric σX on X is the largest pseudo-metric
on X such that

σX(x, y) ≤ δX(x, y), (3.1)

for all x, y ∈ X. If δX is a metric, as it will be in our cases, then σX is a metric and
σX and δX are equal.

Note that when we say σX is the largest pseudo-metric, we mean that if dX is any
other pseudo-metric which satisfies (3.1), then

dX(x, y) ≤ σX(x, y)
for all x, y ∈ X. The Kobayashi pseudo-metric is the largest metric under which
holomorphic mappings are distance decreasing.

Example 1. If X is C or Ĉ, then the linear maps fn(z) = nz, together with their
inverses, from D into X show that δX ≡ 0. Hence σX ≡ 0. Furthermore, if X is a
torus or the punctured plane C \ {0}, then there is a covering map π from C onto X.
Since π is a contraction in the respective pseudo-metrics, σX ≡ 0.

Example 2. Let X be a hyperbolic Riemann surface, that is, it has D as its universal
cover. If π is the covering map from D onto X, then π ∈ H(D, X) and so is a
contraction in the corresponding Kobayashi pseudo-metrics. However, every f ∈
H(D, X) lifts to a map f̃ ∈ H(D,D) such that f = π 
 g. Thus δX is equal to the
quotient pseudo-metric on X with respect to the covering map π and the hyperbolic
metric on D. That is, δX coincides with the hyperbolic metric on X. Since δX is a
pseudo-metric, σX = δX and so the Kobayashi pseudo-metric is equal to the hyperbolic
metric on X.

Example 3. Let B be the unit ball in a complex Banach manifold X and pick x ∈ B.
The linear function f (t) = tx/‖x‖maps the unit disk D into the unit ball B and maps
‖x‖ to x and 0 to 0. Therefore

σB(0, x) ≤ σD(0, ‖x‖).
However, via the Hahn–Banach Theorem, there exists a continuous linear functional
L on X such that L(x) = ‖x‖ and ‖L‖ = 1. Thus L maps B into the unit disk D and
so

σD(0, ‖x‖) ≤ σB(0, x).
The definition of the hyperbolic metric on D leads to

σB(0, x) = 1

2
tanh−1 ‖x‖.

Proposition 3.2. For all μ, ν ∈ B(M), we have

δB(M)(μ, ν) = dB(M)(μ, ν).
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Proof. We can assume that μ �= ν. First we also assume that μ = 0. Suppose that
f ∈ H(D, B(M)), f (0) = 0 and f (t) = ν for some t ∈ D. By the Schwarz Lemma,

|t | ≥ ‖f (t)‖∞ = ‖ν‖∞.
Taking the infimum over all such f ,

δB(M)(0, ν) ≥ ρD(0, ‖ν‖∞) = dB(M)(0, ν).
Choose the function f (t) = tν/‖ν‖∞ and observe that

δB(M)(0, ν) ≤ ρD(0, ‖ν‖∞) = dB(M)(0, ν)
since f (‖ν‖∞) = ν. Now if μ �= 0, observe that the function f : B(M)→ L∞(M)
defined by

f (λ) = μ− λ
1− μλ

is a holomorphic map of B(M) onto itself. Therefore

δB(M)(μ, ν) = δB(M)(f (μ), f (ν)) = dB(M)(0, f (ν)) = dB(M)(μ, ν).
As we have seen, the Teichmüller metric on B(M) induces a quotient metric on

T (M):

dT ([μ], [ν]) = inf
{
dB(M)(μ0, ν0) : μ0, ν0 ∈ B(M),μ0 ∈ [μ], ν0 ∈ [ν]

}
,

for all [μ], [ν] ∈ T (M). We can now prove Royden’s theorem on the equality of
Teichmüller and Kobayashi metrics on T (M), proved in [16].

Theorem 3.3. The Teichmüller and Kobayashi metrics on T (M) coincide, that is,

dT ([μ], [ν]) = δT (M)([μ], [ν]).
Proof. Fix [μ], [ν] ∈ T (M). We have

δT (M)([μ], [ν]) ≤ inf
{
δB(M)(μ0, ν0) : μ0 ∈ [μ], ν0 ∈ [ν]

}
.

Hence by Proposition 3.2,

δT (M)([μ], [ν]) ≤ dT ([μ], [ν]).
For the opposite inequality, choose f ∈ H(D,T (M)) such that f (0) = [μ] and
f (t) = [ν] for some t ∈ D. Using a theorem of Slodkowski (see [4]), we can write
π 
 g = f with

g ∈ H(D, B(M)).
Using Proposition 3.2,

ρD(0, t) ≥ dB(M)(g(0), g(t)) ≥ dT (π(g(0)), π(g(t))) = dT ([μ], [ν]).
Taking the infimum over all such f , we obtain

δT (M)([μ], [ν]) ≥ dT ([μ], [ν]).
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Corollary 3.4. Let M and N be two hyperbolic Riemann surfaces. Then every bi-
holomorphic map between T (M) and T (N) preserves Teichmüller distances.

3.2 The infinitesimal Teichmüller metric

Due to Corollary 3.4, investigating biholomorphic self-mappings of T (M) reduces to
the study of biholomorphic Teichmüller isometries. Now, biholomorphic Teichmüller
isometries preserve the infinitesimal Teichmüller metric, as we will see below.

Recall the Bers embedding (2.6) of T (M) into Q(M∗), where M∗ is the mirror
image of M . For the rest of this chapter, we will for brevity (and to avoid confusion
with our notation for Banach duals) write Q(M) instead of Q(M∗) and A1(M) for
A1(M∗), but bear in mind that the Bers embedding maps T (M) onto a subset of the
Bers space of the mirror image of M . Via the Bers embedding, we can regard Q(M)
as the tangent space to T (M) at its base-point [0] (where 0 ∈ B(M)). Further, we can
define an isomorphism θ of Q(M) onto the Banach dual (A1(M))∗ of A1(M) via

θ(ϕ)(f ) =
∫
M

ρ−2
M ϕ(z)f (z) dx dy,

for ϕ ∈ Q(M) and f ∈ A1(M) and where ρM is the hyperbolic density on M . This
was proved by Bers in [1]. We can therefore identify (A1(M))∗ with the tangent space
to T (M) at its base-point. This identifies the cotangent space with A1(M) in the finite
dimensional case, since then A1(M) is reflexive. Further, the standard norm

‖L‖ = sup{|L(f )| : f ∈ A1(M), ‖f ‖1 ≤ 1},
for L ∈ (A1(M))∗, on (A1(M))∗ is exactly the infinitesimal Teichmüller metric for
tangent vectors at the base-point of T (M).

3.3 Isometries of Bergman spaces

Let M and N be two hyperbolic Riemann surfaces and let f : T (M) → T (N) be
a biholomorphic map that sends base-point to base-point. We have seen that the
derivative of f at the base-point of T (M) is a C-linear isometry of (A1(M))∗ onto
(A1(N))∗. In the finite dimensional case, we immediately have that the adjoint of
that derivative is a C-linear isometry of A1(N) onto A1(M). However, in the infinite
dimensional case, we need to use a theorem of Earle and Gardiner, see [2], which says
that if there is an invertible C-linear isometry F : (A1(M))∗ → (A1(N))∗, then there
is always an invertible C-linear isometry L : A1(N)→ A1(M) which is the adjoint
of F . In this way, we pass from biholomorphic maps between Teichmüller spaces to
linear isometries between Bergman spaces.

There are two obvious types of isometries between A1(N) and A1(M). The map
ϕ → θϕ is an isometry of A1(M) onto itself whenever θ ∈ C has |θ | = 1. Also, if α
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is a conformal map of M onto N , each ϕ ∈ A1(N) can be pulled back to a quadratic
differential α∗(ϕ) = (ϕ 
 α)(α′)2 on A1(M), and the map ϕ → α∗(ϕ) is an isometry.

Definition 3.5. If M and N are Riemann surfaces, then a surjective linear isometry
T : A1(M)→ A1(N) is called geometric if there exists a conformal map α : M → N

and a complex number θ with |θ | = 1 such that

T −1(ϕ) = θ(ϕ 
 α)α′2,
for every ϕ ∈ A1(N).

Theorem 3.6. Suppose that M and N are Riemann surfaces which are of non-
exceptional finite type and that T : A1(M)→ A1(N) is a surjective complex-linear
isometry. Then T is geometric.

Royden proved Theorem 3.6 in [16] in the case where M and N are compact and
hyperbolic, and his method was extended to Riemann surfaces of non-exceptional
finite type, even though M and N are not assumed to be homeomorphic, by Earle
and Kra in [3] and Lakic in [12]. Some further special cases of Theorem 3.6 were
proved by Matsuzaki in [13]. Markovic proved 3.6 in full generality, that is, for the
infinite analytic type case, in [14]. As in [5], we will use the methods of [14] to prove
Theorem 3.6 in the finite analytic case, which gives a good indication of the methods
used, without going into the technical detail required for the general case.

Let M̃ be a compact Riemann surface of genus g ≥ 0 and letE be a finite, possibly
empty, subset of M̃ which contains exactly n ≥ 0 points. We assume that 2g+n ≥ 5,
so that the Riemann surface M = M̃ \ E has non-exceptional finite type.

We will consider projective embeddings of M̃ associated with A1(M). Let k be
a positive integer, and let P

k be the k-dimensional complex projective space. Each
point (z0, . . . , zk) ∈ C

k+1 \ {0} determines a point [(z0, . . . , zk)] ∈ P
k . The formula

π0(z1, . . . , zk) = [(1, z1, . . . , zk)]
defines a holomorphic map of C

k onto a dense open subset of P
k .

Let M(M̃) be the field of meromorphic functions on M̃ . For any divisorD on M̃ ,
we define OD(M̃) to be the complex vector space of all functions in M(M̃), including
the zero function, that are multiples of the divisor −D, that is

OD(M̃) = {f ∈M(M̃) : ordx(f ) ≥ −D(x) for all x ∈ M̃}.
Proposition 3.7. LetM = M̃ \E as above, and let ϕ0, . . . , ϕk be a basis for A1(M).
Set fj = ϕj/ϕ0, for j = 1, . . . , k and set

M0 = M̃ \ {x ∈ M̃ : some fj has a pole at x}.
Let F : M0 → C

k be the holomorphic map F = (f1, . . . , fk). There is a unique
holomorphic embedding � : M̃ → P

k such that

�(x) = π0(F (x)) for all x ∈ M0.
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Proof. Consider the divisor D = (ϕ0) + χE on M̃ . Clearly, A1(M) is the set of
meromorphic quadratic differentials ϕ = f ϕ0 such that f ∈ OD(M̃).

Again, deg(D) ≥ 2g+1. Since the functions 1, f1, . . . , fk are a basis for OD(M̃),
we can conclude the map

x → [(1, f1(x), . . . , fk(x))],
for x ∈ M̃ , when interpreted appropriately at the poles of the fj , defines a holomorphic
embedding of M̃ into P

k .

Corollary 3.8. The map F defined above is a homeomorphism of M0 onto a closed
subset of C

k .

Proof. Since F is holomorphic on M0, it is continuous. Since �−1 
 π0 
 F is the
identity map ofM0 to itself, F is a homeomorphism. To see thatF(M0) is a closed set,
consider a sequence (xn) in M0 such that F(xn) converges to z = (z1, . . . , zk) in C

k .
We may assume that xn converges to some point x ∈ M̃ . Then fj (x) = zj �= ∞ for
j = 1, . . . , k and so x ∈ M0 and z = F(x).
Definition 3.9. Suppose that f1, . . . , fn are μ-measurable functions on X and that
g1, . . . , gn are ν-measurable functions on Y . Writing F = (f1, . . . , fn) and G =
(g1, . . . , gn), which we consider as C

n valued functions, then F and G are equimea-
surable if

μ(F−1(E)) = ν(G−1(E))

for every Borel set E ⊂ C.

The following theorem on a condition for equimeasurability and the previous lem-
mas are due to Rudin in [17].

Theorem 3.10. Let 0 < p < ∞, p �= 2, 4, 6, . . . , n ∈ N, and let μ and ν be
measures on measurable spaces X and Y respectively. If for 1 ≤ i ≤ n, fi ∈ Lp(μ)

and gi ∈ Lp(ν), and∫
X

|1+ z1f1 + · · · + znfn|p dμ =
∫
Y

|1+ z1g1 + . . . zngn|p dν
for all (z1, . . . , zn) ∈ C

n, then (f1, . . . , fn) and (g1, . . . , gn) are equimeasurable.

We are now in a position to prove Theorem 3.6 for the finite analytic case.

Proof of Theorem 3.6. We will prove this theorem in the case where the given Riemann
surfacesM andN are the complements of finite sets in compact Riemann surfaces M̃
and Ñ . Again, for the proof in full generality, see [14]. Note that we do not assume
M̃ and Ñ have the same genus.

Let ϕ0, . . . , ϕk be a basis for A1(M), and define M0 and the map

F = (f1, . . . , fk)
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as in the previous proposition. Set ψj = T (ϕj ) for j = 0, . . . , k. Since

T : A1(M)→ A1(N)

is a surjective C-linear isometry, ψ0, . . . , ψk is a basis for A1(N). Set gj = ψj/ψ0,
for j = 1, . . . , k, and set

N0 = Ñ \ {y ∈ Ñ : some gj has a pole at y}.
Let G : N0 → C

k be the holomorphic embedding map G = (g1, . . . , gk). By Propo-
sition 3.10, there is a holomorphic embedding � : Ñ → P

k such that � = π0 
 G
on N0.

Let μ and ν be the finite positive Borel measures on M0 and N0 defined by

μ(A) =
∫
A

|ϕ0|

for all Borel sets A ⊂ M0, and

ν(B) =
∫
B

|ψ0|

for all Borel sets B ⊂ N0. Since T is a C-linear isometry, we have

∫
M0

⏐⏐⏐1+
k∑

j=1

λjfj

⏐⏐⏐dμ = ∫
M

⏐⏐⏐ϕ0 +
k∑

j=1

λjϕj

⏐⏐⏐
=

∫
N

⏐⏐⏐ψ0 +
k∑

j=1

λjψj

⏐⏐⏐ = ∫
N0

⏐⏐⏐1+
k∑

j=1

λjgj

⏐⏐⏐dν,
for all (λ1, . . . , λk) ∈ C

k . Therefore, the maps F and G, and the measures μ and
ν satisfy Rudin’s equimeasurability condition, Theorem 3.10. Applying this to the
closed subset F(M0) of C

k , we obtain

‖ϕ0‖ =
∫
M0

|ϕ0| = μ(M0) = ν(G−1(F (M0)))

=
∫
G−1(F (M0))

|ψ0| ≤
∫
N0

|ψ0| = ‖ψ0‖.

Since ‖ψ0‖ = ‖ϕ0‖, the weak inequality here is actually an equality, and then
G−1(F (M0)) has full measure in N0. Since it is a closed subset of N0, G−1(F (M0))

equals N0, and G(N0) is contained in F(M0).
Similarly, applying the equimeasurability condition of Theorem 3.7 to the set

G(N0), we find that F(M0) is a subset of G(N0). Therefore the sets F(M0) and
G(N0) are equal, and so are their images under the map π0 from C

k to P
k . Now

π0(F (M0)) = �(M0) is dense in the compact set �(M̃), and π0(G(N0)) is dense in
the compact set �(Ñ), and so the sets �(M̃) and �(Ñ) are equal.
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Let h : Ñ → M̃ be the bijective holomorphic map�−1 
�. The restriction of h to
N0 satisfies F 
h = G and h(N0) = M0. From the definitions of F andG, we obtain

T (ϕj )

T (ϕ0)
= ψj

ψ0
= gj = fj 
 h = ϕj

ϕ0

 h = h∗(ϕj )

h∗(ϕ0)

for j = 1, . . . , k, and so
T (ϕ)

T (ϕ0)
= h∗(ϕ)
h∗(ϕ0)

for all ϕ ∈ A1(M), where we write h∗(ϕ) for the pullback of ϕ by h. Let K be any
compact set inN0. Applying the equimeasurability condition to the compact setG(K)
in C

k , we obtain∫
K

|T (ϕ0)| =
∫
K

|ψ0| = ν(K) = μ(h(K)) =
∫
h(K)

|ϕ0| =
∫
K

|h∗(ϕ0)|.

Since K is arbitrary, we must have |T (ϕ0)| = |h∗(ϕ0)| in N0, and hence in all of Ñ .
Therefore T (ϕ0) = eith∗(ϕ0) for some t ∈ R, and we see that

T (ϕ) = eith∗(ϕ), (3.2)

for all ϕ ∈ A1(M). To complete the proof, we need to show that h(N) = M . By
Proposition 3.7, N is the set of points in Ñ where every T (ϕ) is finite, and h−1(M) is
the set of points in Ñ where every h∗(ϕ) is finite. These sets coincide by (3.2).

We have that every biholomorphic map between two Teichmüller spaces T (M)
and T (N) is induced by a quasiconformal map betweenM andN , unless one of them
has exceptional type. The automorphism group of T (M), denoted Aut(T (M)) is the
group of all biholomorphic self-mappings of T (M).

Every quasiconformal mapping g : M → N induces a mapping ρg : T (M) →
T (N) given by

ρg([f ]) = [f 
 g−1].
The mapping class group MC(M) is the group of all Teichmüller classes of quasicon-
formal maps from the Riemann surface M onto itself. Further, every g ∈ MC(M)
induces an automorphism ρg of T (M). Theorem 3.6 immediately gives us the fol-
lowing result.

Theorem 3.11. IfM is a Riemann surface of non-exceptional type, then

Aut(T (M)) = MC(M).

4 Local rigidity of Teichmüller spaces

In the previous section, we saw that a surjective linear isometry between the Bergman
spaces of two Riemann surfaces implies that the two Riemann surfaces are conformally
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equivalent. In this section, we will use a classical Banach space result of Pelczynski
[15] to prove a result of Fletcher [6] which shows that when two Riemann surfacesM
and N are of infinite analytic type, their Bergman spaces will always be isomorphic.
This then implies, via the Bers embedding, that their Teichmüller spaces will be locally
bi-Lipschitz equivalent.

4.1 Projections on Banach spaces

Let A be two-dimensional Lebesgue measure on the domain � ⊆ C. Then L1(�) is
the Banach space of measurable functions on � which have finite L1-norm given by

‖f ‖1 =
∫
�

|f (z)| dA(z) <∞,

for f ∈ L1(�). The Banach space A1(�) is the subset of L1(�) consisting of
holomorphic functions.

Lemma 4.1. Let� be a simply connected precompact subset of a Riemann surfaceM .
Then given ε > 0, there exists a projection P : L1(�)→ L1(�) such that ‖P ‖ < 1,

‖P(f )− f ‖ < ε,

for all f ∈ A1(�) satisfying ‖f ‖1 ≤ 1, and P(L1(�)) is isometric to (l1)n, where
(l1)n is the n-dimensional subspace of l1 with all terms except possibly the first n
being equal to 0.

Proof. We can for simplicity assume that � is a bounded simply connected plane
domain. Subdivide � into a finite number of subsets, �1, . . . , �n. For a given
f ∈ L1(�), define λi to be

∫
�i
f . We have

n∑
i=1

|λi | =
n∑
i=1

⏐⏐⏐⏐
∫
�i

f

⏐⏐⏐⏐ ≤
∫
�

|f | <∞.

Define the map P : L1(�)→ L1(�) by

P(f ) =
n∑
i=1

λi

m(�i)
1�i ,

where 1�i denotes the indicator function of �i , and m is the usual two-dimensional
Lebesgue measure of�i . The map P is clearly linear and bounded (‖P ‖ ≤ 1 in fact),
and also a projection, since P 2 = P .

We can define a map μ : P(L1(�))→ (l1)n given by

μ(P (f )) = (λ1, . . . , λn, 0, . . . ).
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Now, ‖μ(P (f ))‖l1 =
∑n
i=1 |λi |. Also,

‖P(f )‖1 =
∫
�

|P(f )| =
∫
�

⏐⏐⏐ n∑
i=1

λi

m(�i)
1�i

⏐⏐⏐ = n∑
i=1

∫
�i

⏐⏐⏐ λi

m(�i)

⏐⏐⏐ = n∑
i=1

|λi |

since the supports of 1�i are disjoint. Hence μ is isometric, and so P(L1(�)) is
isometric to (l1)n.

We now have to show that we can find a fine enough subdivision of � so that for
the corresponding projection P , ‖P(f ) − f ‖ < ε for f ∈ A1(�) with ‖f ‖1 ≤ 1.
Since � is precompact in M ,

sup{|f (z)|}
is bounded, where the supremum is taken over all f ∈ A1(M) with ‖f ‖1 ≤ 1 and
over all z ∈ �. This means that

� = {f |� : f ∈ A1(M), ‖f ‖1 ≤ 1}
is a normal family, and hence is equicontinuous, ie. for all f ∈ � and for all ε > 0,
there exists a δ > 0 such that if |z− z0| < δ, for z, z0 ∈ �, then |f (z)− f (z0)| < ε.

If B(zi, δ) is a ball centred at zi of Euclidean radius δ, then for any holomorphic
function f ,

1

m(B(zi, δ))

∫
B(zi ,δ)

f = f (zi).

If now � is subdivided into �1, . . . , �n, with each �i ⊂ B(zi, δ) for some zi , and P
is the projection corresponding to this subdivision, then∫

�i

|f − P(f )| ≤
∫
B(zi ,δ)

|f (z)− f (zi)| < εm(B(z0, δ))

recalling that m(B(zi, δ)) is the area of B(zi, δ), and noting that the last inequality
follows from the equicontinuity of �. Hence∫

�

|f − P(f )| < εm(�)

and since we are assuming that m(�) is finite, and ε can be made as small as wished,
then we have the desired conclusion that ‖P − I‖ can be as small as desired for P
corresponding to a suitably fine subdivision of �.

Lemma4.2. LetY be a complemented subspace of aBanach spaceX, and letT : Y →
X be a linear operator satisfying

‖T − I |Y ‖ < ε. (4.1)

Then if ε is sufficiently small, T (Y ) is closed and complemented in X.
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Proof. Let S = I |Y −T . Then ‖S‖ < ε. Let also PY : X→ Y be a projection, which
is guaranteed to exist since Y is a complemented subspace of X. Then we have

X = Im(PY )⊕ ker(PY ). (4.2)

Define S̃ : X→ X by
S̃ = S 
 PY .

Then S̃ is an extension of S and

‖S̃‖ ≤ ‖PY ‖ · ‖S‖.
Thus if ε < ‖PY ‖−1, we have ‖S̃‖ < 1. Now set

T̃ = I − S̃ : X→ X,

so that
T̃ (x) = x − PY (x)+ T (PY (x)) (4.3)

for x ∈ X. Then T̃ is an extension of T , and ‖S̃‖ < 1 implies that T̃ is invertible and
therefore a homeomorphism. Since T̃ is a homeomorphism, the image of T̃ is closed
and, furthermore, since Y is a closed subspace of X, T (Y ) = T̃ (Y ) is closed. The
fact that T (Y ) = T̃ (Y ) follows from (4.3). From (4.2) and (4.3), it follows that T (Y )
is complementary to T̃ (ker(PY )) in T̃ (X). Furthermore, we can rewrite (4.3) as

T̃ (x) = (I − PY )(x − T (PY (x)))+ PY (T (PY (x))) (4.4)

for x ∈ X, where the first term on the right hand side of (4.4) is an element of ker(PY )
and the second term on the right hand side of (4.4) is an element of Y . From the
hypothesis (4.1) and the fact that T is invertible, it follows that T : Y → T (Y ) is
invertible and PY : T (Y )→ Y is invertible so that the image of PY 
 T is the whole
of Y . It then follows from (4.4) that the image of T̃ is the whole of X and therefore
T (Y ) is complemented in X.

4.2 Bergman kernels and projections on L1(M)

The Bergman kernel on D× D is given by

K(z, ζ ) = 1

(1− zζ )4 .

Every hyperbolic Riemann surfaceM has the disk D as its universal cover, that is,
there is a Fuchsian covering group G such that M � D/G. Let π : ω → M be the
covering map from a fundamental regionω of D/G toM , chosen so that π is injective.
Now, given such a covering group G, form the Poincaré theta series given by

F(z, ζ ) =
∑
γ∈G

K(γ (z), ζ )γ ′(z)2.
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Definition 4.3. Let M be a hyperbolic Riemann surface with covering group G of D

over M . The Bergman kernel function for M ×M is given by the projection of F
to M . That is,

KM(π(z), π(ζ ))π
′(z)2π ′(ζ )2 = F(z, ζ ).

Lemma 4.4. The kernel functionKM : M×M → C defined above is holomorphic in
the first argument, antiholomorphic in the second argument, and satisfies the following
properties, where p, q ∈ M ,

(i) KM(p, q) = KM(q, p);
(ii) for every conformal f : M → M ,KM(f (p), f (q))f ′(p)2f ′(q)2 = KM(p, q);

(iii)
∫
M
|KM(p, q)| dA(p) ≤ π

4 ρ
2
M(q), where A(p) is the area measure onM in the

p-coordinate;

(iv) for every ϕ ∈ A1(M),

ϕ(p) = 12

π

∫
M

ρ−2
M (q)KM(p, q)ϕ(q) dA(q),

where A(q) is the area measure onM in the q-coordinate;

(v) for each fixed q ∈ M ,

sup
p∈M
|KM(p, q)|ρ−2

M (p) <∞.

Proof. We will just prove the third property since it will be used shortly. See [6], [8]
for more details. Let p = π(z) and q = π(ζ ) for p, q ∈ M and z, ζ ∈ D. We have∫

M

|KM(p, q)| dA(p) =
∫
ω

|F(z, ζ )| dA(z)

where ω is a fundamental region for M in D,

=
∫
ω

⏐⏐⏐ ∑
γ∈G

KD(γ (z), ζ )γ
′(z)2

⏐⏐⏐dA(z) ≤
∑
γ∈G

∫
γ (ω)

|KD(z, ζ )| dA(z)

=
∫

D

|KD(z, ζ )| dA(z) ≤ π
4
ρ(z)2 = π

4
ρM(p)

2,

which completes the proof.

Define the linear map P : L1(M)→ A1(M) by

(P (ϕ))(μ) = 12

π

∫
M

ρ−2
M (q)KM(p, q)ϕ(q) dA(q) (4.5)

for p, q ∈ M . For any ϕ ∈ L1(M), it is clear that the integral formula for P(ϕ)means
that P(ϕ) will be holomorphic, so the image of P is indeed A1(M).

Theorem 4.5. There exists a bounded linear projection θ : L1(M)→ A1(M), given
by θ : ϕ → P(ϕ) for ϕ ∈ L1(M).
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Proof. The map θ is clearly linear, and bounded, since

‖P(ϕ)‖1 =
∫
M

|P(ϕ(p))| dA(p)

= 12

π

∫
M

⏐⏐⏐⏐
∫
M

ρ−2
M (q)KM(p, q)ϕ(q) dA(q)

⏐⏐⏐⏐dA(p)

≤ 12

π

∫
M

( ∫
M

|KM(p, q)| dA(p)

)
ρ−2
M (q)|ϕ(q)| dA(q)

by Fubini’s theorem, which we can apply by the fifth property in Lemma 4.4, and then
using the third property of Lemma 4.4 gives

‖P(ϕ)‖1 ≤ 3
∫
M

|ϕ(q)| dA(q)

Hence ‖θ‖ ≤ 3. The integral reproducing formula given in (4.5) shows that θ |A1(M)

is the identity, θ2 = θ , and so θ is a projection.

4.3 Isomorphisms of Bergman spaces

Let X1, X2, . . . be Banach spaces with norms ‖xi‖i for i = 1, 2, . . . and xi ∈ Xi .
Also let p > 0. Then the Banach space (X1 ⊕ X2 ⊕ · · · )p has elements of the form
(x1, x2, . . . ), for xi ∈ Xi , and norm given by

‖(x1, x2, . . . )‖p =
( ∞∑
i=1

‖xi‖pi
)1/p

. (4.6)

Theorem 4.6. If M is a hyperbolic Riemann surface of infinite analytic type, then
A1(M) is isomorphic to the sequence space l1.

Proof. As discussed previously, we know that this theorem applies to all Riemann
surfaces where the dimension of A1(M) is infinite, for example, the plane punctured
at the integer lattice points, or an infinite genus surface.

We first subdivide M in an appropriate way. For every p ∈ M , there exists an
open subset Up ⊂ M containing p, and a chart πp such that πp(Up) is a disk in C and
πp(p) = 0. Let Vp be an open simply connected set inM whose closure is contained
in Up, so that in particular πp(Vp) is a precompact subset of πp(Up).

As p varies through M , (Vp)p∈M forms an open cover of M , and it is possible to
find a countable subset p1, p2, . . . such that

M =
∞⋃
i=1

Vpi
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Now modify the subsets Vpi to give a disjoint partition of M in the following way:
define M1 = Vp1 , and then inductively,

Mn = Vpn \
( n−1⋃
i=1

Vpi

)
.

L1(M)

θ

��

R=⊕
i Ri �� ⊕

i L
1(Mi)

θ̃
��

P=⊕
i Pi �� ⊕

i Pi(L
1(Mi)) = 

θ̂

��

isometry �� l1

A1(M)
R �� R(A1(M))

T �� ⊕
i Pi(Ri(A

1(M))).

Refer to the diagram above for the following definitions. Let Ri : L1(M)→ L1(Mi)

be the restriction map given by Ri(f ) = f |Mi
, for f ∈ L1(M). Define the operator

R : L1(M)→ (L1(M1)⊕L1(M2)⊕ · · · )1 by

R(f ) = (R1(f ), R2(f ), . . . ),

for f ∈ L1(M). The operator R is isometric, since

‖R(f )‖1 =
∞∑
i=1

‖Ri(f )‖1 =
∞∑
i=1

∫
Mi

|f | =
∫
M

|f | = ‖f ‖1,

using (4.6), andR is also clearly surjective. Now, given εi > 0, by Lemma 4.1, we can
find a projection Pi of L1(Mi) into itself such that ‖Pi‖ ≤ 1, Pi(L1(Mi)) is isometric
to (l1)αi for some αi ∈ Z

+, and ‖Pi(Ri(f ))−Ri(f )‖1 ≤ εi for all f ∈ A1(M) with
‖f ‖ < 1.

Let

 = (P1(L

1(M1))⊕ P2(L
1(M2))⊕ · · · )1,

a subspace of (L1(M1)⊕L1(M2)⊕· · · )1. Since eachPi(L1(Mi)) is isometric to (l1)αi
for some αi ∈ Z

+,
 is isometric to l1. Now we define the operator T : R(A1(M))→

 by

T (R1(f ), R2(f ), . . . ) = (P1(R1(f )), P2(R2(f )), . . . ).

Since the dimension ofA1(M) is infinite,R(A1(M))must also be infinite dimensional.
We also have

‖T (ξ)− ξ‖1 ≤
( ∞∑
i=1

εi

)
‖ξ‖1

for ξ ∈ R(A1(M)), and so given ε > 0, it is possible to choose the (εi)i so that
‖T (ξ)− ξ‖1 < ε‖ξ‖1, for ξ ∈ R(A1(M)).

There exists a bounded linear projection θ : L1(M) → A1(M) by Theorem 4.5.
Therefore, there is a bounded linear projection θ̃ : R(L1(M)) → R(A1(M)), given
by

θ̃ (R1(f ), R2(f ), . . . ) = (R1(θ(f )), R2(θ(f )), . . . )
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which is clearly linear, bounded and satisfies θ̃2 = θ̃ . Therefore R(A1(M)) is com-
plemented in R(L1(M)). Thus, by Lemma 4.2, if ε is small enough, T (R(A1(M)))

is complemented in R(L1(M)) and, in particular, 
. This follows since if W ⊂ Y
is complemented in X, then there exists a projection S : X → W , (Im(S)) ∩ Y is
complemented in Y and so W is complemented in Y . The projection from 
 onto
T (R(A1(M))) is denoted in the diagram above by θ̂ .

If ε < 1, then ‖T − I‖ < 1, and Lemma 4.2 gives that T is thus invertible and an
isomorphism. By a classical result due to Pelczynski [15], every infinite dimensional
complemented subspace of l1 is isomorphic to l1, and so A1(M) is isomorphic to l1.

By taking the Banach duals of the Banach spaces in the statement of Theorem 4.6,
we immediately get the following results.

Corollary 4.7. If M is a hyperbolic Riemann surface of infinite analytic type, then
Q(M) is isomorphic to the sequence space l∞, and we will denote this isomorphism
by α∗M .

Corollary 4.8. If M and N are two hyperbolic Riemann surfaces of infinite analytic
type, then A1(M) and A1(N) are isomorphic, and Q(M) and Q(N) are isomorphic.

4.4 Local bi-Lipschitz equivalence of Teichmüller spaces

We have the following situation,

λM : T (M) ↪→ Q(M), α∗M : Q(M)→ l∞

where the image of the Bers embedding λM is contained in Q(M). Since λM is a
locally bi-Lipschitz mapping, there exists a neighbourhood, XM , of the identity class
in T (M) such that λM |XM is bi-Lipschitz. Sinceα∗M is an isomorphism,XM is mapped
onto a neighbourhood of the origin of l∞ by α∗M 
 λM . If

YM = (α∗M 
 λM)(XM),
then XM and YM are bi-Lipschitz equivalent.

Lemma 4.9. If M and N are two hyperbolic Riemann surfaces with infinite dimen-
sional Bergman spaces, then a neighbourhood of the identity class in T (M) is bi-
Lipschitz equivalent to a neighbourhood of the identity class in T (N).

Proof. Consider the neighbourhoods of the identity class in the respective Teichmüller
spaces given by XM and XN , and consider their images in l∞ under the respective
maps α∗M 
 λM and α∗N 
 λN , given by YM and YN :

T (M)
λM−−→ Q(M)

α∗M−−→ l∞
α∗N←−− Q(N)

λN←−− T (N).
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The sets YM and YN are both open neighbourhoods of the origin in l∞, and so
Y := YM ∩ YN is also an open neighbourhood of the origin. Since α∗M 
 λM is a
bi-Lipschitz mapping of XM , it has an inverse on Y , and

((α∗M 
 λM)−1)(Y ) ⊆ XM
is an open neighbourhood of the origin in T (M).

Thus (α∗N 
 λN) 
 (α∗M 
 λM)−1 is a bi-Lipschitz mapping from a neighbourhood
of the identity class in T (M), namely ((α∗M 
 λM)−1)(Y ), to a neighbourhood of the
identity class in T (N), namely (α∗N 
 λN)(Y ).
Theorem 4.10. If M and N are two hyperbolic Riemann surfaces with infinite di-
mensional Bergman spaces, then their Teichmüller spaces are locally bi-Lipschitz
equivalent.

Proof. Recall from Section 2.5 that αμ is a bijective isometry from T (M) onto
T (Mμ), and we can therefore consider a chart for the neighbourhood of [0] ∈ T (Mμ)

to be a chart for [μ] ∈ T (M). Thus charts for [μ] ∈ T (M) and [ν] ∈ T (N) corre-
spond to charts for the respective identity classes in T (Mμ) and T (Nν). Lemma 4.9
gives a bi-Lipschitz mapping between neighbourhoods of [0] ∈ T (Mμ) and [0] ∈
T (Nν). Intersecting the neighbourhoods obtained from the complex structure of the
respective Teichmüller spaces with those obtained from Lemma 4.9, we obtain a bi-
Lipschitz mapping between neighbourhoods of [μ] ∈ T (M) and [ν] ∈ T (N).

5 Open problems

If X and Y are connected complex Banach manifolds, then the Kobayashi metrics
on the respective spaces are the largest metrics for which holomorphic maps between
X and Y are distance decreasing. Conversely, the smallest metric under which holo-
morphic mappings are distance decreasing is called the Carathéodory metric. The
Carathéodory distance on a connected complex Banach manifold X is

C(x, y) = sup
f∈H(D,X)

{ρD(0, t) : f (0) = x, f (t) = y},

for x, y ∈ X and where ρD is the hyperbolic metric on D.

Problem 5.1. We can define the Carathéodory metric on Teichmüller space just as
we did for the Kobayashi metric. The problem is, is the Carathéodory metric equal
to the Teichmüller metric (or, equivalently, the Kobayashi metric) on Teichmüller
space? Results in this direction can be found in [10], [11], where it is shown that the
Carathéodory and Teichmüller metrics coincide on abelian Teichmüller disks.

Problem 5.2. Markovic’s proof of Theorem 3.6 in the general case, see [14], involves
how A1(M) separates points. That is, we say A1(M) separates p, q ∈ M if there
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exists ϕ ∈ A1(M) such that ϕ(p) = 0 and ϕ(q) �= 0. IfM is of non-exceptional type,
Markovic proves that the set of points E of M which are not separated by A1(M) is
discrete, which is enough to prove Theorem3.6. The problem is, can E be shown to
be empty?

Problem 5.3. Let I : D→ T (M) be an isometry. If I is holomorphic, then the image
of I is a Teichmüller disk. The problem is, do all isometries from D into T (M), which
are not necessarily holomorphic, have a Teichmüller disk as their image?

Problem 5.4. The conclusion of Theorem 4.6 is that A1(M) is isomorphic to l1, i.e.
there exists a map αM : A1(M)→ l1 and a constant CM depending only on M such
that such that ‖αM(ϕ)‖l1

CM
≤ ‖ϕ‖1 ≤ CM‖αM(ϕ)‖l1, (5.1)

for all ϕ ∈ A1(M). Is there a universal constant C such that (5.1) holds, with C
replacing CM , independently of M?
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1 Introduction

A holomorphic family (M, π,B) of Riemann surfaces of type (g, n) over B is a triplet
of a two-dimensional complex manifold M , a Riemann surface B and a holomorphic
map π : M → B such that for every t ∈ B the fiber St = π−1(t) is a Riemann surface
of fixed finite type (g, n) and the complex structure of St depends holomorphically
on the parameter t . Here g is the genus of St and n is the number of punctures of St .
Unless otherwise stated we assume 2g − 2+ n > 0.

The topological monodromy M0 of a holomorphic family (M, π,�∗) of Riemann
surfaces over the punctured disk�∗ = {t ∈ C | 0 < |t | < 1} is constructed as follows:
Take a circle C0 given by C0(θ) = r0 exp(2πiθ), 0 ≤ θ ≤ 1, with 0 < r0 < 1. Fix
a marking �r0 on the Riemann surface Sr0 = π−1(r0), i.e., �r0 is a canonical system
of generators of Sr0 . As the parameter t moves from r0 to t = C0(θ), we deform
the markings continuously from �r0 on Sr0 to a marking �t on St . When t = C0(θ)

comes back to the initial point r0, we obtain a new marking �′r0 on Sr0 . By Nielsen’s
theorem there exists an orientation-preserving homeomorphism f0 : Sr0 → Sr0 such
that (f0)∗(�r0) = �′r0 . Then the topological monodromy M0 is an element [f0] of
the mapping class group of Sr0 .

We say that an orientation-preserving homeomorphism f0 : Sr0 → Sr0 is a pseudo-
periodic map iff0 is isotopic to a homeomorphismf ′0 : Sr0 → Sr0 such that there exists
an admissible system (which might be empty) of simple closed curves C1, . . . , Ck on
Sr0 (and we shall say that k = 0 if the system is empty)) satisfying two conditions:

(1) f ′0({C1, . . . , Ck}) = {C1, . . . , Ck},

(2) for some positive integer n0, the restriction map of (f ′0)n0 to an annular neigh-
borhood Ai of Ci is a power of the Dehn twist about Ci , i = 1, · · · , k, and
(f ′0)n0 = id on Sr0 \

( ⋃k
i=1Ai

)
.
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A pseudo-periodic map f0 is said to be of negative type if either k = 0, i.e., f0
is isotopic to a periodic map, or each (f ′0)ni is a power of the negative Dehn twist
about Ci .

For a holomorphic family over the punctured disk�∗ we have the following theo-
rem.

Theorem A. Let (M, π,�∗) be a holomorphic family of Riemann surfaces of type
(g, n) over the punctured disk �∗ = {t ∈ C | 0 < |t | < 1}. Then the topological
monodromy M0 of (M, π,�∗) around the origin is a pseudo-periodic map and the
following hold:

(1) The holomorphic map J : �∗ → Mg,n defined by J (t) = [St ] has a holomorphic
extension Ĵ : � → M̂g,n, where � is the unit disk {t ∈ C | |t | < 1} and M̂g,n

is the Deligne–Mumford compactification of the moduli space Mg,n of Riemann
surfaces of type (g, n).

(2) M0 is of finite order if and only if Ĵ (0) ∈ Mg,n.

(3) M0 is of infinite order if and only if Ĵ (0) ∈ ∂Mg,n(= M̂g,n \Mg,n).

(4) M0 is of negative type.

(5) (M, π,�∗) has a completion (M̂, π̂,�), that is, M̂ is a two-dimensional normal
complex analytic space, π̂ : M̂ → � is a holomorphic map, and (M, π,�∗) is
holomorphically equivalent to (M̂ \ S0, π̂M̂\S0

,�∗), where S0 = π̂−1(0).

(6) M0 is trivial if and only if S0 is a non-singular fiber.

Theorem A except for the assertion M0 is of negative type was proved in [19].
Earle and Sipe [14], and Shiga and Tanigawa [45] showed that M0 is of negative type.
See also Asada, Matsumoto and Oda [1], and Clemens [11].

The main purpose of this chapter is to give a proof of the following theorem due
to Matsumoto and Montesinos [35], [36], which is the converse to Theorem A. This
was announced in [20]. Takamura [47] also proved Theorem B.

Theorem B. Let f : �→ � be a pseudo-periodic map of negative type of an oriented
topological surface� of type (g, n) onto itself. Then there exists a holomorphic family
(M, π,�∗) of Riemann surfaces of type (g, n) over the punctured disk �∗ whose
topological monodromy M0 is conjugate to the isotopy class [f ] in the mapping class
group of �.

Matsumoto and Montesinos also showed that the conjugacy class of M0 determines
topologically the structure of (M, π,�∗), that is, if M0 is conjugate to the topological
monodromy M′0 of a holomorphic family (M ′, π ′,�∗) of Riemann surfaces of type
(g, n), then there exist orientation-preserving homeomorphisms F : M → M ′ and
ϕ : �∗ → �∗ such that π ′ 	 F = ϕ 	 π .

Matsumoto and Montesinos [36] studied the topology of degeneration of Riemann
surfaces and proved that the ambient topological type of the singular fiber over t = 0
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of (M, π,�∗) is completely determined by the topological monodromy M0. The
study of singular fibers of holomorphic families (M, π,�∗) of Riemann surfaces of
type (g, n) originated from Kodaira [31] for Riemann surfaces of type (1, 0), i.e.,
elliptic curves. Namikawa and Ueno [39], [40] classified singular fibers for type
(2, 0), and Uematsu [50] gave a numerical classification of singular fibers for type
(3, 0). An application of Matsumoto and Montesinos [36] was obtained by Ashikaga
and Ishizaka [2] to give a complete list of singular fibers for type (3, 0). Takamura
[46], [47], [48] study extensively singular fibers for general type (g, 0).

This chapter is organized as follows: In Section 2 we recall holomorphic families of
Riemann surfaces and give some typical examples. In Section 3 we review Teichmüller
spaces and the classification of Teichmüller modular transformations. In Section 4 we
construct a holomorphic representation of a holomorphic family of Riemann surfaces
into a Teichmüller space and its monodromy map. In Section 5 we review pseudo-
periodic maps and give definitions of screw numbers and valencies of a pseudo-periodic
map. In Section 6 we recall deformation spaces of Riemann surfaces with nodes,
which are used to prove Theorem A and Theorem B. In Section 7 we give a proof of
Theorem A, which is an alternative to a proof in [19]. Finally in Section 8 we prove
Theorem B by using deformation spaces of Riemann surfaces with nodes. Families
of Riemann surfaces over the punctured disk are also considered, from another point
of view, in Chapter 5 of this volume, by G. Mondello [38].

The author thanks ProfessorYukio Matsumoto and TadashiAshikaga for their valu-
able comments and encouragements. He is grateful to Professor Athanase Papadopou-
los who recommended that he writes this chapter. He also gratefully acknowledges
valuable comments of the referee. This work was partially supported by JSPS, Grant-
in-Aid for Scientific Research, No.15340049 and Ministry of Education of Japan,
Grant-in-Aid for Scientific Research, No.18654030.

2 Holomorphic families of Riemann surfaces

We review briefly holomorphic families of Riemann surfaces and give some typical
examples.

2.1 Definition of holomorphic families of Riemann surfaces

A holomorphic family (M, π,B) of Riemann surfaces of type (g, n) over a Riemann
surface B is defined as follows. Let M̂ be a two-dimensional complex manifold, C
a one-dimensional analytic subset of M̂ or an empty set, and B a Riemann surface.
Assume that a proper holomorphic map π̂ : M̂ → B satisfies two conditions:
(1) by setting M = M̂ \ C and π = π̂ |M , the holomorphic map π is of maximal

rank at every point of M , and

(2) the fiber St = π−1(t) over each t ∈ B is a Riemann surface of fixed analytically
finite type (g, n), where g is the genus of St and n is the number of punctures



Chapter 3. A construction of holomorphic families of Riemann surfaces 97

of St , i.e., it is obtained by removing n distinct points from a compact Riemann
surface of genus g.

We call such a triplet (M, π,B) a holomorphic family of Riemann surfaces of type
(g, n) overB. Throughout this chapter we assume that 2g−2+n > 0 unless otherwise
stated.

A holomorphic family (M1, π1, B1) of Riemann surface is holomorphically equiv-
alent or isomorphic to a holomorphic family (M2, π2, B2) if there exist biholomorphic
maps F : M1 → M2 and f : B1 → B2 such that f 	 π1 = π2 	 F .

M1

π1

��

F �� M2

π2

��
B1

f �� B2

2.2 Examples of holomorphic families of Riemann surfaces

We give some simple examples of holomorphic families of Riemann surfaces.

Example 2.1. Take two Riemann surfaces B0 and S0 of analytically finite type. Let
M0 = B0 × S0 and π0 : M0 = B0 × S0 → B0 be the canonical projection. Then
(M0, π0, B0) is a holomorphic family of Riemann surfaces of type (g0, n0), where
(g0, n0) is the type of S0. Such a family is called a trivial family of Riemann surfaces.

A holomorphic family (M, π,B) is said to be globally trivial if it is holomorphically
equivalent to a trivial family (M0, π0, B0).

Example 2.2. Set B = C \ {0} and

M = {(x, y, t) ∈ C
2 × B | y2 = x3 − t}.

Let π : M → B be the canonical projection. Then (M, π,B) is a holomorphic
family of Riemann surfaces of type (1, 1). Note that (M, π,B) is analytically a
locally trivial fiber bundle, because for any points t, t ′ of B, the fibers St and St ′ are
biholomorphically equivalent.

A holomorphic family is said to be locally trivial if it is analytically a locally trivial
fiber bundle.

Example 2.3. Set B = C \ {0, 1} and

M = {(x, y, t) ∈ C
2 × B | y2 = x(x − 1)(x − t)}.

Let π : M → B be the canonical projection. Then (M, π,B) is a holomorphic family
of Riemann surfaces of type (1, 1), which is not locally trivial.

Example 2.4. Set B = C \ {0, 1} and

M = {
([z0, z1, z2], t) ∈ P2(C)× B | z4

2 = z1(z1 − z0)(z1 − tz0)z0
}
,
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where P2(C) is the complex projective plane. Let π : M → B be the canonical
projection. Then (M, π,B) is a holomorphic family of Riemann surfaces of type
(3, 0), which is not locally trivial.

Example 2.5. Take a Riemann surface B of analytically finite type (g, n). Let

M = {(p, q) ∈ B × B | p 
= q}
and letπ : M → B be the canonical projection. Then (M, π,B) is a locally non-trivial
holomorphic family of Riemann surfaces of type (g, n+ 1).

Example 2.6. Kodaira [32] constructed a locally non-trivial holomorphic family
(M, π,B) of Riemann surfaces of type (g, 0) over a compact Riemann surface B.
See also Atiyah [3], Barth, Peters and Van de Ven [4], Kas [27], and Riera [43]. We
call such a complex surface M a Kodaira surface.

Example 2.7. For a two-dimensional, irreducible, smooth quasi-projective algebraic
surface M̂ over the complex number field and for every point p ∈ M̂ , there exists a
Zariski neighborhood M of p such that M has a holomorphic fibration (M, π,B) of
Riemann surfaces of type (g, n) over a Riemann surface B of analytically finite type
(see Griffiths [17]).

Example 2.8. Let � be the unit disk {z ∈ C | |z| < 1} in the complex plane, and
�∗ be the punctured unit disk {z ∈ C | 0 < |z| < 1}. For any positive integer k we
consider a two-dimensional complex manifold defined by

M = {(x, y, t) ∈ �2 ×�∗ | xy = tk}.
Let π : M → �∗ be the canonical projection. For every t ∈ �∗ the fiber St = π−1(t)

is biholomorphic to an annulusAxt = {x ∈ C | |t |k < |x| < 1} in the complex x-plane.
Note that St is also biholomorphic to an annulus Ayt = {y ∈ C | |t |k < |y| < 1}
in the complex y-plane, and note that x ∈ Axt and y ∈ Ayt determine the same point
(x, y) ∈ St if and only if xy = tk .

Since any fiber St of (M, π,�∗) is not of analytically finite type, this (M, π,�∗)
does not satisfy our definition of holomorphic families of Riemann surfaces, but it
plays an essential role in this chapter.

3 Teichmüller spaces and Teichmüller modular groups

In this section we review Teichmüller theory. For details we refer to [25].

3.1 Teichmüller spaces

LetR be a fixed Riemann surface of analytically finite type (g, n)with 2g−2+n > 0.
A marked Riemann surface (R, f, S) is a Riemann surface S of analytically finite type
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(g, n) with a quasiconformal map f : R → S. Two marked surfaces (R, f1, S1) and
(R, f2, S2) are equivalent if there exists a conformal map h : S1 → S2 such that the
self-map f−1

2 	 h 	 f1 : R → R is homotopic to the identity. We denote by [R, f, S]
the equivalence class of a representative (R, f, S). The Teichmüller space T (R) of a
Riemann surface R is the set of all these equivalence classes [R, f, S].

We now introduce three different realizations of Teichmüller space.
Let G be a finitely generated Fuchsian group of the first kind with no elliptic

elements acting on the upper half-plane H such that the quotient space R ∼= H/G

is of type (g, n). Let Qnorm(G) be the set of all quasiconformal automorphisms w
of H leaving 0, 1,∞ fixed and satisfying wGw−1 ⊂ PSL(2,R), where PSL(2,R)
is the set of all real Möbius transformations. Two elements w1 and w2 of Qnorm(G)

are equivalent if w1 = w2 on the real axis R. The Teichmüller space T (G) of G is
the set of all equivalence classes [w] obtained by classifying Qnorm(G) by the above
equivalence relation. We see that T (R) is canonically identified with T (G) and it is
homeomorphic to R

6g−6+2n.
Let L∞(H,G)1 be the complex Banach space of (equivalence classes of) bounded

complex-valued measurable functions μ on H satisfying

(μ 	 g) g
′

g′
= μ, g ∈ G, ‖μ‖∞ < 1.

For an element μ ∈ L∞(H,G)1 denote by wμ the element in Qnorm(G) with
Beltrami coefficient μ. LetWμ be the quasiconformal automorphism of the Riemann
sphere Ĉ such that Wμ has the Beltrami coefficient μ on the upper half-plane H, and
conformal on the lower half-plane H

∗, and

Wμ(z) = 1

z+ i +O(|z+ i|) (3.1)

as z → −i. This map Wμ is uniquely determined by [wμ] up to the equivalence
relation, i.e., wμ = wν on R if and only if Wμ = Wν on H

∗. We set Tβ(G) =
{[Wμ] | μ ∈ L∞(H,G)1}, which is called the Bers Teichmüller space of G. It is
proved that T (G) is canonically identified with Tβ(G).

Let ϕμ be the Schwarzian derivative of Wμ on H
∗. Then ϕμ is an element of the

space B2(H
∗,G) of bounded holomorphic quadratic differentials ϕ forG on H

∗ with
hyperbolic L∞-norm

‖ϕ‖∞ = sup
z∈H∗

(Im z)2 |ϕ(z)|.

The space B2(H
∗,G) is a (3g − 3 + n)-dimensional complex vector space. Bers

proved that the map sending [Wμ] into ϕμ is a biholomorphic map of Tβ(G) onto a
holomorphically convex bounded domain of B2(H

∗,G), which is denoted by TB(G).
By a lemma due to Nehari and Kraus, and a theorem due to Ahlfors and Weill we have

B(0, 1/2) ⊂ TB(G) ⊂ B(0, 3/2), (3.2)
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whereB(0, r) is the open ball inB2(H
∗,G)with center 0 and radius r for the hyperbolic

L∞-norm.
Using the complex structure of B2(H

∗,G) ∼= C
3g−3+n, we can introduce complex

structures of TB(G), Tβ(G), T (G) and T (R).

3.2 Teichmüller modular groups

Let Mod(R) be the Teichmüller modular group of R, i.e., the set of all homotopy
classes [f0] on the space of quasiconformal self-maps f0 : R→ R.

Every element [f0] acts biholomorphically on T (R) by

[f0]∗([R, f, S]) = [R, f 	 f−1
0 , S].

We call [f0]∗ a Teichmüller modular transformation . It is shown that Mod(R) acts
properly discontinuously on T (R), and the quotient space T (R)/Mod(R) is a normal
complex analytic space, which is canonically identified with the moduli space Mg,n

of Riemann surfaces of analytically finite type (g, n).
Denote by N(G) the set of all quasiconformal automorphisms ω of H with

ωGω−1 = G. Two elements ω1, ω2 ∈ N(G) are equivalent if ω1 = ω2 	 g0 on
the real axis R for some g0 ∈ G. Denote by [ω] the equivalence class of a repre-
sentative ω. Let Mod(G) be the set of all equivalence classes [ω] in N(G). Then
Mod(G) is canonically identified with Mod(R), where R ∼= H/G. We call Mod(G)
the Teichmüller modular group of G. Every element [ω] acts on T (G) by

[ω]∗([w]) = [λ 	 w 	 ω−1],
where [w] ∈ T (G) and λ ∈ PSL(2,R) with λ 	 w 	 ω−1 ∈ Qnorm(G).

3.3 Teichmüller distance

For any points p1 = [R, f1, S1] and p2 = [R, f2, S2] of T (R), the Teichmüller
distance dτ (p1, p2) between p1, p2 is defined by

dτ (p1, p2) = inf
g∈Ff1,f2

log
1+ ‖μg‖∞
1− ‖μg‖∞ ,

where Ff1,f2 is the set of all quasiconformal maps g of S1 to S2 which are homotopic to
f2 	f−1

1 , and ‖μg‖∞ is theL∞-norm of the Beltrami differentialμg = (gz̄/gz)dz̄/dz
of g. It is proved that T (R) is complete with respect to the Teichmüller distance dτ .

Let us recall Kobayashi distances and Carathéodory distances (see Kobayashi [29]
and [30]). The Kobayashi pseudo-distance kX on a complex manifoldX is the largest
pseudo-distance for which every holomorphic map f of X into another complex
manifold Y is distance decreasing, i.e., kY (f (p), f (q)) ≤ kX(p, q) for all points p, q
ofX. On the other hand, the Carathéodory pseudo-distance cX on a complex manifold
X is the smallest pseudo-distance for which every holomorphic mapf ofX into another
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complex manifold Y is distance decreasing, i.e., cY (f (p), f (q)) ≤ cX(p, q) for all
points p, q of X.

In the cases that we consider below, the Kobayashi and the Carathéodory pseudo-
distances are genuine distances (that is, they separate points).

(1) For the unit disk �

c�(z,w) = k�(z,w) = 2 tanh−1
∣∣∣∣ z− w1− zw̄

∣∣∣∣.

(2) For the punctured unit disk �∗

c�∗(z, w) = c�(z,w), (z, w) ∈ �∗ ×�∗.
(3) Let p : Cn→ R

+ be a norm(not necessarily the Euclidean norm), and B = {z ∈
C
n | p(z) < 1} the unit ball for this norm. Then

cB(0, z) = kB(0, z) = k�(0, p(z)) = 2 tanh−1 p(z) (3.3)

for any z ∈ B (see Kobayashi [30], Example (3.1.24)).

Denote by kτ the Kobayashi distance on the Teichmüller space T (R). Royden [44]
proved that kτ = dτ .

Let cτ be the Carathéodory distance on T (R). Note that cτ ≤ kτ .

Lemma 3.1. For any point p ∈ T (R) and positive number δ set

Bk(p, δ) = {q ∈ T (R) | kτ (p, q) < δ},
Bc(p, δ) = {q ∈ T (R) | cτ (p, q) < δ}.

Then
Bk(p, δ) ⊂ Bc(p, δ) � T (R)

for any δ satisfying δ < 2 tanh−1(1/3).

Proof. Take a point q ∈ Bk(p, δ). Since cτ (p, q) ≤ kτ (p, q) < δ, we have q ∈
Bc(p, δ), and so Bk(p, δ) ⊂ Bc(p, δ).

For p = [R, f0, R0] the biholomorphic map [f0]∗ : T (R) → T (R0) defined by
[f0]∗([R, f, S]) = [R0, f 	 f−1

0 , S] is an isometry for Carathéodory distances on
T (R) and T (R0). Note that [f0]∗([R, f0, R0]) = [R0, id, R0].

Take a Fuchsian group G0 such that H/G0 ∼= R0. For the Carathéodory distance
cτ on TB(G0) we set

B0(δ) = {ϕ ∈ TB(G0) | cτ (0, ϕ) < δ}.
By (3.2) and (3.3) we get

cτ (0, ϕ) ≥ cB(0,3/2)(0, ϕ) = 2 tanh−1
(2

3
‖ϕ‖∞

)
.
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Hence if δ < 2 tanh−1(1/3), then

‖ϕ‖∞ ≤ 3

2
tanh

(
cτ (0, ϕ)

2

)
<

3

2
tanh(δ/2) < 1/2.

Therefore from (3.2) we conclude that

B0(δ) ⊂ B(0, 1/2) ⊂ TB(G0).

3.4 Bers’ classification of Teichmüller modular transformations

We shall classify Teichmüller modular transformations as follows (see Bers [6]).
Let dτ be the Teichmüller distance on T (R). For any element χ (
= id) of Mod(R)

we set
a(χ) = inf

p∈T (R) dτ (p, χ(p)).

Then the Teichmüller modular transformation χ is classified as follows:

(1) χ is elliptic if a(χ) = 0, and a(χ) = dτ (p0, χ(p0)) for some p0, i.e., χ has a
fixed point p0 in T (R).

(2) χ is parabolic if a(χ) = 0, and a(χ) < dτ (p, χ(p)) for all p.

(3) χ is hyperbolic if a(χ) > 0, and a(χ) = dτ (p0, χ(p0)) for some p0.

(4) χ is pseudo-hyperbolic if a(χ) > 0, and a(χ) < dτ (p, χ(p)) for all p.

Remark 3.2. It is known that

(1) χ is elliptic if and only if it is of finite order,

(2) χ is parabolic if it is induced by a power of a Dehn twist.

3.5 Thurston’s classification of Teichmüller modular transformations

A finite non-empty set of disjoint simple closed curves {C1, . . . , Ck} on R is said to
be admissible if no Ci can be deformed continuously into either a point, a puncture
of R, or into a Cj with i 
= j . We say that an orientation preserving homeomorphism
ω : R → R is reduced by {C1, . . . , Ck} if {C1, . . . , Ck} is admissible and if ω(C1 ∪
· · · ∪ Ck) = C1 ∪ · · · ∪ Ck .

A self-map ω of R is called reducible if it is not isotopic to the identity map
and is isotopic to a reduced map. A self-map of R is called irreducible if it is not
reducible. This is a classification for self-maps ω, which was introduced by Thurston
(cf. Thurston [49]). Theorem 4 of Bers [6] says that an element [ω] ∈ Mod(R) of
infinite order is hyperbolic if and only if ω is irreducible.

If ω : R → R is reduced by {C1, . . . , Ck}, then we denote by R1, . . . , Rm the
components of R \ (C1 ∪ · · · ∪ Ck), and call them parts of R. Each surface Rj is of
finite type (gj , nj ) with 2gj − 2+ nj > 0, and ω permutes the parts Rj . Let αj be the
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smallest positive integer so that f αj fixes Rj . We say that ω is completely reduced by
{C1, . . . , Ck} if f αj |Rj is irreducible for each j . Lemma 5 of Bers [6] shows that every
reducible map is isotopic to a completely reduced map. If ω is completely reduced,
then the maps f αj |Rj are called the components maps of ω. A parabolic or pseudo-
hyperbolic element χ ∈ Mod(R) can always be induced by a completely reduced
map ω. The component maps of ω induce elements of Teichmüller modular groups
of parts of R, which is called the restrictions of χ . The element χ is parabolic if all
the restrictions are periodic or trivial, and pseudo-hyperbolic if at least one restriction
is hyperbolic (see Theorem 7 of Bers [6] and its proof).

4 Holomorphic representations of holomorphic families of
Riemann surfaces into Teichmüller spaces

and topological monodromies

In order to study a holomorphic family (M, π,B) of Riemann surfaces by using
the theory of Teichmüller space, we construct a representation of (M, π,B) into a
Teichmüller space.

4.1 Holomorphic representations of holomorphic families of Riemann
surfaces into Teichmüller spaces

Let (M, π,B) be a holomorphic family of Riemann surfaces of type (g, n). Take a
Teichmüller space T (R) of a Riemann surface R of type (g, n).

Let π1(B, t0) be the fundamental group of the base surface B with base point t0.
Denote by B̃ the universal covering surface ofB, which consists of equivalence classes
[t, C], where t ∈ B and C is a path from t0 to t in B. Let ρ : B̃ → B be the canonical
projection defined by ρ([t, C]) = t .

A representation � : B̃ → T (R) of (M, π,B) into T (R) is constructed as fol-
lows: Fix a quasiconformal map f0 : R → St0 . For any point [t, C] ∈ B̃, take a
quasiconformal map aC : St0 → St by deforming id : St0 → St0 continuously when t
moves from t0 to t along the curve C. Then we set

�([t, C]) = [R, aC 	 f0, St ].
It is proved that � : B̃ → T (R) is a well-defined holomorphic map satisfying the
commutative diagram:

B̃

ρ π1(B,t0)

��

� �� T (R)

� Mod (R)

��
B

J
�� Mg,n.
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Here Mg,n is the moduli space of Riemann surfaces of analytically finite type (g, n),
which is identified with the quotient space T (R)/Mod (R), the map � : T (R) →
Mg,n = T (R)/Mod (R) is the canonical projection, and J : B → Mg,n is a holomor-
phic map given by J (t) = [St ]. We call J the moduli map of (M, π,B).

4.2 Topological monodromies of holomorphic families
of Riemann surfaces

For any element [C0] ∈ π1(B, t0), we have

� 	 [C0]∗([t, C)]) = �[t, C0 · C]
= [R, aC 	 aC0 	 f0, St ]
= [R, aC 	 f0 	 (f−1

0 	 a−1
C0
	 f0)

−1, St ]
= [f−1

0 	 a−1
C0
	 f0]∗([R, aC, St ])

= [f−1
0 	 a−1

C0
	 f0]∗ 	�([t, C)]),

where [f−1
0 	 a−1

C0
	 f0] is an element of the mapping class group Mod(R) of R. Then

we have a group homomorphism

�∗ : π1(B, t0)→ Mod(R)

given by �∗([C0]) = [f−1
0 	 a−1

C0
	 f0], which satisfies the relation

� 	 [C0]∗ = (�∗([C0]))∗ 	�.
In this chapter, taking account of the action of Teichmüller modular transformations on
T (R), we call�∗([C0])−1 = [f−1

0 	aC0 	f0] ∈ Mod(R) the topological monodromy
or homotopical monodromy of the representation � for [C0]. The homomorphism
�∗ : π1(B, t0)→ Mod(R) is called the topological monodromy or homotopical mon-
odromy of (M, π,B) for �.

4.3 Rigidity theorem

We remark that the notion of topological monodromy�∗ plays an essential role in the
proof of the Shafarevich conjecture and the Mordell conjecture in function fields (see
[24], Jost and Yau [26], and McMullen [37]).

The topological monodromy �∗ of a holomorphic family (M, π,B) of Riemann
surfaces is a topological object. However, if (M, π,B) is locally non-trivial and
the base surface B is of analytically finite type, then the monodromy �∗ determines
completely the complex analytic structure of (M, π,B) as follows:

Theorem 4.1 (Rigidity theorem). Let (M1, π1, B) and (M2, π2, B) be locally non-
trivial holomorphic families of Riemann surfaces of type (g, n) over a Riemann sur-
face B of analytically finite type. If holomorphic representations �1 and �2 into
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T (R) induce the same topological monodromy (�1)∗ = (�2)∗, then �1 = �2, and
(M1, π1, B) is biholomorphically equivalent to (M2, π2, B).

This rigidity theorem implies the following:

Theorem 4.2 (Shafarevich conjecture). Let B be a Riemann surface of analytically
finite type. Then, there are only finitely many locally non-trivial and non-isomorphic
holomorphic families of Riemann surfaces of fixed finite type (g, n) over B.

A holomorphic section of (M, π,B) means a holomorphic map s : B → M such
that π 	 s = id on B. It is easy to see that the Shafarevich conjecture implies the
following Mordell conjecture.

Theorem 4.3 (Mordell conjecture). Let B be a Riemann surface of analytically finite
type. If a holomorphic family (M, π,B) of Riemann surfaces is locally non-trivial,
then it has only finitely many holomorphic sections. If it is locally trivial, then it has
only finitely many non-constant holomorphic sections.

4.4 Examples of topological monodromies of holomorphic families of
Riemann surfaces

We will give some examples of topological monodromies of holomorphic families of
Riemann surfaces.

Example 4.4. If a holomorphic family of Riemann surfaces is globally trivial, it is
obvious that �∗([C0]) = [id] for any [C0] ∈ π1(B, t0).

Kodaira [31] classified topological monodromies of holomorphic families of type
(1, 0) over the punctured unit disk �∗. We give the following two examples of topo-
logical monodromies of holomorphic families of type (1, 1).

Example 4.5. Set B = C \ {0, 1} and

M = {(x, y, t) ∈ C
2 × B | y2 = (x − t2)(x − 1)}.

Let π : M → B be the canonical projection. Then (M, π,B) is a holomorphic family
of Riemann surfaces of type (1, 1), which is not locally trivial.

In order to study topologically the monodromy of (M, π,B), we consider the
fundamental groups of its fibers (see Nielsen’s Theorem in Harvey [18], Chapter 1).

For a point t ∈ B we take two replicas of the x-plane C cut along segments from
−√t to

√
t and from 1 to∞, respectively, and call them sheet I and sheet II. The cut

on each sheet has two edges, labeled + edge and − edge. To construct a Riemann
surface St = π−1(t) = {(x, y) ∈ C

2 | y2 = (x − t2)(x − 1)}, we attach the + edge
on sheet I and the − edge on sheet II, and then attach the + edge on sheet II and the
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− edge on sheet I. Then we obtain a Riemann surface St of analytically finite type
(1, 1), and a two-sheeted covering ρt : St → C which is branched over −√t ,√t and
1 with branch order 2.

Let C0 be a circle in B which is defined by C0(θ) = eiθ /2, (0 ≤ θ ≤ 2π). Take
generators {α, β} of the fundamental group of S1/2. In Figure 1 we illustrate α and β
on the x-plane. Note that the solid curves are located in sheet I and the dotted curve
is located in sheet II.

1−1

2

1

2

α

β

Figure 1

When θ moves from 0 to 2π , we deform generators of the fundamental group of
SC(θ) continuously, and we have new generators {α′, β ′} of the fundamental group of
S1/2 (see Figure 2).

1−1

2

1

2

α′

β′

Figure 2

This means that

(α′, β ′) = (α, β)
(

1 1
0 1

)
,

and the topological monodromy of (M, π,B) along [C0] is given by a Dehn twist
about A, which is of parabolic type.
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Example 4.6. As in Example 2.2 let us consider B = C \ {0},
M = {(x, y, t) ∈ C

2 × B | y2 = x3 − t},
and the canonical projection π : M → B.

Take a circle C0 in B defined by C0(θ) = eiθ , (0 ≤ θ ≤ 2π) and consider the
generators {α, β} of the fundamental group of S1 in Figure 3.

1

2

α

β

ω

ω

Figure 3

When θ moves from 0 to 2π , we obtain new generators {α′, β ′} of the fundamental
group of S1 in Figure 4.

1

2

α′β′

ω

ω

Figure 4

Hence we have

(α′, β ′) = (α, β)
(

1 1
−1 0

)
,

and the topological monodromy of (M, π,B) along [C0] is induced by a periodic map
of order 6, which is of elliptic type.
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Example 4.7. For the family in Example 2.4 we consider a circle C0 in B defined by
C0(θ) = eiθ /2, (0 ≤ θ ≤ 2π) and generators {α, β} of the fundamental group of S1/2
in Figure 5.

1
0 1

2

α

β

Figure 5

When θ moves from 0 to 2π , we get new generators {α′, β ′} of the fundamental
group of S1/2 in Figure 6.

1α′

β′

Figure 6

This implies that

(α′, β ′) = (α, β)
(

1 2
0 1

)
,

and the topological monodromy of (M, π,B) along [C0] is induced by the twice
product of a Dehn twist about A, which is of parabolic type.

Example 4.8. Kra [33] determined completely Bers’ types of topological monodro-
mies of Example 2.5 (cf. [22], [23]). Take a Riemann surface B of analytically finite
type (g, n) with 2g − 2+ n > 0. Let

M = {(p, q) ∈ B × B | p 
= q}
and letπ : M → B be the canonical projection. Then (M, π,B) is a locally non-trivial
holomorphic family of Riemann surfaces of type (g, n+ 1). For any element γ of the
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fundamental group � of B we denote by ωγ the topological monodromy of (M, π,R)
with respect to γ . Assume that (g, n) 
= (0, 3). Then we have the following results
(see Kra [33], Theorem 2).

(1) ωγ is not an elliptic element for any γ ∈ � \ {id}.
(2) ωγ is a parabolic element if and only if γ is either a parabolic or a simple

hyperbolic element.

(3) ωγ is a hyperbolic element if and only if γ is an essential hyperbolic element.

(4) ωγ is a pseudo-hyperbolic element if and only if γ is a non-simple non-essential
hyperbolic element.

Example 4.9. We may study concretely topological monodromies of Kodaira surfaces
in Example 2.6. In particular, [21] classified completely Bers’ types of topological
monodromies of a special Kodaira surface due to Riera.

Example 4.10. Finally we consider the family of Example 2.8. For every t ∈ �∗
the fiber St = π−1(t) is biholomorphic to an annulus Axt = {x ∈ C | |t |k < |x| < 1}
in the complex x-plane. Note that St is also biholomorphic to an annulus Ayt =
{y ∈ C | |t |k < |y| < 1} in the complex y-plane, and note that x ∈ Axt and y ∈ Ayt
determine the same point (x, y) ∈ St if and only if xy = tk . For any t, t ′ ∈ �∗, we
have quasiconformal maps ft,t ′ and gt,t ′ given by

ft,t ′ : Axt → Axt ′, ft,t ′(x) = x |x|
log(t ′/t)k

log |t |k ,

gt,t ′ : Ayt → A
y

t ′, gt,t ′(y) = y |y|
log(t ′/t)k

log |t |k .

Note that ft,t ′ = id on the unit circle {|x| = 1} and gt,t ′ = id on {|y| = 1}.
Take a circle C0 in �∗ defined by C0(θ) = eiθ /2, (0 ≤ θ ≤ 2π). Setting t = 1/2

and t ′ = C0(θ), we have

ft,t ′(x) = x |x|−
ikθ

log 2 ,

gt,t ′(y) = y |y|−
ikθ

log 2 .

Hence, when θ moves from 0 to 2π , we see that f1/2,1/2 = id and g1/2,1/2 = id
are deformed into f and g, respectively, where

f (x) = x |x|− 2πki
log 2 ,

g(y) = y |y|− 2πki
log 2 .

We illustrate the map f for k = 1 in Figure 7. Such a map f is called a negative
Dehn twist about the core curve {x ∈ C | |x| = 3/4}.
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L
L

1
2

1
2

f

1
1

Figure 7

5 Pseudo-periodic maps, screw numbers and valencies

In this section, we assume that all surfaces are oriented, and all homeomorphisms
between them are orientation-preserving. We study some topological properties of
pseudo-periodic maps (see Nielsen [41], and Matsumoto and Montesinos [36]).

5.1 Pseudo-periodic maps

Let � be a surface of type (g, n) with 2g − 2+ n > 0.
An orientation-preserving homeomorphism f : � → � is said to be a pseudo-

periodic map if f is isotopic to a homeomorphism f0 : � → � which satisfies the
following conditions:

(1) f0 is reduced by an admissible system C = {Cj }rj=1 of curves on� (C might be
empty).

(2) f0|B : B → B is isotopic to a periodic map, where B = � \ (C1 ∪ · · · ∪ Cr).
We call C an admissible system of cut curves for f . A pseudo-periodic map is

said to be periodic if C is empty. Note that a non-periodic pseudo-periodic map is
a surface transformation of algebraically finite type in Nielsen [42], reducible with
all component maps being of finite order in Thurston [49], and of parabolic type in
Bers [6].

5.2 Screw numbers

Assume that a pseudo-periodic map f : � → � is reduced by C. For any Ci ∈ C,
there exists a minimal positive integer mi such that f mi (

−→
Ci ) = −→Ci . Here

−→
Ci means

an oriented curve. There also exists a minimal positive integer ni such that f ni |Ci is
a Dehn twist of ei times (ei ∈ Z), where ei < 0 if f ni |Ci is a power of a negative



Chapter 3. A construction of holomorphic families of Riemann surfaces 111

(i.e., clockwise) Dehn twist in Example 4.10. We set s(Ci) = (ei mi)/ni and call
it the screw number of f at Ci . We say that f is of negative type if s(Ci) < 0
for all i, (1 ≤ i ≤ r). The curve Ci is said to be amphidrome if mi is even and
f mi/2(

−→
Ci ) = −−→Ci , and non-amphidrome otherwise.

An admissible system of cut curves {Ci}ri=1 is said to be precise if s(Ci) 
= 0
for each Ci . Note that for any pseudo-periodic map it is possible to find a precise
admissible system of cut curves.

5.3 Valencies

Let �0 be a surface with or without boundary. Let f0 : �0 → �0 be a homeomor-
phism and

−→
C0 be an oriented simple closed curve on �0. Assume that there exists

a positive integer n0 such that f n0
0 = id on C0. Then the valency (m, λ, σ ) =

(m(
−→
C0), λ(

−→
C0), σ (

−→
C0)) of

−→
C0 with respect to f0 is defined as follows:

(1) m is the smallest positive integer such that f m0 (
−→
C0) = −→C0.

(2) λ is the order of the periodic map f m0 |
−→
C0 : −→C0 →−→C0.

(3) For a point q ∈ −→C0, suppose that the images of q under the iteration of f m are
ordered as {q, f mσ0 (q), f 2mσ

0 (q), . . . , f
(λ−1)mσ
0 (q)} viewed in the orientation of−→

C0. Here, by convention, the integer σ satisfies 0 ≤ σ < λ and gcd(σ, λ) = 1,
so σ = 0 if and only if λ = 1.

Let δ = δ(−→C0) be the integer determined by σδ ≡ 1 (mod λ), 0 ≤ δ < λ. Note
that δ = 0 if and only if λ = 1. The action f m0 on

−→
C0 is topologically equivalent to

the rotation of angle 2πδ/λ in a circle.
Now consider a pseudo-periodic map f : � → � which is reduced by a precise

admissible system C = {Ci}ri=1 of cut curves. Take a disjoint union A of annular
neighborhoods {Ai}ri=1 of C = {Ci}ri=1 with f (A) = A. Denote by B the closure of
� \A. Each annulus Ai has two boundary curves C′i and C′′i , whose orientations are
induced by the orientation of the surface B. Assume that f is periodic on B.

Let (m′i , λ′i , σ ′i ) = (m(C′i ), λ(C′i ), σ (C′i )) and (m′′i , λ′′i , σ ′′i ) = (m(C′′i ), λ(C′′i ),
σ (C′′i )), i.e., they are the valencies of C′i , C′′i with respect to f . Set δ′i = δ(C′i )
and δ′′i = δ(C′′i ). Then we have the following proposition (cf. Matsumoto and
Montesinos [36]).

Proposition 5.1. Let f : � → � be a pseudo-periodic map which is reduced by a
precise admissible system C = {Ci}ri=1 of cut curves. Then the following hold:

(1) If Ci is non-amphidrome, then m′i = m′′i and

Ki = −s(Ci)− δ′i
λ′i
− δ′′i
λ′′i

(5.1)

is an integer.
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(2) If Ci is amphidrome, then m′j = m′′j (even), (λ′j , σ ′j ) = (λ′′j , σ ′′j ), and

Kj = 1

2

(
−s(Cj )−

δ′j
λ′j
− δ′′j
λ′′j

)
(5.2)

is an integer.

Proof. Let f be in the standard form in the next subsection (see Definition 5.5).
First we assume that Ai is non-amphidrome. Then f m(C′i ) = C′i if and only if

f m(Ai) = Ai . Similarly, f m(C′′i ) = C′′i if and only if f m(Ai) = Ai . Then by the
definition of m′i and m′′i we have m′i = m′′i . We set m = m′i = m′′i . The lift f̃ m|Ai of
f m|Ai : Ai → Ai to [0, 1] × R is represented by

f̃ m|Ai(t, x) = (t, x + at + b), (t, x) ∈ [0, 1] × R

for some a, b ∈ Q. By the geometric meaning of δ′i/λ′i and δ′′i /λ′′i we have

δ′i
λ′i
= −a and

δ′′i
λ′′i
= c,

where a + b = c + n, 0 ≤ c < 1 and n ∈ Z. By the definition of screw number, we
have

s(Ci) = −b.
Hence, we obtain

−s(Ci)− δ′i
λ′i
− δ′′i
λ′′i
= b + a − c
= b + a − (a + b − n)
= n.

Next we assume that Ai is amphidrome. Let k be the smallest positive integer
such that f k(Ai) = Ai . Since Ai is amphidrome, f k interchanges the boundary
components of Ai . Thus 2k is the smallest positive integer such that f m(Ai) = Ai
and f m does not interchange the boundary components. This implies that m′i = m′′i .

It is obvious that f k|C′i : C′i → C′′i is equivalent with respect to the actions of
f 2k|C′i : C′i → C′i and f 2k|C′′i : C′′i → C′′i . This implies (λ′i , σ ′i ) = (λ′′i , σ ′′i ).

We setm = m′i = m′′i . Denote by f̃ m|Ai the lift of f m|Ai : Ai → Ai to [0, 1]×R.
Then we have

f̃ m|Ai(0, x) = (0, x − 2a),

f̃ m|Ai(1, x) = (1, x + 2a)

for some a ∈ Q.
By the geometric meaning of δ′i/λ′i and δ′′i /λ′′i we have

δ′i
λ′i
= c and

δ′′i
λ′′i
= c,
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where 2a = c+ n, 0 ≤ c < 1 and n ∈ Z. By the definition of screw number, we have

s(Ci) = −4a.

Hence, we obtain

−s(Ci)
2
− δ′i

2λ′i
− δ′′i

2λ′′i
= 2a − c

2
− c

2

= 2a − c
= n. �

Example 5.2. Here we give a typical and non-trivial pseudo-periodic map. Let � be
the closed surface of genus 3 in Figure 8. We assume that there exists a periodic homeo-
morphism ϕ0 : �→ � of order two such that ϕ0(C1) = C2, ϕ0(C

′
1) = C′2, ϕ0(C

′′
1 ) =

C′′2 , ϕ0(C3) = C4, ϕ0(C
′
3) = C′4, and ϕ0(C

′′
3 ) = C′′4 , where C1, . . . , C

′′
4 are simple

closed curves on � as illustrated in Figure 8.

C1

C2

C3C4

C1
C1

C2C2

C3

C3C4

C4

Figure 8

We consider the following subdomains of �.

A1 : the ring domain bounded by C′1, C′′1 ,
D2 : the domain bounded by C′′1 , C′3, C′′3 ,
A3 : the ring domain bounded by C′3, C′′3 ,
A4 : the ring domain bounded by C′4, C′′4 .

Take a homeomorphism g1 of A1 to the annulus A1 = {z ∈ C | 1/2 < |z| < 1}.
As in Example 4.1, let h1 : A1 → A1 be the negative half-Dehn twist defined by

h1(z) = z|z|−πi/ log 2.

Then ϕ1 = g−1
1 	 h1 	 g1 : A1 → A1 is a negative half-Dehn twist about C1.

Next we take a homeomorphism g3 of A3 to the annulus A3 = {z ∈ C | 1/2 <
|z| < 2}. Setting

h3(z) = 1

z
,

we have a periodic homeomorphism ϕ3 = g−1
3 	 h3 	 g3 : A3 → A3 of order two.
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It is possible to find a periodic homeomorphism ϕ2 : D2 → D2 of order two such
that ϕ2 = ϕ1 on C′′1 , and ϕ2 = ϕ3 on C′3, C′′3 .

Take a homeomorphism g4 of A4 to the annulus A4 = {z ∈ C | 1/2 < |z| < 1}.
Let h4 : A4 → A4 be the �-th power of the negative Dehn twist in Example 4.10,
which is defined by

h4(z) = z|z|−2�πi/ log 2.

Then ϕ4 = g−1
4 	 h4 	 g4 : A4 → A4 is the �-th power of the negative Dehn twist

about C4.
Using these maps we have two homeomorphisms f1, f2 : �→ � given by

f1(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕ1(p), p ∈ A1,

ϕ2(p), p ∈ D2,

ϕ3(p), p ∈ A3,

p, p ∈ � \ (A1 ∪D2 ∪A3),

f2(p) =
{
ϕ4 	 ϕ0(p), p ∈ A3,

ϕ0(p), p ∈ � \A3.

Now we consider a periodic homeomorphism f0 = f2 	 f1 : � → � of order
4, which is a pseudo-periodic map of �. Note that f0 is completely reduced by
{C1, C2, C3, C4}, and that C1, C2 are non-amphidrome, but C3, C4 are amphidrome
with respect to f0.

Let us find its screw numbers. For C1, we have m1 = 2, n1 = 4, and e1 = −1.
Thus we obtain

s(C1) = e1m1

n1
= −1

2
.

For C3, since m4 = 4, n3 = 4, e3 = −2�, we have

s(C3) = e3m3

n3
= −2�.

It is also shown that

(m(C′1), λ(C′1), σ (C′1)) = (2, 1, 0),

(m(C′′1 ), λ(C′′1 ), σ (C′′1 )) = (4, 2, 1).

Since δ(C′1) = 0 and δ(C′′1 ) = 1/2, we obtain

K1 = −s(C1)− δ(C
′
1)

λ(C′1)
− δ(C

′′
1 )

λ(C′′1 )

= −
(
−1

2

)
− 0− 1

2

= 0.
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For C3, we have

(m(C′3), λ(C′3), σ (C′3)) = (4, 1, 0),

(m(C′′3 ), λ(C′′3 ), σ (C′′3 )) = (4, 1, 0).

Hence we get δ(C′3) = δ(C′′3 ) = 0, and

K3 = 1

2

(
−s(C3)− δ(C

′
3)

λ(C′3)
− δ(C

′′
3 )

λ(C′′3 )

)

= 1

2
(2�− 0− 0)

= �.

5.4 Standard form

For a pseudo-periodic map f : �→ �, Matsumoto and Montesinos [36] constructed
a special homeomorphism which is homotopic to f and is said to be in standard form
(cf. Nielsen [42], §14). In order to define standard form, we need some terminology.

Definition 5.3. LetA be an annulus, and let ϕ : [0, 1]×S1 → A be a parametrization
(i.e., homeomorphism), where S1 = R/Z. A homeomorphism f : A→ Awhich does
not interchange the boundary components of A is called a linear twist with respect to
ϕ, if

f 	 ϕ(t, x) = ϕ(t, x + at + b), (t, x) ∈ [0, 1] × R

for some a, b ∈ Q. We say simply that f : A → A is a linear twist if f is a linear
twist with respect to a certain parametrization ϕ : [0, 1] × S1 → A.

Definition 5.4. LetA be an annulus, and let ϕ : [0, 1]×S1 → A be a parametrization,
where S1 = R/Z. A homeomorphism f : A→ A which interchanges the boundary
components of A is called a special (piecewise-linear) twist with respect to ϕ, if

f 	 ϕ(t, x) =

⎧⎪⎨
⎪⎩
ϕ(1− t,−x − 3a(t − 1

3 )), (t, x) ∈ [0, 1
3 ] × R,

ϕ(1− t,−x), (t, x) ∈ [ 13 , 2
3 ] × R,

ϕ(1− t,−x − 3a(t − 2
3 )), (t, x) ∈ [ 23 , 1] × R

for some a ∈ Q. We say simply that f : A → A is a special twist if f is a special
twist with respect to a certain parametrization ϕ : [0, 1] × S1 → A.

Definition 5.5. A pseudo-periodic map f : � → � is said to be in standard form if
the following conditions are satisfied:

(1) There exists a system of disjoint annular neighborhoods {Ai}ri=1 of the precise
system of cut curves for f , such that f (A) = A, where A =⋃r

i=1Ai .

(2) f |B : B → B is a periodic map, where B is the closure of � \A.
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(3) Let ki be the smallest positive integer such that f ki (Ai) = Ai , i = 1, 2, . . . , r .

(3)-(a) If f ki |Ai : Ai → Ai does not interchange the boundary components of
Ai , then f ki |Ai is a linear twist.

(3)-(b) If f ki |Ai : Ai → Ai interchanges the boundary components of Ai , then
f ki |Ai is a special twist.

Now we state the following theorem (see Matsumoto and Montesinos [36], and
Gilman [16], Theorem 13.3).

Theorem 5.6. Any pseudo-periodic map f : �→ � is isotopic to a pseudo-periodic
map in standard form. If two pseudo-periodic maps in standard form f, f ′ : �→ �

are mutually homotopic, then there is a homeomorphism h : � → � isotopic to the
identity such that f = h−1 	 f ′ 	 h.

6 Deformation spaces of Riemann surfaces with nodes

In this section we review a kind of generalization of Teichmüller spaces (see Bers [7],
[8], [9], [10], Fay [15], Kra [34], and Wolpert [51]).

6.1 Riemann surfaces with nodes

A Riemann surface with nodes is a connected one-dimensional complex analytic space
S0 such that every point p ∈ S0 has a fundamental system of neighborhoods each of
which is isomorphic either to the disk {|z| < 1} in C or to the set {z1z2 = 0, |z1| < 1,
|z2| < 1} in C

2; in the second case p is called a node of S0. Every component of the
complement of the set of nodes of S0 is called a part of S0.

By a Riemann surface S0 of analytically finite type (g, n) with nodes we mean a
Riemann surface with nodes satisfying the following conditions:

(1) Either n = 0 and S0 is compact, or n > 0 and S0 is compact except for n
punctures. (A puncture can never be at a node.)

(2) S0 has finitely many parts �1, . . . , �r , each part �j is a Riemann surface of
analytically finite type (gj , nj ) with 2gj − 2+ nj > 0, and

r∑
j=1

nj = 2k + n,

r∑
j=1

(2gj − 2+ nj ) = 2g − 2+ n,

where k is the number of nodes.
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Note that if one “thickens” each node so as to obtain a smooth surface Š0, then Š0
is homeomorphic to a Riemann surface of analytically finite type (g, n).

6.2 Deformation spaces of Riemann surfaces with nodes

Let S0 and S′0 be two Riemann surfaces of analytically finite type (g, n) with nodes.
A continuous surjection f : S′0 → S0 is called a deformation if

(1) the inverse image of every node of S0 is either a node of S′0 or a Jordan curve on
a part of S′0,

(2) for every part � of S0, the restriction f−1|� is an orientation preserving home-
omorphism onto f−1(�), and

(3) every puncture of S′0 corresponds, under f , to a puncture of S0.

A holomorphic deformation is called an isomorphism. The moduli space M̂g,n

of Riemann surfaces with nodes of analytically finite type (g, n) is the set of all
isomorphism classes [S0] of Riemann surfaces with nodes of analytically finite type
(g, n).

The equivalence class 〈S, f, S0〉 of a deformation f : S → S0 consists of all defor-
mations S′ → S0 of the form ψ 	f 	ϕ−1, where ϕ : S → S′ is a deformation isotopic
to an isomorphism and ψ : S0 → S0 is a deformation isotopic to the identity. The de-
formation space D(S0) consists of all equivalence classes 〈S, f, S0〉 of deformations
to S0.

Every deformation g : S1 → S0 induces an allowable map 〈g〉∗ : D(S1)→ D(S0)

which sends 〈S, f, S1〉 ∈ D(S1) into 〈S, g	f, S0〉 ∈ D(S0). Let Mod(S0) be the group
of allowable self-maps ofD(S0) induced by all topological orientation preserving self-
maps of S0, and let Mod0(S0) be the subgroup induced by the isomorphisms of S0.

The following statements are proved in the references given at the beginning of
this section.

Proposition 6.1. The deformation spaceD(S0) of a Riemann surface S0 with nodes of
analytically finite type (g, n) is a complex manifold and biholomorphically equivalent
to a bounded domain in C

3g−3+n.

Proposition 6.2. An allowable map 〈g〉∗ : D(S1)→ D(S0) is holomorphic. If S1 and
S0 have the same number of nodes, then 〈g〉∗ is biholomorphic.

Proposition 6.3. The group Mod(S0) is discrete, the subgroup Mod0(S0) is finite and
it is the stabilizer of 〈S0, id, S0〉 in Mod(S0).

Proposition 6.4. The canonical projection D(S0) → M̂g,n is holomorphic. Fur-
thermore, 〈S0, id, S0〉 ∈ D(S0) has a Mod0(S0)-invariant neighborhood U0 such that
U0/Mod0(S0) is isomorphic to a neighborhood of [S0] in M̂g,n.
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Proposition 6.5. The moduli space M̂g,n of Riemann surfaces with nodes of analyti-
cally finite type (g, n) is a compact normal complex analytic space and a V-manifold,
i.e., a complex analytic space whose singularities are quotient singularities of a com-
plex Euclidean space by a finite linear group.

6.3 Parametrization near 〈S0, id, S0〉 in D(S0)

We parametrize Riemann surfaces with or without nodes near 〈S0, id, S0〉 in the de-
formation space D(S0) of S0 as follows (see Wolpert [51], §4).

At the node pi, (i = 1, . . . , r), the punctures ai and bi are paired. Choose disjoint
neighborhoodsD1

i , D
2
i , i = 1, . . . , r, of the punctures ai and bi and let zi : D1

i → �,
wi : D2

i → � be local coordinates with zi(ai) = 0 andwi(bi) = 0. Fixing an open set
U disjoint fromD1

i , D
2
i , we take Beltrami differentialsμj with support inU spanning

the Teichmüller space ofS0\{p1, . . . , pr} (the dimension isN = 3g−3+n−r). Given
α = (α1, . . . , αN) ∈ C

N in a neighborhood of the origin, the sum μ(α) = ∑
j αjμj

satisfies ‖μ‖∞ < 1 and thus a μ-conformal solution f μ(α) of the Beltrami equation
exists. The Riemann surface f μ(α)(S0) = Sα is a quasiconformal deformation of S0.

Now we parametrize the opening up of the nodes. The map f μ(α) is conformal on
D1
i andD2

i ; therefore zi andwi serve as coordinates for f μ(α)(D1
i ), f

μ(α)(D2
i ) ⊂ Sα .

Given τ = (τ1, . . . , τr ) ∈ �r , we construct a surface Sα,τ as follows. Remove the
disks {zi | |zi | ≤ |τi |} and {wi | |wi | ≤ |τi |} from Sα . Attach {zi | |τi | < |zi | ≤ 1}
and {wi | |τi | < |wi | ≤ 1} by identifying zi and τi/wi to obtain Sα,τ . The couple
(α, τ ) gives holomorphic coordinates at 〈S0, id, S0〉 in the deformation space D(S0)

of S0.
Next we write explicitly the action 〈g0〉∗ of an element g0 ∈ Aut(S0) on the

deformation space D(S0) of S0 by using the above coordinates (α, τ ). Select the
charts zi andwi at the punctures ai and bi of S0 \{p1, . . . , pr} such that the hyperbolic
metric is given locally as |dzi |/(|zi | log(1/|zi |)) and |dwi |/(|wi | log(1/|wi |)); such
coordinates are unique modulo rotation. Since the isomorphism g0 is an isometry in
the hyperbolic metric, we have

zj = g0(zi) = ξizi,
wj = g0(wi) = χiwi

for constants ξi, χi, |ξi | = |χi | = 1. Note that

ξi = dzj /dzi,
χi = dwj/dwi.

We may assume that the finite dimensional vector space spanned by the Beltrami
differentials {μj } is invariant under Aut(S0). Then for a representation of the action
〈g0〉∗ of g0 on the deformation space, writing 〈g0〉∗(α, τ ) = (β, σ ) in the above local
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coordinates, we have

μ(β) = μ(α) 	 g−1
0
(g−1

0 )′

(g−1
0 )′

, (6.1)

σj = ξi χi τi = dzj

dzi

dwj

dwi
τi, (6.2)

where g0 maps the i-th node to j -th node.

7 Proof of Theorem A

Theorem A. Let (M, π,�∗) be a holomorphic family of Riemann surfaces of type
(g, n) over the punctured disk �∗ = {t ∈ C | 0 < |t | < 1}. Then the topological
monodromy M0 of (M, π,�∗) around the origin is a pseudo-periodic map and the
following hold:

(1) The holomorphic map J : �∗ → Mg,n defined by J (t) = [St ] has a holomorphic
extension Ĵ : � → M̂g,n, where � is the unit disk {t ∈ C | |t | < 1} and M̂g,n

is the Deligne–Mumford compactification of the moduli space Mg,n of Riemann
surfaces of type (g, n).

(2) M0 is of finite order if and only if Ĵ (0) ∈ Mg,n.

(3) M0 is of infinite order if and only if Ĵ (0) ∈ ∂Mg,n(= M̂g,n \Mg,n).

(4) M0 is of negative type.

(5) (M, π,�∗) has a completion (M̂, π̂,�), that is, M̂ is a two-dimensional normal
complex analytic space, π̂ : M̂ → � is a holomorphic map, and (M, π,�∗) is
holomorphically equivalent to (M̂ \ S0, π̂M̂\S0

,�∗), where S0 = π̂−1(0).

(6) M0 is trivial if and only if S0 is a non-singular fiber.

A proof of Theorem A was given in [19]. Here we will give an alternative proof of
this theorem. It is divided into four parts.

7.1 Type of the topological monodromy

Proposition 7.1. The topological monodromy M0 of (M, π,�∗) is represented by a
pseudo-periodic map, i.e., it is of elliptic or parabolic type in the sense of Bers.

Proof. This is proved by the distance decreasing property of holomorphic maps with
respect to Kobayashi distances (see McMullen [37]).

Denote by H the upper half-plane {τ ∈ C | Im τ > 0}. Settingρ0(τ ) = exp(2πiτ),
we have a universal covering ρ0 : H→ �∗ with covering transformation group �0 =
〈γ0〉, where γ0 ∈ Aut(H) is defined by γ0(τ ) = τ + 1.
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Let� : H→ T (R) be a holomorphic representation of (M, π,�∗) into the Teich-
müller space T (R) of a Riemann surface R of type (g, n). By the definition of�∗ we
have

� 	 γ0 = �∗(γ0) 	�.
Since the Teichmüller distance dτ on T (R) coincides with the Kobayashi distance,
we have

dτ (�(τ),�(τ
′)) ≤ dH(τ, τ

′)

for any τ, τ ′ ∈ H, where dH is the Poincaré distance on H. Thus for any positive
integer n we obtain

a(�∗(γ0)) ≤ dτ (�(in),�∗(γ0) 	�(in))
= dτ (�(in),�(in+ 1))

≤ dH(in, in+ 1).

It is easy to see that limn→∞ dH(in, in+1) = 0, and a(�∗(γ0)) = 0. This shows that
�∗(γ0) is of elliptic or parabolic type. As stated in §3.4 and 3.5�∗(γ0) is induced by
a pseudo-periodic map. Therefore M0 = �∗(γ0)

−1 is also represented by a pseudo-
periodic map.

7.2 Holomorphic extension of the moduli map

Proposition 7.2. The moduli map J : �∗ → Mg,n defined by J (t) = [St ] has a
holomorphic extension Ĵ : �→ M̂g,n. Here M̂g,n is the Deligne–Mumford compact-
ification of the moduli spaceMg,n of Riemann surfaces of analytically finite type (g, n)
(see Deligne and Mumford [12], and Bers [9]). Moreover

(1) M0 is of finite order if and only if Ĵ (0) ∈ Mg,n,

(2) M0 is of infinite order if and only if Ĵ (0) ∈ ∂Mg,n(= M̂g,n \Mg,n).

Proof. Let ε be a sufficiently small positive constant satisfying δ = 2 tanh−1 ε <

tanh−1(1/3). Denote by �(ε) the disk {t ∈ C | |t | < ε}, and by �(ε)∗ the punctured
disk �(ε) \ {0}.

First assume that M0 is trivial. Then we may assume that the representation � of
(M, π,�∗) is a holomorphic map of �∗ into T (R).

Fix a point t0 with 0 < |t0| < ε. The distance decreasing property of holomorphic
maps with respect to Carathéodory distances implies

cτ (�(t0),�(t)) ≤ c�∗(t0, t)
≤ c�∗(0, t0)+ c�∗(0, t)
≤ δ (< 2 tanh−1(1/3))

for any t with 0 < |t | < ε. From Lemma 3.1, � maps �(ε)∗ into Bc(�(t0), δ) �
T (R). Since T (R) is biholomorphically equivalent to a bounded domain in C

3g−3+n
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we see that � : �(δ)∗ → Bc(�(t0), δ) � T (R) has a holomorphic extension
�̂ : �(ε) → T (R) (cf. Earle [13]). Hence J = � 	 � : �∗ → T (R)/Mod(R) ∼=
Mg,n has a holomorphic extension Ĵ = � 	 �̂ : �→ Mg,n.

Next assume that M0 is of finite order m. Denote by Gm a finite subgroup of
Aut(�∗) generated by gm(t) = t exp(2πi/m). Setting ρm(t) = tm, we have a
covering map ρm : �∗ → �∗ with covering transformation group Gm. Then we see
that �m = � 	 ρm : �∗ → T (R) is a holomorphic map and �m 	 gm =M−1

0 	�m.
By the same argument as the case M0 = id we conclude that �m has a holomorphic
extension �̂m : � → T (R). Hence J has a holomorphic extension Ĵ : � → Mg,n.
Note that �̂m(0) is a fixed point of M0.

Last we suppose that M0 is of infinite order. Since M̂g,n is compact, we can find a
sequence {tj } in �∗ ∩ R such that J (tj ) = [Stj ] ∈ Mg,n converges to [S0] ∈ M̂g,n as
j →∞.

Case 1. Suppose that [S0] ∈ Mg,n. Put p0 = [R, f0, S0] ∈ T (R). Take a positive
constant δ so that two points [R, f1, S1], [R, f2, S2] ∈ Bc(p0, δ) are equivalent under
Mod(R), i.e., [R, f2, S2] = [ω]∗([R, f1, S1]) for some [ω] ∈ Mod(R), if and only if
[ω] = [f−1

0 	 h 	 f0] for some h ∈ Aut(S0). Set t̃j = (log tj )/(2πi). We may assume
that �(t̃1) ∈ Bc(p0, δ/2) and cH(t̃1, γ0(t̃1)) < δ/2. Then

cτ (p0,�∗(γ0) 	�(t̃1)) = cτ (p0,� 	 γ0(t̃1))

≤ cτ (p0,�(t̃1))+ cτ (�(t̃1),� 	 γ0(t̃1))

≤ cτ (p0,�(t̃1))+ cH(t̃1, γ0(t̃1))

< δ.

Hence �∗(γ0) = [f−1
0 	 h 	 f0] for some h ∈ Aut(S0), which is a contradiction,

for h is of finite order and �∗(γ0) is of infinite order.

Case 2. Suppose now that [S0] ∈ ∂Mg,n = M̂g,n \ Mg,n. Fix a deformation
σ0 : R → S0. Let [σ0]∗ : T (R) → D(S0) be the allowable map induced by σ0,
i.e., [σ0]∗([R, f, S]) = 〈S, σ0 	f−1, S0〉. Then we have a holomorphic map� : H→
D(S0).

We take a positive constant δ such that two points 〈S1, σ1, S0〉, 〈S2, σ2, S0〉 ∈
BD(S0)(p0, δ) are equivalent under Mod(S0), i.e., 〈S2, σ2, S0〉 = 〈α〉∗(〈S1, σ1, S0〉)
for some 〈α〉 ∈ Mod(S0), if and only if 〈α〉 ∈ Mod0(S0), where BD(S0)(p0, δ) =
{p ∈ D(S0) | cD(S0)(p0, p) < δ}. The same argument as Case 1 implies that we can
find 〈α0〉 ∈ Mod0(S0) so that

� 	 γ0 = 〈α0〉∗ 	�.
Letm be the order of 〈α0〉∗. Then we have a holomorphic map�m = � 	ρm : �∗ →
D(S0). By a similar argument to the case where M0 is trivial, it is proved that �m
has a holomorphic extension �̂m : � → D(S0), which shows J : �∗ → Mg,n has a
holomorphic extension Ĵ : �→ M̂g,n with Ĵ (0) = [S0] ∈ ∂Mg,n.
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Remark 7.3. In the Teichmüller space TB(R) this proposition means the following
(see [19]). Let D = {t ∈ � | 0 ≤ θ1 < arg t < θ2 < 2π}. Then the holomorphic
representation�(t) converges to ϕ0 ∈ TB(R) uniformly, as t tends to zero through D .
Furthermore,

(1) M0 is of finite order if and only if ϕ0 ∈ TB(R). In this case, ϕ0 is a fixed point
of M0.

(2) M0 is of infinite order if and only if ϕ0 ∈ ∂TB(R). In this case, ϕ0 corresponds
to a regular b-group, i.e., its quotient space is a Riemann surface of type (g, n)
with k ≥ 1 nodes, and ϕ0 is a fixed point of M0 in the augment space of TB(R).

7.3 Negativity of the topological monodromy

Proposition 7.4. M0 is a pseudo-periodic map of negative type.

Proof. Assume that M0 is of infinite order. Denote by �̂m : � → D(S0) the holo-
morphic map with �̂m(0) = 〈S0, id, S0〉 which is constructed in the proof of Propo-
sition 7.2. Let p1, . . . , pr be nodes of S0, and let σ0 : R→ S0 be a deformation.

Recall the parametrization (α, τ ) on a neighborhood of 〈S0, id, S0〉 in D(S0) (see
§6.3). Then we may assume that the τj component of the map �̂m is given by t �→ tkj

for some positive integer kj . Let ωj be a kj -th power of the Dehn twist of negative
type about a Jordan curve σ−1

0 (pj ). Then Example 4.10 implies that Mm
0 is induced

by ω1 	 · · · 	 ωr . Therefore, M0 is of negative type.

7.4 Completion of (M,π,�∗)

We state the following two propositions. Their proofs were given in [19], where
fiber spaces of Teichmüller spaces and fiber spaces of deformation spaces of Riemann
surfaces with nodes were used. For these fiber spaces we refer to Bers [5], [7], [8],
[9], and [10].

Proposition 7.5. (M, π,�∗) has a completion (M̂, π̂,�), that is, M̂ is a two-dimen-
sional normal complex analytic space, π̂ : M̂ → � is a holomorphic map, and
(M, π,�∗) is holomorphically equivalent to (M̂\S0, π̂M̂\S0

,�∗), whereS0 = π̂−1(0).

Proposition 7.6. M0 is trivial if and only if S0 is a non-singular fiber.

8 Proof of Theorem B

Theorem B. Let f : �→ � be a pseudo-periodic map of negative type of an oriented
topological surface� of type (g, n) onto itself. Then there exists a holomorphic family
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(M, π,�∗) of Riemann surfaces of type (g, n) over the punctured disk �∗ whose
topological monodromy M0 is conjugate to the isotopy class [f ] in the mapping class
group of �.

We will give a proof of Theorem B. Let f : � → � be a pseudo-periodic map
of negative type of a topological surface � of type (g, n) with 2g − 2 + n > 0. We
may assume that f is periodic, or that there exists an admissible system of simple
closed curves C = {C1, . . . , Cr} such that for each i, (1) f (Ci) = Cj for some j , and
(2) for some positive integer ni , f ni |Ci is the �i-th power of the negative Dehn twist
about Ci .

8.1 Case 1: f is a periodic map

We may assume that � is a Riemann surface of analytically finite type (g, n) such
that f is a biholomorphic map f of order m. This is an immediate consequence of
Nielsen’s realization problem (cf. Kerckhoff [28], Wolpert [52]).

We give a proof of Theorem B in this case which is due to Bers [6], Theorem 1.
We may assume that � is a surface which is obtained by removing n distinct points
from a smooth closed surface of genus g. Then take a Riemannian metric ds2 on �
so that near every puncture of � this metric ds2 is represented in a form

ds2 =
(

1

log |z|
∣∣∣∣dzz

∣∣∣∣
)2

.

Let

ds2
0 =

m∑
j=1

(f ∗)j (ds2)

and letR0 be a Riemann surface of analytically finite type (g, n) induced by isothermal
coordinates for the metric ds2

0 . Then f : R0 → R0 is conformal with respect to the
metric ds2

0 , and so f is biholomorphic.
Now we put M0 = �∗ × R0 and define the biholomorphic maps

gm : �∗ → �∗, gm(t) = (exp(2πi/m)) t,

F0 : M0 → M0, F0(t, p) = (gm(t), f (p)).
We consider the quotient spaceM = M0/〈F0〉 and the projectionπ : M → �∗/〈gm〉 ∼=
�∗ given by π([t, p]) = [t]. Then (M, π,�∗) is a holomorphic family of Riemann
surfaces of type (g, n) with given monodromy f .

8.2 Case 2: f is a product of negative Dehn twists

We assume that f is a product of �i-th powers of negative Dehn twists about Ci ,
i = 1, . . . , r . Construct a Riemann surface S0 with nodes p1, . . . , pr by shrink-
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ing C1, . . . , Cr into points. Let (α, τ ) = (α1, . . . , αN, τ1, . . . , τr ) be coordinates at
〈S0, id, S0〉 in the deformation spaceD(S0) of S0 (see §6.3). For any t ∈ �∗, denote by
St the Riemann surface represented by the coordinates (α, τ )= (0, . . . , 0, t�1, . . . , t�r ).
We construct M = ∐

t∈�∗{t} × St and the projection π : M → �∗ defined by
π(t, p) = t . Then it is shown that (M, π,�∗) is a holomorphic family of Riemann
surfaces of type (g, n) with given monodromy f (cf. Earle and Sipe [14]).

8.3 Case 3: f is a generic pseudo-periodic map of negative type

We may assume that f is completely reduced by C = {C1, . . . , Cr}. The connected
components of � \ C can be denoted by �αβ , α = 1, . . . , α0, β = 1, . . . , Nα in such
a way that

f (�αβ) = �α,β+1,

where we agree, once and for all, that

�α,Nα+1 = �α1.

Note that �αβ is of type (gαβ, nαβ) with 2gαβ − 2+ nαβ > 0 and f Nα |�α1 : �α1 →
�α1 is periodic. As in §8.1 we may assume that for any α = 1, . . . , α0 the topo-
logical surface �α1 is a Riemann surface of analytically finite type (gα1, nα1) and
f Nα |Sα1 : Sα1 → Sα1 is an isomorphism. Then we may also assume that for every
β = 1, . . . , Nα , the topological surface �αβ is a Riemann surface Sαβ of analytically
finite type (gα1, nα1) and f |Sαβ : Sαβ → Sα,β+1 is an isomorphism. Hence we can
construct a Riemann surface S0 of type (g, n) with r nodes p1, . . . , pr , a continu-
ous map ω0 : � → S0 and an isomorphism f0 : S0 → S0 satisfying the following
conditions:

(1) Ci = ω−1
0 (pi) for all i = 1, . . . , r .

(2) ω0 : �αβ → Sαβ is homeomorphic for all α = 1, . . . , α0 and β = 1, . . . , Nα .

(3) ω0 	 f = f0 	 ω0.

Let us decompose the admissible system of curves C1, . . . , Cr into Cij , i =
1, . . . , r0, j = 1, . . . , ri so that

f (Cij ) = Ci,j+1,

where we agree, once and for all, that

Ci,ri+1 = Ci1.
Let mi be a minimal positive integer such that f mi (

−→
Ci1) = −→Ci1, and let ni be a

minimal positive integer such that f ni |Ai1 is the �i-th power of the negative Dehn
twist aboutCi1, where Ai1 is an annular neighborhood ofCi1. Then the screw number
s(Cij ) of f at Cij is given by

s(Cij ) = −mi
ni
�i
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for any i = 1, . . . , r0 and j = 1, . . . , ri .
Denote by n0 the least common multiple of n1, . . . , nr0 and set n′i = n0/ni for

i = 1, . . . , r0.
For each i = 1, . . . , r0 we define a holomorphic map �i : �→ �ri by

�i(t) = (Ai1, Ai2, . . . , Aim′i ) tn
′
i �i ,

whereAi1 = 1, andAi2, . . . , Aim′i are complex numbers with |Ai2| = · · · = |Aim′i | =
1, and ⎧⎪⎨

⎪⎩
m′i = mi (Ci1 is non-amphidrome),

m′i = mi
2 (Ci1 is amphidrome).

Take holomorphic coordinates (α, τ ) ∈ �N0 ×�r at 〈S0, id, S0〉 in the deformation
space D(S0), which is constructed in §6.3. Here N = 3g − 3 + n − r , and �0 is a
sufficiently small disk {t ∈ C | |t | < ε}.

Let � : �→ �N0 ×�r be a holomorphic map given by

�(t) = (0, . . . , 0︸ ︷︷ ︸
n times

, �1(t), . . . , �r0(t)).

Denote by gn0 an element of Aut(�) sending t into t exp (2πi/n0). Then we have the
following

Lemma 8.1. There exist constants Aij so that

� 	 gn0 = 〈f0〉∗ 	� on �.

Proof. We recall the representation in §6.3 of the action 〈f0〉∗ in a neighborhood of
〈S0, id, S0〉. For any i = 1, . . . , r0 and j = 1, . . . , m′i , put pij = ω0(Cij ) and take
holomorphic coordinates zij , wij at pij such that

zi,j+1 = f0(zij ) = ξij zij ,
wi,j+1 = f0(wij ) = χij wij .

First we assume Ci1 is non-amphidrome. Then Ai1, Ai2, . . . , Aimi must satisfy

Ai1 e
n′i �i
0 = ξimiχimiAimi ,

Ai2 e
n′i �i
0 = ξi1χi1Ai1,

Ai3 e
n′i �i
0 = ξi2χi2Ai2,

...

Aimi e
n′i �i
0 = ξi,mi−1χi,mi−1Ai,mi−1.
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This implies

Ai2 = ξi1χi1 e−n
′
i �i

0 ,

Ai3 = ξi2χi2 e−n
′
i �i

0 Ai2,

...

Aimi = ξi,mi−1χi,mi−1 e
−n′i �i
0 Ai,mi−1

= (ξimiχimi e−n
′
i �i

0 )−1.

Hence we need the compatibility condition

(ξi1 · · · ξimi ) (χi1 · · ·χimi ) e−min
′
i �i

0 = 1. (8.1)

By the definition of screw number and valency, we have

(ξi1 · · · ξimi ) (χi1 · · ·χimi ) e−min
′
i �i

0 = exp(2πiKi),

where

Ki = −s(Ci1)− δ′i1
λ′i1
− δ′′i1
λ′′i1
.

SinceKi is an integer from (5.1) of Proposition 5.1, we have the compatibility condition
(8.1).

Next we assume Ci1 is amphidrome. Then Ai1, Ai2, . . . , Aim′i must satisfy

Ai1 e
n′i �i
0 = ξim′i χim′iAim′i ,

Ai2 e
n′i �i
0 = ξi1χi1Ai1,

Ai3 e
n′i �i
0 = ξi2χi2Ai2,

...

Aim′i e
n′i �i
0 = ξi,m′i−1χi,m′i−1Ai,m′i−1.

Then we have

Ai2 = ξi1χi1 e−n
′
i �i

0 ,

Ai3 = ξi2χi2 e−n
′
i �i

0 Ai2,

...

Aim′i = ξi,m′i−1χi,m′i−1 e
−n′i �i
0 Ai,m′i−1

= (ξim′i χim′i e
−n′i �i
0 )−1.
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In this case the compatibility condition is

(ξi1 · · · ξim′i ) (χi1 · · ·χim′i ) e
−m′in′i �i
0 = 1. (8.2)

By the definition of screw number and valency, we have

(ξi1 · · · ξim′i ) (χi1 · · ·χim′i ) e
−m′in′i �i
0 = exp(2πiKi),

where

Ki = 1

2

(
−s(Ci1)− δ(C

′
i1)

λ(C′i1)
− δ(C

′′
i1)

λ(C′′i1)

)
.

From (5.2) we obtain the compatibility condition (8.2).

Now we can construct a holomorphic family (M, π,�∗) of Riemann surfaces of
type (g, n) with given monodromy f as follows.

For any t ∈ �∗, let St be the Riemann surface of (g, n) which is represented by
the coordinates (α, τ ) = �(t). We set

M0 =
∐
t∈�∗
{t} × St .

This becomes a two-dimensional complex manifold. For every t ∈ �∗, the isomor-
phism f0 : S0 → S0 induces a biholomorphic map F0(t, ·) : St → Sgn0 (t)

. Then the
map F0 : M0 → M0 given by F0(t, p) = (gn0(t), F0(t, p)) is biholomorphic. We
consider the quotient space M = M0/〈F0〉 and the projection π : M → �∗/〈gn0〉 ∼=
�∗ defined by π([t, p]) = [t]. Then (M, π,�∗) is a desired holomorphic family of
Riemann surfaces of type (g, n) which have the given monodromy f .
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1 Introduction

As is often the case with classical and difficult problems the uniformization problem
has many variants. We will essentially only deal here with one of these: the Fuchsian
uniformization, and only of some aspects of this extremely vast subject. In fact the
subject is so vast and with so many ramifications in other branches of mathematics
that we will barely be able to scratch the surface of things (a complete treatment
would need at least a complete volume). Essentially we will deal here with the more
elementary aspects of the problem and indicate some references for more advanced
developments. On the other hand there are many aspects we have not touched at all.
One of these is Schottky uniformization for which we refer to B. Maskit [22] (see also
for recent developments [30] and [10]).

The starting point is of course the famous Poincaré–Koebe Theorem [17], [25]
(1907), that asserts that if S is a compact Riemann surface of genus g > 1 then there
is a discrete faithful representation of the fundamental group of S

ρ : π1(S)→ � ⊂ PSL2(R) (1.1)
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and this representation is such that S, as a Riemann surface, is isomorphic to the
quotient of the upper half space by the discrete group �

S ∼= H/�.

Actually we do not need S to be compact, it can have finitely many punctures
{x1, . . . , xn} and the result is also true for genus 0 or 1 provided the Euler characteristic
of S � {x1, . . . , xn} is strictly negative. On the other hand we will restrict to surfaces
of finite area, and Fuchsian groups of the first kind i.e. discrete subgroups of PSL2(R)

with finite co-volume.
In this general setting the Fuchsian uniformization problem can be formulated as

follows:

Problem 1. Given a Riemann surface S, defined by an algebraic curve for example,
compute the representation ρ.

Intimately linked with Problem 1 is the inverse problem:

Problem 2. Given a Fuchsian group of the first kind � compute an algebraic curve
isomorphic to H/�.

There are of course many variants and subproblems of great interest, and we will
encounter a few, but if we restrict to the Fuchsian uniformization these are the basic
questions.

Historically the first attempts to solve Problem 1, or at least a partial version,
focused on the question of finding functions, holomorphic on some open set, satisfying
algebraic relations. Not surprisingly theta relations provide a host of these and so
probably the first solutions to the uniformization problem can be found in the work of
Jacobi. This is also the point of view taken by Burnside [6] who found two functions
x and y, expressed as rational functions in the Weierstrass functions ℘ and ℘′, that
satisfy the relation y2 = x(x4 − 1), an equation for Bolza’s curve. For a modern
account see Rankin [27] who also computes the corresponding Fuchsian group.

More recent approaches involve essentially one of the following two methods
(i) solving the Schwarzian differential equation;

(ii) constructing a fundamental domain for the Fuchsian group.
We will describe these in Sections 2 and 3.
For Problem 2 the classical method is to compute the space of automorphic forms

of given weight and use these to obtain a pluricanonical embedding. This works
remarkably well for congruence subgroups and is an extremely active field of research.

2 The classical strategy for solving the uniformization problem

Let S be a Riemann surface of genus g � 2, which for simplicity we assume to be
compact. Let � be its Fuchsian group and π : H→ H/� = S the covering map.
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Let ϕ be a local inverse of π defined on some simply connected open subset �
of S. If ϕ1 is another such inverse, then it will differ by an element of �, ϕ1 = γ ϕ,
γ a Möbius transformation in �. This leads to the introduction of the Schwarzian
derivative

Definition 2.1. Let ϕ be aC3 function of a complex variable. The Schwarzian deriva-
tive of ϕ is

Sϕ(z) =
(
ϕ′′(z)
ϕ′(z)

)′
− 1

2

(
ϕ′′(z)
ϕ′(z)

)2

. (2.1)

The reason for the introduction of this differential operator lies in the next classical
lemma (see for example [36] or [24])

Lemma 2.2. (i) Sf ≡ 0 if and only if f is a Möbius transformation;
(ii) S(f � g)(z) = (

g′(z)
)2
Sf (g(z))+ Sg(z).

In particular we have that if f is a Möbius transformation, then

(iii) S(f � g)(z) = Sg(z).

From this one can show that, although the inverse of π is multi-valued, Sϕ is single
valued and defines in fact a meromorphic function on S. Hence if S is an algebraic
curve defined by some polynomial equation P(x, y) = 0, then Sϕ = R(x, y) for
some rational function. So the strategy is to

(i) compute the rational function R;

(ii) solve the equation Sϕ = R.

As we will see the difficulty lies with (i) and not with (ii).

2.1 The standard differential equation

By considering an algebraic curve as a ramified cover of the Riemann sphere one
can extend the arguments of the next two sections to arbitrary algebraic curves. But
to simplify the exposition, and since all the difficulties already appear here, we will
concentrate on the simplest case: the case of hyperelliptic curves.

Definition 2.3. A hyperelliptic curve is a ramified double cover of the complex pro-
jective plane. If C is hyperelliptic one can always define it by an affine equation of
the form

y2 = P(x) =
n∏
i=1

(x − xi) where the xi are distinct. (2.2)

If C is of genus g then the polynomial P will be of degree 2g + 1 or 2g + 2
depending on whether the point at infinity is or not a branch point. We assume here
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that the curve is projective non-singular and consider Equation (2.2) to be an affine
equation of the curve.

In this context the double covering map from the curve to the plane is simply
h : (x, y) �→ x, appropriately extended at infinity.

One reason why this case is more favorable for the uniformization problem is that
one has an easy description of the fundamental group by lifting loops in the plane
minus the ramification points (see for example [23]).

The Schwarzian differential equation (sometimes called Fuchsian equation) is the
second order differential equation

y′′(z)+ 1

2
Sϕ(z) y(z) = 0. (2.3)

Concerning this differential equation we have another classical lemma

Lemma 2.4. If y1 and y2 are two independent solutions of Equation (2.3) defined
in a neighborhood of a point q, then S(y1/y2) = Sϕ. Conversely if Sψ = Sϕ,
then ψ = y1/y2 for two independent solutions. Moreover these are unique if we
fix y1(q).

See for example [36] or [24].
Now fix a point q̃ in the hyperelliptic curve C that is not a Weierstrass point

i.e. in the notations of (2.2) is not of the form (xi, 0) or a point at infinity. Let
� ⊂ PSL2(R) be a Fuchsian group for C and let ρ0 : π1(C, q̃) → PSL2(R) be the
corresponding representation of the fundamental group. We identify C with H/�.
Let π : H → H/� = C be the covering map and X = h � π , where h is the
hyperelliptic map extending the map (x, y) �→ x. The set A of ramification points of
X is A = {x1, . . . , xn} or A = {x1, . . . , xn,∞} depending on the parity of n. Finally
we set q = h(q̃).

The relevance of Equation (2.3) is the following. Let � be a simply connected
neighborhood of q in Ĉ � A and let ϕ be a branch of the inverse of X defined in �.
Then, by Lemma 2.4, we can find two independent solutions u and v of Equation (2.3),
holomorphic in � and such that u/v = ϕ. An important point to recall here is that
although ϕ is only locally defined Sϕ is a global meromorophic function with double
poles at the ramification points and hence is holomorphic on Ĉ � A.

Let γ be a closed loop in Ĉ � A based at q and that lifts to a non trivial loop
γ̃ in C based at q̃ (for example a loop surrounding two ramification points). Using
analytic continuation along γ we find two new solutions uγ and vγ , holomorphic in
a neighborhood of q. Note that uγ and vγ only depend of the homotopy class of γ in
Ĉ � A and hence only depend of the homotopy class of γ̃ in C.

Since the space of solutions of the differential equation (2.3) is two-dimensional[
uγ
vγ

]
= Aγ

[
u

v

]
(2.4)
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for some matrix Aγ ∈ GL2(C). Moreover if aij are the coefficients of Aγ we have

uγ

vγ
= a11u/v + a12

a21u/v + a22
. (2.5)

On the other hand we can also continue analytically the local inverse ϕ = u/v

along γ to obtain an inverse branch ϕγ defined in a neighborhood of q. We of course
have

ρ0(γ̃ )(ϕ) = ϕγ .
By the uniqueness statement of Lemma 2.4 and the uniqueness of analytic contin-

uation we have ϕγ = uγ /vγ . Hence

Proposition 2.5. The Möbius transformation of (2.5) associated to the matrix Aγ of
Formula (2.4) is ρ0(γ̃ ) ∈ � ⊂ PSL2(R).

Starting with an arbitrary pair (u1, v1) of independent solutions defined in a neigh-
borhood of q we will get with the above method a representation conjugate to ρ0.
More precisely

Corollary 2.6. Let (u1, v1) be a basis of solutions to the differential equation (2.3)
defined in a neighborhood of q. Let γ be as above and let ((u1)γ , (v1)γ ) be solutions
obtained from (u1, v1) by analytic continuation along γ . Then there exists a Möbius
transformation g, independent of γ , such that we have

(u1)γ

(v1)γ
= g−1ρ0(γ̃ ) g

(
u1

v1

)

Proof. Let (u, v) be independent solutions such that u/v is a local inverse of the
covering map X. Let u = au1 + bv1 and v = cu1 + dv1.

By the uniqueness of analytic continuation we will also have uγ = a(u1)γ+b(v1)γ

and vγ = c(u1)γ + d(v1)γ . Hence by Proposition 2.5 we can take g to be z �→ az+b
cz+d .

In practice we only need to find a representation of π1(C, q̃) in PSL2(R). Tech-
nically this can be done as follows. Applying the method above to an arbitrary pair
of independent solutions of Equation (2.3) yields a representation ρ of π1(C, q̃) in
PSL2(C). Let γ1, . . . , γn be a set of generators of π1(C, q̃). Let x1, x2 be the fixed
points of ρ(γ1) and let x3 be the repelling fixed point of ρ(γ2). Then there is a Möbius
transformation g sending x1, x2, x3 to∞, 0, 1. Conjugating by g will yield the desired
representation in PSL2(R).

In conclusion finding a complete solution to the uniformization problem for hy-
perelliptic curves reduces to solving the differential equation (2.3). Unfortunately
the problem now lies in the computation of this equation and more precisely in the
computation of the Schwarzian derivative Sϕ. This is where other difficulties appear.
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2.2 The Schwarzian derivative and accessory parameters

We limit our discussion to elementary aspects of the theory. For far deeper results see
for example the papers of L. Takhtajan and P. Zograf [33] and [34]. See also [20] and
[16] as well as the abundant literature on the subject.

Let ϕ = h � π be as above the map from the upper-half plane to the Riemann
sphere. Let P be the polynomial of (2.2) and let x1, . . . , xn, n = 2g+ 1 or 2g+ 2, be
the distinct roots of P . A local analysis of Sϕ (see for example [24]) shows that Sϕ is
in fact a rational function and more precisely of the form

Sϕ(z) =
∑ (

3

8

1

(z− xi)2 +
bi

z− xi
)

(2.6)

where the bi are the so-called accessory parameters (sic! accessory maybe but rather
essential for our problem). In the general case the bi satisfy two (resp. three) relations
if n = 2g + 1 (resp. n = 2g + 2). These are, if n = 2g + 1,

(i)
n∑
i=1

bi = 0;

(ii)
n∑
i=1

xibi + 3
8 = 3

8 .

If n = 2g + 2 we must replace (ii) by (ii)′ and we have the additional relation (iii):

(ii)′
n∑
i=1

xibi + 3
8 = 0;

(iii)
n∑
i=1

x2
i bi + 3

4xi = 0.

See [24, Chap. V] for more details (where the assertion on (ii) is false but can be easily
corrected using the arguments given there). It should be noted here that if we consider
the general situation of a ramified cover of the sphere one can express Sϕ in terms of
the ramification points and the ramification indices. This general expression is very
similar to the one given in (2.6) and we again have accessory parameters that satisfy
three relations.

Unfortunately these relations are not enough to compute the bi in the general case.
In fact although they have been studied for over a century, these accessory parameters
are largely mysterious and to quote Nehari “the determination of the n−3 independent
constants [...] is an exceedingly difficult task”.

On the other hand we can note the following. If the curve has an automorphism
distinct from the hyperelliptic involution, then such an automorphism is induced by
a Möbius transformation fixing globally the roots xi (and infinity if n = 2g + 1).
This statement follows easily from the fact that the hyperelliptic involution commutes
with all other automorphisms. Thus applying Lemma 2.2 (iii) we obtain additional
relations, and in the favorable case when the curve has a “very large” automorphism
group (see Definition 2.7 for a precise meaning of this) we will have enough relations
to compute the bi and solve the problem.



Chapter 4. The uniformization problem 137

2.3 Hyperelliptic curves with many automorphisms

In [35] (1929) E. T. Whittaker conjectured that, for a hyperelliptic curve defined by
(2.2)

Sϕ(z) = WP (z) = 3

8

( (
P ′(z)
P (z)

)2

− (2g + 2)P ′′(z)
(2g + 1)P (z)

)
. (2.7)

In the following years many examples were found of curves satisfying this conjec-
ture (see the bibliography in [12]) and in 1958 R. A. Rankin substantially enlarged the
list of examples by proving in [26] that the conjecture was satisfied if the set of roots
of P satisfied certain symmetrical properties. In practice these symmetrical properties
ensure that the curve has enough automorphisms to apply the method above and find
sufficiently many relations to compute the bi .

A more conceptual approach is given by E. Girondo and G. González-Diez in [12].
For this recall

Definition 2.7. An algebraic curveC is said to have a very large automorphism group
if one of the following conditions holds

(i) C/Aut(C) is the Riemann Sphere and the covering map C → C/Aut(C) is
ramified precisely over three points;

(ii) The space of holomorphic quadratic differentials invariant under Aut(C) is of
dimension 0.

The two conditions in the definition are of course equivalent since the dimension of
the space of quadratic differentials invariant under a groupG acting by automorphisms
on C is 3g̃ − 3 + n, where g̃ is the genus of C/G and n is the number of points of
C/G with ramification index > 1(see [9, p. 273]).

Since the tangent space to the moduli space at the point defined by the isomorphy
class of C is the space of quadratic differentials we can reformulate Definition 2.7 by
saying that C has a very large automorphism group if (C,Aut(C)) is an isolated point
in moduli space, i.e. the deformations of C will have a smaller automorphism groups.

Lemma 2.8. Let P(z) = ∏
(z − xi) and if M is a Möbius transformation let

M(P)(z) = P � M−1(z) = ∏
(z − M(xi)). Then for WP as in Formula (2.7)

we have
WP (z) =

(
M ′(z)

)2
WM(P)(M(z))

This can be found by direct computation (see [26], p. 41).
On the other hand we can deduce from Lemma 2.2 that ifM is a Möbius transfor-

mation and ϕ is as before then

Sϕ(z) = (
M ′(z)

)2
S(ϕ �M−1)(M(z)). (2.8)

Combining Lemma 2.8 and Formula (2.8) we get that if QC = WP − Sϕ and
h : (x, y) �→ x is the hyperelliptic projection, then h∗(QC(z)dz

2) is a quadratic dif-
ferential on C, invariant under the group Aut(C). A priori this is a meromorphic
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quadratic differential but a local analysis at the poles of QC shows that it is in fact
holomorphic. The equality Sϕ = WP , and Whittaker’s conjecture, immediately fol-
lows for curves with a very large automorphism group.

But apart from this (and some scattered exceptional cases — see [12] for a discus-
sion) the conjecture is hopelessly false. The main reason being that, as proved by I. Kra
in [20], the coefficients of the rational function Sϕ only depend real analytically, and
not holomorphically, on the roots x1, . . . , xn of the polynomial P , whereas of course
WP does depend holomorphically (see also [16]). In fact even for a curve for which
the space of holomorphic quadratic forms invariant under Aut(C) is of dimension one
the conjecture can be proven to be generically false (see [31]).

On the positive side this does give us a method to completely solve the uniformiza-
tion problem for curves with equations of the form

(i) y2 = x2g+2 − 1,

(ii) y2 = x2g+1 − 1,

(iii) y2 = x(x2g − 1),

for all g > 1.

There are also a few other curves for which one can compute directly the accessory
parameters and hence apply the methods of Section 2.1 (see [31]).

3 Geometric methods for the uniformization problem

The methods we are going to describe here originated with Fricke and Klein and
the most famous example is probably the construction of a fundamental domain for
Klein’s quartic with homogeneous equation

x y3 + y z3 + z x3 = 0. (3.1)

For this construction one can note two points: the domain constructed is tiled by 56
copies of a hyperbolic triangle; the curve has a very large automorphism group (of
order 168, the maximum possible in genus 3). These two facts are of course related.

3.1 Algebraic curves with many automorphisms

Recall that a triangle group is a group generated by reflections along the sides of a
hyperbolic triangle. In terms of these groups one can reinterpret the condition (i) of
Definition 2.7 by saying that an algebraic curve has a very large automorphism group
if its Fuchsian group � is a normal subgroup of a triangle group. As a consequence
the group � has a fundamental domain tiled by copies of a hyperbolic triangle.

For curves for which one knows the precise structure of the automorphism group,
e.g. the hyperelliptic curves indicated at the end of Section 2, the problem now becomes
a combinatorial problem, that can sometimes be solved.
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For example consider the curveXg defined by the equation y2 = x2g+2−1, then it
is known that the full group of automorphisms is generated by u : (x, y) �→ (ξ x, y),
where ξ is a primitive (2g + 2)-root of unity, and v : (x, y) �→ (1/x, i y/xg+1). This
yields the presentation

〈u, v ; u2g+2, v4, (uv)2, uv2u−1v2〉. (3.2)

Let n = g + 1 and let T be the hyperbolic triangle with angles π/2n, π/2n and
π/n. Label O one of the vertices with angle π/2n and paste 4n copies of T at the
point O. We obtain in this way a hyperbolic polygon P with 4n edges and interior
angles alternately 2π/n and π/n. Number the edges from 1 to 4n in cyclic order
and let � be the group identifying, for k odd, edge number k to edge number k + 3
(mod 4n). The group � thus constructed is a Fuchsian group for Xg (for a complete
justification that this is indeed the case see [5]).

If g ≡ 3 (mod 4), then the same polygon can also be used to compute the Fuchsian
group for Kulkarni’s curve with equation

y2g+2 = x(x − 1)g−1(x + 1)g+2. (3.3)

We only need to identify, for k odd, edge number k to edge number 2n + k + 3
(mod 4n) (see [5] for complete details). Note that these are not hyperelliptic curves.
For g = 3 this is actually isomorphic to Fermat’s quartic with homogeneous equation
x4 + y4 + z4 = 0.

Similar constructions can be made for curves with equations

y2 = x (x2g − 1) or y2 = x2g+1 − 1.

For these the construction is even simpler as one only needs to consider the regular
hyperbolic 4g-gon (respectively (4g+2)-gon) with interior angles π/2g (respectively
2π/(2g + 1)) and the group that identifies opposite sides.

3.2 Tiling by quadrangles and other polygons

The limits of the method described in the preceding section come from the fact that
one cannot deform hyperbolic triangles. This is just a rephrasing of the remark made
earlier that curves with very large automorphism groups are isolated points in moduli
space.

On the other hand one can deform hyperbolic quadrangles and also of course more
general polygons.

To illustrate what we have in mind consider the family of curves defined by the
equations

y2 = x2g+2 + a xg+1 + 1 with a �= ±2. (3.4)

It can be shown that for a generic member of this family the full automorphism group
is generated b u1 : (x, y) �→ (ζ x, y), where ζ is this time a primitive (g + 1)-root of
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unity, and v : (x, y) �→ (1/x, i y/xg+1). The presentation of the group is similar to
the presentation (3.2).

Now consider again the tiling of the polygon P by copies of the triangle T con-
structed for the curve with equation y2 = x2g+2 − 1. We can also view P as tiled by
2n copies of the quadrangle Q, with interior angles equal to π/n, obtained by pasting
two copies of T . Let Q1 be a hyperbolic quadrangle, with opposite angles equal and
angle sum equal to 4π/n, n = g + 1. Replace in P the copies of Q by copies of Q1
alternating the angle at the origin (see Figure 1 for a representation in the unit disk).

Figure 1. A fundamental domain for y2 = x6 − 6 x3 + 1.

With this construction we can again use the identification pattern i.e. for k odd,
edge number k identified to edge number k + 3 (mod 4n).

Since hyperbolic quadrangles with fixed angle sum and opposite angles equal form
a real two-dimensional family we obtain in this way a complex one-dimensional family
of Riemann surfaces with the same automorphism group as the family (3.4). These two
families are in fact the same (for a complete proof using a different method see [21]).

Establishing a more precise correspondence between the coefficient a of (3.4) and
the quadrangle Q1 reduces to the problem of uniformizing a genus 1 curve with one
elliptic point or equivalently the sphere with 4 conical points. A still unsolved problem
but simpler and better understood than the general one (see for example [13]). There
are also some cases when one can achieve the computations. For example in Figure 1
the quadrangle has angles equal to π/6 and π/2 and the hyperbolic cosines of the
side lengths are 3 and 5 respectively. If we let A and B be hyperbolic transformations
identifying opposite sides, then H/〈A,B〉 is an elliptic curve and the image of the
axes of A and B define a symplectic basis for the homology of this elliptic curve. In
this concrete case it can be shown to be the one with normalized period τ = 1

2 + i
2 .

From this using the methods of [21] one can show that the coefficient a is equal to
−6. Since the genus is 2 in this case, the equation is y2 = x6 − 6 x3 + 1 (see [21] for
other specific examples).
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Variants of the above construction can be applied to other one-dimensional families
in particular to the family defined by

y2 = x (x2g + a xg + 1). (3.5)

One can also use tilings by other polygons. For example tilings by pentagons and
hexagons are considered in [1].

4 Automorphic forms and the inverse uniformization problem

Let S be a compact Riemann surface of genus g. Let ω and η be qth order differential
forms (holomorphic q-differentials), thenω/η is a well defined meromorphic function
on S.

Let �q(S) be the space of holomorphic q-differentials. By Riemann–Roch the
dimension of �q is g if q = 1 or k = (2q − 1)(g − 1) if q � 2. Let ω1, . . . , ωk be a
basis of �q , then by the remark made above fq : p �→ (ω1(p), . . . , ωk(p)) defines a
map from S to the projective space P

k−1, the so-called q-canonical map. It depends of
course on the choice of a basis of�q(S) but two such maps only differ by a projective
automorphism of P

k−1.
For non-hyperelliptic surfaces f1 is an embedding and a two-to-one map onto a

rational curve for hyperelliptic surfaces. For q � 3, fq is always an embedding. The
most interesting case is however f2 which is always an embedding if g > 2 and is
two-to-one onto a rational curve if g = 2 (see for example [28, Chap. III, §5] or
[9, Chap. III, §10]).

For surfaces with cusps we have a very similar construction using the space of
meromorphic q-differentials having at most poles of order less or equal to q−1 at the
cusps.

If S is defined as H/�, then a q-differential ω lifts to u(z) dzq on H, with

u(γ z)γ ′(z)q = u(z) for all γ ∈ �. (4.1)

Definition 4.1. A holomorphic function on H satisfying condition (4.1) is called an
automorphic form of weight 2q for �.

Since the transformations we are considering are Möbius transformations we can
reformulate the condition (4.1):

u(γ z) = (c z+ d)2qu(z) for all γ =
(
a b

c d

)
∈ �. (4.2)

Actually in the presence of cusps (we assume as before that � does not contain
elliptic elements) we will need an additional condition to control the behavior at the
punctures, namely

sup
{
y2q |u(x + i y)| | x + i y ∈ H

}
<∞. (4.3)
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The space Sq(�) of functions satisfying Conditions (4.1) and (4.3) is the space of
cusp forms of weight 2q for �.

Using the Petersson inner product one can show that condition (4.3) is equivalent
to ∫

H/�

y2q−2|u(x + i y)|dxdy <∞

where integration is over a fundamental domain for �.
The importance of the space of cusp forms Sq(�) comes from

Lemma 4.2. Let S = H/� and let S∗ be the smooth compactification of S. Let
{p1, . . . , pn} = S∗ � S and let D be the divisor

∑
pi . Finally let �q((q − 1)D) be

the space of meromorphic q-differentials on S∗, holomorphic on S and with at worst
poles of order q − 1 at the pi . Then

Sq(�) ∼= �q((q − 1)D).

Proof. Let π : H → S be the canonical projection. Let p ∈ H and let ζ be a local
coordinate in the neighborhood of π(p). An automorphic form ϕ of weight 2q for �
projects to a holomorphic q-differential on S, �(ζ)dζ q with the rule

ϕ(z) = �(ζ)
(
dζ

dz

)q
. (4.4)

Let R̂ = R ∪ {∞} be the extended real line. If p ∈ R̂ is a cusp for � we may
assume without loss of generality that p = ∞ and that the stabilizer of p is generated
by z �→ z+ 1. In this case ϕ has a Fourier expansion

ϕ(z) =
∞∑

n=−∞
ane

2πinz. (4.5)

Condition (4.3) then implies that

lim
y→∞ y

2q
∑

ane
−2πny = 0.

Hence an = 0 for n � 0.
A local coordinate in the neighborhood of the puncture is ζ = e2πiz. This implies

that if we have an = 0 for n < r and ar �= 0 in the expansion (4.5), then, by (4.4), the
q-differential�(ζ)dζ q will have order r − q and hence at worst a pole of order q − 1
at the puncture.

Conversely if ω is a meromorphic q-differential on S∗, holomorphic on S and with
at worst poles of order q − 1 at the points of S∗ � S, then ω lifts via (4.4) to a cusp
form of weight 2q.

In this context solving the inverse uniformization problem reduces to finding a
basis of the space Sq(�) for some q � 1.
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4.1 Poincaré series

The standard method to construct automorphic forms goes back to Poincaré who
introduced what is now known as Poincaré series. Let h be a function on H and

�q(h)(z) =
∑
γ∈�

h(γ z)γ ′(z)q . (4.6)

Obviously, provided the sum in (4.6) converges absolutely, �q(h) satisfies condition
(4.1). For q � 2 conditions for convergence were found by Poincaré, but we are going
to restrict to a special class of functions.

Let R be the space of rational functions holomorphic on Ĉ � R̂ that have at most
simple poles in R̂. If P is a subset of R̂ we define

R(P ) = {
f ∈ R | f is holomorphic on Ĉ � P

}
.

Proposition 4.3. For R ∈ R and q � 2 the series

�q(R)(z) =
∑
γ∈�

R(γ z)γ ′(z)q

converges absolutely and uniformly on compact subsets of H. Moreover the Poincaré
operator �q maps R onto the space of weight 2q cusp forms for � i.e.

�q(R) = Sq(�).

For a proof see [19, Proposition 1.5]. The fact that�q is onto is due to L. Bers [4].
The next result is again due to I. Kra [19, Theorem 1].

Theorem 4.4. Let a1, . . . , a2q−1, q > 1, be distinct points in R̂. Let γ0 = Id and let
γ1, . . . , γN be generators for �. Let

P = {
γj (ak) | 1 � k < 2q, 0 � j � N

}
.

Then
�q(R(P )) = Sq(�).

In order to find a basis for Sq(�) we first note that, with R(P ) as in Theorem 4.4,
we have on the one hand

dim R(P ) = #P + 1

and that on the other hand, if H/� = S is a surface of genus g with n punctures, then
Riemann–Roch applied to the space �q((q − 1)D) of Lemma 4.2 yields

dim Sq(�) = (2q − 1)(g − 1)+ n(q − 1).

The next point to note is that [19] provides an explicit algorithm to determine
whether the Poincaré series vanishes i.e.�q(R) = 0. These facts put together indicate
a clear strategy to find a basis of Sq(�).
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For q = 2, that is quadratic forms, one can use a result of S. Wolpert [37] that we
proceed to describe. Let(

a b

c d

)
∈ SL2(R) and γ (z) = az+ b

cz+ d .

The trace tr(γ ) = a+ d is only defined up to sign but its square tr2(γ ) is well defined
and> 4 for γ hyperbolic. Also the fixed points of γ are the roots of c z2+(d−a) z−b.
This noted we define

ωγ (z) =
√

tr2(γ )− 4(c z2 + (d − a) z− b)−2. (4.7)

The importance of ωγ lies in the fact that

(ωγ (γ (z))γ
′(z)2 = ωγ (z) (4.8)

as can be checked by a direct computation. In particular ωγ is an automorphic 2-form
for the cyclic group 〈γ 〉.

Now assume S = H/� is compact and let γ be a simple closed curve in S. Such
a curve defines a hyperbolic element in � that we will also denote by γ . We consider
the Petersson–Poincaré series

θ∗γ (z) =
∑

h∈〈γ 〉\�
ωγ (h(z))h

′(z)2. (4.9)

The result of S. Wolpert [37, Theorem 3.7, p. 521] is

Theorem 4.5. Let S = H/� be a compact surface of genus g. Let γ1, . . . , γ3g−3
be a maximal set of non-intersecting simple closed curves in S. Then the Petersson–
Poincaré series θ∗γi converge absolutely and uniformly on compact subsets and the

{θ∗γi } form a basis of S2(�).

The conclusion is that we have a complete theoretical solution to the inverse uni-
formization problem. In practice however there is one difficulty left: evaluating the
series (4.6) or (4.9), which is not so easy to do explicitly.

4.2 Modular curves

We will briefly indicate here a few aspects of the theory of modular curves in relation
with the uniformization problem and in particular with the theory presented in the last
section.

For an integer N � 1 define the principal level N congruence subgroup of the
modular group SL2(Z) to be

�(N) = {A ∈ SL2(Z) | A ≡ Identity matrix (mod N)}. (4.10)
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A congruence subgroup � of SL2(Z) is a subgroup containing �(N) for some N .
Of particular interest are

�0(N) =
{(
a b

c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
, (4.11)

�1(N) =
{(
a b

c d

)
∈ �0(N) | a ≡ d ≡ 1 (mod N)

}
. (4.12)

A congruence subgroup � is clearly a discrete subgroups of SL2(R). We can con-
sider the quotients of the upper-half plane under such a group and this defines a Rie-
mann surface Y (�) = H/�. At this stage one should note that congruence subgroups
have parabolic elements, hence the modular curve has cusps and is non-compact.
It is the affine modular curve for �. One can easily compactify by considering
H
∗ = H∪Q∪ {∞} with an appropriate topology, on which the group obviously acts,

and the quotient X(�) = H
∗/� will be a compact Riemann surface and hence a pro-

jective algebraic curve. This is what is generally called the modular curve for �. On
the other hand because of the cusps,� is a Fuchsian group for the affine curveY (�) and
not the compact curve X(�). If we start with X(�) and compute a Fuchsian groupG
for this curve, thenGwill not contain parabolics and hence will not be conjugate to �.

In addition to parabolic elements a congruence subgroup may also have elliptic
elements (of order 2 or 3) so even for the affine curve Y (�) the situation is a little
different than the one considered in the introduction.

We limit the discussion to the groups �(N), �0(N) and �1(N) for which the
surfaces are denoted by Y (N), Y0(N), Y1(N),X(N),X0(N) andX1(N) respectively.
Henceforth � will designate one of these groups.

The first thing to note is that the curves Y (N), Y0(N) and Y1(N) are moduli spaces
for moduli problems involving elliptic curves and N -torsion points or subgroups of
N -torsion points (see [29, §6] or [32, Theorem 13.1]). Using this one can sometimes,
for small values of N , directly compute equations for these spaces.

Another approach is to find generators for the function field. For example it can
be shown that the function field of Y0(N) is generated by X = j (z) and Y = j (Nz)
(where j is the classical j -invariant for elliptic curves), hence an equation of the form
FN(X, Y ) for some polynomial FN . Unfortunately this leads to equations of high
degree with huge coefficients. For recent developments and a variant of this approach
see [38].

The general method however is to deal with the compact surfaces X(�).
We again consider the space of weight 2q cusp forms for �, that is, holomorphic

functions on H satisfying condition (4.2) that vanish at every cusp (note that in view
of the proof of Lemma 4.2 this is equivalent to condition (4.3)).

The Hecke operators T (p), p prime to N , are linear operators on the space Sq(�)
that satisfy

T (p)T (p′) = T (p′)T (p), (4.13)

〈T (p)f, g〉 = 〈f, T (p)g〉, (4.14)
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where

〈f, g〉 =
∫

H/�

f (x + i y) g(x + i y) y2q−2dxdy , (4.15)

is the Petersson inner product.
The product (4.15) turns the finite-dimensional space Sq(�) into a Hilbert space.

Since the operators T (p) are commuting and self-adjoint they can be simultaneously
diagonalised by a unitary matrix. Hence

Theorem 4.6 (Hecke–Petersson). The space Sq(�) has a basis consisting of eigen-
forms for the operators T (p), that is a basis {fi}i with fi ∈ Sq(�) such that

T (p)fi = λi(p)fi
for all p such that (p,N) = 1.

As noted above the congruence subgroups contain parabolics of the form
(

1 N
0 1

)
and

∞ is always a cusp. Hence if f is a cusp form we can consider its Fourier expansion

f (z) =
∑
n�1

ane(z)
n, where e(z) = e2πiz. (4.16)

The Hecke operators can be defined in terms of (4.16). For example if � = �0(N)

we have, for p prime to N ,

T (p)f (z) =
∑
n�1

(
anp + p2q−1an/p

)
e(z)n with an/p = 0 if p � n. (4.17)

For a more intrinsic definition see [29, Chap. 3].
The important consequence of this is that one can recover the Fourier expansion of

the forms fi of Theorem 4.6 in terms of the eigenvalues of the Hecke operators.
Moreover there are many number theoretic methods to effectively compute these
eigenvalues. For recent developments see for example [11] and [3].

4.3 Other methods

We very briefly describe the approach of [7] and [8] to the inverse uniformization
problem for hyperelliptic curves.

First consider a hyperelliptic curveC of genus g defined over R and with g+1 real
components. Then C is the union of four isometric copies of a hyperbolic 2g+ 2-gon
D. Let x1, . . . , x2g+2 be the vertices of D and denote by [xi, xi+1] the edges. Now
consider the harmonic function ui on D satisfying the mixed boundary conditions

ui(z) = 0 on [x2g+2, x1] and [x2j , x2j+1], for j < i,

ui(z) = 1 on [x2j , x2j+1], for i � j,

ν[ui] = 0 on [x2k−1, x2k],
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where ν[ui] is the derivative of ui with respect to the outward pointing unit vector
field. The capacity of ui on D is

ci =
∫
D

‖∇ui‖2dxdy = −
∫
∂D

ui ν[ui]dμ. (4.18)

The importance of these capacities is

Proposition 4.7 ([7]). The coefficients of a normalized period matrix forC are simple
and explicit linear combinations of the capacities ci in (4.18).

Since C is hyperelliptic one can use standard methods to recover an equation from
the period matrix (see [9] or [23]). As a final remark on this method one should note
that it is a fairly easy matter to obtain efficient approximations of the ci .

The basic idea of [8] is to reduce the problem to the uniformization of elliptic
curves and use the classical solution of the problem in genus 1. In genus 2 this can
be done as follows. A hyperbolic genus 2 surface S can always be represented as a
symmetric hyperbolic octagon with opposite sides identified. Let gi be the Möbius
transformation identifying sides i+4 and side i and let pi be the hyperbolic midpoint
of side i. Let hi be the order 2 elliptic transformation centered at pi . The group
G̃ = 〈g1, g3, h2, h4, h6, h8〉 has signature (1; 2, 2, 2, 2). The relation between this
genus 1 curve E and the genus 2 surface is that one can find an equation y2 =
x (x − 1)(x − a1) such that the elliptic points have coordinates (a2,±y2), (a3,±y3)

and the genus 2 surface has equation y2 = x (x − 1)(x − a1)(x − a2)(x − a3). The
interest of the method is that a map from the octagon to the parallelogram defining E
can easily be approximated numerically.
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1 Introduction

1.1 Overview

1.1.1 Moduli space and Teichmüller space. Consider a compact oriented surface
S of genus g together with a finite subsetX = {x1, . . . , xn}, such that 2g−2+n > 0.

The moduli space Mg,X is the set of all X-pointed Riemann surfaces of genus g
up to isomorphism. Its universal cover (in the orbifold sense) can be identified with



152 Gabriele Mondello

the Teichmüller space T (S,X), which parametrizes complex structures on S up to
isotopy (relative to X); equivalently, T (S,X) parametrizes isomorphism classes of
(S,X)-marked Riemann surfaces. Thus, Mg,X is the quotient of T (S,X) under the
action of the mapping class group �(S,X) = Diff+(S,X)/Diff0(S,X).

As T (S,X) is contractible (Teichmüller [71]), we also have Mg,X � B�(S,X).
However, �(S,X) acts on T (S,X) discontinuously but with finite stabilizers. Thus,
Mg,X is naturally an orbifold and Mg,X � B�(S,X)must be intended in the orbifold
category.

1.1.2 Algebro-geometric point of view. As compact Riemann surfaces are complex
algebraic curves, Mg,X has an algebraic structure and is in fact a Deligne–Mumford
stack, which is the algebraic analogue of an orbifold. The underlying space Mg,X

(forgetting the isotropy groups) is a quasi-projective variety.
The problem of counting curves with suitable properties, a topic which is also called

“enumerative geometry of curves”, has always been central in algebraic geometry. The
usual set-up is to describe the loci in Mg,X of curves that satisfy the wished properties
and then to compute their intersection, which naturally leads to seeking for a suitable
compactification of Mg,X. Deligne and Mumford [16] understood that it was sufficient
to consider algebraic curves with mild singularities to compactify Mg,X. In fact, their

compactification Mg,X is the moduli space of X-pointed stable (algebraic) curves of
genus g, where a complex projective curve C is “stable” if its only singularities are
nodes (that is, in local analytic coordinates C looks like {(x, y) ∈ C

2 | xy = 0})
and every irreducible component of the smooth locus of C \ X has negative Euler
characteristic.

The main tool to prove the completeness of Mg,X is the stable reduction theorem,
which essentially says that a smooth holomorphic family C∗ → �∗ of X-pointed
Riemann surfaces of genus g over the pointed disc can be completed to a flat family
over � (after a suitable change of base z �→ zk) using a stable curve.

The beauty of Mg,X is that it is smooth (as an orbifold) and that its coarse space

Mg,X is a projective variety (Mumford [59], Gieseker [22], Knudsen [40] [41], Kollár
[42] and Cornalba [15] and [7]).

1.1.3 Tautological maps. The map Mg,X∪{y} → Mg,X that forgets the y-marking
(and then stabilizes the possibly unstable X-marked curve) can be identified with the
universal family over Mg,X and is the first example of tautological map.

Moreover, Mg,X has a natural algebraic stratification, in which each stratum cor-
responds to a topological type of curve: for instance, smooth curves correspond to the
open stratum Mg,X. As another example: irreducible curves with one node correspond
to an irreducible locally closed subvariety of (complex) codimension 1, which is the
image of the (generically 2 : 1) tautological boundary map Mg−1,X∪{y1,y2} →Mg,X

that glues y1 to y2. Thus, every stratum is the image of a (finite-to-one) tautological
boundary map, and thus is isomorphic to a finite quotient of a product of smaller
moduli spaces.
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1.1.4 Augmented Teichmüller space. Teichmüller theorists are more interested in
compactifying T (S,X) rather than Mg,X. One of the most popular ways to do this
is due to Thurston (see [21]): the boundary of T (S,X) is thus made of projective
measured laminations and it is homeomorphic to a sphere.

Clearly, there cannot be any clear link between a compactification of T (S,X) and
of Mg,X, as the infinite discrete group �(S,X) would not act discontinuously on a
compact boundary ∂T (S,X).

Thus, a �(S,X)-equivariant bordification of T (S,X) whose quotient is Mg,X

cannot be compact. A way to understand such a bordification is to endow Mg,X

(and T (S,X)) with the Weil–Petersson metric [73] and to show that its completion is
exactly Mg,X [51]. Hence, the Weil–Petersson completion T (S,X) can be identified
with the set of (S,X)-marked stable Riemann surfaces.

Similarly to Mg,X, T (S,X) has a stratification by topological type and each stra-
tum is a (finite quotient of a) product of smaller Teichmüller spaces.

1.1.5 Tautological classes. The moduli space Mg,X comes equipped with natural
vector bundles: for instance, Li is the holomorphic line bundle whose fiber at [C] is
the cotangent space T ∗C,xi . Chern classes of these line bundles and their push-forward
through tautological maps generate the so-called tautological classes (which can be
seen in the Chow ring or in cohomology). The κ classes were defined by Mumford
[60] and Morita [57] and then modified (to make them behave better under tautological
maps) by Arbarello and Cornalba [5]. The ψ classes were defined by E. Miller [52]
and their importance was successively rediscovered by Witten [74].

The importance of the tautological classes is due to the following facts (among
others):

• Their geometric meaning appears quite clear.
• They behave very naturally under the tautological maps (see, for instance, [5]).
• They often occur in computations of enumerative geometry; that is, Poincaré

duals of interesting algebraic loci are often tautological (see [60]) but not always
(see [25])!

• They are defined on Mg,X for every g and X (provided 2g − 2 + |X| > 0),
and they generate the stable cohomology ring over Q due to Madsen–Weiss’s
solution [49] of Mumford’s conjecture (see Section 5.3).

• There is a set of generators (ψ’s and κ’s) which have non-negativity properties
(see [4] and [60]).

• They are strictly related to the Weil–Petersson geometry of Mg,X (see [76], [79],
[80] and [53]).

1.1.6 Simplicial complexes associated to a surface. One way to analyze the (co)ho-
mology of Mg,X, and so of �(S,X), is to construct a highly connected simplicial
complex on which �(S,X) acts. This is usually achieved by considering complexes
of disjoint, pairwise non-homotopic simple closed curves on S \ X with suitable
properties (for instance, Harvey’s complex of curves [30]).
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If X is nonempty (or if S has boundary), then one can construct a complex using
systems of homotopically nontrivial, disjoint arcs joining two (not necessarily distinct)
points in X (or in ∂S), thus obtaining the arc complex A(S,X) (see [28]). It has an
“interior” A�(S,X) made of systems of arcs that cut S \X in discs (or pointed discs)
and a complementary “boundary” A∞(S,X).

An important result, which has many fathers (Harer–Mumford–Thurston [28], Pen-
ner [61], Bowditch–Epstein [13]), says that the topological realization |A�(S,X)| of
A�(S,X) is �(S,X)-equivariantly homeomorphic to T (S,X) × �X (where �X is
the standard simplex in R

X). Thus, we can transfer the cell structure of |A�(S,X)| to
an (orbi)cell structure on Mg,X ×�X.

The homeomorphism is realized by coherently associating a weighted system of
arcs to everyX-marked Riemann surface, equipped with a decoration p ∈ �X. There
are two traditional ways to do this: using the flat structure arising from a Jenkins–
Strebel quadratic differential (Harer–Mumford–Thurston) with prescribed residues at
X or using the hyperbolic metric coming from the uniformization theorem (Penner
and Bowditch–Epstein). Quite recently, several other ways have been introduced (see
[46], [47], [56] and [55]).

1.1.7 Ribbongraphs. To better understand the homeomorphism between |A�(S,X)|
and T (S,X)×�X, it is often convenient to adopt a dual point of view, that is to think
of weighted systems of arcs as of metrized graphs G, embedded in S \ X through a
homotopy equivalence.

This can be done by picking a vertex in each disc cut by the system of arcs and
joining these vertices by adding an edge transverse to each arc. What we obtain is
an (S,X)-marked metrized ribbon graph. Thus, points in |A�(S,X)|/�(S,X) ∼=
Mg,x ×�X correspond to metrized X-marked ribbon graphs of genus g.

This point of view is particularly useful to understand singular surfaces (see also
[13], [43], [45], [65], [82], [7] and [55]). The object dual to a system of arcs in
A∞(S,X) is a collection of data that we called an (S,X)-marked “enriched” ribbon
graph. Notice that an X-marked “enriched” metrized ribbon graph does not carry
all the information needed to construct a stable Riemann surface. Hence, the map
Mg,X × �X → |A(S,X)|/�(S,X) is not injective on the locus of singular curves,
but still it is a homeomorphism on a dense open subset.

1.1.8 Topological results. The utility of the �(S,X)-equivariant homotopy equiva-
lence T (S,X) � |A�(S,X)| relies on the possibility of making topological compu-
tations on |A�(S,X)|. For instance, Harer [28] determined the virtual cohomological
dimension of �(S,X) (and so of Mg,X) using the high connectivity of |A∞(S,X)|
and he established that �(S,X) is a virtual duality group, by showing that |A∞(S,X)|
is spherical. An analysis of the singularities of |A(S,X)|/�(S,X) is in [66].

Successively, Harer–Zagier [29] and Penner [62] have computed the orbifold Euler
characteristic of Mg,X, where by “orbifold” we mean that a cell with stabilizerG has
Euler characteristic 1/|G|. Because of the cellularization, the problem translates into
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enumerating X-marked ribbon graphs of genus g and counting them with the correct
sign.

Techniques for enumerating graphs and ribbon graphs (see, for instance, [10]) have
been known to physicists for long time: they use asymptotic expansions of Gaussian
integrals over spaces of matrices. The combinatorics of iterated integrations by parts is
responsible for the appearance of (ribbon) graphs (Wick’s lemma). Thus, the problem
of computing χorb(Mg,X) can be reduced to evaluating a matrix integral (a quick
solution is also given by Kontsevich in Appendix D of [43]).

1.1.9 Intersection-theoretical results. As Mg,X ×�X is not just homotopy equiv-
alent to |A�(S,X)|/�(S,X) but actually homeomorphic (through a piecewise real-
analytic diffeomorphism), it is clear that one can try to rephrase integrals over Mg,X

as integrals over |A�(S,X)|/�(S,X), that is as sums over maximal systems of arcs
of integrals over a single simplex. This approach looked promising in order to com-
pute Weil–Petersson volumes (see Penner [63]). Kontsevich [43] used it to compute
volumes coming from a “symplectic form” � = p2

1ψ1 + · · · + p2
nψn, thus solving

Witten’s conjecture [74] on the intersection numbers of the ψ classes.
However, in Witten’s paper [74] matrix integrals entered in a different way. The

idea was that, in order to integrate over the space of all conformal structures on S,
one can pick a random decomposition of S into polygons, give each polygon a natural
Euclidean structure and extend it to a conformal structure on S, thus obtaining a
“random” point of Mg,X. Refining the polygonalization of S leads to a measure on
Mg,X. Matrix integrals are used to enumerate these polygonalizations.

Witten also noticed that this refinement procedure may lead to different limits,
depending on which polygons we allow. For instance, we can consider decompositions
into A squares, or into A squares and B hexagons, and so on. Dualizing this last
polygonalization, we obtain ribbon graphs embedded in S withA vertices of valence 4
and B vertices of valence 6. The corresponding locus in |A�(S,X)| is called a Witten
subcomplex.

1.1.10 Witten classes. Kontsevich [43] and Penner [64] proved that Witten sub-
complexes obtained by requiring that the ribbon graphs have mi vertices of va-

lence (2mi + 3) can be oriented (see also [14]) and they give cycles in M
comb
g,X :=

|A(S,X)|/�(S,X) × R+, which are denoted by Wm∗,X. The �-volumes of these
Wm∗,X are also computable using matrix integrals [43] (see also [17]).

In [44], Kontsevich constructed similar cycles using structure constants of finite-
dimensional cyclic A∞-algebras with positive-definite scalar product and he also
claimed that the classes Wm∗,X (restriction of Wm∗,X to Mg,X) are Poincaré dual
to tautological classes.

This last statement (usually called Witten–Kontsevich’s conjecture) was settled
independently by Igusa [32] [33] and Mondello [54], whereas very little is known
about the nature of the (non-homogeneous) A∞-classes.



156 Gabriele Mondello

1.1.11 Surfaces with boundary. The key point of all constructions of a ribbon graph
out of a surface is that X must be nonempty, so that S \ X can be retracted by de-
formation onto a graph. In fact, it is not difficult to see that the spine construction
of Penner and Bowditch–Epstein can be performed (even in a more natural way) on
hyperbolic surfaces 	 with geodesic boundary. The associated cellularization of the
corresponding moduli space is due to Luo [46] (for smooth surfaces) and by Mondello
[55] (also for singular surfaces, using Luo’s result).

The interesting fact (see [56] and [55]) is that gluing semi-infinite cylinders at
∂	 produces (conformally) punctured surfaces that “interpolate” between hyperbolic
surfaces with cusps and flat surfaces arising from Jenkins–Strebel differentials.

1.2 Structure of the chapter

In Sections 2.1 and 2.2, we carefully define systems of arcs and ribbon graphs, both
in the singular and in the nonsingular case, and we explain how the duality between
the two works. Moreover, we recall Harer’s results on A�(S,X) and A∞(S,X) and
we state a simple criterion for compactness inside |A�(S,X)|/�(S,X).

In Sections 3.1 and 3.2, we describe the Deligne–Mumford moduli space of curves
and the structure of its boundary, the associated stratification and boundary maps. In
3.3, we explain how the analogous bordification of the Teichmüller space T (S,X)
can be obtained as completion with respect to the Weil–Petersson metric.

Tautological classes and rings are introduced in 3.4 and Kontsevich’s compactifi-
cation of Mg,X is described in 3.5.

In 4.1, we explain and sketch a proof of Harer–Mumford–Thurston cellularization
of the moduli space and we illustrate the analogous result of Penner–Bowditch–Epstein
in 4.2. In 4.3, we quickly discuss the relations between the two constructions using
hyperbolic surfaces with geodesic boundary.

In 5.1, we define Witten subcomplexes and Witten cycles and we prove (after
Kontsevich) that� orients them. We sketch the ideas involved in the proof the Witten
cycles are tautological in Section 5.2.

Finally, in 5.3, we recall Harer’s stability theorem and we exhibit a combinatorial
construction that shows that Witten cycles are stable. The fact (and probably also the
construction) is well-known and it is also a direct consequence of Witten–Kontsevich’s
conjecture and Miller’s work.

Acknowledgments. It is a pleasure to thank Shigeyuki Morita, Athanase Papadopou-
los and Robert C. Penner for the stimulating workshop “Teichmüller space (Classical
and Quantum)” they organized in Oberwolfach (May 28th–June 3rd, 2006) and the
MFO for the hospitality.

I would like to thank Enrico Arbarello for all I learnt from him about Riemann
surfaces and for his constant encouragement.
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2 Systems of arcs and ribbon graphs

Let S be a compact oriented differentiable surface of genus g with n > 0 distinct
marked points X = {x1, . . . , xn} ⊂ S. We will always assume that the Euler charac-
teristic of the punctured surface Ṡ := S \X is negative, that is 2− 2g − n < 0. This
restriction only rules out the cases in which Ṡ is the sphere with less than 3 punctures.

Let Diff+(S,X) be the group of orientation-preserving diffeomorphisms of S that
fixX pointwise. The mapping class group �(S,X) is the group of connected compo-
nents of Diff+(S,X).

In what follows, we borrow some notation and some ideas from [45].

2.1 Systems of arcs

2.1.1 Arcs and arc complex. An oriented arc in S is a smooth path −→α : [0, 1] → S

such that −→α ([0, 1]) ∩ X = {−→α (0),−→α (1)}, up to reparametrization. Let Aor(S,X)

be the space of oriented arcs in S, endowed with its natural topology. Define
σ1 : Aor(S,X) → Aor(S,X) to be the orientation-reversing operator and we will
write σ1(

−→α ) = ←−α . Call α the σ1-orbit of −→α and denote by A(S,X) the (quotient)
space of σ1-orbits in Aor(S,X).

A system of (k+ 1)-arcs in S is a collection α = {α0, . . . , αk} ⊂ A(S,X) of k+ 1
unoriented arcs such that:

• if i �= j , then the intersection of αi and αj is contained in X,

• no arc in α is homotopically trivial,

• no pair of arcs in α are homotopic to each other.

We will denote by S \ α the complementary subsurface of S obtained by removing
α0, . . . , αk .

Each connected component of the space of systems of (k + 1)-arcs ASk(S,X)
is clearly contractible, with the topology induced by the inclusion ASk(S,X) ↪→
A(S,X)k+1/Sk+1.

Let Ak(S,X) be the set of homotopy classes of systems of k + 1 arcs, that is
Ak(S,X) := π0ASk(S,X).

The arc complex is the simplicial complex A(S,X) =⋃
k≥0 Ak(S,X).

Notation. We will implicitly identify arc systems α and α′ that are homotopic to each
other. Similarly, we will identify the isotopic subsurfaces S \ α and S \ α′.

2.1.2 Proper simplices. An arc system α ∈ A(S,X) fills (resp. quasi-fills) a subsur-
face R ⊆ S if α ⊂ R and Ṙ \ α is a disjoint union of subsurfaces homeomorphic to
discs (resp. discs and annuli isotopic to an end of Ṙ). It is easy to check that the star
of α is finite if and only if α quasi-fills S. In this case, we also say that α is a proper
simplex of A(S,X).



158 Gabriele Mondello

Denote by A∞(S,X) ⊂ A(S,X) the subcomplex of non-proper simplices and let
A�(S,X) = A(S,X) \ A∞(S,X) be the collection of proper ones.

Notation. We denote by |A∞(S,X)| and |A(S,X)| the topological realizations of
A∞(S,X) and A(S,X). We will use the symbol |A�(S,X)| to mean the complement
of |A∞(S,X)| inside |A(S,X)|.

2.1.3 Topologies on |A(S,X)|. The realization |A(S,X)| of the arc complex can
be endowed with two natural topologies (as is remarked in [13], [45] and [7]).

The former (which we call standard) is the finest topology that makes the inclusions
|α| ↪→ |A(S,X)| continuous for all α ∈ A(S,X); in other words, a subset U ⊂
|A(S,X)| is declared to be open if and only if U ∩ |α| is open for every α ∈ A(S,X).
The latter topology is induced by the path metric d, which is the largest metric that
restricts to the Euclidean one on each closed simplex.

The two topologies are the same where |A(S,X)| is locally finite, but the latter is
coarser elsewhere. We will always consider all realizations to be endowed with the
metric topology.

2.1.4 Visible subsurfaces. For every system of arcs α ∈ A(S,X), define S(α)+ to
be the largest isotopy class of open subsurfaces of S such that

• every arc in α is contained in S(α)+,

• α quasi-fills S(α)+.

The visible subsurfaceS(α)+ can be constructed by taking the union of a thickening
a representative of α inside S and all those connected components of S \ α which are
homeomorphic to discs with at most one marked point (this construction appears
already in [13]). We will always consider S(α)+ as an open subsurface (up to isotopy),
homotopically equivalent to its closure S(α)+, which is an embedded surface with
boundary.

x1

x2

x3

S

Figure 1. The invisible subsurface is the dark non-cylindrical component.

One can rephrase 2.1.2 by saying that α is proper if and only if all S is α-visible.
We call invisible subsurface S(α)− associated to α the union of the interior of
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the connected components of S \ S(α)+ which are not unmarked cylinders. Thus,
S \ (S(α)+ ∪ S(α)−) is a disjoint union of cylinders.

We also say that a marked point xi is (in)visible forα if it belongs to theα-(in)visible
subsurface.

2.1.5 Ideal triangulations. A maximal system of arcs α ∈ A(S,X) is also called an
ideal triangulation of S. In fact, it is easy to check that, in this case, each component
of S \ α bounded by three arcs and so is a “triangle”. (The term “ideal” comes from
the fact that one often thinks of (S,X) as a hyperbolic surface with cusps at X and of
α as a collection of hyperbolic geodesics.) It is also clear that such an α is proper.

x1

x2

S

Figure 2. An example of an ideal triangulation for (g, n) = (1, 2).

A simple calculation with the Euler characteristic of S shows that an ideal triangu-
lation is made of exactly 6g − 6+ 3n arcs.

2.1.6 The spine of |A�(S,X)|. Consider the barycentric subdivision A(S,X)′,
whose k-simplices are chains (α0 � α1 � · · · � αk). There is an obvious piecewise-
affine homeomorphism |A(S,X)′| → |A(S,X)|, that sends a vertex (α0) to the
barycenter of |α0| ⊂ |A(S,X)|.

Denote A�(S,X)′ the subcomplex of A(S,X)′ whose simplices are chains of sim-
plices that belong to A�(S,X). Clearly, |A�(S,X)′| ⊂ |A(S,X)′| is contained in
|A�(S,X)| ⊂ |A(S,X)| through the above homeomorphism.

It is a general fact that there is a deformation retraction of |A�(S,X)| onto the spine
|A�(S,X)′|: on each simplex of |A(S,X)′| ∩ |A�(S,X)| this is given by projecting
onto the face contained in |A�(S,X)′|. It is also clear that the retraction is �(S,X)-
equivariant.

In the special case ofX = {x1}, a proper system contains at least 2g arcs; whereas a
maximal system contains exactly 6g−3 arcs. Thus, the (real) dimension of |A�(S,X)′|
is (6g − 3)− 2g = 4g − 3.

Proposition 2.1 (Harer [28]). IfX = {x1}, the spine |A�(S,X)′| has dimension 4g−3.
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2.1.7 Action of σ -operators. For every arc system α = {α0, . . . , αk}, denote by
E(α) the subset {−→α0 ,

←−α0 , . . . ,
−→αk ,←−αk } of π0A

or(S,X). The action of σ1 clearly re-
stricts to E(α).

For each i = 1, . . . , n, the orientation of S induces a cyclic ordering of the oriented
arcs in E(α) outgoing from xi .

If−→αj starts at xi , then define σ∞(−→αj ) to be the oriented arc in E(α) outgoing from
xi that comes just after −→αj . Moreover, σ0 is defined by σ0 = σ−1∞ σ1.

If we denote by Et(α) the orbits of E(α) under the action of σt , then

• E1(α) can be identified with α,

• E∞(α) can be identified with the set of α-visible marked points,

• E0(α) can be identified with the set of connected components of S(α)+ \ α.

Denote by [−→αj ]t the σt -orbit of −→αj , so that [−→αj ]1 = αj and [−→αj ]∞ is the starting point
of−→αj , whereas [−→αj ]0 is the component of S(α)+ \α adjacent to αj and which induces
the orientation −→αj on it.

2.1.8 Action of �(S,X) on A(S,X). There is a natural right action of the mapping
class group

A(S,X)× �(S,X) −→ A(S,X),

(α, g) �−→ α � g.
The induced action on A(S,X) preserves A∞(S,X) and so A�(S,X).

It is easy to see that the stabilizer (under�(S,X)) of a simplexα fits in the following
exact sequence

1→ �cpt(S \ α, X)→ stab�(α)→ S(α)

where S(α) is the group of permutations of α and �cpt(S \α, X) is the mapping class
group of orientation-preserving diffeomorphisms of S \ α with compact support that
fix X. Define the image of stab�(α)→ S(α) to be the automorphism group of α.

We can immediately conclude that α is proper if and only if stab�(α) is finite
(equivalently, if and only if �cpt(S \ α, X) is trivial).

2.1.9 Weighted arc systems. A point w contained in |A(S,X)| consists of a map
w : A0(S,X)→ [0, 1] such that

• the support of w is a simplex α = {α0, . . . , αk} ∈ A(S,X),

•
∑k
i=0w(αi) = 1.

We will call w the (projective) weight of α. A weight for α is a point of w ∈
|A(S,X)|R := |A(S,X)| × R+, that is a map w : A0(S,X) → R+ with support
on α. Call w its associated projective weight.
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2.1.10 Compactness in |A�(S,X)|/�(S,X). We are going to prove a simple cri-
terion for a subset of |A�(S,X)|/�(S,X) to be compact.

Call C(S,X) the set of free homotopy classes of simple closed curves on S \ X,
which are neither contractible nor homotopic to a puncture.

Define the “intersection product”

ı : C(S,X)× |A(S,X)| → R≥0

as ı(γ,w) = ∑
α ı(γ, α)w(α), where ı(γ, α) is the geometric intersection number.

We will also refer to ı(γ,w) as to the length of γ atw. Consequently, we will say that
the systole at w is

sys(w) = inf{ı(γ,w) | γ ∈ C(S,X)}.
Clearly, the function sys descends to

sys : |A(S,X)|/�(S,X)→ R+.

Lemma 2.2. A closed subsetK ⊂ |A�(S,X)|/�(S,X) is compact if and only if there
is an ε > 0 such that sys([w]) ≥ ε for all [w] ∈ K .

Proof. In R
N we easily have d2 ≤ d1 ≤

√
N · d2, where dr is the Lr -distance.

Similarly, in |A(S,X)| we have

d(w, |A∞(S,X)|) ≤ sys(w) ≤ √N · d(w, |A∞(S,X)|)
where N = 6g − 7+ 3n. The same holds in |A(S,X)|/�(S,X).

Thus, if [α] ∈ A�(S,X)/�(S,X), then |α|∩sys−1([ε,∞))∩|A�(S,X)|/�(S,X)
is compact for every ε > 0. As |A�(S,X)|/�(S,X) contains finitely many cells, we
conclude that sys−1([ε,∞)) ∩ |A�(S,X)|/�(S,X) is compact.

Vice versa, if sys : K → R+ is not bounded from below, then we can find a sequence
[wm] ⊂ K such that sys(wm) → 0. Thus, [wm] approaches |A∞(S,X)|/�(S,X)
and so is divergent in |A�(S,X)|/�(S,X).

2.1.11 Boundary weight map. Let�X be the standard simplex in R
X and let��X :=

�X ∩ R
X+. The boundary weight map �∂ : |A(S,X)|R → �X × R+ ⊂ R

X is the
piecewise-linear map that sends {α} to [−→α ]∞ + [←−α ]∞. The projective boundary
weight map 1

2�∂ : |A(S,X)| → �X instead sends {α} to 1
2 [−→α ]∞ + 1

2 [←−α ]∞.

2.1.12 Results on the arc complex. A few things are known about the topology of
|A(S,X)|.
(a) The space of proper arc systems |A�(S,X)| can be naturally given the structure

of a piecewise-affine topological manifold with boundary (Hubbard–Masur [31],
credited to Whitney) of (real) dimension 6g − 7+ 3n.

(b) The space |A�(S,X)| is�(S,X)-equivariantly homeomorphic to T (S,X)×�X,
where T (S,X) is the Teichmüller space of (S,X) (see 3.1.1 for definitions and
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Section 4 for an extensive discussion on this result), and so is contractible. This
result could also be probably extracted from [31], but it is more explicitly stated
in Harer [28] (who attributes it to Mumford and Thurston), Penner [61] and
Bowditch–Epstein [13]. As the moduli space of X-marked Riemann surfaces
of genus g can be obtained as Mg,X

∼= T (S,X)/�(S,X) (see 3.1.2), then
Mg,X � B�(S,X) in the orbifold category.

(c) The space |A∞(S,X)| is homotopy equivalent to an infinite wedge of spheres of
dimension 2g − 3+ n (Harer [28]).

Results (b) and (c) are the key step in the following.

Theorem 2.3 (Harer [28]). �(S,X) is a virtual duality group (that is, it has a subgroup
of finite index which is a duality group) of dimension 4g − 4 + n for g, n > 0 (and
4g − 5 for n = 0) and n− 3 if g = 0.

This is immediate for g = 0, because M0,X is a complex affine variety. If g > 0,
it is sufficient to work with X = {x1}, in which case the upper bound is given by (b)
and Proposition 2.1, and the duality by (c).

2.2 Ribbon graphs

2.2.1 Graphs. A graphG is a triple (E,∼, σ1), where E is a finite set, σ1 : E→ E

is a fixed-point-free involution and ∼ is an equivalence relation on E.
In ordinary language

• E is the set of oriented edges of the graph,

• σ1 is the orientation-reversing involution ofE, so that the set of unoriented edges
is E1 := E/σ1,

• two oriented edges are equivalent if and only if they come out from the same
vertex, so that the set V of vertices is E/ ∼ and the valence of v ∈ E/ ∼ is
exactly the cardinality of the equivalence class [v].

A ribbon graph G is a triple (E, σ0, σ1), where E is a (finite) set, σ1 : E→ E is a
fixed-point-free involution and σ0 : E→ E is a permutation. Define σ∞ := σ1 � σ−1

0
and denote by Et the set of orbits of σt and by [ ·]t : E → Et the natural projection.
A disjoint union of two ribbon graphs is defined in the natural way.

Remark 2.4. Given a ribbon graph G, the underlying ordinary graph G = G
ord

is obtained by declaring that oriented edges in the same σ0-orbit are equivalent and
forgetting about the precise action of σ0.
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xi

−→
e

σ0(
−→
e )

σ0

←−
e′ = σ1(

−→
e′ )

T←−
e′

−→
e′

σ∞
σ∞(
−→
e′ )

Figure 3. Geometric representation of a ribbon graph.

In ordinary language, a ribbon graph is an ordinary graph endowed with a cyclic
ordering of the oriented edges outgoing from each vertex.

The σ∞-orbits are sometimes called holes. A connected component of G is an orbit
of E(G) under the action of 〈σ0, σ1〉.

The Euler characteristic of a ribbon graph G is χ(G) = |E0(G)| − |E1(G)| and
its genus is g(G) = 1+ 1

2 (|E1(G)| − |E0(G)| − |E∞(G)|).
A (ribbon) tree is a connected (ribbon) graph of genus zero with one hole.

2.2.2 Subgraphs and quotients. Let G = (E, σ0, σ1) be a ribbon graph and let
Z � E1 be a nonempty subset of edges.

The subgraph GZ is given by (Z̃, σZ0 , σ
Z
1 ), where Z̃ = Z ×E1 E and σZ0 , σ

Z
1 are

the induced operators (that is, for every e ∈ Z̃ we define σZ0 (e) := σk0 (e), where
k = min{k > 0 | σk0 (e) ∈ Z̃}).

Similarly, the quotient G/Z is (G \ Z̃, σZc0 , σZ
c

1 ), where σZ
c

1 and σZ
c

∞ are the
operators induced on E \ Z̃ and σZ

c

0 is defined accordingly. A new vertex of G/Z is
a σZ

c

0 -orbit of E \ Z̃, which is not a σ0-orbit.

2.2.3 Bicolored graphs. A bicolored graph ζ is a finite connected graph with a
partition V = V+ ∪ V− of its vertices. We say that ζ is reduced if no two vertices of
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V− are adjacent. If not differently specified, we will always understand that bicolored
graphs are reduced.

If ζ contains an edge z that joins w1, w2 ∈ V−, then we can obtain a new graph ζ ′
merging w1 and w2 along z into a new vertex w′ ∈ V ′− (by simply forgetting −→z and←−
z and by declaring that vertices outgoing fromw1 are equivalent to vertices outgoing

from w2).
If ζ comes equipped with a function g : V− → N, then g′ : V ′− → N is defined so

that g′(w′) = g(w1)+ g(w2) if w1 �= w2, or g′(w′) = g(w1)+ 1 if w1 = w2.
As merging reduces the number of edges, we can iterate the process only a finite

number of times. The result is independent of the choice of which edges to merge first
and is a reduced graph ζ red (possibly with a gred).

t1t1

t2t2

t3t3

t4t4

s5s5 s6s6

00

33

1

1

2

x1x1

x2x2

x3x3

Figure 4. A non-reduced bicolored graph (on the left) and its reduction (on the right). Vertices
in V− are black. See Example 2.5.

2.2.4 Enriched ribbon graphs. An enriched X-marked ribbon graph G
en is the

datum of

• a connected bicolored graph (ζ, V+),
• a ribbon graph G plus a bijection V+ → {connected components of G},
• an (invisible) genus function g : V− → N,

• an X-marking map m : X → V− ∪ E∞(G) ∪ E0(G) such that the restriction
m−1(E∞(G))→ E∞(G) is bijective and the restrictionm−1(E0(G))→ E0(G)

is injective (a vertex in the image of this last map is called marked),

• an injection sv : {oriented edges of ζ outgoing from v} → E0(Gv) (vertices of
Gv in the image of sv are called nodal; a vertex is called special if it is either
marked or nodal),

that satisfy the following properties:

• for every v ∈ V+ and y ∈ E0(Gv) we have |m−1(y)∪ s−1
v (y)| ≤ 1 (i.e. no more

than one marking or one node at each vertex of Gv),

• 2g(v)−2+|{oriented edges of ζ outgoing from v}|+|{marked points on v}| >
0 for every v ∈ V (stability condition),

• every non-special vertex of Gv must be at least trivalent for all v ∈ V+.
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We say that G
en is reduced if ζ is.

If the graph ζ is not reduced, then we can merge two vertices of ζ along an
edge of ζ and obtain a new enriched X-marked ribbon graph. G

en
1 and G

en
2 are

considered equivalent if they are related by a sequence of merging operations. It
is clear that each equivalence class can be identified with its reduced representative.
Unless differently specified, we will always refer to an enriched graph as the canonical
reduced representative.

The total genus of G
en is g(Gen) = 1− χ(ζ )+∑

v∈V+ g(Gv)+∑
w∈V− g(w).

Example 2.5. In Figure 4, the genus of each vertex is written inside, x1 and x2 are
marking the two holes of G (sitting in different components), whereas x3 is an invisible
marked point. Moreover, t1, t2, t3, t4 (resp. s5, s6) are distinct (nodal) vertices of the
visible component of genus 0 (resp. of genus 3): in particular, t4 is marking the oriented
edge that goes from the genus 0 component to the genus 3 component, whereas s5 is
marking the same edge with the opposite orientation. (Note that, if xi marked a vertex
s of some visible component, then we would have written “s” close the tail that joined
v to s.) The total genus of the associated G

en is 7.

Remark 2.6. If an edge z of ζ joins v ∈ V+ and w ∈ V− and this edge is marked by
the special vertex y ∈ E0(Gv), then we will say, for brevity, that z joins w and y.

An enrichedX-marked ribbon graph is nonsingular if ζ consists of a single visible
vertex. Equivalently, an enriched nonsingular X-marked ribbon graph consists of a
connected ribbon graph G together with an injection X ↪→ E∞(G) ∪ E0(G), whose
image is exactlyE∞(G)∪{special vertices}, such that non-special vertices are at least
trivalent and χ(G)− |{marked vertices}| < 0.

2.2.5 Category of nonsingular ribbon graphs. A morphism of nonsingular X-
marked ribbon graphs G1 → G2 is an injective map f : E(G2) ↪→ E(G1) such
that

• f commutes with σ1, σ∞ and respects the X-marking,

• G1,Z is a disjoint union of trees, where Z = E1(G1) \ E1(G2).

Notice that, as f preserves the X-markings (which are injections X ↪→ E∞(Gi ) ∪
E0(Gi )), then each component of Z may contain at most one special vertex.

Vice versa, if G is a nonsingularX-marked ribbon graph and ∅ �= Z � E1(G) such
that GZ is a disjoint union of trees (each one containing at most a special vertex), then
the inclusion f : E1(G) \ Z̃ ↪→ E1(G) induces a morphism of nonsingular ribbon
graphs G→ G/Z.

Remark 2.7. A morphism is an isomorphism if and only if f is bijective.

RGX,ns is the small category whose objects are nonsingular X-marked ribbon
graphs G (where we assume that E(G) is contained in a fixed countable set) with the
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morphisms defined above. We use the symbol RGg,X,ns to denote the full subcategory
of ribbon graphs of genus g.

2.2.6 Topological realization of nonsingular ribbon graphs. The topological real-
ization |G| of the graphG = (E,∼, σ1) is the one-dimensional CW-complex obtained
from I × E (where I = [0, 1]) by identifying

• (t,−→e ) ∼ (1− t,←−e ) for all t ∈ I and −→e ∈ E,

• (0,−→e ) ∼ (0,−→e′ ) whenever e ∼ e′.
The topological realization |G| of the nonsingular X-marked ribbon graph G =

(E, σ0, σ1) is the oriented surface obtained from T ×E (where T = I × [0,∞]/I ×
{∞}) by identifying

• (t, 0,−→e ) ∼ (1− t, 0,←−e ) for all t ∈ I and −→e ∈ E,

• (1, y,−→e ) ∼ (0, y, σ1σ∞(←−e )) for all −→e ∈ E and y ∈ [0,∞].
IfG is the ordinary graph underlying G, then there is a natural embedding |G| ↪→ |G|,
which we call the spine.

The points at infinity in |G| are called centers of the holes and can be identified
with E∞(G). Thus, |G| is naturally an X-marked surface.

Notice that a morphism of nonsingularX-marked ribbon graphs G1 → G2 induces
an isotopy class of orientation-preserving homeomorphisms |G1| → |G2| that respect
the X-marking.

2.2.7 Nonsingular (S,X)-markings. An (S,X)-marking of the nonsingular
X-marked ribbon graph G is an isotopy class of orientation-preserving homeomor-
phisms f : S → |G|, compatible with X ↪→ E∞(G) ∪ E0(G).

Define RGns(S,X) to be the category whose objects are (S,X)-marked nonsingu-
lar ribbon graphs (G, f ) and whose morphisms (G1, f1)→ (G2, f2) are morphisms

G1 → G2 such that S
f1−→ |G1| → |G2| is isotopic to f2 : S → |G2|.

As usual, there is a right action of the mapping class group�(S,X) on RGns(S,X)

and the quotient category RGns(S,X)/�(S,X) is obtained from RGns(S,X) by
adding an (iso)morphism [f : S → G] �→ [f � g : S → G] for each g ∈ �(S,X) and
each object [f : S → G]. It can be shown that the functor RGns(S,X)/�(S,X)→
RGg,X,ns that forgets the S-marking is an equivalence.

2.2.8 Nonsingular arcs/graph duality. Let α = {α0, . . . , αk} ∈ A�(S,X) be a
proper arc system and let σ0, σ1, σ∞ be the corresponding operators on the set of
oriented arcs E(α). The ribbon graph dual to α is Gα = (E(α), σ0, σ1), which
comes naturally equipped with an X-marking (see 2.1.7).

Define the (S,X)-marking f : S → |Gα | in the following way. Fix a point cv in
each component v of S \α (which must be exactly the marked point, if the component
is a pointed disc) and let f send it to the corresponding vertex v of |Gα |. For each arc
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αi ∈ α, consider a transverse path βi from cv′ to cv′′ that joins the two components v′
and v′′ separated by αi , intersecting αi exactly once, in such a way that the interiors
of βi and βj are disjoint, if i �= j . Define f to be a homeomorphism of βi onto the
oriented edge in |Gα | corresponding to αi that runs from v′ to v′′.

x1

x2

S
cv′

cv′′

αi

βi

Figure 5. Thick curves represent f−1(|Gα |) and thin ones their dual arcs.

Because all components of S \ α are discs (or pointed discs), it is easy to see that
there is a unique way of extending f to a homeomorphism (up to isotopy).

Proposition 2.8. The association above defines a �(S,X)-equivariant equivalence
of categories

Â�(S,X) −→ RGns(S,X)

where Â�(S,X) is the category of proper arc systems on (S,X), whose morphisms
are reversed inclusions.

In fact, an inclusion α ↪→ β of proper systems induces a morphism Gβ → Gα of

nonsingular (S,X)-marked ribbon graphs.
A pseudo-inverse is constructed as follows. Let f : S → |G| be a nonsingular

(S,X)-marked ribbon graph and let |G| ↪→ |G| be the spine. The graph f−1(|G|)
decomposes S into a disjoint union of one-pointed discs. For each edge e of |G|,
let αe be the simple arc joining the points in the two discs separated by e. Thus,
we can associate the system of arcs {αe | e ∈ E1(G)} to (G, f ) and this defines a
pseudo-inverse RGns(S,X)→ Â�(S,X).

2.2.9 Metrized nonsingular ribbon graphs. A metric on a ribbon graph G is a
map � : E1(G) → R+. Given a simple closed curve γ ∈ C(S,X) and an (S,X)-
marked nonsingular ribbon graph f : S → |G|, there is a unique simple closed curve
γ̃ = |ei1 | ∪ · · · ∪ |eik | contained inside |G| ⊂ |G| such that f (γ ) is freely homotopic
to γ̃ inside |G| \ {centers of holes}.
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If G is metrized, then we can define the length �(γ ) to be �(γ̃ ) = �(ei1)+· · ·+�(eik ).
Consequently, the systole is given by inf{�(γ ) | γ ∈ C(S,X)}.

Given a proper weighted arc systemw ∈ |A�(S,X)|R, supported onα ∈ A�(S,X),
we can endow the corresponding ribbon graph Gα with a metric, by simply setting
�(αi) := w(αi). Thus, one can extend the correspondence to proper weighted arc sys-
tems and metrized (S,X)-marked nonsingular ribbon graphs. Moreover, the notions
of length and systole agree with those given in 2.1.10.

Notice the similarity between Lemma 2.2 and the Mumford–Mahler criterion for
compactness in Mg,n.

2.2.10 Categoryof enrichedribbongraphs. An isomorphism of enrichedX-marked
ribbon graphs G

en
1 → G

en
2 is the datum of compatible isomorphisms of their (reduced)

graphs c : ζ1 → ζ2 and of the ribbon graphs G1 → G2, such that c(V1,+) = V2,+ and
respecting the rest of the data.

Let G
en be an enrichedX-marked ribbon graph and let e ∈ E1(Gv), where v ∈ V+.

Assume that |V+| > 1 or that |E1(Gv)| > 1. We define G
en/e in the following way.

(a) If e is the only edge of Gv , then we just turn v into an invisible component and
we define g(v) := g(Gv) and m(xi) = v for all xi ∈ X that marked a hole or a
vertex of Gv . In what follows, suppose that |E1(Gv)| > 1.

(b) If [−→e ]0 and [←−e ]0 are distinct and not both special, then we obtain G
en/e from

G
en by simply replacing Gv by Gv/e.

(c) If [−→e ]0 = [←−e ]0 is not special, then replace Gv by Gv/e. If {−→e } was a hole
marked by xj , then mark the new vertex of Gv/e by xj . Otherwise, add an edge
to ζ that joins the two new vertices of Gv/e (which may or may not split into
two visible components).

(d) In case [−→e ]0 and [←−e ]0 are both special vertices (whether or not they are distinct),
add a new invisible component w of genus 0 to ζ , replace Gv by Gv/e (if Gv/e

is disconnected, the vertex v splits) and join w to the new vertices (one or two)
of Gv/e and markw bym−1([−→e ]0)∪m−1([←−e ]0). Moreover, if {−→e }was a hole
marked by xj , then mark w by xj .

Notice that G
en/e can be not reduced, so we may want to consider the reduced enriched

graph G̃en/e associated to it. We define G
en → G̃en/e to be an elementary contraction.

X-marked enriched ribbon graphs form a (small) category RGX, whose morphisms
are compositions of isomorphisms and elementary contractions. Denote by RGg,X

the full subcategory of RGX whose objects are ribbon graphs of genus g.

Remark 2.9. In reality, the automorphism group of an enriched ribbon graph must be
defined as the product of the automorphism group as defined above by

∏
v∈V− Aut(v),

where Aut(v) is the group of automorphisms of the generic Riemann surface of type
(g(v), n(v)) (where n(v) is the number of oriented edges of ζ outgoing from v and of
marked points on v). Fortunately, Aut(v) is almost always trivial, except if g(v) =
n(v) = 1, when Aut(v) ∼= Z/2Z.
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2.2.11 Topological realization of enriched ribbon graphs. The topological real-
ization of the enriched X-marked ribbon graph G

en is the nodal X-marked oriented
surface |Gen| obtained as a quotient of( ∐

v∈V+
|Gv|

) ∐ ( ∐
w∈V−

Sw

)

by a suitable equivalence relation, where Sw is a compact oriented surface of genus
g(w) with special points given by m−1(w) and by the oriented edges of ζ outgoing
from w. The equivalence relation identifies couples of special points corresponding
to the same edge of ζ .

As in the nonsingular case, for each v ∈ V+ the positive component |Gv| naturally
contains an embedded spine |Gv|. Notice that there is an obvious correspondence
between edges of ζ and nodes of |Gen|.

Moreover, the elementary contraction G
en → G

en/e to the (possibly) non-reduced
G

en/e defines a unique homotopy class of maps |Gen| → |Gen/e|, which may shrink
a circle inside a positive component of |Gen| to a singular point (only in cases (c) and
(d)), and which are homeomorphisms elsewhere.

If G̃en/e is the reduced graph associated to G
en/e, then we also have a map

|G̃en/e| → |Gen/e| that shrinks some circles inside the invisible components to sin-
gular points and is a homeomorphism elsewhere.

|Gen|

����������� |G̃en/e|

�����
���

���

|Gen/e|

2.2.12 (S,X)-markings of G
en. An (S,X)-marking of an enriched X-marked rib-

bon graph G
en is a map f : S → |Gen| compatible with X ↪→ E∞(G) ∪ E0(G) such

that f−1({nodes}) is a disjoint union of circles and f is an orientation-preserving
homeomorphism elsewhere, up to isotopy. The visible subsurface is the subsurface
S+ := f−1(|G| \ {special points}) .

An isomorphism of (S,X)-marked (reduced) enriched ribbon graphs is an isomor-

phism G
en
1 → G

en
2 such that S

f1−→ |Gen
1 | → |Gen

2 | is homotopic to f2 : S → |Gen
2 |.

Given (S,X)-markings f : S → |Gen| and f ′ : S → |G̃en/e| such that S
f−→

|Gen| → |Gen/e| is homotopic to S
f ′−→ |G̃en/e| → |Gen/e|, then we define

(Gen, f )→ (G̃en/e, f ′) to be an elementary contraction of (S,X)-marked enriched
ribbon graphs.

Define RG(S,X) to be the category whose objects are (equivalence classes of)
(S,X)-marked enriched ribbon graphs (Gen, f ) and whose morphisms are composi-
tions of isomorphisms and elementary contractions.
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Again, the mapping class group �(S,X) acts on RG(S,X) and the quotient
RG(S,X)/�(S,X) is equivalent to RGg,X.

2.2.13 Arcs/graph duality. Let α = {α0, . . . , αk} ∈ A�(S,X) be an arc system and
let σ0, σ1, σ∞ the corresponding operators on the set of oriented arcs E(α).

Define V+ to be the set of connected components of S(α)+ and V− the set of
components of S(α)−. Let ζ be a graph whose vertices are V = V+ ∪ V− and whose
edges correspond to connected components of S \ (S(α)+ ∪ S(α)−), where an edge
connects v and w (possibly v = w) if the associated cylinder bounds v and w.

Define g : V− → N to be the genus function associated to the connected compo-
nents of S(α)−.

Denote by Sv the subsurface associated to v ∈ V+ and let Ŝv be the quotient of Sv
obtained by identifying each component of ∂Sv to a point. We denote by α ∩ Ŝv the
system of arcs induced on Ŝv by α.

As α ∩ Ŝv quasi-fills Ŝv , we can construct a dual ribbon graph Gv and a home-
omorphism Ŝv → |Gv| by sending ∂Sv to nodal vertices of |Gv| and marked points
on Ŝv to centers or marked vertices of |Gv|. These homeomorphisms glue to give
a map S → |Gen| that shrinks cylinders in S \ (S(α)+ ∪ S(α)−) to nodes and is a
homeomorphism elsewhere, which is thus homotopic to a marking of |Gen|.

We obtain an enriched (S,X)-marked (reduced) ribbon graph G
en
α dual to α.

Proposition 2.10. The above construction defines a�(S,X)-equivariant equivalence
of categories

Â(S,X) −→ RG(S,X)

where Â(S,X) is the category of arc systems on (S,X), whose morphisms are reversed
inclusions.

As before, an inclusion α ↪→ β of systems of arcs induces a morphism G
en
β → G

en
α

of (S,X)-marked enriched ribbon graphs.
To construct a pseudo-inverse, start with (Gen, f ) and write Ŝv for the surface

obtained from f−1(|Gv|) by shrinking each boundary circle to a point. By nonsingular
duality, we can construct a system of arcs αv inside Ŝv dual to fv : Ŝv → |Gv|. As
the arcs miss the vertices of f−1

v (|Gv|) by construction, αv can be lifted to S. The
wanted arc system on S is α =⋃

v∈V+ αv .

2.2.14 Metrized enriched ribbon graphs. A metric on G
en is a map � : E1(G)→

R+. Given γ ∈ C(S,X) and an (S,X)-marking f : S → |Gen|, we can define
γ+ := γ ∩ S+. As in the nonsingular case, there is a unique γ̃+ = |ei1 | ∪ · · · ∪ |eik |
inside |G| ⊂ |G| such that f (γ+) � γ̃+.

Hence, we can define �(γ ) := �(γ+) = �(ei1) + · · · + �(eik ). Clearly, �(γ ) =
i(γ, w), where w is the weight function supported on the arc system dual to (Gen, f ).
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Thus, the arc/graph duality also establishes a correspondence between weighted arc
systems on (S,X) and metrized (S,X)-marked enriched ribbon graphs.

3 Differential and algebro-geometric point of view

3.1 The Deligne–Mumford moduli space

3.1.1 The Teichmüller space. Fix a compact oriented surface S of genus g and a
subset X = {x1, . . . , xn} ⊂ S such that 2g − 2+ n > 0.

A smooth family of (S,X)-marked Riemann surfaces is a commutative diagram

B × S f ��

��������������� C

π

��
B

where f is an orientation-preserving diffeomorphism (relative to π ), B × S → B is
the projection onto the first factor and the fibers Cb of π are Riemann surfaces, whose
complex structure varies smoothly with b ∈ B.

Two families (f1, π1) and (f2, π2) over B are isomorphic if there exists a contin-
uous map h : C1 → C2 such that

• hb � f1,b : (S,X)→ (C2,b, hb � f1,b(X)) is homotopic to f2,b for every b ∈ B,

• hb : (C1,b, f1,b(X))→ (C2,b, f2,b(X)) is a biholomorphism for every b ∈ B.

The functor T (S,X) : (manifolds)→ (sets) defined by

B �→
{

smooth families of (S,X)-marked

Riemann surfaces over B

}
/iso

is represented by the Teichmüller space T (S,X).
It is a classical result that T (S,X) is a complex-analytic manifold of (complex)

dimension 3g−3+n (Ahlfors [1], Bers [8] andAhlfors-Bers [3]) and is diffeomorphic
to a ball (Teichmüller [71]).

3.1.2 The moduli space of Riemann surfaces. A smooth family of X-marked Rie-
mann surfaces of genus g is the datum of

• a submersion π : C → B,

• a smooth embedding s : X × B → C

such that the fibers Cb are Riemann surfaces of genus g, whose complex structure
varies smoothly in b ∈ B, and sxi : B → C is a section for every xi ∈ X.

Two families (π1, s1) and (π2, s2) over B are isomorphic if there exists a diffeo-
morphism h : C1 → C2 such that π2 � h = π1, the restriction of h to each fiber
hb : C1,b → C2,b is a biholomorphism and h � s1 = s2.
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The existence of Riemann surfaces with nontrivial automorphisms (for g ≥ 1)
prevents the functor

(manifolds) −→ (sets),

B �−→
{

smooth families of X-marked
Riemann surfaces over B

}
/iso

from being representable. However, Riemann surfaces with 2g − 2 + n > 0 have
finitely many automorphisms and so Mg,X is actually represented by an orbifold,
which is in fact T (S,X)/�(S,X) (in the orbifold sense). In the algebraic category,
we would rather say that Mg,X is a Deligne–Mumford stack with quasi-projective
coarse space. In any case, we will always refer to Mg,X as the moduli space of
X-marked Riemann surfaces of genus g.

3.1.3 Stable curves. Enumerative geometry is traditionally reduced to intersection
theory on suitable moduli spaces. In our case, Mg,X is not a compact orbifold. To
compactify it in an algebraically meaningful way, we need to look at how algebraic
families of complex projective curves can degenerate.

In particular, given a holomorphic family C∗ → �∗ of algebraic curves over the
punctured disc, we must understand how to complete the family over �.

Families of algebraic curves over the punctured disc are also studied, from a dif-
ferent point of view, in Chapter 3 of this volume, by Imayoshi (see [35]).

Example 3.1. Consider the family C∗ = {(b, [x : y : z]) ∈ �∗ ×CP
2 | y2z = x(x−

bz)(x−2z)} of curves of genus 1 with the marked point [2 : 0 : 1] ∈ CP
2, parametrized

by b ∈ �∗. Notice that the projection C∗b → CP
1 given by [x : y : z] �→ [x : z]

(where [0 : 1 : 0] �→ [1 : 0]) is a 2 : 1 cover, branched over {0, b, 2,∞}. Fix a
b ∈ �∗ and consider a closed curve γ ⊂ CP

1 that separates {b, 2} from {0,∞} and
pick one of the two (simple closed) lifts γ̃ ⊂ C∗

b
.

This γ̃ determines a nontrivial element ofH1(C
∗
b
). A quick analysis tells us that the

endomorphismT : H1(C
∗
b
)→ H1(C

∗
b
) induced by the monodromy around a generator

of π1(�
∗, b) is nontrivial. Thus, the family C∗ → �∗ cannot be completed over �

as a smooth family (because it would have trivial monodromy).

If we want to compactify our moduli space, we must allow our curves to acquire
some singularities. Thus, it makes no longer sense to ask them to be submersions.
Instead, we will require them to be flat.

Given an open subset 0 ∈ B ⊂ C, a flat family of connected projective curves
C → B may typically look like (up to shrinking B)

• �× B → B around a smooth point of C0,

• {(x, y) ∈ C
2 | xy = 0} × B → B around a node of C0 that persists on each Cb,

• {(b, x, y) ∈ B × C
2 | xy = b} → B around a node of C0 that does not persist

on the other curves Cb with b �= 0
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in local analytic coordinates.
Notice that, in the above cases, the (arithmetic) genus of each fiber gb = 1 −

1
2 [χ(Cb)− νb] is constant in b, where νb is the number of nodes in Cb.

To prove that allowing nodal curves is enough to compactify Mg,X, one must
show that it is always possible to complete any family C∗ → �∗ to a family over �.
However, because nodal curves may have nontrivial automorphisms, we shall consider
also the case in which 0 ∈ � is an orbifold point. Thus, it is sufficient to be able to
complete not exactly the family C∗ → �∗ but its pull-back under a suitable map
�∗ → �∗ given by z �→ zk . This is exactly the semi-stable reduction theorem.

One can observe that it is always possible to avoid producing genus 0 compo-
nents with 1 or 2 nodes. Thus, we can consider only stable curves, that is nodal
projective (connected) curves such that all irreducible components have finitely many
automorphisms (equivalently, no irreducible component is a sphere with less than
three nodes/marked points).

The Deligne–Mumford compactification Mg,X of Mg,X is the moduli space of
X-marked stable curves of genus g, which is a compact orbifold (algebraically, a
Deligne–Mumford stack with projective coarse moduli space).

Its underlying topological space is a projective variety of complex dimension
3g − 3+ n.

3.2 The system of moduli spaces of curves

3.2.1 Boundary maps. Many facts suggest that one should not look separately at
each of the moduli spaces of X-pointed genus g curves Mg,X, but one must consider

the whole system (Mg,X)g,X. An evidence is given by the existence of three families
of maps that relate different moduli spaces.
(1) The forgetful map is a projective flat morphism

πq : Mg,X∪{q} −→Mg,X

that forgets the point q and stabilizes the curve (i.e. contracts a possible two-
pointed sphere). This map can be identified with the universal family and so is
endowed with tautological sections

ϑ0,{xi ,q} : Mg,X →Mg,X∪{q}
for all xi ∈ X.

(2) The boundary map corresponding to irreducible curves is the finite map

ϑirr : Mg−1,X∪{x′,x′′} −→Mg,X

(defined for g > 0) that glues x′ and x′′ together. It is generically 2 : 1 and its
image sits in the boundary of Mg,X.

(3) The boundary maps corresponding to reducible curves are the finite maps

ϑg′,I : Mg′,I∪{x′} ×Mg−g′,I c∪{x′′} −→Mg,X
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(defined for every 0 ≤ g′ ≤ g and I ⊆ X such that the spaces involved are
nonempty) that take two curves and glue them together identifying x′ and x′′.
They are generically of degree 1 onto their images (except in the case g = 2g′
and X = ∅, when the map is generically 2 : 1), which sit in the boundary of
Mg,X too.

Let δ0,{xi ,q} be the Cartier divisor in Mg,X∪{q} corresponding to the image of the
tautological section ϑ0,{xi ,q} and write Dq :=∑

i δ0,{xi ,q}.

3.2.2 Stratification by topological type. We observe that Mg,X has a natural strati-
fication by topological type of the complex curve. In fact, we can attach to every stable
curve 	 its dual graph ζ	 , whose vertices V correspond to irreducible components
and whose edges correspond to nodes of	. Moreover, we can define a genus function
g : V → N such that g(v) is the genus of the normalization 	̃v of the irreducible
component 	v corresponding to v and a marking function m : X → V (determined
by requiring that xi is marking a point on the irreducible component correspond-
ing to m(xi)). Equivalently, we will also say that the vertex v ∈ V is labelled by
(g(v),Xv := m−1(v)). Call Qv the inverse image through the normalization map
	̃v → 	v of the singular points of 	v .

For every such labeled graph ζ , we can construct a boundary map

ϑζ :
∏
v∈V

Mgv,Xv∪Qv −→Mg,X

which is a finite morphism.

3.3 Augmented Teichmüller space

3.3.1 Bordifications of T (S,X). Fix a compact oriented surface S of genus g and
let X = {x1, . . . , xn} ⊂ S such that 2g − 2+ n > 0.

It is natural to look for natural bordifications of T (S,X): that is, we look for a
space T (S,X) ⊃ T (S,X) that contains T (S,X) as a dense subspace and such that
the action of the mapping class group �(S,X) extends to T (S,X).

A remarkable example is given by Thurston’s compactification T Th(S,X) =
T (S,X) ∪ PML(S,X), in which points at infinity are (isotopy classes of) projec-
tive measured laminations with compact support in S \ X. Thurston showed that
PML(S,X) is compact and homeomorphic to a sphere. As �(S,X) is infinite and
discrete, this means that the quotient T Th(S,X)/�(S,X) cannot be too good and so
this does not sound like a convenient way to compactify Mg,X.

We will see in Section 4 that T (S,X) can be identified with |A�(S,X)|. Thus,
another remarkable example will be given by |A(S,X)|.

A natural question is how to define a bordification T (S,X) such that

T (S,X)/�(S,X) ∼=Mg,X.
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3.3.2 Deligne–Mumford augmentation. A (continuous) family of stable (S,X)-
marked curves is a commutative diagram

B × S f ��

��������������� C

π

��
B

where B × S → B is the projection onto the first factor and

• the family π is obtained as a pull-back of a flat stable family ofX-marked curves
C′ → B ′ through a continuous map B → B ′,

• if Nb ⊂ Cb is the subset of nodes, then f−1(ν) is a smooth loop in S × {b} for
every ν ∈ Nb,

• for every b ∈ B the restriction fb : S \ f−1(Nb) → Cb \ Nb is an orientation-
preserving homeomorphism, compatible with the X-marking.

Isomorphisms of such families are defined in the obvious way.

Example 3.2. Start with a flat family C ′ → � such that C′b are all homeomorphic for
b �= 0. Then consider the path B = [0, ε) ⊂ � and write C := C′ ×� B. Over (0, ε),
the family C is topologically trivial, whereas C0 may contain some new nodes.

Consider a marking S → Cε/2 that pinches circles to nodes, is an oriented home-
omorphism elsewhere and is compatible with X. The induced map S × (0, ε) →
Cε/2 × (0, ε) extends over 0 to S × [0, ε) → Cε/2 × [0, ε) ∼= BlC0C, where BlC0C
is the real-oriented blow-up of C along C0. Composing with BlC0C � C, we obtain
our wished (S,X)-marking.

The Deligne–Mumford augmentation of T (S,X) is the topological space
T DM(S,X) that classifies families of stable (S,X)-marked curves.

It follows easily that T DM(S,X)/�(S,X) =Mg,X as topological spaces. How-

ever, T DM(S,X)→Mg,X has infinite ramification at ∂DMT (S,X), due to the Dehn
twists around the pinched loops.

3.3.3 Hyperbolic length functions. Let [f : S → 	] be a point of T (S,X). As
χ(S \ X) = 2 − 2g − n < 0, the uniformization theorem provides a universal cover
H→ 	 \ f (X), which endows 	 \ f (X) with a hyperbolic metric of finite volume,
with cusps at f (X).

In fact, we can interpret T (S,X) as the classifying space of (S,X)-marked fam-
ilies of hyperbolic surfaces. It is clear that continuous variation of the complex
structure corresponds to continuous variation of the hyperbolic metric (uniformly
on the compact subsets, for instance), and so to continuity of the holonomy map
H : π1(S \X)× T (S,X)→ PSL2(R) ∼= Aut(H).

In particular, for every γ ∈ π1(S \ X) the function �γ : T (S,X)→ R that asso-
ciates to [f : S → 	] the length of the unique geodesic in the free homotopy class
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f∗γ is continuous. As cosh(�γ /2) = |Tr(Hγ /2)|, one can check thatH can be recon-
structed from sufficiently (but finitely) many length functions. So that the continuity
of these is equivalent to the continuity of the family.

3.3.4 Fenchel–Nielsen coordinates. Let γ = {γ1, . . . , γN } be a maximal system of

disjoint simple closed curves of Ṡ = S \X (and so N = 3g − 3+ n) such that no γi
is contractible in Ṡ or homotopic to a puncture and no couple γi, γj bounds a cylinder
contained in Ṡ.

The system γ induces a pair of pants decomposition of Ṡ, that is Ṡ\(γ1∪· · ·∪γN) =
P1 ∪ P2 ∪ · · · ∪ P2g−2+n, and each Pi is a pair of pants (i.e. a surface of genus 0 with
χ(Pi) = −1).

Given [f : S → 	] ∈ T (S,X), we have lengths �i(f ) = �γi (f ) for i = 1, . . . , N ,
which determine the hyperbolic type of all pants P1, . . . , P2g−2+n. The information
about how the pants are glued together is encoded in the twist parameters τi = τγi ∈ R,
which are well-defined up to some choices. What is important is that, whatever choices
we make, the difference τi(f1)− τi(f2) is the same and it is well-defined.

The Fenchel–Nielsen coordinates (�i, τi)Ni=1 exhibit a real-analytic diffeomor-

phism T (S,X)
∼−→ (R+ × R)N (which clearly depends on the choice of γ ).

3.3.5 Fenchel–Nielsen coordinates around nodal curves. Points of ∂DMT (S,X)
are (S,X)-marked stable curves or, equivalently (using the uniformization theo-
rem componentwise), (S,X)-marked hyperbolic surfaces with nodes, i.e. homotopy
classes of maps f : S → 	, where 	 is a hyperbolic surface with nodes ν1, . . . , νk ,
the fiber f−1(νj ) is a simple closed curve γj and f is an orientation-preserving dif-
feomorphism outside the nodes.

Complete {γ1, . . . , γk} to a maximal set γ of simple closed curves in (S,X) and
consider the associated Fenchel–Nielsen coordinates (�j , τj ) on T (S,X). As we
approach the point [f ], the holonomies Hγ1, . . . , Hγk tend to parabolics and so the
lengths �1, . . . , �k tend to zero. In fact, the hyperbolic metric on the surface 	 has a
pair of cusps at each node νj .

This shows that the lengths functions �1, . . . , �k continuously extend to zero at
[f ]. On the other hand, the twist parameters τ1(f ), . . . , τk(f ) make no longer sense.

If we look at what happens on Mg,X, we may notice that the couples (�j , τj )kj=1 be-
have like polar coordinate around [	], so that it seems natural to setϑm = 2πτm/�m for
allm = 1, . . . , N and define consequently a mapFγ : (R2)N →Mg,X, that associates
to (�1, ϑ1, . . . , �N , ϑN) the surface with Fenchel–Nielsen coordinates (�m, τm =
�mϑm/2π), where (�i, ϑi) are polar coordinates on the i-th copy of R

2. Notice that
the map is well-defined, because a twist along γj by �j is a diffeomorphism of the
surface (a Dehn twist).

The mapFγ is an orbifold local chartFγ : R2N→Fγ (R
2N)⊂Mg,X and its image

contains [	]. Varying γ , we can cover the whole Mg,X and thus give it a Fenchel–
Nielsen smooth structure.
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The bad news, analyzed by Wolpert [78], is that the Fenchel–Nielsen smooth
structure is different (at ∂Mg,X) from the Deligne–Mumford one. In fact, if a boundary
divisor is locally described by {z1 = 0}, then the length �γ of the corresponding
vanishing geodesic is related to z1 by |z1| ≈ exp(−1/�γ ), which shows that the

identity map M
FN
g,X →M

DM
g,X is Lipschitz, but its inverse it not Hölder-continuous.

3.3.6 Weil–Petersson metric. Let 	 be a Riemann surface of genus g with marked
points X ↪→ 	 such that 2g − 2 + n > 0. First-order deformations of the complex
structure can be rephrased in terms of ∂̄ operator as ∂̄+εμ∂+o(ε), where the Beltrami
differential μ ∈ �0,1(T	(−X)) can be locally written as μ(z)dz

dz
with respect to some

holomorphic coordinate z on 	 and μ(z) vanishes at X.
Given a smooth vector field V = V (z) ∂

∂z
on 	 that vanishes at X, the deforma-

tions induced by μ and μ+ ∂̄V differ only by an isotopy of	 generated by V (which
fixes X).

Thus, the tangent space T[	]Mg,X can be identified with H 0,1(	, T	(−X)). As
a consequence, the cotangent space T ∗[	]Mg,X identifies with the space Q(	,X) of

integrable holomorphic quadratic differentials on 	̇ = 	 \ X, that is, which are
allowed to have a simple pole at each xi ∈ X. The duality between T[	]Mg,X and
T ∗[	]Mg,X is given by

H 0,1(	, T	(−X))×H 0(	,K⊗2
	 (X)) −→ C,

(μ, ϕ) �−→
∫
	

μϕ.

If 	̇ is given the hyperbolic metric λ, then elements in H 0,1(	, T	(−X)) can be
identified with the space of harmonic Beltrami differentials H(	,X) = {ϕ/λ | ϕ ∈
Q(	,X)}.

The Weil–Petersson Hermitian metric h = g + iω (defined by Weil [73] using
Petersson’s pairing of modular forms) is

h(μ, ν) :=
∫
	

μν · λ

for μ, ν ∈ H(	,X) ∼= T	Mg,X.
This metric has a lot of properties: it is Kähler (Weil [73] and Ahlfors [2]) and it

is mildly divergent at ∂Mg,X, so that the Weil–Petersson distance extends to a non-

degenerate distance on Mg,X and all points of ∂Mg,X are at finite distance (Masur
[51], Wolpert [75]). A recent review of the Weil–Petersson geometry is contained in
Chapter 1 of this volume of the Handbook (see [81]).

Because Mg,X is compact and so WP-complete, the lifting of the Weil–Petersson

metric to T (S,X) is also complete. Thus, T (S,X) can be seen as the Weil–Petersson
completion of T (S,X).
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3.3.7 Weil–Petersson form. We should emphasize that the Weil–Petersson symplec-
tic form ωWP depends more directly on the hyperbolic metric on the surface than on
its holomorphic structure.

In particular, Wolpert [77] has shown that

ωWP =
∑
i

d�i ∧ dτi

on T (S,X), where (�i, τi) are Fenchel–Nielsen coordinates associated to any pair of
pants decomposition of (S,X).

On the other hand, if we identify the space T (S,X) with an open subset of
Hom(π1(Ṡ), SL2(R))/SL2(R), then points of T (S,X) are associated g-local sys-
tems ρ on Ṡ (with parabolic holonomies at X and hyperbolic holonomies otherwise),
where g = sl2(R) is endowed with the symmetric bilinear form 〈α, β〉 = Tr(α)

¯
.

Goldman [24] has proved that, in this description, the tangent space to T (S,X) at
ρ is naturallyH 1(S,X; g) and that ωWP is given by ω(μ, ν) = (1/8)Tr(μ∪ ν)∩[S].
Remark 3.3. Another description of ω in terms of shear coordinates and Thurston’s
symplectic form on measured laminations is given by Bonahon–Sözen [68].

One can feel that the complex structureJ onT (S,X) inevitably shows up whenever
we deal with the Weil–Petersson metric, as g( ·, ·) = ω( ·, J ·). On the other hand, the
knowledge of ω is sufficient to compute volumes and characteristic classes.

3.4 Tautological classes

3.4.1 Relative dualizing sheaf. All the maps between moduli spaces we have defined
are in some sense tautological as they are very naturally constructed and they reflect
intrinsic relations among the various moduli spaces. It is evident that one can look
at these as classifying maps to the Deligne–Mumford stack Mg,X (which obviously
descend to maps between coarse moduli spaces). Hence, we can consider all the cycles
obtained by pushing forward or pulling back via these maps as being “tautologically”
defined.

Moreover, there is an ingredient we have not considered yet: it is the relative
dualizing sheaf of the universal family πq : Mg,X∪{q} → Mg,X. One expects that it
carries many information and that it can produce many classes of interest.

The relative dualizing sheaf ωπq is the sheaf on Mg,X∪{q}, whose local sections
are (algebraically varying) Abelian differentials that are allowed to have simple poles
at the nodes, provided the two residues at each node are opposite. The local sections
of ωπq (Dq) (the logarithmic variant of ωπq ) are sections of ωπq that may have simple
poles at the X-marked points.

3.4.2 MMMAC classes. The Miller classes are

ψxi := c1(Li ) ∈ CH 1(Mg,X)Q
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where Li := ϑ∗0,{xi ,q}ωπq and the Mumford–Morita classes (suitably modified by
Arbarello–Cornalba) are

κj := (πq)∗(ψj+1
q ) ∈ CHj(Mg,X)Q.

One could moreover define the l-th Hodge bundle as El := (πq)∗(ω⊗lπq ) and consider
the Chern classes of these bundles (for example, the λ classes łi := ci(E1)). However,
using Grothendieck–Riemann–Roch, Mumford [60] and Bini [11] proved that ci(Ej )
can be expressed as a linear combination of Mumford–Morita classes up to elements
in the boundary, so that they do not introduce anything really new.

When there is no risk of ambiguity, we will denote in the same way the classes ψ
and κ belonging to different Mg,X’s as it is now traditional.

Remark 3.4. Wolpert has proven [76] that, on Mg , we have κ1 = [ωWP ]/π2 and

that the amplitude of κ1 ∈ A1(Mg) (and so the projectivity of Mg) can be recovered
from the fact that [ωWP /π2] is an integral Kähler class [79]. He also showed that
the cohomological identity [ωWP /π2] = κ1 = (πq)∗ψ2

q admits a clean pointwise
interpretation [80].

3.4.3 Tautological rings. Because of the natural definition of the κ and ψ classes,
as explained before, the subring R∗(Mg,X) of CH ∗(Mg,X)Q they generate is called
the tautological ring of Mg,X. Its image RH ∗(Mg,X) through the cycle class map is
called the cohomology tautological ring.

From an axiomatic point of view, the system of tautological rings (R∗(Mg,X)) is

the minimal system of subrings of (CH ∗(Mg,X)) such that

• every R∗(Mg,X) contains the fundamental class [Mg,X],
• the system is closed under push-forward maps π∗, (ϑirr)∗ and (ϑg′,I )∗.

R∗(Mg,X) is defined as the image of the restriction mapR∗(Mg,X)→CH ∗(Mg,X).

The definition for the rational cohomology is analogous (where the role of [Mg,X] is
here played by its Poincaré dual 1 ∈ H 0(Mg,X;Q)).

It is a simple fact to remark that all tautological rings contain ψ and κ classes and
in fact that R∗(Mg,X) is generated by them. Really, this was the original definition of
R∗(Mg,X).

3.4.4 Faber’s formula. The ψ classes interact reasonably well with the forgetful
maps. In fact

(πq)∗(ψr1x1
· · ·ψrnxn) =

∑
{i|ri>0}

ψr1x1
· · ·ψri−1

xi
· · ·ψrnxn,

(πq)∗(ψr1x1
· · ·ψrnxnψb+1

q ) = ψr1x1
· · ·ψrnxnκb,
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where the first one is the so-called string equation and the second one for b = 0 is the
dilaton equation (see [74]). They have been generalized by Faber for maps that forget
more than one point: Faber’s formula (which we are going to describe below) can be
proven using the second equation above and the relation π∗q (κj ) = κj − ψjq (proven
in [5]).

LetQ := {q1, . . . , qm} and let πQ : Mg,X∪Q→Mg,X be the forgetful map. Then

(πQ)∗(ψr1x1
· · ·ψrnxnψb1+1

q1
· · ·ψbm+1

qm
) = ψr1x1

· · ·ψrnxnKb1···bm
where Kb1···bm =

∑
σ∈Sm

κb(σ) and κb(σ) is defined in the following way. If γ =
(c1, . . . , cl) is a cycle, then set b(γ ) := ∑l

j=1 bcj . If σ = γ1 · · · γν is the decom-
position in disjoint cycles (including 1-cycles), then we let kb(σ) := ∏ν

i=1 κb(γi). We
refer to [38] for more details on Faber’s formula, to [5] and [6] for more properties of
tautological classes and to [20] (and [58]) for a conjectural description (which is now
partially proven) of the tautological rings.

3.5 Kontsevich’s compactification

3.5.1 The line bundle L. It has been observed by Witten [74] that the intersection
theory of κ and ψ classes can be reduced to that of ψ classes only by using the
push-pull formula with respect to the forgetful morphisms. Moreover recall that

ψxi = c1(ωπxi (Dxi ))

on Mg,X, where Dxi =
∑
j �=i _.0, {xi, xj } (as shown in [74]). So, in order to find

a “minimal” projective compactification of Mg,X where to compute the intersection
numbers of theψ classes, it is natural to look at the maps induced by the linear system
L := ⊗

xi∈X ωπxi (Dxi ). It is well-known that L is nef and big (Arakelov [4] and
Mumford [60]), so that the problem is to decide whether L is semi-ample and to
determine its exceptional locus Ex(L⊗d) for d � 0.

It is easy to see that L
⊗d pulls back to the trivial line bundle via the boundary map

Mg′,{x′} × {C} →Mg,X, where C is a fixed curve of genus g − g′ with an X ∪ {x′′}-
marking and the map glues x′ with x′′. Hence the map induced by the linear system
L
⊗d (if base-point-free) should restrict to the projection Mg,{x′} ×Mg−g′,X∪{x′′} →

Mg−g′,X∪{x′′} on these boundary components.
Whereas L is semi-ample in characteristic p > 0, it is not so in characteristic 0

(Keel [39]). However, one can still topologically contract the exceptional (with respect
to L) curves to obtain Kontsevich’s map

ξ ′ : Mg,X −→M
K

g,X

which is a proper continuous surjection of orbispaces. A consequence of Keel’s result
is that the coarse MK

g,P cannot be given a scheme structure such that the contraction
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map is a morphism. This is in some sense unexpected, because the morphism behaves
as if it were algebraic: in particular, the fiber productMg,X ×MK

g,X

Mg,X is projective.

Remark 3.5. M
K

g,X can be given the structure of a stratified orbispace, where the
stratification is again by topological type of the generic curve in the fiber of ξ ′. Also,

the stabilizer of a point s in M
K

g,X will be the same as the stabilizer of the generic
point in (ξ ′)−1(s).

3.5.2 Visibly equivalent curves. So now we leave the realm of algebraic geometry
and proceed topologically to construct and describe this different compactification. In
fact we introduce a slight modification of Kontsevich’s construction (see [43]). We
realize it as a quotient of Mg,X × �X by an equivalence relation, where �X is the
standard simplex in R

X.
If (	, p) is an element of Mg,X ×�X, then we say that an irreducible component

of 	 (and so the associated vertex of the dual graph ζ	) is visible with respect to p if
it contains a point xi ∈ X such that pi > 0.

Next, we declare that (	, p) is equivalent to (	′, p′) if p = p′ and there is

a homeomorphism of pointed surfaces 	
∼−→ 	′, which is biholomorphic on the

visible components of 	. As this relation would not give back a Hausdorff space we
consider its closure, which we are now going to describe.

Consider the following two moves on the dual graph ζ	 :
(1) if two invisible vertices w and w′ are joined by an edge e, then we can build a

new graph discarding e, merging w and w′ along e, thus obtaining a new vertex
w′′, which we label with (gw′′, Xw′′) := (gw + gw′, Xw ∪Xw′)

(2) if an invisible vertex w has a loop e, we can make a new graph discarding e and
relabeling w with (gw + 1, Xw).

Applying these moves to ζ	 iteratively until the process ends, we end up with a reduced
dual graph ζ red

	,p. Denote by V−(	, p) the subset of invisible vertices and V+(	, p)
the subset of visible vertices of ζ red

	,p.

For every couple (	, p) denote by 	 the quotient of 	 obtained collapsing every
invisible component to a point.

We say that (	, p) and (	′, p′) are visibly equivalent if p = p′ and there exist a

homeomorphism 	
∼−→ 	′, whose restriction to each component is analytic, and a

compatible isomorphism f red : ζ red
	,p

∼−→ ζ red
	′,p′ of reduced dual graphs.

Remark 3.6. In other words, (	, p), (	′, p′) are visibly equivalent if and only if:
p = p′ and there exists a third stable 	′′ and maps h : 	′′ → 	 and h′ : 	′′ → 	′
such that h, h′ are biholomorphic on the visible components and are a stable marking
on the invisible components of (	′′, p) (that is, they may shrink some disjoint simple
closed curves to nodes and are homeomorphisms elsewhere).
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Finally let

ξ : Mg,X ×�X −→M
�

g,X :=Mg,X ×�X/∼
be the quotient map and remark that M

�

g,X is compact and that ξ commutes with the
projection onto �X.

Similarly, one can say that two (S,X)-marked stable surfaces ([f : S → 	], p)
and ([f ′ : S → 	′], p′) are visibly equivalent if there exists a third stable (S,X)-
marked surface [f ′′ : S → 	′′] and maps h : 	′′ → 	 and h′ : 	′′ → 	′ such that
h � f ′′ � f , h′ � f ′′ � f ′ and (	, p), (	′, p′) are visibly equivalent through h, h′

(see the remark above). Consequently, we can define T �(S,X) as the quotient of
T (S,X)×�X obtained by identifying visibly equivalent (S,X)-marked surfaces.

For every p in �X, we will denote by M
�

g,X(p) the subset of points of the

type [	,p]. Then it is clear that M
�

g,X(�
�
X) is in fact homeomorphic to a prod-

uct M
�

g,X(p) × ��X for any given p ∈ ��X. Observe that M
�

g,X(p) is isomorphic to

M
K

g,X for all p ∈ ��X in such a way that

ξp : Mg,X
∼=Mg,X × {p} −→M

�

g,X(p)

is identified with ξ ′.
Notice, by the way, that the fibers of ξ are isomorphic to moduli spaces. More

precisely consider a point [	,p] of M
�

g,X. For every w ∈ V−(	, p), denote by Qv

the subset of oriented edges of ζ red
	,p outgoing from w. Then we have the natural

isomorphism
ξ−1([	,p]) ∼=

∏
w∈V−(	,p)

Mgw,Xw∪Qw

according to the fact that Mg,X ×MK
g,X

Mg,X is projective.

4 Cell decompositions of the moduli space of curves

4.1 Harer–Mumford–Thurston construction

One traditional way to associate a weighted arc system to a Riemann surface endowed
with weights at its marked points is to look at critical trajectories of Jenkins–Strebel
quadratic differentials. Equivalently, to decompose the punctured surface into a union
of semi-infinite flat cylinders with lengths assigned to their circumference.

4.1.1 Quadratic differentials. Let 	 be a compact Riemann surface and let ϕ be a
meromorphic quadratic differential, that isϕ = ϕ(z)dz2 where z is a local holomorphic
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coordinate and ϕ(z) is a meromorphic function. Being a quadratic differential means

that, if w = w(z) is another local coordinate, then ϕ = ϕ(w) ( dz
dw

)2
dw2.

Regular points of	 for ϕ are points where ϕ has neither a zero nor a pole; critical
points are zeroes or poles of ϕ.

We can attach a metric to ϕ, by simply setting |ϕ| := √
ϕϕ. In coordinates,

|ϕ| = |ϕ(z)|dz dz. The metric is well-defined and flat at the regular points and it has
conical singularities (with angle α = (k+2)π ) at simple poles (k = −1) and at zeroes
of order k. Poles of order 2 or higher are at infinite distance.

IfP is a regular point, we can pick a local holomorphic coordinate z atP ∈ U ⊂ 	
such that z(P ) = 0 and ϕ = dz2 on U . The choice of z is unique up to sign. Thus,
{Q ∈ U | z(Q) ∈ R} defines a real-analytic curve through P on 	, which is called
a horizontal trajectory of ϕ. Similarly, {Q ∈ U | z(Q) ∈ iR} defines the vertical
trajectory of ϕ through P .

Horizontal (resp. vertical) trajectories τ are intrinsically defined by asking that the
restriction of ϕ to τ is a positive-definite (resp. negative-definite) symmetric bilinear
form on the tangent bundle of τ .

If ϕ has at worst double poles, then the local aspect of horizontal trajectories is as
in Figure 6 (horizontal trajectories through q are drawn thicker).

 

q q

q qq

f (z) = dz2 f (z) = z dz2 f (z) = z2 dz2

f (z) = dz2

z f (z) = −a dz2

z2

a > 0

f (z) = a dz2

z2

Figure 6. Local structure of horizontal trajectories.

Trajectories are called critical if they meet a critical point. It follows from the
general classification (see [70]) that

• a trajectory is closed if and only if it is either periodic or it starts and ends at a
critical point;
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• if a horizontal trajectory τ is periodic, then there exists a maximal open annular
domain A ⊂ 	 and a number c > 0 such that(

A, ϕ
∣∣
A

) ∼−→
(
{z ∈ C | r < |z| < R},−cdz

2

z2

)
and, under this identification, τ = {z ∈ C | h = |z|} for some h ∈ (r, R);

• if all horizontal trajectories are closed of finite length, then ϕ has at worst double
poles and there it has negative quadratic residue (i.e. at a double pole, ϕ looks
like −a dz2

z2 , with a > 0).

4.1.2 Jenkins–Strebel differentials. There are many theorems about existence and
uniqueness of quadratic differentials ϕ with specific behaviors of their trajectories and
about their characterization using extremal properties of the associated metric |ϕ| (see
Jenkins [37]). The following result is the one we are interested in.

Theorem 4.1 (Strebel [69]). Let 	 be a compact Riemann surface of genus g and
X = {x1, . . . , xn} ⊂ 	 such that 2g−2+n > 0. For every (p1, . . . , pn) ∈ R

X+ there
exists a unique quadratic differential ϕ such that

(a) ϕ is holomorphic on 	 \X,

(b) all horizontal trajectories of ϕ are closed,

(c) it has a double pole at xi with quadratic residue − ( pi
2π

)2
,

(d) the only annular domains of ϕ are pointed discs at the xi’s.

Moreover, ϕ depends continuously on 	 and on p = (p1, . . . , pn).

xi

Figure 7. Example of horizontal foliation of a Jenkins–Strebel differential.

Remark 4.2. Notice that the previous result establishes the existence of a continuous
map

R
X+ −→ {continuous sections of Q(S, 2X)→ T (S,X)}
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where Q(S, 2X) is the vector bundle whose fiber over [f : S → 	] is the space of
quadratic differentials on 	, which can have double poles at X and are holomorphic
elsewhere. Hubbard and Masur [31] proved (in a slightly different case, though) that
the sections of Q(S, 2X) in the image of the above map are piecewise real-analytic
and gave precise equations for them.

Quadratic differentials that satisfy (a) and (b) are called Jenkins–Strebel differen-
tials. They are particularly easy to understand because their critical trajectories form
a graphG = G	,p embedded inside the surface	 andG decomposes	 into a union
of cylinders (with respect to the flat metric |ϕ|), whose circumferences are horizontal
trajectories.

Property (d) is telling us that	 \X retracts by deformation ontoG, flowing along
the vertical trajectories out of X.

Remark 4.3. It can be easily seen that Theorem 4.1 still holds for p1, . . . , pn ≥ 0
but p �= 0. Condition (d) can be rephrased by saying that every annular domain
corresponds to some xi for which pi > 0, and that xj ∈ G if pj = 0. It is still true
that 	 \X retracts by deformation onto G.

We sketch the traditional existence proof of Theorem 4.1.

Definition 4.4. The modulus of a standard annulus A(r, R) = {z ∈ C | r < |z| < R}
is m(A(r, R)) = 1

2π log(R/r) and the modulus of an annulus A is defined to be that
of a standard annulus biholomorphic to A. Consider a simply connected domain
0 ∈ U ⊂ C and let z be a holomorphic coordinate at 0. The reduced modulus of
the annulus U∗ = U \ {0} is m(U∗, z) = m(U∗ ∩ {|z| > ε}) + 1

2π log(ε), which is
independent of the choice of a sufficiently small ε > 0.

Notice that the extremal length Eγ of a circumference γ inside A(r, R) is exactly
1/m(A(r, R)).

Existence of Jenkins–Strebel differential. Fix holomorphic coordinates z1, . . . , zn at
x1, . . . , xn. A system of annuli is a holomorphic injection s : �× X ↪→ 	 such that
s(0, xi) = xi , where � is the unit disc in C. We write mi(s) for the reduced modulus
m(s(�× {xi}), zi) and define the functional

F : {systems of annuli} −→ R,

s �−→
n∑
i=1

p2
i mi(s),

which is bounded above, because 	 \ X is hyperbolic. A maximizing sequence sn
converges (up to extracting a subsequence) to a system of annuli s∞. Let Di =
s∞(�× {xi}). Notice that the restriction of s∞ to �× {xi} is injective if pi > 0 and
is constantly xi if pi = 0.
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Clearly, s∞ is maximizing for every choice of z1, . . . , zn and so we can assume
that, whenever pi > 0, zi is the coordinate induced by s∞.

Define the L1
loc-quadratic differential ϕ on 	 \X as

ϕ :=

⎧⎪⎨
⎪⎩

(
− p2

i

4π2

dz2
i

z2
i

)
on Di if pi > 0,

0 elsewhere.

Notice that F(s∞) = ‖ϕ‖red, where the reduced norm is given by

‖ϕ‖red :=
∫
	

[
|ϕ|2 −

∑
i:pi>0

p2
i

4π2

dzi dzi

|zi |2 χ(|zi | < εi)
]
+

n∑
i=1

p2
i

2π
log(εi)

which is independent of the choice of sufficiently small ε1, . . . , εn > 0.
As s∞ is a stationary point for F , so is for ‖ · ‖red. Thus, for every smooth vector

field V = V (z)∂/∂z on 	, compactly supported on 	 \X, the first-order variation of

‖f ∗t (ϕ)‖red = ‖ϕ‖red + 2t
∫
S

Re(ϕ∂̄V )+ o(t)

must vanish, where ft = exp(tV ). Thus, ϕ is holomorphic on	 \X by Weyl’s lemma
and it satisfies all the requirements.

4.1.3 The nonsingular case. Using the construction described above, we can attach
to every (	,X, p) a graphG	,p ⊂ 	 (and thus an (S,X)-marked ribbon graph G	,p)
which is naturally metrized by |ϕ|. By arc/graph duality (in the nonsingular case, see
2.2.8), we also have a weighted proper system of arcs in	. Notice that, because of (c),
the boundary weights are exactly p1, . . . , pn.

If [f : S → 	] is a point in T (S,X) and p ∈ (RX≥0) \ {0}, then the previous
construction (which is explicitly mentioned by Harer in [28], where he attributes it to
Mumford and Thurston) provides a point in |A�(S,X)|×R+. It is however clear that,
if a > 0, then the Strebel differential associated to (	, ap) is aϕ. Thus, we can just

consider p ∈ P(RX≥0)
∼= �X, so that the corresponding weighted arc system belongs

to |A�(S,X)| (after multiplying by a factor 2).
Because of the continuous dependence of ϕ on 	 and p, the map

�JS : T (S,X)×�X −→ |A�(S,X)|
is continuous.

We now show that a point w ∈ |A�(S,X)| determines exactly one (S,X)-marked
surface, which proves that �JS is bijective.

By 2.2.9, we can associate a metrized (S,X)-marked nonsingular ribbon graph
Gα to each w ∈ |A�(S,X)|R supported on α. However, if we realize |Gα | by gluing
semi-infinite tiles T−→αi of the type [0, w(αi)]x × [0,∞)y ⊂ Ĉz, which naturally come
together with a complex structure and a quadratic differential dz2, then |Gα | becomes
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a Riemann surface endowed with the (unique) Jenkins–Strebel quadratic differential
ϕ determined by Theorem 4.1. Thus, �−1

JS (w) = ([f : S → |Gα |], p), where pi is
obtained from the quadratic residue of ϕ at xi . Moreover, the length function defined
on |A�(S,X)|R exactly corresponds to the |ϕ|-length function on T (S,X)×�X×R+.

Notice that �JS is �(S,X)-equivariant by construction and so induces a contin-
uous bijection �JS : Mg,X × �X → |A�(S,X)|/�(S,X) on the quotient. If we

prove that �JS is proper, then �JS is a homeomorphism. To conclude that �JS is a
homeomorphism too, we will use the following.

Lemma 4.5. Let Y and Z be metric spaces acted on discontinuously by a discrete
group of isometries G and let h : Y → Z be a G-equivariant continuous injection
such that the induced map h : Y/G → Z/G is a homeomorphism. Then h is a
homeomorphism.

Proof. To show that h is surjective, let z ∈ Z. Because h is bijective, there exists a
unique [y] ∈ Y/G such that h([y]) = [z]. Hence, h(y) = z · g for some g ∈ G and
so h(y · g−1) = z.

To prove that h−1 is continuous, let (ym) ⊂ Y be a sequence such that h(ym)→
h(y) as m → ∞ for some y ∈ Y . Clearly, [h(ym)] → [h(y)] in Z/G and so
[ym] → [y] in Y/G, because h is a homeomorphism. Let (vm) ⊂ Y be a sequence
such that [vm] = [ym] and vm → y and denote by gm ∈ G the element such that
ym = vm · gm. By continuity of h, we have dZ(h(vm), h(y))→ 0 and by hypothesis
dZ(h(vm)·gm, h(y))→ 0. Hence, dZ(h(y), h(y)·gm)→ 0 and sogm ∈ stab(h(y)) =
stab(y) for largem, becauseG acts discontinuously onZ. As a consequence, ym→ y

and so h−1 is continuous.

The final step is the following.

Lemma 4.6. �JS : Mg,X ×�X → |A�(S,X)|/�(S,X) is proper.

Proof. Let ([	m], pm) be a diverging sequence in Mg,X ×�X and denote by łm the
hyperbolic metric on 	 \ X. By the Mumford–Mahler criterion, there exist simple
closed hyperbolic geodesics γm ⊂ 	m such that �łm(γm)→ 0. By Maskit’s inequal-
ities comparing extremal and hyperbolic length [50], we conclude that the extremal
length E(γm)→ 0.

Consider now the metric |ϕm| induced by the Jenkins–Strebel differential ϕm
uniquely determined by (	m, pm). Denote by �ϕ(γm) the length of the unique geodesic
γ̃m with respect to the metric |ϕm|, freely homotopic to γm ⊂ 	m. Notice that γ̃m is a
union of critical horizontal trajectories.

Because |ϕm| has infinite area, define a modified metric gm on 	m in the same
conformal class as |ϕm| as follows.

• gm agrees with |ϕm| on the critical horizontal trajectories of ϕm.
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• Whenever pi,m > 0, consider a coordinate z at xi such that the annular domain of

ϕm at xi is exactly�∗ = {z ∈ C | 0 < |z| < 1} and ϕm = −p
2
i,mdz

2

4π2z2 . Then define
gm to agree with |ϕm| on exp(−2π/pi,m) ≤ |z| < 1 (which becomes isometric
to a cylinder of circumference pi,m and height 1, so with area pi,m) and to be the
metric of a flat Euclidean disc of circumference pi,m centered at z = 0 (so with
area πp2

i,m) on |z| < exp(−2π/pi,m).

Notice that the total areaA(gm) isπ(p2
1,m+· · ·+p2

n,m)+(p1,m+· · ·+pn,m) ≤ π+1.
Call �g(γm) the length of the shortest gm-geodesic γ̂m in the class of γm. By

definition, �g(γm)2/A(gm) ≤ E(γm)→ 0 and so �g(γm)→ 0. As a gm-geodesic is
either longer than 1 or contained in the critical graph of ϕ, then γ̂m coincides with γ̃m
for m� 0.

Hence, �ϕ(γm) → 0 and so sys(wm) → 0. By Lemma 2.2, we conclude that
�JS(	m, pm

) diverges in |A�(S,X)|/�(S,X).

Remark 4.7. Suppose that ([fm : S → 	m], pm) converges to ([f : S → 	], p) ∈
Tg,X ×�X and let 	′ ⊂ 	 be an invisible component, that is a component of 	 with
no positively weighted marked points. Then, S′ = f−1(	′) is bounded by simple
closed curves γ1, . . . , γk ⊂ S and �f ∗mϕm(γi)→ 0 for i = 1, . . . , k. Just analyzing the

shape of the critical graph of ϕm, one can check that �ϕm(γ ) ≤
∑k
i=1 �ϕm(γi) for all

γ ⊂ S′. Hence, �f ∗mϕm(γ )→ 0 uniformly in γ , and so f ∗mϕm tends to zero uniformly
on the compact subsets of (S′)�.

4.1.4 The case of stable curves. We want to extend the map �JS to Deligne–Mum-
ford’s augmentation and, by abuse of notation, we will still write

�JS : T (S,X)×�X → |A(S,X)|
for this extension.

Given ([f : S → 	], p), we can construct a Jenkins–Strebel differential ϕ on each
visible component of 	, by considering nodes as marked points with zero weight.
Extend ϕ to zero over the invisible components. Clearly, ϕ is a holomorphic sec-
tion of ω⊗2

	 (2X) (the square of the logarithmic dualizing sheaf on 	): call it the
Jenkins–Strebel differential associated to (	, p). Notice that it clearly maximizes the
functional F , used in the proof of Theorem 4.1.

As ϕ defines a metrized ribbon graph for each visible component of 	, one can
easily see that thus we have an (S,X)-marked enriched ribbon graph G

en (see 2.2.4),
where ζ is the dual graph of 	 and V+ is the set of visible components of (	, p), m
is determined by the X-marking and s by the position of the nodes.

By arc/graph duality (see 2.2.13), we obtain a system of arcs α in (S,X) and
the metrics provide a system of weights w with support on α. This defines the
set-theoretic extension of �JS. Clearly, it is still �(S,X)-equivariant and it iden-
tifies visibly equivalent (S,X)-marked surfaces. Thus, it descends to a bijection
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�JS : T �(S,X)→ |A(S,X)| and we also have

�JS : M�

g,X −→ |A(S,X)|/�(S,X)
where |A(S,X)|/�(S,X) can be naturally given the structure of an orbispace (essen-
tially, forgetting the Dehn twists along curves of S that are shrunk to points, so that the
stabilizer of an arc system just becomes the automorphism group of the corresponding
enriched X-marked ribbon graph).

The only thing left to prove is that�JS is continuous. In fact, M
�

g,X is compact and

|A(S,X)|/�(S,X) is Hausdorff: hence,�JS would be (continuous and) automatically
proper, and so a homeomorphism. Using Lemma 4.5 again (using a metric pulled back

from M
�

g,X), we could conclude that �JS is a homeomorphism too.

Continuity of �JS. Consider a differentiable stable family

S × [0, ε] f ��

����
��

��
��

��
��

C

g

��
[0, ε]

of (S,X)-marked curves (that is, obtained restricting to [0, ε] a smooth family over
the unit disc �), such that g is topologically trivial over (0, ε] with fiber a curve with
k nodes. Let also p : [0, ε] → �X be a differentiable family of weights.

We can assume that there are disjoint simple closed curvesγ1, . . . , γk, η1, . . . , ηh ⊂
S such that f (γi × {t}) is a node for all t , that f (ηj × {t}) is a node for t = 0 and that
Ct is smooth away from these nodes.

Fix a nonempty open relatively compact subsetK of S\(γ1∪· · ·∪γk∪η1∪· · ·∪ηh)
that intersects every connected component. Define a reduced L1 norm of a section ψt
of ω⊗2

Ct
(2X) to be ‖ψ‖red =

∫
ft (K)
|ψ |. Notice that L1 convergence of holomorphic

sections ψt as t → 0 implies uniform convergence of f ∗t ψt on the compact subsets
of S \ (γ1 ∪ · · · ∪ γk ∪ η1 ∪ · · · ∪ ηh).

Denote by ϕt the Jenkins–Strebel differential associated to (Ct , pt ) with annular
domains D1,t , . . . , Dn,t .

As all the components of Ct are hyperbolic, ‖ϕt‖red is uniformly bounded and
we can assume (up to extracting a subsequence) that ϕt converges to a holomorphic
section ϕ′0 of ω⊗2

C0
(2X) in the reduced norm. Clearly, ϕ′0 will have double poles at xi

with prescribed residue.
Remark 4.7 implies that ϕ′0 vanishes on the invisible components of C0, whereas

it certainly does not on the visible ones.
For all those (i, t) ∈ {1, . . . , n}×[0, ε] such that pi,t > 0, let zi,t be the coordinate

at xi (uniquely defined up to phase) given by zi,t = u−1
i,t

∣∣
Di,t

and

ui,t : � −→ Di,t ⊂ Ct
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is continuous on � and biholomorphic in the interior for all t > 0 and ϕt
∣∣
Di,t
=

−p
2
i,t dz

2
i,t

4π2z2
i,t

for t ≥ 0. Whenever pi,t = 0, choose zi,t such that ϕt
∣∣
Di,t
= zk dz2, with

k = ordxi ϕt . When pi,t > 0, we can choose the phases of ui,t in such a way that ui,t
vary continuously with t ≥ 0.

If pi,0 = 0, then set Di,0 = ∅. Otherwise, pi,0 > 0 and so Di,0 cannot shrink to
{xi} (because Ft would go to −∞ as t → 0). In this case, denote by Di,0 the region
{|zi,0| < 1} ⊂ C0. Notice that ϕ′0 has a double pole at xi with residue pi,0 > 0 and

clearly ϕ′0
∣∣
Di,0
= −p

2
i,0dz

2
i,0

4π2z2
i,0

.

We want to prove that the visible subsurface of C0 is covered by
⋃
i Di,0 and so

ϕ′0 is a Jenkins–Strebel differential on each visible component of C0. By uniqueness,
it must coincide with ϕ0.

Consider a point y in the interior of f−1
0 (C0,+) \ X. For every t > 0 there

exists a yt ∈ S such that ft (yt ) does not belong to the critical graph of ϕt and the
f ∗t |ϕt |-distance dt (y, yt ) < t . As ϕt → ϕ0 in reduced norm and y, yt /∈ X, then
d0(y, yt )→ 0 as t → 0.

We can assume (up to discarding some t’s) that ft (yt ) belongs toDi,t for a fixed i
and in particular that ft (yt ) = ui,t (ct ) for some ct ∈ �. Up to discarding some t’s, we
can also assume that ct → c0 ∈ �. Denote by y′t the point given by f0(y

′
t ) = ui,0(ct ).

d0(y
′
t , y) ≤ d0(yt , y)+ d0(y

′
t , yt ) ≤ d0(yt , y)+ d0(f

−1
0 ui,0(ct ), f

−1
t ui,t (ct ))

≤ d0(yt , y)+ d0(f
−1
0 ui,0(ct ), f

−1
0 ui,0(c0))

+ d0(f
−1
0 ui,0(c0), f

−1
t ui,t (c0))+ d0(f

−1
t ui,t (c0), f

−1
t ui,t (ct ))

and all terms go to zero as t → 0. Thus, every point in the smooth locus C0,+ \X is
at |ϕ0|-distance zero from some Di,0. Hence, ϕ0 is a Jenkins–Strebel differential on
the visible components.

With a few simple considerations, one can easily conclude that

• the zeroes of ϕt move continuously as t ∈ [0, ε];
• for every edge e0 of the critical graph of ϕ0, and for t small enough, there

are corresponding edges et of the critical graphs of ϕt such that et → e0 and
�|ϕt |(et )→ �|ϕ0|(e0);

• the critical graph ofϕt converges to that ofϕ0 for the Gromov–Hausdorff distance.

Thus, the associated weighted arc systems wt ∈ |A(S,X)| converge to w0 for t → 0.

Thus, we have proved the following result, claimed by Kontsevich in [43] (see
Looijenga’s [45] and Zvonkine’s [82]).

Proposition 4.8. The map defined above

�JS : T �(S,X) −→ |A(S,X)|
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is a �(S,X)-equivariant homeomorphism, which commutes with the projection onto

�X. Hence, �JS : M�

g,X → |A(S,X)|/�(S,X) is a homeomorphism of orbispaces
too.

A consequence of the previous proposition and of 2.2.13 is that the realization

BRGg,X,ns is the classifying space of �(S,X) and that BRGg,X → M
�

g,X is a
homotopy equivalence (in the category of orbispaces).

4.2 Penner–Bowditch–Epstein construction

The other traditional way to obtain a weighted arc system out of a Riemann surface
with weighted marked points is to look at the spine of the truncated surface obtained
by removing horoballs of prescribed circumference. Equivalently, to decompose the
surface into a union of hyperbolic cusps.

4.2.1 Spines of hyperbolic surfaces. Let [f : S → 	] be an (S,X)-marked hyper-
bolic surface and letp ∈ �X. Denote byHi ⊂ 	 the horoball at xi with circumference
pi (aspi ≤ 1, the horoball is embedded in	) and let	tr = 	\⋃i Hi be the truncated
surface. The datum (	, ∂H1, . . . , ∂Hn) is also called a decorated surface.

For every y ∈ 	 \ X at finite distance from ∂	tr, let the valence val(y) be the
number of paths that realize dist(y, ∂	tr), which is generically 1. We will call a
projection of y a point on ∂	tr which is at shortest distance from y: clearly, there are
val(y) of them.

Let the spine Sp(	, p) be the locus of points of	 which are at finite distance from
∂	tr and such that val(y) ≥ 2 (see Figure 8).

In particular, val−1(2) is a disjoint union of finitely many geodesic arcs (the edges)
and val−1([3,∞)) is a finite collection of points (the vertices). If pi = 0, then we
include xi in Sp(	, p) and we consider it a vertex. Its valence is defined to be the
number of half-edges of the spine incident at xi .

There is a deformation retraction of	tr ∩	+ (where	+ is the visible subsurface)
onto Sp(	, p), defined on val−1(1) simply flowing away from ∂	tr along the unique
geodesic that realizes the distance from ∂	tr.

This shows that Sp(	, p) defines an (S,X)-marked enriched ribbon graph G
en
sp .

By arc/graph duality, we also have an associated spinal arc system αsp ∈ A(S,X).

4.2.2 Horocyclic lengths and weights. As 	 is a hyperbolic surface, we could
metrize Sp(	, p) by inducing a length on each edge. However, the relation between
this metric and p would be complicated.

Instead, for every edge e of G
en
sp (that is, of Sp(	, p)), consider one of its two

projections pr(e) to ∂	tr and define �(e) to be the horocyclic length of e, that is the
hyperbolic length of pr(e), which clearly does not depend on the chosen projection.
Thus, the boundary weights vector �∂ is exactly p.
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	tr

αi

ei

wi

Figure 8. Weights come from lengths of horocyclic arcs.

This endows G
en
sp with a metric and soαsp with a projective weightwsp ∈ |A(S,X)|.

Notice that visibly equivalent surfaces are associated to the same point of |A(S,X)|.
This defines a �(S,X)-equivariant map

�0 : T �(S,X) −→ |A(S,X)|
that commutes with the projection onto �X.

Penner [61] proved that the restriction of�0 to T (S,X)×��X is a homeomorphism;
the statement that the whole �0 is a homeomorphism appears in Bowditch–Epstein’s
[13] (and a very detailed treatment will appear in [7]). We refer to these papers for a
proof of this result.

4.3 Hyperbolic surfaces with boundary

The purpose of this informal subsection is to briefly illustrate the bridge between
the cellular decomposition of the Teichmüller space obtained using Jenkins–Strebel
differentials and that obtained using spines of decorated surfaces.

4.3.1 Teichmüller and moduli space of hyperbolic surfaces. Fix a compact ori-
ented surface S as before and X = {x1, . . . , xn} ⊂ S a nonempty subset.

A stable hyperbolic surface	 is a nodal surface such that	\{nodes} is hyperbolic
with geodesic boundary and/or cusps. Notice that, by convention, ∂	 includes the
cusps but it does not include the possible nodes of 	.
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An X-marking of a (stable) hyperbolic surface 	 is a bijection X→ π0(∂	).
An (S,X)-marking of the (stable) hyperbolic surface 	 is an isotopy class of

maps f : S \X→ 	, that may shrink disjoint simple closed curves to nodes and are
homeomorphisms onto 	 \ (∂	 ∪ {nodes}) elsewhere.

Let T ∂ (S,X) be the Teichmüller space of (S,X)-marked stable hyperbolic sur-
faces. There is a natural map �∂ : T ∂ (S,X)→ R

X≥0 that associates to [f : S → 	] the

boundary lengths of	, which thus descends to �∂ : M∂

g,X → R
X≥0. WriteT ∂ (S,X)(p)

(resp. M
∂

g,X(p)) for the leaf �−1
∂ (p) (resp. �−1

∂ (p)).

There is an obvious identification between T ∂ (S,X)(0) (resp. M
∂

g,X(0)) and

T (S,X) (resp. Mg,X).

Let M̂g,X be the blow-up of M
∂

g,X along M
∂

g,X(0): the exceptional locus can
be naturally identified with the space of (projectively) decorated surfaces with cusps
(which is homeomorphic to Mg,X ×�X). Define similarly T̂ (S,X).

4.3.2 Tangent space to the moduli space. The conformal analogue of a hyperbolic
surface with geodesic boundary 	 is a Riemann surface with real boundary. In fact,
the double of	 is a hyperbolic surface with no boundary and an orientation-reversing
involution, that is a Riemann surface with an anti-holomorphic involution. As a con-
sequence, ∂	 is a real-analytic submanifold.

This means that first-order deformations of a smooth	 are determined by Beltrami

differentials on	 which are real on ∂	, and so T[	]M
∂

g,X
∼= H 0,1(	, T	), where T	

is the sheaf of tangent vector fields V = V (z)∂/∂z, which are real on ∂	.

Dually, the cotangent space T ∗[	]M
∂

g,X is given by the space Q(	) of holomorphic
quadratic differentials that are real on ∂	. If we write H(	) = {ϕ/λ | ϕ ∈ Q(	)},
where λ is the hyperbolic metric on 	, then H 0,1(	, T	) is identified with the space
of harmonic Beltrami differentials H(	).

If	 has nodes, then the situation is more complicated. The logarithmic cotangent

bundle T ∗
M
∂

g,X

(∂M
∂

g,X) can be related to quadratic differentials with double poles at

the nodes (with the same quadratic residue on both branches). Details can be found
in [9] and [51].

4.3.3 Weil–Petersson metric. Mimicking what is done for surfaces with cusps, we
can define Hermitian pairings on Q(	) and H(	), where 	 is a smooth hyperbolic
surface with boundary. In particular,

h(μ, ν) =
∫
	

μ ν · λ,

h∗(ϕ, ψ) =
∫
	

ϕ ψ

λ
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where μ, ν ∈ H(	) and ϕ,ψ ∈ Q(	).
Thus, if h = g+ iω, then g is the Weil–Petersson Riemannian metric and ω is the

Weil–Petersson form. Write similarly h∗ = g∗ + iω∗, where g∗ is the cometric dual
to g and ω∗ is the Weil–Petersson bivector field.

Notice that ω and ω∗ are degenerate. This can be easily seen, because Wolpert’s
formulaω =∑

i d�i∧dτi still holds. We can also conclude that the symplectic leaves
of ω∗ are exactly the fibers of the boundary length map �∂ .

4.3.4 Spines of hyperbolic surfaces with boundary. The spine construction can be
carried on, even in a more natural way, on hyperbolic surfaces with geodesic boundary.

In fact, given such a 	 with boundary components x1, . . . , xn, we can define the
distance from ∂	 and so the valence of a point in	 and consequently the spine Sp(	),
with no need of further information.

Similarly, if 	 has also nodes (that is, some holonomy degenerates to a parabolic
element), then Sp(	) is embedded inside the visible components of 	, i.e. those
components of 	 that contain a boundary circle of positive length.

The weight of an arc αi ∈ αsp dual to the edge ei of Sp(	) is still defined as
the hyperbolic length of one of the two projections of ei to ∂	. Thus, the above
construction gives a point wsp ∈ |A(S,X)| × (0,∞).

	

αi

ei

wi

Figure 9. Weights come from lengths of geodesic boundary arcs.

It is easy to check (see [56] or [55]) that wsp converges to the wsp defined before
when the hyperbolic surface with boundary converges to a decorated surface with
cusps in T̂ (S,X). Thus, the �(S,X)-equivariant map

� : T̂ (S,X) −→ |A(S,X)| × [0,∞)
reduces to �0 for decorated surfaces with cusps.
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Theorem 4.9 (Luo [46]). The restriction of � to smooth surfaces with no boundary
cusps gives a homeomorphism onto its image.

The continuity of the whole � is proven in [55], using Luo’s result.

The key point of Luo’s proof is the following. Pick a generic hyperbolic surface
with geodesic boundary 	 and suppose that the spinal arc system is the ideal triangu-
lation αsp = {α1, . . . , αM} ∈ A�(	,X)with weightwsp. We can define the length �αi
as the hyperbolic length of the shortest geodesic α̃i in the free homotopy class of αi .

The curves {α̃i} cut	 into hyperbolic hexagons, which are completely determined
by {�_

¯
1, . . . �_

¯
2M}, where the _

¯
j ’s are the sides of the hexagons lying on ∂	. Un-

fortunately, going from the �_
¯
j ’s to wsp is much easier than the converse. In fact,

wα1, . . . , wαM can be written as explicit linear combinations of the �_
¯
j ’s: in ma-

trix notation, B = (�_
¯
j ) is a solution of the system W = RB, where R is a fixed

(M × 2M)-matrix (that encodes the combinatorics is αsp) and W = (wαi ). Clearly,
there is a whole affine space EW of dimension M of solutions of W = RB. The
problem is that a random point in EW would determine hyperbolic structures on the
hexagons of 	 \ αsp that do not glue, because we are not requiring the two sides of
each αi to have the same length.

Starting from very natural quantities associated to hyperbolic hexagons with right
angles, Luo defines a functional on the space (b1, . . . , b2M) ∈ R

2M≥0 . For every W ,
the space EW is not empty (which proves the surjectivity of �) and the restriction of
Luo’s functional toEW is strictly concave and achieves its (unique) maximum exactly
when B = (�_

¯
j ) (which proves the injectivity of �).

The geometric meaning of this functional is still not entirely clear, but it seems
related to some volume of a three-dimensional hyperbolic manifold associated to 	.
Quite recently, Luo [47] (see also [26]) has introduced a modified functional Fc,
which depends on a parameter c ∈ R, and he has produced other realizations of the
Teichmüller space as a polytope, and so different systems of “simplicial” coordinates.

4.3.5 Surfaces with large boundary components. To close the circle, we must
relate the limit of � for surfaces whose boundary lengths diverge to �JS. This is the
topic of [55]. Here, we only sketch the main ideas. To simplify the exposition, we
will only deal with smooth surfaces.

Consider an X-marked hyperbolic surface with geodesic boundary 	. Define
gr∞(	) to be the surface obtained by gluing semi-infinite flat cylinders at ∂	 of
lengths (p1, . . . , pn) = �∂(	).

Thus, gr∞(	) has a hyperbolic core and flat ends and the underlying conformal
structure is that of an X-punctured Riemann surface. This infinite grafting procedure
defines a map

(gr∞, �∂) : T ∂ (S,X) −→ T (S,X)× R
N≥0.

For more details about (finite) grafting, see [19].
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Figure 10. A grafted surface gr∞(	).

Proposition 4.10 ([55]). The map (gr∞, �∂) is a �(S,X)-equivariant homeomor-
phism.

The proof is a variation of Scannell–Wolf’s [67] that finite grafting is a self-
homeomorphism of the Teichmüller space.

Thus, the composition of (gr∞, �∂)−1 and � gives (after blowing up the locus
{�∂ = 0}) the homeomorphism

� : T (S,X)×�X × [0,∞) −→ |A�(S,X)| × [0,∞).

Proposition 4.11 ([55]). The map � extends to a �(S,X)-equivariant homeomor-
phism

� : T (S,X)×�X × [0,∞] −→ |A�(S,X)| × [0,∞]
and �∞ coincides with Harer–Mumford–Thurston’s �JS.

The main point is to show that a surface 	 with large boundaries and with spine
Sp(	) is very close in T (S,X) to the flat surface whose Jenkins–Strebel differential
has critical graph isomorphic to Sp(	) (as metrized ribbon graphs).

To understand why this is reasonable, consider a sequence of hyperbolic surfaces
	m whose spine has fixed isomorphism type G and fixed projective metric and such
that �∂(	m) = cm(p1, . . . , pn), where cm diverges as m→∞. Consider the grafted
surfaces gr∞(	m) and rescale them so that

∑
i pi = 1. The flat metric on the cylin-

ders is naturally induced by a holomorphic quadratic differential, which has negative
quadratic residue at X. Extend this differential to zero on the hyperbolic core.

Because of the rescaling, the distance between the flat cylinders and the spine goes
to zero and the differential converges in L1

red to a Jenkins–Strebel differential.
Dumas [18] has shown that an analogous phenomenon occurs for closed surfaces

grafted along a measured lamination tλ as t →+∞.
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4.3.6 Weil–Petersson form and Penner’s formula. Using Wolpert’s result and hy-
perbolic geometry, Penner [63] proved that the pull-back of the Weil–Petersson form
on the space of decorated hyperbolic surfaces with cusps, which can be identified
with T (S,X) ×�X, can be neatly written in the following way. Fix a triangulation
α = {α1, . . . , αM} ∈ A�(S,X). For every ([f : S → 	], p) ∈ T (S,X) × �X, let
α̃i be the geodesic representative in the class of f∗(αi) and write ai := �(α̃i ∩ 	tr),
where 	tr is the truncated hyperbolic surface. Then

π∗ωWP =
∑
t∈T
(dat1 ∧ dat2 + dat2 ∧ dat3 + dat3 ∧ dat1)

where π : T (S,X)×�X → T (S,X) is the projection, T is the set of ideal triangles
in which the α̃i’s decompose	, and the sides of t are (αt1, αt2, αt3) in the cyclic order
induced by the orientation of t (see Figure 11).

	tr

αt1

αt3

αt2 t

Figure 11. An ideal triangle in T .

To work on Mg,X ×�X (for instance, to compute Weil–Petersson volumes), one
can restrict to the interior of the cells �−1

0 (|α|) whose associated system of arcs α is
a triangulation and write the pull-back of ωWP with respect to α.

4.3.7 Weil–Petersson form for surfaces with boundary. Still using methods of
Wolpert [77], one can generalize Penner’s formula to hyperbolic surfaces with bound-
ary. The result is better expressed using the Weil–Petersson bivector field than the
2-form.

Proposition 4.12 ([56]). Let 	 be a hyperbolic surface with boundary components
C1, . . . , Cn and let α = {α1, . . . , αM} be a triangulation. Then the Weil–Petersson
bivector field can be written as

ω∗ = 1

4

n∑
b=1

∑
yi∈αi∩Cb
yj∈αj∩Cb

sinh(pb/2− db(yi, yj ))
sinh(pb/2)

∂

∂ai
∧ ∂

∂aj

where ai = �(αi) and db(yi, yj ) is the length of the geodesic arc running from yi to yj
along Cb in the positive direction (according to the orientation induced by 	 on Cb).
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The idea is to use Wolpert’s formula ω∗ = −∑
i ∂�i ∧ ∂τi on the double d	 of

	 with the pair of pants decomposition induced by doubling the arcs {αi}. Then one
must compute the (first-order) effect on the ai’s of twisting d	 along αj .

Though not immediate, the above formula can be shown to reduce to Penner’s,
when the boundary lengths go to zero, as we approximate sinh(x) ≈ x for small x.
Notice that Penner’s formula shows that ω linearizes (with constant coefficients!) in
the coordinates given by the ai’s.

More interesting is to analyze what happens for (	, tp)withp ∈ �X, as t →+∞.
Assume the situation is generic and so �JS(	) is supported on a triangulation, whose
dual graph is G.

Once again, the formula dramatically simplifies as we approximate 2 sinh(x) ≈
exp(x) for x � 0. Under the rescalings ω̃∗ = c2ω∗ and w̃i = wi/c with c =∑
b pb/2, we obtain that

lim
t→∞ ω̃

∗ = ω∗∞ :=
1

2

∑
v∈E0(G)

(
∂

∂w̃v1

∧ ∂

∂w̃v2

+ ∂

∂w̃v2

∧ ∂

∂w̃v3

+ ∂

∂w̃v3

∧ ∂

∂w̃v1

)

where v = {v1, v2, v3} and σ0(vj ) = vj+1 (and j ∈ Z/3Z).

v

ev1 ev2

ev3

Figure 12. A trivalent vertex v of G.

Thus, the Weil–Petersson symplectic structure is again linearized (and with con-
stant coefficients!), but in the system of coordinates given by the wj ’s, which are in
some sense dual to the ai’s.

It would be nice to exhibit a clear geometric argument for the perfect symmetry of
these two formulae.

5 Combinatorial classes

5.1 Witten cycles

Fix as usual a compact oriented surface S of genus g and a subsetX = {x1, . . . , xn} ⊂
S such that 2g − 2+ n > 0.
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We introduce some remarkable �(S,X)-equivariant subcomplexes of A(S,X),

which define interesting cycles in the homology of M
K

g,X as well as in the Borel–
Moore homology of Mg,X and so, by Poincaré duality, in the cohomology of Mg,X

(that is, of �(S,X)).
These subcomplexes are informally defined as the locus of points of |A�(S,X)|,

whose associated ribbon graphs have prescribed odd valences of their vertices. It can
be easily shown that, if we assign even valence to some vertex, the subcomplex we
obtain is not a cycle (even with Z/2Z coefficients!).

We follow Kontsevich ([43]) for the orientation of the combinatorial cycles, but an
alternative way is due to Penner [64] and Conant and Vogtmann [14].

Later, we will mention a slight generalization of the combinatorial classes by
allowing some vertices to be marked.

Notice that we are going to use the cellularization of the moduli space of curves

given by�JS, and so we will identify M
�

g,X with the orbispace |A(S,X)|/�(S,X). As
the arguments will be essentially combinatorial/topological, any of the decompositions
described before would work.

5.1.1 Witten subcomplexes. Letm∗ = (m0,m1, . . . ) be a sequence of nonnegative
integers such that ∑

i≥0

(2i + 1)mi = 4g − 4+ 2n

and define (m∗)! :=∏
i≥0mi ! and r :=∑

i≥0 i mi .

Definition 5.1. The combinatorial subcomplex Am∗(S,X) ⊂ A(S,X) is the smallest
simplicial subcomplex that contains all proper simplices α ∈ A�(S,X) such that S \α
is the disjoint union of exactly mi polygons with 2i + 3 sides.

It is convenient to set |Am∗(S,X)|R := |Am∗(S,X)| × R+. Clearly, this sub-

complex is �(S,X)-equivariant. Hence, if we write M
comb
g,X := M

�

g,X × R+ ∼=
|A(S,X)|R/�(S,X), then we can define M

comb
m∗,X to be the subcomplex of M

comb
g,X

induced by Am∗(S,X).

Remark 5.2. We can introduce also univalent vertices by allowing m−1 > 0. It
is still possible to define the complexes Am∗(S,X) and A�m∗(S,X), just allowing
(finitely many) contractible loops (i.e. unmarked tails in the corresponding ribbon
graph picture). However, Am∗(S,X) would no longer be a subcomplex of A(S,X).

Thus, we should construct an associated family of Riemann surfaces over M
comb
m∗,X

(which can be easily done) and consider the classifying map M
comb
m∗,X → M

comb
g,X ,

whose existence is granted by the universal property of Mg,X, but which would no
longer be cellular.
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For every p ∈ �X × R+ write M
comb
g,X (p) := �−1

∂ (p) ⊂ M
comb
g,X and define

M
comb
m∗,X(p) :=M

comb
m∗,X ∩M

comb
g,X (p).

Notice that the dimensions of the slices are the expected ones because in every cell
they are described by n independent linear equations.

5.1.2 Combinatorial ψ classes. Define L∗i as the space of couples (G, y), where G

is an X-marked metrized ribbon graph in M
comb
g,X ({pi > 0}) and y is a ray that joins

xi to a point of |G| ⊂ |G| that bounds the xi-th hole.

Clearly L∗i →M
comb
g,X ({pi > 0}) is a topological bundle with fiber homeomorphic

to S1. It is easy to see that, for a fixed p ∈ �X × R+ such that pi > 0, the pull-back
of L∗i via

ξp : Mg,X −→M
comb
g,X (p)

is isomorphic (as a topological bundle) to the sphere bundle associated to L∗i .
The proof of the following lemma is very easy.

Lemma 5.3 ([43]). Fix xi in X and p ∈ �X × R+ such that pi > 0. Then on every

simplex |α|(p) ⊂M
comb
g,X (p) define

ηi
∣∣|α|(p) := ∑

1≤s<t≤k−1

dẽs ∧ dẽt

where ẽj = �(ej )

pi
and xi marks a hole with cyclically ordered sides (e1, . . . , ek).

These 2-forms glue to give a piecewise-linear 2-form ηi on M
comb
g,X (p), that represents

−c1(L
∗
i ). Hence, the pull-back class ξ∗p[ηi] is exactly ψi = c1(Li ) in H 2(Mg,X).

xi

e1e2

e3

e4

e5

e6

e7 y

Figure 13. A fiber of the bundle Li over a hole with 7 sides.

5.1.3 Orientation of Witten subcomplexes. The following lemma says that the η
forms can be assembled in a piecewise-linear “symplectic form”, that can be used to
orient maximal cells of Witten subcomplexes.
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Lemma 5.4 ([43]). For every p ∈ �X × R+ the restriction of

� :=
n∑
i=1

p2
i ηi

to the maximal simplices of M
comb
m∗,X(p) is a non-degenerate symplectic form. Hence,

�r defines an orientation on M
comb
m∗,X(p). Also, �r ∧ �∗∂Vol

RX is a volume form on

M
comb
m∗,X.

Proof. Let |α|(p) be a cell of M
comb
g,X (p), whose associated ribbon graph Gα has only

vertices of odd valence.
On |α|(p), the differentials dei span the cotangent space. As the pi’s are fixed, we

have the relation dpi = 0 for all i = 1, . . . , n. Hence

T ∗M
comb
g,X (p)

∣∣|α|(p) ∼= |α|(p)× ⊕
e∈E1(α)

R · de
/( ∑
[−→e ]0=xi

de | i = 1, . . . , n
)
.

On the other hand the tangent bundle is

TM
comb
g,X (p)

∣∣|α|(p) ∼= |α|(p)×{ ∑
e∈E1(α)

be
∂

∂e

∣∣ ∑
[−→e ]0∈xi

be = 0 for all i = 1, . . . , n
}
.

In order to prove that �|α : T |α|(p)→ T ∗|α|(p) is non-degenerate, we construct its
right-inverse. Define B : T ∗|α|(p)→ T |α|(p) as

B(de) =
2s∑
i=1

(−1)i
∂

∂[σ i0(−→e )]1
+

2t∑
j=1

(−1)j
∂

∂[σ j0 (←−e )]1
where−→e is any orientation of e, while 2s+ 1 and 2t + 1 are the cardinalities of [−→e ]0
and [←−e ]0 respectively. We want to prove that �B(de) = 4de for every e ∈ E1(α).

To shorten the notation, set fi := [σ i0(−→e )]1 and hj := [σ j0 (←−e )]1 and call Fi :=
[σ1σ

i
0(
−→
e )]∞ for i = 1, . . . , 2s − 1 and Hj := [σ1σ

j
0 (
←−
e )]∞ for j = 1, . . . , 2t − 1

the holes bordered respectively by {fi, fi+1} and {hj , hj+1}. Finally denote by E+
and E− the holes adjacent to e as in Figure 14. Remark that neither the edges f and h
nor the holes F and H are necessarily distinct. This however has no importance in
the following computation:

B(de) =
2s∑
i=1

(−1)i
∂

∂fi
+

2t∑
j=1

(−1)j
∂

∂hj
.

It is easy to see (using that the perimeters are constant) that

p2
Fi
ηFi

(
∂

∂fi
− ∂

∂fi+1

)
= dfi + dfi+1
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and analogously for the h’s. Moreover

p2
E+ηE+

(
∂

∂h2s
− ∂

∂f1

)
= dh2s + df1 + 2de

and similarly for E−. Finally, we obtain �B(de) = 4de.

f1

f2

f3

f4

h1

h2

H1

F1

F2

F3

E+

E−

−→
e

Figure 14. An example with s = 2 and t = 1.

Remark 5.5. Notice that B is the piecewise-linear extension of the restriction of the
Weil–Petersson bivector field 2ω̃∗∞ to the open maximal simplices. Thus, � is the
piecewise-linear extension of 2ω̃∞.

Finally, we can show that the (cellular) chain obtained by adding maximal simplices
of Witten subcomplexes (with the orientation determined by �) is in fact a cycle.

Lemma 5.6 ([43]). With the given orientation M
comb
m∗,X(p) is a cycle for all p ∈ �X ×

R+ and M
comb
m∗,X(R

X+) is a cycle with non-compact support.

Proof. Given a top-dimensional cell |α|(p) in M
comb
m∗,X(p), each face in the boundary

∂|α|(p) is obtained by shrinking one edge of Gα . This contraction may merge two
vertices as in Figure 15.
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e1

e1

e2

e2

e3

e3

e4

e4

e5

e5

e6

e6

Figure 15. A contraction that merges a 3-valent and a 5-valent vertex.

Otherwise the shrinking produces a node, as in Figure 16.

e1
e1

e2

e3e3
e4e4

e5

Figure 16. A contraction produces a node.

Let |α′|(p) ⊂ ∂|α|(p) be the face of |α|(p) obtained by shrinking the edge e.
Then �6g−7+2n−2rT |α′|(p) = �6g−6+2n−2rT |α|(p) ⊗ N∗|α′|/|α| and so the dual of

the orientation form induced by |α|(p) on |α′|(p) is ıde(B
6g−6+2n−2r
α ) = (6g − 6+

2n− 2r)ıde(Bα)∧B6g−8+2n−2r
α , where Bα is the bivector field on |α|(p) defined in

Lemma 5.4.
Consider the graph Gα′ that occurs in the boundary of a top-dimensional cell of

M
comb
m∗,X(p). Suppose it is obtained merging two vertices of valences 2t1+3 and 2t2+3

in a vertex v of valence 2(t1 + t2) + 4. Then |α′|(p) is in the boundary of exactly

2(t1+ t2)+ 4 cells of M
comb
m∗,X(p). In any case, the number of cells |α′|(p) is bordered

by are even: we need to prove that half of them induces on |α′|(p) an orientation and
the other half induces the opposite one. If Gα′ is obtained from some Gα contracting
an edge e, then we just have to compute the vector field ıde(Bα), which turns out to
be

ıde(Bα) = ±
2(t1+t2)+4∑

i=1

(−1)i
∂

∂fi
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where f1, . . . , f2(t1+t2)+4 are the edges of Gα′ outgoing from v. It is a straightforward
computation to check that one obtains in half the cases a plus and in half the cases a
minus.

When G
en
α′ has a node with 2t1 + 2 edges on one side (which we will denote by

f1, . . . , f2t1+2) and 2t2 + 3 edges on the other side, the computation is similar. The
cell occurs as boundary of exactly (2t1+2)(2t2+3) top-dimensional cells and, if Gα′
is obtained by Gα contracting the edge e, then

ıde(Bα) = ±2
2t1+2∑
i=1

(−1)i
∂

∂fi
.

A quick check ensures that the signs cancel.

Define the Witten classes Wm∗,X(p) := [M
comb
m∗,X(p)] and let Wm∗,X(p) be the

restriction of such a class to Mcomb
g,X (p), which defines (by Poincaré duality) a coho-

mology class in H 2r (Mg,X), independent of p.

5.1.4 GeneralizedWitten cycles. It is possible to define a slight generalization of the
previous classes, prescribing that some markings hit vertices with assigned valence.

These generalized Witten classes are related to the previousWm∗,X in an intuitively
obvious way, because forgetting the markings of some vertices will map them onto
one another. We will omit the details and refer to [54].

5.2 Witten cycles and tautological classes

In this subsection, we will sketch the proof of the following result, due to K. Igusa
[32] and [33] (see also [34]) and Mondello [54] independently.

Theorem 5.7. Witten cyclesWm∗,X on Mg,X are Poincaré dual to polynomials in the
κ classes and vice versa.

In [54], the following results are also proven:

• Witten generalized cycles on Mg,X are Poincaré dual to polynomials in the ψ
and the κ classes;

• ordinary and generalized Witten cycles on M
comb
g,X (p) are push-forward of (the

Poincaré dual of) tautological classes from Mg,X; an explicit recipe to produce
such tautological classes is given.

5.2.1 The case with one special vertex. We want to consider a combinatorial cycle
on Mg,X supported on ribbon graphs, whose vertices are generically all trivalent except
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one, which is (2r + 3)-valent (and r ≥ 1). To shorten the notation, call this Witten
cycle W2r+3.

We also define a generalized Witten cycle on the universal curve Cg,X ⊂Mg,X∪{y}
supported on the locus of ribbon graphs, which have a (2r + 3)-valent vertex marked
by y and all the other vertices are trivalent and unmarked. Call Wy

2r+3 this cycle.
We would like to show that PD(Wy

2r+3) = c(r)ψr+1
y , where c(r) is some con-

stant. As a consequence, pushing the two hand-sides down through the proper map
πy : Cg,X →Mg,X, we would obtain PD(W2r+3) = c(r)κr .

Lemma 5.3 gives us the nice piecewise-linear 2-form ηy , that is pulled back to ψy
through ξ . The only problem is that ηy is defined only for py > 0, whereas Wy

2r+3 is
exactly contained in the locus {py = 0}.

To compare the two, one can look at the blow-up Blpy=0M
comb
g,X∪{y} of M

comb
g,X∪{y}

along the locus {py = 0}. Points in the exceptional locus E can be identified with
metrized (nonsingular) ribbon graphs G, in which y marks a vertex, plus angles ϑ
between consecutive oriented edges outgoing from y. One must think of these angles
as of infinitesimal edges.

It is clear now that ηy extends to E by

ηy ||α|(p) :=
∑

1≤s<t≤k−1

dẽs ∧ dẽt

where ẽj = ϑj
2π , ymarks a vertex with cyclically ordered outgoing edges (−→e 1, . . . ,

−→
e k)

and ϑj is the angle between −→e j and −→e j+1 (with j ∈ Z/kZ).

Thus, pushing forward ηr+1
y through E→M

comb
g,X (py = 0), we obtain c(r)Wy

2r+3
plus other terms contained in the boundary, and the coefficient c(r) is exactly the
integral of ηr+1

y on a fiber (that is, a simplex), which turns out to be c(r) = (r+1)!
(2r+2)! .

Thus, Wy
2r+3 is Poincaré dual to 2r+1(2r + 1)!!ψr+1

y .

5.2.2 The case with many special vertices. To mimic what is done for one non-
trivalent vertex, consider combinatorial classes with two non-trivalent vertices. Thus,
we examine the class ψr+1

y ψs+1
z (with r, s ≥ 1) on C2

g,X := Cg,X ×Mg,X
Cg,X.

Let us look at the blow-up Blpy=0,pz=0M
comb
g,X∪{y} of M

comb
g,X∪{y,z} along the locus

{py = 0} ∪ {pz = 0} and let E = Ey ∩Ez, where Ey and Ez are the exceptional loci.
As before, we can identify E ∩ {y �= z} with the set of metrized ribbon graphs G,

with angles at the vertices y and z. Thus, pushing ηr+1
y ηs+1

z forward through the blow-
up map (which forgets the angles at y and z), we obtain a multiple of the generalized
combinatorial cycles given by y marking a (2r + 3)-valent vertex and z marking a
(2s + 3)-valent (distinct) vertex. The coefficient c(r, s) will just be (r+1)!(s+1)!

(2r+2)!(2s+2)! .
Points in E ∩ {y = z} can be thought of as metrized ribbon graphs G with two

infinitesimal holes (respectively marked by y and z) adjacent to each other. If we
perform the push-forward ofηr+1

y ηs+1
z forgetting first the angles at z and then the angles
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at y, then we obtain some contribution only from the loci in which the infinitesimal
z-hole has (2s + 3) edges and the infinitesimal y-hole has (2r + 4) edges (including
the common one). Thus, we obtain the same contribution for each of the b(r, s)
configurations of two adjacent holes of valences (2s + 3) and (2r + 4).

Thus, we obtain a cycle supported on the locus of metrized ribbon graphs G in
which y = z marks a (2r + 2s + 3)-valent vertex, with coefficient b(r, s)c(r, s).

Hence, ψr+1
y ψs+1

z is Poincaré dual to a linear combination of generalized com-
binatorial cycles. As before, using the forgetful map, the same holds for the Witten
cycles obtained by deleting the y and the z markings.

One can easily see that the transformation laws from ψ classes to combinatorial
classes are invertible (because they are “upper triangular” in a suitable sense).

Clearly, in order to deal with many ψ classes (that is, with many non-trivalent
marked vertices), one must compute more and more complicated combinatorial factors
like b(r, s).

We refer to [34] and [54] for two (complementary) methods to calculate these
factors.

5.3 Stability of Witten cycles

5.3.1 Harer’s stability theorem. The (co)homologies of the mapping class groups
have the remarkable property that they stabilize when the genus of the surface in-
creases. This was proven by Harer [27], and the stability bound was then improved by
Ivanov [36] (and successively again by Harer for homology with rational coefficients,
in an unpublished paper). We now want to recall some of Harer’s results.

Let Sg,n,b be a compact oriented surface of genus g with n marked points and b
boundary components C1, . . . , Cb. We denote the group of isotopy classes of diffeo-
morphisms of S that fix the marked points and ∂S pointwise by �(Sg,n,b).

Write P = S0,0,3 for a fixed pair of pants and denote by B1, B2, B3 its boundary
components.

Consider the following two operations:

(y) gluing Sg,n,b andP by identifyingCb withB1, thus producing an oriented surface
of genus g with n marked points and b + 1 boundary components,

(v) identify Cb−1 with Cb of Sg,n,b, thus producing an oriented surface of genus
g + 1 with n marked points and b − 2 boundary components.

Clearly, they induce homomorphism at the level of mapping class groups

Y : �(Sg,n,b) −→ �(Sg,n,b+1)

when b ≥ 1 (by extending the diffeomorphism as the identity on P ) and

V : �(Sg,n,b) −→ �(Sg+1,n,b−2)

when b ≥ 2.



Chapter 5. Riemann surfaces, ribbon graphs and combinatorial classes 207

Theorem 5.8 (Harer [27]). The induced maps in homology

Y∗ : Hk(�(Sg,n,b)) −→ Hk(�(Sg,n,b+1)),

V∗ : Hk(�(Sg,n,b)) −→ Hk(�(Sg+1,n,b−2))

are isomorphisms for g ≥ 3k.

The exact bound is not important for our purposes. We only want to stress that
the theorem implies thatHk(�(Sg,n,b)) stabilizes for large g. In particular, for a fixed
n ≥ 0, the rational homology of Mg,n stabilizes for large g.

Remark 5.9. We have B�(Sg,n,b) � Mg,X,T , where Mg,X,T is the moduli space
of Riemann surfaces of genus g with X ∪ T marked points (X = {x1, . . . , xn} and
T = {t1, . . . , tb}) and a nonzero tangent vector at each point of T . If b ≥ 1, then
Mg,X,T is a smooth variety: in fact, an automorphism of a Riemann surface that
fixes a point and a tangent direction at that point is the identity (this follows from
uniformization and Schwarz lemma).

5.3.2 Mumford’s conjecture. Write �∞,n = limg→∞ �(Sg,n,1), where the map
�(Sg,n,1)→ �(Sg+1,n,1) corresponds to gluing a torus with two holes at the boundary
component of Sg,n,1.

Then, Hk(�∞,n) coincides with Hk(�g,n) for g � k.
Mumford conjectured thatH ∗(�∞;Q) is the polynomial algebra on the κ classes.

Miller [52] showed that H ∗(�∞;Q) is a Hopf algebra that contains Q[κ1, κ2, . . . ].
Recently, after works of Tillmann (for instance, [72]) and Madsen–Tillmann [48],

Madsen and Weiss [49] proved a much stronger statement of homotopy theory, which
in particular implies Mumford’s conjecture.

Thanks to a result of Bödigheimer–Tillmann [12], it follows that H ∗(�∞,n;Q) is
a polynomial algebra on ψ1, . . . , ψn and the κ classes.

Thus, generalized Witten classes, being polynomials in ψ and κ , are also stable.
In what follows, we would like to prove this stability in a direct way.

5.3.3 Ribbon graphs with tails. One way to cellularize the moduli space of curves
with marked points and tangent vectors at the marked points is to use ribbon graphs
with tails (see, for instance, [23]).

Consider 	 a compact Riemann surface of genus g with marked points X ∪ T =
{x1, . . . , xn} ∪ {t1, . . . , tb} and nonzero tangent vectors v1, . . . , vb at t1, . . . , tb.

Given p1, . . . , pn ≥ 0 and q1, . . . , qb > 0, we can construct the ribbon graph G

associated to (	, p, q), say using the Jenkins–Strebel differential ϕ.
For every j = 1, . . . , b, move from the center tj along a vertical trajectory γj of

ϕ determined by the tangent vector vj , until we hit the critical graph. Parametrize the
opposite path γ ∗j by arc-length, so that γ ∗j : [0,∞] → 	, γ ∗j (0) lies on the critical
graph and γ ∗j (∞) = tj . Then, construct a new ribbon graph out of G by “adding” a
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new vertex (which we will denote by ṽj ) and a new edge evj of length |vj | (a tail),
whose realization is γ ∗j ([0, |vj |]) (see Figure 17).

tj

ṽj

evj

Figure 17. Correspondence between a tail and a nonzero tangent vector.

Thus, we have realized an embedding of Mg,X,T ×R
X≥0 ×R

T+ inside Mcomb
g,X∪T∪V ,

where V = {ṽ1, . . . , ṽb}. If we denote its image by Mcomb
g,X,T , we have obtained the

following result.

Lemma 5.10. Mcomb
g,X,T � B�(Sg,n,b).

Notice that the embeddingMcomb
g,X,T ↪→Mcomb

g,X∪T∪V allows us to define (generalized)

Witten cycles Wm∗,X,T on Mcomb
g,X,T simply by restriction.

5.3.4 Gluing ribbon graphs with tails. Let G
′ and G

′′ be two ribbon graphs with

tails
−→
e′ and

−→
e′′ , i.e.

−→
e′ ∈ E(G′) and

−→
e′′ ∈ E(G′′) with the property that σ ′0(

−→
e′ ) = −→e′

and σ ′′0 (
−→
e′′ ) = −→e′′ .

We produce a third ribbon graph G by gluing G
′ and G

′′ in the following way.

We set E(G) = (
E(G′) ∪ E(G′′)) / ∼, where we declare that

−→
e′ ∼ ←−e′′ and←−

e′ ∼ −→e′′ . Thus, we have a natural σ1 induced on E(G). Moreover, we define σ0
acting on E(G) as

σ0([−→e ]) =
{
[σ ′0(−→e )] if −→e ∈ E(G′) and −→e �= −→e′ ,
[σ ′′0 (−→e )] if −→e ∈ E(G′′) and −→e �= −→e′′ .

If G
′ and G

′′ are metrized, then we induce a metric on G in a canonical way, declaring
the length of the new edge of G to be �(e′)+ �(e′′).

Suppose that G
′ is marked by {x1, . . . , xn, t

′} and e′ is a tail contained in the hole
t ′ and that G

′′ is marked by {y1, . . . , ym, t
′′} and if e′′ is a tail contained in the hole
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t ′′, then G is marked by {x1, . . . , xn, y1, . . . , ym, t}, where t is a new hole obtained
merging the holes centered at t ′ and t ′′.

Thus, we have constructed a combinatorial gluing map

Mcomb
g′,X′,T ′∪{t ′} ×Mcomb

g′′,X′′,T ′′∪{t ′′} −→Mcomb
g′+g′′,X′∪X′′∪{t},T ′∪T ′′ .

5.3.5 The combinatorial stabilization maps. Consider the gluing maps in two spe-
cial cases which are slightly different from what we have seen before.

Call Sg,X,T a compact oriented surface of genus g with boundary components
labelled by T and marked points labeled by X.

Fix a trivalent ribbon graph Gj , with genus 1, one hole and j tails for j = 1, 2 (for
instance, j = 2 in Figure 18).

G2

y

v
w

Figure 18. Example of a fixed torus.

Consider the combinatorial gluing maps

Scomb
1 : Mcomb

g,X,{t} −→Mcomb
g+1,X∪{t},

Scomb
2 : Mcomb

g,X,{t} −→Mcomb
g+1,X,{t},

where Scomb
j is obtained by simply gluing a graph G in Mcomb

g,X,{t} with the fixed graph

Gj , identifying the unique tail of Mcomb
g,X,{t} with the v-tail of Gj and renaming the new

hole by t .
It is easy to see that Scomb

2 incarnates a stabilization map (obtained by composing
twice Y and once V).

On the other hand, consider the map S1 : B�(Sg,X,{t}) → B�(Sg+1,X∪{t}), that
glues a torus S1,{y},{t ′} with one puncture and one boundary component to the unique
boundary component of Sg,X,{t}, by identifying t and t ′, and relabels the y-puncture
by t .

The composition of S1 followed by the map πt that forgets the t-marking

B�(Sg,X,{t})
S1−→ B�(Sg+1,X∪{t})

πt−→ B�(Sg+1,X)
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induces an isomorphism onHk for k � g, because it can also be obtained composing
Y and V.

Notice thatπt : B�(Sg+1,X∪{t})→ B�(Sg+1,X) can be realized as a combinatorial
forgetful map πcomb

t : Mcomb
g+1,X∪{t}(RX+ × {0})→Mcomb

g+1,X(R
X+) in the following way.

Let G be a metrized ribbon graph in Mcomb
g+1,X∪{t}(RX+ × {0}). If t is marking a

vertex of valence 3 or more, then just forget the t-marking. If t is marking a vertex
of valence 2, then forget the t marking and merge the two edges outgoing from t in
one new edge. Finally, if t is marking a univalent vertex of G lying on an edge e, then
replace G by G/e and forget the t-marking.

5.3.6 Behavior of Witten cycles. The induced homomorphism on Borel–Moore ho-
mology

(πcomb
t )∗ : HBM∗ (Mcomb

g+1,X(R
X+)) −→ HBM∗ (Mcomb

g+1,X∪{t}(RX+ × {0}))
pulls Wm∗,X back to the combinatorial class Wt

m∗+δ0,X
, corresponding to (the closure

of the locus of) ribbon graphs with one univalent vertex marked by t and mi + δ0,i
vertices of valence (2i + 3) for all i ≥ 0.

We now use the fact that, for X nonempty, there is a homotopy equivalence

E : Mcomb
g+1,X∪{t}(RX+ × R+)

∼−→Mcomb
g+1,X∪{t}(RX+ × {0})

and that E∗(W t
m∗+δ0,X

) = Wm∗+2δ0,X∪{t}.
This last phenomenon can be understood by simply observing thatE−1 corresponds

to opening the (generically univalent) t-marked vertex to a small t-marked hole, thus
producing an extra trivalent vertex.

Finally, (Scomb
1 )∗(Wm∗+2δ0,X∪{t}) = Wm∗−δ0,X,{t}, because G1 has exactly 3 triva-

lent vertices.
As a consequence, we have obtained that

(πcomb
t � E � Scomb

1 )∗ : HBM∗ (Mcomb
g+1,X(R

X+)) −→ HBM∗ (Mcomb
g,X,{t}(RX+ × R+))

is an isomorphism for g � ∗ and pulls Wm∗,X back to Wm∗−δ0,X,{t}.
The other gluing map is much simpler: the induced

(Scomb
2 )∗ : HBM∗ (Mcomb

g+1,X,{t}(RX+ × R+)) −→ HBM∗ (Mcomb
g,X,{t}(RX+ × R+))

carries Wm∗,X,{t} to Wm∗−4δ0,X,{t}, because G2 has 4 trivalent vertices.
We recall that a class in Hk(�∞,X) (i.e. a stable class) is a sequence of classes

{_
¯
g ∈ Hk(Mg,X) | g ≥ g0}, which are compatible with the stabilization maps, and

that two sequences are equivalent (i.e. they represent the same stable class) if they are
equal for large g.
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Proposition 5.11. Let m∗ = (m0,m1, . . . ) be a sequence of nonnegative integers
such that mN = 0 for large N and let |X| = n > 0. Define

c(g) = 4g − 4+ 2n−
∑
j≥1

(2j + 1)mj

and let g0 = inf{g ∈ N | c(g) ≥ 0}. Then, the collection

{Wm∗+c(g)δ0,X ∈ H 2k(Mg,X) | g ≥ g0}
is a stable class, where k =∑

j>0 j mj .

It is clear that an analogous statement can be proven for generalized Witten cycles.
Notice that Proposition 5.11 implies Miller’s result [52] thatψ and κ classes are stable.
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1 Introduction

Let g ≥ 2 be an integer. The moduli space Mg = Tg/Mg of compact Riemann
surfaces of genus g is the quotient space of Teichmüller space Tg by the natural action
of the mapping class group Mg . Since Teichmüller space is contractible, the real
cohomology of the mapping class group is isomorphic to that of the moduli space. As
was shown by Harer [14], [15], the second homology of Mg is of rank 1 if g ≥ 3. This
means that there exists a nontrivial second de Rham cohomology class on Mg which is
unique up to a constant factor. But several canonical 2-forms on the moduli space have
been constructed in various geometric contexts, and they differ from each other. In this
chapter we review some constructions of such canonical 2-forms in order to provide
material for future research on the “secondary geometry” of the moduli space Mg .

The signature of the total space of a fiber bundle is not necessarily equal to the
product of the signatures of the base space and the fiber. The first example for this
phenomenon was given by Kodaira [27] and Atiyah [6], who constructed a certain
branched covering space of the product of two compact Riemann surfaces. The cover-
ing space has non-zero signature, while the signature of any compact Riemann surface
is zero. We may regard the covering space as a family of compact Riemann surfaces
parametrized by a compact Riemann surface, so that it defines a non-trivial 2-cycle
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on the space Mg . As was formulated by Meyer [30], [31], the signature of the total
space of a family of compact Riemann surfaces defines a non-trivial 2-cocycle of the
mapping class group Mg and this provides a non-trivial cohomology class of degree 2
on the space Mg . Nowadays this cocycle is called the Meyer cocycle and it has been
playing an essential role in the topological study of fibered complex surfaces. See [4]
and [5] for details.

The first and the second Betti numbers of the space Mg , or, equivalently, those of
the group Mg , are given by

b1(Mg) = 0, ([41], [45], [14, p. 223]), (1.1)

b2(Mg) = 1, if g ≥ 3 ([14], [15]). (1.2)

For alternative computations of b2(Mg), see [2], [28], [44]. The group H 2(Mg;R) is
generated by the cohomology class of the Meyer cocycle. In the case g = 2 we have
b2(M2) = 0 because of Igusa’s result M2 = C

3/(Z/5) � ∗ (cf. [12]).
Mumford [42] and Morita [33] independently introduced a series of cohomology

classes en = (−1)n+1κn ∈ H 2n(Mg), n ≥ 1, the Morita–Mumford classes or the
tautological classes. They are defined as follows. Let π : Cg → Mg be the universal
family of compact Riemann surfaces of genus g. The relative tangent bundle of the
map π , TCg/Mg , the kernel of the differential dπ : TCg → π∗TMg , is a complex
line V-bundle over Cg . The n-th Morita–Mumford class en = (−1)n+1κn, n ≥ 1,
is defined to be the integral of the (n + 1)-st power of the Chern class of the bundle
T ×

Cg/Mg
along the fiber

en = (−1)n+1κn =
∫

fiber
c1(T

×
Cg/Mg

)n+1 ∈ H 2n(Mg). (1.3)

The first one e1 = κ1 is 3 times the cohomology class of the Meyer cocycle. As was
proved by Morita [34] and Miller [32], the Morita–Mumford classes are algebraically
independent in the stable range ∗ < 2

3g [16] of the cohomology algebra H ∗(Mg;R).
Their proofs generalize the construction of Kodaira and Atiyah. Madsen and Weiss
[29] proved that the cohomology algebra H ∗(Mg;R) in the stable range is generated
by the Morita–Mumford classes.

From the results (1.1) and (1.2) the simplest non-trivial cohomology classes on
Mg are of degree 2, and they are unique up to a constant factor. But several 2-forms
on Mg , or, equivalently, Mg-equivariant 2-forms on Teichmüller space Tg , have been
canonically constructed in various geometric contexts.

From the uniformization theorem any compact Riemann surface C of genus g ≥ 2
admits a unique hyperbolic metric. The volume form of the hyperbolic metric defines
theWeil–Petersson pairing on the cotangent spaceT ∗[C]Mg involved with no addditional
information. As was shown by Wolpert [49] the Weil–Petersson–Kähler form ωWP

represents the first Morita–Mumford class e1. Thus we obtain a canonical 2-form
representing e1.
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The period map is a canonical map defined on Teichmüller space into the Siegel
upper halfspace Hg . We have a canonical 2-form on Hg whose pullback represents
the class e1 on the moduli space Mg .

We have another canonical metric on a compact Riemann surface. A natural Her-
mitian product on the space of holomorphic 1-forms defines the volume form B in
5.3 which induces a Hermitian metric on the Riemann surface. The Arakelov–Green
function is derived from the volume form B. As will be stated in §7 and §8, a higher
analogue of the period map is constructed and yields other canonical 2-forms repre-
senting e1. These forms are closely related to the volume form B.

All of them differ from each other. As to 2-forms representing non-trivial cohomo-
logy classes of degree 2 on the moduli space Mg , the term ‘canonical’ does not imply
‘unique’. The difference of such forms should induce some secondary object on the
moduli space Mg . Assume g ≥ 3. If we have two real (1, 1)-forms ψ1 and ψ2 on
Mg representing e1, then there exists a real-valued function f ∈ C∞(M;R) such that

ψ2 − ψ1 =
√−1
2π ∂∂̄f . Such a function f is unique up to a constant. See Lemma 8.1.

This function captures the difference between these two forms, so that it should de-
scribe a certain relation between the two geometric contexts behind these forms.

In this chapter we review some constructions of canonical 2-forms. In §2 we
give a short review on the cotangent spaces of moduli spaces. They are naturally
isomorphic to some spaces of quadratic differentials. In §3 we take a quick glance at
the Weil–Petersson Kähler form, which is related to the Virasoro cocycle through the
Krichever construction. The most classical 2-form on Mg is the pullback of the first
Chern form on the Siegel upper halfspace Hg by the period map Jac, or, equivalently,
the first Chern form of the Hodge bundle on Mg . We explain this form in §§4 and 5.
The Hodge bundle yields all the odd Morita–Mumford classes but not the even ones.
We can obtain other canonical differential forms on the moduli space representing all
the Morita–Mumford class ei , i ≥ 1, through a higher analogue of the period map,
and this is described in §§6 and 7. Among them some 2-forms seem to be related to
Arakelov geometry, as will be discussed in §8.

Acknowledgments. First of all the author thanks Athanase Papadopoulos, the editor,
for careful reading and valuable comments on this chapter. Furthermore he thanks
Leon Takhtajan for helpful comments on an earlier version. This work was partially
supported by Grant-in-Aid for Scientific Research (A) (No.18204002), the Japan So-
ciety for Promotion of Sciences.

2 The cotangent space of the moduli space

Let C be a compact Riemann surface of genus g ≥ 2, P0 a point on C. Then we
denote by Hq(C; aK + bP0), q = 0, 1, and a, b ∈ Z, the q-th cohomology group
Hq(C;OC(T ∗C⊗a ⊗ [P0]⊗b)). Moreover we denote by �q(C) the complex-valued
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q-currents on C for 0 ≤ q ≤ 2. The Hodge ∗-operator ∗: (T ∗
R
C)⊗C→ (T ∗

R
C)⊗C

on the cotangent bundle ofC depends only on the complex structure ofC. The−√−1-
eigenspace is the holomorphic cotangent bundle T ∗C, and the

√−1-eigenspace is the
antiholomorphic cotangent bundle T ∗C. The operator ∗ decomposes the space�1(C)

into the ±√−1-eigenspaces

�1(C) = �1,0(C)⊕�0,1(C),

where�1,0(C) is the−√−1-eigenspace and�0,1(C) the
√−1-eigenspace. Through-

out this chapter we denote by ϕ′ and ϕ′′ the (1, 0)- and the (0, 1)-parts of ϕ ∈ �1(C),
respectively, i.e.,

ϕ = ϕ′ + ϕ′′, ∗ϕ = −√−1ϕ′ + √−1ϕ′′.

If ϕ is harmonic, then ϕ′ is holomorphic and ϕ′′ anti-holomorphic.
The Kodaira–Spencer map gives a natural isomorphism

T[C]Mg = H 1(C;−K). (2.1)

To look at the isomorphism (2.1) more explicitly, consider a C∞ family of compact
Riemann surfaces Ct , t ∈ R, |t |  1, with C0 = C. The family {Ct } is trivial as a
C∞ fiber bundle over an interval near t = 0, so that we have a C∞ family of C∞
diffeomorphisms f t : C → Ct with f 0 = 1C . In general, if© =©t is a “function”
in t ∈ R, |t |  1, then we write simply

�© = d

dt

∣∣∣
t=0
©t .

For example, we denote
�
μ = d

dt

∣∣∣
t=0
μ(f t ).

Here μ(f t ) is the complex dilatation of the diffeomorphism f t . Let z1 be a complex
coordinate on C, and ζ1 on Ct . The complex dilatation μ(f t ) is defined locally by

μ(f t ) = μ(f t )(z1)
d

dz1
⊗ dz1 =

(ζ1 � f t )z1

(ζ1 � f t )z1

d

dz1
⊗ dz1,

which does not depend on the choice of the coordinates z1 and ζ1. The Dolbeault

cohomology class [ �μ] ∈ H 1(C;−K) is exactly the tangent vector d
dt

∣∣
t=0[Ct ] ∈

T[C]Mg .

We define a linear operator S = S[ �μ] : �1(C)→ �1(C) by

S(ϕ) = S(ϕ′)+ S(ϕ′′) := −2ϕ′
�
μ− 2ϕ′′

�
μ

for ϕ = ϕ′ + ϕ′′, ϕ′ ∈ �1,0(C), ϕ′′ ∈ �0,1(C). From straightforward computation
we have

�∗ = ∗S = −S∗: �1(C)→ �1(C). (2.2)
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By Serre duality we have a natural isomorphism

T ∗[C]Mg = H 0(C; 2K). (2.3)

The space H 0(C; 2K) consists of the holomorphic quadratic differentials on C. For

any holomorphic quadratic differential q the covariant tensor q
�
μ can be regarded as a

(1, 1)-form on C. The integral
∫
C
q

�
μ is just the value of the covector q at the tangent

vector [ �μ] = d
dt

∣∣
t=0[Ct ].

Let Cg denote the moduli space of pointed compact Riemann surfaces (C, P0) of
genus g with P0 ∈ C. The forgetful map π : Cg → Mg , [C,P0] �→ [C], can be
interpreted as the universal family of compact Riemann surfaces on the moduli space
Mg . We identify

T[C,P0]Cg = H 1(C;−K − P0) and T ∗[C,P0]Cg = H 0(C; 2K + P0) (2.4)

in a way similar to the space Mg .
The relative tangent bundle of the forgetful map π with the zero section deleted

T ×
Cg/Mg

= TCg/Mg \ (zero section)

can be interpreted as the moduli space of triples (C, P0, v) of genus g. Here C is a
compact Riemann surface of genus g, P0 ∈ C, and v ∈ TP0C\{0}. Similarly the space
of quadratic differentials H 0(C; 2K + 2P0) is identified with the cotangent space of
T ×

Cg/Mg

T ∗[C,P0,v]T
×
Cg/Mg

= H 0(C; 2K + 2P0). (2.5)

Moreover this space is closely related to Ehresmann connections on the bundleTCg/Mg .
In general, let 
 : L → M be a holomorphic line bundle over a complex manifold
M , and L× the total space with the zero section deleted L× = L \ (zero section). We
denote by Ra the right action of a ∈ C

× := C \ {0} on the space L×, and by Z the
vector field on L× generated by the action Ra

Z := d

dt

∣∣∣
t=0
Ret .

An Ehresmann connection A (of type (1, 0)) on the bundle L is a (1, 0)-form on the
space L× with the conditions

A(Z) = 1,

and

Ret
∗A = A, for all t ∈ C

([7], [26]). In other words, it is a splitting of the extension of holomorphic vector
bundles over M

0→ T ∗M 
 ∗−−→ (T ∗L×)/C× Z−→ C→ 0.
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Then there exists a unique (1, 1)-form c1(A) on M such that
√−1
2π dA = 
 ∗c1(A).

The form c1(A) is, by definition, the Chern form of the connection A and represents
the first Chern class of the line bundle L

[c1(A)] = c1(L) ∈ H 2(M;R).
Now we let M = Cg and L = TCg/Mg . By straightforward computation we have

a natural commutative diagram:

0 �� T ∗[C,P0]M

 ∗ �� ((T ∗L×)/C×)[C,P0]

��

Z �� C �� 0

0 �� H 0(C; 2K + P0)
�� H 0(C; 2K + 2P0)

2π
√−1 ResP0 �� C �� 0.

Here ResP0 : H 0(C; 2K + 2P0)→ C is the residue map of quadratic differentials at
P0 defined by

ResP0(q−2z
−2 + q−1z

−1 + q0 + q1z
1 + · · · )dz⊗2 = q−2,

where z is a complex coordinate centered at P0. It is easy to check that q−2 does
not depend on the choice of the coordinate z. Consequently any C∞ family q =
{q(C, P0)}[C,P0]∈Cg , q(C, P0) ∈ H 0(C; 2K + 2P0) of quadratic differentials para-
metrized by the space Cg satisfying the condition ResP0 q(C, P0) = 1

2π
√−1

for any
[C,P0] ∈ Cg corresponds to an Ehresmann connection on the relative tangent bundle

TCg/Mg . The (1, 1) form
√−1
2π ∂̄q on the space Cg represents the first Chern class of

the bundle TCg/Mg (see [20]):
√−1

2π
[∂̄q] = c1(TCg/Mg ) ∈ H 2(Cg;R). (2.6)

3 The Weil–Petersson Kähler form

As was shown in §2 the cotangent space of the moduli space Mg at [C] is naturally
isomorphic to the space of holomorphic quadratic differentials,H 0(C; 2K). Let dvol
denote the hyperbolic volume form on the Riemann surface C. It is regarded as a
Hermitian metric on the relative tangent bundle TCg/Mg . For any two differentials
q1, q2 ∈ H 0(C; 2K) the Weil–Petersson pairing 〈q1, q2〉WP is defined by the integral

〈q1, q2〉WP =
∫
C

q1q2/dvol .

Here q1q2/dvol is regarded as a (1, 1)-form on C. The pairing induces a Hermitian
metric on the moduli space Mg , the Weil–Petersson metric. Ahlfors [1] proved that it
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is Kähler. See [10] for an alternative gauge-theoretic proof. Let ωWP denote the Kähler
form of the Weil–Petersson metric.

Now recall the original definition of the i-th Morita–Mumford class ei = (−1)i+1κi ,
i ≥ 1 ([42], [33]). It is defined to be the integral along the fiber of the (i+1)-st power
of the first Chern class of the relative tangent bundle TCg/Mg :

ei = (−1)i+1κi =
∫

fiber
c1(TCg/Mg )

i+1 ∈ H 2i (Mg). (3.1)

It is one of the most orthodox ways to obtain differential forms representing the Morita–
Mumford classes to take the integral of powers of the hyperbolic Chern form of the
relative tangent bundle TCg/Mg along the fiber. This was carried out by Wolpert [49].

He computed the Chern form c
hyperbolic
1 (TCg/Mg ) of the hyperbolic metric explicitly,

and he proved that ∫
fiber

c
hyperbolic
1 (TCg/Mg )

2 = 1

2π2ωWP (3.2)

as differential forms on the moduli space Mg . As a corollary we have

1

2π2 [ωWP] = e1 ∈ H 2(Mg;R).

Furthermore Wolpert [50] gave a description of the Weil–Petersson Kähler form in
terms of the Fenchel–Nielsen coordinates (τj , �j ), 1 ≤ j ≤ 3g − 3, for any pants
decomposition of the surface

ωWP =
∑

d�i ∧ dτi. (3.3)

Here �j denotes the geodesic length of each simple closed curve in the decomposition,
and τj ∈ R the hyperbolic displacement parameter. Penner [43] described explicitly
the pullback of ωWP to the decorated Teichmüller space. Goldman [11] generalized the
Weil–Petersson geometry to the space of surface group representations in a reductive
Lie group.

Now we consider the Lie algebra d of complex analytic vector fields on the punc-
tured disk {z ∈ C; 0 < |z| < ε}, 0 < ε  1. The 2-cochain vir on d defined
by

vir

(
f1(z)

d

dz
, f2(z)

d

dz

)
:= 1

2π
√−1

∮
|z|=1

det

(
f ′1(z) f ′2(z)
f ′′1 (z) f ′′2 (z)

)
dz

=
√−1

2π

∮
|z|=1

det

(
f1(z) f2(z)

f ′′′1 (z) f ′′′2 (z)

)
dz

is a cocycle and it is called the Virasoro cocycle. Its cohomology class generates the
second Lie algebra cohomology group H 2(d) = C.
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Arbarello, De Concini, Kac and Procesi [3] established an isomorphism of H 2(d)
onto the second cohomology group of Mg

ν : H 2(d)
∼=−−→ H 2(Mg;C) (3.4)

induced by the Krichever construction.
For a local coordinate z on a Riemann surface one can define a local differential

operator, or a local complex analytic Gel’fand–Fuks 1-cocycle with values in quadratic
differentials by

∇d/dz2 : f (z) d
dz
�→ 1

6
f ′′′(z)(dz)⊗2

(see [19, p. 666]). The cocycle ∇d/dz2 is equivalent to a projective structure. In fact, if
w is another coordinate, then

∇d/dw2 X − ∇d/dz2 X = LX

({w, z}(dz)⊗2)
for any local complex analytic vector field X. Here {w, z} denotes the Schwarzian
derivative. In particular, the hyperbolic structure on a (hyperbolic) Riemann surface

defines a global operator ∇hyperbolic
2 .

The Krichever construction relates the 2-cocycle vir with the operator ∇hyperbolic
2 .

By straightforward computation using the Bers embedding we have

∂̄∇hyperbolic
2 = 8ωWP (3.5)

as (1, 1)-forms on the moduli space Mg . This result, the first variation of the hyperbolic
structure coincides with ωWP, was first proved by Zograf and Takhtajan [51, p. 310].

4 The first Chern form on the Siegel upper halfspace

The Hodge bundle�Mg is defined to be the holomorphic vector bundle on Mg whose
fiber over [C] is the space of holomorphic 1-forms on C

�Mg =
∐
[C]∈Mg

H 0(C;K).

We write simply c1 for the first Chern class of �Mg

c1 = c1(�Mg ) ∈ H 2(Mg;R).
The bundle �Mg comes from a symplectic equivariant vector bundle on the Siegel
upper halfspace Hg . In fact, the space Hg can be identified with the space of almost
complex structures J on the real 2g-dimensional symplectic vector space (R2g, ·)with
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the conditions

Jx · Jy = x · y, for all x, y ∈ R
2g,

x · Jx > 0, for all x ∈ R
2g \ {0}.

We have a holomorphic vector bundle E′Hg
on Hg whose fiber over J is the −√−1-

eigenspace of J . We have a natural isomorphism of vector bundles

T ∗Hg = Sym2 E′Hg
. (4.1)

For each Riemann surface C the Hodge ∗-operator on the 1-forms induces such an
almost complex structure on the space of real harmonic 1-forms. This induces a
holomorphic map Jac : Mg → Hg/ Sp2g(Z) known as the period map in the classical
context. The pullback of E′Hg

by the map Jac is exactly the Hodge bundle �Mg .
Thus the cohomology class c1 can be regarded as an integral cohomology class

of the Siegel modular group Sp2g(Z), c1 ∈ H 2(Sp2g(Z);Z). Meyer [30] proved that
the cohomology class of the Meyer cocycle is equal to 4c1 ∈ H 2(Sp2g(Z);Z). From
the Grothendieck–Riemann–Roch formula, or, equivalently, the Atiyah–Singer index
theorem for families, it follows that

1

12
e1 = c1 ∈ H 2(Mg;R). (4.2)

To describe a canonical 2-form representing c1(E
′
Hg
) we consider the quotient vector

bundle E′′Hg
:= (Hg × C

2g)/E′Hg
, and the family of projections π = {πJ }J∈Hg

on

C
2g , πJ := 1

2 (1 −
√−1J ), parametrized by Hg . Then {πJ � d}J∈Hg

is a covariant
derivative ∇ of type (1, 0) on the bundle E′′Hg

∼= ∐
J∈Hg

ImageπJ , whose curvature

form R∇ is given by
R∇ = π(∂π)(∂̄π). (4.3)

The 2-form c1(∇) defined by c1(∇) =
√−1
2π traceR∇ represents c1(E

′
Hg
). Let Jα(t) ∈

Hg , |t |  1, α = 1, 2, be C∞ paths on Hg with J1(0) = J2(0) = J . Then, one can
compute

c1(∇)J = 1

8π
trace(

�
J1 J

�
J2). (4.4)

In the next section we prove Rauch’s variational formula to obtain the pullback of
c1(∇)J by the period map Jac explicitly.

5 Rauch’s variational formula

Rauch’s variational formula describes the differential of the period map Jac. Let C
be a compact Riemann surface of genus g. We denote by H the real first homology
group H1(C;R). Consider the map H ∗ = H 1(C;R) → �1(C) assigning to each
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cohomology class the harmonic 1-form representing it. The map can be regarded as
an H -valued 1-form ω(1) ∈ �1(C)⊗H .

Let {Xi,Xg+i}gi=1 be a symplectic basis of HC = H1(C;C)
Xi ·Xg+j = δij , Xi ·Xj = Xg+i ·Xg+j = 0, 1 ≤ i, j ≤ g,

and {ξi, ξg+i}gi=1 ⊂ �1(C) the basis of the harmonic 1-forms dual to {Xi,Xg+i}gi=1.
Then we have

ω(1) =
g∑
i=1

ξiXi + ξg+iXg+i ∈ �1(C)⊗HC.

In particular, if {ψi}gi=1 ⊂ H 0(C;K) is an orthonormal basis
√−1

2

∫
C

ψi ∧ ψj = δij , 1 ≤ i, j ≤ g, (5.1)

then we obtain

ω(1) =
g∑
i=1

ψiYi + ψiYi, (5.2)

where {Yi, Yg+i}gi=1 ⊂ HC is the dual basis of the symplectic basis
{[ψi], √−1

2 [ψi]
}g
i=1

of H ∗
C
= H 1(C;C). Since the complete linear system of the canonical divisor on the

complex algebraic curve C has no basepoint, the 2-form

B = 1

2g
ω(1) · ω(1) =

√−1

2g

g∑
i=1

ψi ∧ ψi ∈ �2(C) (5.3)

is a volume form on C.
Now we recall the Hodge decomposition of the 1-forms on C. We have an exact

sequence

0→ C→ �0(C)
d∗d−−→ �2(C)

∫
C−−→ C→ 0.

The vector space C on the left side means the constant functions. A Green operator
� : �2(C)→ �0(C) is a linear map satisfying the property

d ∗ d�� = �
for any� ∈ �2(C)with

∫
C
� = 0. In this chapter we use two sorts of Green operators

�̂ = �̂C and � = �(C,P0). The former is characterized by the conditions

d ∗ d�̂(�) = �−
(∫

C

�

)
B and

∫
C

�̂(�)B = 0 (5.4)

for any� ∈ �2(C). Let δP0 : C∞(C)→ C, f �→ f (P0), be the delta current on C at
the point P0. We define the latter� to be a linear map with values in�0(C)/C instead
of�0(C). Then the operator d� : �2(C)→ �1(C)makes sense, and the operator�
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is defined by the condition

d ∗ d�� = �−
(∫

C

�

)
δP0

for any � ∈ �2(C).
Any Green operator � induces the Hodge decomposition of the 1-currents

ϕ = Hϕ + d�d ∗ ϕ + ∗d�dϕ (5.5)

for any ϕ ∈ �1(C), where H : �1(C) → �1(C) is the harmonic projection on the
1-currents on C.

In the setting of §2 the first variation of ω(1) is given by

�
ω(1) = −d�d ∗ Sω(1). (5.6)

In fact, differentiating d ∗ ω(1) = 0, we get

d ∗ �
ω(1) = −d �∗ω(1) = −d ∗ Sω(1).

Since f t∗ω(1) is cohomologous to ω(1), we have some function u such that
�
ω(1) = du.

Hence from (5.5) we obtain

�
ω(1) = d�d ∗ �

ω(1) = −d�d ∗ ω(1),
as was to be shown.

Theorem 5.1 (Rauch). The diagram

T ∗[C]Mg T ∗[Jac(C)]Hg/ Sp2g(Z)
(d Jac)∗��

H 0(C; 2K) Sym2H 0(C;K)2
√−1 (multiplication)��

commutes. Here the lower horizontal arrow mapsψ1⊗ψ2 to the quadratic differential
2
√−1ψ1ψ2 for any 1-forms ψ1 and ψ2 ∈ H 0(C;K).

Proof. The integral
∫
C
∗ω(1) ∧ ω(1) ∈ H ⊗H = H ∗ ⊗H = Hom(H,H) coincides

with the almost complex structure onH = H1(C;R) induced by the Hodge∗-operator.

Since ω(1) is harmonic and
�
ω(1) is d-exact by (5.6), we have∫

C

∗ω(1) ∧ �
ω(1) = −

∫
C

ω(1) ∧ ∗ �
ω(1) = 0.
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Hence(∫
C

∗ω(1) ∧ ω(1)
)�
=

∫
C

�∗ω(1) ∧ ω(1) =
∫
C

(∗Sω(1)) ∧ ω(1)

= 2
√−1

∫
C

ω(1)
′ω(1)′

�
μ− 2

√−1

( ∫
C

ω(1)′ω(1)′
�
μ

)
.

This proves the theorem.

Substituting the theorem into the formula (4.4) we have

Corollary 5.2.

Jac∗c1(∇) = 1

8π
√−1

g∑
i,j=1

ψiψj ⊗ ψiψj ∈ T ∗[C]Mg ⊗ T ∗[C]Mg.

Here {ψi}gi=1 ⊂ H 0(C;K) is any orthonormal basis (5.1).

The elementary polynomials σ1, . . . , σg in indeterminates x1, . . . , xg are given by∏g
i=1(t − xi) = tg +

∑g
k=1(−1)kσktg−k . The equation

∑g
i=1 xi

m = sm(σ1, . . . , σg)

defines them-th Newton polynomial sm. Them-th Newton class of the Hodge bundle
� = �Mg is defined by

sm(�) = sm(c1(�), . . . , cg(�)) ∈ H 2m(Mg;R),
where ck(�) is the k-th Chern class of the bundle �.

The complex conjugate � satisfies sm(�) = (−1)msm(�). Since �⊕� is a flat
vector bundle on Mg whose fiber over [C] is the homology group H1(C;C), we have

s2n(�) = 1

2
s2n(�⊕�) = 0.

From the Grothendieck–Riemann–Roch formula, or, equivalently, the Atiyah–Singer
index theorem for families, it follows that

e2n−1 = (−1)n−1 2n

B2n
s2n−1(�) ∈ H 4n−2(Mg;R). (5.7)

Here B2n is the n-th Bernoulli number. In the case n = 1 this is exactly the for-
mula (4.2).

Hence the Hodge bundle yields all the odd Morita–Mumford classes, but not the
even ones. To get all the Morita–Mumford classes we introduce a higher analogue of
the period map, as will be discussed in the succeeding sections.
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6 The Earle class and the twisted Morita–Mumford classes

Let �g be a closed oriented C∞ surface of genus g, p0 ∈ �g a point, and v0 ∈
Tp0�g \ {0} a non-zero tangent vector at the point p0. We denote by Mg , Mg,∗ and
Mg,1 the mapping class groups for the surface �g , the pointed surface (�g, p0) and
the triple (�g, p0, v0) respectively. They are the orbifold fundamental groups of the
spaces Mg , Cg and T ×

Cg/Mg
. The fundamental groupπ1(�g, p0) is naturally embedded

into the group Mg,∗ (cf. [40]).
By abuse of notation letH denote the real first homology group of�g ,H1(�g;R),

on which the mapping class groups act in an obvious way. The moduleH can be inter-
preted as a flat vector bundle on the moduli space Mg . In 1978 Earle [9] constructed
an explicit 1-cocycle ψ : Mg,∗ → H such that (2 − 2g)ψ has values in H1(�g;Z),
and ψ |π1(�g) is equal to the abelianization map of the group π1(�g). Later Morita
[35] independently discovered a cohomology class k ∈ H 1(Mg,∗;H1(�g;Z)) which
is equal to [(2− 2g)ψ]. Furthermore he proved that

H 1(Mg,∗;H1(�g;Z)) = Zk ∼= Z (6.1)

for g ≥ 2. The author would like to propose the class k should be called the Earle
class.

The square of the class k is related to the first Morita–Mumford class e1 = κ1
through the intersection pairing

m : H ⊗H = H1(�g;R)⊗H1(�g;R)→ R. (6.2)

Morita [36] proved that

m∗(k⊗2) = −e1 + 2g(2− 2g)e ∈ H 2(Mg,∗). (6.3)

Here e is the first Chern class of the relative tangent bundle c1(TCg/Mg ) ∈ H 2(Cg) =
H 2(Mg,∗).

These phenomena have a higher analogue. The twisted Morita–Mumford class
mi,j ∈ H 2i+j−2(Mg,1;�jH), i, j ≥ 0, was introduced in [21]. We have m1,1 = k
and mi+1,0 = ei , i ≥ 1. All the cohomology classes on the mapping class groups
with trivial coefficients (even in the unstable range) obtained from any products of the
twisted Morita–Mumford classes by contracting the coefficients using the intersection
pairing are exactly the polynomials in the Morita–Mumford classes, see [25].

This fact is closely related to the Johnson homomorphisms on the mapping class
group. The fundamental group π1(�g, p0, v0) = π1(�g \ {p0}, v0) with tangential
basepoint v0 is a free group of rank 2g. Let �k , k ≥ 0, denote the lower central series
of the free group π1(�g, p0, v0). We have �0 = π1(�g, p0, v0) and �k+1 = [�k, �0]
for k ≥ 0. The quotient �1/�2 is naturally isomorphic to

∧2
H1(�g;Z) ⊂ ∧2

H .
Let Ig,1 be the Torelli group, that is, the kernel of the natural action of Mg,1 on the
homology group H1(�g;Z). For any ϕ ∈ Ig,1 and γ ∈ �0, the difference γ−1ϕ(γ )
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belongs to �1 from the definition of Ig,1. Hence we can define a homomorphism

τ1(ϕ) : H1(�g;Z)→
∧2

H1(�g;Z), [γ ] �→ γ−1ϕ(γ ) mod �2.

It is easy to check this induces a homomorphism τ1 : Ig,1 → H ∗⊗∧2
H ∼= H⊗∧2

H .
The last isomorphism comes from Poincaré duality. Johnson [18] proved that the
image τ1(Ig,1) is included in

∧3
H . The homomorphism τ1 is called the first Johnson

homomorphism. Morita [38] proved there exists a unique cohomology class k̃ ∈
H 1(Mg,1;∧3

H)which restricts to τ1 on the Torelli group Ig,1. We call it the extended
first Johnson homomorphism. See [40, §7] for more information on the Johnson
homomorphisms.

The class 1
6m0,3 is equal to the extended first Johnson homomorphism k̃ : Mg,1 →∧3

H ([25]). Each of the Morita–Mumford classes is obtained from some power of k̃
by contracting the coefficients using the intersection pairingm (see [39]). Conversely
for any Sp-module V and any Sp-homomorphism f : ( ∧3

H
)⊗n → V induced by

the intersection pairing, the cohomology class f∗(k̃
⊗n
) is a polynomial in the twisted

Morita–Mumford class [25]. An extension of the second Johnson homomorphism to
the whole mapping class group provides a fundamental relation among the twisted
Morita–Mumford classes (see [22]). In the next section we introduce a flat connection
on a vector bundle on the space T ×

Cg/Mg
, whose holonomy is an extension of the

Johnson homomorphisms to the whole mapping class group Mg,1.

7 A higher analgue of the period map

A complex-analytic counterpart of the first Johnson homomorphism is the (pointed)
harmonic volume introduced by Harris [17], [46]. It is a real analytic section of a fiber
bundle on the moduli space Cg whose fiber over [C,P0] is (∧3

H1(C;Z))⊗ (R/Z).
The first variation of the (pointed) harmonic volumes is a twisted 1-form representing
the cohomology class [k̃] (see [23]).

To obtain “canonical” differential forms representing all the twisted Morita–Mum-
ford classes and their higher relations, we construct a higher analogue of the classical
period map and the harmonic volume, the harmonic Magnus expansion θ : Tg,1 → �2g

([23]). The space Tg,1 = ˜T ×
Cg/Mg

is the Teichmüller space of triples (C, P0, v) of
genus g. Here C is a compact Riemann surface of genus g, P0 ∈ C, and v a non-
zero tangent vector of C at P0 as in §2. For any triple (C, P0, v) one can define
the fundamental group of the complement C \ {P0} with the tangential basepoint v
denoted by π1(C, P0, v), which is a free group of rank 2g. The space�n is the set of
all Magnus expansions of the free group Fn of rank n ≥ 2 in a wider sense stated as
follows.
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We denote byH the first real homology group of the group Fn,H1(Fn;R),H ∗ the
first real cohomology group of Fn, H 1(Fn;R), and [γ ] ∈ H the homology class of
γ ∈ Fn. The completed tensor algebra generated by H , T̂ = T̂ (H) = ∏∞

m=0H
⊗m,

has a decreasing filtration of two-sided ideals {T̂p}p≥1 defined by T̂p = ∏
m≥pH⊗m.

The subset 1+ T̂ 1 is a subgroup of the multiplicative group of the algebra T̂ . We call a
map θ : Fn→ 1+ T̂ 1 a Magnus expansion of the free groupFn in a wider sense ([22]),
if θ : Fn → 1 + T̂ 1 is a group homomorphism, and if θ(γ ) ≡ 1 + [γ ] (mod T̂ 2)

for any γ ∈ Fn. One can endow the set of all Magnus expansions �n with a natural
structure of a (projective limit of) real analytic manifold(s). A certain (projective limit
of) Lie group(s) IA(T̂ ) acts on �n in a free and transitive way. This induces a series
of 1-forms ηp ∈ �1(�n)⊗ H ∗ ⊗ H⊗(p+1), p ≥ 1, the Maurer–Cartan forms of the
action of IA(T̂ ), which are invariant under a natural action of the automorphism group
of the group Fn, Aut(Fn). The Maurer–Cartan formula dη = η∧η allows us to regard
the forms ηp as an equivariant flat connection on the vector bundle �n × H ∗ ⊗ T̂2.
The holonomy of the connection is an extension of all the Johnson homomorphisms
to the whole group Aut(Fn). The 1-forms ηp represent the twisted Morita–Mumford
classes on the group Aut(Fn), cf. [22], [23].

Let (C, P0, v) be a triple of genus g. From now on we denote by H the real first
homology group H1(C;R). As in §5 we denote by δP0 : C∞(C)→ R, f �→ f (P0),
the delta 2-current onC atP0. Then there exists a T̂1-valued 1-currentω ∈ �1(C)⊗T̂1,
satisfying the following 3 conditions

(1) dω = ω ∧ ω − I · δP0 , where I ∈ H⊗2 is the intersection form.

(2) The first term of ω is equal to ω(1) ∈ �1(C)⊗H introduced in §5.

(3)
∫
C
(ω − ω(1)) ∧ ∗ϕ = 0 for any closed 1-form ϕ and each p ≥ 2.

Using Chen’s iterated integrals [8], we can define a Magnus expansion

θ = θ(C,P0,v) : π1(C, P0, v)→ 1+ T̂1(H1(C;R)), [�] �→ 1+
∞∑
m=1

∫
�

ωω . . . ω︸ ︷︷ ︸
m

.

Let a point p0 ∈ �g and a non-zero tangent vector v0 ∈ Tp0�g \ {0} be fixed as in
§6. Moreover we fix an isomorphism π1(�g, p0, v0) ∼= F2g . A marking α of a triple
(C, P0, v) is an orientation-preserving diffeomorphism of �g onto C satisfying the
conditions α(p0) = P0 and (dα)p0(v0) = v. For any marked triple [(C, P0, v), α]we
define a Magnus expansion of the free group F2g by

F2g ∼= π1(�g, p0, v0)
α∗−−→ π1(C, P0, v)

θ(C,P0,v)−−−−−→ 1+ T̂1(H1(C;R)) α∗−1−−→ 1+ T̂1.

Consequently, the Magnus expansions θ(C,P0,v) for all the triples (C, P0, v) define a

canonical real analytic map θ : ˜T ×
Cg/Mg

= Tg,1 → �2g , which we call the harmonic
Magnus expansion on the universal family of Riemann surfaces. The pullbacks of
the Maurer-Cartan forms ηp define a flat connection on a vector bundle on the space
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T ×
Cg/Mg

, and give the canonical differential forms representing the Morita–Mumford
classes and their higher relations.

Theorem 7.1 ([23]). For any [C,P0, v, α] ∈ Tg,1 we have

(θ∗η)[C,P0,v,α] = 2�(N(ω′ω′)− 2ω(1)
′ω(1)′) ∈ T ∗[C,P0,v,α]Tg,1 ⊗ T̂3.

Here N : T̂1 → T̂1 is defined by N |H⊗m =
∑m−1
k=0

(
1 2 ··· m−1 m
2 3 ··· m 1

)k
, and the mero-

morphic quadratic differential N(ω′ω′) is regarded as a (1, 0)-cotangent vector at
[C,P0, v, α] ∈ Tg,1 in a natural way.

The third homogeneous termN(ω′ω′)(3) = N(ω′(1)ω′(2)+ω′(2)ω′(1)) is the first vari-
ation of the (pointed) harmonic volumes of pointed Riemann surfaces. It represents
the extended first Johnson homomorphism k̃. The higher terms provide higher rela-
tions among the twisted Morita–Mumford classes. Hence all of the Morita–Mumford
classes are represented by some algebraic combinations of N(ω′ω′).

The second term coincides with 2ω(1)′ω(1)′, which is exactly the first variation
of the period matrices given by Rauch’s formula in §5. Hence we may regard the
harmonic Magnus expansion as a higher analogue of the classical period map Jac.

8 Secondary objects on the moduli space

The determinant of the Laplacian acting on the space of k-differentials on Riemann
surfaces is a ‘secondary’object on the moduli space. Zograf and Takhtajan [52] proved
that it yields the difference on the moduli space of compact Riemann surfaces, Mg ,
between a multiple of the Weil–Petersson form ωWP and the Chern form of the Hodge
line bundle for the k-differentials induced by the hyperbolic metric. Moreover, they
studied analogous phenomena for punctured Riemann surfaces to introduce their Käh-
ler metric, the Zograf–Takhtajan metric, on the moduli space of punctured Riemann
surfaces [48].

In this section we discuss other secondary objects, which come from the higher
analogue of the period map introduced in §7. Now we can obtain explicit 2-forms
from the connection form N(ω′ω′) on T ×

Cg/Mg
, eJ on Cg and eJ1 on Mg . Consider the

quadratic differential η′2 defined by

η′2 = N(ω′ω′)(4) ∈ H 0(C; 2K + 2P0)⊗H⊗4,

which satisfies
1

2g(2g + 1)
ResP0

(
(m⊗m)(η′2)

) = − 1

8π2 .

Here m is the intersection pairing m : H ⊗H → R as in (6.2). We define

eJ = −2

2g(2g + 1)
∂̄((m⊗m)(η′2)) ∈ �1,1(Cg).
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From (2.6) eJ represents the first Chern class of the relative tangent bundle

[eJ ] = e = c1(TCg/Mg ) ∈ H 2(Cg;R).

We obtain a twisted 1-formηH1 ∈ �1(Cg;H) representing the Earle class k by contract-
ing the coefficients of η′1 = N(ω′ω′)(3). By (6.3) m(ηH1 )

⊗2 ∈ �1,1(Cg) represents
−e1 + 2g(2− 2g)e. So we define

eJ1 = −m(ηH1 )⊗2 + 2g(2− 2g)eJ

which can be regarded as a (1, 1)-form on Mg , see [23, §8].
Hain and Reed [13] already constructed the same form eJ1 in a Hodge-theoretical

context. They applied the following lemma to 1
12e

J
1 − Jac∗c1(∇) to get a function

βg ∈ C∞(Mg;R)/R, the Hain–Reed function, a secondary object on the moduli
space Mg .

Lemma 8.1. Let M be a connected complex orbifold with H 0(M;O) = C and
H 1(M;C) = H 1(M;O) = 0. If a realC∞ (1, 1)-formψ is d-exact, then there exists

a real-valued function f ∈ C∞(M;R) such that ψ =
√−1
2π ∂∂̄f . Such a function f is

unique up to a constant.

Here we remark all the holomorphic functions on Mg are constants provided g ≥ 3.
In fact, each of the boundary component of the Satake compactification of Mg is of
complex codimension≥ 2. The vanishing of the first cohomology follows from (1.1).
See [41]. In [13], Hain and Reed also studied the asymptotic behavior of the function

βg towards the boundary of the Deligne–Mumford compactification M
DM
g .

We have another ‘secondary’phenomenon around the 2-forms eJ and eJ1 (see [24]).
Let B = 1

2gω(1) · ω(1) be the volume form in (5.3). On any pointed Riemann surface

(C, P0) there exists a function h = hP0 = −�̂(δP0) with d ∗ dh = B − δP0 and∫
C
hB = 0. The function G(P0, P1) := exp(−4πhP0(P1)) is just the Arakelov–

Green function. We regardG as a function on the fiber product Cg×Mg Cg and define
the (1, 1)-form eA on Cg by

eA := 1

2π
√−1

∂∂̄ logG|diagonal ∈ �1,1(Cg),

representing the Chern class e = c1(TCg/Mg ). In fact, the normal bundle of the
diagonal map Cg → Cg ×Mg Cg is exactly the relative tangent bundle TCg/Mg .

Furthermore we introduce an explicit real-valued function ag on Mg by

ag(C) :=
∫
C

ω(1) · �̂(ω(1) ∧ ω(1)) · ω(1), (8.1)
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where �̂ is the Green operator introduced in (5.4). By (5.2) we have

ag(C) = −
g∑

i,j=1

∫
C

ψi ∧ ψj�̂(ψi ∧ ψj). (8.2)

We have ag(C) > 0 if g ≥ 2. Then comparing ∂ag with η′2 as explicit quadratic
differentials, we obtain

eA − eJ = −2
√−1

2g(2g + 1)
∂∂̄ag. (8.3)

On the other hand, the integral along the fiber

eF1 :=
∫

fiber
(eJ )2 ∈ �1,1(Mg)

also represents the first Morita–Mumford class e1. By straightforward computation
on ∂∂̄ag we deduce

Theorem 8.2 ([24]).

eA − eJ = −2
√−1

2g(2g + 1)
∂∂̄ag = 1

(2− 2g)2
(e1

F − e1
J ).

The function ag(C) is also a secondary object on the moduli space Mg , and it
defines a conformal invariant of the compact Riemann surface C, but the author does
not know any of its further properties.
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1 Introduction

We survey some results on quasi-homomorphism on mapping class groups from the
viewpoint of hyperbolic geometry in the sense of Gromov. Most of the results in
this chapter are shown both for word-hyperbolic groups and mapping class groups by
the same techniques. The mapping class group, MCG(S), of a compact orientable
surface S is typically not word-hyperbolic, but it acts on its complex of curves C(S),
which is δ-hyperbolic, [48]. The action is co-finite, but not proper (otherwise, the
mapping class would be word-hyperbolic). Another aspect of the geometry of C(S) is
that this space is not locally compact. Thanks to the study of C(S) by Masur–Minsky
[48] regarding the geometry of C(S), we can apply the standard methods developed
in the theory of word-hyperbolic groups to MCG(S).
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1.1 Quasi-homomorphisms

For proofs of the material in 1.1–1.3 see [3, §3] and also [15] for an updated account.

Definition 1.1 (Quasi-homomorphism). Let G be a group. A quasi-homomorphism
is a function f : G→ R such that

D(f ) = sup
a,b∈G

|f (a)+ f (b)− f (ab)| <∞.

D(f ) is called the defect of f . If a quasi-homomorphism satisfies f (an) = nf (a)

for all a ∈ G and n, it is said homogeneous. We denote the vector space of all
homogeneous quasi-homomorphisms on G by HQH(G).

Quasi-homomorphisms are also called quasimorphisms (for example in [3], [17]).
If f is a quasi-homomorphism on G, then one can obtain a homogeneous quasi-
homomorphism f as follows:

f (a) = lim
n→∞

f (an)

n
.

Note that the limit exists since the sequence {f (an)} is additive with bounded er-
ror (cf. [59, Part One 99]). For any a ∈ G, |f (a) − f (a)| ≤ D(f ). Namely, a
quasi-homomorphism f is (uniquely) written as the sum of a homogeneous quasi-
homomorphism f and a bounded function. The defect D(f ) is related to D(f ) by

D(f ) ≤ 4D(f ).

If f is a homogeneous quasi-homomorphism, then it is easy to check that for all
a, b ∈ G, f (aba−1) = f (b), and therefore |f ([a, b])| ≤ D(f ). It turns out that
there is an equality

sup
a,b∈G

|f ([a, b])| = D(f ).

The following result follows from a result on bounded cohomology (see Sec-
tion 1.3).

Theorem 1.2 ([3, §3]). Suppose that G is an amenable group. Then a homogeneous
quasi-homomorphism on G is a homomorphism.

Let V(G) be the vector space of all quasi-homomorphismsG→ R. We denote by
BDD(G) and HOM(G) = H 1(G;R) the subspaces of V(G) consisting of bounded
functions and respectively homomorphisms. Note that BDD(G)∩HOM(G) = 0. We
will be concerned with the quotient spaces

QH(G) = V(G)/BDD(G)

and
Q̃H(G) = V(G)/(BDD(G)+ HOM(G)) ∼= QH(G)/H 1(G;R).
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Each element f ∈ V(G) defines f ∈ HQH(G). This implies that QH(G) ∼=
HQH(G), therefore Q̃H(G) ∼= HQH(G)/H 1(G;R). Theorem 1.2 says Q̃H(G) is
trivial if G is amenable.

1.2 Stable commutator length

Let G be a group. Given g ∈ [G,G], the commutator length of g, denoted by
cl(g), is the least number of commutators in G whose product is equal to g. Namely,
min l = cl(g) such that ai, bi ∈ G and

g = [a1, b1] . . . [al, bl].
The stable commutator length, denoted by scl(g), is defined by

scl(g) = lim
n→∞

cl(gn)

n
.

The limit exists since the sequence {cl(gn)} is subadditive (cf. [59, Part One 98]). Note
that cl and scl are class functions, namely, they are constant on each conjugacy class
in G. The function scl is defined whenever some power of g is contained in [G,G].
By convention, we may extend scl to all of G by setting scl(g) = ∞ if no power of g
is contained in [G,G].

The following fact [3, §1.1] already appears in [52].

Proposition 1.3. Letf : G→R be a homogeneous quasi-homomorphism. Iff (a)= 1
for a ∈ [G,G] then 1

2D(f ) ≤ scl(a).

Proof. Since f (a) = 1, f is not a homomorphism, therefore D(f ) > 0. Denote
D(f ) by D. For n > 0, put l(n) = cl(an). The element an is a product of l(n)
commutators, ci , in G. Since f is a quasi-homomorphism,

n = f (an) ≤ |f (c1)| + · · · + |f (cl(n))| + (l(n)− 1)D.

Since f is homogeneous, |f (ci)| ≤ D for all i, therefore n ≤ (2l(n) − 1)D. Thus,
1
D
≤ 2l(n)−1

n
for all n > 0. Letting n→∞, we obtain 1

2D ≤ scl(a).

Quasi-homomorphisms and stable commutator length are related by Bavard’s Du-
ality Theorem in a more precise way ([3, §3.6]):

Theorem 1.4 (Bavard’s Duality Theorem). Let G be a group and a ∈ [G,G]. If
HQH(G) = H 1(G;R) then scl(a) = 0. Otherwise, we have an equality

scl(a) = 1

2
sup

φ∈HQH(G)\H 1(G;R)
|φ(a)|
D(φ)

.

The argument is based on the Hahn–Banach theorem. In particular, the quasi-
homomorphisms promised by Bavard’s theorem are typically non constructive.
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By Theorems 1.4 and 1.2, if G is amenable, then scl = 0 on [G,G]. On the
other hand, if F is a free group of rank at least two, then for any 1 �= g ∈ [F,F ],
scl(g) ≥ 1/6 ([19, Corollary 3.3]). Recently. D. Calegari [16] proved that scl(g) ∈ Q

for any g ∈ [F,F ]. On the other hand, D. Zhuang [61] found a finitely presented
group G such that scl(g) is irrational (indeed, transcendental) for some g ∈ [G,G].

A groupG is called perfect ifG = [G,G] and uniformly perfect ifG is perfect and
cl is bounded on G, which implies that scl = 0. It is known that SLn(Z) is uniformly
perfect if n ≥ 3 (cf. [2]).

We discuss the stable commutator length in Section 7 in connection to hyperbolicity.

1.3 Bounded cohomology

To define the bounded cohomology group ([30]) of a discrete group G, let

Ckb(G;R) = {f : Gk → R | f has bounded image}
The boundary δ : Ckb(G;R)→ Ck+1

b (G;R) is given by

δf (g0, . . . , gk) = f (g1, . . . , gk)+
k∑
i=1

(−1)if (g0, . . . , gi−1gi, . . . , gk)

+ (−1)k+1f (g0, . . . , gk−1).

The cohomology of the complex {Ckb(G;R), δ} is the bounded cohomology group of
G, denoted by H ∗b (G;R). See [30], [40], [54] as general references for the theory of
bounded cohomology. H 1

b (G;R) is trivial for any group G, and Hn
b (G;R) is trivial

for all n ≥ 1 if G is amenable.
By definition, for each n, there is a natural homomorphism, sometimes called

comparison map, Hn
b (G;R) → Hn(G;R) induced by the inclusion Cnb (G;R) →

Cn(G;R). An element f ∈ QH(G) defines a bounded class [δf ] ∈ H 2
b (G;R). There

is an exact sequence ([3])

0→ H 1(G;R)→ QH(G)→ H 2
b (G;R)→ H 2(G;R).

Since Q̃H(G) is the quotient QH(G)/H 1(G;R), we see that Q̃H(G) can also be
identified with the kernel of H 2

b (G;R) → H 2(G;R). It follows from Theorem 1.4
that the kernel is trivial if G is uniformly perfect, [49].

If G → G′ is an epimorphism then the induced maps QH(G′) → QH(G) and
Q̃H(G′)→ Q̃H(G) are injective.

Calculations of Q̃H(G) have been made for many groupsG. In many cases Q̃H(G)
is either 0 or infinite dimensional. But, a group G such that Q̃H(G) is nontrivial and
finite dimensional has been constructed (Appendix in [46]), using a groupH such that
H 2
b (H ;R) is nontrivial and finite dimensional (see [13, Remark 25] for such H ).
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If G is finitely generated by k elements, then H 1(G;R) is at most k-dimensional,
therefore Q̃H(G) is infinite dimensional if QH(G) is infinite dimensional (cf. Theo-
rem 5.1).

As we said, if G is amenable then H 2
b (G;R) = 0 ([30]), therefore the kernel of

H 2
b (G;R) → H 2(G;R) is trivial. In other words, HQH(G) = Q̃H(G) = 0. This

is indeed how Theorem 1.2 is shown in [3]. Q̃H(G) also vanishes when G is an
irreducible lattice in a semisimple Lie group of real rank> 1 ([12], see Theorem 4.1).

2 Brooks’ counting quasi-homomorphism on free groups

Our first example of a group G such that Q̃H(G) is non trivial is a free group.

Theorem 2.1 ([11]). Suppose F is a free group of rank at least two. Then Q̃H(F ) is
an infinite dimensional vector space over R.

We explain Brooks’ construction of a quasi-homomorphism f on F which is non-
trivial in Q̃H(F ). For simplicity suppose the rank of F is two and let x, y be free
generators of F . Fix a reduced word w on x, y. Any element 1 �= a ∈ F is uniquely
written as a (non-empty) reduced word on x, y, which we also denote by a. Define
|a|w to be the maximal number of times that w can be seen as an (oriented) subword
of a without overlapping. Define |1|w = 0.

Example 2.2. |xyxyx|xy = 2; |xyxyx|xyx = 1; |xxyxy|yx = 1.

Letw−1 be the reduced word which is the inverse ofw as a group element. Define
a function on F by hw(a) = |a|w − |a|w−1 . The following says that hw is a quasi-
homomorphism.

Lemma 2.3. D(hw) ≤ 3.

To see this, let a, b ∈ F . We think of them as reduced words too. Let a · b be the
word which we obtain by placing the word b after a. This word represents the group
element ab, but may be not reduced. If the word is reduced, we see

||a · b|w − |a|w − |b|w| ≤ 1, ||a · b|w−1 − |a|w−1 − |b|w−1 | ≤ 1.

Therefore |hw(ab) − hw(a) − hw(b)| ≤ 2. In general, a · b is not reduced, and
each function | · |w, | · |w−1 on F is not a quasi-homomorphism. One verifies that
hw is a quasi-homomorphism by writing a = a′ · c, b = c−1 · b′ such that a′, b′,
c and a′ · b′ are reduced, therefore the above inequalities apply to a = a′ · c and
b = c−1 · b′ (use |c|w = |c−1|w−1 ). From this, one easily getsD(hw) ≤ 6 and indeed
D(hw) ≤ 3 as Figure 1 shows. Suppose w is cyclically reduced, namely, wn(n > 0)
is reduced. Then, |wn|w = n for all n > 0. On the other hand, |wn|w−1 = 0, therefore
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1

w

w

w

a

ab

Figure 1. At most three subwords w count for δhw(a, b). The other pairs of subwords w cancel
for δhw (not necessarily for δcw and δcw−1 ).

hw(w
n) = n for all n > 0. We find that hw is non-trivial in QH(F ). If we take w

to represent an element in [F,F ], then we obtain from hw a non-trivial element in
Q̃H(F ). For example, one can takew = xyx−1y−1. Moreover we can find a sequence
of reduced and cyclically reduced words wi such that hwi are linearly independent in
Q̃H(F ). This proves Theorem 2.1.

We remark that Lemma 2.3 and Proposition 1.3 give a uniform positive lower
bound of scl(a) for any 1 �= a ∈ [F,F ]. To see this, since scl is invariant by taking
conjugates, one may assume that a, as a reduced word, is shortest among its conjugates.
Then the word a is cyclically reduced, therefore D(ha) ≤ 3. Then D(ha) ≤ 12 and
ha(a) = 1. By Proposition 1.3, scl(a) ≥ 1

24 . As we said, Culler [19] showed that
scl(a) ≥ 1

6 .

3 Delta-hyperbolicity and quasi-homomorphism

The construction of quasi-homomorphisms by Brooks has been generalized to the
δ-hyperbolic setting. δ-hyperbolic geometry, or the hyperbolic geometry in the sense
of Gromov, was invented by Gromov [29]. We only give a few basic definitions and
facts. See for example [10].

Definition 3.1 (δ-hyperbolic space, δ-thin, word-hyperbolic group). Let X be a geo-
desic metric space and δ ≥ 0. We say that X is δ-hyperbolic if for any points a,
b, c of X, and any geodesic segments [a, b], [b, c] and [c, a], the segment [a, b] is
contained in the δ-neighborhood of the union of [b, c] and [c, a] (then the geodesic
triangle [a, b] ∪ [b, c] ∪ [c, a] is said δ-thin).

Let G be a finitely generated group with a fixed set of generators, and let � be its
Cayley graph. We say G is word-hyperbolic if � is δ-hyperbolic for some δ.
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Note that a geodesic between two points a, b is not unique, but we denote it by
[a, b]. IfX is δ-hyperbolic, then the Hausdorff distance of any two geodesics between
a, b is at most δ.

If a geodesic space X is quasi-isometric (cf. [10]) to a geodesic space which is δ-
hyperbolic, then there exists δ′ ≥ 0 such thatX is δ′-hyperbolic. As a consequence, the
word-hyperbolicity of a finitely generated group, G, does not depend on the choice
of a set of generators since the Cayley graphs of G for two sets of generators are
quasi-isometric to each other.

Clearly, finite groups and Z are word-hyperbolic. If G contains an infinite cyclic
subgroup of finite index, then G is quasi-isometric to Z (to be precise, the Cayley
graphs of those two groups are quasi-isometric to each other), therefore, G is word-
hyperbolic. A word-hyperbolic group which contains a cyclic subgroup of finite index
is called an elementary word-hyperbolic group.

Definition 3.2 (Quasi-geodesic). Let X be a geodesic space. Let I be an interval of
R (bounded or unbounded). A (K, ε)-quasi-geodesic in X is a map α : I → X such
that for all t, s ∈ I

|t − s|
K
− ε ≤ d(α(t), α(s)) ≤ K|t − s| + ε.

We may denote the image of α by α.

The following fact, sometimes called Morse Lemma, is important. (Cf. [10, III.H.
Theorem 1.7].)

Proposition 3.3 (Stability of quasi-geodesics). For all δ ≥ 0, ε ≥ 0,K ≥ 1 there
exists L(δ,K, ε) with the following property: If X is a δ-hyperbolic space, α is a
(K, ε)- quasi-geodesic in X and [a, b] is a geodesic segment joining the endpoints of
α, then the Hausdorff distance between [a, b] and the image of α is at most L.

Definition 3.4 (Hyperbolic isometry). Let X be a δ-hyperbolic space. An isometry a
of X is called hyperbolic if there exist x ∈ X and a constant C > 0 such that

d(x, an(x)) ≥ Cn
for all n ≥ 1.

Definition 3.5 (Translation length). If a is an isometry of a metric space X, the
translation length of a, τ(a), is defined as follows. Let x ∈ X be a point in X. Then,

τ(a) = lim inf
n→∞

d(x, an(x))

n
.

The number τ(a) does not depend on the choice of x.

A finitely generated group G acts on a Cayley graph of G by isometries. It is
an important fact that if G is word-hyperbolic, then each element a ∈ G of infinite



248 Koji Fujiwara

order acts as a hyperbolic isometry, [29]. Therefore, a has infinite order if and only if
τ(a) > 0 on the Cayley graph.

If a is a hyperbolic isometry, then there exists a quasi-geodesic α in X with α =
a(α). The quasi-geodesic α is called a quasi-geodesic axis of a. It is not always true
that α can be taken to be a geodesic. It is known that if G is word-hyperbolic and �
is a Cayley graph, then there exists a constant P such that for any element a ∈ G of
infinite order, there exists a geodesic α such that aP (α) = α. (For an argument, see
for example [20]).

3.1 Word-hyperbolic groups

The following classification of subgroups in a word-hyperbolic group is a standard
fact. We may regard it as a Tits alternative.

Theorem 3.6 (cf. [10]). Let H be a subgroup of a word-hyperbolic group G. Then
one of the following holds.

(1) H contains a free group of rank two.

(2) H contains a cyclic group as a subgroup of finite index.

A subgroup H of the second type in Theorem 3.6 is called elementary. In other
words, H is elementary if it is finite, or if it contains Z as a subgroup of finite index.
Note that a subgroup of a word-hyperbolic group is not necessarily word-hyperbolic.
N. Brady constructed an example of a word-hyperbolic group which contains a finitely
presented non-word-hyperbolic subgroup.

The following theorem is a generalization of Theorem 2.1 since a free group of
rank at least two is a non-elementary word-hyperbolic group.

Theorem 3.7 ([20]). LetG be a non-elementary word-hyperbolic group. Then Q̃H(G)
is infinite dimensional.

Remark 3.8. The argument in [20] shows that if H is a non-elementary subgroup of
a word-hyperbolic group, then Q̃H(H) is infinite dimensional.

The argument for Theorem 3.7 is based on a generalization of the construction of
quasi-homomorphisms, counting functions, by Brooks that we explain in Section 2.
We outline the argument. See [20], [25] or [6] for more details.

Suppose G is a group with a fixed symmetric generating set S, and � = �S(G) is
its Cayley graph. Letw be a (reduced) word in the generating set. Let α be a (directed)
path in �, and |α| its length. Define |α|w to be the maximal number of times that w
can be seen as an (oriented) subword of α without overlapping (see Example 2.2 and
Figure 2). An (oriented) path labeled by w is called a copy of w.

If we see α as a word on S, then it represents an element in G which we denote
by α. We can uniquely identify α and the path in � from 1 to α with the label by α.
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1

w w
w

a

α

Figure 2. |α|w = 3.

In general, for an element a ∈ G, there is more than one geodesic, therefore reduced,
path α in � from 1 to a. It is natural to define |a|w = max |α|w such that α runs
through all geodesics with α = a, but indeed we need to modify the definition to have
something similar to Lemma 2.3.

Let 0 < W < |w| be a constant. For x, y ∈ �, define

cw,W (x, y) = d(x, y)− inf
α
(|α| −W |α|w),

where α ranges over all the paths from x to y. If the infimum is attained by α, we say
that α is a realizing path for cw,W from x to y. If γ is a geodesic from x to y, then we
may also write cw,W (x, y) as cw,W (γ ).

Fix a point x ∈ �. (We may take x = 1.) Define for a ∈ G
cw,W (a) = cw,W (x, a(x)).

The function cw,W is called the counting function for the pair (w,W). Letw−1 denote
the inverse word of w. We define

hw,W = cw,W − cw−1,W .

In [20], the normalization W = 1 is used. This is an appropriate choice of constant
whenw∗ := . . . wwww . . . is a bi-infinite geodesic. Thenw∗ is a geodesic axis forw.
In spirit, hw,1 is same as hw which is defined in Section 2 for free groups.

The following fact is not so difficult to prove. This does not require that � is
δ-hyperbolic.

Proposition 3.9 (cf. Lemma 3.3, [25], and Proposition 3.9, [20]). If α is a realizing
path for cw,W , then it is a (K, ε)-quasigeodesic, where

K = |w|
|w| −W , ε = 2W |w|

|w| −W .

Since � is δ-hyperbolic, Proposition 3.3 applies to realizing paths. Let L =
L

(
δ,

|w|
|w|−W ,

2W |w|
|w|−W

)
. Let γ be a geodesic from x to y. From Proposition 3.9 we

deduce that a realizing path from x to y must be contained in the L-neighborhood
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of γ . Consequently, if the L-neighborhood of γ does not contain a copy of w, then
cw,W (x, y) = 0.

Suppose the L-neighborhood ofwn does not contain a copy ofw−1 (see Figure 3).
Here we are thinking of the L-neighborhood of wn, for large n, like a long narrow
tube whose core has a definite orientation, agreeing with the orientation on w. By
“a copy of w−1”, we mean a copy of w whose orientation disagrees with that of
the core of the tube. We will find a necessary and sufficient algebraic condition for
w to satisfy regarding this combinatorial/geometric property (see Condition 6.2, cf.
Example 3.11).

1
w

w

wn

Figure 3. Copies ofw with the opposite direction do not fit in the L-neighborhood of a geodesic
from 1 to wn.

It follows that cw−1,W (w
n) = 0 because for a realizing path α for cw−1,W atwn we

must have |α|w−1 = 0. We thus obtain for all n > 0 an inequality hw,W (wn) ≥ nW .
Consider a triangle of realizing paths. We have observed that it is L-close to a

geodesic triangle, which is δ-thin. Therefore the triangle of realizing paths is (δ+2L)-
thin. The following inequality on the defect then follows. This is an analogue of
Lemma 2.3. The argument is same in spirit.

Proposition 3.10 (cf. Proposition 3.10, [25], Proposition 2.13, [20]).

D(hw,W ) ≤ 12L+ 6W + 48δ.

Note that the defect only depends on |w|, W and δ. If we take W = 1, then L
depends only on δ if |w| ≥ 2. In particular, the upper bound in Proposition 3.10
depends only on δ.

Although hw is unbounded if w is cyclically reduced in Section 2, hw,W may be
bounded.

Example 3.11. Let G = 〈a, b | a2 = b2 = 1〉 ∼= Z2 ∗ Z2. The group G is an
elementary word-hyperbolic group. Since G is generated by torsion elements a, b,
there is no non-trivial homomorphism. It follows that any quasi-homomorphism is
bounded (use Theorem 1.2. G is amenable).

Indeed, this conclusion can be thought of as a consequence of an algebraic property.
Let h be a homogeneous quasi-homomorphism. To see that h(w) = 0 for all w, we
may assume thatw is either a, b or (ab)n sincew is conjugate to one of those. We have
h(a) = h(b) = 0 since a = a−1, b = b−1. Since ab is conjugate to ba = (ab)−1 by
a, h(ab) = 0. What is essential in this argument is the algebraic property that (ab)n
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is conjugate to (ab)−n. We will state this as an axiom in Condition 6.2. This property
can be thought of as a dynamical property concerning the action of G on its Cayley
graph. Namely, the points (ab)n are on a geodesic axis α for the action of ab, which
is flipped by a to α with the opposite direction.

The following result (cf. [20], and [6] for WPD-actions) guarantees that there are
many choices w such that hw,1 are unbounded quasi-homomorphisms. We already
know that G contains a (quasi-convex) free group F of rank two by Theorem 3.6.
Proposition 3.12 says that one can take F to satisfy an additional dynamical property
(no flip of an axis), which is explained in Example 3.11. This property is critical to
show (2). For the counting functions cw,1, cw−1,1 for 1 �= w ∈ F to make sense, we
take a geodesic path/word from 1 to w, which we also denote w. For the definition of
quasi-convexity, see [29], [10].

Proposition 3.12. Let G be a non-elementary word-hyperbolic group. Then there
exist a quasi-convex subgroup F < [G,G] which is isomorphic to a rank-two free
group and a constant D such that for each non-trivial element w ∈ F we have the
following:

(1) cw,1(wn) ≥ n/2 for all n > 0.

(2) cw−1,1(w
n) = 0 for all n > 0.

(3) D(hw,1) ≤ D, where hw,1 = cw,1 − cw−1,1.

In particular, hw,1 is an unbounded quasi-homomorphism. Moreover, one can
show (see [20]) that there is a sequence of elements wi ∈ F such that the corre-
sponding quasi-homomorphisms hi are linearly independent in QH(G). This proves
Theorem 3.7. Since wi ∈ [G,G], it follows that hi ∈ HQH(G) is not a homomor-
phism.

3.2 Mapping class groups and curve complexes

We apply the construction of quasi-homomorphisms in Section 3.1 to mapping class
groups.

Let S be a compact orientable surface of genus g and p punctures. The mapping
class group of S, MCG(S), is the group of isotopy classes of orientation-preserving
homeomorphisms S → S. This group acts on the curve complex C(S) of S defined
by Harvey [37] and successfully used in the study of mapping class groups by Harer
[36], [35]. For our purposes, we will restrict to the 1-skeleton of Harvey’s complex,
so that C(S) is a graph whose vertices are isotopy classes of essential, nonparallel,
nonperipheral, simple closed curves in S and two distinct vertices are joined by an
edge if they can be realized simultaneously by pairwise disjoint curves. If a non-empty
(finite) collection of vertices are realized simultaneously by pairwise disjoint curves,
we call it a curve system (or multi-curve). (The actual curve complex of S is the flag
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complex made from C(S), and it is quasi-isometric to C(S). A curve system defines
a simplex in the curve complex.)

In certain sporadic cases C(S) as defined above is 0-dimensional or empty. This
happens when there are no curve systems consisting of two curves, i.e. when g = 0,
p ≤ 4 and when g = 1, p ≤ 1. One could rectify the situation by declaring that two
vertices are joined by an edge if the corresponding curves can be realized with only
one intersection point in the case g = 1, p ≤ 1 and with two intersection points in the
case g = 0, p = 4.

The mapping class group MCG(S) acts on C(S) by a · [c] = [a(c)], where a ∈
MCG(S) and [c] is the isotopy class of a simple closed curve c on S. A classification
of each element a in MCG(S) is known (cf. [38, Section 7.1]):
(1) a has finite order.

(2) There exists a curve system M on S such that the simplex that M defines is
invariant by a (maybe its vertices are permuted). Then a is called reducible.

(3) a is not reducible and has infinite order. a is called pseudo-Anosov.
Two pseudo-Anosov elements a, b are called independent if the subgroup generated
by a, b does not contain Z as a subgroup of finite index.

H. Masur and Y. Minsky proved the following remarkable result.

Theorem 3.13 ([48]). Let S be a nonsporadic surface. The curve complex C(S) is
δ-hyperbolic. An element of MCG(S) acts hyperbolically on C(S) if and only if it is
pseudo-Anosov .

An alternative proof of the δ-hyperbolicity of the curve complex is given in Chap-
ter 10 of Volume I of this Handbook [34].

It follows that a ∈ MCG(S) has positive (indeed, uniformly positive by [9]) trans-
lation length on C(S) (Definition 3.5) if and only if a is pseudo-Anosov .

Remark 3.14. Theorem 3.13 is generalized to a non-orientable surface [7]. When a
surface S is non-orientable, we consider the group of isotopy classes of all homeomor-
phisms S → S. This group is called the extended mapping class group of S. When
S is orientable, the extended mapping class group contains MCG(S) as a subgroup of
index two.

The action of MCG(S) on C(S) is not proper. We introduce the following notion.

Definition 3.15 (WPD). We say that the action ofG on a δ-hyperbolic spaceX satisfies
WPD (weak proper discontinuity) if

• G contains at least one element that acts on X as a hyperbolic isometry, and

• fix x ∈ X. For every hyperbolic element g ∈ G and for everyC > 0, there exists
N > 0 such that the set

{γ ∈ G | d(x, γ (x)) ≤ C, d(gN(x), γgN(x)) ≤ C}
is finite. (Note that this does not depend on the choice of x.)
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Proposition 3.16 ([6]). Let S be a nonsporadic surface. The action of MCG(S) on
the curve complex C(S) satisfies WPD.

The following is a generalization of Theorem 3.7, which is the case when the action
ofG onX is proper (and co-compact). As we point out in Remark 3.8, that the action
is co-compact is not important.

A group is said to virtually have some property if some subgroup of finite index in
the group has this property.

Theorem 3.17 ([6]). Let X be a δ-hyperbolic space and suppose G acts on X by
isometry and WPD. If G contains a hyperbolic isometry and is not virtually Z, then
Q̃H(G) is infinite dimensional.

The argument for Theorem 3.17 is similar to the one for Theorem 3.7. To construct
counting functions on G using its action on X, we modify the definition of counting
functions (Section 3.1) as follows. Let w be a path in X and call a(w) for a ∈ G a
copy ofw. For a path α in�, define |α|w to be the maximal number of disjoint oriented
copies ofw which can be obtained as subpaths of α. All other definitions are the same
as before. To find many elements w which give unbounded quasi-homomorphisms,
we prove something similar to Proposition 3.12. This is where WPD is essentially
used, in particular to verify (2).

By Theorem 3.13 and Proposition 3.16, we can apply Theorem 3.17 to the action
of MCG(S) on C(S). We obtain the following. This settles Morita’s conjectures 6.19
and 6.21 [57] in the affirmative.

Theorem 3.18 ([6]). Let S be a compact orientable surface. Suppose G < MCG(S)
is a subgroup. If G is not virtually abelian, then Q̃H(G) is infinite dimensional.

In the argument for Theorem 3.18, we use the following classification of subgroups
of a mapping class group (see [51] ).

Theorem 3.19. Let G be an infinite subgroup of the mapping class group of an
orientable surface S. Then one of the following holds:

(1) G contains two pseudo-Anosov elements which are independent (andG is called
sufficiently large). Then G contains a free group of rank two.

(2) G contains Z as a subgroup of finite index.

(3) G fixes a multi-curve on S (and G is called reducible).

From this classification, a Tits alternative follows (cf. Theorem 3.6), namely, either
G contains a free group of rank two, or else G contains a free abelian group of finite
rank as a subgroup of finite index ([50], [39]).
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3.3 Rank-1 manifolds

Let M be a complete Riemannian manifold of non-positive sectional curvature of
finite volume, and G = π1(M). We briefly discuss Q̃H(G) in this section. Suppose
dimM ≥ 2. Assume that G is irreducible, namely, it does not contain a subgroup
H of finite index such that H is a product of two infinite groups. If M is a locally
symmetric space, namely the universal cover M̃ is a symmetric space (cf. [10]), then
Q̃H(G) is trivial if the rank of M is at least two (Theorem 4.1), or Q̃H(G) is infinite
dimensional if the rank is one (see the proof of Theorem 5.4, cf. Theorem 3.17).

Indeed the converse of Theorem 4.1 is true. In other words, Q̃H(�) = 0 charac-
terizes locally symmetric spaces of rank at least two.

Theorem 3.20 ([8]). Let M be a complete Riemannian manifold of nonpositive cur-
vature and finite volume. Assume that � = π1(M) is finitely generated and does not
contain a subgroup of finite index which is cyclic or a Cartesian product of two infinite
groups. Then the universal cover M̃ is a symmetric space of rank at least two if and
only if Q̃H(�) = 0. Otherwise, Q̃H(�) is infinite-dimensional.

The proof uses the celebrated Rank Rigidity Theorem ([1]), as well as a construction
of quasi-homomorphisms on groups that act on CAT(0) spaces and contain rank-1
elements, which can be thought of as a generalization of Theorem 3.17. (See [10],
[1] for the definitions of CAT(0) spaces and rank-1 elements.) In connection to
Theorem 4.1, we remark that a symmetric space of non-compact type is CAT(0), and
if it has rank at least two then any hyperbolic isometry of the space is not rank-1.

4 Rigidity

We discuss a version of superrigidity for mapping class groups. Theorem 4.2 was
conjectured by N.V. Ivanov and proved by Kaimanovich and Masur [41] using random
walks in the case when the image group contains independent pseudo-Anosov elements
and it was extended to the general case by Farb and Masur [23] using the classification
of subgroups of MCG(S) (see Section 3.2). We give an argument based on the work
of M. Burger and N. Monod [12] on bounded cohomology of lattices.

Theorem 4.1 ([12], [13]). Let � be an irreducible lattice in a connected semi-simple
Lie group G with no compact factors, with finite center, and of rank > 1. Then the
kernel of H 2

b (�;R)→ H 2(�;R) is trivial.

They indeed show that Q̃H(�) is trivial. Their approach is out of the range of this
chapter. It was known that H 1(�;R) is trivial by Matsushima and others.
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Theorem 4.2. Let � be an irreducible lattice in a connected semi-simple Lie groupG
with no compact factors, with finite center, and of rank> 1. Then every homomorphism
�→ MCG(S) has finite image.

Proof. Let φ : �→ MCG(S) be a homomorphism. By the Margulis–Kazhdan theo-
rem [62, Theorem 8.1.2] either the image of φ is finite or the kernel of φ is contained
in the center. When � is a nonuniform lattice, the proof is easier and was known
to Ivanov before the work of Kaimanovich–Masur (see Ivanov’s comments to Prob-
lem 2.15 on Kirby’s list “Problems in low-dimensional topology”). Since the rank is
≥ 2 the lattice � then contains a solvable subgroupN which does not become abelian
after quotienting out a finite normal subgroup. If the kernel is finite, then φ(N) is a
solvable subgroup of MCG(S) which is not virtually abelian, contradicting [50] (see
the classification of subgroups in mapping class groups in Section 3.2).

Now assume that � is a uniform lattice. If the kernel Ker(φ) is finite then there
is an unbounded quasi-homomorphism q : Im(φ) → R by Theorem 3.18. But then
qφ : � → R is an unbounded quasi-homomorphism contradicting Theorem 4.1 that
says that every quasi-homomorphism �→ R is bounded.

In connection to Theorem 4.1, we ask a question.

Question 4.3 ([12]). Let � be as in Theorem 4.1. Is there a constant C such that for
all a ∈ [�,�], cl(a) ≤ C?

Note that [�,�] has finite index in � since H 1(�;R) is trivial. The answer is yes
if � is SLn(Z) with n ≥ 3 (see Section 1.2).

5 Bounded generation

A group G is said to be boundedly generated if there exist finitely many elements
g1, . . . , gk ∈ G such that for any g ∈ G there exist ni ∈ Z with

g = gn1
1 . . . g

nk
k .

One may say G is boundedly generated by g1, . . . , gk .
Kotschick related bounded generation of a group G and HQH(G) as follows.

Theorem 5.1 (Proposition 5 [44]). If G is boundedly generated by g1, . . . , gk then
the dimension of HQH(G) as a vector space is at most k.

IfG is generated by k elements, then the vector space of all homomorphisms fromG
to R is at most k-dimensional. One may see this theorem as a generalization. Kotschick
combined this result and Theorem 3.18, and gave a new proof to the following theorem
by Farb–Lubotzky–Minsky.
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Theorem 5.2 ([24]). The mapping class group MCG of a closed orientable surface S
of genus at least one is not boundedly generated.

In fact, since Theorem 3.18 applies to all subgroups in MCG(S), a subgroup G in
MCG(S) is not boundedly generated if G is not virtually abelian (cf. [27]).

It is observed in [24] that a non-elementary word-hyperbolic groupG is not bound-
edly generated. Their argument uses the deep result by Gromov [29] saying that such
a group G has an infinite quotient which is a torsion group. Clearly, a boundedly
generated group cannot have an infinite torsion quotient. By Theorems 5.1 and 3.7
(and Remark 3.8), we have the following ([27]).

Theorem 5.3. A non-elementary subgroup in a word-hyperbolic group is not bound-
edly generated.

It follows that a uniform latticeG in a simple Lie group of rank one is not boundedly
generated sinceG is a non-elementary word-hyperbolic group. Margulis and Vinberg
[47] showed that many discrete subgroups in a rank-1 simple Lie group are virtually
mapped by homomorphisms to non-abelian free groups, so that they are not boundedly
generated. In fact we have the following.

Theorem 5.4 ([27]). LetG be a discrete subgroup in a rank-1 simple Lie group. IfG
does not contain a nilpotent subgroup of finite index then it is not boundedly generated.

Proof. G acts on a rank-1 symmetric space, which is δ-hyperbolic. The action is
proper. If G is not virtually nilpotent, then G contains a hyperbolic isometry (we use
a classification of discrete subgroups in a rank-1 simple Lie group). Then a theorem
from [25] (the theorem applies to proper G-actions on δ-hyperbolic spaces. Or one
can use Theorem 3.18) says that Q̃H(G) is infinite dimensional sinceG is not virtually
cyclic.

Note that Theorem 5.4 gives a classification of virtually nilpotent subgroups among
discrete subgroups in terms of bounded generation since the converse is true. It is not
hard to check that a finitely generated nilpotent group is boundedly generated. It
then follows that a finitely generated virtually nilpotent group is boundedly generated.
If G as in the theorem is virtually nilpotent, then it is finitely generated, therefore,
boundedly generated.

Non-uniform lattices in a Lie group of rank at least two are known to be boundedly
generated (cf. [60]). For example, SL(n,Z), n > 2 and SL(2,Z[1/p]) such that p is
a prime number are boundedly generated.

There is a more direct way to show Theorems 5.2, 5.3, 5.4 using quasi-homomor-
phisms. We discuss it in the next section (for example see Remark 6.7).
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6 Separation by quasi-homomorphisms

Definition 6.1 (Separation, [58]). Let G be a group and a �= b ∈ G. If there exists a
homogeneous quasi-homomorphism f on G such that f (a) = 1 and f (b) = 0, then
we say that a is separated from b (by f ).

Let B ⊂ G be a set of elements such that a �∈ B. If there exists a homogeneous
quasi-homomorphism f on G such that f (a) = 1 and f (b) = 0 for all b ∈ B, then
we say that a is separated from B (by f ).

The condition that a quasi-homomorphism f is homogeneous is necessary, other-
wise, one can always separate a from b (by letting f (a) = 1 and f (c) = 0 for all
c �= a). On the other hand, as long as f (a) �= 0, one can always normalize f such
that f (a) = 1. The normalization f (a) = 1 becomes important when one tries to
bound the defect D(f ) from above. See (the second part of) Theorem 7.3 and 7.4.

Our separation property has a similar flavor to the residual finiteness of a group.
A group G is said to be residually finite if for any non-trivial element a ∈ G, there
exists a finite group F and a homomorphism f : G → F such that f (a) is non-
trivial. Similarly, we may try to separate two elements by a homomorphism to Z.
But, for example, if G � SL(2,Z), then any homomorphism G→ R is trivial since
G is generated by two torsion elements. Therefore, it is impossible to separate two
elements by a homomorphism to Z. On the other hand, we know that Q̃H(G) is infinite
dimensional (G is non-elementary word-hyperbolic. Apply Theorem 3.7).

Suppose that one can separate a from b by a homogeneous quasi-homomorphism
f such that f (a) = 1, f (b) = 0. Then the elements a and bmust satisfy the following
condition since f is a class function.

Condition 6.2. (1) For all n �= m and c ∈ G, an �= camc−1.

(2) For all n �= 0,m and c ∈ G, an �= cbmc−1.

Note that by Condition (1), a has infinite order. It is interesting to know if Con-
dition 6.2 is sufficient to separate a from b by a homogeneous quasi-homomorphism.
An affirmative answer is found by Polterovich and Rudnick [58] for SL(2,Z).

Theorem 6.3. Suppose a, b ∈ SL(2,Z) satisfy Condition 6.2. Then there is a homo-
geneous quasi-homomorphism f such that f (a) = 1, f (b) = 0.

Polterovich and Rudnick asked if one can generalize the theorem to word-hyper-
bolic groups.

Theorem 6.4 ([17], [20]). Let G be a word-hyperbolic group. Suppose a, b ∈ G
satisfy Condition 6.2. Then there is a homogeneous quasi-homomorphism f on G
such that f (a) = 1, f (b) = 0.

Moreover, let B ⊂ G be a finite collection of elements such that for a and each
b ∈ B Condition 6.2 holds. Then there is a homogeneous quasi-homomorphism f on
G such that f (a) = 1 and for all b ∈ B, f (b) = 0.
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We also have a separation theorem for mapping class groups.

Theorem 6.5 ([17], [6]). Let S be a compact orientable surface and let MCG(S) be
its mapping class group. Suppose a, b ∈ MCG(S) satisfy Condition 6.2 and a is a
pseudo-Anosov element. Then there is a homogeneous quasi-homomorphism f on G
such that f (a) = 1, f (b) = 0.

Moreover, let B ⊂ MCG(S) be a collection of elements such that Condition 6.2
holds for a and each b ∈ B. Suppose there exists T such that the translation length of
each b ∈ B on C(S) is at most T . Then there is a homogeneous quasi-homomorphism
f on G such that f (a) = 1 and for all b ∈ B, f (b) = 0.

In fact, Theorem 6.4, 6.5 are part of Theorem 7.3, 7.4, in which we obtain upper
bounds on the defect of f .

Note that it is free to assume that the set B contains all non-pseudo-Anosov el-
ements. This is because if c ∈ MCG(S) is not pseudo-Anosov, then the translation
length of c on C(S) is zero as c has a bounded orbit. It follows from the construc-
tion that a homogeneous quasi-homomorphism f obtained in Theorem 6.5 satisfies
f (c) = 0.

To explain the connection of separation and bounded generation, we need one
definition.

Definition 6.6 (Product of subgroups). Let G be a group and H1, . . . , Hn < G

subgroups. Then the product H1 . . . Hn is a subset of G defined as follows:

H1 . . . Hn = {h1 . . . hn | hi ∈ Hi}.

Remark 6.7. One can show Theorem 5.3 using Theorem 6.4 as follows. Let G be
a non-elementary word-hyperbolic group. Suppose that elements b1, . . . , bn ∈ G
are given. Then one can find an element a ∈ G such that a and each bi satisfy
Condition 6.2 (this is not trivial). By Theorem 6.4, there exists a homogeneous quasi-
homomorphism f with f (a) = 1 and f (bi) = 0 for all i. Then |f | is bounded by
(n− 1)D(f ) on the following subset in G:

〈b1〉 . . . 〈bn〉
Sincef is unbounded on 〈a〉, we haveG �= 〈b1〉 . . . 〈bn〉. ThereforeG is not boundedly
generated by b1, . . . , bn.

Similarly, one can show that MCG(S) is not boundedly generated using Theo-
rem 6.5.
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7 Gaps in stable commutator length

We discuss the image, or the spectrum, of the function scl on [G,G].

7.1 Word-hyperbolic groups

D. Calegari [14] showed the following theorem.

Theorem 7.1. For every dimension n and any ε > 0, there is a constant δ(ε, n) > 0
such that ifM is a complete hyperbolic n-manifold and a ∈ π1(M) has stable commu-
tator length≤ δ(ε, n), then a is represented by a closed geodesic inM with length≤ ε.

Since there are only finitely many closed geodesics of length at most ε in M , this
theorem says that there is a gap (at zero) in the spectrum of stable commutator length.
Calegari uses pleated surfaces inM to estimate stable commutator length from below.
A similar argument appears in [29], where Gromov asserts that the hyperbolicity
implies the positivity of scl. The existence of a gap at zero was found by Calegari.

Via Theorem 1.4, Theorem 7.1 is related to quasi-homomorphisms on π1(M). In
some way, the following result [17] is a generalization to word-hyperbolic groups.

Theorem 7.2 (Gap Theorem in hyperbolic groups, weak version [17]). Let G be a
word-hyperbolic group whose Cayley graph is δ-hyperbolic with respect to a symmetric
generating set S with |S| generators. Then there is a constant C(δ, |S|) > 0 such that
for every a ∈ G, either scl(a) ≥ C or else there is some positive integer n and some
b ∈ G such that ba−nb−1 = an.

Note that scl(a) = 0 if the condition ba−nb−1 = an holds for n > 0 (cf. Condi-
tion 6.2 (1). This condition is called mirror condition in [17]). It follows from this
condition that b has finite order if a has infinite order. Therefore the condition never
holds in the fundamental group of a hyperbolic manifold since there is no nontrivial
torsion element (cf. Theorem 7.1).

Theorem 7.2 is a consequence of the first part of the following theorem by Propo-
sition 1.3 (cf. Theorem 1.4) with C = 1

2D . The second part of the theorem can be
thought of a separation theorem (see Section 6).

Theorem 7.3 (Gap Theorem in hyperbolic groups, strong version [17]). Let G be a
word-hyperbolic group whose Cayley graph is δ-hyperbolic with respect to a symmetric
generating set S with |S| generators. Then there exists a constant D(δ, |S|) with the
following property. Let a ∈ G be a (non-torsion) element. Assume there is no
n > 0 and no b ∈ G with ba−nb−1 = an. Then there is a homogeneous quasi-
homomorphism h on G such that

(1) h(a) = 1,

(2) the defect of h is ≤ D(δ, |S|).
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Moreover, let ai ∈ G be a collection of elements for which T = supi τ (ai) is finite.
Suppose that for all integers n �= 0,m and all elements b ∈ G and indices i, there is
an inequality

banb−1 �= ami .
Then there is a homogeneous quasi-homomorphism h on G such that

(1) h(a) = 1, and h(ai) = 0 for all i,

(2) the defect of h is ≤ D′(δ, |S|, T , τ (a)).

Note that the translation length τ concerns the Cayley graph ofGwith respect to S.
The argument for Theorems 7.2, 7.3 is a refinement of the one for Theorem 3.7. We
construct a quasi-homomorphisms f by counting functions, and the issue is to bound
the defect of f .

7.2 Mapping class groups

We show a theorem similar to Theorem 7.3 for mapping class groups. For a ∈
MCG(S), τ(a) denotes the translation length of a on C(S).

Theorem 7.4 ([17]). Let S be a compact orientable surface of hyperbolic type and
MCG(S) its mapping class group. Then there is a positive integer P depending on
S such that for any pseudo-Anosov element a, either there is an 0 < n ≤ P and
an element b ∈ MCG(S) with ba−nb−1 = an, or else there exists a homogeneous
quasi-homomorphism h on MCG(S) such that h(a) = 1 and the defect of h is≤ D(S),
where D(S) depends only on S.

Moreover, let ai ∈ MCG(S) be a collection of elements for which T = supi τ (ai)
is finite. Suppose that for all integers n �= 0,m and all elements b ∈ MCG(S) and
indices i, there is an inequality

banb−1 �= ami
Then there is a homogeneous quasi-homomorphism h on MCG(S) such that

(1) h(a) = 1, and h(ai) = 0 for all i,

(2) the defect of h is ≤ D′(S, T , τ (a)).

The construction of a quasi-homomorphism is the same as in Theorem 3.18, but
to have the desired bound on the defect, we need extra ingredients. This extra part is
more difficult than for word-hyperbolic groups since the action of MCG(S) on C(S)
is not proper, and C(S) is not locally finite. The standard argument which has been
developed in the theory of word-hyperbolic groups does not apply immediately. To
deal with this difficulty, we use the notion of tight geodesics, which is introduced by
Masur–Minsky [48]. They show a certain local finiteness property in terms of tight
geodesics. Bowditch [9] obtains more refined information than [48], which we use.
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Theorem 7.5 ([9]). Let S be a compact orientable surface and MCG(S) its mapping
class group. For R > 0, there exist D(R),K(R), which depends on S, such that for
any two vertices x, y ∈ C(S) with d(x, y) ≥ D, the following set contains at most K
elements:

{a ∈ MCG(S) | d(x, a(x)) ≤ R, d(y, a(y)) ≤ R}.

Proposition 3.16 also follows from Theorem 7.5.

Theorem 7.6 ([9]). Let S be a compact orientable surface and MCG(S) its mapping
class group. Then there exists a constant M = M(S) > 0 such that for any pseudo-
Anosov element a ∈ MCG(S), there exists a geodesic α ⊂ C(S) with aM(α) = α.

A similar result is known for word-hyperbolic groups in terms their action on their
Cayley graphs (for example, see [20, Theorem 5.1]).

Combining the first part of Theorem 7.4 and Proposition 1.3, we obtain the fol-
lowing with C(S) = 1

2D(S) .

Theorem 7.7 (Gap theorem [17]). Let S be a compact orientable surface of hyperbolic
type and MCG(S) its mapping class group. Then there exists C(S) > 0 such that for
any pseudo-Anosov element a ∈ MCG(S), either there is an 0 < n ≤ P(S) and an
element b ∈ MCG(S) with ba−nb−1 = an (then scl(a) = 0), or else scl(a) ≥ C.

This theorem is complementary to the following results.

Theorem 7.8. Let S be a closed orientable surface of genus g ≥ 2.

(1) [21] (cf. [43]) If a ∈ MCG(S) is a Dehn-twist along a separating simple closed
curve, then scl(a) ≥ 1

6(3g−1) .

(2) [22] There exists a ∈ MCG(S) such that for all n > 0 and c ∈ MCG(S),
an �= ca−nc−1 and that scl(a) = 0.

Note that the element a in (2) is not pseudo-Anosov by Theorem 7.7. It follows
from (1) that MCG(S) is not uniformly perfect, and thatH 2

b (MCG(S);R) is not trivial
(and indeed infinite dimensional by Theorem 3.18).

8 Appendix. Bounded cohomology

The theory of bounded cohomology was developed in Gromov’s seminal work [30].
We already mentioned in Section 1.3 that the space of quasi-homomorphisms on a
group is closely related to the second bounded cohomology of the group. We review
a part of the theory in this section. We recommend the survey articles [5] and [55] for
interested readers. All spaces and manifolds in this section are connected.
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8.1 Riemannian geometry

In [30], Gromov defined the minimal volume, MinVol(M), of a compact manifoldM
to be the infimum of the volume of all Riemannian metric g on M such that the
sectional curvature Kg satisfies −1 ≤ Kg ≤ 1. If dimM = 2, then Gauss–Bonnet
formula gives ∫

M

Kgdvg = 2πχ(M),

where χ(M) denotes the Euler characteristic of M . It immediately follows that
MinVol(M) = 2π |χ(M)|, and if χ(M) < 0, then the minimal volume is attained
(only) by a metric of constant curvature −1.

It is difficult to compute MinVol(M) in general. To give a lower bound for
MinVol(M), Gromov defined the simplicial volume, ‖M‖, ofM , which can be used in
general as a replacement of the Euler characteristic of a surface. Let c =∑

rici(ri ∈
R) be a real singular chain of M . Consider the l1-norm defined by ‖c‖1 = ∑ |ri |.
For a homology class α ∈ H∗(M;R), define a semi-norm by

‖α‖ = inf{‖z‖1 | z is closed and [z] = α}.
If M is orientable, define ‖M‖ = ‖[M]‖, where [M] is the fundamental n-class. If
M is not orientable, then pass to the double cover M ′ and define ‖M‖ = 1

2‖M ′‖.
Theorem 8.1 ([30]). If M is a compact n-dimensional manifold, then

Cn‖M‖ ≤ MinVol(M),

where Cn > 0 is a constant which depends only on n.

Of course, if ‖M‖ = 0, then this estimate is useless. Suppose f : M → N is
a continuous map such that M and N are compact orientable manifolds of the same
dimension. Then it is easy to see from the definition that

‖M‖ ≥ | deg f | · ‖N‖.
It follows that if there exists a continuous map g : M → M such that deg g �= 0,±1,
then ‖M‖ = 0 (if M is compact). For example, if M is a sphere or a torus, then
‖M‖ = 0.

There are examples of M with ‖M‖ > 0.

Theorem 8.2 (Gromov–Thurston [30]). Let (M, g) be an n-dimensional compact
Riemannian manifold. Suppose there exists a constant k such that −k ≤ Kg ≤ −1.
Then,

vol(M, g) ≤ cn‖M‖,
where cn is a constant which depends only on n.

Moreover, if Kg = −1, then

vol(M, g) = Tn‖M‖,
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whereTn is the supremum of the volume of all geodesicn-simplices in then-dimensional
real hyperbolic space, H

n.

It is shown in [30] that one can take cn = (n− 1)nn!. A simplex is called geodesic
if all of its faces are totally geodesic. The proof is by “straightening” (into a geodesic
one in the case Kg = −1) the lift of an n-simplex contained in [M] in the universal
cover ofM . That’s how Tn comes into the estimate. It is known by now ([32]) that Tn
is equal to the volume of ideal regular n-simplices in H

n. Thus one needs to consider
only regular geodesic n-simplices in the definition of Tn. Note that a simplex (possibly
ideal) is regular if any permutation of vertices is induced by an isometry of H

n.
We explain the connection between simplicial volume and bounded cohomology.

The definition of bounded cohomology of a topological space X differs from the one
for the ordinary real singular cohomology in that one considers only the set of singular
cochains each of which is bounded as a function.

Let Sn(X) be the set of n-dimensional singular simplices inX. Real n-dimensional
singular cochains are functions Sn(X)→ R. They form a vector space over R, which
we denote Cn(X). Let δ be the standard coboundary map Cn(X) → Cn+1(X) for
each n. The real singular cohomology of X, H ∗(X;R) (sometimes we omit R in this
chapter), is the cohomology of this cochain complex.

Now let Bn(X) ⊂ Cn(X) be the set of all bounded functions on Sn(X). Each
element inBn(X) is called a bounded n-cochain. It is easy to see that δ(c) ∈ Bn+1(X)

if c ∈ Bn(X). The cohomology of the complex B∗(X) is the bounded cohomology of
X, denoted by H ∗b (X). Each element c ∈ Cn(X) has a natural l∞-norm.

‖c‖∞ = sup
σ∈Sn(X)

c(σ ) ≤ ∞.

For an element β ∈ H ∗(X), define

‖β‖ = ‖β‖∞ = inf
y
‖y‖∞ ≤ ∞,

where y are all cochains such that δy = 0 and [y] = β.
The inclusion Bn(X)→ Cn(X) induces a canonical map Hn

b (X)→ Hn(X), the
comparison map. We say β ∈ Hn(X) is bounded if it is contained in the image of this
map, in other words, ‖β‖∞ <∞.

The following two results in [30] are fundamental. There is a detailed account of
the argument in [40], where he discusses a countable CW-complex X.

Theorem 8.3. Let X be a topological space. Then,

Hn
b (K(π1(X), 1);R) � Hn

b (X;R)
for all n.

Hn
b (K(π1(X), 1);R) can be computed as Hn

b (π1(X);R) using the definition of
the bounded cohomology of a group given in Section 1.3. We obtain the following
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theorem, which says that the bounded cohomology depends only on the fundamental
group.

Theorem 8.4. Let X be a topological space. Then,

Hn
b (X;R) � Hn

b (π1(X);R).

By this theorem, if M is a closed Riemannian manifold of negative sectional
curvature, then H 2

b (M;R) is infinite dimensional, in particular, non-trivial. This is
because G = π1(M) is a non-elementary word-hyperbolic group, therefore Q̃H(G)
is infinite dimensional by Theorem 3.7, so that H 2

b (G;R) is also infinite dimensional
since Q̃H(G) is a subspace as a vector space over R in H 2

b (G;R) (see Section 1.3).
The simplicial volume of a manifold M is related to the bounded cohomology of

M as follows.

Theorem 8.5. Let M be an n-dimensional closed orientable manifold and α ∈
Hn(M;R) the fundamental class such that 〈α, [M]〉 = 1. Then,

‖M‖−1 = ‖α‖∞.
In particular, if α is bounded, namely ‖α‖∞ <∞, then ‖M‖ �= 0.

It follows that ifM is simply connected, then ‖M‖ = 0. This is becauseHn
b (M;R)

is trivial since π1(M) is trivial. Therefore, ‖α‖∞ = ∞.
The following is also proved using straightening.

Theorem 8.6 ([30]). LetM be a closed Riemannian manifold whose sectional curva-
ture is negative. Then the map Hn

b (M;R)→ Hn(M;R) is surjective for all n > 1.

If M is an n-dimensional closed hyperbolic manifold (Kg = −1), then by The-
orems 8.1 and 8.2, Cn

Tn
vol(M) ≤ MinVol(M). The following result was conjectured

in [30].

Theorem 8.7 ([4]). Let (M, g) be a closed Riemannian manifold such thatKg = −1.
Then MinVol(M) = vol(M, g) and a metric which attains MinVol(M) is isometric
to g.

We record one more recent progress. This is an answer in the affirmative to a
question in [30].

Theorem 8.8 ([45]). LetM be a closed locally symmetric space of non-compact type.
Then ‖M‖ > 0.

In particular it follows that MinVol(M) > 0 for such manifolds by Theorem 8.1,
which was known for most cases ([31], [18]).
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8.2 Group theory

Theorem 8.6 is generalized to word-hyperbolic groups. In general, H 1
b (G;R) = 0

since a bounded homomorphism from G to R is trivial.

Theorem 8.9 ([53]). Let G be a non-elementary word-hyperbolic group. Then the
map Hn

b (G;R)→ Hn(G;R) is surjective for all n > 1.

In this chapter, we have seen several examples of groups G such that Q̃H(G,R)
is infinite dimensional. Those groups have infinite dimensional H 2

b (G,R). Here is a
list of such G.
(1) Free groups of rank at least two (Theorem 2.1).

(2) Non-elementary subgroups of a word-hyperbolic group (see Theorem 3.7 and
Remark 3.8).

(3) Subgroups in MCG(S) which are not virtually abelian (Theorem 3.18).

(4) Discrete subgroups in a rank-1 simple Lie group which are not virtually nilpotent
(see the proof of Theorem 5.4).

(5) The fundamental group G of a complete Riemannian manifold M of dimension
at least two such that vol(M) < ∞ and the sectional curvature is non-positive,
and such thatM is not locally symmetric of rank at least two andG is irreducible
(Theorem 3.20).

(6) G = A ∗C B such that |C\A/C| ≥ 3 and |B/C| ≥ 2; or G = A∗C,φ such that
|A/C| ≥ 2 and |A/φ(C)| ≥ 2 (see [26]).

If there is a surjective homomorphism h : G → F , where F is a rank two free
group (sometimes thenG is called large), then Q̃H(G), therefore,H 2

b (G,R) is infinite
dimensional. This is because if f : F → R is a homogeneous quasi-homomorphism,
then f � h : G→ R is a homogeneous quasi-homomorphism. (We do not need that
G is finitely generated. Q̃H(F ) is indeed infinite dimensional if we restrict it to [F,F ]
as well.) For example, this argument applies to the fundamental group of a closed
orientable surface of genus at least two, which is a non-elementary word-hyperbolic
group. For the same reason, if a group G has a surjective homomorphism to one of
the groups in the list, then Q̃H(G) is infinite dimensional.

Not much is known about Hn
b (G;R) for n > 2. If M is an n-dimensional closed

locally symmetric space, thenHn
b (π1(M);R) is non-trivial by Theorems 8.4, 8.6, 8.8.

It is not known in general if the dimension of Hn
b (π1(M);R) is finite.

There is a new direction of study of the second bounded cohomology with non-
trivial coefficient. It is revealed that it has a connection to rigidity in terms of orbit
equivalence of actions.

Let � and  be countable groups and (X,μ), (Y, ν) probability �- and - spaces
respectively. A measurable isomorphismF : X→ Y is said to be an orbit equivalence
(OE) of the actions if for a.e. x ∈ X, F(�x) = F(x). (See [55], [56] and Chapter 9
of this volume [42].)

Let Creg be the class of countable groups G such that H 2
b (G, �

2(G)) �= 0.
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Theorem 8.10 ([56]). A countable group G belongs to Creg if it admits one of the
following actions:

(1) a non-elementary simplicial action on a simplicial tree, proper on the set of
edges,

(2) a non-elementary, proper isometric action on a proper CAT(−1) space,

(3) a non-elementary, proper isometric action on a δ-hyperbolic graph with bounded
valency.

In particular, a countable group which is free of rank at least two, a non-trivial free
product of two countable groups except for Z2 ∗ Z2, and a non-elementary subgroup
of a word-hyperbolic group are in Creg.

Among many rigidity theorems, Monod and Shalom showed the following.

Theorem 8.11 ([56]). Let �1, �2 be torsion-free groups in Creg, � = �1 × �2, and
let (X,μ) be an irreducible probability �-space. Let (Y, ν) be any other probability
�-space. If the �-actions on X and Y are orbit equivalent, then they are isomorphic
with respect to an automorphism of �.

Acknowledgment. I would like to thank my collaborators M. Bestvina, D. Calegari
and D. B. A. Epstein. I am grateful to A. Papadopoulos for his valuable comments on
the first draft.
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1 Introduction

Lefschetz pencils and fibrations were introduced for studying topological properties
of smooth complex projective varieties. More recently, as an application of Donald-
son’s asymptotically holomorphic methods [13], Lefschetz pencils have been found
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on all symplectic manifolds [14], [15]. Conversely, Gompf showed that a 4-manifold
admitting a Lefschetz pencil/fibration carries a symplectic structure [23], [24]. Since
symplectic 4-manifolds play a prominent role in modern low-dimensional topology,
the Donaldson–Gompf correspondence piqued interest in the study of Lefschetz fibra-
tions. In addition, these structures provide a connection between symplectic topology
and geometric group theory. The utilization of this correspondence led, for example,
to results on the commutator lengths of certain elements in the mapping class groups
of oriented surfaces (of genus > 1) [17], [29]. The arguments in [17], [29] relied on
Seiberg–Witten theory, and had interesting consequences on the algebraic structure of
mapping class groups.

In this chapter we collect the most basic definitions, describe the fundamental
results and explain some of the consequences of the correspondence mentioned above.
In some cases we provide a full or partial proof of the result. Most of the time, however,
we restrict ourselves to quoting the theorems, and try to put them in perspective.
The only new result is stated in Corollary 5.16. We would like to point out that
although most of the fundamental results hold in any (even) dimension, we restrict our
attention to the case of symplectic 4-manifolds, in which case the Lefschetz fibrations
have surface fibers, and therefore the theory of mapping class groups enters in an
essential way.

Acknowledgement. The second author would like to acknowledge partial support
from the Clay Mathematics Institute. He was also supported by OTKA T49449.

2 Lefschetz pencils and Lefschetz fibrations

In this section we define Lefschetz pencils and Lefschetz fibrations.

2.1 Lefschetz pencils on X ⊂ CP
n

Suppose that X is a smooth complex projective variety in CP
n. The idea Lefschetz

had for studying the topology ofX was to ‘slice it up’ into smaller dimensional pieces,
study those slices first and then understand how they are pieced together to form X.
To this end, we consider a (complex) codimension-2 hyperplane A (∼= CP

n−2), say

A = {[x0 : . . . : xn] ∈ CP
n | x0 = x1 = 0}.

The subsetA (called the axis) is expected to intersectX in a (complex) codimension-2
submanifold – for a generic choice of A this is exactly what happens. Now consider
the family of codimension-1 hyperplanes containing the axis A. This family {Ht } can
be parametrized by CP

1; in the above example

Ht = {[x0 : . . . : xn] | t0x0 + t1x1 = 0, t = [t0 : t1] ∈ CP
1}.
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Notice that since {Ht } sweeps out CP
n, this construction gives a map

ψ : CP
n − A→ CP

1

by sending a point x ∈ CP
n − A to t ∈ CP

1 if x ∈ Ht .
Assuming that the intersection A ∩ X is transverse, now we consider the slices

Ft = Ht ∩X. For a generic choice of t this intersection is transverse again, and so Ft
is a smooth submanifold ofX. For finitely many t , however, the transversality fails to
hold. Once again, for a sufficiently generic choice of A the singularity of Ft is mild
enough; it is a transverse double point, hence it is modelled on a canonical example.
(Notice that A ∩X ⊂ Ft for every t ∈ CP

1.) Also, the restriction of the map ψ from
CP

n − A to X − A provides a map

ψ : X − A→ CP
1.

The argument above indicates that the singularities of ψ and its behavior near X−A
can be given on canonical models, leading us to

Definition 2.1. Let X be a closed, connected, oriented, smooth 4-manifold. A Lef-
schetz pencil on X is a nonempty finite subset B of X, called the base locus, to-
gether with a smooth map ψ : X − B → CP

1 such that each point b ∈ B has an
orientation-preserving coordinate chart in which ψ is given by the projectivization
map C

2−{0} → CP
1, and each critical point ofψ has an orientation-preserving chart

on whichψ(z1, z2) = z2
1+z2

2 relative to a suitable smooth chart on CP
1. For t ∈ CP

1,
the fiber Ft is ψ−1(t) ∪ B ⊂ X.

2.2 Lefschetz fibrations

By appropriately blowing up the points of B in a Lefschetz pencil, ultimately we get
a fibration map on the blown-up X into CP

1, where the fibers (the proper transforms
of Ft ) are smooth submanifolds with finitely many exceptions, and in these exceptions
the total transform F̃t has a transverse double point singularity. In real dimension four
(when B is a finite set of points) this construction leads to the following more general
definition – when we allow the base curve to have higher genus, andX to be a smooth
4-manifold with possibly non-empty boundary ∂X.

Definition 2.2. LetX be a compact, connected, oriented, smooth 4-manifold and let�
be a compact, connected, oriented, smooth surface. A Lefschetz fibration is a smooth
map f : X→ � such that

• f−1(∂�) = ∂X,

• the set C = {p1, p2, . . . , pk} of critical points of f lies in the interior of X,

• for each i, there are orientation-preserving complex local charts around pi and
f (pi) where f is given by f (z1, z2) = z2

1 + z2
2.
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A regular fiber of a Lefschetz fibration is a smooth, closed, connected, oriented
surface whose genus is called the genus of the Lefschetz fibration. There are finitely
many singular fibers which are immersed surfaces with transverse positive double
points. In the following we will assume that f is injective onC, that is, a singular fiber
admits a unique singular point. (By a slight perturbation of the map f this property can
always be achieved.) A singular fiber is called reducible if it becomes disconnected
after removing the double point. Reducible fibers have two components. Both of
these components have square−1 in homology. The topology of the neighborhood of
a reducible singular fiber is determined by the genera of the two components we get
after removing the singular point; the smaller of these genera is called the type of the
reducible singular fiber. A singular fiber which is not reducible is called irreducible.
The vector giving the number of irreducible singular fibers, together with the number
of reducible singular fibers of various types is called the combinatorial data of the
Lefschetz fibration. Notice, for example, that the Euler characteristic of the total space
X is determined by the fiber and base genera and the number of singular fibers, while
the signature typically depends on the actual fibration map. A fibration is relatively
minimal if there is no (−1)-sphere contained in a fiber; in other words, the 4-manifold
cannot be blown down in such a way that the fibration structure is preserved. A map
ϕ : �→ X is a section if f � ϕ = id� , that is, ϕ(t) ∈ Ft for every t ∈ �.

Two Lefschetz fibrations f : X→ � and f ′ : X′ → �′ are equivalent if there are
diffeomorphisms� : X→ X′ and φ : �→ �′ such that f ′ �� = φ �f . In particular,
equivalent Lefschetz fibrations have equal fiber genera and equal combinatorial data.

The fiber sum f : X #f X′ → � # �′ of the two fibrations f : X → � and
f ′ : X′ → �′ of the same genus is defined as follows: remove the neighborhood of
a regular fiber from each fibration and glue the resulting 4-manifolds with boundary
with a fiber preserving, orientation-reversing diffeomorphism of their diffeomorphic
boundaries. The actual gluing map is suppressed from the notation, although various
choices give rise to drastically different results; examples where different choices give
total spaces with different first integer homologies can be found in [39].

3 Topology of Lefschetz fibrations

The fibration mapX→ � provides a relative handlebody decomposition structure for
X (built on the neighborhood of a regular fiber), a structure which ultimately can be
used to describe f as a factorization of a certain element in the mapping class group of
the regular fiber. We devote this section to outline the construction of the handlebody
decomposition and to set up the correspondence with mapping class groups.
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3.1 Vanishing cycles, topological description

Let us suppose that f : X→ � is a given Lefschetz fibration. Consider two embedded
disksD1 ⊂ D2 ⊂ � in such a way that there is no critical value in the annulusD2−D1.
Then it is fairly easy to see that f−1(D1) is a deformation retract of f−1(D2). The
topology of this inverse image will change, however, if D2 − D1 contains a critical
value f (pi). Away from the critical point we still have the retraction, but near pi we
detect a 2-handle attachment.

Recall that each critical point has a local coordinate chart in whichf (z1, z2) = z1z2
(which is the same as (z′1)2 + (z′2)2 through the coordinate change z1 = z′1 + iz′2,
z2 = z′1 − iz′2). On this chart, the unique critical value is 0, and f−1(0) = {(z1, z2) |
z1 = 0 or z2 = 0} is a pair of intersecting planes. Thus, each singular fiber is a smoothly
immersed surface, and each critical point corresponds to a positive transverse double
point. Nearby fibers Ft = f−1(t), t 
= 0, are nonsingular, and are obtained from
f−1(0) by removing the intersection. That is, we perform a surgery on a 0-sphere in
the fiber (the pair of identified points) by removing the intersecting disks and replacing
them with the annulus z1z2 = t . Equivalently, each critical point corresponds to an
embedded surgery circle called a vanishing cycle in a nearby regular fiber, and the
singular fiber is obtained by collapsing the vanishing cycle to a point to create a
transverse double point. If the singular fiber is reducible, that is, the vanishing cycle
separates the generic fiber, the singular fiber will be the image of an immersion of a
disconnected surface.

Next we show that a Lefschetz critical point corresponds to a 2-handle, and de-
termine its attaching map. Near the critical point we write f (z1, z2) = z2

1 + z2
2, so a

nearby regular fiber is given by z2
1+z2

2 = t , and after multiplying f by a unit complex
number we can assume t > 0. If we intersect the fiber with R

2 ⊂ C
2, we obtain the

circle x2
1 + x2

2 = t in R
2 (where zj = xj + iyj ). This circle bounds a disk Dt ⊂ R

2,
which was called a thimble by Lefschetz. As t approaches zero, the thimbleDt shrinks
to a point in R

2. Thus, ∂Dt = Ft ∩R
2 is the vanishing cycle of the critical point, and

we explicitly see the singular fiber F0 being created from Ft by the collapse ofDt . A
regular neighborhood νF0 of the singular fiber is obtained from the neighborhood νFt
by adding a regular neighborhood ofDt . The latter neighborhood is clearly a 2-handle
h attached to νFt . As an explicit computation in the local model shows, the 2-handle
h is attached along ∂Ds ⊂ ∂νF (the vanishing cycle) with framing −1 relative to the
framing induced by the surface Fs containing ∂Ds .

3.2 The mapping class group and the monodromy factorization

Lefschetz fibrations can be described combinatorially by means of their monodromy.
Let 	g denote the mapping class group of the closed connected orientable genus-g
surface F , that is, the group of isotopy classes of orientation-preserving self-diffeo-
morphisms of F . For a smooth fiber bundle f : E → B with fibers diffeomorphic
to the manifold F , we define the monodromy representation 
 : π1(B) → 	g of
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f relative to a fixed identification ϕ of F with the fiber over the base point of B: For
I = [0, 1] and for each loop γ : I → B the bundle fγ : γ ∗(E) → I is canonically
trivial, inducing a diffeomorphism f−1

γ (0) → f−1
γ (1) (up to isotopy). Using ϕ to

identify f−1
γ (0) and f−1

γ (1) with F , we obtain the element 
(γ ) ∈ 	g . Changing
the identification ϕ changes 
 by a conjugation by an element of 	g .

For a relatively minimal, genus-g Lefschetz fibration f : X → � with a regular
fiber F , we define the monodromy of the Lefschetz fibration to be the monodromy
of the fiber bundle X − f−1(Q) → � −Q, where Q = f (C) is the set of critical
values. For f : X → � as above with f injective on the set C of critical points, the
monodromy representation 
 : π1(� −Q)→ 	g determines f up to isomorphism,
except in the cases of sphere and torus bundles (C = ∅) over closed surfaces. This
follows from the fact that for g ≥ 2 the space of self-diffeomorphisms of F isotopic
to the identity is contractible (while for g = 0, 1 it has nontrivial topology, resulting
in nontrivial S2- and T 2-bundles over the sphere). In fact, two Lefschetz fibrations
X→ � andX′ → �′ with diffeomorphic regular fibers F and F ′ with genera at least
two are equivalent if and only if their monodromy representations agree, that is, there
are isomorphisms making the diagram

π1(� −Q) ��

��

	g

��
π1(�

′ −Q′) �� 	′g

commute, where 	′g is the mapping class group of F ′, and the isomorphism π1(� −
Q)→ π1(�

′ −Q′) is induced by a smooth map �→ �′.
As a local computation shows, the monodromy of a Lefschetz fibration f : X →

D2 over the disk with a single critical point is a right-handed Dehn twist along the
vanishing cycle corresponding to the singular fiber. Therefore the monodromy of a
Lefschetz fibration f : X→ �h comprises a factorization of 1 ∈ 	g as

1 =
n∏
i=1

tvi

h∏
i=1

[ai, bi],

where vi are the vanishing cycles of the singular fibers and tvi is the right-handed Dehn
twist about vi . This factorization of the identity is called the monodromy factorization.
In particular, a product

∏h
i=1[ai, bi] ofh commutators in	g gives anF -bundle over the

surface �1
h of genus h with one boundary component. The mapping classes ai and bi

specify the monodromy along the obvious free generating system 〈α1, β1, . . . , αk, βk〉
of π1(�

1
h). If

∏h
i=1[ai, bi] = 1 in 	g , we get an F -bundle X→ �h. (The bundle is

uniquely determined by the word once g ≥ 2.)
An expression

∏k
i=1 ti ∈ 	g with ti right-handed Dehn twists provides a genus-g

Lefschetz fibration X → D2 over the disk with fiber F . If
∏k
i=1 ti = 1 in 	g then

the fibration closes up to a fibration over the sphere S2 and the closed-up manifold is
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uniquely determined by the word
∏k
i=1 ti once g ≥ 2. By combining the above two

constructions, a word

w =
k′∏
i=1

ti

h∏
j=1

[ai, bi]

gives a Lefschetz fibration over �h − D2 and if w = 1 in 	g we get a Lefschetz
fibration X→ �h.

In a genus-g Lefschetz fibration over the base S2, a theorem of Ivan Smith shows
that there must be some irreducible fibers. (A Lefschetz fibration is called trivial if
there are no singular fibers.)

Theorem 3.1 ([3]). There are no nontrivial Lefschetz fibrations with base S2 whose
monodromy is contained in the Torelli group, the subgroup of the mapping class group
acting trivially on the first homology of the surface. �

A sharper lower bound for the number of irreducible singular fibers was given
in [49].

Theorem 3.2 ([49]). A nontrivial genus-g Lefschetz fibration over the sphere S2 has
at least 4g+2

5 irreducible singular fibers. �

It is easy to see that the monodromy factorization corresponding to a fiber sum is
simply the product of the factorizations defining the individual factors. The only point
one should be careful about is how the typical fiber is identified with the genus-g surface
�g using which the mapping class group is defined: for different identifications, terms
in the monodromy factorizations should be conjugated. Consequently, the dependence
of the result of the fiber sum on the gluing diffeomorphism will be visible through an
overall conjugation of one side of the fiber sum.

3.3 Sections of Lefschetz fibrations

Suppose that the Lefschetz fibration f : X → � admits a section. In terms of the
monodromy representation this simply means that the point of the fiber f−1(t) where
it is intersected by the section should stay fixed. Therefore a section provides a lift
of the representation 
 from π1(� − Q) to the mapping class group 	g,1 with one
marked point. Recall that Q denotes the subset of � consisting of critical values.
Conversely, every such representation determines a fibration with a section. Simi-
larly, the existence of n disjoint sections is equivalent to the existence of a lift of the
monodromy representation to 	g,n, the mapping class group of the genus-g surface
with n marked points.

Recall that there is a canonical homomorphism p : 	1
g → 	g,1 where 	1

g denotes
the mapping class group of a genus-g surface with one boundary component consisting
of the relative isotopy classes of diffeomorphisms which fix the boundary pointwise.
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It is not hard to see that ker p is isomorphic to Z, generated by the right-handed Dehn
twist tδ along a simple closed curve δ parallel to the boundary. If the factorization
1 = ∏

i ti
∏
j [aj , bj ] lifts from 	g to 	g,1 then (according to the above said) the

corresponding fibration has a section. In addition, it is not hard to see that if this
product (when viewed in	1

g) is equal to tmδ then this section is of self-intersection−m.
A similar identity holds for n disjoint sections (in which case we use the mapping class
groups 	g,n and 	ng ).

This observation can be used to determine Lefschetz pencils using the monodromy
representation. Recall that a Lefschetz pencil can be blown up at the base points to get a
Lefschetz fibration (on the blown-up 4-manifold). Therefore a Lefschetz pencil can be
regarded as a Lefschetz fibration over S2 together with a distinguished set of sections,
all of self-intersection (−1). Consequently an expression

∏n
i=1 ti = tδ1 . . . tδk in 	kg

(where all ti stand for right-handed Dehn twists and tδi are right-handed Dehn twists
along circles parallel to the boundary components of the Riemann surface at hand)
naturally describes a Lefschetz pencil: The relation determines a Lefschetz fibration
with k (disjoint) sections, each of self-intersection (−1), and after blowing these
sections down we get a Lefschetz pencil. Conversely, by blowing up the base locus of
a Lefschetz pencil we arrive to a Lefschetz fibration which can be captured (together
with the exceptional divisors of the blow-ups, which are all sections now) by a relator
of the above type.

4 Relation to symplectic topology: the work of
Gompf and Donaldson

In 1994 Donaldson showed that in a symplectic manifold (X, ω) with symplectic
form ω satisfying

1

2π
[ω] ∈ Im(H 2(X;Z)→ H 2(X;R))

the Poincaré dual of k
2π [ω] (for k sufficiently large) can be represented by a symplectic

submanifold. In his proof Donaldson considered the complex line bundleL→ Xwith
c1(L) = 1

2π [ω] and showed that for k sufficiently large the line bundle L⊗k admits an
‘asymptotically holomorphic section’, for which the zero-set is a symplectic submani-
fold. By finding two transverse such sections σ1, σ2 of L⊗k (for an appropriate, and
possibly higher k), Donaldson showed that the map

x �→ [σ1(x) : σ2(x)]
(defined onX−{x ∈ X | σ1(x) = σ2(x) = 0}) provides a Lefschetz pencil onX. For a
symplectic 4-manifold therefore (after possibly rescaling and perturbing its symplectic
structure) an appropriate blow-up admits a Lefschetz fibration over S2.

Conversely, under a mild assumption (which will be explained later) a Lefschetz
fibration f : X → � provides a way to equip the 4-manifold X with a symplectic
structure [23], [24]. Notice first that the tangents of the fibers (and an orientation of the
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fiber) together with their orthogonal complements give (away from the critical points)
an almost complex structure. Because of the canonical local model near the critical
points, this structure obviously extends to an almost complex structure onX. Suppose
now that the typical fiber Ft represents a nonzero homology class inH2(X;R). Using
a partition of unity then a form can be constructed on X which will be closed and
nondegenerate along the fiber directions. (Here again the local model near the critical
points plays a crucial role.) By pulling back an appropriate multiple of a volume
form on the base, the construction ultimately provides a symplectic structure on X.
With a little more care one can arrange that a fixed (finite) set of disjoint sections will
be symplectic submanifolds, hence if these sections are (−1)-spheres, those can be
symplectically blown down. Notice that the fiber of a Lefschetz fibration is nontrivial
in real homology provided either (a) the fibration admits a section, (b) the fiber genus
is not equal to 1 (since in this case the first Chern class of the almost complex structure
gives 〈c1(X, J ), [Ft ]〉 = 2 − 2g 
= 0), or (c) the fibration admits singular fibers. A
fibration stemming from blowing up a pencil always admits sections (the exceptional
spheres of the blow-ups).

Remark 4.1. The assumption on the nontriviality of the real homology class of the
fiber is essential: taking the product of a nontrivial circle bundle over S2 with the
circle S1 we get a torus bundle over S2 with vanishing second real cohomology, so
although the 4-manifold admits a torus fibration, it cannot be symplectic.

In conclusion we get

Theorem 4.2. A 4-manifold X admits a symplectic structure if and only if it carries
a Lefschetz pencil, equivalently if some blow-upX′ ofX carries a Lefschetz fibration.

�

Notice that this construction provides the possibility of describing symplectic struc-
tures through the factorization of the unit element in some mapping class group, de-
fined by a Lefschetz fibration associated to the symplectic structure. There is a delicate
equivalence relation among those factorizations providing the same fibration, and in
order to get invariants of symplectic structures in this way, one also needs to understand
the relation between factorizations corresponding to different fibrations resulting in
the same symplectic manifold. The first step towards the definition of such invariants
was made in [6].

5 Results on Lefschetz fibrations

5.1 Lefschetz fibrations of low genus

We start with a definition. Suppose that a mapping class is represented as a product of
right-handed Dehn twists. A Hurwitz move replaces a factor tatb in this representation
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by tta(b)ta = (tatbt−1
a )ta or by tbtt−1

b (a)
= tb(t−1

b tatb). Two such representations are

called Hurwitz equivalent if they can be obtained from each other by a sequence of
Hurwitz moves.

Let f : X → S2 be a relatively minimal genus-g Lefschetz fibration. If the fiber
genus g = 0, then X is diffeomorphic to S2 × S2 or S2 ×̃ S2, the trivial and twisted
sphere bundles over S2. In complex surface theory these manifolds are called (mini-
mal) ruled surfaces.

If g = 1 then the 4-manifold X is either a torus bundle (in case there are no
singular fibers), or the monodromy of the Lefschetz fibration is Hurwitz equivalent to
(tatb)

6n = 1 for some integer n ≥ 0 [37], where a and b are two simple closed curves
on the torus (a regular fiber) intersecting transversely at one point. In the mapping
class group 	1 of the torus we have (tatb)6 = 1, and it can be fairly easily checked that

the 4-manifold corresponding to the factorization (tatb)6 = 1 is CP
2 # 9CP

2 with an
elliptic fibration on it. This manifold is usually called the rational elliptic surface, and
is denoted by E(1). For the general case, the factorization (tatb)6n = 1 gives rise to
Xn, which is diffeomorphic to the elliptic surface E(n), the n-fold fiber sum of E(1).
We note here that this simple classification of genus-1 Lefschetz fibrations stems from
the simplicity of the mapping class group 	1, which is isomorphic to SL2(Z) through
the map

ta �→
(

1 1
0 1

)
and tb �→

(
1 0
−1 1

)
.

In the mapping class group 	2 of the oriented closed surface of genus 2 (depicted
in Figure 1), let σ = (t1t2)6 = (t4t5)6. Define the words

T = t1t2t3t4t5t5t4t3t2t1,
W0 = T 2,

W1 = (t1t2t3t4t5)6,
W2 = σ(t3t4t5t2t3t4t1t2t3)2 T .

It can be shown that each of the words W0, W1 and W2 represents the identity in the
mapping class group 	2.

Theorem 5.1 (Auroux [4]). Let F be any factorization of the identity as a product of
positiveDehn twists in themapping class group	2. Then there exist integers ε ∈ {0, 1},
k ≥ 0, andm ≥ 0 such that, for any large enough integer n, the factorizationF ·(W0)

n

is Hurwitz equivalent to

(W0)
n+k(W1)

ε(W2)
m.

Consequently, there are three genus-2 LefschetzfibrationsX0, X1, X2 such that for any
genus-2 Lefschetz fibrationX the fiber sumsX #f nX0 and (n+k)X0 #f εX1 #f mX2
are equivalent Lefschetz fibrations. �
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5

Figure 1

For Lefschetz fibrations of arbitrary genus we do not hope to get a classification
result of the above type. In general, Auroux proved the following stable classification
result.

Theorem 5.2 (Auroux [5]). For any g, there exists a genus-g Lefschetz fibration f 0
g

with the following property. Let f : X → S2 and f ′ : X′ → S2 be two genus-g
Lefschetz fibrations, each equipped with a distinguished section. Assume that

(1) the 4-manifolds X and X′ have the same Euler characteristic and signature,

(2) the distinguished sections of f and f ′ have the same self intersection,

(3) f and f ′ have the same number of reducible fibers of each type, i.e., the fibrations
have identical combinatorial data.

Then, for all large enough values of n, the fiber sums f # nf 0
g and f ′ # nf 0

g are
isomorphic. �

5.2 Holomorphicity of Lefschetz fibrations

A Lefschetz fibration is called holomorphic if the total space X is a complex surface,
and for a suitable complex structure on the base 2-manifold � the fibration map
f : X → � is holomorphic. Fiber sums of holomorphic Lefschetz fibrations might
not be holomorphic, as the examples provided by the following theorem show:

Theorem 5.3 ([39], [30]). For each g ≥ 2, there exist infinitely many genus-g Lef-
schetz fibrations with base S2 admitting no complex structure with either orientation.
These Lefschetz fibrations can be chosen to be fiber sums of holomorphic Lefschetz
fibrations. �

By definition, a Lefschetz fibration has transitive monodromy if its monodromy
generates the mapping class group of a general fiber.



282 Mustafa Korkmaz and András I. Stipsicz

Theorem 5.4 (Siebert–Tian [43]). Let f : X → S2 be a genus-2 Lefschetz fibration
with transitive monodromy. If all singular fibers are irreducible, then f is isomorphic
to a holomorphic Lefschetz fibration. �

As a corollary of Theorem 5.1 we get

Corollary 5.5 (Auroux [4]). Let f : X→ S2 be a genus-2 Lefschetz fibration. Then
the fiber sum of f with sufficiently many copies of the rational genus-2 Lefschetz
fibration with 20 singular fibers whose monodromy group is W0 is isomorphic to a
holomorphic fibration. �

5.3 Commutator lengths of Dehn twists

Let G be a group and let [G,G] denote the commutator subgroup of G, i.e., the
subgroup generated by all commutators [a, b] = aba−1b−1 for a, b ∈ G. For x ∈
[G,G], let us define the commutator length c(x) of x to be the minimum number of
factors needed to express x as a product of commutators. Clearly, the commutator
length is subadditive:

c(xn+m) ≤ c(xn)+ c(xm)
for all x in [G,G]. It can be shown easily that the limit

‖x‖ = lim
n→∞

c(xn)

n

exists, which is called the stable commutator length of x. Recall thatG is called perfect
if G = [G,G] and uniformly perfect if there is a positive integer N such that every
element x of G can be written as a product of at most N commutators (c(x) ≤ N ).
Notice that if G is uniformly perfect, then ‖x‖ = 0 for all x ∈ G.

It is a well-known fact that for g ≥ 3 the mapping class group 	g is perfect [41],
i.e., every element in 	g is a product of commutators. In particular, one can talk
about the stable commutator length of a Dehn twist. The mapping class group 	2
is not perfect; its first homology group is isomorphic to the cyclic group of order 10
generated by the class of a Dehn about a nonseparating simple closed curve [38]. Thus
the tenth power of every Dehn twist is in the commutator subgroup.

Theorem 5.6 ([17], [29]). Let a be a homotopically nontrivial simple closed curve on
a closed connected oriented surface �g of genus g ≥ 2, and let ta be the Dehn twist
about a. Then ‖ta‖ ≥ 1

18g−6 if g ≥ 3 and ‖t10
a ‖ ≥ 1

3 if g = 2. �

In the proof of this theorem, the following symplectic Parshin–Arakelov inequality
(proved by Tian–Jun Li) was used:

Theorem 5.7 ([34]). LetX be a relatively minimal genus-g Lefschetz fibration over a
genus-h surface. If X is not rational or ruled, then the square of the first Chern class
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c1(X) ∈ H 2(X;R) of X satisfies

c2
1(X) ≥ 2(g − 1)(h− 1). �

Recall that a 4-manifold is called rational 4-manifold if it is diffeomorphic either
to S2 × S2 or to some blow-up of the complex projective plane CP

2. A 4-manifold
is ruled if it is diffeomorphic to some blow-up of a sphere bundle over an orientable
surface.

Theorem 5.8 ([9]). Let a be a homotopically nontrivial simple closed curve on a
closed connected oriented surface �g of genus g ≥ 2, and let ta be the Dehn twist
about a. Suppose that tka with k > 0 can be written as a product of h commutators.
Then

h ≥ 1+ k

6(3g − 1)
.

We outline the proof of a slightly weaker result, namely that there are elements in
the mapping class group for which the powers admit unbounded commutator length.

Theorem 5.9 (Endo–Kotschick [17], Korkmaz [29]). Let c be a separating simple
closed curve on a closed connected oriented surface �g of genus g ≥ 2. If tnc =∏kn
i=1 [αi(n), βi(n)] in 	g then the sequence {kn} cannot be bounded. In conclusion,

the mapping class group 	g is not uniformly perfect.

Proof. Notice that a commutator expression of the type of the theorem gives a relator
which gives rise to a genus-g Lefschetz fibration Xn → �kn over a closed surface
of genus kn with n reducible vanishing cycles. Suppose that {kn} is bounded, say
kn ≤ K . By adding trivial monodromies if necessary, this assumption provides a
sequence fn : Xn→ �K (n ∈ N) of Lefschetz fibrations over the fixed base�K . It is
easy to see that the Euler characteristic of Xn is

χ(Xn) = χ(�g)χ(�K)+ n = 4(K − 1)(g − 1)+ n,
while by Novikov additivity and the signature calculation for a regular neighborhood
of a separating vanishing cycle we get

σ(Xn) = −n+ σ
(
Xn −

n⋃
i=1

νf−1
n (qi)

)
,

where the points qi denote the critical values of the Lefschetz fibration fn. On the
other hand, one can show that

σ
(
Xn −

n⋃
i=1

νf−1
n (qi)

)
≤ C

for some constant C depending on K and g only, since the second Betti number of
Xn −⋃n

i=1 νf
−1
n (qi) is bounded. This implies that

c2
1(Xn) = 3σ(Xn)+ 2χ(Xn) ≤ −3n+ 2n+ C′ = −n+ C′,
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where C′ = 3C + 8(K − 1)(g − 1), and hence for n large enough the expression
c2

1(Xn) will be negative. This observation contradicts the result of [50] where it is
proved that a relatively minimal Lefschetz fibration over a base of positive genus is
minimal, hence by a famous result of Taubes [51] its c2

1 invariant is nonnegative. The
contradiction shows that the sequence kn is unbounded, verifying the statement of the
theorem. �

As a consequence of Theorem 5.6, one can deduce the fact that the growth rate of
a Dehn twist in the mapping class group is linear.

Theorem 5.10 ([20], [29]). Let a be a simple closed curve not bounding a disk on a
connected oriented surface of genus g ≥ 2. Let d(tna , 1) denote the word length of tna
with respect to a fixed finite generating set of the mapping class group. Then the limit

lim
n→∞

d(tna , 1)

n

is positive. �

The mapping class group of a closed oriented surface can be generated by two
torsion elements [27]. For a mapping class f , let τ(f ) denote the torsion length of f ,
the least number of factors needed to express f as a product of torsion elements. The
limit

‖f ‖τ = lim
n→∞

τ(f n)

n

is called the stable torsion length of f .

Theorem 5.11 ([28]). Let a be a homotopically nontrivial simple closed curve on
a closed connected oriented surface of genus at least three. Then the stable torsion
length of the Dehn twist ta is positive. �

5.4 Minimal number of singular fibers

For two nonnegative integers g and h, let N(g, h) denote the minimal number of
singular fibers in all relatively minimal Lefschetz fibrations of base genus h and fiber
genus g, having at least one singular fiber. By taking the fiber sum with the trivial
Lefschetz fibration, it is easy to see that N(g, h) ≥ N(g, h+ 1).

Theorem 5.12. For the number N(g, h) the following holds.

(1) N(g, h) = 1 if and only if g ≥ 3 and h ≥ 2.

(2) N(g, 1) > 1 for all g ≥ 1.

(3) N(1, h) = 12 for all h ≥ 0.

(4) 5 ≤ N(2, h) ≤ 8 for all h.

(5) N(g, 0) is less than or equal to 2g + 4 if g is even and 2g + 10 if g is odd.
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(6) N(g, 0) ≥ 4

5
(2g − 1). �

The parts (1)-(4) were proved by the first author and Burak Ozbagci in [32], (5)
follows from [30] and (6) was proved by the second author in [49]. For most Lefschetz
fibrations whose total space have b+2 = 1, we have the precise value of N(g, 0).

Theorem 5.13 (Stipsicz [46]). Suppose thatX→ S2 is a nontrivial genus-g Lefschetz
fibration with b+2 = 1.

(1) If g is even and g ≥ 6 then X → S2 contains at least 2g + 4 singular fibers.
This lower bound is sharp.

(2) If g is odd and g ≥ 15 then X → S2 contains at least 2g + 10 singular fibers.
This lower bound is sharp. �

Consider the closed oriented surface �g shown in Figure 2. Let Wg denote the

word
(
tB0 tB1 tB2 . . . tBg tc

)2 if g is even and
(
tB0 tB1 tB2 . . . tBg t

2
a t

2
b

)2
if g is odd. It was

shown in [30] that Wg represents the identity element in the mapping class group 	g
(the g = 2 case of this fact was proved by Matsumoto in [36]). Let Xg be the total
space of the Lefschetz fibration over S2 with monodromyWg = 1. Then b+2 (Xg) = 1.
Thus the lower bounds in (1) and (2) in Theorem 5.13 are attained by Xg . This also
proves (5) in Theorem 5.12.

1 2
0 g

a

b

c

1 2
0

g

Figure 2. The simple closed curve labelled i on the surface �g is Bi . The genus of the top
surface is even and the genus of the bottom surface is odd.

We now show that N(2, h) = 5 for h ≥ 6. This fact is new.
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Lemma 5.14. Let a, b, x, y be four simple closed curves on an oriented surface �.
Suppose that a intersects x transversely at one point and b intersects y transversely at
one point. Then the product tatbt−1

y t−1
x is a commutator in the mapping class group

of �.

Proof. In order to avoid double indices, let A,B,X, Y denote the Dehn twists
ta, tb, tx, ty about a, b, x, y respectively. Since the curves X(b) = tx(b) and X(y) =
tx(y) intersect transversely at one point, by the classification of surfaces there exists
a diffeomorphism f of the surface such that f (x) = X(b) and f (a) = X(y). Then

tatbt
−1
y t−1

x = ABY−1X−1 = AX−1BX(Y−1)X = tat−1
x tX(b)t

−1
X(y)

= tat−1
x tf (x)t

−1
f (a) = tat−1

x f txt
−1
a f−1 = [tat−1

x , f ]. �

Here, we use the notation gh for the conjugation hgh−1 in a group, and the fact that
f txf

−1 = tf (x) for any simple closed curve x and for any element f in the mapping
class group.

Theorem 5.15. Let c be a simple closed curve on a closed oriented surface �2 of
genus 2 splitting the surface into two genus-1 subsurfaces and let C denote the Dehn
twist about c. Then C5 is a product of six commutators.

Proof. We can assume that c is as shown in Figure 2 for g = 2. Consider the simple
closed curves B0, B1, B2 on �2. Let X, Y,Z denote the Dehn twists tB0, tB1, tB2

respectively. The relation W2 = 1 then gives

XYZCXYZC = 1.

Thus

XYZXCYCZCC2 = 1,

or

C2 = Z−1
1 Y−1

1 X−1
1 Z−1Y−1X−1,

where X1 = XC, Y1 = YC,Z1 = ZC . We also know that C = (AB)6 where A and
B are the Dehn twists about the curves labelled 1 and 2 respectively in Figure 1. Here,
XC denotes the conjugation CXC−1, and similarly for the others. Hence,

C5 = (AB)6C4

= (
(AB)3C2)2

= (
(AB)3Z−1

1 Y−1
1 X−1

1 Z−1Y−1X−1)2
.
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Now it suffices to show that (AB)3Z−1
1 Y−1

1 X−1
1 Z−1Y−1X−1 is a product of three

commutators:

(AB)3Z−1
1 Y−1

1 X−1
1 Z−1Y−1X−1

= ABABABZ−1
1 Y−1

1 X−1
1 Z−1Y−1X−1

= AABAABZ−1
1 Y−1

1 X−1
1 Z−1Y−1X−1

= (
ABZ−1

1 Y−1
1

)AABA(
BAX−1

1 Z−1)AA(
AAY−1X−1).

Now the theorem follows from Lemma 5.14. �

Corollary 5.16. For h ≥ 6, N(2, h) = 5. �

5.5 Fundamental groups of Lefschetz fibrations

Every finitely presented group is the fundamental group of some closed 4-manifold.
Gompf proved in [22] that every finitely presented group is the fundamental group of
some closed symplectic 4-manifold.

By Theorem 4.2, ifX is a closed symplectic 4-manifold, then it admits a Lefschetz

pencil structure. Thus, there exists an integer k ≥ 0 such that the manifold X # kCP
2

admits the structure of a Lefschetz fibration (with base S2). It follows that every
finitely presented group is the fundamental group of the total space of some Lefschetz
fibration. Another construction of a Lefschetz fibration whose fundamental group is
a given finitely presented group was given by Amoros, Bogomolov, Katzarkov and
Pantev in [3]. In their construction, the genus of the Lefschetz fibration is implicit
and is quadratic in the number of generators and the lengths of relators of the given
finitely presented group.

A further construction of a Lefschetz fibration with a given finitely presented group
as its fundamental group was given by the first author in [31]. In this construction it
was shown that given a finitely presented group there is a Lefschetz fibration over S2

such that the fundamental group of the total space of the fibration is isomorphic to
the given group. The genus of the Lefschetz fibration depends linearly on the number
of generators and the sum of the syllable lengths (defined below) of the relators.
Moreover, the monodromy of the fibration is described explicitly, which was not
given in the construction in [3]. We will now describe this result of [31]. We start
with giving some necessary definitions.

Let G be a finitely generated group generated by a set A = {a1, a2, . . . , an}. For
an element w ∈ G, let us define the syllable length �(w) of w to be

�(w) = min{s | w = zm1
1 z

m2
2 . . . zmss , zj ∈ A ∪ A−1, mj ∈ Z}.

Suppose that G is a finitely presented group with a presentation

G = 〈a1, a2, . . . , an | r1, r2, . . . , rk〉,
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so that G is the quotient F/R, where F is the free group (nonabelian for n ≥ 2)
freely generated by {a1, a2, . . . , an} and R is the normal subgroup of F generated
normally by the elements r1, r2, . . . , rk . That is, R is the subgroup of F generated
by all conjugates of r1, r2, . . . , rk . Define � = �(r1)+ �(r2)+ · · · + �(rk), which, of
course, depends on the presentation.

Theorem 5.17 (Korkmaz [31]). LetG be a finitely presented group with a presentation
as above. Then for every g ≥ 2(n+ �− k) there exists a genus-g Lefschetz fibration
X→ S2 such that π1(X) is isomorphic to G. �

Although every finitely presented group is the fundamental group of some Lefschetz
fibration, the situation changes drastically under the absence of reducible vanishing
cycles and the assumption that the monodromy is contained in the hyperelliptic map-
ping class group. Recall that the hyperelliptic mapping class group of a surface is
defined to be the centralizer of a hyperelliptic involution. A Lefschetz fibration is
called hyperelliptic if its monodromy is contained in the hyperelliptic mapping class
group.

Theorem 5.18 (Siebert–Tian [42]). Nontrivial hyperelliptic Lefschetz fibrations of
genus g ≥ 2 without reducible vanishing cycles are simply connected. �

5.6 Sections of Lefschetz fibrations

It is not clear which Lefschetz fibrations admit sections. Note that if f : X′ → CP
1

originates from a Lefschetz pencil on some 4-manifold X and if the base locus of this
pencil is nonempty, then f admits sections: the exceptional spheres of the blow-ups
of points in the base locus intersect each fiber exactly once. Since these sections are
exceptional spheres, their homological self-intersections are equal to (−1). In fact,
for the homological square of a section we have

Theorem 5.19 ([47], [48], [45]). If f : X → S2 is a nontrivial Lefschetz fibration
on a 4-manifold X with fiber genus g > 0 admitting a section σ : S2 → X, then
[σ(S2)]2 < 0.

Proof (sketch). If a Lefschetz fibration f : X→ S2 admits a section σ with [σ(S2)] ≥
0, then by fiber summing f with itself the nontriviality gives a symplectic 4-manifold
X #f X with b+2 (X #f X) > 1 containing a symplectic sphere of nonnegative
self-intersection. By Seiberg–Witten theory, however, symplectic 4-manifolds with
b+2 > 1 contain homologically essential spheres of negative self-intersection only,
providing the desired contradiction and concluding the proof. �

Since sections determine special factorizations in mapping class groups of surfaces
with marked points, the observation above can be interpreted as restriction on the exis-
tence of factorizations into right-handed Dehn twists in certain mapping class groups.
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Corollary 5.20. Let � be a compact connected oriented surface of genus g with
n ≥ 1 boundary components and let δ be a simple closed curve parallel to a boundary
component. If k is a nonnegative integer then t−kδ cannot be written as a product
of right-handed Dehn twists in the mapping class group 	ng of �. In particular, a
product of right-handed Dehn twists in the mapping class group 	ng cannot be equal
to the identity. �

5.7 Surface bundles over surfaces with nonzero signature

The Euler characteristic is multiplicative in fiber bundles. That is, the Euler char-
acteristic of the total space of a fiber bundle is equal to the product of the Euler
characteristics of the base and of the fiber. The signature is multiplicative in fiber
bundles if the action of the fundamental group of the base is trivial on the cohomology
of the fiber [11].

This is not true for every fiber bundle: the first examples of surface bundles over
surfaces with nonzero signature were constructed by Atiyah [7] and independently by
Kodaira [26]. If the fiber is a sphere or a torus, the signature vanishes. The signature
vanishes if the genus of the base surface is 0 or 1 as well. Since H2(	2;Q) = 0 by a
theorem of Igusa, the signature also vanishes if the fiber genus is 2. Endo [16] proved
that there exists a surface bundle over a surface of genus 111 with fiber genus 3 such
that the signature of the total space is −4. Using subtraction of Lefschetz fibrations,
the following improvement was shown:

Theorem 5.21 ([18]). For any g ≥ 3 and h ≥ 9 there is a genus-g surface bundle
f : X→ �h such that the signature of X is nonzero. �

Bryan and Donagi constructed a surface bundle of nonzero signature over the
surface of genus 2.

Theorem 5.22 ([10]). There exists a 4-manifold X which carries a surface bundle
structure f : X→ �2 with fiber genus 25 and signature 16. �

5.8 Teichmüller spaces

Recall that a Lefschetz fibration f : X→ � provides an almost complex structure on
X. Suppose now that X is a closed manifold and consider such an almost complex
structure J on X. The restriction of J to a fiber Ft = f−1(t) equips (the smooth
part of) Ft with an almost complex structure, which (by simple dimension reason) is
integrable on Ft . Hence by restricting f to the regular fibers we get a map from the
set � −Q = � − {f (p1), . . . , f (pk)} of regular values to the Teichmüller space T
of complex structures on Ft , which extends to a map

� : �→ T ,
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where T is the Deligne–Mumford compactification of T . The Lefschetz fibration
is holomorphic if and only if this corresponding map � is holomorphic. Therefore
the search for certain Lefschetz fibrations can be reduced to searching for complex
(or symplectic) surfaces in T of a given genus. In this picture the intersection of
the surface with the compactifying divisor corresponds to the singular fibers of the
fibration.

6 Variations of Lefschetz fibrations

There are modifications of the original concept of Lefschetz fibrations which turn out
to be very useful in other geometric contexts.

6.1 Achiral Lefschetz fibrations

The most obvious generalization of Definition 2.2 is the relaxation of the orientation-
preserving condition for the local charts near the singularities. This concept leads to the
definition of achiral Lefschetz fibrations. Some parts of the discussion of the previous
sections go through verbatim for these objects. A notable (and obvious) exception is
the orientation of the surgery and the Dehn twist in the monodromy representation. In
fact, the surgery coefficient corresponding to an achiral fiber is not (−1) with respect
to the fiber framing, but (+1). Similarly, the monodromy of the surface bundle around
an achiral singular fiber is a left-handed Dehn twist along the vanishing cycle.

Surprisingly enough, the little modification of the definition destroys the nice geo-
metric correspondence we have for Lefschetz fibrations. The total space of an achiral
Lefschetz fibration does not necessarily support a symplectic structure; in fact, it is
easy to construct examples when the total space does not admit an almost complex
structure either. This can be verified, for example, by finding a genus-1 achiral Lef-
schetz fibration on the 4-sphere S4 [24, Figure 8.38].

There are topological obstructions for a manifold to admit an achiral Lefschetz
fibration, but by appropriately surgering the manifold along a circle these obstructions
vanish, and the resulting 4-manifold will carry an achiral Lefschetz fibration structure
(cf. [19]). The concept of achiral Lefschetz fibrations turned out to be extremely useful
in studying contact 3-manifolds through their contact surgery presentations.

6.2 Lefschetz fibrations and Stein structures

Definition 6.1. Suppose now that X and � are given oriented 4- and 2-dimensional
manifolds, with possibly nonempty boundary. The map f : X → � is a Lefschetz
fibration if df is onto except at finitely many critical points {p1, . . . , pk} = C ⊂
intX, f has only Lefschetz critical points, and f is a locally trivial fiber bundle over
� − f (C).
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Notice that by dropping the condition f−1(∂�) = ∂X some boundary points of
X might map to interior points of �. In this case the fiber is an oriented bounded
surface, that is, a 2-manifold with nonempty boundary.

Suppose now that the interior intX of the compact 4-manifold X (with nonempty
boundary) admits a Stein structure with an exhausting plurisubharmonic function
having finitely many critical points. Resting on Eliashberg’s topological description
of such Stein 4-manifolds, Loi and Piergallini [35] (and Akbulut–Ozbagci [2]) showed
that such an X admits a Lefschetz fibration over the 2-disk D2. Conversely, again
by the handle attachment scheme developed by Eliashberg, a Lefschetz fibration with
bounded fibers admits a Stein structure.

The algebraic description of Lefschetz fibrations with closed surface fibers extend
verbatim to the case of bounded fibers; in this latter case the factorization is considered
in the mapping class group of the bounded fiber, that is, diffeomorphisms and isotopies
are assumed to be the identity on the boundary. Also, the fibration might not be trivial
along the boundary of the base surface, so instead of providing a factorization of
the unit element, the fibration over D2 gives a factorization (into right-handed Dehn
twists) of the element given by the monodromy along the boundary S1. Using this
correspondence, questions regarding topological properties of Stein 4-manifolds can
be phrased purely in terms of algebraic properties of various mapping class groups,
cf. Section 7.

6.3 Achiral Lefschetz fibrations and contact structures

Recall that a cooriented 2-plane field ξ on an oriented 3-manifold Y is a contact
structure if ξ can be given as

ξ = ker α

for some 1-form α ∈ �(Y) with the property that α ∧ dα > 0 everywhere. In the
light of the famous theorem of Frobenius this condition means that ξ is a nowhere
integrable 2-plane field in T Y .

An open book decomposition on Y consists of a link B ⊂ Y and a fibration
ϕ : Y −B → S1 with the property that any fiber ϕ−1(t), t ∈ S1, is a Seifert surface for
B. According to the celebrated result of Giroux, an open book decomposition uniquely
determines a contact structure (unique up to isotopy), and conversely, any contact
structure arises in this way. In fact, the relation between open book decompositions
defining isotopic contact structures is also clarified (but we will omit its description
here). Notice that the fibration ϕ is determined by its monodromy h, which is now an
element of the mapping class group of the fiber, a surface with boundary. It follows
from the assumptions that the element h represents a diffeomorphism equal to the
identity along the boundary. Conversely, such an element h determines Y −B, and by
the triviality of h near the boundary of the fiber, the tori of ∂(Y − νB) are canonically
framed. Therefore there is a unique way to fill these boundary tori with copies of
S1×D2 to get an open book, hence the monodromy uniquely determines the 3-mani-
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fold Y , together with an open book decomposition on it. In conclusion, through the
open book decomposition, h also determines a contact structure on Y .

As we explained above, a factorization of h into the product of right-handed Dehn
twists determines a Lefschetz fibration, which also carries a Stein structure, providing
a Stein filling for the contact structure determined by the open book decomposition.
In fact, any Stein filling arises in this way, with the caveat that the fiber genus might
need to be increased. This latter observation makes it somewhat hard to directly use
this correspondence.

Achiral Lefschetz fibrations with bounded fibers can be defined on manifolds with
boundary by dropping the orientation-preserving condition for the complex charts
containing the Lefschetz singularities – just like in the case we passed from (ordinary)
Lefschetz fibrations to (ordinary) achiral Lefschetz fibrations. It is an elementary fact
that any mapping class group element factors as a product of Dehn twists (left- and
right-handed). Having left-handed Dehn twists in a factorization ruins the possible
Stein structure on the 4-manifold, but still provides some kind of filling: by a local
analysis the anti-blow-ups (connected sums with complex projective planes) at the
achiral Lefschetz critical points provides an almost complex filling of the given contact
3-manifold. Such a filling can be used to determine homotopic properties of contact
structures, cf. [12]. A closer look also shows a way to prove the existence of a contact
surgery presentation for the contact 3-manifold. We will not address these issues in
the present chapter.

6.4 Further generalizations

There are further generalizations of Lefschetz fibrations proposed byAuroux–Donald-
son–Katzarkov: we may allow a further type of singularity and get a structure called
broken Lefschetz fibrations. Allowing achiral Lefschetz singularities as well, we get
the notion of broken achiral Lefschetz fibrations. As it is shown in [21], any closed
4-manifold admits such a structure. Indeed, it was shown by Baykur [8] (and inde-
pendently by Akbulut–Karakurt [1]) that any closed orientable 4-manifold admits a
broken Lefschetz fibration. In the broken case the various fibers are not necessarily
diffeomorphic (when crossing the additionally allowed singularities, the genus of the
typical fiber might jump), hence these structures do not fall within the scope of the
present overview.

7 Open problems

In this final section we collect a few open problems we consider to be of particular
interest in the subject.

Problem 7.1. For a given symplectic 4-manifold X find the lowest genus Lefschetz
pencil on X. What is the relation of this genus to other invariants of X?
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Problem 7.2. Prove (or disprove by a counterexample) that any Lefschetz fibration
over S2 having singular fibers admits a section.

Problem 7.3. Prove (or disprove by a counterexample) that any genus-2 Lefschetz
fibration over S2 has an abelian fundamental group.

Problem 7.4. Show that a Lefschetz fibration over the sphere S2 has nonpositive
signature. In fact, show that if X → S2 is a nontrivial Lefschetz fibration, then the
signature of X satisfies σ(X) < 0.

Problem 7.5. More generally, show that for any (g, h) ∈ N × N there is an integer
S(g, h) such that for any genus-g Lefschetz fibration X → �h over the genus-h
surface �h the 4-manifold X has signature σ(X) ≤ S(g, h). (If such S(g, h) exists,
then it is not hard to see that S(g, 0) = S(g, 1) = 0, providing an answer to the
previous problem.)

Problem 7.6. Let n > 0 and let D denote the submonoid of 	ng consisting of products
of right-handed Dehn twists. Verify that for each h ∈ D there is a bound Th such
that whenever h is written as a product of k nontrivial right-handed Dehn twists, then
k ≤ Th. The existence of such a bound would provide a major step toward proving that
the Euler characteristics of Stein fillings of a fixed Stein fillable contact 3-manifold
are bounded.

Problem 7.7. Determine whether a genus-3 surface bundle over the genus-2 surface
with nonzero signature exists or not. Notice that the existence of such a surface bundle
would violate the Bogomolov–Miyaoka–Yau inequality for symplectic 4-manifolds
(an inequality known to hold for complex surfaces).
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1 Introduction

A subgroup of a locally compact second countable group G is said to be a lattice if
it is discrete in G and has cofinite measure with respect to the Haar measure on G.
Classically, it is a basic problem to consider whether a lattice in a Lie group determines
its ambient Lie group. More precisely, when � and � are lattices in Lie groups G
and H , respectively, it is an interesting problem to study when the existence of an
isomorphism between � and � implies the existence of an isomorphism between G
and H . The Mostow–Prasad–Margulis rigidity theorem gives a complete answer to
this question for semisimple Lie groups in a more sophisticated form.
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In this chapter, by a discrete group we mean a discrete and countable group. Let
us consider the following question: Given two discrete groups, under what conditions
can they be realized as lattices in the same locally compact second countable group?
Suppose that discrete groups �, � are lattices in a locally compact second countable
group G. We shall observe some consequences of this situation. Consider the action
of � ×� on G given by

(γ, λ)g = γgλ−1, γ ∈ �, λ ∈ �, g ∈ G.
It is easy to check the following:

• The actions � (� � × {e}) � G and �(� {e} × �) � G are both measure-
preserving with respect to the (left) Haar measurem onG. Note that the existence
of a lattice in G implies the invariance of m under right multiplication by each
element of G.

• The action � � G is free and admits a fundamental domain of finite mea-
sure, i.e., a Borel subset F ⊂ G such that m(F) < ∞,

⋃
γ∈� γF = G, and

m(γ1F ∩ γ2F) = 0 for any distinct γ1, γ2 ∈ �. We can say the same thing for
the action � � G.

In a more general situation than the above one, Gromov introduced the notion of
measure equivalence as follows.

Definition 1.1 ([23, 0.5.E]). We say that two discrete groups � and � are measure
equivalent (ME) if there exists a measure-preserving action of � × � on a standard
Borel space (�,m) with a σ -finite positive measure such that both of the actions
� (� � × {e}) � � and �(� {e} × �) � � are essentially free and admit a
fundamental domain of finite measure. The space (�,m) (equipped with the (�×�)-
action) is then called an ME coupling of � and �.

A standard Borel space is a Borel space arising from a separable complete metric
space (see [34] for details of standard Borel spaces). An action of a discrete group on
a measure space is said to be essentially free if the stabilizers of almost all points are
trivial.

It is easy to see that ME defines an equivalence relation among discrete groups (see
Section 2 in [16] or Remark 3.8 in this chapter). In the study of ME, it is fundamental
to classify various discrete groups up to ME and to determine completely the class
consisting of all discrete groups ME to a given group. We give three typical examples
of ME couplings.

Example 1.2. LetG be a locally compact second countable group equipped with the
Haar measure and let �, � be lattices in G. The action of � ×� on G given by

(γ, λ)g = γgλ−1, γ ∈ �, λ ∈ �, g ∈ G
defines an ME coupling of � and �.
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Example 1.3. This is a special case of the above example. Let � be a discrete group
and let � be a finite index subgroup of �. The action of � ×� on � given by

(γ, λ)γ ′ = γ γ ′λ−1, γ, γ ′ ∈ �, λ ∈ �
defines an ME coupling of � and �, where the measure on � is the counting one.

Example 1.4. Let � be a discrete group and let N be a finite normal subgroup of �.
Choose an essentially free, measure-preserving action of � on a standard Borel space
X with a finite positive measure (e.g., the Bernoulli action � �

∏
�[0, 1] when � is

infinite). Then the action of � × (�/N) on X × (�/N) given by

(γ, λ)(x, λ′) = (γ x, p(γ )λ′λ−1), γ ∈ �, λ, λ′ ∈ �/N, x ∈ X
defines an ME coupling of� and�/N , where p : �→ �/N is the quotient homomor-
phism. Note that we can find a fundamental domain F for the actionN � X sinceN
is finite. It is easy to see that F × {eN} ⊂ � × (�/N) is a fundamental domain for
the action � (� � × {e}) � X × (�/N).

Commensurability up to finite kernels is the equivalence relation for discrete groups
defined by declaring two groups in an exact sequence 1 → A → B → C → 1 of
discrete groups to be equivalent if the third group is finite. It follows from the last two
examples that two commensurable groups up to finite kernels are ME. In particular,
all finite groups are ME. Conversely, it is easy to see that a discrete group ME to a
finite group is also finite.

Measure equivalence can be viewed as a measure-theoretic analogue of quasi-
isometry (QI) between finitely generated groups. It is known that two finitely generated
groups are QI if and only if there exists a continuous (� ×�)-action on some locally
compact space� such that both of the actions of � (� �×{e}) and�(� {e}×�) on
� are properly discontinuous and cocompact (see 0.2.C in [23]). On the other hand,
there are examples of two ME groups which are not QI, and examples of two QI groups
which are not ME. For example, Z and Z

2 are ME but not QI (see Theorem 1.8). It is
known that Kazhdan’s property (T) is invariant under ME (see Corollary 1.4 in [17])
and that there exist two finitely generated groups �1, �2 satisfying the following (see
Section 3.6 in [6]): �1 and �2 are QI; and �1 satisfies property (T), whereas �2 does
not satisfy property (T). Hence, �1 and �2 are not ME.

ME rigidity for mapping class groups. In this chapter, we study mapping class
groups of compact orientable surfaces from the viewpoint of ME, and consider a
locally compact second countable group containing a lattice isomorphic to mapping
class groups.

LetM be a connected compact orientable surface of genus g and with p boundary
components. The mapping class group �(M) of M is defined to be the group of
isotopy classes of all orientation-preserving diffeomorphisms of M . Let �(M)	 be
the extended mapping class group of M , i.e., the group of isotopy classes of all
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diffeomorphisms ofM . The group�(M)	 contains�(M) as a subgroup of index 2. Let
κ(M) = 3g+p−4 be the complexity ofM and assume thatκ(M) > 0. LetC = C(M)
be the curve complex of M , on which �(M)	 naturally acts (see Definition 2.1). We
denote by Aut(C) the automorphism group of the simplicial complex C. It is known
that the kernel of the natural homomorphism π : �(M)	 → Aut(C) and the index
[Aut(C) : π(�(M)	)] are both finite (see Theorem 2.3). Our first aim in this chapter
is to survey the proof of the following rigidity theorem for �(M), which completely
determines the class of discrete groups ME to �(M).

Theorem 1.5 ([36, Theorem 1.1]). Let M be a surface with κ(M) > 0. If a discrete
group � is ME to the mapping class group �(M), then there exists a homomorphism
ρ : � → Aut(C) such that the kernel of ρ and the index [Aut(C) : ρ(�)] are both
finite.

Our second aim is to survey the proof of the following theorem, which determines
all locally compact second countable groups containing a lattice isomorphic to map-
ping class groups. The idea of this work relies on Furman’s paper [18] about the
same problem for higher rank lattices. To the best of our knowledge, there exists no
natural topological group containing the mapping class group as a lattice other than
the mapping class group itself. The following theorem assures this observation. It
has already been known that the mapping class group for a surface with positive com-
plexity is not isomorphic to a lattice in any semisimple Lie group, by a result due to
Kaimanovich and Masur [33]. (They also showed that any sufficiently large subgroup
of the mapping class group is not isomorphic to a lattice in a semisimple Lie group
with real rank at least 2.)

Theorem 1.6 ([36, Theorem 1.4]). LetM be a surface with κ(M) > 0 and let � be a
finite index subgroup of �(M)	. LetG be a locally compact second countable group
and let σ : � → G be a lattice embedding, that is, σ is an injective homomorphism
such that σ(�) is a lattice in G. Then the following assertions hold:

(i) There exists a continuous homomorphism �0 : G → Aut(C) such that
�0(σ (γ )) = π(γ ) for any γ ∈ �, where π : �(M)	 → Aut(C) is the natu-
ral homomorphism.

(ii) Let K be the kernel of �0 and let � act on K by conjugation via σ . Let further
ρ : � � K → G be the homomorphism defined by ρ(k) = k for k ∈ K and
ρ(γ ) = σ(γ ) for γ ∈ �. Then the kernel of ρ and the index [G : ρ(��K)] are
both finite.

In particular,G admits infinitely many connected components, and σ(�) is cocompact
in G.

This theorem says that there exists no interesting lattice embedding of the mapping
class group into a locally compact second countable group.
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Amenability of the action �(M)� � ∂C. This property plays an important role in
the proof of Theorems 1.5 and 1.6. LetM be a surface with κ(M) ≥ 0. It is known that
the curve complex C = C(M) is a hyperbolic metric space in the sense of Gromov,
by a result due to Masur and Minsky [43]. See also Hamenstädt’s proof in Volume I of
this Handbook [27]. Hence, we can construct the Gromov boundary ∂C of C, which
is known to be non-empty. Then �(M)	 acts on ∂C continuously with respect to the
topology on ∂C as the Gromov boundary of C. It can be shown that ∂C is a standard
Borel space with respect to the σ -field of subsets of ∂C generated by this topology
(see Proposition 3.10 in [35]). We refer to [39], [24], [27] for more details of the
boundary ∂C. The action �(M)	 � ∂C admits the following remarkable property:

Theorem 1.7 ([35, Theorem 3.29]). Let M be a surface with κ(M) ≥ 0 and let
C be the curve complex for M . Let μ be a probability measure on the Gromov
boundary ∂C such that the action of �(M)	 on (∂C,μ) is non-singular. Then the
action �(M)	 � (∂C,μ) is amenable (in a measurable sense).

Here, when we are given a Borel action of a discrete group � on a Borel space S
equipped with a positive measure ν, we say that the action � � (S, ν) is non-sin-
gular if ν(γA) = 0 for any γ ∈ � and any Borel subset A of S with ν(A) = 0.
Amenability of group actions on measure spaces was first introduced by Zimmer [62]
as a generalization of amenability of groups. Once it is shown that some action of a
group is amenable, there are many applications to the study of that group from various
aspects (see Section 8). In Section 4, we discuss the notion of amenable actions of
groups and Theorem 1.7. We will apply Theorem 1.7 in the proof of Theorem 5.10 to
show that IA subgroupoids are amenable.

Short description of history. The first magnificent result on ME is due to Ornstein
and Weiss. Following Dye’s results [11], [12] on some amenable groups from the
viewpoint of orbit equivalence, Ornstein and Weiss obtained the following result (see
Section 4 for the definition and elementary facts about amenable groups).

Theorem 1.8 ([52]). An infinite discrete group is ME to Z if and only if it is amenable.
In particular, all infinite solvable groups are ME to each other.

It is natural to consider lattices in various Lie groups from the viewpoint of ME
because of Example 1.2. Based on Zimmer’s cocycle superrigidity theorem [63],
Furman established the following rigidity result for higher rank lattices.

Theorem 1.9 ([16]). LetG be a connected simple Lie group of non-compact type with
finite center and real rank at least 2. Let � be a lattice in G. If a discrete group � is
ME to �, then there exists a homomorphism ρ : � → Aut(AdG) such that ker ρ is
finite and ρ(�) is a lattice in Aut(AdG).

Note that the kernel of the natural composed map G→ AdG→ Aut(AdG) and
the index of the image of G in Aut(AdG) are both finite. Thanks to this result, the
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class of discrete groups ME to a lattice in G is completely determined. At present,
these two theorems and Theorem 1.5 are the only results which completely describe
the class of discrete groups ME to a given infinite group. It is known that there exist
continuously many discrete groups ME to a non-abelian free group (see Theorem 2.27
in [48]). Although no group-theoretic characterization of the class of such groups is
known, some non-trivial examples of groups in that class are known (see [21]).

Gaboriau [20] proved that the sequence {βn(�)}n∈N of �2-Betti numbers for a
discrete group � is an invariant for ME in the following sense: If two discrete groups
� and� are ME, then there exists a positive real number c such that βn(�) = cβn(�)
for all n. This fact leads to big progress in the classification problem of discrete
groups up to ME because this numerical invariant is defined for all discrete groups
and is computable for various discrete groups arising geometrically.

The theory of ME is deeply linked with the theory of orbit equivalence. In fact,
Ornstein and Weiss’s original theorem is formulated in terms of orbit equivalence.
Moreover, orbit equivalence is closely related to the theory of von Neumann algebras.
There are many noteworthy results around these fields. We recommend the reader to
consult [21], [58], [60] and the references therein for recent development of these fields.

Organization of this chapter. In Section 2, we recall fundamentals of mapping class
groups, groupoids, and ME. It is important to know the construction of an isomorphism
between two discrete measured groupoids from an ME coupling. Thanks to this
construction, we can handle the classification problem of ME as an algebraic problem
of groupoids arising from measure-preserving actions of discrete groups on measure
spaces. To analyze the groupoid arising from an action of the mapping class group,
we study its subgroupoids. Many facts about subgroups of mapping class groups
reviewed in this section will help us to proceed to the analysis of subgroupoids because
a groupoid is a generalization of a group.

In Section 3, we give an outline of the proof of Theorems 1.5 and 1.6. The main step
in the proof is to consider a self ME coupling of the mapping class group �(M), i.e.,
an ME coupling of�(M) and�(M). This corresponds to considering an isomorphism
between groupoids arising from two actions of �(M). We first explain what we can
say about such an isomorphism, which will be formulated in Theorem 3.6. Here, we
give only its statement, and will explain its proof in subsequent sections. Assuming
Theorem 3.6, we show that any self ME coupling of �(M) can be reduced to a much
simpler self ME coupling of �(M). We explain how to deduce the rigidity results in
Theorems 1.5 and 1.6 from such a reduction. As another direct application, we prove
a rigidity result in terms of orbit equivalence.

In Section 4, we recall amenability of discrete measured groupoids. This notion is
often utilized in the study of groupoids and plays an important role in this work.

From Section 5 to Section 7, we study subgroupoids of a groupoid G arising from
a measure-preserving action of �(M) on a standard Borel space with a finite positive
measure. In Section 5, we classify subgroupoids of G, following the classification
of subgroups of �(M) due to McCarthy and Papadopoulos [45]. We introduce two
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types of subgroupoids of G, which are called IA and reducible ones, respectively. In
Section 6, we recall the definition of normal subgroupoids of a discrete measured
groupoid, and study the normalizers in G of an IA or reducible subgroupoid. In Sec-
tion 7, using results shown in the previous sections, we characterize various reducible
subgroupoids in terms of amenability and normal subgroupoids. This characterization
makes it possible to study an isomorphism between groupoids arising from two actions
of �(M) and to prove Theorem 3.6.

Finally, in Section 8, we briefly explain other related results shown in the series of
papers [35], [36], [37], [38].

Acknowledgements. The author would like to express his deep gratitude to Athanase
Papadopoulos and Charles Boubel for reading the first version of this chapter very
carefully. Thanks to their valuable comments, this chapter was greatly improved.
This chapter was written during the stay at Max Planck Institute for Mathematics in
Bonn. The author wishes to thank the institute for its warm hospitality.

2 Preliminaries

2.1 Mapping class groups

In this subsection, we recall fundamental facts about mapping class groups and several
geometric objects related to them. We refer the reader to [13], [30], [32] or Sections 3.1,
3.2, 4.3 and 4.5 in [35] and the references therein for the material of this subsection.
Chapter 8 of Volume I of this handbook ([49]) also deals with this material.

LetM = Mg,p be a connected, compact and orientable surface of type (g, p), that
is, of genus g and with p boundary components. Throughout the chapter, a surface is
assumed to be connected, compact and orientable unless otherwise stated. Let �(M)
be the mapping class group of M , i.e., the group of isotopy classes of all orientation-
preserving diffeomorphisms of M . The extended mapping class group �(M)	 of M
is the group of isotopy classes of all diffeomorphisms of M , which contains �(M) as
a subgroup of index 2. Let κ(M) = 3g+p−4 be the complexity ofM . We recall two
geometric objects, the curve complex and the Thurston boundary, on which �(M)	
naturally acts.

The curve complex C. This simplicial complex was introduced by Harvey [28] and
plays an indispensable role in this chapter. We recall some fundamental properties.

Definition 2.1. For a surface M , let V (C) = V (C(M)) be the set of all non-trivial
isotopy classes of non-peripheral simple closed curves on M . Here, a simple closed
curve onM is said to be non-peripheral if it is not isotopic to any boundary component
of M . Let S(M) denote the set of all non-empty finite subsets of V (C) which can be
realized disjointly on M at the same time.
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When κ(M) > 0, we define the curve complexC = C(M) as a simplicial complex
such that the set of vertices is V (C), and the set of simplices is S(M).

When κ(M) = 0, that is, when M is either of type (1, 1) or (0, 4), we define the
curve complexC = C(M) as the one-dimensional simplicial complex such that the set
of vertices is V (C), the set of edges is defined as follows: A pair {α, β} of two distinct
elements of V (C) forms an edge if α and β have the lowest possible intersection
number, that is, 1 for M1,1 and 2 for M0,4.

When M = M0,3, let C = C(M) be the empty set. For other surfaces, we do not
need to define curve complexes because such surfaces do not appear as components of
the surface obtained by cutting a surface with non-negative complexity along disjoint
and mutually non-isotopic curves.

We immediately see that the curve complex is locally infinite (if it is non-empty).
Although it is often difficult to treat the curve complex because of this property, it
admits the following remarkable property.

Theorem 2.2 ([43], [47]). If M is a surface with κ(M) ≥ 0, then the curve complex
C = C(M) is connected. Moreover, when C is equipped with the natural simplicial
metric, it has infinite diameter and is hyperbolic in the sense of Gromov.

Let Aut(C) be the automorphism group of the simplicial complex C. Note that
since �(M)	 acts on C simplicially, there is a natural homomorphism π : �(M)	 →
Aut(C). It is natural to ask whether this natural homomorphism is an isomorphism or
not. The following theorem answers this question completely in the case of κ(M) > 0.
We refer to [40], [42], [47] for the case of κ(M) = 0.

Theorem 2.3 ([31], [40], [42]). Let M be a surface with κ(M) > 0.

(i) If M is neither M1,2 nor M2,0, then π is an isomorphism.

(ii) IfM = M1,2, then the image ofπ is a subgroup of Aut(C)with index 5 and ker(π)
is the subgroup generated by a hyperelliptic involution, which is isomorphic to
Z/2Z.

(iii) If M = M2,0, then π is surjective and ker(π) is the subgroup generated by a
hyperelliptic involution, which is isomorphic to Z/2Z.

(iv) The two simplicial complexesC(M0,5)andC(M1,2) (resp.C(M0,6)andC(M2,0))
are isomorphic.

The Thurston boundary PMF . Here, we recall some important facts on the
Thurston boundary. We recommend the reader to consult [13] for details and proofs
of the following facts.

LetM be a surface with κ(M) ≥ 0 and let R(M) be the set of all non-negative real
valued functions onV (C), endowed with the product topology. We denote by PR(M)
the quotient space of R(M) \ {0} by the natural diagonal action of the multiplicative
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group R
∗
>0 of all positive real numbers. Let i : V (C) × V (C) → N be the minimal

geometric intersection number among representatives of two elements of V (C). In
particular, i(α, α) = 0 for all α ∈ V (C). For each α ∈ V (C), we can define an
element of R(M) \ {0} by the function V (C) � β → i(α, β). The induced map
V (C)→ R(M) is then injective. The closure of R

∗
>0 · V (C) in R(M) is denoted by

MF =MF (M), and it is called the space of measured foliations on M . This space
MF is homeomorphic to R

6g−6+2p. In fact, it is known that each element of MF can
be identified with a foliation with some singularities onM equipped with a transverse
measure. The way to identify an element of MF and a measured foliation is not
immediate. The reader should be referred to Exposé 5 in [13] for this identification.

Moreover, the composed map V (C)→ R(M) \ {0} → PR(M) is also injective.
The closure of the image is denoted by PMF = PMF (M), and it is called the
Thurston boundary or the space of projective measured foliations on M . This space
PMF is homeomorphic to the sphere of dimension 6g − 7 + 2p. It is known that
S(M) can also naturally be embedded into PMF by using the minimal geometric
intersection number i : S(M) × V (C) → N among representatives of elements of
S(M) and V (C). This function i can be continuously extended to a function MF ×
MF → R≥0 which is R

∗
>0-homogeneous in the following sense:

i(r1F1, r2F2) = r1r2i(F1, F2)

for any r1, r2 ∈ R
∗
>0 and F1, F2 ∈ MF . Hence, for two elements F1, F2 ∈ PMF ,

whether i(F1, F2) = 0 or �= 0 makes sense. As R(M) is endowed with the prod-
uct topology, the group �(M)	 acts continuously on both MF and PMF , and the
equation

i(gF1, gF2) = i(F1, F2)

holds for any g ∈ �(M)	 and F1, F2 ∈MF (or PMF ). Let

MIN = {F ∈ PMF : i(F, α) �= 0 for any α ∈ V (C)}
be the set of all minimal measured foliations onM , which is a �(M)	-invariant Borel
subset of PMF .

Each point of the Teichmüller space T = T (M) also defines an element of
R(M) \ {0}. Indeed, once chosen a hyperbolic metric on M , there is exactly one
geodesic in each free homotopy class of closed, non-peripheral curves on M .
The lengths of these geodesics give a map T → R(M) \ {0}. The induced map
T → PR(M) is then injective, and PMF forms the boundary of the image of this
map. The disjoint union T = T ∪PMF is called the Thurston compactification of the
Teichmüller space, which is homeomorphic to a closed Euclidean ball of dimension
6g − 6+ 2p whose boundary corresponds to PMF .

For g ∈ �(M), let us denote by

Fix(g) = {x ∈ T : gx = x}
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the fixed point set of g. Each element g ∈ �(M) is classified as follows in terms of its
fixed points on T (see Exposé 9, §V, Théorème and Exposé 11, §4, Théorème in [13]):

Theorem 2.4. Let M be a surface with κ(M) ≥ 0. Each element g ∈ �(M) can be
classified into the following three types:

(i) g has finite order and has a fixed point on T .

(ii) g is pseudo-Anosov, that is, Fix(g) consists of exactly two points of MIN .

(iii) g has infinite order and is reducible, that is, there exists σ ∈ S(M) such that
gσ = σ .

Note that these three types are mutually exclusive. We say that F ∈ PMF is a
pseudo-Anosov foliation if F is a fixed point for some pseudo-Anosov element. It is
known that the set of all pseudo-Anosov foliations is dense in PMF .

Dynamics of each element of �(M) on PMF . This information will help us to
consider the problem of probability measures on PMF which are invariant for the
action of a subgroup of�(M) (see Subsection 5.1). LetM be a surface with κ(M) ≥ 0.
A pseudo-Anosov element g ∈ �(M) has the following remarkable dynamics on T .

Theorem 2.5 ([32, Theorem 7.3.A]). Let M be a surface with κ(M) ≥ 0 and let
g ∈ �(M) be a pseudo-Anosov element. Then the two fixed points F±(g) ∈ MIN

of g satisfy the following: If U is an open neighborhood of F+(g) in T and if K is
a compact subset of T \ {F−(g)}, then there exists N ∈ N such that gn(K) ⊂ U for
all n ≥ N .

We call F+(g) (resp. F−(g)) the unstable (resp. stable) foliation for g.
We next consider the dynamics of a reducible element. We say that g ∈ �(M) is

pure if the isotopy class g contains a diffeomorphism ϕ ofM satisfying the following
condition (P).

We say that a diffeomorphism ϕ ofM satisfies Condition (P) if there exists a closed
one-dimensional submanifold c (may be empty) of M such that

• each component of c is neither homotopic on M to a point nor to ∂M;

• ϕ is the identity on c, and it does not rearrange the components of M \ c. More-
over, ϕ induces on each component of the surface Mc obtained by cutting M
along c a diffeomorphism isotopic to either a pseudo-Anosov or the identity
diffeomorphism.

We may assume that c does not have superfluous components, that is, we cannot discard
any component of c without violating Condition (P). Note that if some component
of c is on the boundary of two components on which the action of ϕ is isotopic to the
identity, then the action of ϕ on the union of these two components is not necessarily
isotopic to the identity. There exists a finite index subgroup of �(M) consisting of
pure elements (see Theorem 2.8 (i)).
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Let g ∈ �(M) be a pure element and let c be a one-dimensional submanifold
of M satisfying Condition (P) for some diffeomorphism in the isotopy class g. Let
Q1, . . . ,Qn be the components ofMc on which g induces a pseudo-Anosov element,
and letF 1+, . . . , F n+,F 1−, . . . , F n− ∈MF be some representatives of the corresponding
unstable and stable foliations. Letα1, . . . , αm be the isotopy classes of the components
of c which are also boundary components of some Qi . Let β1, . . . , βl be the isotopy
classes of the remaining components of c. For F ∈MF , let [F ] ∈ PMF denote the
projection of F onto PMF . Define two subsets �u, �s of PMF by

�u = {[ ∑n
i=1miF

i+ +
∑m
j=1 ajαj +

∑l
k=1 bkβk

] ∈ PMF :
mi, aj , bk ≥ 0,

∑n
i=1mi +

∑m
j=1 aj +

∑l
k=1 bk > 0

}
,

�s = {[F ] ∈ PMF : i(F, F i−) = i(F, βk) = 0 for all i, k
}
.

See Section 2.4 in [30] for the sum of disjoint foliations. These subsets �u, �s are
closed in PMF . Moreover, if g is a reducible element of infinite order, then both�u

and �s are contained in PMF \MIN (see Corollary 2.16 in [30]). The following
gives the behavior of the dynamics of a pure reducible element on PMF .

Theorem 2.6 ([30, Theorem 3.5]). Let M be a surface with κ(M) ≥ 0 and let
g ∈ �(M) be a pure element. Let U be an open subset and let K be a compact
subset of PMF such that �u ⊂ U and K ⊂ PMF \ �s . Then there exists N ∈ N

such that gn(K) ⊂ U for all n ≥ N .

Classification of subgroups of �(M). Let M be a surface with κ(M) ≥ 0. Using
the classification of elements of �(M) in Theorem 2.4, McCarthy and Papadopoulos
[45] classified subgroups of �(M) as follows.

Theorem 2.7. Let M be a surface with κ(M) ≥ 0. Each subgroup � of �(M) can
be classified into the following four types:

(i) � is finite.

(ii) There exists a pseudo-Anosov element g ∈ � such that h{F±(g)} = {F±(g)} for
any h ∈ �. In this case, � is virtually cyclic and we say that � is IA (= infinite,
irreducible and amenable).

(iii) � is infinite and there exists σ ∈ S(M) such that gσ = σ for any g ∈ �.

(iv) There exist two pseudo-Anosov elements g1 and g2 in � such that {F±(g1)} ∩
{F±(g2)} = ∅. In this case, � contains a non-abelian free subgroup and is said
to be sufficiently large.

Note that these four types are mutually exclusive (use Theorem 2.5). A subgroup
of �(M) is said to be reducible if it fixes some element of S(M).
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Some special subgroups of finite index in �(M). We finally introduce some finite
index subgroups of �(M)which satisfy nice properties. Since a discrete group and its
finite index subgroup are ME as seen in Example 1.3, we may consider such special
subgroups instead of �(M) in the problem of ME. Thanks to the nice properties, many
arguments technically get much easier.

For σ ∈ S(M), we often denote by Mσ for simplicity the surface obtained by
cutting M along a realization of curves in σ when a realization of σ is not specified.
It is well known that if g ∈ �(M) satisfies the equation gσ = σ , then there exist a
realization c of σ and a diffeomorphism ϕ of M whose isotopy class is g such that
ϕ(c) = c (see Theorem 5.2 in [41] for the proof). Then ϕ induces a diffeomorphism
on the surfaceMc obtained by cuttingM along c. When ϕ preserves each component
of Mc, we say that g preserves each component of Mσ . This definition depends
only on the isotopy classes σ and g, and does not depend on the choice of c and ϕ.
Likewise, we often identify an isotopy class and some representative of it for simplicity
of the notation if no serious problem occurs. For an integer m, let �(M;m) be the
subgroup of�(M) consisting of all elements which act trivially on the homology group
H1(M;Z/mZ). This subgroup has the following notable properties (see Theorem 1.2
and Corollaries 1.5, 1.8, 3.6 in [30]).

Theorem 2.8. Let M be a surface with κ(M) ≥ 0 and let m ≥ 3 be an integer. Then
the following assertions hold:

(i) �(M;m) is a torsion-free subgroup of finite index in �(M) and consists of pure
elements.

(ii) If g ∈ �(M;m) and F ∈ PMF satisfy gnF = F for some n ∈ Z \ {0}, then
gF = F .

(iii) If g ∈ �(M;m) and σ ∈ S(M) satisfy gnσ = σ for some n ∈ Z \ {0}, then
gα = α for any α ∈ σ , and g preserves each component of Mσ and preserves
each component of the boundary of M .

2.2 Discrete measured groupoids

This subsection is a short review of the notion of a discrete measured groupoid. We
refer to [4], [5] and Chapter XIII, §3 in [59] for more details.

Measure theory. We first recall some basic terminology in measure theory. A Borel
spaceX is a set equipped with a distinguished σ -field of subsets ofX. A subset in the
σ -field is called a Borel subset. A map f : X→ Y between Borel spaces X and Y is
said to be Borel if f−1(A) is a Borel subset of X for any Borel subset A of Y . In this
chapter, we always assume a Borel space to be standard. A Borel space is standard if
as a Borel space, it is isomorphic to a Borel space associated with a separable complete
metric space. The following facts are known:
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Theorem 2.9. (i) If a Borel spaceX is a countable union of Borel subsets ofX which
are standard as a Borel space, then X is standard.

(ii) Any Borel subset of a standard Borel space is standard as a Borel space.
(iii) Any two standard Borel spaces with the same cardinality are isomorphic as a

Borel space.
(iv) Let X, Y be standard Borel spaces and let f : X → Y be a Borel map such

that f−1(y) is countable for each y ∈ Y . Then there exists a countable Borel partition
X = ⊔

n Xn satisfying the following: Let fn denote the restriction of f to Xn. The
image fn(Xn) is a Borel subset of Y , and the map fn : Xn → fn(Xn) is a Borel
isomorphism.

We refer to 13.4, 15.6 and 18.14 in [34] forAssertions (ii), (iii) and (iv), respectively.
The reader should consult [34] for more details of standard Borel spaces. By a standard
measure space we mean a standard Borel space X equipped with a σ -finite positive
measure μ. If μ is finite, i.e., if μ(X) < ∞, then we say that (X,μ) is a standard
finite measure space.

Let μ be a positive measure on a Borel space X. We say that a Borel subset A of
X is (μ-) null (resp. conull) if μ(A) = 0 (resp. μ(X \ A) = 0). A property of points
of X which holds for all x outside some μ-null Borel subset of X is said to hold for
(μ-)almost every (or a.e.) x ∈ X. A point x ∈ X with μ({x}) > 0 is called an atom
for the measure space (X,μ). Two measures μ and ν on a Borel space X are said to
be equivalent if the following holds: For a Borel subset A ofX, μ(A) = 0 if and only
if ν(A) = 0.

Let (X,μ), (Y, ν) be Borel spaces with a positive measure. By a measure space iso-
morphism f : (X,μ)→ (Y, ν) we mean a Borel isomorphism f : X′ → Y ′ between
conull Borel subsets X′ ⊂ X and Y ′ ⊂ Y such that f∗μ and ν are equivalent.

Groupoids. A groupoid is a generalization of a group. Given a set X, a groupoid
G on X is, roughly speaking, the set of arrows whose end and initial points are in
X satisfying several conditions. In the following definition, the maps r, s : G → X

assign to an arrow in G its end and initial points in X, respectively.

Definition 2.10. If two non-empty sets G,X are equipped with two maps r, s : G→ X

and the following operations, then G is called a groupoid on X:

(i) We put
G(2) = {(γ1, γ2) ∈ G× G : s(γ1) = r(γ2)}.

There is a map G(2) � (γ1, γ2) → γ1γ2 ∈ G satisfying the two equations
r(γ1γ2) = r(γ1) and s(γ1γ2) = s(γ2), and satisfying the associative law.
The last condition means that the equation (γ1γ2)γ3 = γ1(γ2γ3) holds for all
(γ1, γ2), (γ2, γ3) ∈ G(2).

(ii) There is a map X � x → ex ∈ G satisfying the following equations: r(ex) =
s(ex) = x; γ ex = γ for any γ ∈ G with s(γ ) = x; and exγ ′ = γ ′ for any γ ′ ∈ G
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with r(γ ′) = x. It is easy to see that for each x ∈ X, ex is an unique element of
G satisfying these equations.

(iii) There is a map G � γ → γ−1 ∈ G satisfying the following equations: r(γ−1) =
s(γ ); s(γ−1) = r(γ ); γ γ−1 = er(γ ); and γ−1γ = es(γ ). It is easy to see that
for each γ ∈ G, γ−1 is an unique element of G satisfying these equations.

In the above notation, X is called the unit space, and X is identified with the set of all
units of G via the map x → ex . The maps r, s : G→ X are called the range, source
maps, respectively. For (γ1, γ2) ∈ G(2), the element γ1γ2 ∈ G is called the product
of two elements γ1, γ2. We refer to ex as the unit on x ∈ X and refer to γ−1 as the
inverse of γ ∈ G.

Consider a subset H ⊂ G satisfying the following three conditions:

• If (γ1, γ2) ∈ G(2) ∩ (H ×H), then γ1γ2 ∈ H .

• If γ ∈ H , then γ−1 ∈ H .

• ex ∈ H for all x ∈ X.

This subset H admits the structure of a groupoid on X induced from the one for G.
This groupoid H on X is called a subgroupoid of G.

We say that a groupoid is Borel if all the associated spaces and maps are Borel.
When we consider a Borel groupoid G on a standard Borel space, we always assume
G to be also standard as a Borel space.

Notation. Let G be a groupoid on the unit space X with the range and source maps
r, s : G→ X, respectively. We denote by

I : G � γ → γ−1 ∈ G.

the inverse map. We write Gx = r−1(x) and Gx = s−1(x) for x ∈ X. Note that
Gx = I (Gx) for each x ∈ X. We say that G is discrete when Gx is countable for each
x ∈ X. For x, y ∈ X, we write

Gxy = {γ ∈ G : r(γ ) = x, s(γ ) = y}.
It is easy to see that for each x ∈ X, Gxx admits the structure of a group induced from
the structure of a groupoid on G. This group Gxx is called the isotropy group on x ∈ X.

Example 2.11. Groups. Let G be a group. Then G can be seen as a groupoid on the
set consisting of a single point. Conversely, any groupoid on the set consisting of a
single point is a group.

Example 2.12. Equivalence relations. Let X be a non-empty set. Let R be an
equivalence relation on X, i.e., a subset of X × X satisfying the following three
conditions:

• (x, x) ∈ R for all x ∈ X.

• If (x, y) ∈ R, then (y, x) ∈ R.
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• If (x, y), (y, z) ∈ R, then (x, z) ∈ R.

Define two maps r, s : R→ X and the operations of products and inverses by

r(x, y) = x, s(x, y) = y, (x, y)(y, z) = (x, z), (x, y)−1 = (y, x).
Then R is a groupoid onX. If each equivalence class for R is at most countable, then
R is a discrete groupoid.

Measures on discrete Borel groupoids. If we are given a discrete Borel groupoid
and a positive measure on the unit space, then we can define a natural measure on the
groupoid as follows.

Definition 2.13. Given a discrete Borel groupoid G on a Borel spaceX, we say that a
σ -finite positive measure μ on X is quasi-invariant for G if the two measures μ̃ and
I∗μ̃ on G are equivalent. Here, the measure μ̃ is defined by

μ̃(A) =
∫
X

∑
γ∈Gx

χA(γ )dμ(x),

for a Borel subset A of G, where χA is the characteristic function on A. We say
that μ is invariant for G if I∗μ̃ = μ̃. A discrete Borel groupoid G equipped with a
quasi-invariant measure μ on the unit space X is called a discrete measured groupoid
on (X,μ). Given a discrete measured groupoid G on (X,μ), we always equip G with
the measure μ̃ defined above. This measure μ̃ is a σ -finite positive measure on G.

Notation. Let G be a discrete measured groupoid on a standard measure space (X,μ).
If A is a Borel subset of X, then we denote by GA the saturation of A, which is the
Borel subset of X defined by

GA = {r(γ ) ∈ X : γ ∈ G, s(γ ) ∈ A} = {s(γ ) ∈ X : γ ∈ G, r(γ ) ∈ A}.
It can be shown that GA is a Borel subset of X and that μ(GA) = 0 when μ(A) = 0
(use Theorem 2.9 (iv)). If GA = A, then A is said to be G-invariant. Note that if X′
is a conull Borel subset of X, thenX′ \G(X \X′) is a conull G-invariant Borel subset
of X contained in X′.

Definition 2.14. Let G be a discrete measured groupoid on a standard measure space
(X,μ). If A is a Borel subset of X with positive measure, then the Borel subset

{γ ∈ G : r(γ ), s(γ ) ∈ A}
has the natural structure of a groupoid on A induced from G. This groupoid is called
the restriction of G to A and is denoted by (G)A.

Definition 2.15. Let G, H be discrete measured groupoids on standard measure spaces
(X,μ), (Y, ν), respectively. By a groupoid homomorphism f : G → H we mean a
Borel map f : (G)A→ H for some conull G-invariant Borel subset A ofX satisfying
the following two conditions:
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• f∗μ and ν are equivalent;

• f preserves the operation of products, i.e., the equation f (γ1γ2) = f (γ1)f (γ2)

holds for all (γ1, γ2) ∈ ((G)A)(2).
When X is identified with the set of all units of G, the map f : (G)A → H induces a
Borel map f : A→ Y .

We do not distinguish two groupoid homomorphisms f1, f2 : G → H such that
f1 = f2 on (G)A for some conull G-invariant Borel subset A of X.

Remark 2.16. For i ∈ {1, 2, 3}, let Gi be a discrete measured groupoid on a stan-
dard measure space (Xi, μi). Let f : G1 → G2 and g : G2 → G3 be groupoid
homomorphisms. For i ∈ {1, 2}, take a conull Gi-invariant Borel subset Ai of
Xi such that fi is defined on (Gi )Ai . It can be easily seen that the Borel subset
A′1 = (A1 ∩ f−1(A2)) \ G1(A1 \ f−1(A2)) of X1 is conull and G1-invariant. The
composition of the two Borel maps f : (G1)A′1 → G2 and g : (G2)A2 → G3 is then
defined. It is clear that this composition defines a groupoid homomorphism from G1
into G3. We denote it by g � f : G1 → G3.

Definition 2.17. Let G, H be discrete measured groupoids on standard measure spaces
(X,μ), (Y, ν), respectively. A groupoid homomorphism f : G→ H is called an iso-
morphism if there exists a groupoid homomorphism g : H → G such that the compo-
sitions g �f : G→ G and f �g : H → H coincide with the identity homomorphisms
on G and on H , respectively. In this case, G and H are said to be isomorphic.

Though we often need to take G-invariant Borel subsets ofX in many situations in
this chapter, we do not always mention it for simplicity of the notation.

As seen in Example 2.12, an equivalence relation on a set defines a groupoid on
the set. We next introduce an equivalence relation on a Borel space which induces a
discrete measured groupoid on the Borel space.

Definition 2.18. Let (X,μ) be a standard measure space. Let R be a Borel subset of
X ×X such that

• R defines an equivalence relation on X as in Example 2.12;

• for each x ∈ X, the equivalence class Rx = {y ∈ X : (y, x) ∈ R} of x is at
most countable.

Then R is a discrete Borel groupoid on X with respect to the structure introduced in
Example 2.12. If μ is quasi-invariant for this groupoid, then R is called a discrete
measured equivalence relation (or simply an equivalence relation) on (X,μ).

Definition 2.19. Let G be a discrete measured groupoid on a standard measure space
(X,μ). It is easy to see that

R = {(r(γ ), s(γ )) ∈ X ×X : γ ∈ G}
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has the structure of a discrete measured groupoid on (X,μ) such that

r(x, y) = x, s(x, y) = y, (x, y)(y, z) = (x, z), (x, y)−1 = (y, x).
This groupoid is called the quotient equivalence relation of G. Note that if the isotropy
group Gxx is trivial for a.e. x ∈ X, then G and its quotient equivalence relation R are
isomorphic via the following isomorphism:

G � γ → (r(γ ), s(γ )) ∈ R.

In this case, G is said to be principal.

We give one typical example of discrete measured groupoids appearing in this
chapter. We recommend the reader to see [5] for other examples of discrete measured
groupoids.

Example 2.20. Group actions. LetG be a discrete group and assume thatG admits a
non-singular action on a standard measure space (X,μ), which means that μ(A) = 0
if and only if μ(gA) = 0 for any g ∈ G and for any Borel subset A ⊂ X. The direct
product G×X then has the structure of a groupoid such that

r(g, x) = gx, s(g, x) = x, (g, hx)(h, x) = (gh, x), (g, x)−1 = (g−1, gx).

This groupoid is often written asG� (X,μ) orG�X. Since the actionG � (X,μ)

is non-singular, μ is quasi-invariant for G�X.
It is easy to see that μ is invariant for the action G � (X,μ) if and only if it is an

invariant measure for the groupoid G�X. For a Borel subset A ⊂ X, the saturation
(G�X)A is equal to the saturation GA =⋃

g∈G gA.
The quotient equivalence relation

R = {(gx, x) ∈ X ×X : g ∈ G, x ∈ X}
of G � X admits the structure of a discrete measured groupoid on (X,μ) as seen in
Definition 2.19. This R can also be seen as a discrete measured equivalence relation
on (X,μ) arising from the equivalence relation declaring that two points of X are
equivalent if and only if they are in the same G-orbit.

Note that the actionG � (X,μ) is essentially free, that is, the stabilizer of almost
every point x ∈ X is trivial if and only if G�X is principal.

In this chapter, we mainly treat groupoids isomorphic to subgroupoids of a groupoid
arising from a measure-preserving action of a discrete group on a standard finite
measure space. In Section 4, we however treat discrete measured groupoids arising
from non-singular actions of discrete groups which are never measure-preserving (see
Theorems 4.20 and 4.21).

Conjugacy and orbit equivalence. Given two actionsG � (X,μ) andH � (Y, ν),
when are the two associated groupoids isomorphic? We shall give two equivalence
relations for non-singular actions of discrete groups on measure spaces, called con-
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jugacy and orbit equivalence. It is shown that when two actions are both essentially
free, they are orbit equivalent if and only if the associated groupoids are isomorphic.

Definition 2.21. Let�,� be discrete groups and let (X,μ), (Y, ν) be standard measure
spaces. Consider non-singular actions � � (X,μ) and� � (Y, ν). The two actions
are said to be conjugate if there exist an isomorphism F : �→ � and a measure space
isomorphism f : (X,μ)→ (Y, ν) such that

f (γ x) = F(γ )f (x) for any γ ∈ � and a.e. x ∈ X.
More precisely, this means that we can take conull Borel subsets X′ ⊂ X and Y ′ ⊂ Y
and a Borel isomorphism f : X′ → Y ′ satisfying the following: the two measures
f∗μ and ν are equivalent; and for any γ ∈ � and a.e. x ∈ X′, γ x belongs to X′ and
the equation f (γ x) = F(γ )f (x) holds.

Orbit equivalence is a weaker equivalence relation than conjugacy.

Definition 2.22. Let�,�be discrete groups and let (X,μ), (Y, ν)be standard measure
spaces. Consider non-singular actions � � (X,μ) and� � (Y, ν). The two actions
are said to be orbit equivalent (OE) if there exists a measure space isomorphism
f : (X,μ)→ (Y, ν) such that

f (�x) = �f (x) for a.e. x ∈ X.
More precisely, this means that we can take conull Borel subsets X′ ⊂ X and Y ′ ⊂ Y
and a Borel isomorphism f : X′ → Y ′ satisfying the following: the two measures
f∗μ and ν are equivalent; and for a.e. x ∈ X′, �x is contained in X′ and the equation
f (�x) = �f (x) holds. It is easy to see that this f induces an isomorphism between
the two quotient equivalence relations of � � X and � � Y , which is defined by
(x, y) → (f (x), f (y)). Conversely, if an isomorphism between the two quotient
equivalence relations of ��X and��Y is given, then the associated map f between
their unit spaces satisfies the above condition of OE.

If the action � � (Y, ν) is essentially free, then we can define a Borel map

α : � ×X→ � so that f (γ x) = α(γ, x)f (x)
for γ ∈ � and a.e. x ∈ X. This map α satisfies the following cocycle identity

α(γ1, γ2x)α(γ2, x) = α(γ1γ2, x)

for any γ1, γ2 ∈ � and a.e. x ∈ X. Thus, α is a groupoid homomorphism from ��X

into �. We call α the OE cocycle associated with f .
The reader can check that when the actions � � (X,μ) and � � (Y, ν) are both

essentially free, they are OE via f if and only if the two groupoids��X and��Y are
isomorphic under the groupoid homomorphism (γ, x) → (α(γ, x), f (x)) associated
with f .

We next introduce a slightly weaker equivalence relation than OE, called weak
orbit equivalence (WOE). It is known that two discrete groups are measure equivalent
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(ME) if and only if the two groups admit ergodic, measure-preserving and essentially
free actions which are WOE (see Corollary 2.34).

Definition 2.23. Let�,� be discrete groups and let (X,μ), (Y, ν) be standard measure
spaces. Consider non-singular actions � � (X,μ) and� � (Y, ν). The two actions
are said to be weakly orbit equivalent (WOE) if there exist Borel subsetsA ⊂ X,B ⊂ Y
and a Borel isomorphism f : A→ B satisfying the following three conditions:

(i) �A = X, �B = Y up to null sets.

(ii) The two measures f∗(μ|A) and ν|B are equivalent.

(iii) f (�x ∩ A) = �f (x) ∩ B for a.e. x ∈ A.

As in the case of OE, this f induces an isomorphism between the two quotient equiv-
alence relations of (� �X)A and (�� Y )B . Conversely, if an isomorphism between
the two quotient equivalence relations of (� � X)A and (� � Y )B for Borel subsets
A, B of X satisfying Condition (i) is given, then the associated map f between their
unit spaces A and B satisfies Conditions (ii), (iii).

Groupoids of infinite type. In most sections of this chapter, we study a groupoid
G associated with a measure-preserving action of a discrete group � on a standard
finite measure space and study its subgroupoids. In particular, we mainly study its
subgroupoids of infinite type. When the unit space of G consists of a single atom and
G is then isomorphic to �, subgroupoids of G of infinite type correspond to infinite
subgroups of �. Before defining the notion of groupoids of infinite type, we introduce
recurrence of a discrete measured equivalence relation. Recall that a discrete measured
equivalence relation can be seen as a discrete measured groupoid (see Definition 2.18).

Definition 2.24. Let R be a discrete measured equivalence relation on a standard
finite measure space (X,μ) with an invariant measure μ for R. We say that R is
recurrent if a.e. equivalence class for R is infinite, that is, for a.e. x ∈ X, the set
Rx = {y ∈ X : (y, x) ∈ R} is infinite.

Let R be a discrete measured equivalence relation on a standard finite measure
space (X,μ) with an invariant measure μ for R. It is known that if R is recurrent
and A is a Borel subset of X with positive measure, then the restriction (R)A is also
recurrent (see the proof of Lemma 2.5 in [2]). Moreover, it is shown that there exists
an essentially unique Borel partition X = A1 � A2 such that

• (R)A1 is recurrent;

• (R)A2 admits a fundamental domain, i.e., there exists a Borel subset B of A2
such that for a.e. x ∈ A2, (R)A2x ∩ B consists of exactly one point, where
(R)A2x denotes the equivalence class for (R)A2 containing x.

See Lemma 2.12 in [2] for the proof of this fact. The reader can check that RA1 = A1
and RA2 = A2 up to null sets. It is easy to treat an equivalence relation which
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admits a (Borel) fundamental domain because the space of orbits of the equivalence
relations can be identified with its fundamental domain. The above fact means that any
equivalence relation can be divided into an easy part and a non-trivial part. Hence,
it is often enough to consider only recurrent equivalence relations in the study of
equivalence relations. We refer to Section 2 in [2] for fundamental properties of
discrete measured equivalence relations, where the recurrence of discrete measured
equivalence relations such that μ is not necessarily invariant is also discussed. The
notion of groupoids of infinite type is defined as follows.

Definition 2.25. Let G be a discrete measured groupoid on a standard finite measure
space (X,μ) with an invariant measure μ for G. Then we say that G is of infinite type
if there exists a Borel partition X = X1 �X2 such that

• the isotropy group Gxx is infinite for a.e. x ∈ X1;

• the quotient equivalence relation of (G)X2 is recurrent.

By definition, if G is of infinite type, then (G)A is also of infinite type for any Borel
subset A ⊂ X with positive measure. The next proposition shows that a measure-
preserving action of an infinite discrete group on a standard finite measure space
always gives rise to a groupoid of infinite type.

Proposition 2.26. Let � be an infinite discrete group and suppose that � admits
a measure-preserving action on a standard finite measure space (X,μ). Then the
associated groupoid � �X is of infinite type, and thus so is the restriction (� �X)A
for any Borel subset A ⊂ X with positive measure.

Proof. Let R be the quotient equivalence relation of ��X. Choose a Borel partition
X = A1 � A2 such that (R)A1 is recurrent and (R)A2 admits a fundamental domain
B ⊂ A2 (see the comment right after Definition 2.24). Both A1 and A2 are then
invariant under the action � � (X,μ). For a.e. x ∈ A2, the orbit �x consists of
only finitely many points because the action � � (X,μ) is measure-preserving and
μ(A2) <∞. Therefore, the stabilizer of a.e. x ∈ A2 is infinite.

2.3 ME and isomorphism of groupoids

In this subsection, we construct from an ME coupling of discrete groups � and �
an isomorphism of groupoids associated with some measure-preserving actions of �
and � on standard finite measure spaces. This construction was essentially given in
Section 3 in [17]. Thanks to this construction, we can reduce the problem of ME to
an algebraic problem of groupoids arising from group actions.

Let (�,m) be an ME coupling of discrete groups � and �, i.e., (�,m) is a stan-
dard Borel space with a σ -finite positive measure, and there is a measure-preserving
action � ×� � (�,m) such that both of the actions � (� � × {e}) � (�,m) and
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�(� {e} × �) � (�,m) are essentially free and admit a fundamental domain of
finite measure (see Definition 1.1). Choose fundamental domains Y ⊂ � for the
action � � �, and X ⊂ � for the action � � �. Remark that we have a natural
measure-preserving action of � onX equipped with the restricted finite measure μ of
m to X because X can be identified with the quotient space �/� as a Borel space.
Similarly, we have a natural measure-preserving action of� on Y with a finite measure
ν. In order to distinguish from the original actions of � and � on �, we denote the
actions � � X and � � Y by γ · x, λ · y, respectively, using a dot.

Lemma 2.27. In the above notation, one can choose X and Y so that A = X ∩ Y
satisfies the following two conditions:

• � · A = X up to null sets when A is regarded as a subset of X;

• � · A = Y up to null sets when A is regarded as a subset of Y .

Proof. Let S be the set of all Borel subsets B ⊂ � such thatm(γ1B�γ2B) = 0 for all
distinct γ1, γ2 ∈ �, and m(λ1B�λ2B) = 0 for all distinct λ1, λ2 ∈ �. Here, C�D
denotes the symmetric difference of two sets C and D. If we find A ∈ S such that
the equation (� ×�)A = � holds up to null sets, then choose fundamental domains
X ⊂ � for the action � � �, and Y ⊂ � for the action � � � such that A ⊂ X
and A ⊂ Y . The above two conditions are then satisfied for these X and Y . Hence,
we will find A ∈ S satisfying the equation (� ×�)A = � up to null sets.

Put M = supB∈S m(B). Then M < ∞. Since we can always take fundamental
domains of the actions of � and � on � whose intersection has positive measure,
the number M is positive. Let {Bn}n∈N be a sequence of elements of S such that
m(Bn)→ M as n→∞. PutA1 = B1 and defineAn = (Bn \ (�×�)An−1)∪An−1
for n ≥ 2 inductively. Then An ∈ S and A =⋃

n An is also in S. It is easy to see that
m((� ×�)Bn \ (� ×�)An) = 0. In particular, m((� ×�)Bn \ (� ×�)A) = 0 for
all n.

We claim that (� × �)A = � up to null sets. If � \ (� × �)A had positive
measure, then it would be an ME coupling of � and �. There exists a Borel subset
B ⊂ � \ (� × �)A which is in S as a Borel subset of � and has positive measure.
Take n ∈ N so that M − m(Bn) < m(B). Then B ∪ Bn ∈ S and m(B ∪ Bn) =
m(B)+m(Bn) > M , which is a contradiction.

In what follows, suppose that X and Y satisfy the conditions of Lemma 2.27. Let
G = � � (X,μ) (resp. H = � � (Y, ν)) be the groupoid associated with the action
� � X (resp. � � Y ). We can define a Borel map

α : � ×X→ � so that γ · x = α(γ, x)γ x ∈ X
for any γ ∈ � and a.e. x ∈ X because X is a fundamental domain of the action
� � �. Similarly, we can define a Borel map

β : �× Y → � so that λ · y = β(λ, y)λy ∈ Y
for λ ∈ � and a.e. y ∈ Y .
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Lemma 2.28. The map α : � ×X→ � is a cocycle, that is, the cocycle identity

α(γ1, γ2 · x)α(γ2, x) = α(γ1γ2, x)

is satisfied for each γ1, γ2 ∈ � and a.e. x ∈ X. The map β : �×Y → � also satisfies
a similar identity.

This cocycle identity implies that α is a groupoid homomorphism from � � X

into �. We call α (resp. β) the ME cocycle associated with X (resp. Y ).

Proof. This follows from the following equality:

α(γ1, γ2 · x)α(γ2, x)γ1γ2x = α(γ1, γ2 · x)γ1(γ2 · x) = γ1 · (γ2 · x) = (γ1γ2) · x
for γ1, γ2 ∈ � and x ∈ X, where the right hand side is in X.

Let p : X→ Y and q : Y → X be the Borel maps defined by

p(x) = �x ∩ Y, q(y) = �y ∩X
for x ∈ X and y ∈ Y . Note that both p and q are the identity on A = X ∩ Y . Then
we can show that

p(γ · x) = α(γ, x) · p(x), q(λ · y) = β(λ, y) · q(y)
for any γ ∈ �, λ ∈ � and a.e. x ∈ X, y ∈ Y as follows: Since γ · x = α(γ, x)γ x,
there exists a unique γ1 ∈ � such that

p(γ · x) = γ1α(γ, x)x ∈ Y. (2.1)

Let γ2, γ3 ∈ � be unique elements such that p(x) = γ2x ∈ Y and

α(γ, x) · p(x) = γ3α(γ, x)γ2x ∈ Y. (2.2)

Comparing (2.1) and (2.2), we see that γ1 = γ3γ2 since Y is a fundamental domain
of the action � � �. This proves the claim.

Define groupoid homomorphisms

f : (G)A � (γ, x) → (α(γ, x), p(x)) ∈ (H)A,

g : (H)A � (λ, y) → (β(λ, y), q(y)) ∈ (G)A.
Note that β(α(γ, x), x) = γ for any γ ∈ � and a.e. x ∈ A with γ · x ∈ A because
γα(γ, x)x = γ · x ∈ A ⊂ Y . Similarly, α(β(λ, y), y) = λ for any λ ∈ � and a.e.
y ∈ A with λ · y ∈ A. Therefore, we obtain the following

Proposition 2.29. In the above notation, the groupoid homomorphisms

f : (G)A→ (H)A, g : (H)A→ (G)A

satisfy g � f = id and f � g = id.

This is a construction of an isomorphism between two (restrictions of) groupoids
generated by actions of � and� from an ME coupling of � and�. In particular, if we
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can show that � and � admit no actions which generate isomorphic groupoids (even
after restricting to any Borel subsets with positive measure), then this implies that �
and � are not ME. Therefore, when we consider the problem of ME, it is effective to
study algebraic properties of groupoids arising from specific groups. Such a groupoid
� � X often behaves like the group �. More precisely, suppose that � admits some
“nice” action on a space S. The action is given by a homomorphism � → Aut(S).
The projection � � X → � is a groupoid homomorphism. We can then view the
groupoid homomorphism ��X→ �→ Aut(S) as an action of ��X on S, and we
observe that this action of � � X often gives rise to phenomena similar to the ones
for the action of � on S. This idea greatly helps us to study the groupoid � �X (see
also the beginning of Section 5).

Return to the situation before Proposition 2.29 and consider the action of � × �
on X ×� defined by

(γ, λ)(x, λ′) = (γ · x, α(γ, x)λ′λ−1), γ ∈ �, λ, λ′ ∈ �, x ∈ X.
It is easy to check the following lemma, which means that we can reconstruct an ME
coupling from the cocycle α.

Lemma 2.30. In the above notation, the Borel map � → X × � defined by λx →
(x, λ−1) for x ∈ X and λ ∈ � is Borel isomorphic and (� ×�)-equivariant.

Note that Proposition 2.29 implies that the two actions of � on X and � on Y are
WOE (see Definition 2.23). Conversely, the following theorem is known. This states
that given WOE actions of � and�, we can construct the corresponding ME coupling
of � and �.

Definition 2.31. For simplicity, by a standard action of a discrete group we mean
an essentially free, measure-preserving Borel action of that group on a standard finite
measure space.

Theorem 2.32 ([17, Theorem 3.3]). Suppose that two discrete groups � and� admit
ergodic standard actions on (X,μ) and (Y, ν), respectively, which are WOE. Then we
can construct an ME coupling (�,m) of � and � such that the �-actions on X and
on �\� (resp. the �-actions on Y and on �\�) are conjugate.

In particular, if the two actions � � (X,μ) and Y � (Y, ν) are OE via a Borel
isomorphism f between conull Borel subsets of X and Y , then we can construct the
above ME coupling (�,m) so that the ME cocycle associated with some fundamental
domain of the �-action on �, which is identified with X under the above conjugacy
of the �-actions on X and on �\�, is equal to the OE cocycle associated with f .

Remark 2.33. In the case of WOE, we can also define an associated WOE cocycle
and prove a statement similar to the latter assertion in Theorem 2.32 (see Theorem 3.3
in [17]).
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Corollary 2.34. Two discrete groups are ME if and only if they admit ergodic standard
actions on standard finite measure spaces which are WOE.

Proof. The “if” part follows from Theorem 2.32. We prove the “only if” part. Let
(�,m) be an ME coupling of discrete groups � and�. Let � � (X,μ) be a standard
action. For example, the Bernoulli action � �

∏
�[0, 1] given by

γ (xg)g∈� = (xγ−1g)g∈�, γ ∈ �, (xg)g∈� ∈
∏
�

[0, 1]

is standard (see Section 2 in [38]). The action of � ×� on � ×X given by

(γ, λ)(x, x′) = ((γ, λ)x, γ x′), γ ∈ �, λ ∈ �, x ∈ �, x′ ∈ X
defines an ME coupling of � and � such that the action � ×� � (� × X,m× μ)
is essentially free. By utilizing the ergodic decomposition for the action � × � �

(� × X,m × μ), we can construct an ME coupling (�0,m0) of � and � such that
the action �×� � (�0,m0) is essentially free and ergodic (see Lemma 2.2 in [16]).
Thus, the two actions � � �\�0 and � � �\�0 are both ergodic and standard.
Proposition 2.29 implies that the two actions are WOE.

3 ME rigidity for mapping class groups

In this section, we state two key theorems for the proof of the ME rigidity result
of the mapping class group �(M). The first one, Theorem 3.1, is reduction of a
self ME coupling of �(M) (i.e., an ME coupling of �(M) and itself) to a simpler
self ME coupling of �(M). This reduction is a very important step for the proof
of measurable rigidity. As stated in Proposition 2.29, a self ME coupling of �(M)
gives rise to an isomorphism between groupoids arising from two measure-preserving
actions of �(M). The second key theorem 3.6 states a certain important property of
such an isomorphism. The proof of this theorem will be explained in subsequent
sections. In Subsection 3.1, assuming Theorem 3.6, we show Theorem 3.1. To
establish ME rigidity from these theorems, we need one more step, which is explained
in Subsection 3.2. In Subsection 3.3, we give another immediate application of the
reduction of self ME couplings. We prove an OE rigidity result for ergodic standard
actions of the mapping class group.

3.1 Reduction of self ME couplings of mapping class groups

We first give an outline to prove Theorem 1.5, an ME rigidity result for the mapping
class group, and give three steps (1), (2), (3) for the proof. This outline is similar
to Furman’s one for the proof of Theorem 1.9, an ME rigidity result for higher rank
lattices. Step (2) is devoted to the first key theorem 3.1, noted above. Here is the
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most important and difficult step. We give three steps (a), (b), (c) for the proof of
this theorem. Some of the steps are formulated in terms of groupoids arising from
actions of mapping class groups, and it seems complicated for beginners of groupoids.
Before giving an explicit formulation of these steps, we explain how the steps are
formulated when the unit spaces of the groupoids consist of a single atom, i.e., when
the groupoids are groups. Under this assumption, these steps are formulated in terms
of groups, which is much easier to understand.

We shall give three steps (1), (2), (3) for the proof of Theorem 1.5. Let M be a
surface with κ(M) > 0. Let (�,m) be an ME coupling of the mapping class group
� = �(M) and a discrete group �. Let C = C(M) be the curve complex of M
and let Aut(C) be its automorphism group. Let π : �(M)	 → Aut(C) be the natural
homomorphism.

(1) Let� be the quotient space of�×�×� by the (�×�)-action on�×�×�
given by

(λ1, λ2)(x, λ, y) = (λ1x, λ1λλ
−1
2 , λ2y), λ1, λ2, λ ∈ �, x, y ∈ �.

We define a (� × �)-action on � ×�×� by

(γ1, γ2)(x, λ, y) = (γ1x, λ, γ2y), γ1, γ2 ∈ �, λ ∈ �, x, y ∈ �.
This (�×�)-action then induces a (�×�)-action on�. It is easy to check that
� is a self ME coupling of �, i.e., an ME coupling of � and �.

(2) We construct an almost (� × �)-equivariant Borel map � : �→ Aut(C), i.e.,

�((γ1, γ2)z) = π(γ1)�(z)π(γ2)
−1

for any γ1, γ2 ∈ � and a.e. z ∈ �.

(3) Using the map �, we construct a representation ρ of the group � on Aut(C).
Moreover, this homomorphism ρ : � → Aut(C) has finite kernel, and ρ(�) is
a finite index subgroup of Aut(C). This proves Theorem 1.5.

In this subsection, details of Step (2) are discussed. We explain Step (3) in Sub-
section 3.2. Step (2) is a consequence of the following theorem.

Theorem 3.1 ([36, Corollary 5.9]). Let M be a surface with κ(M) > 0. Let �1 and
�2 be finite index subgroups of �(M)	 and suppose that there is an ME coupling
(�, ω) of �1 and �2. Then there exists an almost (�1 × �2)-equivariant Borel map
� : �→ Aut(C), i.e.,

�((γ1, γ2)z) = π(γ1)�(z)π(γ2)
−1

for any γ1 ∈ �1, γ2 ∈ �2 and a.e. z ∈ �.

This theorem means that all ME coupling of �1 and �2 can be reduced to the
simpler ME coupling Aut(C) of �1 and �2 on which �1 × �2 acts as follows:

(γ1, γ2)g = π(γ1)gπ(γ2)
−1, γ1 ∈ �1, γ2 ∈ �2, g ∈ Aut(C).
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By a technical lemma (see Lemma 5.8 in [36]), if we can construct an almost
(�′1×�′2)-equivariant Borel map� : �→ Aut(C) for some finite index subgroups�′i
of�i for i ∈ {1, 2}, then� is in fact an almost (�1×�2)-equivariant. It follows that in
the proof ofTheorem 3.1, we may assume that both�1 and�2 are finite index subgroups
of �(M;m) with an integer m ≥ 3 (see Theorem 2.8 for the subgroup �(M;m) of
�(M)). In what follows in this subsection, we always assume this condition (because
the key theorem, Theorem 3.6, is proved under this assumption). To state an outline
of the proof of Theorem 3.1, we fix the notation as follows.

Notation. We refer to the following assumption as (•):
• Let M be a surface with κ(M) > 0 and let m ≥ 3 be an integer. Let �1 and
�2 be finite index subgroups of �(M;m). Let (�, ω) be an ME coupling of �1
and �2.

• Take fundamental domains X1 ⊂ � for the �2-action on �, and X2 ⊂ � for
the �1-action on �. Recall that the natural actions �1 � X1 and �2 � X2 are
denoted by (γ, x) → γ · x by using a dot. By Lemma 2.27, we can choose X1,
X2 so that Y = X1 ∩X2 satisfies that for i ∈ {1, 2}, �i · Y = Xi up to null sets
when Y is regarded as a subset of Xi .

• For i ∈ {1, 2}, set Gi = �i � Xi and let ρi : Gi → �i be the projection, which
is a groupoid homomorphism. By Proposition 2.29, there exists a groupoid
isomorphism

f : (G1)Y → (G2)Y .

Note that f is the identity on the unit space Y .

• For i ∈ {1, 2} and α ∈ V (C), let Diα be the intersection of �i with the subgroup
of �(M) generated by the Dehn twist tα ∈ �(M) about α. Let Giα be the
subgroupoid of Gi generated by the action of Diα , i.e.,

Giα = {(γ, x) ∈ Gi : γ ∈ Diα, x ∈ Xi}.

An outline of the proof of Theorem 3.1 is as follows.

(a) f preserves subgroupoids generated by Dehn twists up to a countable Borel
partition (see Theorem 3.6 for a precise statement).

(b) Using Step (a), we construct a Borel map � : Y → Aut(C) associated with f .

(c) The Borel map Y � x → �(x)−1 ∈ Aut(C) can be extended to an almost
(�1 × �2)-equivariant Borel map� : X1 × �2 → Aut(C). Here, Y is identified
with the Borel subset Y×{e} ofX1×�2. Note that (�1×�2)(Y×{e}) = X1×�2
up to null sets and that X1 × �2 can be identified with � as an ME coupling of
�1 and �2 (see Lemma 2.30).

In what follows, we explain an explicit statement of Step (a) and details of Steps (b)
and (c).
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Ivanov’s argument. Before discussing details of Steps (a), (b) and (c), we study these
steps in the degenerate case, that is, in the case where both X1 and X2 consist of a
single atom. In this case, our groupoids G1 and G2 degenerate into the groups �1 and
�2, respectively. Therefore, the argument for these steps gets much easier and clearer.

In the above argument, we obtained an isomorphism between the two restricted
groupoids (�1 � X1)Y and (�2 � X2)Y arising from an ME coupling of finite index
subgroups�1 and�2 of the mapping class group. What happens if we assume that each
of X1 and X2 consists of a single atom? In this case, we obtain a group isomorphism
f : �1 → �2. Conversely, if f : �1 → �2 is an isomorphism, then the action of
�1 × �2 on �2 given by

(γ1, γ2)γ = f (γ1)γ γ
−1
2 , γ1 ∈ �1, γ2, γ ∈ �2

defines an ME coupling of �1 and �2 such that {e} is a fundamental domain for both
of the actions of �1 and �2 on �2, and the isomorphism between �1 and �2 given
in Proposition 2.29 is equal to f . Ivanov showed the following theorem about an
isomorphism between finite index subgroups of the mapping class group.

Theorem 3.2 ([32, Theorem 8.5.A]). Let M be a surface with κ(M) > 0 and M �=
M1,2,M2,0. Let �1 and �2 be finite index subgroups of �(M)	. If f : �1 → �2 is an
isomorphism, then there exists a unique g ∈ �(M)	 such that f (γ ) = gγg−1 for any
γ ∈ �1.

Outline of the proof. The first step of the proof is to show that f maps sufficiently
high powers of Dehn twists into powers of Dehn twists. Namely, for each α ∈ V (C),
there exist non-zero integers N , M and β ∈ V (C) such that tNα ∈ �1, tMβ ∈ �2 and

f (tNα ) = tMβ . This fact is a consequence of the following theorem, which characterizes
a non-trivial power of a Dehn twist algebraically.

Theorem 3.3 ([32, Theorem 7.5.B]). Let M be a surface with κ(M) > 0 and let
m ≥ 3 be an integer. LetG be a finite index subgroup of �(M;m). An element g ∈ G
is a non-trivial power of some Dehn twist (i.e., there are n ∈ Z \ {0} and α ∈ V (C)
such that g = tnα ) if and only if the center of the centralizer of g in G is isomorphic
to Z and is not equal to the centralizer of g in G.

Note that in the notation of Theorem 3.3, if g = tnα for n ∈ Z \ {0} and α ∈ V (C),
then

• the centralizer CG(g) of g inG is equal to the stabilizer of α inG, i.e., {h ∈ G :
hα = α};

• the center of CG(g) is equal to G ∩ 〈tα〉, where 〈tα〉 is the subgroup of �(M)
generated by tα .

Return to the proof of Theorem 3.2. It follows from Theorem 3.3 that the isomor-
phism f : �1 → �2 induces a map ϕ : V (C)→ V (C) determined by f (tNα ) = tMϕ(α)
for α ∈ V (C) and some non-zero integers N , M . Such an element ϕ(α) is uniquely
determined by the following fact.
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Lemma 3.4. Let M be a surface with κ(M) ≥ 0. For α, β ∈ V (C) and (k, l) ∈
Z

2 \ {(0, 0)}, if tkα = t lβ , then α = β and k = l.
For the proof of Lemma 3.4, we use the following lemma, which is shown by using

the dynamics of Dehn twists on the Thurston boundary.

Lemma 3.5 ([36, Lemma 5.3]). Let M be a surface with κ(M) ≥ 0.

(i) If two curves α, β ∈ V (C) satisfy i(α, β) = 0, then the subgroup of �(M)
generated by the Dehn twists tα , tβ ∈ �(M) about them is a free abelian group
of rank 2. In particular, it is amenable.

(ii) On the other hand, if i(α, β) �= 0, then the subgroup of �(M) generated by tnα
and tmβ is a non-abelian free group of rank 2 for all sufficiently large n,m ∈ N.

Proof of Lemma 3.4. Suppose that tkα = t lβ for α, β ∈ V (C) and (k, l) ∈ Z
2 \ {(0, 0)}.

It is enough to prove that α = β because any Dehn twist is an element of infinite
order. If i(α, β) �= 0, then it would contradict Lemma 3.5 (ii). Thus, i(α, β) = 0.
When κ(M) = 0, two distinct elements of V (C) always have non-zero geometric
intersection number. This shows that α = β. Suppose that κ(M) > 0. If α �= β,
then there would exist γ ∈ V (C) such that i(α, γ ) = 0 and i(β, γ ) �= 0. This also
contradicts Lemma 3.5. �

Return to the proof of Theorem 3.2. Since f is an isomorphism, it is easy to
see that the map ϕ : V (C) → V (C) is a bijection. By using Lemma 3.5, one can
show that ϕ induces an automorphism of the curve complex C, which comes from
some g ∈ �(M)	 by Theorem 2.3. Namely, for each α ∈ V (C), there exist non-zero
integers N , M such that f (tNα ) = tMg(α). Note that

gtαg
−1 = tεgα for α ∈ V (C) and g ∈ �(M)	, (3.1)

where ε is 1 if g ∈ �(M), and −1 otherwise (see Lemma 4.1.C in [32]). Let γ ∈ �1.
For each α ∈ V (C), we have

f (γ tNα γ
−1) = f (γ )f (tNα )f (γ )−1 = f (γ )tMg(α)f (γ )−1 = tεMf (γ )g(α)

for some non-zero integers N , M and ε ∈ {±1}. On the other hand,

f (γ tN
′

α γ
−1) = f (tε′N ′γα ) = tM ′g(γ α)

for some non-zero integers N ′, M ′ and ε′ ∈ {±1}. These equations imply that
f (γ )g(α) = g(γ α)by Lemma 3.4, and thusf (γ )β = g(γg−1(β)) for anyβ ∈ V (C).
By Theorem 2.3, f (γ ) = gγg−1 for any γ ∈ �1. Uniqueness of g satisfying this
equation follows from the fact that the center of �1 is trivial (use the equation (3.1)
and Theorem 2.3). This proves Theorem 3.2. �

To sum up, Ivanov’s proof of Theorem 3.2 is outlined as follows. Steps (A), (B)
correspond to our Steps (a), (b), respectively. We use the notation of Theorem 3.2.
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(A) Characterize Dehn twists algebraically, and show that the isomorphism f : �1 →
�2 preserves Dehn twists.

(B) Define a bijection ϕ : V (C) → V (C) by the equation f (tNα ) = tMϕ(α) for each
α ∈ V (C) and some non-zero integers N , M . Show that ϕ defines an element
of Aut(C). Let g ∈ �(M)	 � Aut(C) be the corresponding element.

(C) By a direct calculation, show the equation f (γ ) = gγg−1 for all γ ∈ �1.

The case of groupoids. Return to our situation. Our Step (a) corresponds to Ivanov’s
Step (A) and is stated explicitly as follows.

Theorem 3.6. Under Assumption (•), for each α ∈ V (C), there exist a countable
Borel partition Y =⊔

Yn and βn ∈ V (C) such that

f ((G1
α)Yn) = (G2

βn
)f (Yn) for each n.

As explained in Step (a), this equation means that f preserves subgroupoids gen-
erated by Dehn twists after taking some countable Borel partition of Y .

Remark 3.7. Note that if a countable Borel partition Y =⊔
Y ′m and β ′m ∈ V (C) also

satisfy the equation in Theorem 3.6 and if Z = f (Yn ∩ Y ′m) has positive measure for
somen andm, then (G2

βn
)Z = (G2

βm′ )Z . It follows from Proposition 2.26 that there exist

non-zero integersN ,M and x ∈ Z such that (tNβn, x) = (tMβm′ , x) ∈ (G2
βn
)Z = (G2

βm′ )Z ,
which implies that βn = βm′ by Lemma 3.4.

The subsequent sections of this chapter will be devoted to the proof of Theorem 3.6.
In Section 7, our plan of the proof will be presented. In this section, assuming Theo-
rem 3.6, we proceed to Step (b).

About Step (b). Assuming Theorem 3.6, we construct the map � in Step (b). We use
the notation in Assumption (•). Let� : Y ×V (C)→ V (C) be the Borel map defined
by

�(x, α) = βn if x ∈ Yn
for α ∈ V (C), where Y = ⊔

Yn and βn are chosen for α as in Theorem 3.6. By
Remark 3.7, this definition does not depend on the choice of the countable Borel
partition of Y . It can be shown that the map �(x, ·) : V (C) → V (C) is a bijection
(because f is an isomorphism), and moreover �(x, ·) defines an automorphism of
the curve complex C for a.e. x ∈ Y . Namely, �(x, ·) satisfies the following two
conditions for a.e. x ∈ Y :

• If α, β ∈ V (C) satisfy i(α, β) = 0, then i(�(x, α),�(x, β)) = 0.

• If α, β ∈ V (C) satisfy i(α, β) �= 0, then i(�(x, α),�(x, β)) �= 0.
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This fact can be shown by utilizing Lemma 3.5 and some elementary facts about
amenable discrete measured groupoids. (In Section 4, amenability of a discrete mea-
sured groupoid will be introduced, which is an isomorphism invariant of discrete
measured groupoids.)

Therefore, we can define a Borel map � : Y → Aut(C) by �(x) = �(x, ·) for
x ∈ Y . Using the equation (3.1) in Ivanov’s proof, we can show that this map �
satisfies the following equality:

�(r(δ)) = π � ρ2(f (δ))�(s(δ))π � ρ1(δ)
−1,

or equivalently,

�(γ · x) = π � ρ2(f (γ, x))�(x)π(γ )
−1 (3.2)

for a.e. δ = (γ, x) ∈ (G1)Y (see Lemma 5.5 in [36]), where π : �(M)	 → Aut(C) is
the natural homomorphism. Note that�, π �ρ2(f (δ)) and π �ρ1(δ) correspond to g,
f (γ ) and γ in Ivanov’s argument, respectively. Thus, the equation (3.2) corresponds
to his conclusion g = f (γ )gγ−1.

About Step (c). Recall that the action of �1 × �2 on X1 × �2 was defined by

(γ1, γ2)(x, γ ) = (γ1 · x, α(γ1, x)γ γ
−1
2 ), γ1 ∈ �1, γ2, γ ∈ �2, x ∈ X1

(see Lemma 2.30). Here, α : �1 × X1 → �2 is the ME cocycle associated with a
fundamental domain X1 of the �2-action on �. Note that ρ2 � f = α on (G1)Y (see
the definition of f introduced right before Proposition 2.29). Recall that the equation
(�1 × �2)(Y × {e}) = X1 × �2 holds up to null sets. Therefore, we define a Borel
map � : X1 × �2 → Aut(C) by

�((γ1, γ2)(x, e)) = π(γ1)�(x)
−1π(γ2)

−1

for γ1 ∈ �1, γ2 ∈ �2 and x ∈ Y . If it is well-defined, then it is easy to see that � is
almost (�1×�2)-equivariant. Take γ1, γ

′
1 ∈ �1, γ2, γ

′
2 ∈ �2 and x, x′ ∈ Y satisfying

the equality

(γ1, γ2)(x, e) = (γ ′1, γ ′2)(x′, e).
This equality implies that

(x, e) = (γ−1
1 γ ′1, γ

−1
2 γ ′2)(x′, e) = ((γ−1

1 γ ′1) · x′, α(γ−1
1 γ ′1, x′)(γ

−1
2 γ ′2)−1).

Hence, (γ−1
1 γ ′1) ·x′ = x ∈ Y . By using the equation (3.2) and the equation ρ2 �f = α

on (G1)Y , we see that

�(x) = �((γ−1
1 γ ′1) · x′) = π � ρ2(f (γ

−1
1 γ ′1, x′))�(x′)π(γ

−1
1 γ ′1)−1

= π � α(γ−1
1 γ ′1, x′)�(x′)π(γ

−1
1 γ ′1)−1 = π(γ−1

2 γ ′2)�(x′)π(γ
−1
1 γ ′1)−1.

This implies that π(γ1)�(x)
−1π(γ2)

−1 = π(γ ′1)�(x′)−1π(γ ′2)−1 and that the map
� is well-defined. This shows Step (c).
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Therefore, the remaining problem is to show Theorem 3.6, which will be explained
in the subsequent sections. The first Step (A) for Ivanov’s proof is to show that the
isomorphism f : �1 → �2 preserves powers of Dehn twists. To prove this, he charac-
terized a power of a Dehn twist algebraically as in Theorem 3.3. In our case, to prove
that the groupoid isomorphism f : (G1)Y → (G2)Y preserves subgroupoids generated
by Dehn twists as in Theorem 3.6, we characterize such a subgroupoid algebraically in
terms of discrete measured groupoids. However, we cannot expect a characterization
similar to that of Theorem 3.3 because there is no notion corresponding to centralizers
and centers in the theory of discrete measured groupoids. In the subsequent sections,
we give a characterization of a subgroupoid generated by a Dehn twist from another
point of view. This is formulated in terms of amenable, non-amenable subgroups
and normal subgroups (see Propositions 7.7 and 7.8). Since amenability of a discrete
measured groupoid and normality of a subgroupoid are invariant under isomorphism
of groupoids, subgroupoids generated by Dehn twists are preserved by f thanks to
this characterization.

In Sections 4, 5 and 6, we introduce many notions necessary for the formulation
of this characterization. In Section 7, the characterization is given.

3.2 Deriving ME rigidity from reduction of self ME couplings

As an application of Theorem 3.1, we prove Theorems 1.5 and 1.6.

ME rigidity. The process to deduce ME rigidity from reduction of self ME couplings
has already been developed by Furman [16], and Monod and Shalom [48]. We review
their techniques here. Recall the following two operations to construct a new ME
coupling from a given ME coupling.

An opposite coupling. Let (�,m) be an ME coupling of discrete groups � and �.
Then an ME coupling (�̌, m̌) of � and � is defined as follows: As a measure space,
(�̌, m̌) = (�,m). The action of � × � on (�̌, m̌) is defined via the canonical
isomorphism between � ×� and �× �.

A composed coupling. If (�,m) is an ME coupling of discrete groups � and� and if
(�, n) is an ME coupling of discrete groups � and �, then an ME coupling � ×� �
of � and � is defined to be the quotient space of � × � by the diagonal �-action,
equipped with the induced action of � ×�.

Remark 3.8. By using the above two associated couplings, we see that ME is an
equivalence relation among discrete groups (see Section 2 in [16]). Note that a discrete
group � is itself an ME coupling of � and � as in Example 1.3.

LetM be a surface with κ(M) > 0 and let � = �(M) be the mapping class group.
Let (�,m) be an ME coupling of � and an unknown group�. Construct the self ME
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coupling

� = � ×� �×� �̌
of�. We denote by [x, λ, y] ∈ � the projection of (x, λ, y) ∈ �×�×�̌. By applying
Theorem 3.1, we obtain an almost (� × �)-equivariant Borel map � : �→ Aut(C),
i.e.,

�((γ1, γ2)z) = π(γ1)�(z)π(γ2)
−1

for any γ1, γ2 ∈ � and a.e. z ∈ �, where π : �(M)	 → Aut(C) is the natural
homomorphism. From this map, we want to construct a representation ρ of the
unknown group � on Aut(C). We first consider the following special case.

Example 3.9 ([16, Example 5.1]). LetG be a locally compact second countable group
and let � and � be lattices in G. Then G equipped with its Haar measure is an ME
coupling of � and � as in Example 1.2. Define a Borel map

� : G×� �×� Ǧ→ G

by �([x, λ, y]) = xλy−1. This map is (� × �)-equivariant. Observe that the map

λ → �([x, λ, y])�([x, e, y])−1 = (xλy−1)(xy−1)−1 = xλx−1

does not depend on y, and defines a representation of � on G for a fixed x.

From this observation, in our case, we can also expect that the map

λ → �([x, λ, y])�([x, e, y])−1 (3.3)

does not depend on y, and defines a representation of� on Aut(C) for a.e. x ∈ �. In
fact, we can show these claims by using the following notable fact.

Theorem 3.10 ([36, Theorem 2.6]). Let C be the curve complex of a surface M with
κ(M) > 0. Let � be a finite index subgroup of Aut(C). Then the set

{γgγ−1 ∈ Aut(C) : γ ∈ �}
is infinite for any g ∈ Aut(C) \ {e}.

We do not here present how to use this theorem. It can be shown that the kernel of
the representation

ρx : �→ Aut(C), ρx(λ) = �([x, λ, y])�([x, e, y])−1

and the index [Aut(C) : ρx(�)] are both finite, which implies Theorem 1.5. To
construct this representation, we do not use special properties of the mapping class
group other than the one in Theorem 3.10. In fact, this construction can be applied to
a more general setting (see Theorem 6.1 in [36]).
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Lattice embeddings of mapping class groups. We briefly give an outline of the
proof of Theorem 1.6. We explain only the construction of �0 in the statement. The
reader is referred to Section 8 in [36] for more details.

LetM be a surface with κ(M) > 0 and let � be a finite index subgroup of �(M)	.
Let G be a locally compact second countable group and let σ : � → G be a lattice
embedding, i.e., an injective homomorphism such that the image σ(�) is a lattice inG.
As in Example 1.2,G is a self ME coupling of � (via σ ). By Theorem 3.1, there exists
an almost (� × �)-equivariant Borel map � : G→ Aut(C). By using Theorem 3.10
and the fact that the self ME couplingG of � is not only a measure space but a group,
we can show that �(g1g2) = �(g1)�(g2) for a.e. (g1, g2) ∈ G × G. Recall the
following theorem.

Theorem 3.11 ([63, Theorems B.2, B.3]). If H1, H2 are locally compact second
countable groups and f : H1 → H2 is a Borel map such that f (hh′) = f (h)f (h′) for
a.e. (h, h′) ∈ H1 ×H1, then there exists a continuous homomorphism f0 : H1 → H2
such that f and f0 are equal a.e. on H1.

It follows that there exists a continuous homomorphism �0 : G → Aut(C) such
that� and�0 are equal a.e. onG. It is easy to check that K = ker�0 admits a finite
invariant measure. Therefore, K is compact. After several easy observations, we see
that this �0 is a desired homomorphism.

3.3 OE rigidity

In this subsection, we briefly give another application of Theorem 3.1. We prove a
rigidity result for ergodic standard actions of mapping class groups in terms of OE.

Corollary 3.12. Let M be a surface with κ(M) > 0 and M �= M1,2,M2,0. Put
� = � = �(M)	. Let � � (X,μ) and � � (Y, ν) be ergodic standard (i.e.,
measure-preserving and essentially free) actions on standard finite measure spaces.
If the two actions are OE, then they are conjugate.

Proof. Since the two actions are OE, there exists a measure space isomorphism
f : (X,μ)→ (Y, ν) such that

f (�x) = �f (x) for a.e. x ∈ X.

One can then construct the OE cocycle α : � × X → � associated with f by the
equation

f (γ x) = α(γ, x)f (x) for γ ∈ � and a.e. x ∈ X.

By Theorem 2.32, we can construct an ME coupling (�,m) of � and� such that the
ME cocycle associated with some fundamental domain of the �-action on �, which
can be identified with X, is equal to α. In what follows, we denote the action � � X

by (γ, x) → γ · x, using a dot.
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It follows from Theorem 3.1 that there exists an almost (�×�)-equivariant Borel
map � : � → G, where G = �(M)	 and Aut(C) are identified via the natural
isomorphism π : �(M)	 → Aut(C) (see Theorem 2.3). Let ϕ : X→ G be the Borel
map defined by ϕ(x) = �(x) for x ∈ X. Then

ϕ(γ · x)α(γ, x)ϕ(x)−1 = �(γ · x)α(γ, x)�(x)−1

= �(γα(γ, x)x)α(γ, x)�(x)−1 = γ�(x)�(x)−1 = γ
for any γ ∈ � and a.e. x ∈ X. Define a Borel map fϕ : X→ Y by fϕ(x) = ϕ(x)f (x)
for x ∈ X. Then for any γ ∈ � and a.e. x ∈ X,

fϕ(γ · x) = ϕ(γ · x)f (γ · x) = ϕ(γ · x)α(γ, x)f (x)
= γ ϕ(x)f (x) = γfϕ(x).

Since the actions � � (X,μ) and � � (Y, ν) are both essentially free and f is a
measure space isomorphism, the above equation implies that fϕ : X→ Y is a measure
space isomorphism.

Remark 3.13. We can show the following much stronger rigidity theorem than Corol-
lary 3.12.

Theorem 3.14 ([37, Theorem 1.1]). LetM be a surface with κ(M) > 0. If an ergodic
standard action of a finite index subgroup� of �(M)	 and an ergodic standard action
of a discrete group � are WOE, then the two actions are virtually conjugate.

See Definition 1.3 in [37] for the definition of virtual conjugacy. In particular,
the conclusion of this theorem implies that � and � are commensurable up to finite
kernels. We refer to [17], [19], [37], [48], [55], [56], [60] for other rigidity results in
terms of OE. See also the fourth remark in Section 8. These rigidity theorems and
Theorem 3.14 sharply contrast with the following theorem due to Ornstein and Weiss.

Theorem 3.15 ([52]). Let G1 and G2 be infinite amenable groups and suppose that
Gi admits an ergodic standard action on a standard finite measure space (Xi, μi)
for i ∈ {1, 2}. Then the two actions are OE.

It is known that amenability of the acting group is preserved under OE. More
precisely, let Gi � (Xi, νi) be an ergodic standard action of a discrete group Gi for
i ∈ {1, 2}. If the two actions are OE andG1 is amenable, thenG2 is also amenable (see
Theorem 4.18 (i), (ii)). Therefore, Theorem 1.8 is a consequence of Corollary 2.34
and Theorem 3.15. Connes, Feldman, and Weiss [10] proved a generalization of
Theorem 3.15 in terms of discrete measured equivalence relations (see Theorem 4.17).

It is well known that there are many non-conjugate ergodic standard actions of
Z as follows. Let � be a discrete group and let (X0, μ0) be a standard probabil-
ity space, i.e., a standard Borel space with a probability measure. We assume that
(X0, μ0) may contain an atom, whereas (X0, μ0) does not consist of a single atom.
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The Bernoulli action of � associated with (X0, μ0) is the action of � on the product
space (X0, μ0)

� =∏
�(X0, μ0) given by

γ (xg)g∈� = (xγ−1g)g∈�, γ ∈ �, (xg)g∈� ∈ X�0 .
It is a natural question to understand when Bernoulli actions of Z arising from two
different standard probability spaces are conjugate. Kolmogorov and Sinaı̆ introduced
a conjugacy invariant for actions of Z, called entropy, and showed that the entropy of
Bernoulli actions of Z can be computed in terms of (X0, μ0) and assumes all non-
negative values. In particular, there exist continuously many conjugacy classes of
ergodic actions of Z. As the culmination of the study on this conjugacy problem,
Ornstein [50], [51] proved that entropy is a complete invariant for Bernoulli actions
of Z, that is, two Bernoulli actions of Z which have the same entropy are conjugate.
Moreover, this theory of entropy was extended to the setting of Bernoulli actions of
infinite amenable groups by Ornstein and Weiss [53].

4 Amenable discrete measured groupoids

In the study of discrete measured groupoids, amenability is one of the most important
notions like amenability of groups. One can construct a discrete measured groupoid
from a non-singular action of a discrete group on a standard measure space (see
Example 2.20). If the groupoid associated with a non-singular action of a discrete
group is amenable, then the action is said to be amenable. This notion was first
introduced by Zimmer [62]. One advantage of studying amenability of a group action
is that (the groupoid arising from) an amenable action of a group behaves like an
amenable group even if the acting group is non-amenable. We can thus apply various
techniques for amenable groups to study a non-amenable group via its amenable action.
Another advantage of the study of amenable groupoids is that under a certain condition,
we can easily decide whether a groupoid is amenable or not. Since amenability is
invariant under isomorphism of groupoids, this property is often used to distinguish
two groupoids.

In this section, we recall the definition of amenable discrete measured groupoids
and some of their fundamental properties. References for the material of this section is
[4], [5] and Chapter 4 in [63]. We recommend the reader to consult [54] for applications
of amenable actions of groups.

As discussed in Section 3, our final goal is to prove Theorem 3.6. For this purpose,
we analyze various subgroupoids of the groupoid arising from a measure-preserving
action of the mapping class group. It will be often necessary to prove amenability of
some subgroupoids. To prove it, we make use of the amenability (in a measurable
sense) of the action of the mapping class group on the boundary ∂C of the curve
complex C. This fact will be explained at the end of this section. We note here that in
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this chapter, this amenability of the boundary action will be used only in the proof of
Theorem 5.10.

Amenable groups. We first recall the notion of amenability of discrete groups. Al-
though we can proceed to most parts of this section under the assumption that a group
is locally compact and second countable, we always assume that a group is discrete for
simplicity. We refer to Section 4.1 in [63] for amenability of locally compact second
countable groups. Although there are many equivalent definitions of amenability of
groups, we recall only the definition which motivated Zimmer to define amenability
of a group action.

Let G be a discrete group. Let A be a non-empty compact convex subset in the
closed unit ball ofE∗, whereE is a separable Banach space and its dualE∗ is equipped
with the weak*-topology. Suppose that G acts on E by isometric isomorphisms and
that A is invariant for the induced action ofG on E∗. Such an action ofG is called an
affine action on A.

Definition 4.1. Let G be a discrete group. We say that G is amenable if for every
affine action of G on a space A like above, there exists a fixed point, that is, a ∈ A
such that ga = a for any g ∈ G.

Example 4.2. We refer to Section 4 in [63] for the proof of the following facts.

(i) Finite groups and abelian groups are both amenable.

(ii) Let 1 → A → B → C → 1 be an exact sequence of discrete groups. Then
A and C are both amenable if and only if B is amenable. Hence, all solvable
groups are amenable.

(iii) If G is a discrete group and {Hi}i∈I is a directed set of amenable subgroups of
G, then the union

⋃
i∈I Hi is also amenable. For example, the following groups

are amenable:

• The direct product
⊕

n∈NHn. Here, Hn is an amenable group.

• The infinite symmetric group S∞ =⋃
n∈N Sn. Here, Sn is the symmetric

group on n letters, and Sn is identified with the subgroup of Sn+1 fixing
the (n+ 1)-st letter.

(iv) Non-abelian free groups are typical examples of non-amenable groups. There-
fore, every group containing a non-abelian free subgroup is non-amenable.

Example 4.3. Let G be an amenable group and suppose that G acts on a separable
compact space K continuously. We denote by M(K) the space of all probability
measures on K with the weak*-topology, on which G acts continuously. Note that
M(K) is a weak*-closed, convex subset of the closed unit ball ofC(K)∗, whereC(K)
is the Banach space of C-valued continuous functions onK with the sup norm. By the
definition of amenability, there exists μ ∈ M(K) such that gμ = μ for any g ∈ G.
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If G is an infinite amenable subgroup of the mapping class group �(M) for a
surface M with κ(M) ≥ 0, then it follows from Theorem 2.7 that there exists a non-
empty finite subset S ⊂ PMF such that gS = S for any g ∈ G. More explicitly,
if G is IA, then we put S = {F±(g)} for some pseudo-Anosov element g ∈ G. If
G is reducible, then there exists σ ∈ S(M) fixed by all elements of G, and we put
S = {σ }. The uniformly distributed probability measure on S is then a fixed point
for the action of G on M(PMF ). Therefore, in this case, we can explicitly find an
invariant probability measure on PMF for each amenable subgroup of �(M).

Amenable groupoids. Zimmer [62] defined amenability of a group action as an ana-
logue of Definition 4.1. The following definition of an amenable discrete measured
groupoid is introduced in Chapter 4 of [4], which is a generalization of Zimmer’s
definition. A precise definition of amenable discrete measured groupoids is somehow
complicated. After giving it, we recall several fundamental facts. The readers unfa-
miliar with this notion are recommended to consult [5], where a survey of amenability
of groupoids is given.

When we defined amenability of groups, we considered an action of it on a separable
Banach space. In the definition of amenability of groupoids G, it is necessary to
consider measurable bundles over the unit space of G whose fiber is an object appearing
in the definition of amenability of groups. We first introduce an object on which a
groupoid acts, called a measurable Banach bundle. A reference for the material in the
following Definitions 4.4 and 4.6 is Chapter II in [15]. In the first definition, we shall
recall basic terminology in measure theory. Recall that we refer to a standard Borel
space X equipped with a σ -finite positive measure μ as a standard measure space. If
μ(X) <∞, then we say that (X,μ) is a standard finite measure space.

Definition 4.4 ([15, II.1]). Let (X,μ) be a standard measure space. We denote by B
the set of all Borel subsets of X.

(i) A subset A ofX is μ-null if there exists a countable family {An}n of elements of
B such that A ⊂⋃

n An and μ(An) = 0 for all n.

(ii) A subset A ofX is μ-measurable if the symmetric difference A�B is μ-null for
some B ∈ B.

(iii) A property of points of X which holds for all x outside some μ-null subset of X
is said to hold for μ-almost every (or μ-a.e.) x.

(iv) A map f : X → Y into a standard Borel space Y is μ-measurable if f−1(A) is
μ-measurable for any Borel subset A of Y .

The following lemma is an easy exercise. For the proof, note that the σ -field of
Borel subsets of a standard Borel space is generated by countably many Borel subsets
of it as a σ -field.

Lemma 4.5. Let (X,μ) be a standard measure space. Ifϕ : X→ Y is aμ-measurable
map into a standard Borel space Y , then there exist a Borel map ψ : X → Y and a
Borel subset X′ of X such that μ(X \X′) = 0 and ϕ(x) = ψ(x) for all x ∈ X′.
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We next introduce the notion of measurable Banach bundles over a standard mea-
sure space (X,μ). Suppose that for each x ∈ X, we are given a Banach spaceEx . We
refer to a function f on X such that f (x) ∈ Ex for each x ∈ X as a vector field on
X. We will define measurability of such a vector field. We equip the complex field C

with the structure of a standard Borel space associated with the usual topology of C.

Definition 4.6 ([15, II.4]). In the above notation, a μ-measurable structure for the
family {Ex}x∈X is a non-empty family M of vector fields onX satisfying the following
four conditions:

(i) If f, g ∈M, then the vector field x → f (x)+ g(x) is also in M.

(ii) If f ∈ M and a map φ : X → C is μ-measurable, then the vector field x →
φ(x)f (x) is also in M.

(iii) If f ∈ M, then the function x → ‖f (x)‖ is μ-measurable, where ‖ · ‖ is the
norm on Ex .

(iv) Suppose that f is a vector field on X such that there exists a sequence {gn} of
elements of M such that gn(x) → f (x) in Ex as n → ∞ for μ-a.e. x ∈ X.
Then f ∈M.

The family {Ex}x∈X endowed with this structure M is called a measurable Banach
bundle over (X,μ), and is denoted byE. We refer to an element of M as a measurable
section for the bundle E.

In the next definition, we introduce the notion of separability for a measurable
Banach bundle.

Definition 4.7 ([4, DefinitionA.3.4]). LetE = ({Ex}x∈X,M)be a measurable Banach
bundle over a standard measure space (X,μ). We say thatE is separable if there exists
a sequence {gn}n of elements of M such that the set {gn(x)}n is total in Ex for μ-a.e.
x ∈ X, that is, the set of all finite C-linear combinations of elements in {gn(x)}n is
dense in Ex .

Remark 4.8. LetE = ({Ex}x∈X,M) be a measurable Banach bundle over a standard
measure space (X,μ).

(i) Let (Y, ν) be a standard measure space and suppose that we are given a Borel map
π : Y → X such that π∗ν and μ are equivalent. The set N = {f � π : f ∈M}
generates a ν-measurable structure π∗M for the family {Ef (y)}y∈Y . We denote
by π∗E the corresponding bundle over (Y, ν) and call it the pull-back of E by
π . If E is separable, then so is π∗E (see Example (3) of Appendix A in [4]).

(ii) Consider the family {E∗x }x∈X of duals. We denote by M∗ the set of all vector
fields ϕ for this family such that the function x → 〈ϕ(x), f (x)〉 is μ-measurable
for all f ∈ M. The following fact is known (see Lemma A.3.7 in [4]): If E is
separable, then E∗ = ({E∗x }x∈X,M∗) is a measurable Banach bundle.
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(iii) When E is separable, we denote by L∞(X,E∗) the space of all ϕ ∈ M∗ such
that the function x → ‖ϕ(x)‖ belongs to L∞(X), and we denote by ‖ϕ‖∞ the
μ-essential supremum for this function. It is known thatL∞(X,E∗) is a Banach
space with respect to the norm ‖ · ‖∞ (see Proposition A.3.9 in [4]).

We next define an action of a discrete measured groupoid on a measurable Banach
bundle.

Definition 4.9 ([4, Definition 4.1.1]). Let G be a discrete measured groupoid on a
standard measure space (X,μ). A measurable G-bundle over (X,μ) is a pair (E,L),
where E = ({Ex}x∈X,M) is a measurable Banach bundle over (X,μ), and L is a
linear isometric representation of G on E. Namely,

• for each γ ∈ G, L gives an isometric isomorphism L(γ ) : Es(γ )→ Er(γ );

• L preserves products, i.e., L(γ1γ2) = L(γ1)L(γ2) for all (γ1, γ2) ∈ G(2);

• L is measurable in the sense that for each f ∈ M, the vector field γ →
L(γ )f (s(γ )) for the family {Er(γ )}γ∈G is in r∗M, where r : G → X is the
range map.

Remark4.10. In Definition 4.9, assume thatE is separable. The pair (E∗, L∗) defined
by the following equation then gives a measurable G-bundle over (X,μ), and we call
it the dual G-bundle of the G-bundle E:

〈L∗(γ )e∗, e〉 = 〈e∗, L(γ−1)e〉 for γ ∈ G, e∗ ∈ E∗s(γ ), e ∈ Er(γ ).
The next definition introduces the notion corresponding to convex, weak*-closed

subsets contained in the closed unit ball of the dual of a separable Banach space
appearing in the definition of amenability of groups.

Definition 4.11 ([4, Definitions 4.2.1, 4.2.5]). Let (X,μ) be a standard measure space.
(i) Let E = ({Ex}x∈X,M) be a separable measurable Banach bundle over (X,μ).

Suppose that for each x ∈ X, we are given a subset Ax of the closed unit ball of
the dual E∗x . We refer to the family A = {Ax}x∈X as a measurable field for the
dual E∗ if there exists a sequence {ψn}n of elements of L∞(X,E∗) such thatAx
is the closed convex hull of the set {ψn(x)}n for μ-a.e. x ∈ X.

(ii) Let G be a discrete measured groupoid on (X,μ) and let (E,L) be a separable
measurable G-bundle over (X,μ). A measurable fieldA = {Ax}x∈X for the dual
E∗ is called a G-field if L∗(γ )As(γ ) = Ar(γ ) for μ̃-a.e. γ ∈ G, where μ̃ is the
measure on G introduced in Definition 2.13.

Finally, we define amenability of discrete measured groupoids as follows.

Definition 4.12. A discrete measured groupoid G on a standard measure space (X,μ)
is amenable if the following holds: For any separable measurable G-bundle (E,L)over
(X,μ) and for any G-fieldA = {Ax}x∈X for the dualE∗, there exists ϕ ∈ L∞(X,E∗)
such that
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• ϕ(x) ∈ Ax for μ-a.e. x ∈ X;

• L∗(γ )ϕ(s(γ )) = ϕ(r(γ )) for μ̃-a.e. γ ∈ G.
When the discrete measured groupoid arising from a non-singular action of a dis-
crete group on a standard finite measure space is amenable, we say that the action is
amenable.

Note that in Zimmer’s definition of amenable actions of groups, only constant
Banach bundles (i.e., bundles {Ex}x∈X such that Ex is the same for all x ∈ X) are
considered instead of general Banach bundles as above. However, Zimmer’s definition
is equivalent to the above one. The proof of this fact is given in Theorem 4.2.7 in [4]
and Section 3 in [3].

Compared with the definition of amenability of groups in Definition 4.1, the second
condition for ϕ in Definition 4.12 can be phrased by saying that ϕ is a fixed point for
the action L of the groupoid G on E. In general, given a group G and a space S,
we refer to a homomorphism G → Aut(S) as an action of G on S. Hence, given a
groupoid G, we should refer to a groupoid homomorphism G→ Aut(S) as an action
of G on S. We next define a fixed point for such an action of a groupoid. However, for
a standard Borel space S, we know no natural Borel structure on Aut(S), the group
of Borel automorphisms of S. Hence, we consider nothing but the following special
action of a groupoid when the groupoid admits a Borel structure. In what follows, a
groupoid homomorphism from a discrete measured groupoid G into a discrete group
� is always assumed to be Borel as a map from G into �.

Definition 4.13. Let G be a discrete measured groupoid on a standard measure space
(X,μ). Let S be a standard Borel space. Suppose that we are given a Borel action
of a discrete group � on S and a groupoid homomorphism ρ : G→ �. Then a Borel
map ϕ : X→ S satisfying the equation

ρ(γ )ϕ(s(γ )) = ϕ(r(γ )) for a.e. γ ∈ G

is called an invariant Borel map for G. We say that ϕ is ρ-invariant for G when we
specify ρ.

More generally, if A is a Borel subset of X and if a Borel map ϕ : A→ S satisfies
the above equation for a.e. γ ∈ (G)A, then we say for simplicity that ϕ is invariant
for G although we should say that ϕ is invariant for (G)A.

Given an action of a groupoid, we often use amenability of the groupoid to obtain
an invariant Borel map for the action as shown in the following proposition. Recall
that for a separable compact space K , we denote by M(K) the space of probability
measures on K . This space is a convex, weak*-closed subset contained in the closed
unit ball of the dual of C(K), the Banach space of C-valued continuous functions on
K with the sup norm.

Proposition 4.14. Let G be a discrete measured groupoid on a standard measure
space (X,μ). Let � be a discrete group and suppose that � acts on a separable
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compact space K continuously. Let ρ : G → � be a groupoid homomorphism. If G
is amenable, then there exists a ρ-invariant Borel map ϕ : X → M(K), i.e., a Borel
map satisfying the equation

ρ(γ )ϕ(s(γ )) = ϕ(r(γ )) for a.e. γ ∈ G.

Here, the action � � M(K) is given by the induced one from the action � � K .

Proof. We put Ex = C(K) for all x ∈ X. We define a μ-measurable structure M for
the family {Ex}x∈X as the one generated by the constant vector fields x → e for all
e ∈ C(K). Then E = ({Ex}x∈X,M) is a separable measurable Banach bundle. For
γ ∈ G, we define an isometric isomorphismL(γ ) : Es(γ )→ Er(γ ) byL(γ )e = ρ(γ )e
for e ∈ Es(γ ). The pair (E,L) is then a G-bundle. Since the family A = {Ax}x∈X
given by Ax = M(K) defines a G-field for E∗, we get ϕ ∈ L∞(X,E∗) such that
ϕ(x) ∈ M(K) for μ-a.e. x ∈ X, and L∗(γ )ϕ(s(γ )) = ϕ(r(γ )) for μ̃-a.e. γ ∈ G.
This equation is equivalent to ρ(γ )ϕ(s(γ )) = ϕ(r(γ )). The proposition follows from
Lemma 4.5.

Example 4.15. Let � be a discrete group and suppose that � admits a non-singular
action on a standard measure space (X,μ). We denote by G the associated groupoid
� �X. Then

ρ : G→ �, (g, x) → g

defines a groupoid homomorphism. Suppose that we are given a separable compact
space K on which � acts continuously. It follows from Proposition 4.14 that if S is
an amenable subgroupoid of G, then there exists a Borel map ϕ : X → M(K) such
that ρ(g, x)ϕ(x) = ϕ(gx), that is, gϕ(x) = ϕ(gx) for a.e. (g, x) ∈ S.

We give fundamental properties of amenable discrete measured groupoids.

Theorem 4.16. Let G be a discrete measured groupoid on a standard measure space
(X,μ).

(i) G is amenable if and only if its quotient equivalence relation

{(r(γ ), s(γ )) ∈ X ×X : γ ∈ G}
is amenable and for a.e. x ∈ X, the isotropy group Gxx = {γ ∈ G : r(γ ) =
s(γ ) = x} is amenable.

(ii) Any subgroupoid of an amenable discrete measured groupoid is amenable.

(iii) Let A ⊂ X be a Borel subset with positive measure. If G is amenable, then so is
the restricted groupoid (G)A. If GA = X up to null sets, then the converse also
holds.

For Assertion (i), we refer to Corollary 5.3.33 in [4]. Assertion (ii) follows from
hyperfiniteness of amenable equivalence relations shown in [10] and Assertion (i).
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The former part of Assertion (iii) can be shown by using Assertion (ii) because (G)A is
identified with the subgroupoid (G)A∪{ex : x ∈ X\A} of G, where ex ∈ G denotes the
unit on x. The latter part can also be proved directly by using this identification. The
following is one of the most highlighted theorems about principal discrete measured
groupoids, and it is a generalization of Theorem 3.15. Recall that G is said to be
principal if the isotropy group Gxx is trivial for each x ∈ X. A principal groupoid is
isomorphic to its quotient equivalence relation.

Theorem 4.17 ([10]). For i ∈ {1, 2}, let Gi be ergodic principal discrete measured
groupoids on a standard finite measure space (Xi, μi). For i ∈ {1, 2}, we suppose
thatμi is invariant for Gi and thatμi has no atom, that is, there exists no point x ∈ Xi
with μi({x}) > 0. Then G1 and G2 are isomorphic.

Here, a discrete measured groupoid G on (X,μ) is said to be ergodic if the following
holds: If a Borel subset A ⊂ X satisfies the equation GA = A up to null sets, then
either μ(A) = 0 or μ(X \ A) = 0. In the next theorem, we particularly consider a
groupoid arising from a group action.

Theorem 4.18. Let (X,μ) and (Y, ν) be standard finite measure spaces.
(i) Let G be a discrete group and suppose that we have a non-singular action of

G on (X,μ). Let G be the associated groupoid. If G is amenable, then G is
amenable.

(ii) Conversely, in Assertion (i), if the actionG � (X,μ) is measure-preserving and
G is amenable, then G is amenable.

(iii) Let G be a discrete group and suppose that we have non-singular actions G �

(X,μ) and G � (Y, ν). If there exists a G-equivariant Borel map f : X → Y

such that f∗μ = ν and if the action G � (Y, ν) is amenable, then the action
G � (X,μ) is also amenable.

Assertion (i) follows from Propositions 4.2.2 and A.3.9 in [4]. For Assertions (ii)
and (iii), we refer to Proposition 4.3.3 in [63] and [3], respectively. This subsection
will end with several examples of amenable discrete measured groupoids.

Example 4.19. Groupoids admitting fundamental domains. LetG be a discrete group.
Then the action ofG onG by left multiplication is amenable, where a measureμ onG
is given by f ∈ �1(G) such that f (g) > 0 for each g ∈ G. More generally, suppose
that G admits a non-singular action on a standard finite measure space (X,μ) and
suppose that the action admits a fundamental domain, that is, there exists a Borel
subset F ⊂ X such that μ

( ⋃
g∈G F

) = μ(X) and Gx ∩ F consists of a single
point for a.e. x ∈ X. Then the action G � (X,μ) is amenable. Note that if G
is infinite and G admits an essentially free, measure-preserving action on a standard
finite measure space, then there exists no Borel fundamental domain for the action.
A discrete measured equivalence relation which admits a fundamental domain is also
amenable.
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The following is an example of amenable actions of non-amenable groups.

Theorem 4.20 ([1], [4, Appendix B]). Let � be an infinite hyperbolic group in the
sense of Gromov. Let μ be a probability measure on the Gromov boundary ∂� such
that the action of � on (∂�,μ) is non-singular. Then the action � � (∂�,μ) is
amenable.

In the proof of this result, approximately invariant means for (the groupoid arising
from) the boundary action of � are constructed. Recall that for a discrete group G, a
sequence {fn}n∈N in �1(G) is called approximately invariant means for G if

• for each n, fn(g) ≥ 0 for all g ∈ G and
∑
g∈G fn(g) = 1;

• for each g ∈ G,
∑
h∈G |fn(g−1h)− fn(h)| → 0 as n→∞.

It is well known that a discrete group G is amenable if and only if G admits ap-
proximately invariant means. We can also define approximately invariant means for
a discrete measured groupoid as an analogue of the above definition (see Chapter 3
in [4]), and we can show that a discrete measured groupoid is amenable if and only
if there exist such means for it (see Theorem 4.2.7 in [4]). When we are given a
group action and we want to show that it is amenable, we often prove that it admits
approximately invariant means, for it is often difficult to prove the fixed point property
in Definition 4.12 directly for concrete examples of group actions.

In Example 3.8 of [5] and Example 2.2 of [54], approximately invariant means
for the boundary action of non-abelian free groups are constructed explicitly. This
construction can be generalized to the case of hyperbolic groups by using the uniform
thinness of all geodesic triangles on their Cayley graphs. Since the curve complex C
for a surfaceM with κ(M) ≥ 0 is hyperbolic (see Theorem 2.2), this proof motivates
the following theorem. We denote by ∂C the Gromov boundary of C. It is known
that ∂C is a non-empty standard Borel space (see Proposition 3.10 in [35]). We refer
to [39], [24], [27] for details of the boundary ∂C.

Theorem 4.21 ([35, Theorem 3.29]). Let M be a surface with κ(M) ≥ 0 and let
C be the curve complex for M . Let μ be a probability measure on the Gromov
boundary ∂C such that the action of �(M)	 on (∂C,μ) is non-singular. Then the
action �(M)	 � (∂C,μ) is amenable.

Since C is hyperbolic, we expect a construction of approximately invariant means
for the action of �(M)	 on ∂C similar to the one for hyperbolic groups noted above.
However, we can not apply the construction directly because C is locally infinite. To
avoid this difficulty, we use the finiteness property of tight geodesics on the curve
complex established by Masur and Minsky [44], and Bowditch [9]. A tight geodesic
is a geodesic in C with a special property. Roughly speaking, the finiteness property
of tight geodesics says that the set of tight geodesics behaves like the set of geodesics
on a locally finite hyperbolic graph. Thanks to this property, we can construct approx-
imately invariant means for the action of �(M)	 on ∂C as in the case of hyperbolic
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groups. Geometric properties of the curve complex we use in the proof of Theo-
rem 4.21 are only the hyperbolicity and this finiteness property. We omit the proof of
Theorem 4.21 and note here that the finiteness property of tight geodesics will also
be used in the construction of several natural Borel maps associated with the curve
complex (see Remark 5.9).

In Section 5, we will use the following corollary, which is an immediate conse-
quence of Theorem 4.21. We denote by ∂2C the quotient space of C × C by the
coordinate exchanging action of the symmetric group on two letters.

Corollary 4.22 ([35, Lemma 4.32]). Let M be a surface with κ(M) ≥ 0. Let μ be a
probability measure on ∂2C such that the action of �(M)	 on (∂2C,μ) is non-singular.
Then the action �(M)	 � (∂2C,μ) is amenable.

5 Two types of subgroupoids: IA and reducible ones

LetM be a surface with κ(M) > 0 and letm ≥ 3 be an integer. Let � be a finite index
subgroup of �(M;m) (see Theorem 2.8 for the subgroup �(M;m) of �(M)). Let G
be the discrete measured groupoid on a standard finite measure space (X,μ) which
arises from a measure-preserving action � � (X,μ). The final goal of Sections 5,
6 and 7 is to prove Theorem 3.6. This theorem states that any isomorphism between
such groupoids arising from actions of mapping class groups preserves subgroupoids
generated by actions of Dehn twists. To characterize such subgroupoids algebraically
in terms of groupoids, we introduce two types of subgroupoids of G. The first one is
called IA subgroupoids, which correspond to IA (= infinite, irreducible and amenable)
subgroups in the classification theorem of subgroups of mapping class groups (see
Theorem 2.7). The second one is called reducible subgroupoids, which correspond to
infinite reducible subgroups.

Let ρ : G→ � be the groupoid homomorphism given by (g, x) → g for g ∈ � and
x ∈ X. We denote by M(PMF ) the space of probability measures on the Thurston
boundary PMF . Each element γ ∈ G then acts on M(PMF ) via ρ. We can regard
this assignment as the action of G on M(PMF ). We define the above two classes of
subgroupoids S of G in terms of Borel maps ϕ : X→ M(PMF )which is ρ-invariant
for S, i.e., ρ(γ )ϕ(s(γ )) = ϕ(r(γ )) for a.e. γ ∈ S. These ρ-invariant Borel maps play
a role of fixed points for the action of G on M(PMF ) (see Definition 4.13 and the
comment right before it).

In Subsection 5.1, we characterize IA and reducible subgroups in terms of their
fixed points inM(PMF ). This will help us to understand the motivation of the defini-
tion of IA and reducible subgroupoids. In Subsection 5.2, we analyze IA subgroupoids
and study properties of Borel maps intoM(PMF ) which are ρ-invariant for them. It
is shown that IA subgroupoids are in fact amenable as groupoids. In Subsection 5.3,
we study reducible subgroupoids S and give the definition of canonical reduction sys-
tems for S. This is an essentially unique Borel map into S(M) which is ρ-invariant
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for S and which satisfies nice properties. This system is a generalization of canoni-
cal reduction systems for reducible subgroups introduced by Birman, Lubotzky, and
McCarthy [8], and Ivanov [30].

5.1 IA and reducible subgroups

LetM be a surface with κ(M) ≥ 0 and let � be an infinite subgroup of �(M). Recall
that � is said to be IA if there exists a pseudo-Anosov element g ∈ � such that
{F±(g)}, the set of its pseudo-Anosov foliations, is fixed by all elements of �. In this
case, � is virtually cyclic. If there exists σ ∈ S(M) fixed by all elements of �, then �
is said to be reducible. In the next two propositions, we characterize these two classes
of subgroups in terms of their fixed points on the space M(PMF ) of probability
measures on the Thurston boundary PMF . We say that ν ∈ M(PMF ) is invariant
for a subgroup � of �(M) if gν = ν for each g ∈ �.

Proposition 5.1. LetM be a surface with κ(M) ≥ 0 and let � be an infinite subgroup
of �(M). Then the following assertions hold:

(i) The subgroup � is IA if and only if there exists an invariant measure ν ∈
M(PMF ) for � such that ν(MIN ) = 1.

(ii) If � is IA, then any invariant measure ν ∈ M(PMF ) for � satisfies that
ν({F±(g)}) = 1 for some pseudo-Anosov element g ∈ �.

Proof. The “only if” part of Assertion (i) has already been seen in Example 4.3.
Assertion (ii) follows from the dynamics of pseudo-Anosov elements on PMF (see
Theorem 2.5).

We may assume that � is a subgroup of �(M;m) for an integer m ≥ 3 to prove
the “if” part of Assertion (i). Recall that �(M;m) consists of pure elements and is
torsion-free (see Theorem 2.8). Let ν ∈ M(PMF ) be an invariant measure for �
such that ν(MIN ) = 1.

Assume that � contains a reducible element g of infinite order. Let �u and �s be
the subsets of PMF associated withg as in the comment right before Theorem 2.6. We
can choose a non-empty closed one-dimensional submanifold c of M which satisfies
Property (P) for g and does not have superfluous components. Note that both �s

and �u are contained in PMF \MIN . Let {Un}n be a sequence of open subsets of
PMF such thatUn ⊃ Un+1 for each n, and�u =⋂

n Un. It follows from ν(�u) = 0
that ν(Un) ↘ 0. Let K be any compact subset of PMF \ �s . By Theorem 2.6, for
each n, there exists N such that gNK ⊂ Un, and thus ν(K) = ν(gNK) ≤ ν(Un).
Therefore, ν(K) = 0. Since PMF \ �s can be expressed as a countable union of
compact subsets, this implies that ν(PMF \�s) = 0, which is a contradiction.

Thus, � does not contain a reducible element of infinite order, and it consists of
pseudo-Anosov elements and the trivial element. If g is a pseudo-Anosov element of
�, then by the dynamics of g on PMF (see Theorem 2.5), the support of ν is contained
in {F±(g)}. Since ν is invariant for �, this implies that � is an IA subgroup.
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Proposition 5.2. LetM be a surface with κ(M) ≥ 0 and let � be an infinite subgroup
of �(M). Then � is reducible if and only if there exists an invariant measure ν ∈
M(PMF ) for � such that ν(PMF \MIN ) = 1.

Proof. The “only if” part has already been seen in Example 4.3. To prove the “if” part,
let ν ∈ M(PMF ) be an invariant measure for � such that ν(PMF \MIN ) = 1.
It follows from Theorem 2.7 that � is either IA, reducible or sufficiently large. By
Proposition 5.1 (ii), � is not IA. If � were sufficiently large, then there exist pseudo-
Anosov elements g1, g2 ∈ � such that {F±(g1)} ∩ {F±(g2)} = ∅. Theorem 2.5
implies that any sufficiently large subgroup admits no invariant probability measure
on PMF . Therefore, � is reducible.

We next define IA and reducible subgroupoids, which is motivated by the above
two propositions. We often use the following notation in what follows.

Notation. We refer to the following assumption as (�): Let M be a surface with
κ(M) > 0 and let m ≥ 3 be an integer. Let � be a finite index subgroup of �(M;m).
Suppose that � admits a measure-preserving action on a standard finite measure space
(X,μ). We denote by G the associated groupoid � � (X,μ). Let ρ : G→ � be the
groupoid homomorphism defined by (g, x) → g.

Propositions 5.1 and 5.2 imply that there exists no infinite subgroup of �(M)
which admits an invariant measure ν ∈ M(PMF ) such that 0 < ν(MIN ) < 1. The
following is a generalization of this fact.

Theorem 5.3. Under Assumption (�), let Y be a Borel subset of X with positive
measure and let S be a subgroupoid of (G)Y of infinite type. Suppose that there is an
invariant Borel map ϕ : Y → M(PMF ) for S. Then there exists a Borel partition
Y = Y1 � Y2 such that

• ϕ(x)(MIN ) = 1 for a.e. x ∈ Y1;

• ϕ(x)(PMF \MIN ) = 1 for a.e. x ∈ Y2.

Recall that a Borel map ϕ : Y → M(PMF ) is (ρ-) invariant for S if the equation
ρ(γ )ϕ(s(γ )) = ϕ(r(γ )) holds for a.e. γ ∈ S.

Remark 5.4. In Theorem 5.3, let us assume that there is another invariant Borel map
ψ : Y → M(PMF ) for S. It is easy to check that ψ also satisfies

• ψ(x)(MIN ) = 1 for a.e. x ∈ Y1;

• ψ(x)(PMF \MIN ) = 1 for a.e. x ∈ Y2.

for the same Y1 and Y2 as in the theorem. (Consider the invariant Borel map (ϕ+ψ)/2
for S and apply the theorem.)

By this remark, the two subgroupoids (S)Y1 and (S)Y2 should be distinguished,
and it is natural to define the following two classes of subgroupoids.



Chapter 9. Introduction to measurable rigidity of mapping class groups 343

Definition 5.5. Under Assumption (�), let Y be a Borel subset of X with positive
measure and let S be a subgroupoid of (G)Y of infinite type.

(i) We say that S is IA (= irreducible and amenable) if there is an invariant Borel
map ϕ : Y → M(PMF ) for S such that ϕ(x)(MIN ) = 1 for a.e. x ∈ Y .

(ii) We say that S is reducible if there is an invariant Borel map ϕ : Y → M(PMF )
for S such that ϕ(x)(PMF \MIN ) = 1 for a.e. x ∈ Y .

It follows from Remark 5.4 that the classes of IA and reducible subgroupoids are
mutually exclusive. The definition of reducible subgroupoids is also motivated by the
following lemma.

Lemma 5.6. Under Assumption (�), let Y be a Borel subset ofX with positive measure
and let S be a subgroupoid of (G)Y of infinite type. Then the following two conditions
are equivalent:

(i) S is reducible.

(ii) There exists an invariant Borel map Y → S(M) for S.

It is clear that Assertion (ii) implies Assertion (i) because there is a �(M)	-
equivariant embedding ι : S(M) → PMF \MIN . To prove the converse impli-
cation, we construct a Borel map H : PMF \MIN → S(M) which is equivariant
for the action of �(M)	 and satisfies H � ι = id (see Subsection 4.2 in [35]).

5.2 IA subgroupoids

The following lemma is the first important observation about invariant Borel maps
for IA subgroupoids. It is known that there exists a natural �(M)	-equivariant map
π : MIN → ∂C, which is continuous and surjective (see [39]). We can define a Borel
structure on the setM(∂C) of all probability measures on ∂C by using a Borel section
of π : MIN → ∂C, i.e., a Borel map s : ∂C → MIN such that π � s = id (see
the comment right before Proposition 4.30 in [35]). For a technical reason, we study
invariant Borel maps intoM(∂C) for IA subgroupoids instead of ones intoM(PMF ).

Lemma 5.7. Under Assumption (�), let Y be a Borel subset ofX with positive measure
and let S be a subgroupoid of (G)Y of infinite type. Then the following assertions hold:

(i) S is IA if and only if there exists an invariant Borel map ϕ : Y → M(∂C) for S.

(ii) If S is IA and ϕ : Y → M(∂C) is an invariant Borel map for S, then supp(ϕ(x))
consists of at most two points.

Here, for a measure ν, we denote by supp(ν) the support of ν. It is easy to see the
“only if” part of Assertion (i) by using the map π : MIN → ∂C.

We denote by ∂2C the quotient space of ∂C × ∂C by the coordinate exchanging
action of the symmetric group on two letters. Then ∂2C can be viewed as a Borel
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subset ofM(∂C) by regarding each element of ∂2C as an atomic measure on ∂C such
that each atom has measure 1 or 1/2. We denote by M(MIN ) the Borel subset of
M(PMF ) consisting of all measures ν such that ν(MIN ) = 1. We can prove the
following lemma by using Lemma 5.7.

Lemma 5.8. Under Assumption (�), let Y be a Borel subset ofX with positive measure
and let S be a subgroupoid of (G)Y of infinite type. If S is IA, then there exists an
essentially unique invariant Borel map ϕ0 : Y → ∂2C for S satisfying the following
condition: If Y ′ ⊂ Y is a Borel subset with positive measure and ϕ : Y ′ → M(∂C) is
an invariant Borel map for S, then

supp(ϕ(x)) ⊂ supp(ϕ0(x)) for a.e. x ∈ Y ′.

This unique invariant Borel map plays an important role when we study the nor-
malizer of an IA subgroupoid (see Lemma 6.7).

Remark 5.9. In the proof of Propositions 5.1 and 5.2, it was important to observe
the dynamics of each element of the mapping class group on PMF . However, we
cannot consider the dynamics of each element of a groupoid because powers γ n of
an element γ of a groupoid do not make sense in general. Hence, we cannot apply
a similar argument in the proof of Theorem 5.3 and Lemma 5.7. As a different
approach, by using the finiteness properties of tight geodesics in the curve complex
(see Theorem 4.21 and the comment around it), we construct the following natural
Borel maps: Put

δC = {(a, b, c) ∈ (∂C)3 : a �= b �= c �= a}
and define an action of �(M)	 on δC by g(a, b, c) = (ga, gb, gc). Let F ′(C) be
the set of all non-empty finite subsets of V (C) whose diameters are at least three, on
which �(M)	 naturally acts. We can then construct a �(M)	-equivariant Borel map

MS : δC → F ′(C)

(see Section 4.1 in [35]). A remarkable property of the set F ′(C) is that the stabilizer
of each element of F ′(C) is finite (see Lemma 10 in [7]). Moreover, in the proof of
Theorem 5.3, we construct a �(M)	-equivariant Borel map

G : ∂2C × V (C)→ F ′(C),

where the action of �(M)	 on ∂2C × V (C) is given by g(a, x) = (ga, gx) (see
Lemma 4.40 in [35]). In this chapter, we do not further mention the proof of these
facts.

As observed in Proposition 5.1, if an infinite subgroup � of �(M;m) has an
invariant measure ν ∈ M(PMF ) such that ν(MIN ) = 1, then � is IA and in
particular,� is amenable. Hence, we can expect any IA subgroupoid S to be amenable,
which is in fact shown in the following theorem. In the proof of this theorem, we use the
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amenability of the action �(M)	 on ∂C shown in Theorem 4.21 and Corollary 4.22.
We give the proof of this theorem to show how to use this amenable action of the
mapping class group.

Theorem 5.10. Under Assumption (�), let Y be a Borel subset of X with positive
measure and let S be a subgroupoid of (G)Y of infinite type. If S is IA, then S is
amenable. Equivalently, if there is an invariant Borel map Y → ∂2C for S, then S is
amenable.

Note that S is IA if and only if there exists an invariant Borel map Y → ∂2C for S
(see Lemma 5.7 (ii)). Let ϕ : Y → ∂2C be an invariant Borel map for S. An important
point of the proof is to construct a standard Borel space S on which � acts so that

• S is isomorphic to a subgroupoid of � � S;

• we can construct a �-equivariant Borel map S → ∂2C by using ϕ.

If we can construct such a space S, then the theorem follows from Theorem 4.16 (ii),
Theorem 4.18 (iii) and Corollary 4.22.

Proof of Theorem 5.10. We identify S with the groupoid on (X,μ) defined by the
union {ex ∈ G : x ∈ X \ Y } ∪ S. Extend ϕ to the map from X defined by ϕ(x) = a0
for x ∈ X \ Y , where a0 ∈ ∂2C is some fixed point. We denote by the same symbol
ϕ the extended map. The extended map ϕ is then also invariant for S.

Consider the action of � on X × � given by

g(x, g1) = (x, g1g
−1) for x ∈ X, g, g1 ∈ �.

The equivalence relation R1 on X × � defined by

(s(γ ), g) ∼ (r(γ ), ρ(γ )g) for γ ∈ G, g ∈ �
admits a fundamental domain F1 = X × {e}, i.e., a Borel subset F1 of the unit space
X × � such that R1x ∩ F1 consists of exactly one point for a.e. x ∈ X × �, where
R1x denotes the equivalence class containing x. Let R2 be the equivalence relation
on X × � given by

(s(γ ), g) ∼ (r(γ ), ρ(γ )g) for γ ∈ S, g ∈ �.

Since R2 is a subrelation of R1, we can show that R2 also admits a fundamental
domain F2 ⊂ X × � (use Lemma 2.12 in [2]). Let S be the quotient space of X × �
by R2, which is identified with F2 as a measure space via the projectionX×�→ S.
Note that the action of � onX×� induces an action of � on S. Denote the projection
of (x, g) ∈ X × � onto S by [x, g] ∈ S. Then S can be identified with a Borel
subgroupoid

H = {(ρ(γ ), [s(γ ), e]) ∈ � � S : γ ∈ S}
of � � S via an isomorphism

S � γ → (ρ(γ ), [s(γ ), e]) ∈ H .
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Using the invariant Borel map ϕ : X→ ∂2C for S, we construct a Borel map ϕ′ : S →
∂2C by the formula [x, g] → g−1ϕ(x). Then ϕ′ is well-defined and �-equivariant.
By Theorem 4.18 (iii) and Corollary 4.22, the groupoid � � S is amenable. Since H
is a subgroupoid of � � S, it is also amenable. �

5.3 Reducible subgroupoids

We shall recall Assumption (�): Let M be a surface with κ(M) > 0 and let m ≥ 3
be an integer. Let � be a finite index subgroup of �(M;m). Suppose that � admits a
measure-preserving action on a standard finite measure space (X,μ). We denote by G
the associated groupoid � � (X,μ). Let ρ : G→ � be the groupoid homomorphism
defined by (g, x) → g.

Let Y be a Borel subset of X with positive measure and let S be a subgroupoid of
(G)Y of infinite type. Suppose that S is reducible. By Lemma 5.6, we can construct
an invariant Borel map ϕ : Y → S(M) for S, i.e., ρ(γ )ϕ(s(γ )) = ϕ(r(γ )) for a.e.
γ ∈ S. In general, there are many such maps ϕ. The aim of this subsection is to
construct an invariant Borel map Y → S(M) for S with some nice properties, called
the canonical reduction system (CRS) for S. This is a generalization of the canonical
reduction system (CRS) for a reducible subgroup, introduced by Birman, Lubotzky,
and McCarthy [8], and Ivanov [30]. It is shown that the CRS exists essentially uniquely
for each reducible subgroupoid. This uniqueness will be useful when we study the
normalizer of a reducible subgroupoid (see Lemma 6.8).

We shall recall the definition and some fundamental facts of the CRS for a subgroup
of the mapping class group. Let M be a surface with κ(M) ≥ 0 and let m ≥ 3 be an
integer. We first define the CRS for a subgroup of �(M;m).
Definition 5.11. Let M be a surface with κ(M) ≥ 0 and let m ≥ 3 be an integer. Let
� be a subgroup of �(M;m).

(i) An element α ∈ V (C) is called an essential reduction class for � if the following
two conditions are satisfied:

• gα = α for any g ∈ �;

• If β ∈ V (C) satisfies i(α, β) �= 0, then there exists g ∈ � such that
gβ �= β.

(ii) The canonical reduction system (CRS ) for� is defined to be the set of all essential
reduction classes for �. We denote by σ(�) the CRS for �.

It is easy to check that σ(�) ∈ S(M) ∪ {∅}. It can be shown that if � is a finite
index subgroup of �, then σ(�) = σ(�). Therefore, we can define the CRS for a
general subgroup � of �(M) as the CRS for �∩�(M;m), which is independent ofm.
We refer to Chapter 7 in [30] for more details. Note that if � is finite, then σ(�) = ∅
because σ({e}) = ∅. The following is a fundamental fact on the CRS for an infinite
subgroup of �(M).
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Theorem 5.12 ([30, Corollary 7.17]). An infinite subgroup � of �(M) is reducible if
and only if σ(�) is non-empty.

In the next theorem, we give a geometric meaning of CRS’s. We introduce the
following notation.

Notation. Let M be a surface with κ(M) ≥ 0 and let m ≥ 3 be an integer. Let �
be a subgroup of �(M;m) and assume that each element of � fixes σ ∈ S(M). By
Theorem 2.8 (iii), there is a natural homomorphism

pσ : �→
∏
Q

�(Q),

where Q runs through all components of Mσ , the surface obtained by cutting M
along a realization of σ . For each component Q of Mσ , let pQ : � → �(Q) be the
composition of pσ and the projection onto �(Q).

Theorem 5.13 ([30, Theorem 7.16]). Let M be a surface with κ(M) ≥ 0 and let �
be a subgroup of �(M). Then there exists a unique σ ∈ S(M) ∪ {∅} satisfying the
following three conditions, and then σ is in fact the CRS for �:

(i) All elements of � fix σ .

(ii) Let m ≥ 3 be an integer and put �0 = � ∩ �(M;m). For each component Q of
Mσ , the quotient group pQ(�0) cannot be infinite reducible.

(iii) σ ∈ S(M) is the minimal one satisfying the above Conditions (i), (ii) (for
some/any m).

Example 5.14. We present some examples of reducible subgroups whose CRS can
be computed. Let M be a surface with κ(M) ≥ 0.

(i) Let σ ∈ S(M) and letDσ be the subgroup of �(M) generated by all Dehn twists
about curves in σ , which is isomorphic to a free abelian group of rank |σ |. Then
σ(Dσ ) = σ .

(ii) Let g ∈ �(M) be a pure element and take a closed one-dimensional submanifold
c (may be empty) of M such that Condition (P) is satisfied for c and some
representative of g (see the comment right after Theorem 2.5). If we denote by
σ ∈ S(M)∪{∅} the isotopy class of c, then σ is the CRS for the cyclic subgroup
of �(M) generated by g.

(iii) Take σ ∈ S(M). If we denote by �σ = {g ∈ �(M) : gσ = σ } its stabilizer,
then σ(�σ ) = σ .

In the same manner, we can define the canonical reduction system for a reducible
subgroupoid as an invariant Borel map intoS(M) satisfying some special properties. In
the following definition, a purely ρ-invariant pair corresponds to an essential reduction
class. We shall recall Assumption (�): Let M be a surface with κ(M) > 0 and let
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m ≥ 3 be an integer. Let � be a finite index subgroup of �(M;m). Suppose that �
admits a measure-preserving action on a standard finite measure space (X,μ). We
denote by G the associated groupoid � � (X,μ). Let ρ : G → � be the groupoid
homomorphism defined by (g, x) → g.

Definition 5.15. Under Assumption (�), let Y ⊂ X be a Borel subset with positive
measure and let S be a subgroupoid of (G)Y of infinite type. Let A be a Borel subset
of Y with positive measure and let α ∈ V (C).

(i) We say that the pair (α,A) is ρ-invariant for S if there exists a countable Borel
partition A = ⊔

n An of A such that for each n, the constant map An → {α} is
invariant for S, i.e., ρ(γ )α = α for a.e. γ ∈ (S)An .

(ii) Suppose that (α,A) is ρ-invariant for S. The pair (α,A) is said to be purely
ρ-invariant for S if (β, B) is not ρ-invariant for S for any Borel subset B of A
with positive measure and any β ∈ V (C) with i(α, β) �= 0. (In [35], we refer to
such a pair as an essential ρ-invariant one for S.)

Remark 5.16. In the notation of Definition 5.15, it is easy to see the following:
(i) If (α,A) is a ρ-invariant pair for S, then so is the pair (α, B) for any Borel subset

B of A with positive measure. The same statement is true for purely ρ-invariant
pairs for S.

(ii) For each n ∈ N, let An be a Borel subset of Y with positive measure. If (α,An)
is a ρ-invariant pair for S, then so is the pair (α,

⋃
n∈NAn). The same statement

is true for purely ρ-invariant pairs for S.

Theorem 5.17 ([35, Theorem 4.50]). Under Assumption (�), let Y ⊂ X be a Borel
subset with positive measure and let S be a subgroupoid of (G)Y of infinite type. If S
is reducible, then there exists a purely ρ-invariant pair for S.

In the notation of Theorem 5.17, for α ∈ V (C), let Mα be the set of all Borel
subsetsA of Y such that eitherμ(A) = 0 or the pair (α,A) is purely ρ-invariant for S.
Put mα = supA∈Mα

μ(A). By Remark 5.16 (ii), there exists an essentially unique
Borel subset Yα of Y such that μ(Yα) = mα . Theorem 5.17 implies the equation
Y = ⋃

α∈V (C) Yα up to null sets if S is reducible. By the definition of purely ρ-in-
variant pairs, if α, β ∈ V (C) satisfy μ(Yα ∩ Yβ) > 0, then i(α, β) = 0. We then
define a Borel map ϕ : Y → S(M) by the formula

ϕ(x) = {α ∈ V (C) : x ∈ Yα}
for x in a conull Borel subset of Y .

Definition 5.18. The map ϕ : Y → S(M) constructed above is called the canonical
reduction system (CRS ) for a reducible subgroupoid S.

The following theorem states that the invariance and the uniqueness of the CRS
for a reducible subgroupoid.
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Theorem 5.19 ([35, Lemma 4.53]). Under Assumption (�), let Y ⊂ X be a Borel
subset with positive measure and let S be a subgroupoid of (G)Y of infinite type.
Suppose that S is reducible. Then the CRS ϕ : Y → S(M) for S is an essentially
unique invariant Borel map for S such that

• if σ ∈ S(M) satisfies μ(ϕ−1(σ )) > 0 and if α ∈ σ , then (α, ϕ−1(σ )) is a purely
ρ-invariant pair for S;

• if (α,A) is a purely ρ-invariant pair for S, then

μ(A \ ϕ−1({σ ∈ S(M) : α ∈ σ })) = 0.

6 Normal subgroupoids

Feldman, Sutherland, and Zimmer [14] introduced the notion of normal subrelations of
discrete measured equivalence relations. We define the notion of normal subgroupoids
as its generalization, which is also a generalization of the notion of normal subgroups.
It will be shown that if a subgroup of the mapping class group is IA (resp. infinite and
reducible), then so is its normalizer. We prove a similar statement in the setting of
groupoids. These facts will be used repeatedly in Section 7.

6.1 Generalities

Let G be a discrete group and let H be a subgroup of G. We refer to the subgroup
NG(H) = {g ∈ G : gHg−1 = H } as the normalizer ofH inG. IfNG(H) = G, then
H is called a normal subgroup of G.

Let G be a discrete measured groupoid on a standard measure space (X,μ) and let
r, s : G → X be the range, source maps, respectively. Let S be a subgroupoid of G.
(We mean by a subgroupoid of G a Borel subgroupoid of G whose unit space is the same
as the one for G.) We denote by EndG(S) the set of all Borel maps φ : dom(φ)→ G
from a Borel subset dom(φ) of X such that

• s(φ(x)) = x for a.e. x ∈ dom(φ);

• for a.e. γ ∈ (G)dom(φ), the following equivalence holds: γ ∈ S if and only if
φ(r(γ ))γ φ(s(γ ))−1 ∈ S.

IfX consists of a single atom, i.e., if G and S are groups, then EndG(S) is equal to the
normalizer NG(S) of S in G.

Remark 6.1. Let φ ∈ EndG(S). Note that the groupoid homomorphism (S)dom(φ) �
γ → φ(r(γ ))γ φ(s(γ ))−1 ∈ G does not define an isomorphism onto its image when
the map dom(φ) � x → r(φ(x)) ∈ X is not injective. Hence, we use the symbol
“End”.
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Definition 6.2. Let G be a discrete measured groupoid on a standard measure space
(X,μ). A subgroupoid S of G is said to be normal in G if the following condition is
satisfied: There exists a countable family {φn} of elements of EndG(S) such that for
a.e. γ ∈ G, we can findφn in the family such that r(γ ) ∈ dom(φn) andφn(r(γ ))γ ∈ S.
In this case, we write S � G, and we call {φn} a family of normal choice functions for
the pair (G,S).

Example 6.3. Normal subgroups. LetG be a discrete group and letH be a subgroup
of G. When we regard G as a groupoid, EndG(H) = NG(H) as noted above. It is
easy to see that H is normal in G in the sense of Definition 6.2 if and only if we can
choose all representatives of G/H from NG(H), that is, G = NG(H). This means
that H is a normal subgroup of G.

Lemma 6.4. Suppose that we are given a non-singular action of a discrete group G
on a standard measure space (X,μ). We denote by G the associated groupoid. Let
H be a normal subgroup of G and let S be the subgroupoid of G associated with the
action H � (X,μ). Then S is normal in G.

Proof. For g ∈ G, let φg : X → G be the Borel map defined by φg(x) = (g, x). We
show that φg ∈ EndG(S). Let (h, x) ∈ G. If (h, x) ∈ S, then

φg(hx)(h, x)φg(x)
−1 = (g, hx)(h, x)(g, g−1x) = (ghg−1, g−1x) ∈ S

sinceH is a normal subgroup ofG. Conversely, if (ghg−1, g−1x) ∈ S, then ghg−1 ∈
H , which implies that h ∈ H and (h, x) ∈ S. Thus, φg ∈ EndG(S).

Since φg−1(gx)(g, x) = ex ∈ S for (g, x) ∈ G, {φg}g∈G is a family of normal
choice functions for the pair (G,S).

We omit the proof of the following lemma.

Lemma 6.5 ([36, Lemma 2.13]). Let G be a discrete measured groupoid on a standard
measure space (X,μ). Let S be a normal subgroupoid of G. If A is a Borel subset of
X with positive measure, then (S)A is normal in (G)A.

6.2 Normalizers of IA and reducible subgroupoids

Let M be a surface with κ(M) ≥ 0 and let N be an infinite subgroup of �(M). If N
is IA, then there exists a pseudo-Anosov element g ∈ N such that {F±(g)}, the set of
pseudo-Anosov foliations of g, is fixed by all elements of N . If N is reducible, then
N fixes an element of S(M). The CRS σ(N) forN is a special element of S(M) fixed
by N (see Subsection 5.3). By using these special fixed elements of N , we show the
following
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Proposition 6.6. LetM be a surface with κ(M) ≥ 0 and let � be an infinite subgroup
of �(M). Suppose that � contains an infinite normal subgroup N .

(i) If N is IA (resp. reducible), then so is �.

(ii) If N is reducible, then σ(N) ⊂ σ(�).

Proof. First assume that N is IA. By Theorem 2.7, there exists a pseudo-Anosov
element g ∈ N such that h{F±(g)} = {F±(g)} for any h ∈ N . Let γ ∈ �. Then
γ−1gγ {F±(g)} = {F±(g)} since γ−1gγ ∈ N . Thus, gγ {F±(g)} = γ {F±(g)}. On
the other hand, the fixed point set on PMF for g consists of exactly the two points
F±(g). Hence, γ {F±(g)} = {F±(g)}. This means that every γ ∈ � fixes {F±(g)}
and that � is IA by Theorem 2.7.

Next assume thatN is reducible. For γ ∈ �, the equation γ σ(N) = σ(γNγ−1) =
σ(N) holds. The first equation follows by definition. Thus, � is reducible. By the
definition of essential reduction classes for �, we see that σ(N) ⊂ σ(�).

In this subsection, we prove a result similar to the above proposition in the frame-
work of groupoids. We recall Assumption (�): Let M be a surface with κ(M) > 0
and let m ≥ 3 be an integer. Let � be an infinite subgroup of �(M;m). Suppose that
� admits a measure-preserving action on a standard finite measure space (X,μ). Let
G be the associated groupoid �� (X,μ). Define a cocycle ρ : G→ � by (g, x) → g.

Using the uniqueness of the invariant Borel maps for IA and reducible subgroupoids
constructed in Subsections 5.2 and 5.3, we show that if a subgroupoid T of G contains
an IA (resp. reducible) subgroupoid as a normal one, then T is also IA (resp. reducible).
We give only the proof of Lemma 6.7, where IA subgroupoids are dealt with. The
proof of Lemma 6.8 for reducible ones is not given here. We refer to Lemma 4.60 in
[35] for the proof, in which we assume that the action � � (X,μ) is essentially free.
However, one can show Lemma 6.8 along the same line as in Lemma 4.60 in [35].

Lemma 6.7. Under Assumption (�), letY ⊂ X be a Borel subset with positive measure
and let S be a subgroupoid of (G)Y of infinite type. Suppose that S is IA. Let T be a
subgroupoid of (G)Y with S � T . Let ϕ0 : Y → ∂2C be the essentially unique Borel
map constructed in Lemma 5.8. Then ϕ0 is invariant for T . In particular, T is IA by
Lemma 5.7 (i).

Proof. Let r : T → Y be the range map. Take g ∈ EndT (S). Recall that g is a Borel
map from a Borel subset dom(g) of Y into T such that

• s(g(x)) = x for a.e. x ∈ dom(g);

• for a.e. γ ∈ (T )dom(g), the following equivalence holds: γ ∈ S if and only if
g(r(γ ))γg(s(γ ))−1 ∈ S.

It is enough to show that ρ(g(x)−1)ϕ0(r(g(x))) = ϕ0(x) for a.e. x ∈ dom(g). By
applying Theorem 2.9 (iv) to the composition r �g : dom(g)→ Y , we get a countable
Borel partition dom(g) =⊔

n Yn satisfying the following: Letgn denote the restriction
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of g to Yn. The image r � gn(Yn) is a Borel subset of Y , and the map r � gn : Yn →
r � gn(Yn) is a Borel isomorphism. Moreover, each gn is an element of EndT (S). We
may therefore assume that g ∈ EndT (S) satisfies that r � g(dom(g)) is a Borel subset
of Y and the map r � g : dom(g)→ r � g(dom(g)) is a Borel isomorphism.

We define a Borel map h from dom(h) = r � g(dom(g)) into T by h(y) =
g((r � g)−1(y))−1 for y ∈ dom(h). It is easy to see that h ∈ EndT (S).

We put ψg(x) = ρ(g(x)−1)ϕ0(r(g(x))) for x ∈ dom(g). Take γ ∈ (S)dom(g) and
put x = r(γ ) and y = s(γ ). Then the equation

ρ(γ )ψg(y) = ρ(γ )ρ(g(y)−1)ϕ0(r(g(y)))

= ρ(g(x)−1)ρ(g(x))ρ(γ )ρ(g(y)−1)ϕ0(r(g(y)))

= ρ(g(x)−1)ϕ0(r(g(x))) = ψg(x)
holds since g(x)γg(y)−1 ∈ S and ϕ0 is invariant for S. The map ψg is thus invariant
for (S)dom(g). By Lemma 5.8, we have

supp(ψg(x)) ⊂ supp(ϕ0(x)) for a.e. x ∈ dom(g).

By considering h instead of g, we have

supp(ρ(h(y)−1)ϕ0(r(h(y)))) ⊂ supp(ϕ0(y)) for a.e. y ∈ dom(h).

By puttingy = r�g(x) in the above two inclusions, we get the equationψg(x) = ϕ0(x)

for a.e. x ∈ dom(g). Therefore, ϕ0 is invariant for T .

Lemma6.8. Under Assumption (�), letY ⊂ X be a Borel subset with positive measure
and let S be a subgroupoid of (G)Y of infinite type. Suppose that S is reducible. Let
T be a subgroupoid of (G)Y with S � T . Let ϕ0 : Y → S(M) be the CRS for S (see
Definition 5.18). Then ϕ0 is invariant for T . In particular, T is reducible.

7 Characterization of reducible subgroupoids

In this section, we prove Theorem 3.6. This theorem states that any isomorphism be-
tween groupoids associated with measure-preserving actions of mapping class groups
preserves subgroupoids generated by Dehn twists. To prove it, we characterize such
subgroupoids algebraically in terms of discrete measured groupoids. As in the pre-
vious sections, we first investigate the case of groups. We give a complete proof in
the case of groups, and give only some comments about the case of groupoids. Most
theorems in the case of groupoids can be shown by an idea similar to the one in the
case of groups.

Classification of components into three types. We first consider the action of a
reducible subgroup on each component of the surface obtained by cutting along the
CRS for the subgroup. We recall the following notation.
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Notation. LetM be a surface with κ(M) ≥ 0 and letm ≥ 3 be an integer. Let � be a
reducible subgroup of �(M;m) and assume that each element of � fixes σ ∈ S(M).
By Theorem 2.8 (iii), there is a natural homomorphism

pσ : �→
∏
Q

�(Q),

where Q runs through all components of Mσ , the surface obtained by cutting M
along a realization of σ . For each component Q of Mσ , let pQ : � → �(Q) be the
composition of pσ and the projection onto �(Q).

In the following theorem, we consider the quotient groups pQ(�) when σ is the
CRS for � (see also Theorem 5.13).

Theorem 7.1 ([30, Lemma 1.6, Corollary 7.18]). LetM be a surface with κ(M) ≥ 0
and let m ≥ 3 be an integer. Let � be an infinite reducible subgroup of �(M;m)
and let σ ∈ S(M) be the CRS for �. If Q is a component of Mσ , then the following
assertions hold:

(i) pQ(�) is torsion-free.

(ii) pQ(�) either is trivial or contains a pseudo-Anosov element of �(Q).

If pQ(�) is trivial, infinite amenable or non-amenable, then we say thatQ is T, IA
or IN for �, respectively. Theorem 7.1 implies that any component Q of Mσ is either
T, IA or IN, and the following assertions hold:

(A) Q is T for � if and only if pQ(�) is trivial.

(B) Q is IA for � if and only if pQ(�) is an IA subgroup of �(Q).

(C) Q is IN for � if and only if pQ(�) is a sufficiently large subgroup of �(Q).

Remark 7.2. These three types ofQ can be characterized in terms of fixed points for
the action ofpQ(�) on the spaceM(PMF (Q)) of probability measures on PMF (Q)
as follows:

(a) Q is T for � if and only if either Q is a pair of pants (= M0,3) or pQ(g)α = α
for any g ∈ � and for any/some α ∈ V (C(Q)).

(b) Q is IA for � if and only if the following three conditions are satisfied:

• Q is not a pair of pants.

• pQ(g)α �= α for any g ∈ � \ {e} and for any/some α ∈ V (C(Q)).
• There exists μ ∈ M(PMF (Q)) such that pQ(g)μ = μ for any g ∈ � and
μ(MIN (Q)) = 1.

(c) Q is IN for � if and only if the following two conditions are satisfied:

• Q is not a pair of pants.
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• There exists no fixed point for the action of pQ(�) on M(PMF (Q)).

In the setting of groupoids, motivated by the above characterization, we can define
three types of components of the surface obtained by cutting M along the CRS for
a reducible subgroupoid S. They are defined in terms of invariant Borel maps into
M(PMF (Q)), etc. for S. We refer to Theorems 5.6, 5.9 and Section 5.2 in [35] for
a precise definition of them.

As an application of Theorem 7.1, we give a criterion for amenability of reducible
subgroups.

Proposition 7.3. LetM be a surface with κ(M) ≥ 0 and letm ≥ 3 be an integer. Let
� be a reducible subgroup of �(M;m) and let σ ∈ S(M) be the CRS for �. Then �
is amenable if and only if each component of Mσ is either T or IA for �.

Theorem 7.1 (ii) implies the “only if” part because the quotient group pQ(�) is
amenable for each component Q of Mσ if � is amenable. The “if” part follows since
the intersection of the kernels of pQ for all components Q of Mσ is amenable by the
following proposition (see Lemma 2.1 (1) in [8] or Corollary 4.1.B, Lemma 4.1.C in
[32]).

Proposition 7.4. LetM be a surface with κ(M) ≥ 0. LetG be a reducible subgroup
of �(M) and let σ ∈ S(M) be an element such that gσ = σ for any g ∈ G. Let
p : G → �(Mc) be the natural homomorphism into the mapping class group of the
disconnected surface Mc obtained by cutting M along a realization c of σ . Then the
following assertions hold:

(i) ker p is contained in the subgroupDσ of �(M) generated by Dehn twists about
curves in σ .

(ii) All elements of Dσ belong to the center of ker p.

Characterization of some subgroups. Let M be a surface with κ(M) > 0. The
following is our plan to characterize subgroups of �(M) generated by Dehn twists.

(I) Characterize reducible subgroups of �(M) in terms of amenability and normal
subgroups.

(II) Describe maximal reducible subgroups of �(M;m) explicitly, where m ≥ 3 is
an integer.

(III) Describe an infinite amenable normal subgroup N of a maximal reducible sub-
group in Step (II). In fact, such a subgroup N is contained in the subgroup
generated by the Dehn twist about some element of V (C).

One important observation for Step (I) is the following lemma. This gives a sufficient
condition for a subgroup to be reducible.
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Lemma 7.5. LetM be a surface with κ(M) > 0. LetG be a non-amenable subgroup
of �(M) and let N be an infinite normal subgroup of G. If N is amenable, then G is
reducible.

Proof. It follows from Theorem 2.7 that N is either IA or reducible. By Proposi-
tion 6.6 (i), if N is IA (resp. reducible), then so is G. Since G is non-amenable, G
must be reducible.

Remark 7.6. When κ(M) = 0, there exists no non-amenable reducible subgroup of
�(M). This fact implies that we cannot characterize reducible subgroups of �(M) as
in Propositions 7.7 and 7.8.

We characterize infinite reducible subgroups in the next two propositions. Although
it is not necessary to characterize infinite amenable reducible subgroups for our purpose
(because maximal reducible subgroups in Step (II) are always non-amenable), we give
it for completeness.

Proposition 7.7. LetM be a surface with κ(M) > 0 and let� be an infinite amenable
subgroup of �(M). Then the following two assertions are equivalent:

(i) � is reducible.

(ii) There exist four subgroups �0, �′, �′′ and � of � satisfying the following:

(a) �0 is a finite index subgroup of �;

(b) �′ is amenable and �0 < �′;
(c) �′′ is infinite and �′′ < �′;
(d) � is non-amenable and �′′ � �.

Proof. We first show that Assertion (ii) implies Assertion (i). From Lemma 7.5 it
follows that �′′ and � are both reducible. By Theorem 2.7, �′ must be either IA or
reducible since �′ is amenable. If �′ were IA, then there would exist a finite index
subgroup of �′ which is cyclic and generated by a pseudo-Anosov element. This
contradicts the assumption that �′ contains the infinite reducible subgroup �′′. Thus,
�′ is reducible and so are both �0 and �.

We next show that the converse holds. Put �0 = � ∩ �(M; 3) and let σ ∈ S(M)
be the CRS for �0. Note that for each T component Q of Mσ for �0, the quotient
pQ(�0) is trivial by Theorem 7.1 (ii). For each IA component R of Mσ for �0, let
{FR± } be the pair of pseudo-Anosov foliations in PMF (R) such that

pR(g){FR± } = {FR± } for any g ∈ �0.

Let �′ be the subgroup of �(M; 3) consisting of all g ∈ �(M; 3) satisfying the
following three conditions:

• gσ = σ ;
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• pQ(g)α = α for all α ∈ V (C(Q)) and all T components Q for �0 which is not
a pair of pants;

• pR(g){FR± } = {FR± } for all IA components R for �0.

Then �0 < �′. Moreover, the CRS for �′ is σ and a component of Mσ is T (resp.
IA) for �′ if and only if so is for �0. In particular, �′ is amenable since there is no IN
component for �0 and thus for �′ (see Lemma 7.3).

In general, given τ ∈ S(M), we denote by Dτ the subgroup of �(M) generated
by Dehn twists about curves in τ . If |σ | < κ(M)+ 1, then put �′′ = Dσ ∩ �(M; 3).
This subgroup is infinite. Let � be the stabilizer of σ in �(M; 3), i.e., � = {g ∈
�(M; 3) : gσ = σ }. Since there is a component ofMσ which is not a pair of pants,�
is non-amenable. (Recall that when we cut M along curves in τ ∈ S(M) and get the
surface Mτ , all components of Mτ are pairs of pants if and only if |τ | = κ(M)+ 1.)
Moreover, �′′ is a normal subgroup of � by Proposition 7.4 (ii). These �′′, � satisfy
the conditions of Assertion (ii).

If |σ | = κ(M) + 1, then we see that �′ = Dσ ∩ �(M; 3). Choose α0 ∈ σ . Let
σ ′ = σ \ {α0} and put �′′ = Dσ ′ ∩ �(M; 3). This subgroup is infinite and satisfies
�′′ < �′. If we define � to be the stabilizer of σ ′ in �(M; 3), then these subgroups
satisfy the conditions of Assertion (ii).

Proposition 7.8. Let M be a surface with κ(M) > 0 and let � be a non-amenable
subgroup of �(M). Then the following two assertions are equivalent:

(i) � is reducible.

(ii) There exist two subgroups �′, �′′ of �(M) satisfying the following:

(a) � < �′;
(b) �′′ is infinite amenable and �′′ � �′.

Proof. We first show that Assertion (ii) implies Assertion (i). From Lemma 7.5 it
follows that �′ and �′′ are both reducible. Thus, so is �.

We next show that the converse holds. Let σ ∈ S(M) be the CRS for �. Let
�′ be the stabilizer of σ , i.e., �′ = {g ∈ �(M) : gσ = σ }. Then �′ contains �.
Let �′′ be the subgroup of �(M) generated by Dehn twists about curves in σ . By
Proposition 7.4 (ii), we see that �′′ � �′.

Corollary 7.9. Let M be a surface with κ(M) > 0. Let �1, �2 be finite index
subgroups of �(M). If f : �1 → �2 is an isomorphism and� is an infinite reducible
subgroup of �1, then f (�) is an infinite reducible subgroup of �2.

Notation. Let M be a surface with κ(M) ≥ 0. Given a subgroup � of �(M) and
σ ∈ S(M), we denote by

�σ = {g ∈ � : gσ = σ }
the stabilizer of σ in �. When σ consists of only one element α ∈ V (C), we denote
�σ by �α for simplicity.
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In the next lemma, we explicitly describe maximal reducible subgroups.

Lemma 7.10. Let M be a surface with κ(M) ≥ 0 and let m ≥ 3 be an integer. Let
� be a finite index subgroup of �(M;m) and let α ∈ V (C). Then the following
assertions hold:

(i) �α is a maximal reducible subgroup of �, that is, if � is a reducible subgroup
of � with �α < �, then � = �α .

(ii) Conversely, any reducible subgroup of � is contained in �α for some α ∈ V (C).

Proof. Assertion (ii) follows from Theorem 2.8 (iii). We prove Assertion (i). One can
show that α is the only class in V (C) fixed by all elements of �α . In fact, if β ∈ V (C)
satisfies i(α, β) �= 0, then some power of the Dehn twist about α is in �α and does
not fix β (see Theorem 2.6). Suppose that β ∈ V (C) satisfies α �= β and i(α, β) = 0.
Let Mα be the surface obtained by cutting M along a realization of α. Let Q be a
component of Mα such that β ∈ V (C(Q)). Since � is a finite index subgroup of
�(M;m), the componentQ is IN for �α . Hence, pQ(�α) does not fix β. This proves
the claim. Assertion (i) then follows because � fixes some curve in V (C), which has
to be α by this claim.

Finally, we give an algebraic characterization of subgroups generated by Dehn
twists.

Lemma 7.11. Let M be a surface with κ(M) ≥ 0 and let m ≥ 3 be an integer. Let
� be a subgroup of finite index in �(M;m) and let α ∈ V (C). We denote by Dα the
intersection of � with the subgroup of �(M) generated by the Dehn twist about α.

(i) LetN be an infinite amenable subgroup of �α withN � �α . ThenN is contained
in Dα .

(ii) Conversely, any subgroup of Dα is amenable and is a normal one of �α .

Proof. Assertion (ii) follows from Proposition 7.4 (ii). We show Assertion (i). When
κ(M) = 0, Proposition 7.4 (i) implies that �α = Dα , and Assertion (i) follows. We
assume that κ(M) > 0. Let σ ∈ S(M) be the CRS for N . Note that the CRS for �α
is {α} (see Example 5.14 (iii)). By Proposition 6.6 (ii), we see that σ ⊂ {α}, which
means that σ = {α}. By Proposition 7.4 (i), it is enough to show that each component
of Mα is T for N , which follows from the next Lemma 7.12.

Lemma 7.12. LetM be a surface with κ(M) > 0 and let m ≥ 3 be an integer. Let �
be a subgroup of �(M;m) and let N be an infinite normal subgroup of �. Suppose
that N is reducible and let σ ∈ S(M) be the CRS for N . (Note that σ ⊂ σ(�) by
Proposition 6.6 (ii).) If a component Q of Mσ is IA for N , then Q is a component of
Mσ(�) and it is IA for �.
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Proof. Recall that σ is fixed by� by Proposition 6.6 (ii). IfQwere not a component of
Mσ(�), then there would exist α ∈ σ(�) \ σ such that α ∈ V (C(Q)) since σ ⊂ σ(�).
Then α is fixed by all elements ofN . This contradicts the assumption thatQ is IA for
N . Thus, Q is a component of Mσ(�). Since pQ(N) is IA and is a normal subgroup
of pQ(�), we see that pQ(�) is also IA by Proposition 6.6 (i).

Corollary 7.13. Let M be a surface with κ(M) > 0 and let m ≥ 3 be an integer. Let
�1, �2 be finite index subgroups of �(M;m) and let f : �1 → �2 be an isomorphism.
For i ∈ {1, 2} and α ∈ V (C), letDiα be the intersection of �i with the cyclic subgroup
of �(M) generated by the Dehn twist about α. Then for each α ∈ V (C), there exists
β ∈ V (C) such that f (D1

α) = D2
β .

Proof. For i ∈ {1, 2} and α ∈ V (C), we denote by �iα the stabilizer of α in �i . Let
α ∈ V (C). By Lemma 7.10 (i), �1

α is a maximal reducible subgroup of �1. It follows
from Corollary 7.9 that f (�1

α) is also a maximal reducible subgroup of �2. Thus,
there exists β ∈ V (C) such that f (�1

α) = �2
β by Lemma 7.10 (ii). Since D1

α is a

normal subgroup of �1
α , we see that f (D1

α) is also a normal subgroup of �2
β . By

Lemma 7.11 (i), f (D1
α) < D2

β . Considering f−1, we see that there exists α′ ∈ V (C)
such thatD2

β < f (D1
α′). SinceD1

α andD1
α′ has non-trivial intersection, we obtain the

equality α = α′ by Lemma 3.4.

By using this corollary in place of Theorem 3.3 in Ivanov’s argument in Subsec-
tion 3.1, we can show Theorem 3.2, which states that any isomorphism between finite
index subgroups of the extended mapping class group �(M)	 with κ(M) > 0 and
M �= M1,2,M2,0 is equal to the inner conjugation by a unique element of �(M)	.

The case of groupoids. We first restate Theorem 3.6. Recall the following notation.

Notation. We refer to the following assumption as (•):
• Let M be a surface with κ(M) > 0 and let m ≥ 3 be an integer. Let �1 and
�2 be finite index subgroups of �(M;m). Let (�, ω) be an ME coupling of �1
and �2.

• Take fundamental domains X1 ⊂ � for the �2-action on �, and X2 ⊂ � for
the �1-action on �. Recall that the natural actions �1 � X1 and �2 � X2 are
denoted by (γ, x) → γ · x by using a dot. By Lemma 2.27, we can choose X1,
X2 so that Y = X1 ∩X2 satisfies that for i ∈ {1, 2}, �i · Y = Xi up to null sets
when Y is regarded as a subset of Xi .

• For i ∈ {1, 2}, set Gi = �i � Xi and let ρi : Gi → �i be the projection, which
is a groupoid homomorphism. By Proposition 2.29, there exists a groupoid
isomorphism

f : (G1)Y → (G2)Y .

Note that f is the identity on the unit space Y .
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• For i ∈ {1, 2} and α ∈ V (C), let Diα be the intersection of �i with the subgroup
of �(M) generated by the Dehn twist tα ∈ �(M) about α. Let Giα be the
subgroupoid of Gi generated by the action of Diα , i.e.,

Giα = {(γ, x) ∈ Gi : γ ∈ Diα, x ∈ Xi}.

Theorem 3.6. Under Assumption (•), for each α ∈ V (C), there exist a countable
Borel partition Y =⊔

Yn and βn ∈ V (C) such that

f ((G1
α)Yn) = (G2

βn
)f (Yn) for each n.

This theorem states that f preserves subgroupoids generated by Dehn twists up to a
countable Borel partition. When each ofX1 andX2 consists of a single atom, this the-
orem reduces to Corollary 7.13. To prove Theorem 3.6, we characterize subgroupoids
generated by Dehn twists algebraically in terms of discrete measured groupoids. Our
plan is the following:

(1) We characterize reducible subgroupoids algebraically. It follows that the isomor-
phism f in Assumption (•) preserves reducible subgroupoids.

(2) By Step (1), f preserves maximal reducible subgroupoids. We explicitly describe
such subgroupoids.

(3) A subgroupoid generated by a Dehn twist can be characterized algebraically as
an amenable normal subgroupoid of infinite type of some maximal reducible
subgroupoid. This implies Theorem 3.6.

Note that the above steps correspond to the ones for the proof of Corollary 7.13 given
right before Lemma 7.5. In this final part of Section 7, we give only precise statements
and some comments for the above steps. Most statements can be proved along the
same line as in the case of groups. We refer to Section 4 in [36] for the proof of them.

About Step (1). We shall recall Assumption (�): Let M be a surface with κ(M) > 0
and let m ≥ 3 be an integer. Let � be a finite index subgroup of �(M;m). Suppose
that � admits a measure-preserving action on a standard finite measure space (X,μ).
Let G be the associated groupoid � � (X,μ). Define a groupoid homomorphism
ρ : G→ � by (g, x) → g.

Proposition 7.14 ([36, Proposition 4.1]). Under Assumption (�), let Y ⊂ X be a
Borel subset with positive measure and let S be a subgroupoid of (G)Y of infinite type.
Suppose that S is amenable. Then the following two assertions are equivalent:

(i) S is reducible.

(ii) For any Borel subset A of Y with positive measure, there exist a Borel subset B
of A with positive measure and the following three subgroupoids S′, S′′ and T
of (G)B :

(a) S′ is amenable and (S)B < S′;
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(b) S′′ is of infinite type and S′′ < S′;
(c) T is non-amenable and S′′ � T .

Proposition 7.15 ([36, Proposition 4.2]). Under Assumption (�), let Y ⊂ X be a
Borel subset with positive measure and let S be a subgroupoid of (G)Y of infinite type.
Suppose that (S)Y ′ is not amenable for any Borel subset Y ′ of Y with positive measure.
Then the following two assertions are equivalent:

(i) S is reducible.

(ii) For any Borel subsetA of Y with positive measure, there exist a Borel subsetB of
A with positive measure and the following two subgroupoids S′ and S′′ of (G)B :

(a) (S)B < S′;
(b) S′′ is an amenable subgroupoid of infinite type and S′′ � S′.

Along the same line as in the proof of Propositions 7.7 and 7.8, these propositions
are proved by using invariant Borel maps developed in Section 5. Thanks to these
algebraic characterizations, we obtain the following corollary.

Corollary 7.16. Under Assumption (•), let A be a Borel subset of Y with positive
measure and let S1 be a subgroupoid of (G1)A of infinite type. Then S1 is reducible if
and only if the image f (S1) is reducible.

About Step (2). Under Assumption (�), let Y ⊂ X be a Borel subset with positive
measure. For a Borel map ϕ : Y → V (C), we write

Sϕ = {γ ∈ (G)Y : ρ(γ )ϕ(s(γ )) = ϕ(r(γ ))}.
This subgroupoid can be viewed as the stabilizer of ϕ in (G)Y . As in the case of groups,
we can show that Sϕ is a maximal reducible subgroupoid in (G)Y , and conversely that
any reducible subgroupoid is contained inSϕ for someϕ. Thus, we obtain the following

Corollary 7.17. Under Assumption (•), let A1 be a Borel subset of Y1 with positive
measure and let ϕ1 : A1 → V (C) be a Borel map. PutA2 = f (A1). Then there exists
a Borel map ϕ2 : A2 → V (C) such that f (S1

ϕ1
) = S2

ϕ2
, where Siϕi = {γ ∈ (Gi )Ai :

ρi(γ )ϕi(s(γ )) = ϕi(r(γ ))} for i ∈ {1, 2}.

About Step (3). Under Assumption (�), let Y ⊂ X be a Borel subset with positive
measure and let ϕ : Y → V (C) be a Borel map. As in Lemma 7.11, if S is an amenable
subgroupoid of Sϕ of infinite type with S � Sϕ , then we can show that there exists a
countable Borel partition Y =⊔

Yn of Y satisfying the following two conditions:

(i) The map ϕ is constant a.e. on Yn. Let αn ∈ V (C) be its value on Yn.

(ii) (S)Yn < (Gαn)Yn < (Sϕ)Yn for each n.
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Here, for α ∈ V (C), we denote by Gα the subgroupoid of G generated by the in-
tersection Dα of � with the cyclic subgroup of �(M) generated by the Dehn twist
about α.

In what follows, we prove Theorem 3.6. Under Assumption (•), let α ∈ V (C) and
let ϕ1 : Y → V (C) be the constant map with value α. Since S1

ϕ1
is the subgroupoid

generated by the action of the stabilizer of α in �1, we see that (G1
α)Y � (S1

ϕ1
)Y by

Lemma 6.5. By Corollary 7.17 and the above fact, there exist a Borel map ϕ2 : Y →
V (C) and a countable Borel partition Y = ⊔

Yn of Y satisfying the following two
conditions:

(i) The map ϕ2 is constant a.e. on Yn. Let βn ∈ V (C) be its value on Yn.

(ii) f ((G1
α)Yn) < (G2

βn
)f (Yn) < (S2

ϕ2
)f (Yn) for each n.

By considering f−1, we can show that f ((G1
α)Yn) = (G2

βn
)f (Yn) for each n. This

proves Theorem 3.6.

8 Concluding remarks

We present some comments about other related results shown in the series of papers
[35], [36], [37], [38].

1. Classification of mapping class groups up to ME. For i ∈ {1, 2}, let Mi be a
surface of type (gi, pi), that is, of genus gi and with pi boundary components. When
are the mapping class groups�(M1) and�(M2)ME? Note that for a surfaceM of type
(g, p), the mapping class group �(M) is finite if and only if κ(M) = 3g+p− 4 < 0
and (g, p) �= (1, 0). We may exclude these cases. If (g, p) = (1, 0), (1, 1), then
�(M) is isomorphic to SL(2,Z). If (g, p) = (0, 4), then there exists a finite index
subgroup of �(M) isomorphic to PSL(2,Z) (see Section 7 in [29]). In particular, if
(g, p) = (1, 0), (0, 4), (1, 1), then �(M) is ME to SL(2,Z) and is hyperbolic in the
sense of Gromov. It follows from Theorem 1.5 that if κ(M) > 0 and if a discrete
group � is ME to �(M), then they are commensurable up to finite kernels. Thus, if
κ(M) > 0, then�(M) and SL(2,Z) are not ME since�(M) is not hyperbolic. Hence,
if we classify the case κ(M) > 0, then we obtain a complete classification. Thanks
to Theorem 1.5, this remaining problem is reduced to a simple algebraic problem of
mapping class groups. By Theorem 2 in [57], we obtain the following

Theorem 8.1 ([36, Theorem 1.2]). Let M1 and M2 be distinct surfaces of type
(g1, p1), (g2, p2), respectively, such that κ(M1), κ(M2) > 0 and g1 ≤ g2. Suppose
that �(M1) and �(M2) are ME. Then we have the following only two possibilities:
((g1, p1), (g2, p2)) = ((0, 5), (1, 2)), ((0, 6), (2, 0)).

In Chapters 5 and 6 in [35], we obtain a weaker classification result by a complete
different approach, using tools developed in Sections 5 and 6.
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Gaboriau [20] proved that the sequence {βn(�)}n∈N of �2-Betti numbers for a
discrete group � is an invariant for ME in the following sense: If two discrete groups
� and� are ME, then there exists a positive real number c such that βn(�) = cβn(�)
for all n. Combining this with results due to Gromov [22] and McMullen [46], we can
calculate the �2-Betti numbers of mapping class groups as follows: If M is a surface
with κ(M) ≥ 0, then

βκ(M)+1(�(M)) > 0 and βn(�(M)) = 0 for n �= κ(M)+ 1.

Therefore, the value κ(M) is invariant under ME. The reader is referred to Appendix D
in [35] for more details, in which explicit values of βκ(M)+1(�(M)) are also discussed.

2. Exactness of mapping class groups. We defined amenability of a group action
in a measurable sense in Section 4. We can also define amenability of a group action
in a topological sense. A discrete group is said to be exact if it admits an amenable
action on some compact Hausdorff space in a topological sense (see [4], [54] for
the definition). It is widely expected that the class of exact groups is huge. Indeed,
all amenable groups, hyperbolic ones and linear ones are exact. Exactness is closed
under taking subgroups, extensions, direct unions and amalgamated free products.
Moreover, exactness has many equivalent conditions in terms of geometry of Cayley
graphs and operator algebras, and has many applications to various research fields, the
study of the Baum–Connes conjecture and the classification of group von Neumann
algebras. We recommend the reader to consult [54], [61] and the references therein
for more details.

As a byproduct of Theorem 4.21, we can show that if M is a surface with
κ(M) > 0, then the action of �(M)	 on its Stone–Čech compactification is amenable
in a topological sense (see Theorem C.5 in [35]). Hence, �(M)	 and all its subgroups
are exact. Note that the action of �(M)	 on PMF is not amenable because there
exist non-amenable stabilizers and note that ∂C is not compact (see Proposition 3.8
in [35]). Hamenstädt [26] also proved that �(M)	 is exact by constructing an explicit
compact space on which �(M)	 admits an amenable action in a topological sense.

3. Direct products of mapping class groups. We can also prove an ME rigidity
result for finite direct products of mapping class groups.

Theorem 8.2 ([36, Theorem 1.3]). Let n be a positive integer and letMi be a surface
with κ(Mi) > 0 for all i ∈ {1, . . . , n}. If a discrete group � is ME to the direct
product �(M1) × · · · × �(Mn), then there exists a homomorphism ρ : � → G =
Aut(C(M1))× · · · ×Aut(C(Mn)) such that the kernel of ρ and the index [G : ρ(�)]
are both finite.

Let (�,m) be an ME coupling of � = �(M1) × · · · × �(Mn) and an unknown
group �. For the proof of Theorem 8.2, we first consider a self ME coupling � =
� ×� � ×� �̌ of � as in the proof of Theorem 1.5. We then construct an almost



Chapter 9. Introduction to measurable rigidity of mapping class groups 363

(� × �)-equivariant Borel map

�→ G = Aut(C(M1))× · · · × Aut(C(Mn)) (8.1)

for some (�×�)-action onG for whichG is a self ME coupling of� (see Theorem 7.1
and Corollary 7.2 in [36] for a more explicit statement).

Monod and Shalom [48] introduced the class C consisting of discrete groups �
which admit a mixing unitary representation π on a Hilbert space such that the second
bounded cohomologyH 2

b (�, π) of�with coefficientπ does not vanish. They studied
self ME couplings of discrete groups of the form�1×· · ·×�n with�i ∈ C and n ≥ 2
via the theory of bounded cohomology. They obtained many interesting measurable
rigidity results on ergodic standard actions of such product groups. Whether a discrete
group is in the class C or not is invariant under ME, and C contains all non-elementary
hyperbolic groups in the sense of Gromov. Hamenstädt [25] proved that the mapping
class group �(M) with κ(M) > 0 is in C. We apply these results to our situation, and
construct the map in (8.1).

We note that a theorem similar to Theorem 1.6 can also be shown for direct products
of mapping class groups (see Theorem 1.4 in [36]).

4. Construction of non-OE actions. Let M be a surface with κ(M) > 0 and
put � = �(M)	. In Corollary 3.12, we proved that if two ergodic standard (i.e.,
measure-preserving and essentially free) actions of � are OE, then they are conjugate.
In the theory of OE, it is an interesting problem to construct (continuously) many
ergodic standard actions of one specified group which are mutually non-OE. Thanks
to Corollary 3.12, if we construct non-conjugate actions, then they are non-OE. In [38],
we give a family of non-OE actions of� as shown in the following: Let α ∈ V (C) and
consider its �-orbit K = �α, on which � naturally acts. Let (X0, μ0) be a standard
probability space, i.e., a standard Borel space with a probability measure. We assume
that (X0, μ0) may contain atoms, whereas (X0, μ0) is non-trivial, i.e., it does not
consist of a single atom. The generalized Bernoulli action of � on (X0, μ0)

K =∏
K(X0, μ0) is defined by

g(xβ)β∈K = (xg−1β)β∈K, (xβ)β∈K ∈ XK0 , g ∈ �.
This action is ergodic and standard. We can show that for two non-trivial standard
probability spaces (X0, μ0) and (Y0, ν0), the two generalized Bernoulli actions of �
on (X0, μ0)

K and (Y0, ν0)
K are conjugate if and only if (X0, μ0) and (Y0, ν0) are

isomorphic, i.e., there exists a Borel isomorphism f : X′0 → Y ′0 between conull Borel
subsets X′0 ⊂ X0 and Y ′0 ⊂ Y0 such that f∗μ0 = ν0. Hence, this example gives
a family of continuously many ergodic standard actions of � which are mutually
non-OE.
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1 Introduction

According to Thurston’s classification, a diffeomorphism of a closed oriented sur-
face is either elliptic, reducible or a pseudo-Anosov diffeomorphism. The structure
of pseudo-Anosov diffeomorphisms, e.g. their dilatation coefficients, and the corre-
sponding measured foliations have been intensely investigated since. Rather than
focusing on properties of a single diffeomorphism, the purpose of this chapter is to
study the flat surfaces the pseudo-Anosov diffeomorphisms live on together with their
whole group of affine diffeomorphisms.

A flat surface is a pair (X, ω) consisting of a Riemann surface X together with
a holomorphic one-form ω ∈ �(X,�1

X). Equivalently, flat surfaces arise from glu-
ing rational-angled planar polygons by parallel translations along their edges. Fur-
thermore, flat surfaces naturally arise when studying the trajectories of a ball on a
rational-angled billiard table.

One of the basic invariants of a flat surface (X, ω) is the affine group SL(X, ω) (also
called Veech group) defined as follows. Let Aff+(X, ω) be the group of orientation-
preserving diffeomorphisms that are affine on the complement of the zero set of ω
with respect to the charts defined by integrating ω. The linear part of the affine map
is independent of the charts and provides a map

D : Aff+(X, ω)→ SL2(R).
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The image ofD is called the affine group SL(X, ω). The interest in these groups stems
from Veech’s paper [38], where flat surfaces are constructed whose affine groups are
non-arithmetic lattices in SL2(R). We will discuss them and recent developments in
Section 5.

This chapter touches the following aspects of affine groups. The affine group is
often said to be trivial for a generic surface. If we define generic to be meant in the
strata of a natural stratification of the space of flat surfaces, this is a little imprecise.
Our first goal is to give a complete description of the generic affine group. Next we
recall Thurston’s construction of pseudo-Anosov diffeomorphisms using a pair of
multicurves. This construction has a lot of flexibility and produces rather large affine
groups. Results of McMullen resp. of Hubert–Lanneau show that in genus two all
pseudo-Anosov diffeomorphisms arise in this way but that this holds no longer for
g ≥ 3.

In Sections 5 and 6 we review the known constructions of very large affine groups:
lattices and infinitely generated affine groups. In the last section we discuss some
relations between the size of the affine group and the closure of SL2(R)-orbit of the
corresponding flat surface in the moduli space of flat surfaces.

We remark that the affine group is similarly defined for pairs (X, q) of a Riemann
surfaceX and a quadratic differential q. But such a surface admits a canonical double
covering which is a flat surface. Hence up to passing to finite index subgroups all the
information is contained in affine groups of flat surfaces.

The whole topic is not completely understood at the time of writing. Consequently,
the content of this chapter simply reflects the present state of knowledge and almost
all sections are concluded by an open problem.

The author thanks Erwan Lanneau for a helpful discussion on the proof of Theo-
rem 2.1.

2 Basic properties of affine groups

Our first aim is to realize that for a general flat surface nothing exciting happens.
In order to define what ’general’ means, we define the parameterizing space of flat
surfaces. Let Mg denote the moduli space of curves of genus g. Over Mg there is
a vector bundle of rank g whose fiber over a point corresponding to the surface X is
the vector space of holomorphic one-forms (or abelian differentials) on X. Let �Mg

be the total space of this vector bundle minus the zero section. By construction, flat
surfaces correspond to points of �Mg . The space �Mg is stratified into subspaces

�Mg =
⋃

∑n
i=1 ki=2g−2

�Mg(k1, . . . , kn)

according to the number and multiplicities of the zeros of the holomorphic one-formω.
Some of the strata are not connected, see [18]. A component of a stratum is called a
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hyperelliptic component if it consists exclusively of hyperelliptic curves, i.e. curves
with a degree two map to the projective line.

The strata are complex orbifolds that carry a natural complex coordinate system,
called period coordinates, whose definition will be recalled below. We say that (X, ω)
is generic in its stratum if it lies outside a countable union of real codimension one
submanifolds in its stratum.

Theorem 2.1. For g(X) ≥ 2, the affine group of a generic surface (X, ω) is Z/2Z or
trivial, depending on whether (X, ω) belongs to a hyperelliptic component or not.

Before we can give the proof we need to recall some facts on flat surfaces and to
classify affine diffeomorphisms in order to explain the notions in Thurston’s theorem
stated at the beginning of the introduction.

As stated in the introduction, a flat surface is a pair (X, ω) of a Riemann surfaceX
together with a holomorphic one-form ω. A flat surface has a finite number of zeros of
ω, called singularities. These correspond to points where the total angle with respect
to |ω| exceeds 2π . On a flat surface we may talk of geodesics with respect to the
metric |ω|. Such a geodesic has a well-defined direction in RP

1. A geodesic joining
two singularities or a singularity to itself is called a saddle connection.

Definition 2.2. A diffeomorphism ϕ of X is called elliptic if it is isotopic to a diffeo-
morphism of finite order. A diffeomorphism ϕ is called reducible if it is isotopic to a
diffeomorphism fixing a (real) simple closed curve onX. If ϕ is neither reducible nor
elliptic, then ϕ is called pseudo-Anosov.

We alert the reader that we follow the common abuse of the notion diffeomorphism
for homeomorphisms that are C1 outside a finite set of points ([7], Exposé V).

It is easy to see that an affine diffeomorphism ϕ of (X, ω) is elliptic if it is of finite
order. In particularD(ϕ) is of finite order. Conversely, ifD(ϕ) is of finite order, then
ϕ is of finite order, since Ker(D) consists of holomorphic diffeomorphisms of X and
consequently Ker(D) is finite by Hurwitz’ theorem.

If ϕ is a pseudo-Anosov diffeomorphism, there exists a pair (X, q) such that ϕ is
an affine diffeomorphism of (X, q). As stated above, we will restrict to the case that
q = ω2. Moreover, (X, ω) can be chosen such that ϕ stretches the horizontal lines by
some factor λ > 1, called dilatation coefficient, and contracts the vertical lines by the
same factor λ. Thus, |trD(ϕ)| > 2 for an affine pseudo-Anosov diffeomorphism.

Consequently, an affine diffeomorphism ϕ with |trD(ϕ)| = 2, i.e. such that D(ϕ)
is parabolic, is a reducible affine diffeomorphism. We briefly recall the structure of
such a parabolic diffeomorphism. Say the horizontal direction is the eigendirection of
D(ϕ). Then some power of ϕ fixes all the finitely many horizontal saddle connections
and the complement of these saddle connections has to consist of metric cylinders.

In order to define coordinates on a stratum of�Mg , fix locally on some open setU
a basis of the integral homologyH1(X,Z(ω),Z) relative toZ(ω), the zeros of ω. The
cardinality of the basis is N = 2g − 1+ n, where n is the number of zeros of ω. The
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map U → C
N , that maps (X, ω) to the integrals of ω along the fixed basis, is a local

diffeomorphism ([37], see [29] for an algebraic proof). The system of coordinates is
called period coordinates.

There is a natural action of GL+2 (R) on �Mg . In terms of period coordinates,
consider

C
N ∼= R

N ⊗R R
2

and let GL+2 (R) act naturally on R
2. This is equivalent to letting an element of GL+2 (R)

act on the local complex charts ofX given by integration of ω as real linear map. This
action leaves the affine group essentially unchanged, we have for A ∈ GL+2 (R)

SL(A · (X, ω)) = A · (SL(X, ω)) · A−1.

Proof of Theorem 2.1. For each of the countably many pseudo-Anosov diffeomor-
phisms ϕ in the mapping class group there is a unique flat surface (X, q) or (X, ω)
up to the action of GL+2 (R), such that ϕ is an affine diffeomorphism on (X, q) or
(X, ω) respectively. Consequently, the set of flat surfaces whose affine group contains
a pseudo-Anosov element is a countable union of real 4-dimensional subspaces. Since
we assume g(X) ≥ 2, the generic flat surface does not carry any affine pseudo-Anosov
diffeomorphism.

Suppose that SL(X, ω) contains a parabolic element. By the classification above,
(X, ω) decomposes into metric cylinders in some direction. The boundaries of these
cylinders consist of saddle connections and, since g ≥ 2, at least two of them,
say γ1 and γ2, are not homologous, i.e. they are linearly independent elements of
H1(X,Z(ω),Z). Since the saddle connections are parallel, the periods of γ1 and γ2
are R-linearly dependent. The locus of surfaces where γ1 and γ2 are linearly depen-
dent is of R-codimension at least one in period coordinates. Since the γi in question
are two elements in the countable groupH1(X,Z(ω),Z), the generic flat surface does
not contain an affine parabolic element.

The remaining discussion serves to prove that the number of elliptic affine dif-
feomorphisms is as small as claimed. Suppose the generic flat surface (X, ω) in
a stratum contains such a diffeomorphism ϕ of finite order. Each stratum contains
square-tiled surfaces and their affine group is a subgroup of SL2(Z) (see Section 5).
In �Tg , the pullback bundle to Teichmüller space, the presence of an affine diffeo-
morphism of finite order is a closed condition. Consequently, a generic affine dif-
feomorphism must be reflected in the affine group of all square-tiled surfaces, hence
ord(D(ϕ)) ∈ {1, 2, 3, 4, 6}.

First suppose that D(ϕ) is the identity or minus the identity, in particular D(ϕ) ∈
SO2(R). Thenϕ is in fact an automorphism ofX and fixes q = ω⊗2. We are faced with
the problem of classifying strata of half-translation surfaces that consist entirely of
pullbacks of half-translation surfaces of lower genus. This classification was solved
in [19], although precisely the case of squares of abelian differential was excluded
from the discussion in loc. cit. The difference between the cases is apparent whenever



Chapter 10. Affine groups of flat surfaces 373

the dimension count is involved, since

dimQg(k1, . . . , kn) = 2g − 2+ n while dim�Mg(k1, . . . , kn) = 2g − 1+ n.
We let g0 denote the genus of the quotient surface X/〈ϕ〉 and we let d be the degree
of the covering, i.e. the order of ϕ. Moreover, let p be the number of poles of q, let r
be the number of zeros of q over which the covering π : X → X/〈ϕ〉 is unramified,
and let m be the number of regular points of q, over which π is ramified. Finally, let
n be the number of zeros of q over which π is ramified.

The first case is D(ϕ) = id. Then ω is the pullback of an abelian differential and
we obtain, as in loc. cit. using the Riemann–Hurwitz formula, that

(d − 1)(2g0 − 2+ n+ r) ≤ −m.
We deduce g0 = 0, which is absurd since the projective line carries no abelian differ-
entials.

The second case is D(ϕ) = −id. Then ω is the pullback of a strictly quadratic
differential. An analysis of the covering results this time in

(d − 1)(2g0 − 2+m+ n+ r) ≤
{
m(d − 2)+ pd/2− 1 if d is even,

m(d − 2)+ p(d − 1)/2− 1 if d is odd.

This implies g0 = 0 and for d = 2 one obtains the hyperelliptic components. For
d ≥ 3 we deduce n+r ≤ 1 and since p ≥ 4 the case n+r = 1 is absurd. If n+r = 0,
we conclude that p = 4, that d is even and that m ∈ {1, 2}. This case is excluded in
the same way as the corresponding case in the proof of Theorem 1 in [19].

We finally have to treat the cases where D(ϕ) has order 3, 4 or 6. In these cases
D(ϕ) is conjugate to an element in SO2(R) and ϕ is actually an automorphism if
D(ϕ) ∈ SO2(R). Consequently, for each (X, ω) the SL2(R)-orbit contains a flat
surface where the conjugate of ϕ is actually an automorphism. It thus suffices to
prove that in each stratum the locus of flat surfaces with an automorphism of order 3,
4 and 6 is of codimension more than one.

We start with the case ord(D(ϕ)) = 3. Consider the surface X/〈ϕ〉marked with s
images of the ramification points. We give the details in the case ord(ϕ) = 3, in all
other cases even cruder dimension estimates suffice. The quotient surface has

3g0 − 3+ s = g − 1

moduli by Riemann–Hurwitz. If (X, ω) lies in the generic stratum, the locus of flat
surfaces with such an automorphism has dimension

g − 1+ g < (4g − 3)− 1 = dim�Mg(1, . . . , 1)− 1,

since g > 1. If (X, ω) lies in a non-generic stratum S, then the fiber of S → Mg has at
most dimension g− 1 and again the locus of flat surfaces with such an automorphism
has dimension less that dim(S)− 1.
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The case ord(D(ϕ)) = 6 is contained in the previous one by considering ϕ2. The
same trick allows to reduce the case ord(D(ϕ)) = 4 to the hyperelliptic loci. Again the
Riemann–Hurwitz formula yields that the quotient surface has not enough moduli. �

Proposition 2.3 ([38], Proposition 2.7). The group SL(X, ω) is a discrete subgroup
of SL2(R).

Proof. Let ϕn be a sequence of affine diffeomorphisms such that D(ϕn) converges to
the identity. By Arzela–Ascoli and after passing to a subsequence, we may suppose
that ϕn converges to some affine diffeomorphism ϕ uniformly on X. Hence for large
enoughn, the compositionϕnϕ

−1
n+1 is isotopic to the identity. Using Thurston’s classifi-

cation of diffeomorphisms this is not possible unlessD(ϕn) = id for large enough n. �

Concerning the existence of cyclic affine groups, the parabolic case is easy, while
the hyperbolic case seems wide open at present. The proof of Proposition 2.4 will be
given in the next section.

Proposition 2.4. In every stratum there exist flat surfaces whose affine group is cyclic
generated by a parabolic element.

Question 2.5. Does there exist a flat surface (X, ω) whose affine group SL(X, ω) is
cyclic generated by a hyperbolic element?

3 Thurston’s construction and implications for the trace field

The following construction first appears in Thurston’s famous 1976 preprint ([34]),
see also [31], [38], [20], [11] and [25], and the chapter by Harvey in Volume I of this
Handbook ([9]) for different versions and presentations.

A multicurve A on a surface 	g of genus g is a union of disjoint essential simple
closed curves, no two of which bound an annulus. A pair (A,B) of multicurves fills (or
binds) the surface if for each curve inA and each curve inB the geometric intersection
number is minimal in their homotopy classes and if the complement 	g � (A∪B) is
a simply connected polygonal region with at least 4 sides.

We index the components of A and B such that A =⋃a
i=1 γi and B =⋃a+b

i=a+1 γi
and let C be the (unsigned) intersection matrix of A and B, i.e. for i �= j we have
Cij = |γi ∩ γj | and Cjj = 0 for all j .

As additional input datum for the construction we fix a set of multiplicitiesmi ∈ N

for i = 1, . . . , a + b. Since (A,B) fills 	g , the intersection graph is connected and
the matrix (miCij ) is a Perron–Frobenius matrix. Hence there is a unique positive
eigenvector (hi) up to scale such that

μhi =
j=a+b∑
j=1

miCijhj (3.1)

for some positive eigenvalue μ.
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We now glue a surface X from rectangles Rp = [0, hi] × [0, hj ] ⊂ C for each
intersection point p ∈ γi ∩ γj . Namely, glue Rp to Rq along the vertical (resp.
horizontal) sides whenever p and q are joined by an edge in A (resp. B) of the graph
A∪B. The differentials dz2 on each rectangle glue to a global quadratic differential q
on X.

Let τi be the Dehn twist around γi and define

τA =
a∏
i=1

τ
mi
i and τB =

a+b∏
i=a+1

τ
mi
i .

Theorem 3.1 ([34]). The flat surface (X, q) constructed above contains affine diffeo-
morphisms τA and τB with derivatives

DτA =
(

1 μ

0 1

)
and DτB =

(
1 0
−μ 1

)

In particular the elements τnAτB are pseudo-Anosov diffeomorphisms for n large
enough.

Proof. By construction the modulus of the cylinder with core curve γi ismi/μ. Hence
the powers of the Dehn twists occurring in the definition of τA and τB have linear part as
claimed. They fix the boundary of the horizontal resp. vertical cylinders and together
define affine diffeomorphisms.

In order to check the last claim, one has to recall that an affine diffeomorphism is
pseudo-Anosov if and only if the absolute value of its trace is greater than two. �

Since we are dealing exclusively with flat surfaces in the sequel, we remark that
the quadratic differential has a square root, i.e. q = ω2 if and only if for a suitable
orientation of the γi their geometric and algebraic intersection numbers coincide.

3.1 Trace fields of affine groups

Given a pair (X, ω) resp. (X, q) we define the trace field of the affine group SL(X, ω)
to be K = Q( tr(A),A ∈ SL(X, ω)). The notion of trace field is a useful invariant
since it turns out to be stable under passing to a finite index subgroup.

Theorem 3.2 ([17], Appendix; [23]). LetA = Dϕ ∈ SL(X, ω) be any hyperbolic ele-
ment. Then the trace field of the affine group equals the trace field of ϕ. More precisely,
if SL(X, ω) contains a hyperbolic element A, then the Q-vector space generated by
the periods of ω is a 2-dimensional K-vector space, where K = Q( tr(A)).

With this result we can obviously determine the trace fields of affine groups arising
from Thurston’s construction.
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Corollary 3.3. If ϕ is constructed using a pair of multicurves thenK = Q(μ2), where
μ is as in Equation (3.1).

Hubert and Lanneau have shown that Thurston’s construction imposes a restriction
on the trace field. We will see below (Corollary 4.1) that this property does not hold
for all pseudo-Anosov diffeomorphisms.

Theorem 3.4 ([11]). If (X, ω) is given by Thurston’s construction, then the trace
field K of SL(X, ω) is totally real, i.e. all embeddings K → C factor through R. In
particular, if SL(X, ω) contains two non-commuting parabolic elements then K is
totally real.

Proof of Theorem 3.4. Let Dm be the diagonal matrix with entries mi . The square
of the largest eigenvalue of the matrix C (as in Thurston’s construction) is the largest
eigenvalue of the matrixC2. Hence we have to show that all the eigenvalues of (DmC)2

are real.
Suppose first for simplicity mi = 1 for all i. Since for some matrix C0 we have

DmC = C =
(

0 C0

C�0 0

)
, hence (DmC)

2 = C2 =
(
C0C

�
0 0

0 C�0 C0

)

Since C2 is symmetric, all its eigenvalues are real. Thus Q(μ2) is totally real.
If the mi are no longer identically one, (DmC)2 is still similar to a symmetric

matrix: SplitDm into two piecesD′m andD′′m of size a resp. b and letD′√
m

resp.D′′√
m

denote the diagonal matrix with entries
√
mi . Then

(DmC)
2 =

(
D′mC0D

′′
mC
�
0 0

0 D′′mC�0 D′mC0

)
.

The upper block decomposes as

D′mC0D
′′
mC
�
0 = D′√m(D′√mC0D

′′√
m
)(D′√

m
C0D

′′√
m
)�(D′√

m
)−1

and for the lower block the same trick works. The above conclusion about the eigen-
values thus still holds. �

We can now easily give a proof of a statement from the previous section.

Proof of Proposition 2.4. It is easy to construct in each stratum a flat surface (X, ω)
that consists of only one cylinder horizontally. Consequently, SL(X, ω) contains a
parabolic element ϕ irrespectively of the lengths of the horizontal saddle connections.
Since g(X) > 1 by hypothesis, we may arrange that the periods of all horizontal saddle
connections generate a K-vector space of dimension two or more, where K is real,
but not totally real. By Theorem 3.2 and Theorem 3.4, the affine group SL(X, ω) does
not contain two non-commuting parabolic elements. Suppose SL(X, ω) contains a
hyperbolic or an elliptic elementψ . Then ϕ andψϕψ−1 are non-commuting parabolic
elements. This contradiction completes the claim. �
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Remark 3.5. Recent results on Thurston’s construction can be found in [20]. E.g., the
smallest dilatation coefficients of the pseudo-Anosov diffeomorphisms arising from
Thurston’s construction are determined there.

4 The Arnoux–Yoccoz surface as a multi-purpose
counter-example

The following construction is a special case of what has become known as the con-
struction of zippered rectangles ([36], [21]). We sketch the version in [2] where the
construction is given for hyperelliptic curves of genus g. The construction appeared
originally in [3]. It will be used below to refute many naive conjectures one could
derive seeing only the construction from the preceding sections.

We first construct an interval exchange transformation f : [0, 1) → [0, 1), i.e. a
map that consists of translations on a subdivision of intervals. Here we take α to be
the real root of

αg + αg−1 + · · · + α = 1

and subdivide [0, 1) into g pairs of subintervals Ik of lengths αk/2, k=1,…,g. We let
f be the exchange of the pairs of same length composed with a half turn, where [0, 1)
is identified with a circle. Explicitly, f = fr � fs , where for k = 0, . . . , g − 1 we let

fs(x) :=
{
x + αk+1/2 if x ∈ [ ∑k

i=1 α
i , αk+1/2+∑k

i=1 α
i
)
,

x − αk+1/2 if x ∈ [
αk+1/2+∑k

i=1 α
i,

∑k+1
i=1 α

i
)
,

and define

fr(x) =
{
x + 1/2 if x ∈ [0, 1/2),

x − 1/2 if x ∈ [1/2, 1).

The interval exchange f enjoys a remarkable ’self-similarity’ property, inherited from
the form of the minimal polynomial of α. The map

ϕI :

⎧⎪⎨
⎪⎩
[0, 1)→ [0, α)

x �→
{
αx + (α + αg+1)/2 if x ∈ [0, (1− αg)/2),
αx − (α + αg+1)/2 if x ∈ [(1− αg)/2, 1),

which shrinks the interval linearly by the factor α and then exchanges the two pieces
(of unequal length), commutes with f resp. its induction on the subinterval [0, α), i.e.

ϕI � f = f |[0,α) � ϕI ,
where

f |[0,α)(x) = f n(x), where n ∈ N>0 is minimal such that f n(x) ∈ [0, α).
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Suppose we let each of the intervals Ii be the bottom of a rectangle of height hi and
glue the top of these rectangles to [0, 1) according to f . Under some conditions (see
e.g. [36] or the survey [39], §5, for details) the sides of the rectangles can be glued to
yield a translation surface. Here we take

hi =
g−k∑
j=1

αj for i = 2k + 1, 2k + 2.

The resulting flat surface (XAY, ωAY) has genus g with two singularities of type g−1,
i.e. with angle 2gπ .

The main point in this choice of heights is that the self-similarity of the base
interval is also reflected in the gluing of the vertical sides. That is, there is a map
ϕ : XAY → XAY that restricts to ϕI on the segment [0, 1) and which stretches the
vertical side by α−1. Obviously ϕ is a pseudo-Anosov diffeomorphism with dilatation
α. Since Q(α + 1/α) is not totally real, we conclude:

Corollary 4.1 ([11]). There exist flat surfaces with a pseudo-Anosov diffeomorphism
whose trace field is not totally real. In particular, there exist flat surfaces with a
pseudo-Anosov diffeomorphism that does not arise via Thurston’s construction.

The Arnoux–Yoccoz surfaces were thought to be good candidates to answer Ques-
tion 2.5 affirmatively. But at least for g = 3 this is not the case.

Theorem 4.2 ([16]). For (XAY, ωAY) the Arnoux–Yoccoz surface with g(X) = 3 the
group SL(X, ω) is not cyclic.

We sketch the proof in order to illustrate a phenomenon that yet needs deeper inves-
tigation. First, there exist many (diagonal) directions on (XAY, ωAY) that topologically
look like the horizontal one in Figure 1, called 2T 2C-direction in [16]. The vague
‘looks like topologically’can be made precise using numerical invariants of a given di-
rection, like the widths, heights and twists and some finite data, called combinatorics.
The reader may consult [16] for the definition of these invariants.

Second, many of these 2T 2C-directions have the same combinatorics and the
same projectivised tuple of numerical invariants. Consequently, for each such pair
of directions p, q, there exists an affine diffeomorphism of (X, ω), that maps p to q.
Necessarily, such a diffeomorphism is pseudo-Anosov.

Finally, there exist pairs of 2T 2C-directions on (XAY, ωAY)with the same projec-
tivised invariants, such that the corresponding pseudo-Anosov diffeomorphism is not
a power of the diffeomorphism ϕ constructed above. Consequently, the affine group
is not cyclic.

Question 4.3. How large is the affine group of (XAY, ωAY)? Is it finitely generated
or infinitely generated?
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T1

T2

C1 C2

Figure 1. Topology of a special diagonal direction on the Arnoux–Yoccoz surface, displayed
horizontally.

We finally mention three more questions, the Arnoux–Yoccoz surface provides a
negative answer to. First, the dilatation coefficient of a pseudo-Anosov diffeomor-
phism of a surface of genus g is an algebraic number of degree r at most 2g over Q. In
Thurston’s original examples r turned out to be even, but the Arnoux–Yoccoz surface
shows that odd r is possible too ([3]).

Second, the directional flow on a flat surface defines an interval exchange transfor-
mation (IET). An IET has an easily computable invariant, the SAF-invariant (compare
[1] for the definition), that vanishes if the directional flow has periodic orbits only.
For a surface of genus two the converse holds, but the Arnoux–Yoccoz surface shows
that the converse does not hold in genus three ([1]).

The third question concerns SL2(R)-orbit closures and will be dealt with in the
last section.

5 Large affine groups: Veech surfaces

A flat surface (X, ω) is called a Veech surface if SL(X, ω) is a lattice in SL2(R). We
do not want to address the dynamics of flat surfaces here, but we mention the most
striking result, Veech’s dichotomy ([38]), for later use. If (X, ω) is a Veech surface
then for each direction either

• all geodesics are uniformly distributed, in particular dense, or,

• all geodesics are closed or a saddle connection. Such directions are called peri-
odic.

The presence of saddle connections on (X, ω) forces the lattice SL(X, ω) to be
non-cocompact. Up to coverings, all Veech surfaces known at the time of writing
except for one arise from two fundamental constructions which we explain below:
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• Quotients of cyclic coverings of the projective line branched at 4 points.

• Eigenforms for real multiplication by a quadratic field in genus two and the Prym
varieties in genus g ≤ 5.

From the point of view of affine groups we can state this result as follows:

Theorem 5.1 ([5]). All triangle groups (m, n,∞) for 1/m+ 1/n < 1 andm, n ≤ ∞
arise as affine groups of Veech surfaces.

Theorem 5.2 ([22], [6]). All real quadratic fields arise as trace fields of lattice affine
groups.

Before we give the proofs we need to recall some background. Recall from Sec-
tion 2 the action of GL+2 (R) on flat surfaces. By a theorem of Smillie (see [33] for a
recent proof), the orbit of (X, ω) is closed in �Mg if and only if SL(X, ω) is a lattice
in SL2(R). In this case the image C of the orbit in Mg is a complex, in fact algebraic
curve, called a Teichmüller curve. We mention that such an algebraic curve is a totally
geodesic subsurface for the Teichmüller metric, whence the name, but we won’t need
details on Teichmüller theory. Instead of considering a Teichmüller curve as a curve
in the moduli space of curves, it is often useful to restrict the universal family over
Mg to a family f : X→ C over the Teichmüller curve and to study f instead.

Proof of Theorem 5.1. We extract from [5] the special case where m, n are both odd,
finite and coprime. This case illustrates almost all ideas, except for a fiber product
construction needed to cover the general case.

The basic idea is to study a family of cyclic coverings ramified over the projec-
tive line at 4 points. There is a criterion ([27], we will apply the version [5] The-
orem 1.2 (b)) that detects Teichmüller curves by the existence of an eigenspace of
the relative de Rham cohomology, whose monodromy group is the affine group. For
appropriate cyclic coverings, there is such an eigenspace whose monodromy group is
the desired triangle group. But the family of cyclic coverings does not quite match
the cohomological criterion as we shall see, so we need furthermore to find a suitable
quotient family.

Consider the family of cyclic degree N covering

Yt : yN = xa1(x − 1)a2(x − t)a3

of P
1
x with t varying in P

1
t � {0, 1,∞}, where N = 2mn and

a1 = 2mn−m+n, a2 = 2mn+m−n, a3 = 2mn+m+n, a4 = 2mn−m−n.
The coverings is ramified precisely over x = 0, x = 1, x = t and x = ∞. Let L(i)

denote the ζ iN -eigenspace of the relative de Rham cohomology for the automorphism
ϕ : (x, y) �→ (x, ζNy). The local systems L(1), L(−1), L(mn + 1), L(mn − 1) are
isomorphic and the ai are chosen such that the monodromy group is �(m, n,∞).

We claim that we can lift the automorphism of P
1
x that interchanges the points

{0, 1, t,∞} in pairs to an automorphism group H of Yt such that the stable model of
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the fibers Y0/H and Y1/H are smooth. Let X = Y/H be the quotient and denote by
f : X→ P

1
t the corresponding family of curves. Given the claim, the local system

L(1)⊕ L(−1)⊕ L(α)⊕ L(−α)
is made to beH -invariant. Thus, the de Rham cohomology of Xt has a local subsystem
of rank two with discrete monodromy group �(m, n,∞) and the fibers of the family
Xt are smooth precisely over H/�(m, n,∞). We conclude using the characterization
of Teichmüller curves given in [5] Theorem 1.2 (b).

To establish the claim, choose elements t1/n, (t − 1)1/m ∈ C(t) and define

c = (t − 1)σ2+σ3, d = tσ1+σ3 . (5.1)

We now define H = 〈σ, τ 〉 by

σ(z) = cd x(x − 1)

y(x − t) = cd
−y

(x − t)2
and for α ≡ 1 mod m and α ≡ −1 mod n

τ(z) = d y(α)
x2 .

The fiber over t = 0 consists of two smooth components with affine charts yN =
xa1(x − 1)a3 (since branch points of type a1 and a3 have come together) and yN =
xa2(x−1)a4 . They meet in gcd(a1+a3, N) points transversally. One of the elements
in H exchanges the two components and, in fact, fixes the intersection points of
the components. Consequently, the quotient is smooth as claimed. See [5] for the
details. �

Proof of Theorem 5.2. Consider a curveX of genus two, such that its Jacobian Jac(X)
has more endomorphisms than just multiplication by an integer, namely such that
End(Jac(X)) is an order oD in a real quadratic field Q(

√
D). These endomorphisms

act on the space of holomorphic one-forms of Jac(X), which is in natural bijection
with the space of holomorphic one-forms on X. Let ED ⊂ �M2 be the locus of flat
surfaces (X, ω), such that Jac(X) has real multiplication by oD and such that ω is an
eigenform for the action of oD on the space of holomorphic one-forms. Obviously,
EK ⊂ �M2 is a closed subvariety and the main point is to show that ED is invariant
under the action of SL2(R). Granted this, the intersection WD = ED ∩ �M2(2) is
again closed and SL2(R)-invariant. A local dimension count shows that the image of
WD in M2 is a curve, by construction a Teichmüller curve.

We now single out the role of genus two rather than rigorously proving the main
point. Let A = C

g/� be a g-dimensional abelian variety. An endomorphism of A
consists of an endomorphism of the lattice� plus a linear map of C

g with the obvious
compatibility condition. Suppose that (X, ω) is an eigenform for real multiplication
and T a generator of oD . For any M ∈ GL+2 (R) let M · (X, ω) = (Y, η). By
definition of the GL+2 (R)-action, there is an affine diffeomorphism ϕM : X→ Y . The
map ϕM � T � ϕ−1

M defines a map of �, where Jac(Y ) = C
g/�. Moreover this map
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preserves the complex line

M · 〈�ω,�ω〉 = 〈�η,�η〉.
Since here g = 2, the orthogonal complement of 〈�ω,�ω〉 with respect to the sym-
plectic form is also a complex line, also preserved by ϕM � T � ϕ−1

M . Consequently,
(Y, ω) has also real multiplication by oD . See [22] for the missing details. �

In fact, the orbifold Euler characteristic of the quotients H/SL(X, ω) for (X, ω)
as constructed in Theorem 5.2 has been determined by Bainbridge ([4]). The com-
plete description of the structure (starting with the number of elliptic elements) of
these Veech groups is an open question. Only for the 12 smallest examples, when
H/SL(X, ω) is a rational curve, the affine groups are known by generators and rela-
tions. It would be interesting to have such a description of the Veech groups for the
whole series.

Square-tiled surfaces, covering constructions

Let (Y, η) be a Veech surface. A point P on Y is called a periodic point if the orbit
SL(X, ω) · P is finite. A covering surface π : X→ Y provided with the flat structure
ω = π∗η is again a Veech surface if and only if π is branched at most over periodic
points ([8]).

For the rest of this section we suppose that Y is the torus. In this case, periodic
points are precisely the torsion points on Y , if we normalize 0 ∈ Y to be one of the
branch points. For more on periodic points on flat surfaces of higher genera, see [28].
Composition ofX→ Y with the multiplication on Y ensures that the composition map
is ramified over the origin only. These flat surfaces are called square-tiled surfaces,
sometimes alsoorigamis. These surfaces are studied in Chapter 13 of this Handbook
by Herrlich and Schmithüsen [10]. By [8] the affine group of a square-tiled surface
is a subgroup of finite index in SL2(Z). We mention two results indicating that many
types of subgroups of SL2(Z) arise as affine group.

Theorem 5.3 ([13], [32]). With the exception of the covering consisting of three
squares, the affine groups of square-tiled surfaces in �M2 are non-congruence sub-
groups. In any genus g ≥ 2 there are square-tiled surfaces, whose affine group is a
non-congruence subgroup.

Theorem 5.4 ([32]). All congruence subgroups of SL2(Z) with possibly 5 exceptions
occur as affine groups of square-tiled surfaces.

Question 5.5. Is there a subgroup of SL2(Z) that is not the affine group of a square-
tiled surface?
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6 More on large affine groups: infinitely generated

There exist two constructions for infinitely generated affine groups. McMullen’s
construction ([23]) gives a complete description in genus two but the techniques apply
to genus two only. On the other hand, the construction of Hubert and Schmidt ([14])
is a way to construct a flat surface with infinitely generated affine group starting from
a Veech surface with a special point. The resulting surfaces have genus at least four.

We sketch both constructions and conclude with a number of open questions con-
cerning the precise structure of the limit of these infinitely generated affine groups.

Theorem 6.1 ([23]). Suppose that (X, ω) ∈ �M2(1, 1) has a hyperbolic element in
its affine group, but (X, ω) is neither in the GL+2 (R)-orbit of the regular decagon nor
obtained as a covering of the torus. Then SL(X, ω) is infinitely generated.

Sketch of proof. Veech surfaces in�M2(1, 1) are either in the orbit of the decagon or
torus coverings ([28], [24]). Hence it suffices to show that once SL(X, ω) contains
a hyperbolic element the limit set of SL(X, ω) is the whole S1. For that purpose it
is enough to show that each direction s joining a zero and a Weierstraß point decom-
poses the surface into cylinders of commensurable moduli, since then the affine group
contains a parabolic element in such a direction and since those directions are dense
in S1.

In order to prove this, one first shows that the presence of the hyperbolic element
implies that the SAF-invariant of the induced interval exchange transformation (IET)
on a transverse interval to s vanishes. (The Galois flux used in [23] is a quantity equiv-
alent to the SAF-invariant.) In genus two, due to the bad approximation of quadratic
irrationals, this implies that the IET is not minimal. Topological considerations using
the Weierstraß point imply that the direction s decomposes into cylinders. Using the
presence of the hyperbolic element again, one checks that the moduli of the cylinders
have to be commensurable. �

Theorem 6.2 ([14]). For g ≥ 4 there exist flat surfaces (X, ω) whose affine group is
infinitely generated.

More precisely, take any of the Veech surfaces in genus two with trace fieldK �= Q

(see Theorem 5.2) and normalize it by GL+2 (R) to have periods in K(i). Then a
covering ramified over a Weierstraß point and a non-Weierstraß point with coordinates
in K[i] has infinitely generated Veech group.

Proof. Recall the definition of a periodic point from Section 5. In order to ensure that
SL(X, ω) is infinitely generated, the branch points must not be exclusively periodic
points on the one hand and not too general either for SL(X, ω) might become trivial
then. A connection point P on Y has the property that every straight line emanating
from a singularity of Y and passing through P ends in a singularity, i.e. yields a saddle
connection.
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Suppose that (Y, η) admits a non-periodic connection point P . The subgroup
SL(P ) ⊂ SL(X, ω) that fixes P is not of finite index, since P is not periodic. On the
other hand, for each direction of a geodesic from a singularity to P there is a parabolic
element σ in SL(X, ω) by Veech dichotomy and the definition of a connection point.
A suitable power of σ fixes all saddle connections, hence lies in SL(P ).

Since the set of directions joining P to a singularity is dense in S1, there is a dense
set of directions in S1 fixed by some parabolic element in SL(P ). Said differently, the
limit set of SL(P ) is S1. Consequently, SL(P ) is infinitely generated.

It thus suffices to find a Veech surface with a non-periodic connection point. The
periodic points of the Veech surfaces from Theorem 5.2 are precisely the Weierstraß
points by [28]. A Veech surface normalized as in the second statement of the theorem
is said to have strong holonomy type if the set of periodic directions is precisely
P

1(K). It is straightforward to check that strong holonomy type implies that points
with coordinates in K[i] are connection points. Finally, [23] Theorem A.1 implies
that all the Veech surfaces in question are of strong holonomy type. �

We remark that the abundance of surfaces of strong holonomy type is a particular
property of genus g = 2, too.

Some more results on the structure of infinitely generated affine groups are known
([15]). For example H/SL(X, ω) has infinitely many cusps and infinitely many infinite
ends. Yet, many questions concerning these infinitely generated groups both for the
case of [14] and [23] remain open, in particular the convergence behavior of the
associated Poincaré series.

7 The size of the affine group compared to the size
of the orbit closure

In Section 5 we have encountered Veech surfaces. Their affine group is, by definition,
large, and the GL+2 (R)-orbit is closed in �Mg , it projects to a Teichmüller curve. In
genus two, actually the motto ’the larger the affine group the smaller the orbit closure’
holds.

Theorem 7.1 ([26]). Suppose that g(X) = 2 and that SL(X, ω) contains a hyperbolic
element. Then the closure of the GL+2 (R)-orbit of SL(X, ω) projects to an orbifold of
dimension one or two in M2.

In fact, this projection is a Teichmüller curve if (X, ω) ∈ �M2(2). If (X, ω) ∈
�M2(1, 1), then the projection is a Teichmüller curve or it is the preimage of a Hilbert
modular surface in the moduli space of abelian surfaces under the Torelli map.

In genus three this motto no longer holds:
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Theorem 7.2 ([16]). The affine group of the Arnoux–Yoccoz surface contains a hy-
perbolic element and nevertheless the orbit closure is as big as possible, namely the
hyperelliptic locus L in the connected component of�M3(2, 2)which does not consist
entirely of hyperelliptic surfaces.

There is a GL+2 (R)-equivariant map from L to the stratumQ(1, 1, 1, 1)of quadratic
differentials in genus two with four simple zeros. Consequently, the above statement
can be rephrased as follows: There is a surface in Q(1, 1, 1, 1), whose affine group
contains a hyperbolic element and whose GL+2 (R)-orbit closure is the whole stratum
Q(1, 1, 1, 1).

We now explain the idea of proof of both theorems. The starting point is to reduce
the orbit closure question for flat surfaces to a question in a homogeneous space,
where Ratner’s theorem predicts how orbit closures look like. For that purpose, one
needs to cut the surface along saddle connections in some fixed direction into tori and
cylinders. In order to be able to do so in a neighborhood of the surface, too, the slitting
configuration has to be stable under small deformation. This means that the saddle
connections have to be homologous.

Such sets of homologous saddle connections are rather rare, but in genus two each
surface admits such a set ([26]) and in the locus L the generic surface does. In L,
the horizontal saddle connections in Figure 1 split the surface into two tori and two
cylinders. Not all surfaces in L admit such a 2T 2C-direction, but the Arnoux–Yoccoz
surface does.

Cut the surface in pieces along the homologous saddle connections. The difference
between genus two and genus three becomes apparent in the application of Ratner’s
theorem to the splitting pieces. In genus two, if SL(X, ω) contains a hyperbolic
element, then the two splitting pieces are isogenous tori and the orbit closure is a
(’small’) unipotent subgroup of (GL+2 (R))2. The major remaining step to complete
the proof of Theorem 7.1 consists in showing that flat surfaces that split into isogenous
tori have Jacobians with real multiplication. Consequently, compare to the proof of
Theorem 5.2, the GL+2 (R)-orbit closure is contained in the preimage of a Hilbert
modular surface

In the case of the Arnoux–Yoccoz surface however, the splitting pieces are ’as
incommensurable as possible’despite the presence of a hyperbolic element in GL+2 (R).
Consequently, an application of Ratner’s theorem yields a large orbit closure and a
second application in a different 2T 2C-direction implies that the orbit closure is the
whole locus L.

As a first, and maybe important, step towards extending a Ratner type theorem
from genus two to genus three we are thus led to ask:

Question 7.3. How can one describe the locus of flat surfaces in L that admit a
2T 2C-direction?
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Braid groups and Artin groups
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1 Introduction

Braids go back to several centuries and were universally used for ornamental purposes
or even practical ones, for example in the fashioning of ropes. Today, they are described
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by means of abstract models which occur in the “theory of braids”. The theory of
braids studies the concept of braids (such as we imagine them) as well as various
generalizations arising from various branches of the mathematics. The idea is that
braids form a group. The number of strands must be fixed so that the operation
is well-defined. So, we have a braid group on two strands, a braid group on three
strands, and so on. The braid group on one strand is trivial because a string cannot be
braided (although it can be knotted).

We generally make the mathematical study of braids go back to an article of Emile
Artin [7] dating from 1925, in which is described the notion of braids under various
aspects, one being that obvious, like a “series of tended and interlaced strings”, and
others more conceptual but equally deep, such as a presentation by generators and
relations, or a presentation as the mapping class group of a punctured disk.

Since the 1930s, strong links between braids and links (and knots) were established
by people such as Alexander and Markov (see [19]). This link is at the origin in the
1980s of a deep revival in the theory of knots with the work of Jones and his invariant
defined from the theory of braids (see [101], [102], [83], and [138]).

Later, interesting relations with algebraic geometry and the theory of finite groups
generated by reflections were established, in particular by Arnol’d [5], [3], [6] and
Brieskorn [29], [31]. These relations become particularly interesting when we extend
the notion of braid group to that ofArtin group of spherical type, also called generalized
braid groups. Although Artin groups were introduced by Tits [146] as extensions of
Coxeter groups, their study really began in the seventies with the works of Brieskorn
[30], [31], Saito [32] and Deligne [71], where different aspects of these groups are
studied, such as their combinatorics, as well as their link with hyperplane arrangements
and singularities.

Some problems in group theory, often very close to algorithmics, such as the word
and conjugacy problems, have experienced a renewal of interest not only through their
applications in other domains, but also because the notion of mathematical proof is
changing. Indeed, we distinguish now the notion of demonstration from the notion
of effective proof, the one which builds up the solution. Such a proof gives rise to an
algorithm, and its complexity (calculation time) is of importance. Algorithmics in the
theory of braid groups is especially active. Decision problems such as the conjugacy
problem were solved by Garside [85] in 1969 with methods which are now the source
of numerous works on braid groups. In [70] is introduced a more formal and more
general framework to study algorithmic problems on braid groups: the Garside groups.
The idea is to isolate certain combinatorial properties of braid groups, in particular
those emphasized by Garside [85]. It is a less restrictive model which uses tools from
language theory (monoids, rewriting systems) and combinatorics (ordered sets), tools
that are especially adapted to treat algorithmic problems. Today, the major part of the
algorithmic problems on braid groups are studied within the framework of Garside
groups. Let us also indicate that the Artin groups of spherical type are Garside groups.
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This survey is written from these viewpoints but also maintaining two other objec-
tives: (1) to make a survey understandable by non-specialists; (2) to make as often as
possible the link with mapping class groups.

The second section is about the “classical” theory of braid groups. Various aspects
as well as some of their properties are presented. The third section is an introduction
to Artin groups, and the fourth is an introduction to Garside groups. There, the reader
will find algorithms to solve some decision problems such as the conjugacy one for
braid groups (and Garside groups).

The fifth section is about the cohomology of Artin groups, although the exposition
goes beyond by explaining the Salvetti complexes. These are tools originally from the
theory of hyperplane arrangements that turn out to be useful in the context of braid
groups.

The sixth section is about the linear representations of braid groups studied by
Bigelow [17] and Krammer [105], [106], as well as about its various generalizations (to
Artin groups). The algebraic aspect and the topological aspect of these representations
are both explained. Other linear representations of braid groups have been studied and
are also interesting but, for lack of space and for reason of coherence, these will not
be treated in this text. We refer to [21] for a survey on the other linear representations.

The seventh section is about geometric representations of Artin groups. (By a
geometric representation we simply mean a homomorphism in a mapping class group.)
This subject is less popular than the previous ones but I strongly believe in its future.
In particular, Subsection 7.3, where are explained the results of Castel [40], shows all
the power of such a study.

Finally, I would like to indicate two aspects of braid groups which are not in this
survey and which “should be in any survey on the braid groups”.

The first aspect is the link between braids and links and knots. This is very important
in the theory but amply explained in all books and almost all surveys on the subject.
So, I voluntarily ignore this aspect in order to be able to treat in more detail the other
ones. The reader will find in [19], [93], [128], [103] detailed expositions on this aspect
and on braid groups in general.

I would have wanted to make an eighth section to explain the second aspect: the
orders in braid groups. But, unfortunately, this chapter is long enough and there is
no more room for another section. Inspired by problems of set theory, Dehornoy [65]
founded an explicit construction of a total ordering invariant by left multiplication in
the braid group. The fact that the braid group is orderable may be not completely
new, in the sense that it results from Nielsen theory [129], but Dehornoy’s ordering
is interesting in itself. In my opinion, it is an important tool to understand the braid
groups, and I augur numerous developments in this direction. Artin groups of type Bn
and Ãn embed into braid groups (see Section 3) thus they are also orderable. Artin
groups of type Dn embed into mapping class groups of surfaces with boundary (see
Section 7), and, by [139], such a group is orderable. We do not know whether the
other Artin groups are orderable or not. We encourage the reader to consult [68] for a
detailed discussion on this subject.
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2 Braid groups

2.1 Braids

Let n ≥ 1 be an integer, and let P1, . . . , Pn be n distinct points in the plane R
2 (except

for mention of the contrary, we will always assume Pk = (k, 0) for all 1 ≤ k ≤ n).
Define a braid on n strands to be an n-tuple β = (b1, . . . , bn) of paths, bk : [0, 1] →
R

2, such that

• bk(0) = Pk for all 1 ≤ k ≤ n;

• there exists a permutation χ = θ(β) ∈ Symn such that bk(1) = Pχ(k) for all
1 ≤ k ≤ n;

• bk(t) �= bl(t) for all k �= l and all t ∈ [0, 1].
Two braids α and β are said to be homotopic if there exists a continuous family
{γs}s∈[0,1] of braids such that γ0 = α and γ1 = β. Note that θ(α) = θ(β) if α and β
are homotopic.

We represent graphically a homotopy class of braids as follows. For 1 ≤ k ≤ n,
let Ik be a copy of the interval [0, 1]. Take a braid β = (b1, . . . , bn) and define the
geometric braid

βg : I1 � · · · � In→ R× [0, 1]
by βg(t) = (bk(t), t) for all t ∈ Ik and all 1 ≤ k ≤ n. Let proj : R

2 × [0, 1] →
R× [0, 1] be the projection defined by

proj(x, y, t) = (x, t).
Up to homotopy, we can assume that proj � βg is a smooth immersion with only
transversal double points that we call crossings. In each crossing we indicate graphi-
cally like in Figure 1 which strand goes over the other. Such a representation of β is
called a braid diagram of β. An example is illustrated in Figure 2.

positive crossing negative crossing

Figure 1. Crossings in a braid diagram.

The product of two braids α = (a1, . . . , an) and β = (b1, . . . , bn) is defined to be
the braid

α · β = (a1bχ(1), . . . , anbχ(n)),

where χ = θ(α). An example is illustrated in Figure 3.
Let Bn denote the set of homotopy classes of braids on n strands. It is easily seen

that the above defined multiplication of braids induces an operation on Bn. Moreover,
we have the following.
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0 1

P1

P2

P3

P1

P2

P3

t

R
2 × {0} R

2 × {1}

Figure 2. A braid diagram.

= =

Figure 3. Product of two braids.

Proposition 2.1. The set Bn endowed with this operation is a group.

From now on, except for mention of the contrary, by a braid we will mean a
homotopy class of braids. The group Bn of Proposition 2.1 is called the braid group
on n strands. The identity is the constant braid Id = (Id1, . . . , Idn), where, for
1 ≤ k ≤ n, Idk denotes the constant path on Pk . The inverse of a braid β is its mirror
as illustrated in Figure 4.

β β−1

Figure 4. Inverse of a braid.

Recall that if two braids α, α′ are homotopic, then θ(α) = θ(α′). Hence, the map θ
from the set of braids on n strands to Symn induces a map θ : Bn→ Symn. It is easily
checked that this map is an epimorphism. Its kernel is called the pure braid group on
n strands and is denoted by PBn. It plays an important role in the theory.

Let σk be the braid illustrated in Figure 5. One can easily verify that σ1, . . . , σn−1
generate the braid group Bn and satisfy the relations

σkσl = σlσl if |k − l| ≥ 2,

σkσlσk = σlσkσl if |k − l| = 1.
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(See Figure 6.) These relations suffice to define the braid group, namely:

Pk

Pk+1

Figure 5. The braid σk .

σkσk+1σk σk+1σkσk+1

σk σl σl σk

Figure 6. Relations in Bn.

Theorem 2.2 (Artin [7], [8], Magnus [118]). The group Bn has a presentation with
generators σ1, . . . , σn−1 and relations

σkσl = σlσk if |k − l| ≥ 2,

σkσlσk = σlσkσl if |k − l| = 1.

Theorem 2.3 (Burau [35], Markov [123]). For 1 ≤ k < l ≤ n, let

δk l = σl−1 . . . σk+1σ
2
k σ
−1
k+1 . . . σ

−1
l−1.

Then the pure braid group PBn has a presentation with generators

δk l, 1 ≤ k < l ≤ n,
and relations

δr sδk lδ
−1
r s = δk l if 1 ≤ r < s < k < l ≤ n,

or 1 ≤ k < r < s < l ≤ n,
δr kδk lδ

−1
r k = δ−1

k l δ
−1
r l δk lδr lδk l if 1 ≤ r < k < l ≤ n,
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δr kδr lδ
−1
r k = δ−1

k l δr lδk l if 1 ≤ r < k < l ≤ n,
δr sδk lδ

−1
r s = δ−1

s l δ
−1
r l δs lδr lδk lδ

−1
r l δ
−1
s l δr lδs l if 1 ≤ r < k < s < l ≤ n.

Note. Most of the proofs of Theorems 2.2 and 2.3 that can be found in the literature
proceed as follows. Given an exact sequence

1→ K −→ G −→ H → 1,

there is a machinery to compute a presentation of G from presentations of K and H .
We start with the observation that PB2 
 Z and with the exact sequence

1→ Fn −→ PBn+1 −→ PBn→ 1, (2.1)

whereFn is a free group of rank n, to prove Theorem 2.3 by induction on n. (The exact
sequence (2.1) will be explained in Subsection 2.2.) Then we use the exact sequence

1→ PBn −→ Bn −→ Symn→ 1

to prove Theorem 2.2 from Theorem 2.3. Another proof which, as far as I know, is
not in the literature but is known to experts, consists in extracting the presentation of
Theorem 2.2 from the Salvetti complex of Bn. This is a cellular complex which is a
K(Bn, 1) (see Section 5).

2.2 Configuration spaces

We identify R
2 with C and Pk with k ∈ C for all 1 ≤ k ≤ n. For 1 ≤ k < l ≤ n we

denote by Hk l the linear hyperplane of C
n defined by the equation zk = zl . The big

diagonal of C
n is defined to be

Diagn =
⋃

1≤k<l≤n
Hk l.

The space of ordered configurations of n points in C is defined to be

Mn = C
n \ Diagn.

This is the space of n-tuples z = (z1, . . . , zn) of complex numbers such that zk �= zl
for k �= l. The symmetric group Symn acts freely on Mn. The quotient

Nn = Mn/Symn

is called the space of configurations of n points in C. This is the space of unordered
n-tuples z = {z1, . . . , zn} of complex numbers such that zk �= zl for k �= l.

Proposition 2.4. Let P0 = (1, 2, . . . , n) ∈ Mn. Then π1(Mn, P0) = PBn.
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Proof. For a pure braid β = (b1, . . . , bn) we set

ϕ(β) : [0, 1] → Mn,

t �→ (b1(t), . . . , bn(t)).

Clearly, ϕ(β) is a loop based at P0. Moreover, two pure braids α and α′ are homotopic
if and only if ϕ(α) and ϕ(α′) are homotopic. Thus ϕ induces a bijection ϕ∗ : PBn→
π1(Mn, P0) which turns out to be a homomorphism.

For z ∈ Mn, we denote by [z] the element of Nn = Mn/Symn represented by z.

Proposition 2.5. π1(Nn, [P0]) = Bn.

Proof. For a braid β = (b1, . . . , bn) we set

ϕ̂(β) : [0, 1] → Nn

t �→ [b1(t), . . . , bn(t)].
Clearly, ϕ̂(β) is a loop based at [P0]. It is easily checked that ϕ̂ induces a homomor-
phism ϕ̂∗ : Bn→ π1(Nn, [P0]), and that the following diagram commutes:

1 �� PBn
��

ϕ∗

��

Bn

ϕ̂∗
��

�� Symn

Id
��

�� 1

1 �� π1(Mn, P0) �� π1(Nn, [P0]) �� Symn
�� 1.

The first row is exact by definition, and the second one is associated to the regular
covering Mn→ Nn = Mn/Symn, so it is exact, too. We conclude by the five lemma
that ϕ̂∗ is an isomorphism.

Let f, g ∈ C[x] be two non-constant polynomials. Set

f = a0x
m + a1x

m−1 + · · · + am, a0 �= 0,

g = b0x
n + b1x

n−1 + · · · + bn, b0 �= 0.

The Sylvester matrix of f and g is defined to be

Sylv(f, g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 . . . 0 b0 0 . . . 0

a1 a0
. . .

... b1 b0
. . .

...
... a1

. . . 0
... b1

. . . 0

am
...

. . . a0 bn
...

. . . b0
0 am a1 0 bn b1
...

. . .
. . .

...
...

. . .
. . .

...

0 . . . 0 am 0 . . . 0 bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸ ︸ ︷︷ ︸
n columns m columns
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The resultant of f and g is defined to be

Res(f, g) = det(Sylv(f, g)).

The following is classical in algebraic geometry (see [54], for example).

Theorem 2.6. Let f, g ∈ C[x] be two non-constant polynomials. Then f and g have
a common root if and only if Res(f, g) = 0.

Corollary 2.7. Let f ∈ C[x] be a polynomial of degree d ≥ 2. Then f has a multiple
root if and only if Res(f, f ′) = 0.

The number Res(f, f ′) is called the discriminant of f and is denoted by Disc(f ).
For instance, if f = ax2 + bx + c, then Disc(f ) = b2 − 4ac.

Let n ≥ 2 and let Cn[x] be the set of monic polynomials of degree n. In particular,
Cn[x] is isomorphic to C

n. The map Disc : Cn[x] → C is clearly a polynomial
function, thus

D = {f ∈ Cn[x]; f has a multiple root} = {f ∈ Cn[x];Disc(f ) = 0}
is an algebraic hypersurface called the n-th discriminant. It is related to the braid
group by the following.

Proposition 2.8. Nn = Cn[x] \D .

Proof. Let � : Mn→ Cn[x] \D be the map defined by

�(z1, . . . , zn) = (x − z1) . . . (x − zn).
Then � is surjective and we have �(u) = �(v) if and only if there exists χ ∈ Symn

such that v = χ(u). Thus Cn[x] \D 
 Mn/Symn = Nn.

Now, recall the homotopy long exact sequence of a fiber bundle (see [96], for
example).

Theorem 2.9. Let p : M → B be a locally trivial fiber bundle. Let b0 ∈ B, let
F = p−1(b0), and let P0 ∈ F . Assume that F is connected. Then there is a long
exact sequence of homotopy groups

· · · → πk+1(B, b0)→ πk(F, P0)→ πk(M,P0)→ πk(B, b0)→ · · ·
· · · → π2(B, b0)→ π1(F, P0)→ π1(M,P0)→ π1(B, b0)→ 1.

There are two cases where this long exact sequence becomes a short exact sequence:
when π2(B, b0) = {0}, and when p admits a cross-section κ : B → M . In the latter
case the short exact sequence splits. It turns out that both situations hold in the study
of Mn.
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Theorem 2.10 (Fadell, Neuwirth [80]). Let p : Mn+1 → Mn be defined by

p(z1, . . . , zn, zn+1) = (z1, . . . , zn).

Then p is a locally trivial fiber bundle which admits a cross-section κ : Mn→ Mn+1.

Let b0 = (1, 2, . . . , n). Then the fiber p−1(b0) is naturally homeomorphic to
C \ {1, 2, . . . , n} whose fundamental group is the free group Fn of rank n. A cross-
section of p is the map κ : Mn→ Mn+1 defined by

κ(z1, . . . , zn) = (z1, . . . , zn, |z1| + · · · + |zn| + 1).

Corollary 2.11. Let n ≥ 2. Then there is a split exact sequence

1 �� Fn �� PBn+1

p∗
��
PBn

κ∗
�� �� 1.

A connected CW-complexX is calledK(π, 1) if its universal cover is contractible.
Equivalently, X is K(π, 1) if πk(X) = {0} for all k ≥ 2. In particular, a connected
space X is K(π, 1) if an only if one of its connected covers Y is K(π, 1). The notion
of K(π, 1) spaces is of importance in the calculation of the (co)homology of groups.
We refer to [34] for detailed explanations on the subject.

It is easily seen that C \ {1, . . . , n} is K(π, 1), thus, from Theorems 2.9 and 2.10
follows:

Corollary 2.12. The spaces Mn and Nn are K(π, 1).

It is also known that the fundamental group of a finite dimensional K(π, 1) space
is torsion free (see [34]), thus:

Corollary 2.13. Bn = π1(Nn) is torsion free.

2.3 Mapping class groups

Let be an oriented compact surface, possibly with boundary. Let P = {P1, . . . , Pn}
be a collection of n punctures in the interior of . Let Homeo+(,P ) denote the
group of homeomorphisms h :  →  which preserve the orientation, which point-
wise fix the boundary of , and such that h(P ) = P . We assume Homeo+(,P )
endowed with the compact-open topology. Let Homeo+0 (,P ) denote the connected
component of the identity in Homeo(,P ). The mapping class group of the pair
(,P ) is defined to be

M(,P ) = π0(Homeo+(,P )) = Homeo+(,P )/Homeo+0 (,P ).

A braid of  based at P is defined to be a n-tuple β = (b1, . . . , bn) of paths,
bk : [0, 1] → , such that
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• bk(0) = Pk for all 1 ≤ k ≤ n;

• there exists a permutation χ = θ(β) ∈ Symn such that bk(1) = Pχ(k) for all
1 ≤ k ≤ n;

• bk(t) �= bl(t) for all k �= l and all t ∈ [0, 1].
The homotopy classes of braids based at P form a group denoted by Bn(,P ) and
called the braid group of  on n strands based at P . It does not depend up to
isomorphism on the choice of P but only on the cardinality n = |P |. So, we may
often write Bn() in place of Bn(,P ). If = D is a disk, then Bn() is naturally
isomorphic to the braid group Bn.

For 1 ≤ k < l ≤ n, we denote by Hk l() the set of n-tuples x = (x1, . . . , xn) ∈
n such that xk = xl . The big diagonal of n is defined to be

Diagn() =
⋃

1≤k<l≤n
Hk l().

The space of ordered configurations of n points in  is defined to be

Mn() = n \ Diagn().

This is the space of n-tuples x = (x1, . . . , xn) in n such that xk �= xl for all
1 ≤ k �= l ≤ n. The symmetric group Symn acts freely on Mn(), and the quotient

Nn() = Mn()/Symn

is called the space of configurations of n points in . This is the space of unordered
n-tuples x = {x1, . . . , xn} of elements of  such that xk �= xl for all 1 ≤ k �= l ≤ n.

Set P 0 = (P1, . . . , Pn) ∈ Mn(). For x ∈ Mn(), we denote by [x] the
element of Nn() represented by x. The following can be proved in the same way as
Proposition 2.5.

Proposition 2.14. π1(Nn(), [P 0]) 
 Bn().

Now, the surface braid groups and the mapping class groups are related by the
following exact sequence.

Theorem 2.15 (Birman [18]). Suppose  is neither a sphere, nor a torus. Then we
have the exact sequence

1→ Bn(,P ) −→M(,P ) −→M()→ 1.

Note. Let

� : Homeo+()→ Nn(),

ϕ �→ {ϕ(P1), . . . , ϕ(Pn)}.
Then � is a locally trivial fiber bundle, and the fiber of � over P = [P 0] is
Homeo+(,P ). Furthermore, it is known that π1(Homeo+()) = {1} (see [92]).
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Thus, by the homotopy long exact sequence of a fiber bundle (see [96]), we have the
short exact sequence

1→ π1(Nn(),P ) −→ π0(Homeo+(,P )) −→ π0(Homeo+())→ 1,

which is the same as the exact sequence of Theorem 2.15.

It is known that M(D) = {1} (see [1]), thus, by Theorem 2.15:

Theorem 2.16 (Artin [7], [8]). Let P = {P1, . . . , Pn} be a collection of n punctures
in the interior of the disk D. Then M(D,P ) 
 Bn.

The isomorphism � : M(D,P ) → Bn can be easily described as follows. Let
ϕ ∈ Homeo+(D,P ). We know by [1] that π0(Homeo+(D)) = {1}. Thus, there exists
a continuous path {ϕt }t∈[0,1] in Homeo+(D) such that ϕ0 = Id and ϕ1 = ϕ. Let
β = (b1, . . . , bn) be the braid defined by

bk(t) = ϕt (Pk), 1 ≤ k ≤ n and t ∈ [0, 1].
Then �(ϕ) is the homotopy class of β.

The inverse isomorphism�−1 : Bn→M(D,P ) is more complicated to describe,
but the images of the standard generators can easily be defined in terms of braid twists
as follows.

We come back to the situation where  is an oriented compact surface and P =
{P1, . . . , Pn} is a collection of n punctures in the interior of. Let Pk, Pl ∈ P , k �= l.
An essential arc joining Pk to Pl is defined to be an embedding a : [0, 1] →  such
that a(0) = Pk , a(1) = Pl , a((0, 1))∩P = ∅, and a([0, 1])∩∂ = ∅. Two essential
arcs a and a′ are said to be isotopic if there is a continuous family {at }t∈[0,1] of essential
arcs such that a0 = a and a1 = a′. Isotopy of essential arcs is an equivalence relation
that we denote by a ∼ a′.

Let a be an essential arc joining Pk to Pl . Let D = {z ∈ C; |z| ≤ 1} be the standard
disk, and let A : D→  be an embedding such that

• a(t) = A(t − 1
2 ) for all t ∈ [0, 1];

• A(D) ∩P = {Pk, Pl}.
Let T ∈ Homeo+(,P ) be defined by

(T � A)(z) = A(e2iπ |z|z), z ∈ D,

and T is the identity outside the image of A (see Figure 7). The braid twist along a is
defined to be the element τa ∈ M(,P ) represented by T , that is, the isotopy class
of T . Note that:

• the definition of τa does not depend on the choice of A : D→ ;

• if a is isotopic to a′, then τa = τa′ .
Now, we view the disk D as the disk in C of radius n+1

2 centered at n+1
2 , and we

set Pk = k for 1 ≤ k ≤ n. Let ak : [0, 1] → D be the arc defined by

ak(t) = k + t, t ∈ [0, 1].
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(See Figure 8.) Then:

Lemma 2.17. The inverse isomorphism �−1 : Bn→M(D,P ) is defined by

�−1(σk) = τak , 1 ≤ k ≤ n− 1.

Pk Pla T

Figure 7. Braid twist.

1 2 3 n

a1 a2 an−1

Figure 8. The standard generators of M(D,P ) = Bn.

2.4 Automorphisms of free groups

For a group G, we denote by Aut(G) the group of automorphisms of G, by Inn(G)
the group of inner automorphisms ofG, and by Out(G) = Aut(G)/Inn(G) the group
of outer automorphisms of G.

Let Fn = F(x1, . . . , xn) be the free group of rank n. For 1 ≤ k ≤ n − 1, let
τk : Fn→ Fn be the automorphism defined by

τk :

⎧⎪⎨
⎪⎩

xk �→ x−1
k xk+1xk,

xk+1 �→ xk,

xl �→ xl if l �= k, k + 1.

One can easily show the following.

Proposition 2.18. The mapping σk �→ τk , 1 ≤ k ≤ n−1, determines a representation
ρ : Bn→ Aut(Fn).
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The above representation ρ : Bn→ Aut(Fn) is called the Artin representation. It
is faithful, more precisely:

Theorem 2.19 (Artin [7], [8]). (1) The Artin representation ρ : Bn → Aut(Fn) is
faithful.

(2) An automorphism α ∈ Aut(Fn) belongs to Imρ if and only if α(xn . . . x2x1) =
xn . . . x2x1 and there exists a permutation χ ∈ Symn such that α(xk) is conjugate to
xχ(k) for all 1 ≤ k ≤ n.

In particular, Bn can be viewed as a subgroup of Aut(Fn). This has some conse-
quences on Bn itself such as the two properties defined below.

A group G is called residually finite if for all g ∈ G \ {1} there exists a homomor-
phism ϕ : G→ H such thatH is finite and ϕ(g) �= 1. A groupG is called Hopfian if
every epimorphism ϕ : G→ G is an isomorphism. It is known that the subgroups of
Aut(Fn) are both residually finite and Hopfian (see [119]). Thus, by Theorem 2.19:

Corollary 2.20. The braid group Bn is residually finite and Hopfian.

There are several ways to describe geometrically the Artin representation. The first
way uses the Fadell-Neuwirth fiber bundle p : Mn+1 → Mn of Theorem 2.10. Let
Symn act onMn and onMn+1. The second action is on the first n coordinates, that is,

χ(z1, . . . , zn, zn+1) = (zχ−1(1), . . . , , zχ−1(n), zn+1), for χ ∈ Symn.

The map p : Mn+1 → Mn induces a map p : Mn+1/Symn → Mn/Symn = Nn
which turns out to be a locally trivial fiber bundle. The fiber is again homeomorphic
to C \ {1, 2, . . . , n}, and p : Mn+1/Symn → Nn has also a cross-section κ : Nn →
Mn+1/Symn. So, from the homotopy long exact sequence of a fiber bundle (see
Theorem 2.9) we obtain the following split exact sequence

1 �� Fn �� π1(Mn+1/Symn)
p∗

��
π1(Nn) = Bn

κ̄∗
�� �� 1

where Fn = π1(C \ {1, . . . , n}), which is a free group of rank n. The action of
Bn = π1(Nn) on Fn derived from the above split exact sequence is exactly the Artin
representation.

Another way to represent the Artin representation is by using the isomorphism
Bn 
 M(D, {P1, . . . , Pn}). Fix a basepoint P0 ∈ ∂D. Then it is easily shown that
M(D, {P1, . . . , Pn}) acts on π1(D \ {P1, . . . , Pn}, P0) = Fn, and that this action is
the Artin representation.

The latter point of view of the Artin representations can be extended to all mapping
class groups. In this setting, it is known as the Dehn–Nielsen–Baer theorem. Here is
a version of this theorem.

Theorem 2.21 (Dehn, Nielsen [129], Baer [9], Magnus [118]). Let  be a closed
oriented surface, and let P = {P1, . . . , Pn} be a collection of n punctures in. Then
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the natural homomorphism ρ : M(,P )→ Out(π1( \P )) is injective. Moreover,
if P = ∅, then the image of ρ is an index 2 subgroup of Out(π1()).

We refer to [99] and [127] for detailed expositions on the Dehn–Nielsen–Baer
theorem that include other versions of it.

Note. There are some variants of the Artin representations introduced in [151] and
[59] that lead to invariants of links.

3 Artin groups

3.1 Definitions and examples

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms t )s,t∈S
indexed by the elements of S such that

• ms s = 1 for all s ∈ S;

• ms t = mt s ∈ {2, 3, 4, . . . ,+∞} for all s, t ∈ S, s �= t .
A Coxeter matrix M = (ms t )s,t∈S is usually represented by its Coxeter graph, � =
�(M). This is a labeled graph defined by the following data.

• S is the set of vertices of �.

• Two vertices s, t ∈ S, s �= t , are joined by an edge if ms t ≥ 3. This edge is
labeled by ms t if ms t ≥ 4.

Let � be a Coxeter graph. Define the Coxeter system of type � to be the pair (W, S),
where W = W� is the group presented by the generating set S and the relations

s2 = 1 for all s ∈ S,
(st)ms t = 1 for all s, t ∈ S, s �= t, and ms t �= +∞,

where M = (ms t )s,t∈S is the Coxeter matrix of �. The group W = W� is called the
Coxeter group of type �.

If a, b are two letters and m ∈ N, then prod(a, b : m) denotes the word

prod(a, b : m) =
{
(ab)

m
2 if m is even,

(ab)
m−1

2 a if m is odd.

Let  = {σs; s ∈ S} be an abstract set in one-to-one correspondence with S. Define
the Artin system of type � to be the pair (G,), whereG = G� is the group presented
by the generating set  and the relations

prod(σs, σt : ms t ) = prod(σt , σs : ms t ) for s, t ∈ S, s �= t, and ms t �= +∞.
The group G is called the Artin group of type �.
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It is easily checked that the groupW� is also presented by the generating set S and
the relations

s2 = 1 for all s ∈ S,
prod(s, t : ms t ) = prod(t, s : ms t ) for all s, t ∈ S, s �= t and ms t �= +∞.

This shows that the mapping  → S, σs �→ s, induces a canonical epimorphism
θ : G� → W� .

If ms t = 2, then

σsσt = prod(σs, σt : ms t ) = prod(σt , σs : ms t ) = σtσs,
that is, σs and σt commute. So, if �1, . . . , �l are the connected components of �, then

G� = G�1 ×G�2 × · · · ×G�l .
Similarly, we have

W� = W�1 ×W�2 × · · · ×W�l .

We say that G� (or W�) is irreducible if � is connected. We say that � (or G�) is of
spherical type if W� is finite.

Example 1. Suppose that � is the graph An of Figure 9. Then W� = Symn+1 is the
symmetric group of {1, . . . , n, n+1}, and the Coxeter generators are the transpositions
s1 = (1, 2), s2 = (2, 3), . . . , sn = (n, n+ 1). The Artin group G� is the braid group
Bn+1 on n+ 1 strands, and the Artin generators are the standard generators of Bn+1
given in Theorem 2.2. The canonical epimorphism coincides with the epimorphism
described in Subsection 2.1.

1 2 3 n
An n ≥ 1

1 2 3 n
Bn

4
n ≥ 2

1

2

3 4 n
Dn n ≥ 4

1 2 3 n

n+ 1

Ãn n ≥ 2

Figure 9. The Coxeter graphs An, Bn, Dn, and Ãn.
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Example 2. Suppose that � is the Coxeter graph Bn of Figure 9. Let C2 = {±1}
denote the cyclic group of order 2. Set Cubn = Cn2 � Symn, where Symn acts on Cn2
by permutation of the coordinates. This is the group of isometries of a regular n-cube
(see [94], for example). The group Cubn is the Coxeter group of type Bn, and the
Coxeter generators are

s1 = (−1, 1, . . . , 1) ∈ Cn2 , si = (i − 1, i) ∈ Symn for 2 ≤ i ≤ n.
Recall the Artin representation ρ : Bn → Aut(Fn) defined in Subsection 2.4. Set
G = Fn�ρ Bn. Recall also the action of Symn onMn+1 defined in Subsection 2.4. It
follows from the exact sequence (2.4) that G = π1(Mn+1/Symn). In particular, G is
an index n+ 1 subgroup of π1(Mn+1/Symn+1) = π1(Nn+1) = Bn+1 = GAn . Now,
G is the Artin group of type Bn, and the Artin generators are

τ1 = x1 ∈ Fn, τi = σi−1 ∈ Bn for 2 ≤ i ≤ n.
(See [60]).

Example 3. Suppose that � is the Coxeter graph Dn of Figure 9, where n ≥ 4. Let
sgn : Cn2 → C2 be the homomorphism defined by

sgn(ε1, . . . , εn) =
n∏
i=1

εi,

and letK be the kernel of sgn. The subgroupK is invariant under the action of Symn,
thus one can consider the subgroup W = K � Symn of Cubn = Cn2 � Symn. This is
the Coxeter group of type Dn, and the Coxeter generators are

s1 = (−1,−1, 1, . . . , 1) · (1, 2), si = (1, 1, 1, . . . , 1) · (i − 1, i) for 2 ≤ i ≤ n.
(See [94], for example).

Let Fn−1 = F(y1, . . . , yn−1) be a free group of rank n − 1. Let ρD,1 : Fn−1 →
Fn−1 be the automorphism defined by

ρD,1 :
{
y1 �→ y1,

yj �→ y−1
1 yj if j ≥ 2.

For 2 ≤ i ≤ n− 1, let ρD,i : Fn−1 → Fn−1 be the automorphism defined by

ρD,i :

⎧⎪⎨
⎪⎩
yi−1 �→ yi,

yi �→ yiy
−1
i−1yi,

yj �→ yj if j �= i − 1, i.

One can easily show the following.

Lemma 3.1. The mapping σi �→ ρD,i , 1 ≤ i ≤ n − 1, determines a representation
ρD : Bn→ Aut(Fn−1).

The following is implicit in [135] and explicit in [60].
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Theorem 3.2 (Perron, Vannier [135]). The representation ρD : Bn → Aut(Fn−1) is
faithful, and the semidirect product Fn−1 �ρD Bn is isomorphic to the Artin group
GDn of type Dn.

Note. It was shown by Allcock [2] that the Artin group GDn of type Dn can be also
presented as an index 2 subgroup of the n-strand braid group of a plane with a single
orbifold point of degree 2.

Example 4. Suppose that � is the graph Ãn of Figure 9. Let Symn+1 act on Z
n+1

by permutation of the coordinates. Set � = {(x1, . . . , xn+1) ∈ Z
n+1;∑n+1

i=1 xi = 0},
and observe that� 
 Z

n is invariant under the action of Symn+1. Then�� Symn+1
is the Coxeter group of type � (see [28]).

Let � : GBn+1 → Z be the homomorphism defined by

�(σ1) = 1, �(σi) = 0 for 2 ≤ i ≤ n.
It was observed by several authors [2], [47], [73], [104], that the kernel of� is isomor-
phic to the Artin group G

Ãn
of type Ãn. In particular, G

Ãn
is a subgroup of Bn+2.

Viewed as a subgroup of Bn+2 =M(D, {P1, P2, . . . , Pn+2}), the Artin generators
of G

Ãn
can be described in terms of braid twists as follows. We place P1, . . . , Pn+2

in the interior of D like in Figure 10. For 1 ≤ i ≤ n+ 1, let τi denote the braid twist
along the arc ai . Then τ1, . . . , τn+1 are the Artin generators of G

Ãn
.

P1

P2

P3

Pn

Pn+1

Pn+2

a1

a2

an

an+1

Figure 10. Standard generators of G
Ãn

.

Note. For a groupG we denote by Z(G) the center ofG. If � = An,Bn, or Ãn, then
G�/Z(G�) can be viewed as a finite index subgroup of the mapping class group of
a punctured sphere. This has been cleverly exploited to study the group G� itself, in
particular, to compute the group of automorphisms of G� (see [44], [10]). Note that
the center of GAn and GBn is an infinite cyclic group (see [71], [32]), and the center
of G

Ãn
is trivial (see [100]).
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3.2 Coxeter groups

Coxeter groups were introduced by Tits [148] in a manuscript which was recently
published, and whose results appeared in the seminal Bourbaki’s book [28]. The
present subsection is a brief survey on these groups with a special emphasis on the
results that are needed to study Artin groups. Standard references for the subject are
[28], [97].

Let � be a Coxeter graph, let M = (ms t )s,t∈S be its associated Coxeter matrix,
and let (W, S) be the Coxeter system of type �.

Let� = {es; s ∈ S} be an abstract set in one-to-one correspondence with S, whose
elements are called simple roots. We denote by V the real vector space having� as a
basis, and by 〈 , 〉 : V × V → R the symmetric bilinear form defined by

〈es, et 〉 =
{
− cos( π

ms t
) if ms t �= +∞,

−1 if ms t = +∞.
For s ∈ S we define the reflection rs : V → V by

rs(x) = x − 2〈x, es〉es, x ∈ V.
Theorem 3.3 (Tits [148]). The mapping s �→ rs , s ∈ S, determines a faithful linear
representation ρ : W → GL(V ).

The above linear representation is called the canonical representation of (W, S).
Note that the bilinear form 〈 , 〉 is invariant under the action of W .

The root system� of (W, S) is defined to be the orbit of� under the action ofW ,
that is,

� = {w · es ; w ∈ W, s ∈ S}.
Let f ∈ �. Write f = ∑

s∈S λses , where λs ∈ R for all s ∈ S. We say that f is a
positive root (resp. a negative root) if λs ≥ 0 (resp. λs ≤ 0) for all s ∈ S. The set of
positive roots (resp. negative roots) is denoted by �+ (resp. by �−). The following
is proved in [28] for finite root systems, but the same proof works in general (see also
[97], [72]).

Proposition 3.4. We have the disjoint union � = �+ ��−.

Let A be a finite set that we call an alphabet. Let A∗ denote the set of finite
sequences of elements ofA that we call words onA. We define an operation onA∗ by

(a1, . . . , ap) · (b1, . . . , bq) = (a1, . . . , ap, b1, . . . , bq).

Clearly, A∗ endowed with this operation is a monoid which is called the free monoid
on A. The unit in A∗ is the empty word ε = ( ).

Each elementw in the Coxeter groupW can be written in the formw = s1s2 . . . sl ,
where s1, s2, . . . , sl ∈ S. If l is as small as possible, then l is called the word length ofw
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and is denoted by l = lgS(w). If w = s1s2 . . . sl , then the word ω = (s1, s2, . . . , sl)
is called an expression of w. If in addition l = lgS(w), then ω is called a reduced
expression of w.

For w ∈ W we set

�w = {f ∈ �+ ; w−1f ∈ �−}.
Then the word length and the root systems are related by the following.

Proposition 3.5 (Bourbaki [28]). We have |�w| = lgS(w) for all w ∈ W .

Let G be a group. A subset S ⊂ G is called a positive generating set of G if it
generates G as a monoid. Let S be a positive generating set of G. for ω ∈ S∗, we
denote by ω the element of G represented by ω. A solution to the word problem for
G is an algorithm which, given ω ∈ S∗, decides whether ω is trivial or not.

We turn now to describe Tits’ solution to the word problem for Coxeter groups.
Let ω,ω′ ∈ S∗. We say that ω is transformable to ω′ by an M-operation of type I

if there exist ω1, ω2 ∈ S∗ and s ∈ S such that

ω = ω1 · (s, s) · ω2 and ω′ = ω1 · ω2.

We say thatω is transformable toω′by anM-operation of type II if there existω1, ω2 ∈
S∗ and s, t ∈ S such that s �= t , ms t �= +∞,

ω = ω1 · prod(s, t : ms t ) · ω2 and ω′ = ω1 · prod(t, s : ms t ) · ω2.

Note that an M-operation of type I shortens the length of the word, but not an M-
operation of type II. An M-operation of type II is reversible, but not an M-operation
of type I. If ω is transformable to ω′ by an M-operation, then ω = ω′.

A word ω is called M-reduced if its length cannot be reduced by means of M-
operations.

Theorem 3.6 (Tits [147]). (1) A wordω ∈ S∗ is reduced if and only if it isM-reduced.
(2) Let ω, ω′ ∈ S∗ be two reduced words. We have ω = ω′ if and only if one can

pass from ω to ω′ with a finite sequence of M-operations of type II.

Now, we introduce a partial order on the Coxeter groupW whose role is of impor-
tance in the study of the associated Artin group and monoid.

For u, v ∈ W , we set u ≤L v if there exists w ∈ W such that v = uw and
lgS(v) = lgS(u)+ lgS(w).

Proposition 3.7 (Bourbaki [28]). (1) Let u, v ∈ W . There exists a unique wo ∈ W
such that wo ≤L u, wo ≤L v, and w ≤L wo whenever w ≤L u and w ≤L v.

(2) Suppose that W is finite. Let u, v ∈ W . There exists a unique wo ∈ W such
that u ≤L wo, v ≤L wo, and wo ≤L w whenever u ≤L w and v ≤L w.
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The elementwo of Proposition 3.7 is denoted bywo = u∧L v, and the elementwo
is denoted by wo = u ∨L v (if it exists). Note that, by the above, (W,≤L) is a lattice
if W is finite. In that case, W has a greatest element which is often denoted by w0.

We finish the subsection with the classification of the spherical type Coxeter graphs.
Recall that, if �1, . . . , �l are the connected components of a Coxeter graph �, then

W� = W�1 ×W�2 × · · · ×W�l .

In particular, � is of spherical type if and only if all the components �1, . . . , �l are of
spherical type. So, we only need to classify the connected Coxeter graphs of spherical
type.

Theorem 3.8 (Coxeter [55], [56]). (1) A Coxeter graph � is of spherical type if and
only if the canonical bilinear form 〈 , 〉 : V × V → R is positive definite.

(2) The connected spherical type Coxeter graphs are the Coxeter graphs listed in
Figure 11.

An n ≥ 1

Bn n ≥ 2

Dn n ≥ 4

E6 E7

E8 F4

H3 H4

I2(p) p ≥ 5

4

4

5 5

p

Figure 11. The connected spherical type Coxeter graphs.
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3.3 Artin monoids

Let � be a Coxeter graph, let (W, S) be the Coxeter system of type �, and let (G,)
be the Artin system of type �. Define the Artin monoid of type � to be the monoid
G+ = G+� presented as a monoid by the generating set  = {σs; s ∈ S} and the
relations

prod(σs, σt : ms t ) = prod(σt , σs : ms t ) for all s, t ∈ S,
s �= t and ms t �= +∞.

Theorem 3.9 (Paris [133]). The natural homomorphism G+� → G� is injective.

Recall the homomorphism θ : G� → W� , σs �→ s. We denote by θ+ : G+� → W�

the restriction of θ to G+� . we define a set-section κ : W� → G+� of θ+ as follows.
Let w ∈ W , and let ω = (s1, s2, . . . , sl) be a reduced expression of w. Then

κ(w) = σs1σs2 . . . σsl .
By Theorem 3.6, the definition of κ(w) does not depend on the choice of the reduced
expression of w.

Observe also that the defining relations of G+� are homogeneous, thus G+� has a
well-defined word length lg : G+� → N, σs1 . . . σsl �→ l. This word length satisfies
the following properties:

• lg(α) = 0 if and only if α = 1;

• lg(αβ) = lg(α)+ lg(β) for all α, β ∈ G+� .
We define partial orders ≤L and ≤R on G+� by

• α ≤L β if there exists γ ∈ G+� such that αγ = β;

• α ≤R β if there exists γ ∈ G+� such that γα = β.
The following is again a direct consequence of Theorem 3.6.

Lemma 3.10. Let u, v ∈ W . We have u ≤L v if and only if κ(u) ≤L κ(v).
The set S = {κ(w);w ∈ W } is called the set of simple elements of G+� . If W is

finite and w0 is the greatest element of W , then κ(w0) is called the Garside element
of G+� and is denoted by � = κ(w0).

The following Theorems 3.11 and 3.12 are key results in the study ofArtin monoids
and groups. They are implicit in the work of Brieskorn and Saito [32], and explicit for
the spherical type Artin groups in the work of Deligne [71]. Complete and detailed
proofs of them can be found in [126].

Theorem 3.11. Let α ∈ G+� . Set

E(α) = {a ∈ S ; a ≤L α}.
Then E(α) has a greatest element. That is, there exists a0 ∈ E(α) such that E(α) =
{a ∈ S; a ≤L a0}.
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For α ∈ G+� we denote by δ(α) the greatest element of E(α).

Theorem 3.12. Let α, β ∈ G+� . Then δ(αβ) = δ(αδ(β)).
Theorems 3.11 and 3.12 have the following consequences whose significance will

become clear in the next section.

Theorem3.13. (1) Letα, β ∈ G+� . There exists a unique γ o ∈ G+� such that γ o ≤L α,
γ o ≤L β, and γ ≤L γ o whenever γ ≤L α and γ ≤L β.

(2) Suppose that � is of spherical type. Let α, β ∈ G+� . There exists a unique
γo ∈ G+� such that α ≤L γo, β ≤L γo, and γo ≤L γ whenever α ≤L γ and β ≤L γ .

The element γ o of Theorem 3.13 is denoted by γ o = α ∧L β, and the element γo
is denoted by γo = α∨L β (if it exists). Note that the same result is valid if we replace
≤L by ≤R .

Proof. We prove (1) by induction on lg(α) + lg(β). By Proposition 3.7 and by
Lemma 3.10, α ∧L β exists if α, β ∈ S.

Let α, β ∈ G+� . Set a = δ(a) ∧L δ(β) (a exists by the above observation). If
a = 1, then we must have γ o = α ∧L β = 1. Suppose a �= 1. Let α′, β ′ ∈ G+�
such that α = aα′ and β = aβ ′. The element α′ ∧L β ′ exists by induction. Then
γ o = a · (α′ ∧L β ′) (the proof of this equality is left to the reader).

Now, we assume that � is of spherical type and turn to prove (2). Let w0 be the
greatest element ofW , and let� = κ(w0) be the Garside element ofG+� . It is shown
in [28] that w−1

0 = w0 and w0Sw0 = S. This implies that � ·  · �−1 = , and,
consequently, there exists a permutation τ : S → S such that �α = τ(α)� for all
α ∈ G+� .

Let α ∈ G+� . Set α = a1a2 . . . ar , where ai = δ(aiai+1 . . . ar ) ∈ S for all
1 ≤ i ≤ r . Using the above observation, it is easily shown that α ≤L �r .

Let α, β ∈ G+� . Set E = {γ ∈ G+� ;α ≤L γ and β ≤L γ }. We have E �= ∅ since,
by the above, it contains an element of the form �r . Let γo be the smallest element
of E (this element exists by (1)). Then γo = α ∨L β.

3.4 Artin groups

We turn now to present a geometrical interpretation of Artin groups which extends
the interpretation of braid groups in term of configuration spaces. We focus our
presentation on spherical type Artin groups, but many of the results stated in this
subsection can be extended in some sense to the other Artin groups.

Let � be a spherical type Coxeter graph, let (W, S) be the Coxeter system of type
�, and let (G,) be the Artin system of type �. Recall the set � = {es; s ∈ S}
of simple roots, the vector space V = ⊕

s∈S Res , and the canonical bilinear form
〈 , 〉 : V × V → R, which, by Theorem 3.8, is positive definite. We assume that W is
embedded in GL(V ) via the canonical representation.
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Let R be the set of reflections in W . For each r ∈ R, let Hr be the hyperplane
of V fixed by r . Then W acts freely on the complement of

⋃
r∈RHr (see [28]).

Complexifying the action, we get an action ofW on VC = C⊗V which is free on the
complement of

⋃
r∈R C⊗Hr . Set

M� = VC \
( ⋃
r∈R

C⊗Hr
)
, N� = M�/W.

By a theorem of Chevalley [49], Shephard, and Todd [144], VC/W is isomorphic to
C
n, thus N� is the complement in C

n of an algebraic set,
( ⋃

r∈R C⊗Hr
)
/W , called

the discriminant of type �.

Theorem 3.14 (Brieskorn [30]). π1(N�) 
 G� .

Note. Infinite Coxeter groups also act as reflection groups on R
n. However, to extend

Theorem 3.14 to these groups we should replace V by the Tits coneU ⊂ V (see [28]),
and VC by (U+ iV ) ⊂ VC. ThenW acts freely on (U+ iV )\( ⋃

r∈R C⊗Hr
) = M� ,

and it was shown by Van der Lek [116] that π1(N�) 
 G� , where N� = M�/W .

An extension of Corollary 2.12 to the spherical type Artin groups is:

Theorem 3.15 (Deligne [71]). Let � be a spherical type Coxeter graph. Then N�
and M� are K(π, 1).

Note. It is an open problem to know whether N� is K(π, 1) if � is not of spherical
type. The answer is yes for the so-called FC-type Artin groups and 2-dimensional
Artin groups [45], and also for few affine type Artin groups (see [47], [38]).

Note. We may replace W by a finite complex reflection group acting on C
n, and M�

byM(W) = C
n \ ( ⋃

r∈RHr
)
, where R is the set of reflections inW , andHr denotes

the hyperplane fixed by r . Here again, the group W acts freely on M(W) and, by
[49] and [144], N(W) = M(W)/W is isomorphic to the complement in C

n of an
algebraic set. It was recently proved by Bessis [15] that N(W) is always K(π, 1). A
classification of the finite complex reflection groups was obtained by Shephard and
Todd [144], and a nice presentation of π1(N(W)) is known for all these groups but
four exceptional cases (see [33], [16]).

4 Garside groups

4.1 Garside monoids

A monoid M is called atomic if there exists a function ν : M → N such that

• ν(α) = 0 if and only if α = 1;

• ν(αβ) ≥ ν(α)+ ν(β) for all α, β ∈ M .
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Such a function ν is called a norm on M . An element α ∈ M is called an atom if it is
indecomposable, that is, if α = βγ , then either β = 1 or γ = 1.

The following is proved in [70].

Lemma 4.1. LetM be an atomic monoid. A subset S ⊂ M generatesM if and only if
it contains all the atoms. In particular,M is finitely generated if and only if it contains
finitely many atoms.

Let M be an atomic monoid. We define on M two partial orders ≤L and ≤R as
follows.

• Set α ≤L β if there exists γ ∈ M such that αγ = β.

• Set α ≤R β if there exists γ ∈ M such that γα = β.

The orders ≤L and ≤R are called the left and right divisibility orders, respectively.
A monoid M is called a Garside monoid if

• M is atomic and finitely generated;

• M is cancelative (that is, if αβγ = αβ ′γ , then β = β ′, for all α, β, β ′, γ ∈ M);

• (M,≤L) and (M,≤R) are lattices;

• there exists an element � ∈ M , called a Garside element, such that the sets
L(�) = {α ∈ M;α ≤L �} and R(�) = {α ∈ M;α ≤R �} are equal and
generate M .

If M is a Garside monoid, then the lattice operations of (M,≤L) (resp. of (M,≤R))
are denoted by ∨L and ∧L (resp. by ∨R and ∧R).

LetM be a monoid. The group of fractions ofM is defined to be the groupG(M)
presented with the generating set M and the relations α · β = γ if αβ = γ in M .
Such a group has the universal property that if ϕ : M → H is a homomorphism and
H is a group, then there exists a unique homomorphism ϕ̂ : G(M) → H such that
ϕ = ϕ̂ � ι, where ι : M → G(M) is the natural homomorphism. Note that the latter
homomorphism ι : M → G(M) is not injective in general.

A Garside group is defined to be the group of fractions of a Garside monoid.

Note. Garside monoids and groups were introduced in [70] in a slightly restricted
sense, and in [67] in the larger sense which is now generally used. This notion
was extended to the notion of quasi-Garside monoids [75], [13], to study some non-
sphericalArtin groups. Quasi-Garside monoids have the same definition as the Garside
monoids except they are not required to be finitely generated. Recently, this notion
was extended to the notion of Garside categories [107], [108], [76], [14], which, in
some sense, has to be considered as a geometric object more than as an algebraic one.
Garside categories are a central concept in Bessis’ solution to theK(π, 1) problem for
complex reflection arrangements (see [15]).

Motivating examples of Garside groups are the Artin groups of spherical type:
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Theorem 4.2. Let� be a spherical type Coxeter graph. ThenG+� is a Garside monoid.
In particular, G� is a Garside group.

Note that Theorem 4.2 is essentially a restatement of Theorem 3.13.
Other interesting examples of Garside groups include all torus link groups (see

[137]) and some generalized braid groups associated to complex reflection groups
(see [15]).

Note. Two different Garside monoids can have the same group of fractions. In par-
ticular, the Artin groups of spherical type are groups of fractions of other Garside
monoids, called dual Artin monoids, introduced by Birman, Ko, and Lee [27] for the
braid groups, and by Bessis [12] for the other ones.

Note. A Garside element is not unique. For instance, if � is a Garside element, then
�k is a Garside element for all k ≥ 1 (see [67]).

We say that a monoid M satisfies the Ore conditions if

• M is cancelative;

• for all α, β ∈ M , there exist α′, β ′ ∈ M such that αα′ = ββ ′.
It is well-known that a monoid which satisfies the Ore conditions embeds in its group
of fractions. On the other hand, a Garside monoid clearly satisfies the Ore conditions.
Thus:

Proposition 4.3. Let M be a Garside monoid. Then the natural homomorphism
ι : M → G(M) is injective.

Let M be a Garside monoid and let G = G(M) be the group of fractions of M .
Then the partial orders ≤L and ≤R can be extended to G as follows.

• Set α ≤L β if α−1β ∈ M .

• Set α ≤R β if βα−1 ∈ M .

One can easily verify that (G,≤L) and (G,≤R) are lattices. This can be used, for
example, to prove the following.

Proposition 4.4. A Garside group is torsion free.

Proof. Let α ∈ G such that αn = 1 for some n ≥ 1. Set β = 1∨L α ∨L · · · ∨L αn−1.
It is easily seen that ≤L is invariant by left multiplication. This implies that αβ = β,
hence α = 1.

Note. LetG be a Garside group. Finite dimensionalK(G, 1) (that is,K(π, 1) spaces
havingG as fundamental group) were described in [69] and [46]. This implies thatG
is torsion free, but also more.
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4.2 Reversing processes and presentations

Let  be a finite set. Let ∗ be the free monoid on . Recall that the elements of
∗ are the finite sequences of elements of that are called words on. Recall that a
congruence on ∗ is defined to be an equivalence relation invariant by left and right
multiplication. If ≡ is a congruence on ∗ and M = (∗/≡), then we denote by
∗ → M , ω �→ ω the natural epimorphism.

Define a complement on  to be a map f :  ×  → ∗ such that f (x, x) = ε
for all x ∈ , where ε denotes the empty word. To a complement f we associate two
monoids:

M
f
L = 〈 | xf (x, y) = yf (y, x) for all x, y ∈ 〉+;

M
f
R = 〈 | f (y, x)x = f (x, y)y for all x, y ∈ 〉+.

For u, v ∈ ∗, we use the notation u ≡fL v (resp. u ≡fR v) to mean that u = v in Mf
L

(resp. in Mf
R ).

Example. Let � be a Coxeter graph and let M = (ms t )s,t∈S be the Coxeter matrix
of �. Suppose that ms t �= +∞ for all s, t ∈ S, s �= t . Let  = {σs; s ∈ S}. Let
f :  ×→ ∗ be the complement defined by

f (σs, σt ) = prod(σt , σs : ms t − 1).

Then G+� = Mf
L .

Suppose we are given a complement f : ×→ ∗. Let−1 = {x−1; x ∈ }
be the set of inverses of elements of . Let ω,ω′ ∈ ( � −1)∗. We say that ω
is f -reversible on the left in one step to ω′ if there exist ω1, ω2 ∈ ( � −1)∗ and
x, y ∈  such that

ω = ω1x
−1yω2 and ω′ = ω1 · f (x, y) · f (y, x)−1 · ω2.

Note that y can be equal to x in the above definition. In that case we have ω =
ω1x
−1xω2 and ω′ = ω1ω2. Also note that ω = ω′ in G(Mf

L ) if ω is f -reversible on
the left in one step to ω′.

Let p ≥ 0. We say that ω is f -reversible on the left in p steps to ω′ if there exists
a sequence ω = ω0, ω1, . . . , ωp = ω′ in ( � −1)∗ such that ωi−1 is f -reversible
on the left in one step to ωi for all 1 ≤ i ≤ p. The property that ω is f -reversible on
the left to ω′ is denoted by ω �→f

L ω
′.

We define the f -reversibility on the right in the same way, replacing subwords of
the form yx−1 by their corresponding words f (x, y)−1 · f (y, x). The property that
ω is f -reversible on the right to ω′ is denoted by ω �→f

R ω
′.

A word ω ∈ ( � −1)∗ is said to be f -reduced on the left (resp. f -reduced on
the right) if it is of the form ω = vu−1 (resp. ω = u−1v) with u, v ∈ ∗.

It is shown in [66] that a reversing process is confluent, namely:
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Proposition 4.5 (Dehornoy [66]). Let f :  ×  → ∗ be a complement, and let
ω ∈ ( � −1)∗. Suppose that there exist p ≥ 0 and an f -reduced word vu−1 on
the left such that ω is f -reversible on the left in p steps to vu−1. Then any sequence
of left f -reversing transformations starting from ω converges to vu−1 in p steps.

Let u, v ∈ ∗. Suppose there exist u′, v′ ∈ ∗ such that u−1v �→f
L v
′(u′)−1. By

Proposition 4.5, the words u′ and v′ are unique. Moreover, it is easily checked that
we also have v−1u �→f

L u
′(v′)−1. In this case we set

u′ = CfL(v, u) and v′ = CfL(u, v).
Similarly, if there exist u′, v′ ∈ ∗ such that vu−1 �→f

R (u′)−1(v′), then we have

uv−1 �→f
R (v

′)−1(u′), u′ and v′ are unique, and we set

u′ = CfR(u, v) and v′ = CfR(v, u).

Lemma 4.6 (Dehornoy [66]). Let f : ×→ ∗ be a complement. Let u, v ∈ ∗.
Suppose that CfL(u, v) and CfL(v, u) exist. Then

u · CfL(u, v) ≡fL v · CfL(v, u).

A complement f : ×→ ∗ is said to be coherent on the left if for all x, y, z ∈
,CfL(f (x, y), f (x, z)) andCfL(f (y, x), f (y, z)) exist and are≡fL-equivalent. Sim-

ilarly, we say that f is coherent on the right if for all x, y, z ∈ ,CfR(f (z, x), f (y, x))

and CfR(f (z, y), f (x, y)) exist and are ≡fR-equivalent.

Theorem 4.7 (Dehornoy, Paris [70], [67]). LetM be a finitely generated monoid and
let  be a finite generating set of M . Then M is a Garside monoid if and only if it
satisfies the following three conditions.

• M is atomic.

• There exist a complementf : ×→ ∗ coherent on the left and a complement
g :  ×→ ∗ coherent on the right such that M = Mf

L = Mg
R .

• There exists an element � ∈ M such that the sets L(�) = {α ∈ M;α ≤L �}
and R(�) = {α ∈ M;α ≤R �} are equal and generate M .

We refer to [70] and [67] for more “algorithmic” conditions to detect a Garside
monoid in terms of complements and presentations, and turn to explain some appli-
cations of the reversing processes.

Let M be a Garside monoid and let G = G(M) be its group of fractions. Let
f :  ×→ ∗ and g :  ×→ ∗ be complements such that M = Mf

L = Mg
R .

First, the complements f and g lead to algorithms:
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Proposition 4.8 (Dehornoy, Paris [70], [67]). (1) The complement f is coherent on
the left, and the complement g is coherent on the right.

(2) Let ω ∈ ( �−1)∗. There exist a (unique) f -reduced word vu−1 on the left,
and a (unique) g-reduced word (u′)−1(v′) on the right, such that ω �→f

L vu
−1 and

ω �→g
R (u

′)−1(v′).

This can be used to solve the word problem:

Proposition 4.9 (Dehornoy, Paris [70], [67]). Let ω ∈ ( � −1)∗. Let u, v ∈ 
such that ω �→f

L vu
−1 (see Proposition 4.8). Then ω = 1 in G = G(M) if and only

if u−1v �→f
L ε, where ε denotes the empty word.

This can be also used to compute the lattice operations of (M,≤L) and (M,≤R).

Proposition 4.10 (Dehornoy, Paris [70], [67]). Let u, v ∈ ∗. Set u′ = CfL(u, v) and

v′ = CfL(v, u). Then u ∨L v is represented by

uu′ ≡fL vv′,
and u ∧L v is represented by

C
g
R(u, C

g
R(v
′, u′)) ≡fL CgR(v, CgR(u′, v′)).

4.3 Normal forms and automatic structures

LetM be a Garside monoid, letG = G(M) be the group of fractions ofM , and let�
be a fixed Garside element of M . Define the set of simple elements to be

S = {a ∈ M ; a ≤L �} = {a ∈ M ; a ≤R �}.
By definition, S is finite and generates M .

Let α ∈ M . Then α can be uniquely written in the form

α = a1a2 . . . al,

where a1, a2, . . . , al ∈ S, and

ai = � ∧L (aiai+1 . . . al) for all 1 ≤ i ≤ l.
Such an expression of α is called the normal form of α.

Let α ∈ G. Then α can be written in the form α = β−1γ , where β, γ ∈ M (see
Proposition 4.8, for instance). Obviously, we can also assume that β ∧L γ = 1. In
that case β and γ are unique. Let β = b1b2 . . . bp be the normal form of β and let
γ = c1c2 . . . cq be the normal form of γ . Then the expression

α = b−1
p . . . b−1

2 b−1
1 c1c2 . . . cq

is called the normal form of α.
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There is another notion of normal form for the elements of G, called �-normal
form, which is used, in particular, in several solutions to the conjugacy problem forG.
It is defined as follows.

It is easily seen that there exists a permutation τ : S → S such that�a�−1 = τ(a)
for all a ∈ S. Moreover, for all a ∈ S, there exists a∗ ∈ S such that a∗a = �

(i.e. a−1 = �−1a∗). These two observations show that every α ∈ G can be written in
the form α = �pβ, where p ∈ Z and β ∈ M . One can choose p to be maximal, and,
in that case, β is unique. Let b1b2 . . . br be the normal form of β. Then the expression

α = �pb1b2 . . . br

is called the �-normal form of α.

Definition 4.11. A finite state automaton is a quintuple A = (Q,S, T ,A, q0), where

• Q is a finite set, called the set of states;

• S is a finite set, called the alphabet;

• T is a map T : Q× S → Q, called the transition function;

• A is a subset of Q, called the set of accepted states;

• q0 is an element of Q, called the initial state.

The iterated transition function is the map T ∗ : Q × S∗ → Q defined by induction
on the length of the second component as follows.

T ∗(q, ε) = q,
T ∗(q, x1x2 . . . xl) = T (T ∗(q, x1 . . . xl−1), xl).

The set
LA = {ω ∈ S∗ ; T ∗(q0, ω) ∈ A}

is called the language recognized by A. A regular language is a language recognized
by a finite state automaton.

LetG be a group generated by a finite set S. Define the word length of an element
α ∈ G, denoted by lgS(α), to be the shortest length of a word in (S � S−1)∗ which
represents α. The distance between two element α, β ∈ G, denoted by dS(α, β), is
the length of α−1β.

Let L ⊂ (S�S−1)∗ be a language. We say that L representsG if every element of
G is represented by an element of L. We say, furthermore, that L has the uniqueness
property if every element of G is represented by a unique element of L. We say that
L is symmetric if L−1 = L, where L−1 = {ω−1;ω ∈ L}. We say that L is geodesic
if lg(ω) = lgS(ω) for all ω ∈ L. Let ω = xε1

1 . . . x
εl
l ∈ (S � S−1)∗. For t ∈ N we set

ω(t) =

⎧⎪⎨
⎪⎩

1 if t = 0,

x
ε1
1 . . . x

εt
t if 1 ≤ t ≤ l,

ω if t ≥ l.



Chapter 11. Braid groups and Artin groups 419

Let c be a positive integer. We say that L has the c-fellow traveler property if

dS(u(t), v(t)) ≤ c · dS(u, v)

for all u, v ∈ L and all t ∈ N.
A group G is said to be automatic if there exist a finite generating set S ⊂ G, a

regular language L ⊂ (S �S−1)∗, and a constant c > 0, such that L representsG and
has the c-fellow traveler property. If, in addition, L−1 has also the c-fellow traveler
property, then G is said to be biautomatic. We say that G is fully biautomatic if L is
symmetric, and that G is geodesically automatic if L is geodesic.

Biautomatic groups have many attractive properties. For instance, they have solu-
ble word and conjugacy problems, and they have quadratic isoperimetric inequalities.
We refer to [79] for a general exposition on the subject.

Theorem 4.12 (Charney [43], Dehornoy, Paris [70]). LetM be a Garside monoid, and
let G = G(M) be the group of fractions of M . Let L ⊂ (S � S−1)∗ be the language
of normal forms. Then L is regular, represents G, has the uniqueness property, has
the 5-fellow traveler property, is symmetric, and is geodesic.

Corollary 4.13. Garside groups are fully geodesically biautomatic.

Note. The language of �-normal forms is also regular and satisfies some fellow
traveler property, and the language of inverses of �-normal forms satisfies the same
fellow traveler property. So,�-normal forms determine another biautomatic structure
onG. This was proved by Thurston [79] for the braid groups and by Charney [42] for
all the spherical type Artin groups, and the same proof works in general for all Garside
groups.

4.4 The conjugacy problem

LetG be a group and let S be a finite generating set ofG. A solution to the conjugacy
problem forG is an algorithm which, for given u, v ∈ (S � S−1)∗, decides whether u
and v are conjugate or not, where, for w ∈ (S � S−1)∗, w denotes the element of G
represented by w.

The first solution to the conjugacy problem for the braid groups was obtained by
Garside [85]. Garside’s algorithm was improved by El-Rifai and Morton [78], and this
improvement was extended to Garside groups by Picantin [136]. Picantin’s algorithm
was improved by Franco and González-Meneses [81], then by Gebhardt [86], and now
by Gebhardt and González-Meneses [87]. The algorithm that we present here is not
the optimal one, but is probably the simplest one. It is based on the algorithm of [87].

Note. In addition to the above mentioned papers, there are several recent papers where
the algorithms are analyzed, in particular to obtain the best possible complexity (see
[22], [23], [24], [90], [115], [113], [114]). These analyses often lead to new and
unexpected results on braid groups and, more generally, on Garside groups.
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Let M be a Garside monoid, let G = G(M) be its group of fractions, let � be a
fixed Garside element, and let S = {a ∈ M; a ≤L �} be the set of simple elements.
Recall that, for every a ∈ S, there exists a unique a∗ ∈ S such that aa∗ = �. Recall
also that there exists a permutation τ : S → S such that�a�−1 = τ(a) for all a ∈ S.

Let α ∈ G. Let α = �pa1a2 . . . ar be the �-normal form of α. The number p is
called the infimum of α and is denoted by inf(α), p + r is called the supremum and
is denoted by sup(α), and r is called the canonical length and is denoted by ‖α‖.
The above terminology comes from the fact that p is the greatest number n such that
�n ≤L α, and p + r is the smallest number n such that α ≤L �n. The (simple)
element τp(a1) is called the initial factor of α and is denoted by i(α), and ar is called
the terminal factor and is denoted by t (α). It is easily checked that i(α−1) = t (α)∗.
Let

π(α) = i(α) ∧L t (α)∗ = i(α) ∧L i(α−1).

Define the sliding of α to be

S(α) = π(α)−1 · α · π(α).
Observe that ‖S(α)‖ ≤ ‖α‖.

For α, β ∈ G, we use the notation α ∼ β to mean that α is conjugate to β. Let
α ∈ G. Define the sliding circuits of α to be

SC(α) = {β ∈ G ; β ∼ α and Sm(β) = β for some m ≥ 1}.
It is shown in [87] that the elements of SC(α) have minimal canonical length in the
conjugacy class of α, but not all the elements of the conjugacy class of minimal
canonical length belong to SC(α).

Clearly, if α ∼ β, then SC(α) = SC(β), and if α �∼ β, then SC(α) ∩ SC(β) = ∅.
So, our solution to the conjugacy problem for G follows the following stages.

Input. Two elements α, β ∈ G.

Stage 1. Calculate an element α0 ∈ SC(α) and an element β0 ∈ SC(β).

Stage 2. Calculate the whole set SC(α) = SC(α0) from α0.

Output. YES if β0 ∈ SC(α), and NO otherwise.

In order to find an element of SC(α) we use the following which is easy to prove.

Lemma 4.14. Let α ∈ G. There exists m, k ≥ 1 such that Sm+k(α) = Sk(α). In
particular, Sk(α) ∈ SC(α).

The key result for Stage 2 is the following.

Theorem 4.15 (Gebhardt, González-Meneses [87]). Let α, β ∈ G and let γ1, γ2 ∈ M .
If β, γ−1

1 βγ1, and γ−1
2 βγ2 are elements of SC(α), then (γ1 ∧L γ2)

−1β(γ1 ∧L γ2) is
also an element of SC(α).
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Corollary 4.16. Let α, β, γ ∈ G such that β and γ−1βγ are elements of SC(α).
Let γ = �pc1c2 . . . cr be the �-normal form of γ . Set β0 = �−pβ�p, and βi =
c−1
i βi−1ci for 1 ≤ i ≤ r . Then βi ∈ SC(α) for all 0 ≤ i ≤ r .

Proof. We prove thatβi ∈ SC(α) by induction on i. It is easily seen that, ifβ ∈ SC(α),
then �−1β� ∈ SC(α). In particular, we have β0 = �−pβ�p ∈ SC(α).

Let i > 0. By induction, βi−1 ∈ SC(α). By the above observation, we have
�−1βi−1� ∈ SC(α). On the other hand, we have

γ−1βγ = (cici+1 . . . cr )
−1βi−1(cici+1 . . . cr ) ∈ SC(α).

By definition of a normal form, we have � ∧L (cici+1 . . . cr ) = ci . We conclude by
Theorem 4.14 that βi = c−1

i βi−1ci ∈ SC(α).

From Corollary 4.15 we obtain the following which, together with Lemma 4.13,
provides an algorithm to compute SC(α).

Corollary 4.17. Let α ∈ G. Let �α be the graph defined by the following data.

• The set of vertices of �α is SC(α).

• Two vertices β, β ′ ∈ SC(α) are joined by an edge if there exists a ∈ S such that
β ′ = a−1βa.

Then �α is connected.

5 Cohomology and the Salvetti complex

5.1 Cohomology

Let� be a Coxeter graph, let (W�, S) be the Coxeter system of type�, and let (G�,)
be the Artin system of type �. Let �ab be the graph defined by the following data.

• S is the set of vertices of �;

• two vertices s, t ∈ S are joined by an edge if ms t �= +∞ and ms t is odd.
The following is easy to prove from the presentation of G� .

Proposition 5.1. Let d be the number of connected components of �ab. Then the
abelianization ofG� is a free abelian group of rank d. In particular,H 1(G�,Z) 
 Z

d .

Now, assume that� is of spherical type, and recall the spaceN� defined in Subsec-
tion 3.4. Except for Proposition 5.1, all the known results on the cohomology of G�
use the fact thatπ1(N�) = G� (see Theorem 3.14), and thatN� is aK(π, 1) space (see
Theorem 3.15). Recall that these two results imply that H ∗(G�,A) = H ∗(N�,A)
for any G�-module A.

In [4] Arnol’d established the following properties on the cohomology of braid
groups.
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Theorem 5.2 (Arnol’d [4]). Let n ≥ 2.
(1) H 0(Bn,Z) = H 1(Bn,Z) = Z, Hq(Bn,Z) is finite for all q ≥ 2, and

Hq(Bn,Z) = 0 for all q ≥ n.

(2) If n is even, then Hq(Bn,Z) = Hq(Bn+1,Z) for all q ≥ 0.

(3) Hq(Bn,Z) = Hq(B2q−2,Z) for all q ≤ 1
2n+ 1.

The study of the cohomology of the braid groups was continued by Fuks [84] who
calculated the cohomology of Bn with coefficients in F2 = Z/2Z. Let B∞ = lim−→Bn,
where the limit is taken relative to the natural embeddings Bn ↪→ Bn+1, n ≥ 2.

Theorem 5.3 (Fuks [84]). (1) H ∗(B∞,F2) is the exterior F2-algebra generated by
{am,k;m ≥ 1 and k ≥ 0} where deg am,k = 2k(2m − 1).

(2) The natural embedding Bn ↪→ B∞ induces a surjective homomorphism
H ∗(B∞,F2)→ H ∗(Bn,F2) whose kernel is generated by the monomials

am1,k1am2,k2 . . . amt ,kt

such that
2m1+...mt+k1+···+kt > n.

Later on, the cohomology with coefficients in Fp = Z/pZ (where p is an odd
prime number) and the cohomology with coefficients in Z were calculate by Cohen
[53], Segal [143], and Vaı̌nšteı̌n [149].

Theorem5.4 (Cohen [53], Segal [143],Vaı̌nšteı̌n [149]). (1)H ∗(B∞,Fp) is the tensor
product of a polynomial algebra generated by {xi; i ≥ 0}, where deg xi = 2pi+1− 2,
and an exterior algebra generated by {yj ; j ≥ 0}, where deg yj = 2pj − 1.

(2) The natural embedding Bn ↪→ B∞ induces a surjective homomorphism
H ∗(B∞,Fp)→ H ∗(Bn,Fp), whose kernel is generated by the monomials

xi1xi2 . . . xis yj1yj2 . . . yjt

such that
2(pi1+1 + · · · + pis+1 + pj1 + · · · + pjt ) > n.

Let β2 : H ∗(Bn,F2)→ H ∗(Bn,F2) be the homomorphism defined by

β2(am,k) = am+1,0am,1 . . . am,k−1.

For an odd prime number p, let βp : H ∗(Bn,Fp) → H ∗(Bn,Fp) be the homomor-
phism defined by

βp(xi) = yi+1, βp(yj ) = 0.

Theorem 5.5 (Cohen [53], Vaı̌nšteı̌n [149]). Let q ≥ 2. Then

Hq(Bn,Z) =
⊕
p

βp(H
q−1(Bn,Fp)),

where the sum is over all primes p.
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The integral cohomology of the Artin groups of type B and D were calculated by
Goryunov [91] in terms of the cohomology groups of the braid groups.

Theorem 5.6 (Goryunov [91]). (1) Let n ≥ 2, and let q ≥ 2. Then

Hq(GBn,Z) =
n⊕
i=0

Hq−i (Bn−i ,Z).

(2) Let n ≥ 4, and let q ≥ 2. Then

Hq(GDn,Z) = Hq(Bn,Z)⊕
( +∞⊕
i=0

Ker γ q−2i
n−2i

)

⊕
( +∞⊕
j=0

Hq−2j−3(Bn−3j−3,F2)
)
,

where, for k ≥ 2 and j ≥ 0, γ jk : Hj(Bk,Z)→ Hj(Bk−1,Z) denotes the homomor-
phism induced by the inclusion Bk−1 ↪→ Bk .

Finally, the integral cohomology of the remainder irreducibleArtin groups of spher-
ical type were calculate by Salvetti in [142].

Theorem 5.7 (Salvetti [142]). The integral cohomology of the Artin groups of type
I2(p) (p = 2q ≥ 5), H3, H4, F4, E6, E7, and E8 is given in the tables below.

H 0 H 1 H 2 H 3 H 4

I2(2q) Z Z
2

Z 0 0
I2(2q + 1) Z Z 0 0 0

H3 Z Z Z Z 0
H4 Z Z 0 Z× Z2 Z

F4 Z Z
2

Z
2

Z
2

Z

E6 Z Z 0 Z2 Z2

E7 Z Z 0 Z2 Z2 × Z2

E8 Z Z 0 Z2 Z2

H 5 H 6 H 7 H 8

E6 Z6 Z3 0 0
E7 Z6 × Z6 Z3 × Z6 × Z Z 0
E8 Z2 × Z6 Z3 × Z6 Z2 × Z6 × Z Z

Cohomology of the spherical type Artin groups.
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Note. It is a direct consequence of [140] that N� has the same homotopy type as a
CW-complex of dimension n, where n = |S|. This implies that the cohomological
dimension of G� is ≤ n, and, therefore, that Hq(G�,Z) = 0 for all q > n.

Note. Recall the spaceM� of Subsection 3.4. The cohomologyH ∗(M�,Z)was calcu-
late by Brieskorn in [31]. In particular,H ∗(M�,Z) is torsion free andHn(M�,Z) �= 0.
Let CG� be the kernel of the canonical epimorphism θ : G� → W� . By [71] we
have Hn(M�,Z) = Hn(CG�,Z), thus, by the above, cd(G�) = cd(CG�) ≥ n,
where cd(G�) denotes the cohomological dimension of G� . We already know that
cd(G�) ≤ n, thus cd(G�) = n.

Note. The ring structure ofH ∗(G�,Z), where � is a Coxeter graph in the list of The-
orem 5.7, was calculated in [111]. Some cohomologies with twisted coefficients were
also considered. An interesting case is the cohomology over the module of Laurent
polynomials Q[q±1] (resp. Z[q±1]), because it determines the rational (resp. integral)
cohomology of the Milnor fiber of the discriminant of type � (see [36]). For the case
� = An (i.e. G� is the braid group Bn+1), the Q[q±1]-cohomology was calculated by
several people in several ways (see [82], [122], [52], [61]), and the Z[q±1]-cohomology
was calculated by Callegaro in [37]. The Q[q±1]-cohomology for the other spherical
type Artin groups was calculated in [62]. The Z[q±1]-cohomology for the excep-
tional cases was calculated in [39], and the top Z[q±1]-cohomology for all cases was
calculated in [64].

Note. The cohomology of the non-spherical Artin groups is badly understood. Some
calculations for the type Ãn were done in [38].

We refer to [150] for a more detailed exposition on the cohomology of the braid
groups and the Artin groups of spherical type, and turn to present the Salvetti complex
(of a real hyperplane arrangement). This is the main tool in Salvetti’s calculations of
the cohomology of Artin groups (see [142]), but it can be used for other purposes. For
instance, it can be also used to prove Theorems 3.14 and 3.15 (see [141] and [131]),
and to produce a free resolution of Z by Z[G�]-modules (see Theorem 5.15).

5.2 Salvetti complex

Define a (real) hyperplane arrangement to be a finite family A of linear hyperplanes
of R

n. For every H ∈ A we denote by HC the hyperplane of C
n having the same

equation as H (i.e. HC = C⊗H ), and we set

M(A) = C
n \

( ⋃
H∈A

HC

)
.

Note that M(A) is an open connected subvariety of C
n.

The arrangement A subdivides R
n into facets. We denote by F (A) the set of all

facets. The support of a facet F ∈ F (A) is the linear subspace 〈F 〉 spanned by F .
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We denote by F the closure of a facet F . We order F (A) by F ≤ G if F ⊂ G. The
set F (A) has a unique minimal element:

⋂
H∈AH . The maximal elements of F (A)

are the facets of codimension 0, and they are called chambers. The set of all chambers
is denoted by C(A).

Set
X = {(F, C) ∈ F (A)× C(A) ; F ≤ C}.

We partially order X as follows. For F ∈ F (A)we set AF = {H ∈ A;H ⊃ F }. For
F ∈ F (A) and C ∈ C(A) we denote by CF the chamber of AF which contains C.
We set

(F1, C1) ≤ (F2, C2) if F1 ≤ F2 and (C1)F2 = (C2)F2 .

(See Figure 12.)

F2

C2

C1

F1 (C1)F2 = (C2)F2

〈F2〉

Figure 12. Order in X.

Define the Salvetti complex Sal(A) of A to be the (geometric realization of the) flag
complex of (X,≤). That is, to every chainX0 < X1 < · · · < Xd in X corresponds a
simplex �(X0, X1, . . . , Xd) of Sal(A), and every simplex of Sal(A) is of this form.

Theorem 5.8 (Salvetti [140]). The simplicial complex Sal(A) is homotopy equivalent
to M(A).

We turn now to describe a cellular decomposition of Sal(A) which is the version
which is usually used in the literature.

Without loss of generality, we can and do assume that A is essential, that is,⋂
H∈AH = {0}. Consider the unit sphere S

n−1 = {x ∈ R
n; ‖x‖ = 1}. The

arrangement A determines a cellular decomposition of S
n−1: to each facet F ∈

F (A) \ {0} corresponds the open cell F ∩ S
n−1, and each cell is of this form. This

cellular decomposition is regular in the sense that the closure of a cell is a closed
disk. Hence, one can consider the barycentric subdivision. For each facet F ∈
F (A) \ {0} we fix a point x(F ) ∈ F ∩ S

n−1. To each chain {0} �= F0 < F1 <

· · · < Fd in F (A) \ {0} corresponds a simplex�(F0, F1, . . . , Fd) whose vertices are
x(F0), x(F1), . . . , x(Fd), and every simplex of S

n−1 is of this form. So, the simplicial
decomposition of S

n−1 is the flag complex of (F (A) \ {0},≤).
We extend the above simplicial decomposition of S

n−1 to a simplicial decomposi-
tion of the n-disk B

n = {x ∈ R
n; ‖x‖ ≤ 1}, adding a single vertex x(0) = 0. That
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is, we view B
n as the cone of S

n−1. Now, to any chain F0 < F1 < · · · < Fd in
F (A) corresponds a simplex �(F0, F1, . . . , Fd) of B

n (here we may have F0 = 0),
and every simplex of B

n is of this form. Note that this simplicial decomposition of B
n

is the flag complex of (F (A),≤).
Let Fb ∈ F (A) be a facet. It can be easily checked that the union of the sim-

plices of the form �(F0, F1, . . . , Fd) with Fb = F0 < F1 < · · · < Fd is a closed
disk whose dimension is equal to codim Fb. Its interior is denoted by U(Fb). So,
the set {U(F);F ∈ F (A)} forms a cellular decomposition of B

n called the dual
decomposition.

Example. Let A be a collection of 3 lines in R
2 (see Figure 13). The poset F (A) con-

tains 6 chambers, 6 facets of dimension 1 (half-lines), and 0. The dual decomposition
of B

2 = D has 6 vertices, 6 edges, and one 2-cell.

Figure 13. A dual decomposition.

LetXb = (Fb, Cb) be contained in X. We denote byU(Xb) the union of the simplices
�(X0, X1, . . . , Xd) of Sal(A) such that Xb = X0 < X1 < · · · < Xd . One can show
(with some effort) that, for every F ≥ Fb, there exists a unique chamber C ∈ C(A)

such that F ≤ C and (Fb, Cb) ≤ (F, C). This implies that U(Xb) is homeomorphic
to U(Fb) via the map (F, C) �→ x(F ), Fb ≤ F . Hence, U(Xb) is a closed disk
whose dimension is equal to codim Fb. We denote by U(Xb) the interior of U(Xb).
So, {U(X);X ∈ X} forms a (regular) cell decomposition of Sal(A).

0-skeleton. For C ∈ C(A), we set ω(C) = U(C,C) = U(C,C). Then the 0-skel-
eton of Sal(A) is

Sal0(A) = {ω(C) ; C ∈ C(A)}.

1-skeleton. Let F ∈ F (A) be a facet of codimension 1. There are exactly two
chambers C,D ∈ C(A) such that F ≤ C and F ≤ D. Then there are two edges,
U(F,C) and U(F,D), joining ω(C) and ω(D) in the 1-skeleton of Sal(A) (see
Figure 14). We use the convention that U(F,C) is endowed with an orientation
which goes from ω(C) to ω(D).
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C

F

D
ω(C)

U(F,D)

U(F,C)

ω(D)

Figure 14. 1-skeleton of Sal(A).

2-skeleton. Let Fb ∈ F (A) be a facet of codimension 2, and letCb ∈ C(A) such that
Fb ≤ Cb. Let C0 = D0 = Cb,C1, . . . , Cl = Dl, . . . ,D1 be the chambers C ∈ C(A)
such that Fb ≤ C, arranged like in Figure 15. Let F1, . . . , Fl,G1, . . . ,Gl be the
facets F ∈ F (A) of codimension 1 such that Fb ≤ F , arranged like in Figure 15. Set
ai = U(Fi, Ci−1) and bi = U(Gi,Di−1) for 1 ≤ i ≤ l. Then U(Fb, Cb) is a 2-disk
whose boundary is (a1a2 . . . al)(b1b2 . . . bl)

−1.

Fb

F1

F2

Fl−1

Fl G1

G2

Gl−1

Gl

Cb

C1

Cl−1

Cl D1

Dl−1

ω(Cb)ω(Cl)
a1

a2al−1

al

b1

b2
bl−1

bl
U(Fb, Cb)

Figure 15. 2-skeleton of Sal(A).

Let � be a Coxeter graph of spherical type, let (W�, S) be the Coxeter system of type
�, and let (G�,) be the Artin system of type �. Recall the set � = {es; s ∈ S}
of simple roots, the linear space V = ⊕

s∈S Res , and the canonical bilinear form
〈 , 〉 : V × V → R. Recall also from Theorem 3.8 that 〈 , 〉 is positive definite, and
thatW = W� can be viewed as a finite subgroup ofO(V ) = O(V, 〈 , 〉) generated by
reflections.

Let A� denote the set of reflecting hyperplanes of W . Then M� = M(A�), the
groupW� acts freely onM� ,N� = M�/W� , and π1(N�) = G� (see Subsection 3.4).

Fix a (base) chamber Cb ∈ C(A�). A hyperplane H ∈ A� is called a wall of Cb
if codim(Cb ∩H) = 1. The following is proved in [28].

Proposition 5.9. (1) Cb is a simplicial cone.
(2) LetH1, . . . , Hn be the walls of Cb, and, for 1 ≤ i ≤ n, let si be the orthogonal

reflection with respect toHi . Then, up to conjugation, S = {s1, . . . , sn} is the Coxeter
generating set of W .
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For T ⊂ S we denote by WT the subgroup of W generated by T , and by �T the
full subgraph of � spanned by T . It is a well-know fact (see [28], for example) that
(WT , T ) is the Coxeter system of type �T . The Coxeter complex of (W, S) is defined
to be the set

Cox� = {wWT ; T ⊂ S and w ∈ W }
ordered by the reverse inclusion (i.e. w1WT1 ≤ w2WT2 if w1WT1 ⊃ w2WT2 ).

We fix a base chamber Cb and we take S = {s1, . . . , sn} as in Proposition 5.9. For
each s ∈ S we denote by Hs the hyperplane fixed by s. So, {Hs; s ∈ S} is the set
of walls of Cb. Since Cb is a simplicial cone, for every T ⊂ S there exists a unique
facet F(T ) ∈ F (A�) such that F(T ) ≤ Cb and 〈F(T )〉 = ⋂

s∈T Hs . The proof of
the following can be found in [28].

Proposition 5.10. The map

ψ : Cox� → F (A�),

wWT �→ wF(T )

is well-defined and is an isomorphism of ordered sets.

Now, the following Lemmas 5.11 and 5.12 are used to describe the poset X in
terms of Coxeter complexes.

Lemma 5.11 (Bourbaki [28]). Let T ⊂ S and w ∈ W . Then wWT has a smallest
element u for the order ≤L (defined in Subsection 3.2). That is, for all w′ ∈ wWT

there exists a unique v′ ∈ WT such that w′ = uv′ and lgS(w
′) = lgS(u)+ lgS(v

′).

The smallest element ofwWT is denoted by u = minT (w), and such an element is
called T -minimal. The set of T -minimal elements is denoted by Min(T ). Forw ∈ W ,
we denote by πT (w) the element v ∈ WT such that w = minT (w) · v.

The proof of the following is left to the reader.

Lemma 5.12. Let Cb be a base chamber, let T ⊂ S, and let F = F(T ). Let
w1, w2 ∈ W . We have (w1Cb)F = (w2Cb)F if and only if πT (w1) = πT (w2).

Set
Ĉox� = {(T ,w) ; w ∈ W and T ⊂ S}.

Let ≤ be the partial order on Ĉox� defined by

(T1, w1) ≤ (T2, w2) if T1 ⊃ T2, minT1(w1) = minT1(w2),

and πT2(w1) = πT2(w2).

Note that the conditions “T1 ⊃ T2 and minT1(w1) = minT1(w2)” are equivalent to the
condition w1WT1 ⊃ w2WT2 , and, by Lemma 5.12, the condition πT2(w1) = πT2(w2)

is equivalent to the condition (w1Cb)F(T2) = (w2Cb)F(T2). So:
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Theorem 5.13. The map

ψ̂ : Ĉox� → X(A�),

(T ,w) �→ (wF(T ),wCb)

is well-defined and is an isomorphism of posets.

For (T ,w) ∈ Ĉox� we set U(T ,w) = U(ψ̂(T ,w)). So, {U(T ,w); (T ,w) ∈
Ĉox�} is a cellular decomposition of Sal(A�). Moreover, the dimension of U(T ,w)
is |T | for all (T ,w) ∈ Ĉox� .

The Coxeter group W acts on Ĉox� by

u · (T ,w) = (T , uw) for (T ,w) ∈ Ĉox� and u ∈ W.
It turns out that this action preserves the order of Ĉox� and induces a cellular action
on Sal(A�) defined by

u · U(T ,w) = U(T , uw) for (T ,w) ∈ Ĉox� and u ∈ W.
Theorem 5.14 (Salvetti [142]). There exists an embedding Sal(A�) ↪→ M� and a
(strong) retracting deformation of M� onto Sal(A�) that are equivariant under the
action of W . In particular, there exists an embedding Sal(A�)/W ↪→ M�/W = N�
and a (strong) retracting deformation of N� onto Sal(A�)/W .

To each T ⊂ S corresponds a unique cell UN(T ) of Sal(A�)/W of dimension
|T |. This cell is the orbit of U(T ,w) for all w ∈ W . Every cell of Sal(A�)/W is of
this form.

The 0-skeleton of Sal(A�)/W contains a unique vertex, ωN = UN(∅). For every
s ∈ S there is an edge UN(s) in Sal(A�)/W and each edge is of this form. For every
pair {s, t} ⊂ S there is a 2-cell UN(s, t) in Sal(A�)/W whose boundary is

prod(UN(s), UN(t) : ms t ) · prod(UN(t), UN(s) : ms t )−1,

and every 2-cell is of this form. Note that the 2-skeleton of Sal(A�)/W is equal to the
2-cell complex associated to the standard presentation ofG� . This gives an alternative
proof to Theorems 2.2 and 3.14.

For 0 ≤ q ≤ |S|, set

Cq(G�) =
⊕
T⊂S
|T |=q

Z[G�] · ET ,

the free Z[G�]-module freely spanned by {ET ; T ⊂ S and |T | = q}. We fix a total
order S = {s1, . . . , sn} on S and we define d : Cq(G�)→ Cq−1(G�) as follows. Let
T = {si1, . . . , siq } ⊂ S, i1 < · · · < iq . Then

dET =
q∑
j=1

(−1)j−1
( ∑

u∈WT
u∈Min(T \{sij })

(−1)lgS(u)κ(u)
)
· ET \{sij },
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where κ : W → G� is the set-section of the canonical epimorphism θ : G� → W

defined in Subsection 3.3.

Theorem 5.15 (De Concini, Salvetti [63], Squier [145]). The complex (C∗(G�), d)
is a free resolution of Z by Z[G�]-modules.

Note. Squier’s proof of Theorem 5.15 does not use the Salvetti complexes at all and
is independent from the proof of De Concini and Salvetti.

6 Linear representations

The existence (or non-existence) of faithful linear representations of the braid groups
was one of the major problems in the field. This problem was solved by Bigelow
[17] and Krammer [106] in 2000. Their representation, which is known now as the
LKB representation, was right afterwards extended to the Artin groups of type Dn
(n ≥ 4) and Ek (k = 6, 7, 8) by Digne [74], Cohen, and Wales [51], and to all Artin
groups of small type in [133]. The representations of Digne, Cohen and Wales were
proved to be faithful. Hence, since any spherical type Artin group embeds in a direct
product of Artin groups of type An (n ≥ 1), Dn (n ≥ 4), and Ek (k = 6, 7, 8) (see
[57]), any Artin group of spherical type is linear. The extension to the non-spherical
type Artin groups gives rise to a linear representation over an infinite dimensional
vector space, so it cannot be used for proving that these groups are linear. However,
these representations are useful tools to study the non-spherical type Artin groups. In
particular, they are the main tool in the proof of Theorem 3.9.

In Subsection 6.1 we present the algebraic approach to the LKB representations as
constructed in [133] for the Artin groups of small type. Subsection 6.2 is dedicated to
the topological construction of the LKB representations. Curiously, this topological
point of view is known only for the braid groups.

6.1 Algebraic approach

Let � be a Coxeter graph, letM = (ms t )s,t∈S be the Coxeter matrix of �, let (W�, S)

be the Coxeter system of type �, let (G�,) be the Artin system of type �, and let
G+� be the Artin monoid of type �.

We say that � is of small type if ms t ≤ 3 for all s, t ∈ S, s �= t , and we say that �
is without triangle if there is no triple {s, t, r} in S such that ms t = mt r = mr s = 3.
We assume from now on that � is of small type and without triangle.

Recall from Subsection 3.2 the set � = {es; s ∈ S} of simple roots, the space
V =⊕

s∈S Res , the canonical bilinear form 〈 , 〉 : V × V → R, and the root system
� = {wes; s ∈ S and w ∈ W }. Recall also that we have the disjoint union � =
�+ � �−, where �+ is the set of positive roots and �− is the set of negative roots
(see Proposition 3.4).
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Set E = {uf ; f ∈ �+} an abstract set in one-to-one correspondence with�+, and
K = Q(x, y). Note that E is finite if and only if � is of spherical type. We denote by
V the K-vector space having E as a basis.

For all s ∈ S we define a linear transformation ϕs : V → V by

ϕs(uf ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if f = es,
uf if 〈es, f 〉 = 0,

y · uf−aes if 〈es, f 〉 = a > 0 and f �= es,
(1− y) · uf + uf+aes if 〈es, f 〉 = −a < 0.

The following is easy to prove.

Lemma 6.1. The mapping σs �→ ϕs , s ∈ S, induces a homomorphism of monoids
ϕ : G+� → End(V).

For all s ∈ S and all f ∈ �+ we choose a polynomial T (s, f ) ∈ Q[y] and we
define �s : V → V by

�s(uf ) = ϕs(uf )+ x · T (s, f ) · ues .
Now, we have:

Theorem 6.2 (Paris [133]). There exists a choice of polynomials T (s, f ), s ∈ S
and f ∈ �+, such that the mapping σs �→ �s , s ∈ S, induces a homomorphism
� : G+� → GL(V).

Theorem 6.3 (Paris [133]). The above defined homomorphism � : G+� → GL(V) is
injective.

Corollary 6.4 (Paris [133]). The natural homomorphism ι : G+� → G� is injective.

Proof. SinceG� is the group of fractions ofG+� , there exists a unique homomorphism
�̂ : G� → GL(V) such that � = �̂ � ι. Since � is injective, we conclude that ι is
also injective.

Corollary 6.5 (Bigelow [17], Krammer [106], Digne [74], Cohen, Wales [51]). Sup-
pose that � is of spherical type. Let �̂ : G� → GL(V) be the homomorphism induced
by �. Then �̂ is injective.

Proof. Let α ∈ Ker �̂. By Proposition 4.8, α can be written in the form α = β−1γ ,
with β, γ ∈ G+� . We have 1 = �̂(α) = �(β)−1�(γ ), thus �(β) = �(γ ). Since �
is injective, it follows that β = γ , thus α = β−1γ = 1.

Note. It is shown in [133] that any Artin monoid G+� can be embedded in an Artin
monoidG+�, where� is of small type without triangle. Moreover, if � is of spherical
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type, then � can be chosen to be of spherical type (see also [57], [89], [58], [41]).
So, Corollary 6.4 implies that ι : G+� → G� is injective for all Coxeter graphs �, and
Corollary 6.5 implies that all the Artin groups of spherical type are linear.

Note. It is shown in [121] that if � is of typeAn,Dn, Ek (k = 6, 7, 8), then the image
of �̂ is Zariski dense in GL(V). In particular, this shows that �̂ is irreducible (see
also [155], [120], [50]).

Note. The proof of Theorem 6.3 given in [133] is largely inspired by Krammer’s proof
of the same theorem for the braid groups [106]. A new, short, and elegant proof can
be found now in [95].

6.2 Topological approach

Now, we give a topological interpretation of the representation �̂ : G� → GL(V) in
the case � = An−1, that is, when G� = Bn is the braid group on n strands. Such an
interpretation is unknown for the other Artin groups.

Let M be a connected CW-complex, let G = π1(M), and let R be a (right) Z[G]-
module. Let M̃ be the universal cover ofM . The action ofG on M̃ induces an action
of G on the group Cq(M̃) of (cellular) q-chains of M̃ , and this action makes Cq(M̃)
a module over the group ring Z[G]. It is also easily seen that the boundary maps
∂ : Cq(M̃)→ Cq−1(M̃) are Z[G]-module homomorphisms. We define Cq(M,R) to
be R

⊗
Z[G] Cq(M̃). These groups form a chain complex with boundary map Id⊗ ∂ .

The homology groups Hq(M,R) of this chain complex are the homology groups of
M with local coefficients R.

Now, for n ≥ 1, Mn denotes the space of ordered configurations of n points in C,
andNn = Mn/Symn denotes the space of (unordered) configurations of n points in C

(see Section 2). Let n,m ≥ 2. By [80], the map

pn,m : Mn+m→ Mn

(z1, . . . zn, zn+1, . . . , zn+m) �→ (z1, . . . , zn)

is a locally trivial fiber bundle which admits a cross-section. The fiber of pn,m is as
follows. Set

Hi j = {w ∈ C
m ; wi = wj } for 1 ≤ i < j ≤ m,

Ki k = {w ∈ C
m ; wi = k} for 1 ≤ i ≤ m and 1 ≤ k ≤ n.

Set
Xn,m = C

m \
(( ⋃

i<j

Hi j

)
∪

( ⋃
1≤i≤m
1≤k≤n

Ki k

))
.

Then
p−1
n,m(1, 2, . . . , n) = {(1, 2, . . . , n)} ×Xn,m.
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Let Symn × Symm act on Mn+m, Symn acting by permutations on the first n coordi-
nates, and Symm acting on the last m ones. Set

Nn,m = Mn+m/(Symn × Symm),

Yn,m = Xn,m/Symm.

Then pn,m induces a locally trivial fiber bundle pn,m : Nn,m → Nn whose fiber is
Yn,m.

For z ∈ C
n we set

‖z‖∞ = max{|zi | ; 1 ≤ i ≤ n}.
It is easily checked that the map

κ : Mn→ Mn+m,
z �→ (z, ‖z‖∞ + 1, ‖z‖∞ + 2, . . . , ‖z‖∞ +m)

is a well-defined cross-section of pn,m which is equivariant by the action of Symn,
thus it induces a cross-section κ : Nn → Nn,m of pn,m. By the homotopy long exact
sequence of a fiber bundle (see Theorem 2.9), we conclude that π1(Nn,m) can be
written as a semi-direct product π1(Nn,m) = π1(Yn,m)� Bn.

Set Gn,m = π1(Yn,m). We consider Gn,m as a subgroup of π1(Nn,m) which, in its
turn, is viewed as a subgroup of π1(Nn+m) = Bn+m. It is easily seen that Gn,m is
generated by the set

{σk ; n+ 1 ≤ k ≤ n+m} ∪ {δi k ; 1 ≤ i ≤ n and n+ 1 ≤ k ≤ n+m},
where δi k is the pure braid defined in Theorem 2.3. Let b be the homology class of
σn+1 inH1(Gn,m) = H1(Yn,m), and let ai be the homology class of δi,n+1, 1 ≤ i ≤ n.
The proof of the following is left to the reader.

Proposition 6.6. H1(Yn,m) = H1(Gn,m) is a free abelian group freely generated by
{b, a1, a2, . . . , an}.

Let ρ : H1(Gn,m)→ Q(x, y)∗ be the homomorphism which sends ai to x for all
1 ≤ i ≤ n, and sends b to y. Let ρ : Gn,m → Q(x, y)∗ be the composition of the
natural projection Gn,m→ H1(Gn,m) with ρ. This homomorphism makes Q(x, y) a
Z[Gn,m]-module that we denote by �ρ .

The proof of the following is also left to the reader.

Proposition 6.7. The kernel of ρ is invariant under the action of Bn, and Bn acts
trivially on the quotient Gn,m/Ker ρ 
 Z× Z.

From Proposition 6.7 follows that the fibration pn,m : Nn,m→ Nn induces a mon-
odromy representation �n,m : Bn→ AutQ(x,y)(H∗(Yn,m, �ρ)).

The following was announced by Krammer [105], [106], and proved in [17] (see
also [130]).
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Theorem 6.8 (Bigelow [17]). The homomorphism

�n,2 : Bn→ AutQ(x,y)(H2(Yn,2, �ρ))

coincides with the representation �̂ : GAn−1 → GL(V) defined in Subsection 6.1.

Note. The representation �̂ : GAn−1 → GL(V) also coincides with the representation
studied by Lawrence in [112]. Lawrence’s construction is also geometric. It slightly
differs from the one presented above, but I do not know exactly how to relate them
without the formulas.

Note. It is announced in [153] that�n,m is faithful for allm ≥ 2, and it is announced
in [48] that �n,m : Bn→ AutQ(x,y)(Hm(Yn,m, �ρ)) is irreducible for all m ≥ 2.

7 Geometric representations

7.1 Definitions and examples

Let  be an oriented compact surface, possibly with boundary, and let P be a finite
collection of punctures in the interior of . Let M(,P ) denote the mapping class
group of the pair (,P ), as defined in Subsection 2.3. Let � be a Coxeter graph,
and let G� be the Artin group of type �. Define a geometric representation of G� in
M(,P ) to be a homomorphism from G� to M(,P ).

The main tools for constructing geometric representations of Artin groups are the
Dehn twists and the braid twists. The braid twists are defined in Subsection 2.3, and
the Dehn twists are defined as follows.

An essential circle is an embedding a : S1 ↪→  \ P of the circle whose image
is contained in the interior of  and does not bound any disk in  containing 0 or 1
puncture. Two essential circles a, a′ are isotopic if there exists a continuous family
{at }t∈[0,1] of essential circles such that a = a0 and a′ = a1. Isotopy of essential circles
is an equivalence relation that we denote by a ∼ a′.

Let a : S
1 →  \ P be an essential circle. Take an embedding A : [0, 1] ×

S
1 →  \ P of the annulus such that A( 1

2 , z) = a(z) for all z ∈ S
1, and define

T ∈ Homeo+(,P ) by

(T � A)(t, z) = A(t, e2iπt z),

and T is the identity outside the image of A (see Figure 16). The Dehn twist along a,
denoted by σa , is defined to be the element of M(,P ) represented by T . Note that

• the definition of σa does not depend on the choice of the map A;

• if a is isotopic to a′, then σa = σa′ .
Recall that, for an essential arc a of (,P ), τa denotes the braid twist along a.

The Dehn twists and the braid twists satisfy the following relations (see [20], [110]).
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a

T

Figure 16. Dehn twist.

Proposition 7.1. (1) Let a, b be two essential circles that intersect transversely. Then

σaσb = σbσa if a ∩ b = ∅,
σaσbσa = σbσaσb if |a ∩ b| = 1.

(2) Let a, b be two essential arcs of (,P ). Then

τaτb = τbτa if a ∩ b = ∅,
τaτbτa = τbτaτb if a(0) = b(1) and a ∩ b = {a(0)}.

(3) Let a be an essential arc, and let b be an essential circle which intersects a
transversely. Then

τaσb = σbτa if a ∩ b = ∅,
τaσbτaσb = σbτaσbτa if |a ∩ b| = 1.

Example 1. Suppose  = D is a disk, and Pn = {P1, . . . , Pn} is a collection of n
punctures in the interior of . Then the Artin isomorphism � : Bn → M(D,Pn) of
Theorem 2.16 is a geometric representation of GAn−1 = Bn.

Example 2. Let n ≥ 3. Suppose that, if n is odd, then  is a surface of genus n−1
2

with one boundary component, and if n is even, then is a surface of genus n−2
2 with

two boundary components. Let a1, . . . , an−1 be the essential circles of  pictured in
Figure 17. By Proposition 7.1, the mapping σi �→ σai , 1 ≤ i ≤ n − 1, induces a
representation ρM : Bn → M() called the monodromy representation of Bn. This
geometric representation was introduced by Birman and Hilden in [25], where it is
proved that ρM is faithful and its image consists of mapping classes arising from
homeomorphisms symmetric with respect to a hyperelliptic involution (see also [26],
[154], and [117]). It is also the geometric monodromy of the simple singularity of type
An−1 (see [135]). Let P0 ∈ ∂ be a base-point. Then ρM induces a homomorphism
ρM ∗ : Bn → Aut(π1(, P0)) which turns out to coincide with the homomorphism
ρD : Bn→ Aut(Fn−1) defined in Subsection 3.1 (see [60]).
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a1 a2 a3 a4 an−1
n odd

a1 a2 a3 a4 an−2 an−1
n even

Figure 17. Monodromy representation of Bn.

Example 3. Let D
2 = {z ∈ C; |z| ≤ 1} be the standard disk. A chord diagram in D

2

is defined to be a collection {S1, . . . , Sn} of segments in D
2 such that

• the endpoints of Si belong to ∂D
2 and its interior is contained in the interior of

D
2, for all 1 ≤ i ≤ n;

• either Si and Sj are disjoint, or they intersect transversely in a unique point in
the interior of D

2, for all 1 ≤ i �= j ≤ n.

From this data one can define a Coxeter matrix M = (mi j )1≤i,j≤n setting mi j = 2
if Si and Sj are disjoint, and mi j = 3 if they intersect. The Coxeter graph � of M is
called the intersection diagram of the chord diagram.

From this data one can also define a surface  by attaching to D
2 a handle Hi

which joins the extremities of Si , for all 1 ≤ i ≤ n (see Figure 18). Let ai be the
essential circle of made with Si and the central arc ofHi . Then, by Proposition 7.1,

H1

H2

H3
S1

S2

S3

Figure 18. Chord diagram and associated surface.
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the mapping σi �→ σai , 1 ≤ i ≤ n, induces a geometric representation ρPV : G� →
M(), called Perron–Vannier representation.

The Perron–Vannier representations were introduced in [135]. If � = An−1,
then ρPV is equal to the monodromy representation ρM defined in Example 2. More
generally, if� isAn (n ≥ 1),Dn (n ≥ 4), orEk (k = 6, 7, 8), then ρPV is the geometric
monodromy of the simple singularity of type � (see [135]). For a connected graph
�, the representation ρPV is faithful if and only if either � = An for some n ≥ 1, or
� = Dn for some n ≥ 4 (see [135], [109], [152]).

Example 4. This example comes from [58]. Recall that a Coxeter graph � is of small
type if ms t ≤ 3 for all s, t ∈ S, where M = (ms t )s,t∈S is the Coxeter matrix of �.
Let � be a small type Coxeter graph. We choose (arbitrarily) a total order < on S.
For s ∈ S, we set Sts = {t ∈ S;ms t = 3} ∪ {s}. Write Sts = {t1, t2, . . . , tk} such
that t1 < t2 < · · · < tk , and suppose that s = tj . For 1 ≤ i ≤ k, the difference i − j
is called the relative position of ti with respect to s and is denoted by pos(ti : s). In
particular, pos(s : s) = 0.

Let s ∈ S and let k = |Sts |. Let Ans denote the annulus Ans = (R/2kZ)× [0, 1].
We define the surface  = � by

 =
( ⊔
s∈S

Ans
)
/ ∼,

where ∼ is the equivalence relation defined as follows. Let s, t ∈ S such that s < t

and ms t = 3. Set p = pos(t : s) > 0 and q = pos(s : t) < 0. For all (x, y) ∈
[0, 1] × [0, 1] the relation ∼ identifies the point (2p + x, y) of Ans with the point
(2q + 1− y, x) of Ant (see Figure 19).

Ant

Ans

∼

(2q, 0) (2q + 1, 0) (0, 0)

(0, 0) (2p, 0) (2p + 1, 0)

Figure 19. Identification of annuli.

We identify each annulus Ans with its image in , and we denote by as its central
curve. Note that as is an essential circle, as ∩ at = ∅ if ms t = 2, and |as ∩ at | = 1 if
ms t = 3. So, by Proposition 7.1, the mapping σs �→ σas , s ∈ S, induces a geometric
representation ρCP : G� →M().
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We have ρCP = ρPV if � is a tree. (Note that it may happen that ρPV is not defined
if � is not a tree.) If � = Ãn, then ρCP is faithful (while, by [109], ρPV is not faithful
in this case).

7.2 Presentations

Letg,r be a surface of genus g ≥ 1 with r ≥ 0 boundary components, and let Pn be
a collection of n punctures in the interior of g,r , where n ≥ 0.

First assume that r ≥ 1. Consider the essential circles a0, a1, . . . , ar , b1, b2, . . . ,

b2g−1, c, d1, . . . , dr−1, and the essential arcs e1, e2, . . . , en−1 drawn in Figure 20.
Note that there is no c if g = 1, there is no di if r = 1, there is no ar if n = 0, and

a0a1

a2

ar−2
ar−1

ar

b1

b2 b3 b2g−1

c

d1

d2

dr−1

e1 e2 en−1

Figure 20. Generators of M(g,r ,Pn).

there is no ei if n = 0 or 1. Let �(g, r, n) be the Coxeter graph drawn in Figure 21.
One can show that the set

{σa0, σa1, . . . , σar , σb1, σb2, . . . , σb2g−1, σc, σd1, σd2, . . . , σdr−1, τe1, . . . τen−1}
generates M(g,r ,Pn). On the other hand, by Proposition 7.1, the mapping

xi �→ σai (0 ≤ i ≤ r), yi �→ σbi (1 ≤ i ≤ 2g − 1), z �→ σc

ui �→ σdi (1 ≤ i ≤ r − 1), vj �→ τej (1 ≤ j ≤ n− 1),

induces a homomorphism ρ : G�(g,r,n) → M(g,r ,Pn). So, in order to obtain a
presentation for M(g,r ,Pn), it suffices to find normal generators for Ker ρ. This
was done in [124] for r = 1 and n = 0, and in [110] for the other cases.

One can use the same kind of arguments for the case r = 0. Consider the essential
circles a0, a1, b1, b2, . . . , b2g−1, c, and the essential arcs e1, e2, . . . , en−1 drawn in
Figure 22. Then the set

{σa0, σa1, σb1, σb2, . . . , σb2g−1, σc, τe1, τe2, . . . , τen−1}
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x0
x1

xr−1 xr

y1 y2 y3 y4 y2g−1

z

u1 u2 ur−1

v1 v2 vn−1

4

Figure 21. The Coxeter graph �(g, r, n).

a0

a1

b1

b2 b3 b2g−1

c

e1 e2 en−1

Figure 22. Generators of M(g,0,Pn).

generates M(g,0,Pn), and the mapping

xi �→ σai (i = 0, 1), yi �→ σbi (1 ≤ i ≤ 2g − 1),

z �→ σc, vj �→ τej (1 ≤ j ≤ n− 1),

induces a homomorphism ρ : G�(g,1,n)→M(g,0,Pn). Here again, the kernel of ρ
was calculated in [124] for n = 0, and in [110] for n ≥ 1.

In order to state the results of [124] and [110], we need the following notations.
Let � be a Coxeter graph, let M = (ms t )s,t∈S be the Coxeter matrix of �, and let
(G,) be the Artin system of type �. ForX ⊂ S (where S is the set of vertices of �),
we denote by �X the full subgraph of � generated by X, we set X = {σs; s ∈ X},
and we denote byGX the subgroup ofG generated byX. By [116], (GX,X) is the
Artin system of type �X (see also [132]). If �X is of spherical type, then we denote
by �(X) the Garside element of (GX,X), viewed as an element of G.

Theorem 7.2 (Matsumoto [124]). (1) M(g,1) is isomorphic to the quotient of
G�(g,1,0) by the following relations

(R1) �(y1, y2, y3, z)
4 = �(x0, y1, y2, y3, z)

2 if g ≥ 2,

(R2) �(y1, y2, y3, y4, y5, z)
2 = �(x0, y1, y2, y3, y4, y5, z) if g ≥ 3.

(2) M(g,0) is isomorphic to the quotient ofG�(g,1,0) by the above relations (R1)
and (R2) together with

(R3)
(x0y1)

6 = 1 if g = 1,

x
2g−2
0 = �(y2, y3, z, y4, . . . , y2g−1) if g ≥ 2.
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Theorem 7.3 (Labruère, Paris [110]). Let g ≥ 1, r ≥ 1, and n ≥ 0. Then
M(g,r ,Pn) is isomorphic to the quotient of G�(g,r,n) by the following relations.

• Relations from M(g,1).

(R1) �(y1, y2, y3, z)
4 = �(x0, y1, y2, y3, z)

2 if g ≥ 2,

(R2) �(y1, y2, y3, y4, y5, z)
2 = �(x0, y1, y2, y3, y4, y5, z) if g ≥ 3.

• Relations of commutation.

(R3)

xk ·�(xi+1, xj , y1)
−1xi�(xi+1, xj , y1)

= �(xi+1, xj , y1)
−1xi�(xi+1, xj , y1) · xk

if 0 ≤ k < j < i ≤ r − 1,

(R4)

y2 ·�(xi+1, xj , y1)
−1xi�(xi+1, xj , y1)

= �(xi+1, xj , y1)
−1xi�(xi+1, xj , y1) · y2

if 0 ≤ j < i ≤ r − 1 and g ≥ 2

• Expressions of the ui’s.

(R5)
u1 = �(x0, x1, y1, y2, y3, z) ·�(x1, y1, y2, y3, z)

−2

if g ≥ 2,

(R6)

ui+1 = �(xi, xi+1, y1, y2, y3, z) ·�(xi+1, y1, y2, y3, z)
−2

·�(x0, xi+1, y1)
2 ·�(x0, xi, xi+1, y1)

−1

if 1 ≤ i ≤ r − 2 and g ≥ 2.

• Other relations.

(R7) �(xr−1, xr , y1, v1) = �(xr, y1, v1)
2 if n ≥ 2,

(R8a)
�(x0, x1, y1, y2, y3, z) = �(x1, y1, y2, y3, z)

2

if n ≥ 1, g ≥ 2, and r = 1,

(R8b)

�(xr−1, xr , y1, y2, y3, z) ·�(xr, y1, y2, y3, z)
−2

= �(x0, xr−1, xr , y1) ·�(x0, xr , y1)
−2

if n ≥ 1, g ≥ 2, and r ≥ 2.

Note that only the relations (R1), (R2), (R7), and (R8a) remain in the presentation
if r = 1, and (R8a) must be replaced by (R8b) if r ≥ 2. Note also that, if g ≥ 2, then
u1, . . . , ur−1 can be removed from the generating set. However, to do so, one must
add new long relations.
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Theorem 7.4 (Labruère, Paris [110]). Let g ≥ 1 and n ≥ 1. Then M(g,0,Pn) is
isomorphic to the quotient of G�(g,1,n) by the following relations.

• Relations from M(g,1,Pn).

(R1) �(y1, y2, y3, z)
4 = �(x0, y1, y2, y3, z)

2 if g ≥ 2,

(R2) �(y1, y2, y3, y4, y5, z)
2 = �(x0, y1, y2, y3, y4, y5, z) if g ≥ 3,

(R7) �(x0, x1, y1, v1) = �(x1, y1, v1)
2 if n ≥ 2,

(R8a) �(x0, x1, y1, y2, y3, z) = �(x1, y1, y2, y3, z)
2

if n ≥ 1 and g ≥ 2.

• Other relations.

(R9a) x
2g−n−2
0 ·�(x1, v1, . . . , vn−1) = �(z, y2, . . . , y2g−1)

2 if g ≥ 2,

(R9b) xn0 = �(x1, v1, . . . , vn−1) if g = 1,

(R9c) �(x0, y1)
4 = �(v1, . . . , vn−1)

2 if g = 1.

Note. Presentations of M(g,r ), also in terms of Artin groups, with more generators
but simpler relations, were obtained by Gervais in [88]. On the other hand, a unified
proof of all these presentations can be found in [11].

7.3 Classification

This subsection is an account of Castel’s results [40] on the geometric representations
of the braid group Bn in mapping class groups of surfaces of genus g ≤ n−1

2 .
First suppose that n is odd, n ≥ 5. Write n = 2k+ 1, where k ≥ 2. Let r ≥ 0. We

present the surfacek,r as the union of three subsurfaces,�0, A, and�1, where�0 is
a surface of genus k with one boundary component, c,�1 is a surface of genus 0 with
r + 1 boundary components, c′, d1, . . . , dr , and A is an annulus bounded by c and
c′ (see Figure 23). Consider the essential circles a1, a2, . . . , a2k drawn in Figure 23.
Then, by Proposition 7.1, there exists a homomorphism ρM : Bn →M(k,r ) which
sends σi to σai for all 1 ≤ i ≤ n− 1 = 2k.

The statement of Castel’s classification of the geometric representations of Bn in
M(k,r ) involves the centralizer of Im ρM in M(k,r ). That is why we start with a
description of the latter.

The inclusion of�1 ink,r induces a homomorphism M(�1)→M(k,r ) which
is injective (see [134]). It is easily checked that the image of this homomorphism is
contained in the centralizer of ImρM . Another element of the centralizer is the element
u ∈M(k,r ) represented by the homeomorphismU : k,r → k,r which is the axial
symmetry relative to the axis D on �0, a half-twist which pointwise fixes c′ on the
annulus A, and the identity on �1.
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a1 a2 a2k
c c′

d1

d2

dr
�0

A

�1

D

Figure 23. Decomposition of k,r (n odd).

Proposition 7.5 (Castel [40]). The centralizer of Im ρM in M(k,r ) is generated by
M(�1) ∪ {u}.

If r = 0, then M(�1) = {1}, u is of order 2, and ZM(k,r )(Im ρM) = 〈u〉 is cyclic
of order 2. If r = 1, then M(�1) = 〈τc〉, u2 = τc, and ZM(k,r )(Im ρM) = 〈u〉
is an infinite cyclic group. If r = 2, then ZM(k,r )(Im ρM) is a free abelian group
of rank 3 freely generated by {u, σd1, σd2}. If r ≥ 3, then ZM(k,r )(Im ρM) is more
complicated.

For ε ∈ {±1} and z ∈ ZM(k,r )(Im ρM), the mapping σi �→ σεai z, 1 ≤ i ≤ n− 1,
induces a homomorphism ρM(ε, z) : Bn → M(k,r ) called the transvection of ρM
by (ε, z). On the other hand, a homomorphism ϕ : Bn → G, where G is a group, is
called cyclic if there exists α ∈ G such that ϕ(σi) = α for all 1 ≤ i ≤ n− 1.

Theorem 7.6 (Castel [40]). Suppose n odd, n ≥ 5, and set n = 2k + 1. Let g ≥ 0
and r ≥ 0.

(1) If g < k, then all the homomorphisms ϕ : Bn→M(g,r ) are cyclic.

(2) All the non-cyclic homomorphismsϕ : Bn→M(k,r )are conjugate to transvec-
tions of ρM .

(3) The homomorphism ρM : Bn→M(k,r ) is injective if and only if r ≥ 1.

Now, we suppose that n is even, n ≥ 6, and we set n = 2k + 2. We choose
r1, r2 ≥ 0 such that r1 + r2 = r and we represent the surface k,r as the union of
three subsurfaces, a surface �0 of genus k with two boundary components, c1 and
c2, a surface �1 of genus 0 with r1 + 1 boundary components c1, d1, . . . , dr1 , and a
surface �2 of genus 0 with r2 + 1 boundary components c2, dr1+1, . . . , dr1+r2 (see
Figure 24). Consider the essential circles a1, . . . , an−1 drawn in Figure 24. Then,
by Proposition 7.1, there exists a homomorphism ρM(r1, r2) : Bn→M(k,r ) which
sends σi to σai for all 1 ≤ i ≤ n− 1.
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Figure 24. Decomposition of k,r (n even).

The inclusions �1, �2 ⊂ k,r induce a homomorphism M(�1) ×M(�2) →
M(k,r ) which is injective (see [134]), and we have:

Proposition 7.7 (Castel [40]). (1) If r > 0, then the centralizer of Im ρM(r1, r2) in
M(k,r ) is M(�1)×M(�2).

(2) If r = 0, then the centralizer of Im ρM(r1, r2) in M(k,r ) is a cyclic group of
order 2 generated by an element represented by the axial symmetry relative to the axis
D of Figure 24.

For ε ∈ {±1} and z ∈ ZM(k,r )(Im ρM(r1, r2)), the mapping σi �→ σεai z, 1 ≤
i ≤ n − 1, induces a homomorphism ρM(r1, r2, ε, z) : Bn → M(k,r ) called the
transvection of ρM(r1, r2) by (ε, z).

Theorem 7.8 (Castel [40]). Suppose n even, n ≥ 6, and set n = 2k + 2. Let g ≥ 0
and r ≥ 0.
(1) If g < k, then all the homomorphisms ϕ : Bn→M(g,r ) are cyclic.

(2) If ϕ : Bn→M(k,r ) is a non-cyclic homomorphism, then there exist r1, r2 ≥ 0
such that r1 + r2 = r and ϕ is conjugate to a transvection of ρM(r1, r2).

(3) Let r1, r2 ≥ 0 such that r1 + r2 = r . The homomorphism ρM(r1, r2) : Bn →
M(k,r ) is injective if and only if r1 ≥ 1 and r2 ≥ 1.

Recall that, for a groupG, Out(G) denotes the group of outer automorphisms ofG.
Now, Theorems 7.6 and 7.8 can be used for new proofs of the following two theorems.

Theorem 7.9 (Dyer, Grossman [77]). We have Out(Bn) = Z/2Z if n ≥ 5.

Theorem 7.10 (Ivanov [98], McCarthy [125]). Let g ≥ 2 and r ≥ 0. Then

Out(M(g,r )) =

⎧⎪⎨
⎪⎩
{1} if r ≥ 1,

Z/2Z if r = 0 and g ≥ 3,

Z/2Z× Z/2Z if r = 0 and g = 2.
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1 Introduction

In this chapter we discuss the theory of complex projective structures on compact sur-
faces and its connections with Teichmüller theory, 2- and 3-dimensional hyperbolic
geometry, and representations of surface groups into PSL2(C). Roughly speaking, a
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complex projective structure is a type of 2-dimensional geometry in which Möbius
transformations play the role of geometric congruences (this is made precise below).
Such structures are abundant – hyperbolic, spherical, and Euclidean metrics on sur-
faces all provide examples of projective structures, since each of these constant-cur-
vature 2-dimensional geometries has a model in which its isometries are Möbius maps.
However, these examples are not representative of the general situation, since most
projective structures are not induced by locally homogeneous Riemannian metrics.

Developing a more accurate picture of a general projective structure is the goal of
the first half of the chapter (§§2–4). After some definitions and preliminary discussion
(in §2), we present the complex-analytic theory of projective structures in §3. This
theory has its roots in the study of automorphic functions and differential equations
by Klein [67, Part 1], Poincaré [95], Riemann [100], and others in the late nineteenth
century (see [48], [47, §1] for further historical discussion and references), while
its more recent history is closely linked to developments in Teichmüller theory and
deformations of Fuchsian and Kleinian groups (e.g. [28], [45], [43], [47] [51], [74],
[75], [76], [77]).

In this analytic approach, a projective structure is represented by a holomorphic
quadratic differential on a Riemann surface, which is extracted from the geometric
data using a Möbius-invariant differential operator, the Schwarzian derivative. The
inverse of this construction describes every projective structure in terms of holomor-
phic solutions to a linear ordinary differential equation (the Schwarzian equation). In
this way, many properties of projective structures and their moduli can be established
using tools from complex function theory. However, in spite of the success of these
techniques, the analytic theory is somewhat detached from the underlying geometry.
In particular, the analytic parameterization of projective structures does not involve
an explicit geometric construction, such as one has in the description of hyperbolic
surfaces by gluing polygons.

In §4 we describe a more direct and geometric construction of complex projective
structures using grafting, a gluing operation on surfaces which is also suggested by
the work of the nineteenth-century geometers (e.g. [68]), but whose significance in
complex projective geometry has only recently been fully appreciated. Grafting was
used by Maskit [83], Hejhal [47], and Sullivan–Thurston [109] to construct certain
deformations of Fuchsian groups, and in later work of Thurston (unpublished, see
[64]) it was generalized to give a universal construction of complex projective surfaces
starting from basic hyperbolic and Euclidean pieces.

This construction provides another coordinate system for the moduli space of pro-
jective structures, and it reveals an important connection between these structures and
convex geometry in 3-dimensional hyperbolic space. However, the explicit geomet-
ric nature of complex projective grafting comes at the price of a more complicated
parameter space, namely, the piecewise linear manifold of measured geodesic lam-
inations on hyperbolic surfaces. In particular, the lack of a differentiable structure
in this coordinate system complicates the study of variations of complex projective
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structures, though there has been some progress in this direction using a weak notion
of differentiability due to Thurston [115] and Bonahon [10].

After developing the analytic and geometric coordinates for the moduli space of
projective structures, the second half of the chapter is divided into two major topics:
In §5, we describe the relation between projective structures and the PSL2(C)-repre-
sentations of surface groups, their deformations, and associated problems in hyper-
bolic geometry and Kleinian groups. The key to these connections is the holonomy
representation of a projective structure, which records the topological obstruction
to analytically continuing its local coordinate charts over the entire surface. After
constructing a parameter space for such representations and the holonomy map for
projective structures, we survey various developments that center around two basic
questions:

• Given a projective structure, described in either analytic or geometric terms, what
can be said about its holonomy representation?

• Given a PSL2(C)-representation of a surface group, what projective structures
have this as their holonomy representation, if any?

We discuss partial answers to these general questions, along with much more detailed
information about certain classes of holonomy representations (e.g. Fuchsian groups).

Finally, in §6 we take up the question of relating the analytic and geometric co-
ordinate systems for the space of projective structures, or equivalently, studying the
interaction between the Schwarzian derivative and complex projective grafting. We
describe asymptotic results that relate compactifications of the analytic and geometric
parameter spaces using the geometry of measured foliations on Riemann surfaces.
Here a key tool is the theory of harmonic maps between Riemann surfaces and from
Riemann surfaces to R-trees, and the observation that two geometrically natural con-
structions in complex projective geometry (the collapsing and co-collapsing maps)
are closely approximated by harmonic maps. We close with some remarks concerning
infinitesimal compatibility between the geometric and analytic coordinate systems,
once again using the limited kind of differential calculus that applies to the grafting
parameter space.

Scope and approach. Although this chapter covers a range of topics in complex pro-
jective geometry, it is not intended to be a comprehensive guide to the subject. Rather,
we have selected several important aspects of the theory (the Schwarzian derivative,
grafting, and holonomy) and concentrated on describing their interrelationships while
providing references for further reading and exploration. As a result, some major areas
of research in complex projective structures are not mentioned at all (circle packings
[70], [69], the algebraic-geometric aspects of the theory [36, §11], and generalizations
to punctured or open Riemann surfaces [75], [81], to name a few) and others are only
discussed in brief.

We have also included some detail on the basic analytic and geometric constructions
in an attempt to make this chapter a more useful “invitation” to the theory. However,
where we discuss more advanced topics and results of recent research, it has been
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necessary to refer to many concepts and results that are not thoroughly developed
here.

Finally, while we have attempted to provide thorough and accurate references to the
literature, the subject of complex projective structures is broad enough (and connected
to so many other areas of research) that we do not expect these references to cover
every relevant source of additional information. We hope that the references included
below are useful, and regret any inadvertent omissions.

Acknowledgments. The author thanks Richard Canary, George Daskalopoulos,
William Goldman, Brice Loustau, Albert Marden, Athanase Papadopoulos, Richard
Wentworth, and Michael Wolf for helpful discussions and suggestions related to this
work, and Curt McMullen for introducing him to the theory of complex projective
structures. This work was partially supported by a NSF postdoctoral research fellow-
ship.

2 Basic definitions

Projective structures. Let S be an oriented surface. A complex projective structure
Z on S is a maximal atlas of charts mapping open sets in S into CP

1 such that the
transition functions are restrictions of Möbius transformations. For brevity we also
call these projective structures or CP

1-structures.
We often treat a projective structureZ on S as a surface in its own right – a complex

projective surface. Differentiably, Z is the same as S, but Z has the additional data of
a restricted atlas of projective charts.

Two projective structures Z1 and Z2 on S are isomorphic if there is an orientation-
preserving diffeomorphism ι : Z1 → Z2 that pulls back the projective charts of Z2 to
projective charts of Z1, and marked isomorphic if furthermore ι is homotopic to the
identity.

Our main object of study is the space P (S) of marked isomorphism classes of
projective structures on a compact surface S. Thus far, we have only defined P (S) as
a set, but later we will equip it with the structure of a complex manifold.

Non-hyperbolic cases. Projective structures on compact surfaces are most interesting
when S has genus g ≥ 2: The sphere has a unique projective structure (by S2 � CP

1)
up to isotopy, while a projective structure on a torus is always induced by an affine
structure [43, §9, pp. 189–191]. We therefore make the assumption that S has genus
g ≥ 2 unless stated otherwise.

First examples. The projective structure of CP
1 itself (using the identity for chart

maps) also gives a natural projective structure on any open set U ⊂ CP
1. If U is

preserved by a group � of Möbius transformations acting freely and properly discon-
tinuously, then the quotient surface X = U/� has a natural projective structure in
which the charts are local inverses of the covering U → X.
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In particular any Fuchsian group � ⊂ PSL2(R) gives rise to a projective structure
on the quotient surface H/� and a Kleinian group � ⊂ PSL2(C) gives a projective
structure on the quotient of its domain of discontinuity �(�)/�. Rephrasing the
latter example, the ideal boundary of a hyperbolic 3-manifold has a natural projective
structure.

Locally Möbius maps. A map f : Z → W between complex projective surfaces
is locally Möbius if for every sufficiently small open set U ⊂ Z, the restriction
f |U is a Möbius transformation with respect to projective coordinates on U and
f (U). Examples of such maps include isomorphisms and covering maps of projective
surfaces (where the cover is given the pullback projective structure) and inclusions of
open subsets of surfaces.

Developingmaps. A projective structureZ on a surfaceS lifts to a projective structure
Z̃ on the universal cover S̃. A developing map for Z is an immersion f : S̃ → CP

1

such that the restriction of f to any sufficiently small open set in S̃ is a projective
chart for Z̃. Such a map is also called a geometric realization of Z (e.g. [45, §6]) or
a fundamental membrane [47].

Developing maps always exist, and are essentially unique – two developing maps
for a given structure differ by post-composition with a Möbius transformation. Con-
cretely, a developing map can be constructed by analytic continuation starting from
any basepoint z0 ∈ Z̃ and any chart defined on a neighborhoodU of z0. Another chart
V → CP

1 that overlaps U can be adjusted by a Möbius transformation so as to agree
on the overlap, gluing to give a map (U ∪ V ) → CP

1. Continuing in this way one
defines a map on successively larger subsets of Z̃, and the limit is a developing map
Z̃ → CP

1. The simple connectivity of Z̃ is essential here, as nontrivial homotopy
classes of loops in the surface create obstructions to unique analytic continuation of a
projective chart.

For a fixed projective structure, we will speak of the developing map when the
particular choice is unimportant or implied.

Holonomy representation. The developing map f : S̃ → CP
1 of a projective struc-

ture Z on S has an equivariance property with respect to the action of π1(S) on S̃: For
any γ ∈ π1(S), the composition f � γ is another developing map for Z. Thus there
exists Aγ ∈ PSL2(C) such that

f � γ = Aγ � f. (2.1)

The map γ 	→ Aγ is a homomorphism ρ : π1(S)→ PSL2(C), the holonomy repre-
sentation (or monodromy representation) of the projective structure.

Development-holonomy pairs. The developing map and holonomy representation
form the development-holonomy pair (f, ρ) associated to the projective structure Z.

This pair determines Z uniquely, since restriction of f determines a covering of
S by projective charts. Post-composition of the developing map with A ∈ PSL2(C)
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conjugates ρ, and therefore the pair (f, ρ) is uniquely determined byZ up to the action
of PSL2(C) by

(f, ρ) 	→ (A � f, ρA) where ρA(γ ) = Aρ(γ )A−1.

Conversely, any pair (f, ρ) consisting of an immersion f : S̃ → CP
1 and a homo-

morphism ρ : π1(S)→ PSL2(C) that satisfy (2.1) defines a projective structure on S
in which liftingU ⊂ S to S̃ and applying f gives a projective chart (for all sufficiently
small open sets U ).

Thus we have an alternate definition of P (S) as the quotient of the set of develop-
ment-holonomy pairs by the PSL2(C) action and by precomposition of developing
maps with orientation-preserving diffeomorphisms of S homotopic to the identity.
We give the set of pairs of maps (f, ρ) the compact-open topology, and P (S) inherits
a quotient topology. We will later see that P (S) is homeomorphic to R

12g−12.

Relation to (G,X)-structures. There is a very general notion of a geometric struc-
ture defined by a Lie groupG acting by diffeomorphisms on a manifoldX. A (G,X)-
structure on a manifold M is an atlas of charts mapping open subsets of M into X
such that the transition maps are restrictions of elements of G.

In this language, complex projective structures are (PSL2(C),CP
1)-structures.

Some of the properties of projective structures we develop, such as developing maps,
holonomy representations, deformation spaces, etc., can be applied in the more general
setting of (G,X)-structures. See [40] for a survey of (G,X)-structures and analysis
of several low-dimensional examples.

Circles. Because Möbius transformations map circles to circles, there is a natural
notion of a circle on a surface with a projective structure Z: A smooth embedded
curve α ⊂ Z is a circular arc if the projective charts map (subsets of) α to circular
arcs in CP

1. Equivalently, the embedded curve α is a circular arc if the developing
map sends any connected component of the preimage of α in Z̃ to a circular arc in
CP

1. A closed circular arc on Z is a circle.
Small circles are ubiquitous in any projective structure: For any z ∈ Z there is a

projective chart mapping a contractible neighborhood of z to an open setV ∈ CP
1. The

preimage of any circle contained inV is a homotopically trivial circle for the projective
structure Z. Circles that bound disks on a projective surface have an important role in
Thurston’s projective grafting construction (see §4.1).

Circles on a projective surface can also be homotopically nontrivial. For example
any simple closed geodesic on a hyperbolic surface on X is a circle, because its lifts
to X̃ � H are half-circles or vertical lines in the upper half-plane. The analysis
of circles on more general projective surfaces would be a natural starting point for
the development of synthetic complex projective geometry; Wright’s study of circle
chains and Schottky-type dynamics in the Maskit slice of punctured tori is an example
of work in this direction [120].
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Forgetful map. Since Möbius transformations are holomorphic, a projective struc-
ture Z ∈ P (S) also determines a complex structure, making S into a compact Rie-
mann surface. In this way, marked isomorphism of projective structures corresponds
to marked isomorphism of Riemann surfaces, and so there is a natural (and continuous)
forgetful map

π : P (S)→ T (S)

where T (S) is the Teichmüller space of marked isomorphism classes of complex
structures on S. (See e.g. [79], [56], [52] and the other chapters of this Handbook for
background on Teichmüller spaces.) As a matter of terminology, if Z is a projective
structure withπ(Z) = X, we sayZ is a projective structure on the Riemann surfaceX.

The forgetful map is surjective: By the uniformization theorem, every complex
structure X ∈ T (S) arises as the quotient of H by a Fuchsian group �X, and the
natural projective structure on H/�X is a preimage of X by π . We call this the
standard Fuchsian structure on X. The standard Fuchsian structures determine a
continuous section

σ0 : T (S)→ P (S).

One might expect the fibers of π to be large, since isomorphism of projective
structures is a much stronger condition than isomorphism of complex structures. Our
next task is to describe the fibers explicitly.

3 The Schwarzian parameterization

3.1 The Schwarzian derivative

Let � ⊂ C be a connected open set. The Schwarzian derivative of a locally injective
holomorphic map f : �→ CP

1 is the holomorphic quadratic differential

S(f ) =
[(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2
]
dz2.

Two key properties make the Schwarzian derivative useful in the theory of projective
structures:

(1) Cocycle property. If f and g are locally injective holomorphic maps such that
the composition f � g is defined, then

S(f � g) = g∗S(f )+ S(g).

(2) Möbius invariance. For any A ∈ PSL2(C), we have

S(A) ≡ 0,

and conversely, if S(f ) ≡ 0, then f is the restriction of a Möbius transformation.
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Note that the pullback g∗S(f ) uses the definition of the Schwarzian as a quadratic
differential. In classical complex analysis, the Schwarzian was regarded as a complex-
valued function, with g∗S(f ) replaced by g′(z)2S(f )(g(z)).

An elementary consequence of these properties is that the map f is almost deter-
mined by its Schwarzian derivative; if S(f ) = S(g), then the locally defined map
f � g−1 satisfies S(f � g−1) ≡ 0, and so we have f = A � g for some A ∈ PSL2(C).

Further discussion of the Schwarzian derivative can be found in e.g. [79, Chapter 2],
[52, §6.3].

Osculation. Intuitively, the Schwarzian derivative measures the failure of a holo-
morphic map to be the restriction of a Möbius transformation. Thurston made this
intuition precise as follows (see [116, §2], [2, §2.1]): For each z ∈ �, there is a unique
Möbius transformation that has the same 2-jet as f at z, called the osculating Möbius
transformation osczf .

The osculation map G : � → PSL2(C) given by G(z) = osczf is holomorphic,
and its Darboux derivative (see [105]) is the holomorphic sl2(C)-valued 1-form

ω(z) = G−1(z) dG(z).

An explicit computation shows that ω only depends on f through its Schwarzian
derivative; if S(f ) = φ(z)dz2, then

ω(z) = −1

2
φ(z)

(
z −z2

1 −z
)
dz.

3.2 Schwarzian parameterization of a fiber

Fibers over Teichmüller space. For any marked complex structure X ∈ T (S), let
P(X) = π−1(X) ⊂ P (S) denote the set of marked complex projective structures
with underlying complex structure X. The Schwarzian derivative can be used to
parameterize the fiber P(X) as follows:

Fix a conformal identification X̃ � H, whereby π1(S) acts on H as a Fuchsian
group. Abusing notation, we use the same symbol for γ ∈ π1(S) and for its action on
H by a real Möbius transformation.

Given Z ∈ P(X), we regard the developing map as a meromorphic function f
on H. The Schwarzian derivative φ̃ = S(f ) is therefore a holomorphic quadratic
differential on H. Combining the equivariance property (2.1) of f and the properties
of the Schwarzian derivative, we find

φ̃ = S(Aγ � f ) = S(f � γ ) = γ ∗φ̃.
Thus we have φ̃ = γ ∗φ̃ for all γ ∈ π1(S), and φ̃ descends to a holomorphic quadratic
differential φ on X. We call φ the Schwarzian of the projective structure Z.

Let Q(X) denote the vector space of holomorphic quadratic differentials on the
marked Riemann surface X ∈ T (S). By the Riemann–Roch theorem, we have
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Q(X) � C
3g−3 (see [62]). The Schwarzian defines a map P(X) → Q(X). We

will now show that this map is bijective by constructing its inverse.

Inverting the Schwarzian. Let φ(z) be a holomorphic function defined on a con-
tractible open set � ⊂ C. Then the linear ODE (the Schwarzian equation)

u′′(z)+ 1

2
φ(z)u(z) = 0 (3.1)

has a two-dimensional vector space V of holomorphic solutions on �. Let u1(z) and
u2(z) be a basis of solutions. The Wronskian W(z) of u1 and u2 satisfies W ′(z) = 0,
so it is a nonzero constant function, and u1 and u2 cannot vanish simultaneously.

This ODE construction inverts the Schwarzian derivative in the sense that the
meromorphic function f (z) = u1(z)/u2(z) satisfies S(f ) = φ(z)dz2 (see [91]). Note
that changing the basis forV will alter f by composition with a Möbius transformation
(and leave S(f ) unchanged). Furthermore, since

f ′(z) = u′1(z)u2(z)− u1(z)u
′
2(z)

u2(z)2
= −W(z)
u2(z)2

,

it follows that the holomorphic map f : �→ CP
1 is locally injective except possibly

on {u2(z) = 0} = f−1(∞). Applying similar considerations to 1/f (z), we find that
f is locally injective away from {u1(z) = 0}, and thus everywhere.

The existence of a holomorphic map with a given Schwarzian derivative can also
be understood in terms of maps to the Lie group PSL2(C) and the definition of the
Schwarzian in terms of osculation (described in §3.1). Here the quadratic differential
φ is interpreted as a sl2(C)-valued 1-form, which satisfies the integrability condition
dφ + 1

2 [φ, φ] = 0 because there are no holomorphic 2-forms on a Riemann surface.
The integrating map to PSL2(C) is the osculation map of a holomorphic function f
satisfying S(f ) = φ. See [2, §2.2.3, Corollary 2.20] for details.

Parameterization of a fiber. Given a quadratic differential φ ∈ Q(X), lift to the
universal cover X̃ � H to obtain φ̃ = φ̃(z) dz2. Applying the ODE construction to
φ̃(z) yields a holomorphic immersion fφ : H→ CP

1.
For any γ ∈ π1(S) we have S(fφ � γ ) = γ ∗φ̃ = φ̃ = S(fφ), and thus fφ � γ =

Aγ � fφ for some Aγ ∈ PSL2(C). We set ρφ(γ ) = Aγ . Then (fφ, ρφ) determine
a development-holonomy pair, and thus a projective structure Xφ on S. Since f is
holomorphic, we also have π(Xφ) = X.

The map Q(X) → P(X) given by φ 	→ Xφ is inverse to the Schwarzian map
P(X)→ Q(X) because the ODE construction is inverse to the Schwarzian derivative.
In particular, each fiber of π : P (S)→ T (S) is naturally parameterized by a complex
vector space.
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Affine naturality. The identification Q(X) � P(X) defined above depends on a
choice of coordinates on the universal cover of X, Specifically, we computed the
Schwarzian using the coordinate z of the upper half plane.

A coordinate-independent statement is that the Schwarzian derivative is a measure
of the difference between a pair of projective structures on X, which we can see as
follows: Given Z1, Z2 ∈ P(X), let U be a sufficiently small open set on S so that
there are projective coordinate charts zi : U → CP

1 ofZi for i = 1, 2. We can assume
that∞ /∈ zi(U).

The quadratic differential z∗1S(z2 � z−1
1 ) on U is holomorphic with respect to the

Riemann surface structure X. Covering S by such sets, it follows from the cocycle
property that these quadratic differentials agree on overlaps and define an element
φ ∈ Q(X), which is the Schwarzian of Z2 relative to Z1. Abusing notation, we write
Z2 − Z1 = φ.

Thus P(X) has a natural structure of an affine space modeled on the vector space
Q(X). The choice of a basepoint Z0 ∈ P(X) gives an isomorphism P(X)→ Q(X),
namely Z 	→ (Z − Z0). See [51, §2] for details.

From this perspective, the previous identification P(X) → Q(X) using the
Schwarzian of the developing map on H is simply Z 	→ (Z − σ0(X)), that is, it
is the Schwarzian relative to the standard Fuchsian structure. Complex-analytically,
this is not the most natural way to choose a basepoint in each fiber, though this will
be remedied below (§3.3).

The realization ofP(X) as an affine space modeled on a vector space of differential
forms can also be understood in terms of Čech cochains onX with a fixed coboundary
[45, §3], or in terms of connections on a principal PSL2(C)-bundle of projective frames
[2, §2.2] (and the related notions of the graph of a projective structure [40, §2] and of
sl2-opers [35, §8.2]).

3.3 Schwarzian parameterization of P (S)

Identification of bundles. There is a complex vector bundle Q(S) → T (S) over
Teichmüller space whose total space consists of pairs (X, φ), where X ∈ T (S) and
φ ∈ Q(X). In Teichmüller theory, this bundle is identified with the holomorphic
cotangent bundle of Teichmüller space (see e.g. [56], [52]). Since Teichmüller space
is diffeomorphic to R

6g−6, the bundle Q(S) is diffeomorphic to R
12g−12.

Using a section σ : T (S) → P (S) to provide basepoints for the fibers, we can
form a bijective Schwarzian parameterization

P (S)→ Q(S),

Z 	→ (π(Z), Z − σ(π(Z)))
which is compatible with the maps of these spaces to T (S). This correspondence
identifies the zero section of Q(S) with the section σ of P (S). A different section σ
will result in a parameterization that differs by a translation in each fiber.
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Compatibility. The topology on P (S) defined using development-holonomy pairs is
compatible with the topology of Q(S), in that the bijection induced by any continuous
section σ : T (S) → P (S) is a homeomorphism. Continuity in one direction is
elementary complex analysis – uniformly close holomorphic developing maps have
uniformly close derivatives (on a smaller compact set), and therefore uniformly close
Schwarzian derivatives, making P (S) → Q(S) continuous. On the other hand,
continuity of Q(S)→ P (S) follows from continuous dependence of solutions to the
ODE (3.1) on its parameter φ.

Holomorphic structure. The bundle Q(S) is a complex manifold, and a holomor-
phic vector bundle over T (S). The Schwarzian parameterization given by a section
σ : T (S)→ P (S) transports these structures to P (S). However, two sections σ1 and
σ2 induce the same complex structure on P (S) if and only if (σ1−σ2) is a holomorphic
section of Q(S).

There is also a natural complex structure on P (S) that is defined without reference
to its parameterization by Q(S): The tangent space TZP (S) can be identified with
the cohomology group H 1(Z,Vproj), where Vproj is the sheaf of projective vector
fields over Z, i.e. vector fields that in a local projective coordinate are restrictions of
infinitesimal Möbius transformations. This cohomology group is a complex vector
space, which gives an integrable almost complex structure J : TZP (S)→ TZP (S).
(Compare the construction of [51, Propositions 1, 2].)

Quasi-Fuchsian sections. Using deformations of Kleinian surface groups, we can
construct a class of sections of P (S) that transport the complex structure of Q(S)
to the natural complex structure on P (S). Given X, Y ∈ T (S), let Q(X, Y ) denote
the quasi-Fuchsian group (equipped with an isomorphism π1(S) � Q(X, Y )) that
simultaneously uniformizes X and Y (see e.g. [56, Chapter 6]). This means that
Q(X, Y ) has domain of discontinuity�+��−with marked quotient Riemann surfaces

�+/Q(X, Y ) � X, �−/Q(X, Y ) � Y
where Y is the complex conjugate Riemann surface of Y , which appears in the quotient
because the induced orientation on the marked surface �−/Q(X, Y ) is opposite that
of S.

As a quotient of a domain by a Kleinian group, the surface �+/Q(X, Y ) also
has a natural projective structure, which we denote by �Y (X). By definition, the
underlying Riemann surface of �Y (X) is X, so for any fixed Y ∈ T (S) this defines a
quasi-Fuchsian section

�Y : T (S)→ P (S).

These quasi-Fuchsian sections induce the natural complex structure on P (S). We
sketch two ways to see this: First, Hubbard uses a cohomology computation to show
that a section induces the canonical complex structure if and only if it can be represented
by a relative projective structure on the universal curve over T (S) [51, Propositions 1,
2]. The quasi-Fuchsian groups provide such a structure due to the analytic dependence



466 David Dumas

of the solution of the Beltrami equation on its parameters [1], and the associated
construction of the Bers fiber space [6].

Alternatively, one can show (as in the respective computations of Hubbard [51]
and Earle [28]) that both the canonical complex structure on P (S) and the complex
structure coming from a quasi-Fuchsian section make the holonomy map (discussed
in §5) a local biholomorphism, and therefore they are holomorphically equivalent.

Norms. A norm on the vector space Q(X) induces a natural measure of the “com-
plexity” of a projective structure onX (relative to the standard Fuchsian structure), or
of the difference between two projective structures. There are several natural choices
for such a norm.

The hyperbolic L∞ norm ‖φ‖∞ is the supremum of the function |φ|/ρ2, where
ρ2 is the area element of the hyperbolic metric on X. Lifting φ to the universal cover
and identifying X̃→ , we have

‖φ‖∞ = ‖φ̃‖∞ = 1

4
sup
z∈
|φ̃(z)|(1− |z|2)2.

As a result of Nehari’s theorem on univalent functions, a holomorphic immersion
f : → CP

1 satisfying ‖S(f )‖∞ ≤ 1
2 is injective, while any injective map satisfies

‖S(f )‖∞ ≤ 3
2 (see [91], also [96], [79]). More generally, the norm ‖S(f )‖∞ gives a

coarse estimate of the size of hyperbolic balls in  on which f is univalent [74, §3],
[77, Lemma 5.1]. Thus, when applied to projective structures, the L∞ norm reflects
the geometry and valence of the developing map.

In Teichmüller theory, it is more common to use the L1 norm ‖φ‖1, which is the
area of the surface X with respect to the singular Euclidean metric |φ|. This norm is
conformally natural, since it does not depend on the choice of a Riemannian metric
on X. However, the intrinsic meaning of the L1 norm of the Schwarzian derivative is
less clear.

More generally, given any background Riemannian metric on X compatible with
its conformal structure, there is an associated Lp norm on Q(X). These norms, with
p ∈ (1,∞) and especially p = 2, can be used to apply PDE estimates to the study of
projective structures, as discussed in §6.4 below.

Note that while any two norms on the finite-dimensional vector spaceQ(X) are bi-
Lipschitz equivalent, the bi-Lipschitz constants between the L∞, L1, and hyperbolic
Lp norms on Q(X) diverge as X→∞ in Teichmüller space.

4 The Grafting parameterization
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4.1 Definition of grafting

Grafting is a geometric operation that can be used to build an arbitrary projective
structure by gluing together simple pieces. We start by defining grafting in a restricted
setting, and then work toward the general definition.

Grafting simple geodesics. Equip a Riemann surfaceX ∈ T (S) with its hyperbolic
metric. Let γ be a simple closed hyperbolic geodesic on X. The basic grafting
construction replaces γ with the cylinder γ ×[0, t] to obtain a new surface grtγ X, the
grafting ofX by tγ , as shown in Figure 1. The natural metric on this surface is partially
hyperbolic (on X − γ ) and partially Euclidean (on the cylinder), and underlying this
metric is a well-defined conformal structure on grtγ X. Let S denote the set of free

X grtγ X

γ
t

Figure 1. Grafting along a simple closed curve.

homotopy classes of homotopically nontrivial simple closed curves on S. Then S
is canonically identified with the set of simple closed geodesics for any hyperbolic
structure on S, and we can regard grafting as a map

gr : S × R
+ × T (S)→ T (S).

When it is important to distinguish this construction from the projective version defined
below, we will call this conformal grafting, since the result is a conformal structure.

Projective grafting. The Riemann surface X has a standard Fuchsian projective
structure in which the holonomy of a simple closed geodesic γ is conjugate to z 	→ e�z,
where � = �(γ,X) is the hyperbolic length of γ .

For any t < 2π , let Ãt denote a sector of angle t in the complex plane, with its
vertex at 0. The quotientAt = Ãt /〈z 	→ e�z〉 is an annulus equipped with a projective
structure, which as a Riemann surface is isomorphic to the Euclidean product γ×[0, t].

There is a natural projective structure on the grafted surface grtγ X that is obtained
by gluing the standard Fuchsian projective structure of X to At ; these structures are
compatible due to the matching holonomy around the gluing curves. In the universal
cover of X, this corresponds to inserting a copy of Ãt in place of each lift of γ (see
Figure 2), applying Möbius transformations to Ãt and the complementary regions of
γ in X̃ (which are bounded by circular arcs) so that they fit together. For sufficiently
small t , this produces a Jordan domain in CP

1 that is the image of the developing
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X̃

G̃rtγ X

X

Grtγ X

Figure 2. Projective grafting: Gluing a cylinder into the surface along a geodesic corresponds
to inserting a sector or lune into each lift of the geodesic. Only one lift is shown here, but the

gluing construction is repeated equivariantly in G̃rtγ X.

map, while for large t the developing image is all of CP
1. We denote the resulting

projective structure by Grtγ X.
Applying a generic Möbius transformation to the sector Ãt will map it to a t-lune,

the intersection of two round disks with interior angle t . Thus the projective structure
Grtγ X corresponds to a decomposition of its universal cover into t-lunes and regions
bounded by circular arcs.

The restriction to small values of t in this construction is not necessary; for t > 2π
we simply interpret Ãt as a “sector” that wraps around the punctured plane C

∗ some
number of times. Alternatively, we could define At for t ≥ 2π by gluing n copies of
At/n end-to-end, for a sufficiently large n ∈ N.

Therefore we have a projective grafting map,

Gr : S × R
+ × T (S)→ P (S)

which is a lift of grafting through the forgetful mapπ : P (S)→ T (S), i.e.π�Gr = gr.

Variations on simple grafting. Grafting along a simple geodesic with weight t = 2π
was originally used by Maskit [83], Hejhal [47], and Sullivan–Thurston [109] to con-
struct examples of exotic Fuchsian projective structures (discussed in §5.4 below).
Grafting with weight 2π is special because it does not change the holonomy repre-
sentation of the Fuchsian projective structure (see §5).

It is possible to extend this holonomy-preserving grafting operation to certain sim-
ple curves which are not geodesic, and to projective structures that are not standard
Fuchsian (see [66, Chapter 7]); this generalization has been important to some appli-
cations in Kleinian groups and hyperbolic geometry (e.g. [13], [11, §5]), and it will
appear again in our description of quasi-Fuchsian projective structures (§5.5). How-



Chapter 12. Complex projective structures 469

ever, our main focus in this chapter is a different extension of grafting, defined by
Thurston, which leads to a geometric model for the entire moduli space P (S).

Extension to laminations. Projective grafting is compatible with the natural comple-
tion of R

+×S to the space ML(S) of measured laminations. An element λ ∈ML(S)
is realized on a hyperbolic surface X ∈ T (S) as a foliation of a closed subset of X by
complete, simple hyperbolic geodesics (some of which may be closed), equipped with
a transverse measure of full support. A piecewise linear coordinate atlas for ML(S) is
obtained by integrating transverse measures over closed curves, making ML(S) into a
PL manifold homeomorphic to R

6g−6. See [113, Chapter 8–9], [18], [94, Chapter 3]
for detailed discussion of measured laminations.

There is continuous extension Gr : ML(S)×T (S)→ P (S) of projective grafting,
which is uniquely determined by the simple grafting construction because weighted
simple closed curves are dense in ML(S). Similarly, there is an extension of the
grafting map gr : ML(S)×T (S)→ T (S) defined by gr = π �Gr. These extensions
were defined by Thurston (unpublished), and are discussed in detail in [64].

For a lamination λ ∈ ML(S) that is supported on a finite set of disjoint simple
closed curves, i.e. λ =∑n

i=1 tiγi , the grafting grλX defined by this extension proce-
dure agrees with the obvious generalization of grafting along simple closed curves,
wherein the geodesics γ1, . . . , γn are simultaneously replaced with cylinders.

For a general measured lamination λ ∈ ML(S), one can think of grλX as a
Riemann surface obtained from X by thickening the leaves of the lamination λ in
a manner dictated by the transverse measure. This intuition is made precise by the
definition of a canonical stratification of grλX in the next section.

4.2 Thurston’s theorem

Projective grafting is a universal construction – every projective structure can be ob-
tained from it, and in exactly one way:

Theorem 4.1 (Thurston [unpublished]). The projective grafting map

Gr : ML(S)× T (S)→ P (S)

is a homeomorphism.

The proof of Theorem 4.1 proceeds by explicitly constructing the inverse map
Gr−1 using complex projective and hyperbolic geometry. We will now sketch this
construction; details can be found in [64].

The embedded case. First suppose that Z ∈ P (S) is a projective surface whose
developing map is an embedding (an embedded projective structure). The image of
the developing map is a domain � ⊂ CP

1 invariant under the action of π1(S) by the
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holonomy representation ρ. In this case, we will describe the inverse of projective
grafting in terms of convex hulls in hyperbolic space. See [32] for details on these
hyperbolic constructions.

Considering CP
1 as the ideal boundary of hyperbolic space H

3, let Pl(Z) denote
the boundary of the hyperbolic convex hull of (CP

1 − �). Then Pl(Z) is a convex
pleated plane in H

3 invariant under the action of π1(S) by isometries.
When equipped with the path metric, the pleated plane Pl(Z) is isometric to H

2, and
by this isometry, the action of π1(S) on H

3 corresponds to a discontinuous cocompact
action on H

2. Let Y ∈ T (S) denote the marked quotient surface.
The pleated plane Pl(Z) consists of totally geodesic pieces (plaques or facets) meet-

ing along geodesic bending lines. Applying the isometry Pl(Z) � H
2 to the union of

the bending lines yields a geodesic lamination, which has a natural transverse measure
recording the amount of bending of Pl(Z). The lamination and measure are π1(S)-
invariant, and therefore descend to the quotient, defining an element λ ∈ML(S).

Thus, starting from an embedded projective structure Z, we obtain a hyperbolic
structure Y and a measured lamination λ. To show that we have inverted the projective
grafting map, we must check that GrλY = Z.

Nearest-point projection. There is a nearest-point projection map κ : � → Pl(Z)
that sends z ∈ � to the first point on Pl(Z) that is touched by an expanding family of
horoballs in H

3 based at z. Convexity of Pl(Z) ensures that this point is well-defined.
In fact, from each z ∈ �we obtain not just a nearest point on Pl(Z), but also a support
planeHz which contains κ(z) and whose normal vector at that point defines a geodesic
ray with ideal endpoint z. This gives a map κ̂ : �→ H2,1, where H2,1 is the space
of planes in H

3 (the de Sitter space).
The canonical stratification of � is the decomposition into fibers of the map κ̂ .

Strata are of two types:
• 1-dimensional strata – circular arcs that map homeomorphically by κ onto bend-

ing lines of Pl(Z), and

• 2-dimensional strata – regions with nonempty interior bounded by circular arcs
which map homeomorphically by κ to the totally geodesic pieces of Pl(Z).

If λ is supported on a single closed geodesic (or on a finite union of them), the
1-dimensional strata and the boundary geodesics of the 2-dimensional strata in� � Z̃
fill out a collection of lunes, and the interiors of the 2-dimensional strata correspond
by κ to the complementary regions of the lift of λ, realized geodesically on Y , to
Ỹ � H

2. See Figure 3 for an example of this type. This is the arrangement of lunes
and circular polygons giving the projective structure of GrλY , and so Z = GrλY . A
limiting argument shows the same holds for general λ.

The general case. The key to inverting the projective grafting in the embedded case
is the construction of the convex pleated plane Pl(Z). For general Z ∈ P (S), this is
replaced by a locally convex pleated plane defined using the projective geometry of
Z itself, rather than its developed image.
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Let f : Z̃→ CP
1 be the developing map ofZ. A round disk in Z̃ is an open subset

U such that f is injective on U and f (U) is an open disk in CP
1. The round disks in

Z̃ are partially ordered with respect to inclusion. A maximal element for this ordering
is a maximal round disk.

Each maximal round disk U in Z̃ corresponds to a disk in CP
1, and thus to an

oriented planeHU in H
3. AllowingU to vary over all maximal round disks in Z̃ gives

a family of oriented planes, and the envelope of this family is a locally convex pleated
plane Pl(Z).

The rest of the convex hull construction generalizes as follows: The intrinsic geom-
etry of Pl(Z) is hyperbolic, with quotient Y , and the bending of Pl(Z) is recorded by
a measured lamination λ. In place of the nearest-point projection and support planes,
we have a collapsing map κ : Z̃→ Pl(Z) and a co-collapsing map κ̂ : Z̃→ H2,1 (see
also [25, §2, §7]). The fibers of κ̂ induce a canonical stratificationof Z̃, and separating
the 1- and 2-dimensional strata describes Z as the projective grafting GrλY .

Note that the canonical stratification of Z̃ is π1(S)-invariant, and therefore we have
a corresponding decomposition of Z into 1- and 2-dimensional pieces. We will also
refer to this as the canonical stratification. Similarly, the collapsing map descends to
a map κ : Z→ Y between quotient surfaces, which sends the union of 1-dimensional
strata and boundary geodesics of 2-dimensional strata onto the bending lamination
λ ⊂ Y .

The canonical stratification for complex projective structures is discussed further
in [64, §1.2], where it is also generalized to n-manifolds equipped with flat conformal
structure (see also [78], [102]).

Dual trees. When grafting along a simple closed curve γ with weight t , each bending
line of the associated pleated plane in H

3 has a one-parameter family of support planes
(see Figure 4). These give an interval in the image of κ̂ , and the angle between support
planes gives a metric on this interval, making it isometric to [0, t] ⊂ R. Alternatively,
this metric could be defined as the restriction of the Lorentzian metric of H2,1, where
the restriction is positive definite because any pair of support planes of a given bending
line intersect (see [102, §5], [78, §3, §6.5]).

The intervals corresponding to different bending lines meet at vertices correspond-
ing to support planes of flat pieces. This gives κ̂ the structure of a metric tree, the
dual tree of the weighted curve tγ , denoted Ttγ . As this notation suggests, this tree
depends only on tγ (through the bending lines, their bending angles, and the adjacency
relationship between bending lines and flat pieces) and not on the quotient hyperbolic
structure of the pleated plane. The equivariance of the pleated plane with respect to
π1(S) determines an isometric action of π1(S) on Ttγ .

For a general grafting lamination λ ∈ML(S), the image of κ̂ has the structure of
an R-tree (see [101, Chapter 9], [78, §6, §11]), a geodesic metric space in which each
pair of points is joined by a unique geodesic which is isometric to an interval in R

[90, Chapter 2]. This dual R-tree of λ, denoted Tλ, is also equipped with an isometric
action of π1(S).



472 David Dumas

(a) Developed image (b) Maximal disks

(c) Lunes and ideal polygons (d) Pleated plane in H
3 (Klein model)

Figure 3. Four views of a projective structure lifted to the universal cover of a surface. The
example shown here is an approximation of an embedded structure on a surface of genus 2,
obtained by grafting along a separating simple closed curve. The approximation includes only
a few of the maximal disks.
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P1
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1

H 2,1

κ

∧
κ

Figure 4. A lune between two maximal disks collapses to a bending line between two planes
(P1,P2), and co-collapses to an interval between two points (p1,p2).

4.3 The Thurston metric

We have seen that when grafting along a simple closed curve, the resulting projective
surface Grtγ X has a natural conformal metric that combines the hyperbolic structure
of X and the Euclidean structure of the cylinder. This is the Thurston metric (or
projective metric) on the projective surface.

This definition can be extended to arbitrary projective surfaces by taking limits of
the metrics gained from an appropriate sequence of simple closed curves; however, we
will prefer an intrinsic description of the metric based on complex projective geometry.

Kobayashi construction. The Kobayashi metric on a complex manifold is defined by
a norm on each tangent space, where the length of a vector v is the infimum of lengths
given to it by holomorphically immersed disks (each of which is equipped with its
hyperbolic metric). For a surfaceZ with a projective structure, there is a variant of the
Kobayashi metric in which one minimizes length over the smaller class of projectively
immersed disks, that is, immersions  → Z̃ that are locally Möbius with respect to
the projective structure on as a subset of CP

1. The resulting “projective Kobayashi
metric” is the Thurston metric of Z [110, §2.1].

Relation to grafting. This intrinsic definition of the Thurston metric is related to
grafting as follows: for each z ∈ Z̃, there is a unique maximal round disk U ⊂ Z̃

such that the (lifted) Thurston metric at z agrees with the hyperbolic metric on U .
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Furthermore, the set of points in Z̃ that correspond to a given maximal disk U is a
stratum in the canonical stratification of Z. Thus the Thurston metric is built from 2-
dimensional hyperbolic regions with geodesic boundary and 1-dimensional geodesic
strata. ForZ = GrλX, the union of the hyperbolic strata covers a subset ofZ isometric
to (X−λ), where λ is realized geodesically on the hyperbolic surfaceX. When λ = tγ
is supported on a simple closed curve, the 1-dimensional strata sweep out Euclidean

strips in G̃rtγ X, which cover a Euclidean cylinder in Grtγ X, recovering the synthetic
description of the Thurston metric in this case.

Conformal metrics and regularity. The Thurston metric on Z is a nondegenerate
Riemannian metric compatible with the underlying complex structure π(Z), i.e. it is
a conformal metric on the Riemann surface. In local complex coordinates, the line
element of such a metric has the form ρ(z)|dz|, where ρ(z) is the real-valued density
function. In the case of simple grafting, the density function of the Thurston metric is
smooth on the hyperbolic and Euclidean pieces, but it is only C1 on the interface be-
tween them. (The discontinuity in its second derivative is necessary since the curvature
changes along the interface.) In general, the Thurston metric of a projective surface
is C1,1, meaning that its density function has Lipschitz derivatives, with Lipschitz
constant locally bounded on P (S) [78].

Variation of metrics. The Thurston metric is a continuous function of the projective
structure Z ∈ P (S) with respect to the topology of locally uniform convergence
of density functions: For a sequence Zn → Z ∈ P (S), the Lipschitz bound on
the derivatives of the Thurston metrics shows that uniform convergence follows from
pointwise convergence, which in turn follows from the locally uniform convergence of
the developing maps fn : → CP

1 (or from the continuous variation of the associated
locally convex pleated surfaces).

Area. A conformal metric on a Riemann surface with density function ρ induces an
area measure by integration of ρ2 = ρ(z)2|dz|2.

The total area of GrλX with respect to the Thurston metric is 4π(g−1)+�(λ,X),
where �(λ,X) is the length of the measured lamination λwith respect to the hyperbolic
metric of X. The two terms correspond to the two types of strata: The union of the
2-dimensional strata has area 4π(g − 1), because it is isometric to the complement
of a geodesic lamination (a null set) in the hyperbolic surface X. The union of the
1-dimensional strata has area �(λ,X), which is the continuous extension to ML(S)
of the function t�(γ,X) giving the area of the Euclidean cylinder γ ×[0, t] in the case
of simple grafting.
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Curvature. The Gaussian curvatureK and curvature 2-form�of a smooth conformal
metric are related to its density function ρ by

K = − 1

ρ2 log ρ,

� = Kρ2 = − log ρ.
(4.1)

In particular, such a metric has nonpositive Gaussian curvature if and only if log ρ is
a subharmonic function.

The Thurston metric is not smooth everywhere, but it is nonpositively curved
(NPC), meaning that its geodesic triangles are thinner than triangles in Euclidean
space with the same edge lengths. As in the smooth case, this implies that log ρ is
subharmonic, so we have a nonpositive measure � = − log(ρ) that generalizes the
curvature 2-form [99] (see also [98], [55], [54], [87]). For the Thurston metric, � is
absolutely continuous, � = Kρ2 where K is the (a.e. defined) Gaussian curvature
function. By a generalization of the Gauss–Bonnet theorem, the total mass of �
(which is the integral of K) is −4π(g − 1) [54].

Hyperbolic and Euclidean. Since the Gaussian curvature of the Thurston metric is
−1 in the interior of each 2-dimensional stratum, and these have total area 4π(g− 1),
the curvature of the Thurston metric is almost everywhere 0 in the union of the 1-
dimensional strata. In this sense, grafting along a general lamination can be seen as
the operation of inserting a Euclidean “surface” in place of a geodesic lamination,
generalizing the case of closed leaves.

4.4 Conformal grafting maps

Having discussed the projective grafting construction and its inverse, we turn our
attention to properties of the conformal grafting map gr : ML(S)× T (S)→ T (S).

Using techniques from the theory of harmonic maps between surfaces (see §6.3),
Tanigawa showed that this map is proper when either one of the coordinates is fixed:

Theorem 4.2 (Tanigawa [110]). For each λ ∈ML(S), the λ-grafting map

grλ : T (S)→ T (S)

is a proper smooth map. For each X ∈ T (S), the X-grafting map

gr•X : ML(S)→ T (S)

is a proper continuous map.

Properness allows global properties of these maps to be derived from local con-
siderations. For example, Scannell and Wolf showed that the λ-grafting map is an
immersion, and therefore it is a local diffeomorphism. Since a proper local diffeo-
morphism is a covering map, this result and Theorem 4.2 give:
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Theorem 4.3 (Scannell–Wolf [103]). For each λ ∈ ML(S), the λ-grafting map
grλ : T (S)→ T (S) is a diffeomorphism.

Earlier, Tanigawa had shown that grλ is a diffeomorphism when λ ∈ ML(S) is
supported on a finite set of simple closed curves with weights that are integral multiples
of 2π [110]. This follows from Theorem 4.2 because holonomy considerations (see
§5) imply that grλ is a local diffeomorphism in this case.

In the general case, Scannell and Wolf analyze the Thurston metric and conformal
grafting map through the interaction of two differential equations: The Liouville
equation, which relates a Riemannian metric to its curvature, and the Jacobi equation,
which determines the variation of a geodesic with respect to a family of Riemannian
metrics. Analytic estimates for these equations are used to show that a 1-parameter
family of graftings t 	→ grλXt cannot be conformally equivalent to first order unless
(d/dt)Xt |t=0 = 0, which gives injectivity of the derivative of grλ.

As a consequence of Theorem 4.3, for any λ ∈ ML(S) the set of projective
structures with grafting lamination λ projects homeomorphically to T (S) by the for-
getful map. That is, the set of such projective structures forms a smooth section
σλ : T (S)→ P (S) of π , which is given by

σλ(X) = Grλ(gr−1
λ (X)). (4.2)

Note that this is compatible with our previous definition of the standard Fuchsian
structure σ0(X), since this is the unique projective structure on X with zero graft-
ing lamination. As with Theorem 4.3, in the special case of 2π -integral weighted
multicurves, the existence of these smooth sections follows from the earlier work of
Tanigawa.

Fixing X and varying λ ∈ML(S), we can also use Theorem 4.3 to parameterize
the fiber P(X); that is,

λ 	→ σλ(X)

gives a homeomorphism ML(S)→ P(X) (compare [26, §4]). It is the inverse of the
map which sends GrλY ∈ P(X) to λ.

Building on the Scannell–Wolf result, the author and Wolf showed that the X-
grafting map is also a local homeomorphism, leading to:

Theorem 4.4 (Dumas and Wolf [27]). For each X ∈ T (S), the X-grafting map
gr•X : ML(S)→ T (S) is a homeomorphism. Furthermore, this homeomorphism is
bitangentiable.

The last claim in this theorem involves the regularity of the grafting map as λ is
varied. Let f : U → V be a continuous map, where U ⊂ R

n and V ⊂ R
m are open

sets. The tangent map of f at x, denoted Txf : Rn→ R
m, is defined by

Txf (v) = lim
ε→0+

f (x + εv)− f (x)
ε

.
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The map f is tangentiable if this limit exists for all (x, v) ∈ U × R
n, and if the

convergence is locally uniform in v when x is fixed. Intuitively, a tangentiable map
is one which has one-sided derivatives everywhere. These notions generalize nat-
urally to maps between smooth manifolds (e.g. T (S)), piecewise linear manifolds
(e.g. ML(S)), or manifolds defined by an atlas of charts with tangentiable transition
functions. Tangentiable maps and manifolds are discussed in [10].

A homeomorphism f is called bitangentiable if both f and f−1 are tangentiable,
and if every tangent map of f or f−1 is a homeomorphism. Thus a bitangentiable
homeomorphism is the analogue of a diffeomorphism in the tangentiable category.

The connection between grafting, projective structures, and tangentiability was
studied by Bonahon, following work of Thurston on the infinitesimal structure of the
space ML(S) [115]; the fundamental result, which strengthens Thurston’s theorem, is

Theorem 4.5 (Bonahon [10]). The projective grafting map Gr : ML(S)× T (S)→
P (S) is a bitangentiable homeomorphism.

The proof of Theorem 4.4 uses Theorem 4.3, the above result of Bonahon, and
a further complex linearity property of the tangent map of projective and conformal
grafting (see [10], [9, §10], also [27, §3]). This complex linearity provides a “duality”
between variation of grλX under changes in X and λ; in a certain sense, grafting
behaves like a holomorphic function, where X and λ are the real and imaginary parts
of its parameter, respectively. This allows infinitesimal injectivity of gr•X0 near λ0
to be derived from the infinitesimal injectivity of grλ0

near X0.
After applying some additional tangentiable calculus, this infinitesimal injectivity is

converted to local injectivity of gr•X, from which Theorem 4.4 follows by properness
(Theorem 4.2).

5 Holonomy

We now turn our attention to the holonomy representations of projective structures
in relation to the grafting and Schwarzian coordinate systems for P (S). General
references for these matters include [47], [46], [28], [51], [36].

5.1 Representations and characters

Let R(S) = Hom(π1(S), PSL2(C)) denote the set of homomorphisms (representa-
tions) from π1(S) to PSL2(C), which is an affine C-algebraic variety (as a subset of
(PSL2(C))

N � (SO3(C))
N)). The group PSL2(C) acts algebraically on R(S) by

conjugation, and there is a quotient character variety

X(S) = R(S)//PSL2(C)

in the sense of geometric invariant theory. Concretely, the points of X(S) are in one-
to-one correspondence with the set of characters, i.e. C-valued functions on π1(S) of
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the form

γ 	→ tr2(ρ(γ ))

where ρ ∈ R(S). Mapping a character to its values on an appropriate finite subset of
π1(S) gives an embedding of X(S) as an affine variety in C

n. See [49] for a discussion
of PSL2(C) character varieties, building on the work of Culler–Shalen in the SL2(C)

case [20]. Algebraic and topological properties of character varieties are also studied
in [44, §9], [41], [97].

Liftability. The variety X(S) splits into two irreducible components according to
whether or not the associated representations lift from PSL2(C) to SL2(C) (see [41],
[97]). Denote these by X0(S) and X1(S), where the former consists of liftable char-
acters. Each of these components has complex dimension 6g − 6, which agrees with
the “expected dimension”, i.e. 6g − 6 = (dim PSL2(C))(Ngens −Nrelators − 1).

Elementary andnon-elementary. When working with the character variety, compli-
cations may arise because the invariant-theoretic quotient X(S) is singular, or because
it is not the same as the quotient set R(S)/PSL2(C). However we can avoid most
of these difficulties by restricting attention to a subset of characters (which contains
those that arise from projective structures).

A representation ρ ∈ R(S) is elementary if its action on H
3 by isometries fixes

a point or an ideal point, or if it preserves an unoriented geodesic, otherwise it is
non-elementary.

A non-elementary representation is determined up to conjugacy by its character,
so there is a one-to-one correspondence between the set of conjugacy classes of non-
elementary representations and the set X′(S) ⊂ X(S) of characters of non-elementary
representations.

The subset X′(S) is open and lies in the smooth locus of the character variety [44],
[46], [38]. Thus X′(S) is a complex manifold of dimension 6g − 6, and is the union
of the open and closed subsets X′i (S) = X′(S) ∩Xi (S), i = 1, 2.

Fuchsian and quasi-Fuchsian spaces. The character variety X(S) contains the
space QF (S) of conjugacy classes of quasi-Fuchsian representations of π1(S) as
an open subset of X′0(S). The parameterization of QF (S) by the pair of quotient
conformal structures gives a holomorphic embedding

T (S)× T (S)→ X(S),

where S represents the surface S with the opposite orientation (see [85, §4.3]). In
this embedding, the diagonal {(X,X) | X ∈ T (S)} corresponds to the set F (S) of
Fuchsian representations, giving an identification F (S) � T (S). Note that this is not
a holomorphic embedding of Teichmüller space into the character variety; the image
is a totally real submanifold.
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5.2 The holonomy map

Since the holonomy representation ρ ∈ R(S) of a projective structure Z is deter-
mined up to conjugacy, the associated character [ρ] ∈ X(S) is uniquely determined.
Considering [ρ] as a function of Z gives the holonomy map

hol : P (S)→ X(S).

In fact, the image of hol lies in X′0(S): A lift to SL2(C) is given by the linear mono-
dromy of the Schwarzian ODE (3.1). The holonomy representation is non-elemen-
tary because S does not admit an affine or spherical structure; for details, see [5,
pp. 297–304], [63, Theorem 3.6], [46, §2], [43, Theorem 19, Corollary 3].

Holonomy theorem. For hyperbolic structures on compact manifolds, the holon-
omy representation determines the geometric structure. For projective structures on
surfaces, the same is true locally:

Theorem 5.1 (Hejhal [47], Earle [28], Hubbard [51]). The holonomy map

hol : P (S)→ X(S)

is a local biholomorphism.

Originally, Hejhal showed that the holonomy map is a local homeomorphism using
a cut-and-paste argument. Earle and Hubbard gave alternate proofs of this result, along
with differential calculations showing that the map is locally biholomorphic. Recall
that when considering P (S) as a complex manifold, we are using the complex structure
induced by the quasi-Fuchsian sections.

A more general holonomy theorem for (G,X) structures is discussed in [40].

Negative results. Despite the simple local behavior described by Theorem 5.1, the
global behavior of the holonomy map is quite complicated:

Theorem 5.2. (1) The holonomy map is not injective. In fact, all of the fibers of the
holonomy map are infinite.

(2) The holonomy map is not a covering of its image.

The non-injectivity in (1) follows from the discussion of 2π -grafting in §5.4 below.
Hejhal established (2) by showing that the path lifting property of coverings fails for
the holonomy map [47]. The infinite fibers of the holonomy map arise from the
existence of admissible curves that can be used to alter a projective structure while
preserving its holonomy [36], [66, Chapter 7]; this is similar to the “constructive
approach” discussed in §5.5 below.

Further pathological behavior of the holonomy map is discussed in [59, §5].
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Surjectivity. Of course one would like to know which representations arise from the
holonomy of projective structures. We have seen that in order to arise from a projective
structure, a character must be non-elementary and liftable (i.e. hol(P (S)) ⊂ X′0(S)).
These necessary conditions are also sufficient:

Theorem 5.3 (Gallo, Kapovich, and Marden [36]). Every non-elementary liftable
PSL2(C)-representation of π1(S) arises from the holonomy of a projective structure
on S. Equivalently, we have hol(P (S)) = X′0(S).

In the same article it is also shown that the non-elementary non-liftable representa-
tions arise from branched projective structures. In both cases, the developing map of a
projective structure with holonomy representation ρ is constructed by gluing together
simpler projective surfaces that can be analyzed directly. A key technical result that
enables this construction is:

Theorem 5.4 ([36]). Let ρ : π1(S) → PSL2(C) be a homomorphism with non-
elementary image. Then there exists a pants decomposition of S such that the re-
striction of ρ to any component of the decomposition is a marked rank-2 classical
Schottky group. In particular, the image of every curve in the decomposition is loxo-
dromic.

Projective structures on pairs of pants with loxodromic boundary holonomy are
analyzed in [36, §§6–7].

Holonomy deformations. We have seen that projective structures on a Riemann
surfaceX form an affine space modeled onQ(X) (§3.2). Thus, given a non-elementary
representation ρ ∈ X′0(S), projective structures provide deformations of ρ as follows:
Find Z ∈ P (S) with hol(Z) = ρ, which is possible by Theorem 5.3, and consider
the family of holonomy representations {hol(Z + φ) | φ ∈ Q(X)}. This gives a
holomorphic embedding of C

3g−3 into X(S), a family of projective deformations
of ρ. (Compare [74], [75], where Kra refers to a projective structure on X as a defor-
mation of the Fuchsian group uniformizing X.)

These deformations could be compared with the classical quasi-conformal defor-
mation theory of Kleinian groups. Projective deformations are especially interesting
because they are insensitive to the discreteness of the image of a representation, and
because they apply to quasiconformally rigid Kleinian groups. On the other hand, it
is difficult to describe the global behavior of a projective deformation explicitly, and
there is often no canonical choice for the preimage of ρ under the holonomy map.

5.3 Holonomy and bending

The holonomy map for projective structures is related to the grafting coordinate system
through the notion of bending deformations. We now describe these deformations,
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mostly following Epstein and Marden [32]). In doing so, we are essentially re-creating
the projective grafting construction of §4.1 while working entirely in hyperbolic 3-
space, and starting with a Fuchsian representation rather than a hyperbolic surface.

Bending Fuchsian groups. We begin with an algebraic description of bending. A
primitive element γ ∈ π1(S) representing a simple closed curve that separates the
surface S determines a Z-amalgamated free product decomposition

π1(S) = π1(S1) ∗〈γ 〉 π1(S2)

where (S − γ ) = S1 � S2. Note that the representative γ determines an orientation
of the closed geodesic, and using this orientation, we make the convention that S2
lies to the right of the curve. Given a homomorphism ρ : π1(S) → PSL2(C) and
an element A ∈ PSL2(C) centralizing ρ(γ ), there is a deformed homomorphism ρ′
uniquely determined by

ρ′(x) =
{
ρ(x) if x ∈ π1(S1),

Aρ(x)A−1 if x ∈ π1(S2).
(5.1)

Similarly, a nonseparating curve γ corresponds to a presentation of π1(S) as an HNN
extension, and again each centralizing element gives a deformation of ρ. See [42, §3]
for further discussion of this deformation procedure.

When ρ is a Fuchsian representation and A is an elliptic element having the same
axis as ρ(γ ), the homomorphism ρ′ is a bending deformation of ρ. WhenA rotates by
angle t about the axis of ρ(γ ), clockwise with respect to the orientation, we denote the
deformed representation by βtγ (ρ) = ρ′. Up to conjugacy, this deformation depends
only on the angle t and the curve γ , not on the representative in π1(S) or the induced
orientation.

The “bending” terminology refers to the geometry of the action of π1(S) on H
3 by

βtγ (ρ). The Fuchsian representation ρ preserves a plane H
2 ⊂ H

3, whereas we will
see that the bending deformation βtγ (ρ) preserves a locally convex pleated (or bent)
plane.

In terms of characters, the Fuchsian representation ρ0 is a point in F (S) � T (S)
and bending defines a map

β : S × R
+ × T (S)→ X(S).

Like grafting, this map extends continuously to measured laminations [32, Theo-
rem 3.11.5], giving

β : ML(S)× T (S)→ X(S).

Note that while the bending path t 	→ βtγ (X) is 2π -periodic, there is no apparent
periodicity when bending along a general measured lamination.

Earthquakes and quakebends. The centralizer of a hyperbolic Möbius transfor-
mation γ ∈ PSL2(C) contains all of the elliptic and hyperbolic transformations
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with the same axis as γ , but in defining bending we have only considered the el-
liptic transformations. The deformation corresponding (by formula (5.1)) to a pure
translation is known as an earthquake, and the common generalization of a bend-
ing or earthquake deformation (corresponding to the full centralizer) is a quakebend
or complex earthquake. For further discussion of these deformations, see e.g. [32],
[114], [86].

Bending cocycles. An alternate definition of the bending deformation makes the
geometric content of the construction more apparent. Realize the simple closed curve
γ as a hyperbolic geodesic on the surface X ∈ T (S), and consider the full preimage
γ̃ ⊂ H

2 of γ in the universal cover; thus γ̃ consists of infinitely many complete
geodesics, the lifts of γ . By analogy with the terminology for a pleated plane in H

3,
the connected components of H

2 − γ̃ will be called plaques. For the purposes of this
discussion we regard H

2 as a plane in H
3, stabilized by PSL2(R) ⊂ PSL2(C).

Given x, y ∈ (H2 − γ̃ ), let (g1, . . . , gn) be the set of lifts of γ that separate x
from y, ordered according to the way they intersect the oriented geodesic segment
from x to y, with g1 closest to x. Orient each geodesic gi so that y lies to the right.
For any t ∈ R, define the bending cocycle B(x, y) ∈ PSL2(C) by

B(x, y) = E(g1, t)E(g2, t) . . . E(gn, t),

where E(g, t) is an elliptic Möbius transformation with fixed axis g and clockwise
rotation angle t .

In case x and y lie in a facet, this empty product is understood to be the identity.
This construction defines a map B : (H2 − γ̃ ) × (H2 − γ̃ ) → PSL2(C). Clearly
we have B(x, x) = I and B(x, y) only depends on the plaques containing x and y.
Furthermore, the map B satisfies the cocycle relation

B(x, y)B(y, z) = B(x, z) for all x, y, z ∈ H
2 − γ̃ , (5.2)

and the equivariance relation

B(γ x, γy) = ρ0(γ )B(x, y)ρ0(γ )
−1 for all γ ∈ π1(S) (5.3)

where ρ0 ∈ F (S) represents Y .
The connection between the bending cocycle and the bending deformation de-

scribed above is as follows (compare [32, Lemma 3.7.1]).

Lemma 5.5. GivenY ∈ T (S), a simple closed curve γ , and t ∈ R, choose a basepoint
O ∈ (H2 − γ̃ ) and define

ρ(γ ) = B(O, γO)ρ0(γ ),

where ρ0 ∈ F (S) represents Y andB is the bending cocycle associated to Y , γ , and t .
Then ρ is a homomorphism, and it lies in the same conjugacy class as the bending
deformation βtγ (Y ).
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In other words, the bending cocycle records the “difference” between a Fuchsian
character ρ0 and the deformed character βtγ (ρ0). The bending cocycle and this lemma
extend naturally to measured laminations [32, §3.5.3].

Bending and grafting. The key observation relating bending and grafting is that
the bending deformation βλ(Y ) : π1(S) → PSL2(C) preserves the locally convex
pleated plane in H

3 with intrinsic hyperbolic structure Y and bending lamination λ. In
exploring this connection, let us suppose that λ = tγ is supported on a simple closed
curve. The pleating map Pl : H2 → H

3 can be defined in terms of the bending cocycle
as

Pl(x) = B(O, x)x
where as before O ∈ (H2 − γ̃ ) is a base point. Equivariance of this map with respect
to π1(S) then follows from Lemma 5.5 and the properties (5.2)–(5.3) of the bending
cocycle. As written, this pleating map is only defined on H

2 − γ̃ , however it extends
continuously to H

2 because on the two sides of a lift g ⊂ γ̃ , the values of B(O, •)
differ by an elliptic Möbius transformation that fixes g pointwise.

The same reasoning shows that the image of Pl is a locally convex pleated plane:
Since B is locally constant away from γ̃ , the plaques map into planes in H

3, and when
two such plaques share a boundary geodesic g, the images of the plaques in H

3 meet
along a geodesic Pl(g) with bending angle t (which is to say, their enveloping planes
are related by an elliptic Möbius transformation fixing their line of intersection, with
rotation angle t).

We have seen that the holonomy of the projective structure Z = GrλY also pre-
serves the equivariant pleated plane in H

3 constructed by bending Ỹ � H
2 along λ.

This leads to the fundamental relationship between grafting, bending and the holon-
omy map (see [86, §2]):

hol(GrλY ) = βλ(Y ). (5.4)

For laminations supported on simple closed curves, this is simply the observation that
the processes of inserting lunes into H ⊂ CP

1 (which gives projective grafting) and
bending H

2 ⊂ H
3 along geodesics (which gives the bending deformation) are related

to one another by the convex hull construction of §4.2. The general equality follows
from this case by continuity of hol, Gr, and β.

Using (5.4) we can think of projective grafting as a “lift” of the bending map
β : ML(S) × T (S) → X(S) through the locally diffeomorphic holonomy map
hol : P (S)→ X(S) (which is not a covering).

5.4 Fuchsian holonomy

Let PF (S) = hol−1(F (S)) denote the set of all projective structures with Fuchsian
holonomy.
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We can construct examples of projective structures in PF (S) using grafting. Be-
cause of the 2π -periodicity of bending along a simple closed geodesic γ , the projective
structures {Gr2πnγ Y | n ∈ N} all have the same Fuchsian holonomy representation
ρ0 (up to conjugacy), which is the representation uniformizing Y . Of course n = 0
gives the standard Fuchsian structure on Y .

For n > 0 these projective structures have underlying Riemann surfaces of the
form gr2πnγ Y , and due to the 2π -lunes inserted in the projective grafting construction,
their developing maps are surjective. This construction of “exotic” Fuchsian projective
structures is due independently to Maskit [83], Hejhal [47, Theorem 4], and Sullivan–
Thurston [109].

Goldman’s classification. Let MLZ(S) denote the countable subset of ML(S) con-
sisting of disjoint collections of simple closed geodesics with positive integral weights.
Generalizing the case of a single geodesic, every projective structure of the form
Gr2πλY with λ ∈MLZ(S) has Fuchsian holonomy. Goldman showed that all Fuch-
sian projective structures arise in this way:

Theorem 5.6 (Goldman [39]). Let Z ∈ PF (S) and let Y = H
2/hol(Z)(π1(S)) be

the hyperbolic surface associated to the holonomy representation. ThenZ = Gr2πλY

for some λ ∈MLZ.

In terms of the holonomy map hol : P (S)→ T (S), this result shows that we can
identify PF (S) with countably many copies of Teichmüller space,

Gr−1 : PF (S)
�−−→ (2πMLZ(S))× T (S),

and the restriction of the holonomy map to any one of these spaces {2πλ} × T (S)
gives the natural isomorphism T (S) � F (S).

Alternatively, using Theorem 4.3 in combination with Theorem 5.6, we can char-
acterize PF (S) as the union of countably many sections of π ,

PF (S) =
⋃

λ∈MLZ

σ2πλ(T (S)).

Note the difference between these two descriptions of PF (S): In describing it as a
union of sections, we see that the intersection of PF (S)with a fiber P(X) = π−1(X)

consists of a countable discrete set naturally identified with MLZ(S), whereas in the
holonomy picture we describe the intersection of PF (S) with hol−1(Y ) in similar
terms.

Describing PF (S) as a union of the smooth sections σ2πλ(T (S)) of π also allows
us to conclude that each intersection between PF (S) and a fiber P(X) is transverse.
Previously, Faltings established this transversality result in the greater generality of
real holonomy, that is, the projective structures in hol−1(XR(S)) where XR(S) ⊂
X(S) consists of real-valued characters of homomorphisms of π1(S) into PSL2(C).
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Theorem 5.7 (Faltings [33]). Let Z ∈ P(X) be a projective structure with real
holonomy. Then hol(P (X)) is transverse to XR(S) at hol(Z).

The characters in XR(S) correspond to homomorphisms that are conjugate into
SU(2) or PSL2(R). Both cases include many non-Fuchsian characters, as a homo-
morphism ρ : π1(S)→ PSL2(R) is Fuchsian if and only if its Euler class is maximal,
e(ρ) = 2g − 2. Goldman describes the projective structures with real holonomy in
terms of grafting in [39, §2.14], [40, pp. 14–15].

5.5 Quasi-Fuchsian holonomy

Let PQF (S) = hol−1(F (S)) denote the set of all projective structures with quasi-
Fuchsian holonomy, which is an open subset of P (S).

Goldman’s proof of Theorem 5.6 involves a study of the topology and geometry
of developing maps of Fuchsian projective structures. The topological arguments
apply equally well to projective structures with quasi-Fuchsian holonomy, and the
information they provide can be summarized as follows:

Theorem 5.8 (Goldman [39]). Let Z ∈ PQF (S) have developing map f : Z̃ →
CP

1, and let � ⊂ CP
1 be the limit set of the holonomy group, a Jordan curve with

complementary regions �±. Then:

(1) The quotient of the developing preimage of the limit set, denoted �(Z) =
f−1(�)/π1(S), consists of a finite collection of disjoint simple closed curves.

(2) The quotient of the developing preimage of�−, denoted Z− = f−1(�−)/π1(S)

consists of a finite collection of disjoint homotopically essential annuli bounded
by the curves in �(Z). In particular, the curves in �(Z) are naturally grouped
into isotopic pairs.

Recall that among the two domains of discontinuity, �+ is distinguished by the
fact that the orientation of its quotient marked Riemann surface agrees with that of S,
while that of the quotient of �− is opposite.

The topology of a typical (surjective) quasi-Fuchsian developing map is represented
schematically in Figure 5.

Wrapping invariant. Given this description of the preimage of the limit set, there is
a natural Z-weighted multicurve associated to a quasi-Fuchsian projective structureZ:
Suppose the collection of annuli Z− represents homotopy classes γ1, . . . , γn, and that
there are ni parallel annuli homotopic to γi . Define the wrapping invariant

wr(Z) =
∑
i

niγi ∈MLZ(S).

Note that we could have also defined this using the family of curves �(Z), since 2ni
is the number of parallel curves homotopic to γi .
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Z

Z−

/π1(S)

Z̃

f

�+

�−

Figure 5. The relationship between the developing map f and the domains of discontinuity�±
for a projective structure with quasi-Fuchsian holonomy. In this example, the open set Z− is an
annulus, so the wrapping invariant is a simple closed curve with unit weight.

Theorem 5.6 is derived from Theorem 5.8 by showing that for a Fuchsian projective
structure Z, we have

Z = Gr2πwr(Z)Y,

where Y is the quotient of H
2 by the holonomy group, as above. In other words, for

Fuchsian projective structures, the wrapping invariant is the grafting lamination (up
to a multiple of 2π ).

Quasi-Fuchsian components. Because limit sets vary continuously in QF (S), the
wrapping invariant is a locally constant function on PQF (S). Thus PQF (S) breaks
into countably many subsets

PQF (S) =
⋃

λ∈MLZ(S)

Pλ(S) where Pλ(S) = wr−1(λ).

We will refer to these as components of PQF (S).
The quasi-Fuchsian component with zero wrapping invariant, P0(S), consists of

standard quasi-Fuchsian structures. The holonomy map gives a diffeomorphism

hol : P0(S)→ QF (S),

where the inverse map associates to ρ ∈ QF (S) the induced projective structure on
the quotient �+/ρ(π1(S)) of one domain of discontinuity. The developing map of a

standard quasi-Fuchsian projective structure is a Riemann map f : H �−→ �+.
The other components Pλ(S), with λ �= 0, consist of exotic quasi-Fuchsian projec-

tive structures; as in the Fuchsian case, these have surjective developing maps. Unlike
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the Fuchsian case, however, the components Pλ(S) do not have a simple description
in terms of the grafting coordinates on P (S). Nevertheless, when restricted to one of
these components, the holonomy map

hol : Pλ(S)→ QF (S),

is again a diffeomorphism. The inverse QF (S) → Pλ(S) can be constructed by
either of two methods:

(1) Constructive approach. In a generalization of 2π -integral projective grafting, one
starts with a standard quasi-Fuchsian projective structureZ and glues annuli into
the surface to produce a new projective structure which has the same holonomy
but which has wrapping invariant λ. Allowing the starting structure to vary gives
a map QF (S) � P0(S) → Pλ(S) that is inverse to hol. See [39, §1.2], [60,
§2.4] [66, Chapter 7] for details.

(2) Deformation approach. Starting with a fixed Fuchsian representationρ0 ∈ F (S),
any quasi-Fuchsian representation ρ can be obtained by a ρ0-equivariant qua-
siconformal deformation. By pulling back the quasiconformal deformation
through a developing map, one can simultaneously deform a Fuchsian projec-
tive structure Z0 with holonomy ρ0 to obtain a quasi-Fuchsian structure Z with
holonomy ρ. This deformation does not change the wrapping invariant, so start-
ing with Z0 = Gr2πλX and considering all quasiconformal deformations gives
the desired map QF (S)→ Pλ(S). See [107, §3], [57, §2.5].

Thus the structure of PQF (S) is similar to that of PF (S) described above: It consists
of countably many connected components Pλ(S), each of which is diffeomorphic to
QF (S) by the holonomy map (compare [66, §7.2], [57, §§2.5–2.6]).

Bumping of quasi-Fuchsian components. We say that two components Pλ(S) and
Pμ(S) bump if their closures intersect, i.e. if Pλ(S) ∩Pμ(S) �= ∅; an element of the
intersection is called a bumping point. A component Pλ(S) self-bumps at Z ∈ P (S)
if U ∩Pλ(S) is disconnected for all sufficiently small neighborhoods U of Z. These
terms are adapted from similar phenomena in the theory of deformation spaces of
Kleinian groups (surveyed in [16], see also [3], [4], [15], [50]).

The bumping of quasi-Fuchsian components has been studied by McMullen [86],
Bromberg–Holt [14], and Ito [57], [60]. The basic problem of determining which
component pairs bump is resolved by:

Theorem 5.9 (Ito [60]). (1) For any λ,μ ∈ MLZ(S), the components Pλ(S) and
Pμ(S) bump.

(2) For any λ ∈MLZ(S), the component Pλ(S) self-bumps at a point in P0(S).

The bumping points constructed in the proof of this theorem are all derived from a
construction of Anderson–Canary that illustrates the difference between algebraic and
geometric convergence for Kleinian groups [3]. This construction was first applied
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to projective structures by McMullen to give an example of bumping between Pλ(S)
and P0(S) [86]. The holonomy representations for these bumping examples have
accidental parabolics but are not quasiconformally rigid; recently, Brock, Bromberg,
Canary, and Minsky have shown that these conditions are necessary for bumping [12]
(compare [92]).

5.6 Discrete holonomy

Let D(S) ⊂ X(S) denote the set of characters of discrete representations, and let
PD (S) denote the set of projective structures with discrete holonomy. Since F (S) ⊂
QF (S) ⊂ D(S), we have corresponding inclusions

PF (S) ⊂ PQF (S) ⊂ PD (S).

Because hol is a local diffeomorphism, topological properties of D(S) correspond
to those of PD (S). For example, D(S) is closed (see [61], [19]), and its interior is
the set QF (S) of quasi-Fuchsian representations [108], [7]. Thus PD (S) is a closed
subset of P (S) with interior PQF (S).

IfZ ∈ PD (S) has holonomy ρ, then the associated pleated plane Pl(Z) : H2 → H
3

is invariant under the holonomy group � = ρ(π1(S)) and descends to a locally convex
pleated surface in the quotient hyperbolic manifold M = H

3/�:

H
2

/π1(S)

��

Pl(Z) ��
H

3

/�

��
Y �� M .

Here Y ∈ T (S) is the hyperbolic surface such that Z = GrλY for some λ ∈ML(S).
The pleated surface arising from a projective structure Z with discrete holonomy

may be one of the connected components of the boundary of the convex core of the
associated hyperbolic manifoldM . If so, the projective surface Z is the component of
the ideal boundary ofM on the “exterior” side of the pleated surface. Conversely, the
ideal boundary and convex core boundary surfaces in a complete hyperbolic manifold
are related by grafting (see [103, §5.1] [86, §2.8]).

For more general projective structures with discrete holonomy, the pleated surface
need not be embedded in the quotient manifold, however it must lie within the convex
core (see [17, §5.3.11]).

In addition to the Fuchsian and quasi-Fuchsian cases described above, projective
structures with other classes of discrete holonomy representations have found applica-
tion in Kleinian groups and hyperbolic geometry. For example, projective structures
with degenerate holonomy are used in Bromberg’s approach to the Bers density con-
jecture [13], and those with Schottky holonomy are used in Ito’s study of sequences
of Schottky groups accumulating on Bers’ boundary of Teichmüller space [58].
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5.7 Holonomy in fibers

In contrast to the complicated global properties of the holonomy map, its restriction
to a fiber is very well-behaved:

Theorem 5.10. For eachX ∈ T (S), the restriction hol|P(X) is a proper holomorphic
embedding, whose image hol(P (X)) is a complex-analytic subvariety of X(S).

As stated, this theorem incorporates several related but separate results: Working
in the context of systems of linear ODE on a fixed Riemann surface, Poincaré showed
that the holonomy map is injective [5, p. 310] (see also [76], [47, Theorem 15]). Gallo,
Kapovich, and Marden showed that the image is a complex-analytic subvariety [36],
following an outline given by Kapovich [65]; when combined with injectivity, this
implies properness. Tanigawa gave a more geometric argument establishing proper-
ness of hol|P(X) when considered as a map into the space X′(S) of non-elementary
characters [111]. Tanigawa’s argument relies on the existence of loxodromic pants
decompositions (Theorem 5.4), which was announced in [65] and proved in [36].

Fuchsianandquasi-Fuchsianholonomy infibers. For anyX ∈ T (S), letPD (X) =
P(X) ∩ PD (S) denote the set of projective structures with discrete holonomy and
with underlying complex structure X. Similarly, we define PQF (X) and PF (X) as
the subsets of P(X) having quasi-Fuchsian and Fuchsian holonomy, respectively.

We have already seen (in §5.4) that the PF (X) consists of the countable discrete
set of projective structures {σ2πλ(X) | λ ∈ ML2πZ(S)}. Since the holonomy map
is continuous, and QF (S) is an open neighborhood of F (S) in X(S), each of these
Fuchsian points has a neighborhood in P(X) consisting of quasi-Fuchsian projective
structures with the same wrapping invariant. Elements of PF (X) are sometimes
called Fuchsian centers (or centers of grafting [2]), because they provide distinguished
center points within these “islands” of quasi-Fuchsian holonomy (see [26, §13], [82,
Theorem 6.6.10]).

Using the Schwarzian parameterization, the intersection P0(S)∩P(X), consisting
of the standard quasi-Fuchsian projective structures onX, can be considered as an open
set BX ⊂ Q(X) � C

3g−3. This set is the image of the holomorphic Bers embedding
of Teichmüller space [106], and in particular it is connected and contractible. We
also have B(1/2) ⊂ BX ⊂ B(3/2), where B(r) = {φ ∈ Q(X) | ‖φ‖∞ < r}, as a
consequence of Nehari’s theorem [91]. See Figure 6 for examples of Bers embeddings
of the Teichmüller space of punctured tori.

For λ �= 0, it is not known whether the set Pλ(S)∩P(X) is connected (or bounded),
though experimental evidence in the punctured case suggests that it often has many
connected components, and that the structure of the connected components changes
withX (see Figure 7). Of course, only one component contains the Fuchsian structure
σ2πλ(X).
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(a) The Bers embedding
of the square punctured
torus.

(b) In this larger view, the Bers embedding of a
punctured torus with a short geodesic appears as
a small dot (center) surrounded by many islands
of exotic quasi-Fuchsian projective structures.

Figure 6. Islands of quasi-Fuchsian holonomy in P(X) � C (where X is a punctured torus)
exhibit complicated structure at small and large scales. These images were created using the
software package Bear [24].

X1 X2 X3

Figure 7. Islands of quasi-Fuchsian holonomy in P(X) appear to break apart as the complex
structure X is changed, suggesting that some islands do not contain Fuchsian centers. Each
image shows a small square in P(Xi) � C, where {X1, X2, X3} are closely-spaced points in
the Teichmüller space of the punctured torus.

Quasi-Fuchsian versus discrete in a fiber. In the space of all projective structures,
the quasi-Fuchsian structures form the interior of the set with discrete holonomy. The
same relationship holds for PQF (X) and PD (X).

Theorem 5.11 (Shiga and Tanigawa [107], Matsuzaki [84]). For any X ∈ T (S), we
have PQF (X) = int(PD (X)).
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In comparing these sets, one inclusion is immediate: Since int(PD (S)) = PQF (S),
we have int(PD (X)) ⊃ PQF (X). The opposite inclusion is more subtle. Each com-
ponent of the interior of PD (X) necessarily consists of quasiconformally conjugate,
discrete, faithful representations without accidental parabolics. However there exist
(3g − 3)-dimensional holomorphic families of singly degenerate surface groups in
X(S)which satisfy these conditions, but which are not quasi-Fuchsian. Such a family
could account for an open subset of PD (X) (in either of two topologically distinct
ways [84]), and a key step in the proof of the theorem is to exclude this possibility.

6 Comparison of parameterizations

6.1 Compactifications

Compactification of ML(S). The space of measured laminations has the structure
of a cone: The group R

+ acts by scaling the transverse measure (λ 	→ tλ, t ∈ R
+)

and the empty lamination 0 ∈ ML(S) is the unique fixed point of this action. The
orbit of a nonzero lamination is a ray in ML(S). The space of rays,

PML(S) = (ML(S)− {0})/R+,
or projective measured laminations forms a natural boundary for ML(S). We say
that a sequence λi ∈ML(S) converges to [λ] = R

+ · λ ∈ PML(S) if there exists a
sequence of positive real numbers ci such that ci → 0 and ciλi → λ in ML(S). The
induced compactification

ML(S) =ML(S) ∪ PML(S)

is homeomorphic to a closed ball, with interior ML(S) � R
6g−6 and boundary

PML(S) � S6g−7. See [94, Chapter 3] for further discussion of the spaces ML(S)
and PML(S), and [34] for related discussion of the space of measured foliations,
which is naturally identified with ML(S) (as described in [80], [66, §11.8–11.9]).

Compactification of T (S). Recall that S denotes the set of isotopy classes of simple
closed curves on S, or equivalently, the simple closed geodesics of any hyperbolic
structure on S. Thurston defined a compactification of T (S) using the hyperbolic
length map

Ł : T (S)→ R
S,

X 	→ (�(γ,X))γ∈S .

This map is an embedding, as is its projectivization

PŁ : T (S)→ P
+

R
S = (RS − {0})/R+,
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and in each case, a suitable finite subset of S suffices to determine the image of a
point. The boundary ∂PŁ(T (S)) coincides with the image of PML(S) under the
projectivization of the embedding

ML(S)→ R
S,

λ 	→ (i(γ, λ))γ∈S
where i(λ, γ ) denotes the total mass of γ with respect to the transverse measure of λ.
This gives the Thurston compactification

T (S) = T (S) ∪ PML(S)

which has the topology of a closed (6g − 6)-ball. Concretely, a sequence Xn → ∞
in Teichmüller space converges to [λ] ∈ PML(S) if for every pair of simple closed
curves α, β ∈ S we have

�(α,Xi)

�(β,Xi)
→ i(α, λ)

i(β, λ)

whenever the right hand side is well-defined (i.e. i(β, λ) �= 0). A detailed discussion
of the Thurston compactification can be found in [34, Exposé 7–8] (see also [112],
[117], [8], [66, Chapter 11], [82, §5.9]).

Compactification of Q(X). Since the vector space Q(X) has an action of R
+

by scalar multiplication, it supports a natural compactification analogous to that of
ML(S); in this case, the boundary is the space of rays

P
+Q(X) = (Q(X)− {0})/R+

and we obtain Q(X) = Q(X) ∪ P
+Q(X) which is homeomorphic to a closed ball.

6.2 Quadratic differentials and measured laminations

The Hubbard–Masur theorem. For any X ∈ T (S), there is a natural map

� : Q(X)→ML(S)

which is defined by a two-step procedure: First, a quadratic differential φ has an
associated horizontal foliation F (φ), a singular foliation on X which integrates the
distribution of vectors v ∈ TX such that φ(v) ≥ 0. This foliation is equipped with a
transverse measure, induced by integration of | Im√φ|. In a local coordinate where
φ = dz2, the foliation is induced by the horizontal lines in C, with transverse measure
|dy|. Zeros of φ correspond to singularities of the foliation, where three or more
half-leaves emanate from a point. See e.g. [66, §5.3, §11.3], [37, §2.2, Chapter 11]
for a discussion of quadratic differentials and their measured foliations.

Now lift the horizontal foliation of φ to the universal cover X̃ � H
2. Each non-

singular leaf of the lifted foliation is a uniform quasi-geodesic, so it is a bounded
distance from unique hyperbolic geodesic. The hyperbolic geodesics obtained in this
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way – the straightening of F – form the lift of a geodesic lamination on X, and the
transverse measure of the foliation induces a transverse measure on this lamination in
a natural way [80]. The result is a measured lamination �(φ) ∈ ML(S), which we
call the horizontal lamination of φ.

The same constructions can be applied to the distribution of vectors satisfying
φ(v) ≤ 0, which gives the vertical foliation and vertical lamination of φ. The former
is induced by the foliation of C by vertical lines in local coordinates such that φ =
dz2. Note that multiplication by −1 in Q(X) exchanges vertical and horizontal: for
example, the horizontal lamination of −φ is the vertical lamination of φ.

The strong connection between quadratic differentials and measured laminations
is apparent in:

Theorem 6.1 (Hubbard and Masur [53]). For each X ∈ T (S), the map� : Q(X)→
ML(S) is a homeomorphism. In particular, every measured lamination is realized by
a unique quadratic differential on X.

Note that Hubbard and Masur work with measured foliations rather than mea-
sured laminations; the statement above incorporates the aforementioned straightening
procedure to identify the two notions.

We call the inverse of � the foliation map, denoted φF : ML(S)→ Q(X). Note
that the definition of both� andφF depend on the choice of a fixed conformal structure
X, but we suppress this dependence in the notation.

Since the transverse measure of �(φ) is obtained by integrating | Im√φ|, these
maps have the following homogeneity properties:

�(cφ) = c 1
2�(φ),

φF (cλ) = c2φF (λ)

for all c ∈ R
+. Therefore � and φF descend to mutually inverse homeomorphisms

between the spaces of rays PML(S) and P
+Q(X), and we also use � and φF to

denote these induced maps.

Orthogonality and the antipodal map. Given X ∈ T (S), a pair of measured lami-
nations λ,μ ∈ML(S) is orthogonal with respect toX if there exists φ ∈ Q(X) such
that

�(φ) = λ,
�(−φ) = μ.

That is, λ and μ appear as the horizontal and vertical laminations of a single holo-
morphic quadratic differential on X. (Compare the torus case shown in Figure 8.)

By Theorem 6.1, two laminations λ and μ are orthogonal with respect to X if and
only if

φF (λ) = −φF (μ) ∈ Q(X).
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Figure 8. A pair of closed curves on a compact Riemann surface of genus 1 (as seen here on the
far left and right) are “orthogonal” if they are isotopic to leaves of a pair of orthogonal geodesic
foliations of the Euclidean metric (center). This situation is non-generic; typically, at least one
of the two foliations will have dense leaves. For surfaces of higher genus, orthogonality of
measured laminations is defined similarly, however there are many distinct singular Euclidean
metrics.

Thus the homeomorphism φF : ML(S)→ Q(X) turns orthogonal pairs into opposite
quadratic differentials, and the set of X-orthogonal pairs is the graph of the antipodal
involution iX : ML(S)→ML(S) defined by

iX(λ) = �(−φF (λ)).
By homogeneity of � and φF , the antipodal map descends to iX : PML(S) →

PML(S). We say [λ], [μ] ∈ PML(S) are orthogonal with respect to X if iX([λ]) =
[μ]. See [25] for further discussion of the antipodal map and orthogonality.

6.3 Limits of fibers

Using the projective grafting homeomorphism Gr : ML(S)×T (S)→ P (S), we can
regard ML(S)× T (S) as a compactification of P (S). This is the grafting compacti-
fication.

GivenX ∈ T (S), the fiber P(X) ⊂ P (S) corresponds to a set of pairs Gr−1(X) =
{(λ, Y ) | grλY = X} in the grafting coordinates. Since P(X) is a distinguished subset
of the Schwarzian parameterization of P (S), studying its behavior in the grafting
parameterization is one way to study the relationship between these two coordinate
systems. The asymptotic behavior ofP(X) can be described in terms of orthogonality:

Theorem 6.2 (Dumas [25]). Let (λn, Yn) ∈ML(S)× T (S) be a divergent sequence
such that GrλnYn ∈ P(X) for all n. Then

lim
n→∞ λn = [λ] if and only if lim

n→∞Yn = iX([λ]),

where these limits are taken in ML(S) and T (S), respectively.
In particular, the boundary of P(X) in the grafting compactification of P (S) is

the graph of the antipodal involution iX : PML(S)→ PML(S).
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This theorem can be considered as evidence of compatibility between the grafting
coordinates for P (S) and the foliation of P (S) by fibers of π . For example, we have:

Corollary 6.3. The closure of P(X) in ML(S)× T (S) is homeomorphic to a closed
ball of dimension 6g − 6.

The proof of Theorem 6.2 in [25] is essentially a study of the collapsing and co-
collapsing maps of a complex projective structure, and their relation to the harmonic
maps variational problem. We now describe this variational technique, and then outline
the main steps in the proof.

Harmonic maps. Let (M, g) and (N, h) be complete Riemannian manifolds, and
assume thatM is compact. If f : M → N is a smooth map, the energy of f is defined
by

E(f ) = 1

2

∫
M

‖df (x)‖22 dg(x).
The map f is harmonic if it is a critical point of the energy functional. If N is also
compact and h has negative sectional curvature, then any nontrivial homotopy class
of maps M → N contains a harmonic map, and this map is an absolute minimum
of the energy functional in the homotopy class [31]. Furthermore, the harmonic map
is unique in its homotopy class, unless the image of M is a closed geodesic in N ,
in which case there is a 1-parameter family of harmonic maps obtained by rotation.
General references for the theory of harmonic maps include [29], [30], [104], with
particular applications to Teichmüller theory surveyed in [22].

Equivariantharmonicmaps. Ifπ1(M) acts by isometries on a Riemannian manifold
N̂ , then we can define the energy of an equivariant map M̃ → N̂ by integration of
‖df ‖22 over a fundamental domain for the action of π1M by deck transformations.
This generalizes the energy of smooth maps M → N , because the action of π1M on
N̂ need not have a Hausdorff quotient. Existence of harmonic maps is more delicate
in this case, but can sometimes be recovered under additional restrictions on the group
action. For example if M is a surface and N = H

3 is equipped with the isometric
action coming from a non-elementary representation ρ : π1(S) → PSL2(C), then
there is a unique equivariant harmonic map h : S̃ → H

3 [23].

Singular targets. Korevaar and Schoen developed a deep generalization of the theory
of harmonic maps in which the Riemannian manifoldN is replaced by a nonpositively
curved (NPC, also known as locally CAT(0)) metric space [72], [73], [71]. Here
the energy functional is approximated by the average squared distance between the
image of a point x ∈ M and the image of a small sphere centered at x. Inequalities
comparing distances in NPC spaces to those in Euclidean space have an essential role
in the development of this theory.
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Generalizing the Riemannian case, we have the following equivariant existence
and uniqueness results: If N̂ is a locally compact NPC space on which π1(M) acts by
isometries without fixing any equivalence class of rays, then there is an equivariant
harmonic map h : M̃ → N̂ , which is Lipschitz and energy-minimizing [73]. If fur-
thermore N̂ is negatively curved (locally CAT(κ), for some κ < 0), then the harmonic
map is unique unless its image is a geodesic [89].

Harmonic maps from surfaces. When M is 2-dimensional, the energy functional
depends only on the conformal class of the metric g, so it makes sense to consider
harmonic maps from Riemann surfaces to Riemannian manifolds and nonpositively
curved metric spaces. An important invariant of a harmonic map f : X → (N, h)

from a Riemann surface is its Hopf differential

�(f ) = [f ∗(h)]2,0 (6.1)

which is a holomorphic quadratic differential. In the Riemannian case, the holo-
morphicity of �(f ) is a consequence of the Euler–Lagrange equation of the energy
functional [29, §10]. With a suitable generalization of the pullback metric (see [72,
§2.3]), a holomorphic Hopf differential is also obtained from a harmonic map to an
NPC metric space (compare [88, §5]).

We can use the same formula (6.1) to define a Hopf differential for any smooth
map X → (N, h), which can be further generalized to maps with L2 distributional
derivatives, and to finite-energy maps to NPC metric spaces [72, Theorem 2.3.1]. The
result is a L1 measurable quadratic differential that is not necessarily holomorphic.

Harmonic maps and dual trees. Recall from §4.2 that for each λ ∈ ML(S) we
have a dual R-tree Tλ. This tree is an NPC metric space (even CAT(κ) for all κ < 0)
equipped with an isometric action of π1(S). The Hubbard–Masur construction of a
quadratic differential on X ∈ T (S) with lamination λ can be described in terms of an
equivariant harmonic map X→ Tλ.

Theorem 6.4 (Wolf [119], Daskalopoulos–Dostoglou–Wentworth [21]). Let h : X̃→
Tλ be an equivariant harmonic map to the dual R-tree of λ ∈ ML(S). Then
φF (λ) = −4�(h).

Harmonic maps and the Thurston compactification. The Thurston compactifica-
tion of Teichmüller space can also be characterized in terms of Hopf differentials of
harmonic maps from a fixed Riemann surface as follows:

Theorem 6.5 (Wolf [118]). Fix X ∈ T (S) and let Yn→∞ be a divergent sequence
in T (S). Let�n = �(hn) be the Hopf differential of the harmonic map hn : X→ Yn
compatible with the markings. Then

�(−�n)→ [λ] ∈ PML(S) if and only if Yn→ [λ] ∈ PML(S).



Chapter 12. Complex projective structures 497

Collapsing, co-collapsing, and harmonic maps. Using the harmonic maps results
presented above, we now describe the main steps of the proof of Theorem 6.2 in [25].
For simplicity, we will suppose that GrλnYn ∈ P(X) and that both grafting coordinates
have limits in PML(S), i.e.

lim
n→∞ λn = [λ], lim

n→∞Yn = [μ],
and we outline a proof that iX([λ]) = [μ]. The stronger statement of the theorem is
derived from the same set of ideas.

Outline of proof of Theorem 6.2.
(1) Both the collapsing maps κn : X→ Yn and the co-collapsing maps κ̂n : X̃→ Tλn

areC-almost harmonic, meaning that their energies exceed the minimum energies
in their homotopy classes by at most C. Here C is a constant that depends only
on the topology of S. (Compare [110].)

(2) The maps κn and κ̂n have an orthogonality relationship: their derivatives have
rank 1 in the same subset ofX (the Euclidean part of the Thurston metric), and in
this set, the collapsed directions of κn and κ̂n are orthogonal. This orthogonality
relationship is expressed in terms of their Hopf differentials as

�(κn)+�(κ̂n) = 0. (6.2)

(3) Let hn : X → Yn and ĥn : X̃ → Tλn denote the harmonic maps homotopic to
κn and κ̂n, respectively. Then the projective limit of Hopf differentials [�] =
limn→∞�(hn) satisfies [�(−�)] = [μ] by Theorem 6.5. Similarly, by The-
orem 6.4, the projective limit [�̂] = limn→∞�(ĥn) = limn→∞(−φF (λn)/4)
satisfies [�(−�̂)] = [λ].

(4) Since the pair of almost harmonic maps κn and κ̂n have opposite Hopf differen-
tials, one might expect that the associated harmonic maps hn and ĥn have “almost
opposite” Hopf differentials. Suppose that this is true in the sense of projective
limits, i.e. that

[�] = [−�̂] ∈ P
+Q(X). (6.3)

Then we would have [�(�)] = [λ] and [�(−�)] = [μ], or equivalently, that
iX([λ]) = [μ], completing the proof. Thus we need only derive (6.3).

(5) The norm of the difference between the pullback metric of a C-almost har-
monic map f to an NPC space and that of its homotopic harmonic map h is
O(C1/2E(h)1/2) as E(h) → ∞ (by an estimate of Korevaar and Schoen, see
[72, §2.6]). Phrasing this in terms of Hopf differentials, which are the (2, 0)
parts of the pullback metrics, and using that |E(h)−2‖�(h)‖| = O(1), we have

‖�(f )−�(h)‖1 ≤ C′(1+ ‖�(h)‖
1
2
1 ).

In particular the norm of the difference is much smaller than either term as
‖�(h)‖ → ∞, and so the Hopf differentials of any sequence of C-almost har-
monic maps with energy tending to infinity has the same projective limit as the
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Hopf differentials of the harmonic maps. Applying this to the collapsing and
co-collapsing maps, and using (6.2), we have

[�] = lim
n→∞�(κn) = lim

n→∞(−�(κ̂n)) = [−�̂],
and (6.3) follows.

6.4 Limits of the Schwarzian

We now connect the previous discussion of asymptotics of grafting coordinates for
P(X) with the complex-analytic parameterization of P (S). Let P(X) denote the
Schwarzian compactification of P(X) obtained by attaching P

+Q(X) using the limit-
ing behavior of the Schwarzian derivative, i.e. a sequenceZn ∈ P(X) converges to [φ]
if (Zn−Z0)→ [φ] in the topology ofQ(X). HereZ0 denotes an arbitrary basepoint,
which is used to identify P(X) with Q(X); the limit of a sequence in P

+Q(X) does
not depend on this choice. Note that this construction only compactifies the individual
fibers of P (S), but does not compactify P (S) itself.

There is a natural guess for the relationship between the Schwarzian compactifi-
cation and the closure of P(X) in the grafting compactification: The boundary of the
latter is the set of X-antipodal pairs in PML(S) × PML(S), and each X-antipodal
pair arises from a ray in the space of quadratic differentials, so one might expect a
boundary point [φ] ∈ P

+Q(X) to correspond to the pair consisting of its vertical and
horizontal laminations. The following makes this intuition precise:

Theorem 6.6 (Dumas [26]). The grafting and Schwarzian compactifications of P(X)
are naturally homeomorphic, and the boundary map P

+Q(X)→ PML(S)×PML(S)
is given by

[φ] 	→ ([�(−φ)], [�(φ)]).
That is, for a divergent sequence in P(X), the limit of the vertical (resp. horizontal)
laminations of Schwarzian differentials is equal to the limit of the measured lamina-
tions (resp. hyperbolic structures) in the grafting coordinates.

This result about compactifications involves a comparison between two homeo-
morphisms ML(S)→ Q(X). One of these we have already seen – the foliation map
φF which sends λ ∈ML(S) to a quadratic differential whose horizontal foliation has
straightening λ (§6.2). The other homeomorphism is derived from the Schwarzian
parameterization of projective structures as follows. Recall (from §4.4) that there is
a homeomorphism σ•(X) : ML(S) → P(X) with the property that σλ(X) ∈ P(X)
is a projective structure with grafting lamination λ. Using σ0(X) as a basepoint, we
compose with the Schwarzian parameterization P(X) � Q(X) to obtain the Thurston
map:

φT : ML(S)→ Q(X)

λ 	→ (σλ(X)− σ0(X)) .
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The Thurston map is a homeomorphism, and it satisfies φT (0) = 0, but unlike the
foliation map there is no a priori reason for φT to map rays in ML(S) to rays inQ(X).
However, the Thurston map does preserve rays in an asymptotic sense:

Theorem 6.7 ([26]). For anyX ∈ T (S), the foliation and Thurston maps are asymp-
totically proportional. Specifically, there exists a constant C(X) such that

‖φF (λ)+ 2φT (λ)‖1 ≤ C(X)
(

1+ ‖φF (λ)‖
1
2
1

)
for all λ ∈ML(S).

Before discussing the proof of Theorem 6.7, we explain the connection with com-
pactifications. In terms of the Thurston map, Theorem 6.6 asserts that if φT (λn) =
GrλnYn is a divergent sequence in P(X), then we have

lim
n→∞ λn = lim

n→∞�(−φT (λn)) ∈ML(S) and

lim
n→∞Yn = lim

n→∞�(φT (λn)) ∈ T (S).
(6.4)

Theorem 6.2 has already given a similar characterization in terms of the map φF ; we
have

lim
n→∞ λn = lim

n→∞�(φF (λn)) ∈ML(S) and

lim
n→∞Yn = lim

n→∞�(−φF (λn)) = lim
n→∞ iX(λn) ∈ T (S),

(6.5)

where the first line is trivial since � � φF = Id, and the second line follows from the
definition of the antipodal map (§6.2). However, since φF and φT are asymptotically
proportional by a negative constant (Theorem 6.7), the limit characterizations (6.4)
and (6.5) are equivalent, and Theorem 6.6 follows. See [26, §14] for details.

Thurston metrics and the Schwarzian. We now sketch the main ideas involved
in the proof of Theorem 6.7. The proof is essentially a study of the Thurston metric
on a complex projective surface (see §4.3). Recall that the goal is to show that
‖φF (λ)+ 2φT (λ)‖1 ≤ C(X)ε(λ) where ε(λ) is defined by

ε(λ) = 1+ ‖φF (λ)‖
1
2
1 .

Outline of proof of Theorem 6.7.

(1) The functions ε(λ) and λ 	→ ‖φF (λ) + 2φT (λ)‖1 are continuous on ML(S).
Since weighted simple closed geodesics are dense in ML(S), it suffices establish
an inequality relating these functions for such weighted geodesics, and the general
case follows by continuity. Thus we will assume λ is a weighted simple closed
geodesic for the rest of the proof.

(2) Associated to such λ we have the following objects:

• The Thurston metric ρλ of the projective structure σλ(X) ∈ P(X)
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• The decomposition X = X0 � X−1 of X into Euclidean and hyperbolic
parts of ρλ. Here X0 is an open cylinder, the union of the 1-dimensional
strata in the canonical stratification.

• The collapsing map κ : X→ Yλ = gr−1
λ (X) and its Hopf differential�(κ),

which is a measurable (non-holomorphic) quadratic differential supported
on X0.

• The ratio of conformally equivalent metrics ρλ/ρ0, a well-defined positive
function on X. Here ρ0 is the hyperbolic metric.

(3) The Schwarzian derivative φT (λ) of the projective structure σλ(X) decomposes
as a sum of two terms,

φT (λ) = −2�(κ)+ 2B(log(ρλ/ρ0)), (6.6)

where the second-order differential operator B is defined by

B(η) = [Hess(η)− dη ⊗ dη]2,0 .

In this expression, the Hessian is computed using the hyperbolic metric ρ0. This
decomposition follows from the cocycle property for a generalization of the
Schwarzian derivative introduced by Osgood and Stowe [93].

(4) The harmonic map estimate from the proof of Theorem 6.2 shows that the first
term of the decomposition (6.6) is approximately proportional to φF (λ). Specif-
ically, we have

‖φF (λ)− 4�(κ)‖1 ≤ Cε(λ). (6.7)

Therefore it suffices to show that the L1 norm of β = B(log(ρλ/ρ0)) is also
bounded by a multiple of ε(λ).

(5) By the definition of B and the Cauchy–Schwartz inequality, the L1 norm of β is
bounded by theL2 norms of the Hessian and gradient of log(ρλ/ρ0)with respect
to the hyperbolic metric. By standard elliptic theory, these are in turn bounded
by the L2 norms of log(ρλ/ρ0) and its Laplacian.

(6) The Laplacian of log(ρλ/ρ0) is essentially the difference of the curvature 2-forms
of ρλ and ρ0 (compare (4.1) above, also [55]). For large grafting, the surface
X is dominated by its Euclidean part, forcing most of the curvature of ρλ to
concentrate near a finite set of points.

(7) This curvature concentration phenomenon provides a bound for the norm
‖ log(ρλ/ρ0)‖L2(D) on a hyperbolic disk D ⊂ X of definite size. A bound
on ‖ log(ρλ/ρ0)‖L2(D) follows using a weak Harnack inequality, completing the
local estimate ‖β‖L1(D) < C(X).

(8) Finally, we make the local estimate global: If β were holomorphic, then we
would have ‖β‖L1(X) ≤ C′(X)‖β‖L1(D) by compactness of the unit sphere in
Q(X). While β is not holomorphic, the decomposition (6.6) and the estimate
(6.7) show that β is close to a holomorphic quadratic differential, with difference
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of order ε(λ). Combining this with the holomorphic case, we obtain ‖β‖L1(X) ≤
C(X)ε(λ), completing the proof.

6.5 Infinitesimal compatibility

In this final section we discuss infinitesimal aspects of the map between the grafting
and analytic coordinate systems for P (S).

The forgetful projection π : P (S) → T (S) can be thought of as a coordinate
function in the Schwarzian parameterization of P (S). The other “coordinate” in this
parameterization is an element of the fiber Q(X) of the bundle of quadratic differen-
tials, but lacking a canonical trivialization for this bundle, there is no associated global
coordinate map.

On the other hand, in the grafting coordinate system, we have a pair of well-
defined coordinate maps pML : P (S) → ML(S) and pT : P (S) → T (S), which
are defined by the property that the inverse of projective grafting is Gr−1(Z) =
(pML(Z), pT (Z)) ∈ML(S)× T (S).

The fiber of pML over λ consists of the projective structures {GrλY | Y ∈ T (S)}.
Since Grλ : T (S)→ P (S) is a smooth map, these fibers are smooth submanifolds of
P (S).

The fiber of pT over Y consists of the projective structures {GrλY | λ ∈ML(S)}.
Bonahon showed that λ 	→ GrλY includes ML(S) into P (S) tangentiably (see Theo-
rem 4.5). However, the fibers of pT have even more regularity than one might expect
from this tangentiable parameterization:

Theorem 6.8 (Bonahon [10, Theorem 3, Lemma 13]). For each Y ∈ T (S), the set
p−1

T (Y ) is a C1 submanifold of P (S).

Compare [27, §4].
Note that each of the three coordinate maps π, pML, pT projects P (S) onto a

space of half its real dimension, i.e. each has both range and fibers of real dimension
6g − 6. Thus one might expect that for any two of these maps, the pair of fibers
intersecting at a generic point Z ∈ P (S) would have transverse tangent spaces that
span TZP (S). In fact, this is true at every point, and furthermore we have:

Theorem 6.9 (Dumas and Wolf [27]). (1) The maps π, pML, pT have pairwise trans-
verse fibers.

(2) The fiber of any one of them projects homeomorphically by each of the others.
Moreover, such a projection is a C1 diffeomorphism whenever its range is T (S), and
is a bitangentiable homeomorphism when the range is ML(S).

(3) The product of any two of these maps gives a homeomorphism from P (S) to a
product of two spaces of real dimension 6g − 6.

As before, we refer to Bonahon (see [10, §2]) for details about tangentiability,
while limiting our focus to its geometric consequences. Also note that statement (1)
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of the theorem does not involve tangentiability, and only makes sense for fibers of pT

due to Theorem 6.8.
We sketch the proof of this theorem; the details we omit can be found in [27,

Theorems 1.2, 4.1, 4.2, Corollary 4.3].

Sketch of proof of Theorem 6.9. Statement (3) follows because the inverse map for
each pair of coordinates can be written explicitly in terms of Gr, grλ, and gr•X and
their inverses (which exist by Theorems 4.1, 4.3, and 4.4, respectively). For example,
pT × π : P (S)→ T (S)× T (S) is a homeomorphism with inverse

(X, Y ) 	→ Gr(gr•X)
−1(Y )X.

Similarly, the map (λ,X) 	→ σλ(X) is inverse to pML × π .
Statement (3) also shows that the restrictions of maps considered in statement

(2) are homeomorphisms. To show that each case with target T (S) is actually a
diffeomorphism, it is enough to show that the derivative of the restriction has no kernel
(by the inverse function theorem). This kernel is the intersection of tangent spaces to
fibers of two coordinate maps, thus this case will follow from statement (1). Similar
reasoning applies in cases with target ML(S), where one deduces bitangentiability
from transversality using a criterion of Bonahon [10, Lemma 4].

Thus the proof is reduced to the transversality statement (1), which has one case
for each pair of coordinate maps. The pair (pML, pT ) follows easily from Thurston’s
theorem and the tangentiability of grafting (Theorems 4.1 and 4.5). For (π, pML) or
(π, pT ), a vector in the intersection of tangent spaces lies in the kernel of a tangent
map of either grλ or gr•X, which must therefore be zero, by Theorems 4.3 and 4.4.
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1 Introduction

A circle in the complex plane C is defined as either a euclidean circle or a euclidean
straight line. This definition is very understandable if we look at a circle on the
Riemann sphere Ĉ = C∪{∞}. The Riemann sphere can be identified with the complex
projective line, and every projective transformation on Ĉ through this identification
sends a circle to a circle. Conversely, a transformation of Ĉ which sends a circle to
a circle turns out to be projective. Thus 1-dimensional complex projective geometry
fits well with the concept of a circle.

To globalize the notion of circle, consider a surface S, that is, a real 2-dimensional
manifold, locally modeled on Ĉ such that any coordinate change is the restriction of
a projective transformation. Such a geometric structure is referred to as a projective
structure, and we call a surface with a projective structure simply a projective Riemann
surface. A 1-dimensional subset of S is said to be a circle if its developed image on Ĉ

is a circle.
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Now, we are interested in a circle packing on a projective Riemann surface, which
will be a particular configuration of circles such that all complementary regions are
curvilinear triangles. It enjoys both rigid and flexible properties in connection with
Teichmüller spaces. The main purpose of this chapter is to discuss such interesting
properties from geometric viewpoints.

Recall that there are three typical Riemannian geometries in dimension 2, that is,
the spherical, euclidean and hyperbolic geometries. They are geometries with constant
curvature 1, 0 and −1 respectively, and they are regarded as subgeometries of the 1-
dimensional complex projective geometry. In particular, a constant curvature surface
is a projective Riemann surface.

The rigidity we discuss here has been worked out by Koebe [9], Andereev [1] and
Thurston [18] for realization of a circle packing on a constant curvature surface. More
specifically, we describe in a rather uniform way how a combinatorial adjacency data
of circles determines uniquely a constant curvature surface which supports a geometric
packing with prescribed data.

This rigidity motivated Brooks [3], [4] to analyze the flexibility phenomenon
when we allow curvilinear quadrilateral complementary regions. He succeeded to
parametrize the deformation space in terms of continued fractional type numerical
invariants, and deduced the density of packable constant curvature surfaces in Teich-
müller space. We discuss Brooks’ idea briefly, and see how his parameters work
through quasi-conformal deformation theory.

On the other hand, extending the problem Koebe–Andreev–Thurston settled on
constant curvature surfaces, one may ask what the set of projective Riemann surfaces
supporting a circle packing with a common combinatorial data looks like. It leads us
to analyze flexibility of the object in question. Following [10], [11], [12], we present
here a construction of the moduli space of pairs of such projective Riemann surfaces
with circle packings, and see its basic properties. In particular, we discuss our belief
that the moduli space provides a sort of uniformization in terms of circle packing. We
state it as a conjecture in more explicit form, and report some progress towards it.

The organization of this chapter is as follows. After reviewing the basics of the
subject in the next section, we discuss rigidity results together with density on constant
curvature surfaces due to Koebe, Andreev, Thurston and Brooks. We then discuss
flexibility by constructing moduli spaces, and formulate a conjecture along with some
supporting evidence.

Acknowledgement. This work was partially supported by JSPS GrantA No.15204004.
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2 Circle packing

2.1 Circle on the Riemann sphere

The complex projective line, which is the space of complex lines through the origin
in C

2, can be identified with the Riemann sphere Ĉ = C ∪ {∞} by assigning slopes.
Then, Ĉ can be identified by stereographic projection with the unit sphere S

2 in the
3-dimensional euclidean space E

3. These are the main playgrounds on which the
circle is placed. Note that Ĉ admits a natural orientation coming from its complex
structure.

Given four complex numbers a, b c d such that ad − bc �= 0, we obtain a linear
fractional transformation,

z �−→ az+ b
cz+ d ,

which acts on Ĉ as a projective transformation. Such projective transformations form
a group isomorphic to PGL(2,C) ∼= PSL(2,C) by identifying a transformation with
a matrix consisting of these four numbers. The action of the projective linear group
preserves the orientation.

Another important transformation on Ĉ is complex conjugation,

z �−→ z̄,

which fixes R̂ = R ∪ {∞} and reverses the orientation. Complex conjugation and
PGL(2,C) generate a group Möb of Möbius transformations which fits into a split
short exact sequence,

1 −→ PGL(2,C) −→ Möb −→ Z/2Z −→ 0.

A circle is, by definition, the image of R̂ by a projective transformation. Through
the identification of Ĉ with S

2, a circle on Ĉ projects to either a straight line or a circle
in the usual sense in C.

A circle in Ĉ = S
2 can be defined also as a metric circle with respect to the spherical

metric. Note however that a projective transformation which sends a circle to a circle
does not preserve the spherical metric in general.

2.2 Projective geometry

The pair (PGL(2,C), Ĉ) of the 2× 2 projective linear group and the Riemann sphere
is called the 1-dimensional complex projective geometry in the sprit of Felix Klein’s
Erlangen program. The projective geometry contains three typical 2-dimensional
geometries as subgeometry.

The unitary group U(2) in GL(2,C) becomes PU(2) ⊂ PGL(2,C) in the quotient.
It is isomorphic to SO(3), and the pair (PU(2), Ĉ) = (SO(3), S2) is the spherical
geometry.
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The upper triangular group UT(2) in GL(2,C) yields PUT(2) ⊂ PGL(2,C)whose
action on Ĉ fixes {∞}. It is isomorphic to the 1-dimensional complex affine trans-
formation group A(1), and the pair (PUT(2),C) = (A(1),C) is the complex affine
geometry. Under the canonical identification of C with the euclidean plane E

2, the
orientation preserving euclidean isometry group Isom+ E

2 can be embedded in A(1)
and the pair (Isom+ E

2,E2) ⊂ (A(1),C) is the euclidean geomerty.
The action of the subgroup U(1, 1) of GL(2,C), which preserves a Hermitian form

of signature (1, 1), leaves the unit disk D of C invariant. The projectivisation defines
the hyperbolic geometry (PU(1, 1),D), where the action of PU(1, 1) preserves the
orientation.

The spherical, euclidean and hyperbolic geometries have compact stabilizers and
each admits a Riemaniann metric of constant curvature, say 1, 0, −1 respectively,
invariant under the action of transformation groups. A circle on Ĉ contained in the
domain of these three geometries will be a metric circle in their own metrics.

2.3 Projective Riemann surface

Let Σg be a compact oriented surface of genus g ≥ 0. A complex 1-dimensional
projective structure, or simply a projective structure, on Σg is a system of local coor-
dinates compatible with the orientation modeled on the Riemann sphere such that on
any two overlapping coordinate patches, the change of coordinates is a restriction of
a projective transformation. In modern language, it is a geometric structure modeled
on (PGL(2,C), Ĉ).

Throughout this chapter, “projective” means “complex projective”. Some of the
basics of complex projective geometry of surfaces, and its relation to Teichmüller
theory, are presented in the chapter written by David Dumas, [6].

Since projective transformations are holomorphic, every projective structure deter-
mines an underlying complex structure, and hence a surface with a projective structure
can be regarded as a Riemann surface. For short, a surface with a projective structure
will be called a projective Riemann surface. Notice that the notion of projective struc-
ture is finer than the notion of complex structure, and different projective Riemann
surfaces can share the same underlying complex structure.

Also, since projective geometry contains spherical, euclidean and hyperbolic ge-
ometries as subgeometry, any constant curvature surface is a projective Riemann sur-
face and in particular has an underlying complex structure.

Let S be a projective Riemann surface homeomorphic toΣg . We always attach to
S an orientation preserving homeomorphism,

h : Σg −→ S,

which we call a marking. Two marked projective Riemann surfaces, say (S1, h1)

and (S2, h2), are considered to be projectively equivalent if there exists a projective
isomorphism,

ϕ : S1 −→ S2,
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such that ϕ 
 h1 is homotopic to h2. Since ϕ 
 h1 is required to be homotopic to h2,
the marking determines the homotopy class of a projective isomorphism.

To each projective Riemann surface S, one assigns a developing map,

D : S̃ −→ Ĉ,

defined as an analytic continuation of a preferred local coordinate, where S̃ is the uni-
versal cover of S. It is well defined up to composition with projective transformations.
One also assigns to S a holonomy representation,

ρ : π1(S) −→ PGL(2,C),

defined so that the equivariance condition,

D(γ x) = ρ(γ )D(x),
holds for all γ ∈ π1(S) and x ∈ S̃, where π1(S) acts as deck transformations on S̃. It
is well defined up to conjugation by projective transformations.

Let Tg be the Teichmüller space ofΣg , namely the space of all complex structures
on Σg up to marked biholomorphic equivalence. Tg is homeomorphic to a real eu-
clidean space of dimension 0, 2, 6g− 6 according to whether g = 0, 1 or otherwise.
By the uniformization theorem, every Riemann surface is biholomorphic to a constant
curvature surface, and hence every biholomorphic class is represented by a projec-
tive Riemann surface, but not uniquely. To see how many projective structures can
share the same complex structure, we introduce the analytic viewpoint of projective
structures below.

A holomorphic quadratic differential, q = q(z)dz2, on a Riemann surface R is an
assignment of a holomorphic function q(z) to each local coordinate z such that if z1
and z2 are local coordinates with common domain, then

q1(z1) = q2(z2)

(
dz2

dz1

)2

.

In other words, it is a holomorphic section of the square of the holomorphic cotangent
bundle (the canonical line bundle) of R. The set of all holomorphic quadratic dif-
ferentials on R becomes a complex vector space of complex dimension 0, 1, 3g − 3
according to whether g = 0, 1 or otherwise. The dimension count is deduced from
the Riemann–Roch theorem.

Suppose we have a holomorphic quadratic differential q on R. In a local coordi-
nate z, the solutions of the Schwarzian differential equation

2w′′(z)+ 1

2
q(z)w(z) = 0

form a two-dimensional complex vector space. Then the ratio φ of two linearly
independent solutions satisfies the identity,(

φ′′(z)
φ′(z)

)′
− 1

2

(
φ′′(z)
φ′(z)

)2

= q(z),
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where the left-hand side is called Schwarzian derivative of φ. By the standard exis-
tence and uniqueness of solutions to systems of holomorphic differential equations, φ
extends by analytic continuation to a holomorphic map,

D : R̃ −→ Ĉ,

of the universal cover ofR unique up to composition with a projective transformation.
This map can be seen as a developing map of a projective structure on R associated
with q. Thus we have obtained a projective structure from a pair (R, q) of a Riemann
surfaceR and a holomorphic quadratic differential q onR. Conversely, if we are given
a projective Riemann surface S, then the Schwarzian derivative of its developing map
defines a holomorphic quadratic differential q with respect to the underlying complex
structure on S.

Hence the set of projective structures on Σg corresponds bijectively to the set
of all pairs (R, q) where R is a Riemann surface homeomorphic to Σg and q is a
holomorphic quadratic differential on R.

Let Pg be the space of all projective structures on Σg up to marked projective
equivalence, in other words, the set of all projective Riemann surfaces homeomorphic
to Σg with marking. We have a natural projection,

π : Pg −→ Tg,

by assigning the underlying complex structure to each projective Riemann surface.
This is a vector bundle of complex rank 0, 1, 3g − 3 according to whether g = 0, 1
or otherwise.

When g = 0, P0 and T0 both consist of a single point and the situation is quite
simple. When g ≥ 1, by the uniformization theorem, for each biholomorphic class of
projective Riemann surfaces homeomorphic toΣg , there is a unique representative by
either a euclidean torus or a hyperbolic surface according to whether g = 1 or g ≥ 2.
Hence, we obtain a natural section,

s : Tg −→ Pg,

to the projectionπ : Pg → Tg by assigning a corresponding constant curvature surface
with marking.

In the case g = 1, there is a slight difference between complex affine structures
and projective structures on Σ1. Let A1 be the space of all complex affine structures
on Σ1. The image of a holonomy representation of a complex affine structure on Σ1
which is not a euclidean structure is contained in the subgroup of A(1) whose action
fixes {0,∞}. This subgroup is invariant under an involutive conjugation induced by
the transformation z �→ 1/z. The action defines a double cover,

A1 −→ P1,

branched along s(T1). Hence the correspondence between complex affine structures
and projective structures on the torus is generically two to one.
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2.4 Circle packing on surfaces

A projective Riemann surface S would be the most general underlying space when
we discuss circle packings on a compact surface, since the group of projective trans-
formations is the maximal group which sends a circle on the Riemann sphere to a
circle.

Definition 2.1. A circle on a projective Riemann surface S will be a homotopically
trivial simple closed curve on S of which a lift in the universal cover is mapped by the
developing map to a circle on Ĉ.

A homotopically trivial simple closed curve onΣg always bounds a disk. When a
projective Riemann surface S has genus g ≥ 1, any circle on S bounds a unique disk.
However a circle on the Riemann sphere bounds disks in both sides. Hence in this
particular case, we need to choose a bounding disk to each circle.

Definition 2.2. A circle configuration C on a projective Riemann surface S is a col-
lection of circles such that there is an assignment of bounding disks to each member
which are disjoint. Note that the assignment is unique if any when C contains more
than one member. We use the notation C also for a subset of S.

Two circles on Ĉ bounding disjoint open disks either touch each other at a single
point or coincide unless they are disjoint. However this is only for Ĉ. For circle
configurations on a projective Riemann surface of genus g ≥ 1, two circles may touch
at several points, and even a single circle may have self contacts.

Definition 2.3. To each circle configuration C on a projective Riemann surface S, we
assign a graph τ on S and simultaneously on Σg through a marking where vertices
correspond to the circles of C and two (or possibly one) vertices are joined by an edge
for each point of tangency. We call τ a nerve of C.

A circle configurationC determines an isotopy class of a graph τ on S and therefore
onΣg through a marking. We use only this topological property for τ and we are not
concerned with any geometric properties which τ may have.

Suppose we are given a circle configurationC on some projective Riemann surface.
If the complement of the union of bounding disks contains a non simply connected
component, we can insert finitely many circles without changing the original config-
uration to make the complement simply connected. If a simply connected comple-
mentary region is bounded by a curvilinear polygon with more than four sides, then
again we can insert finitely many circles to make the configuration have the property
that the complementary regions consists of only curvilinear triangles and quadrilat-
erals. In this case, the nerve τ defines a cell decomposition of Σg by triangles and
quadrilaterals. This simplification of the shape of complementary regions is achieved
elementarily. Thus from now on, we will always suppose that a circle configuration
has this property unless otherwise stated.
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On the other hand, most of curvilinear quadrilateral regions cannot be filled by
finitely many circles with only triangular complementary regions. In other words,
every projective Riemann surface admits a circle configuration so that the comple-
mentary regions are only curvilinear triangles or quadrilaterals, but not every one
admits a configuration with only triangular complementary regions. Brooks gave a
special name for a circle configuration with this strong property in [4].

Definition 2.4. A circle configuration is said to be a circle packing if the complemen-
tary regions all are triangular, namely the nerve defines a cell decomposition of Σg
only by triangles.

The nerve here defines a triangulation of Σg in the most general sense, namely
some 1-simplex and hence 2-simplex may be immersed and not embedded. Here are
a few examples of circle packings illustrated in figures.

Figure 1 is the stereographic image of a circle packing on Ĉ whose nerve decom-
poses Ĉ as a tetrahedron. The circle packing P on E

2 pictured in Figure 2 is called
a hexagonal packing. It can be seen also as a universal cover of some circle packing
on the torus by taking a quotient of the group action generated by appropriate parallel
translations preserving P . If we choose the maximal such group, we get the circle
packing on the hexagonal torus by one circle with three self contact points.

Figure 1. Tetrahedral packing. Figure 2. Hexagonal packing.

A circle packing by one circle is realized also on a hyperbolic surface of genus
g ≥ 2. It has 3(2g − 1) self contact points. Figure 3 represents a universal cover of
such a packing when g = 2. As we will discuss in §3, such circle packings admit
deformations. Figure 4 illustrates a small deformation of the circle packing in Figure 3
with the same combinatorics.

The graph which appears as a nerve of some circle configuration with polygonal
complementary regions on a projective Riemann surface has the property that it defines
a cell decomposition of the universal cover such that every closed cell is embedded.
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Figure 3. Universal cover of a circle
packing on a hyperbolic surface.

Figure 4. Deformation of the circle
packing in Figure 3.

For instance, if all cells are triangular, it defines a honest triangulation in the universal
cover. We give a special name for such graphs.

Definition 2.5. A graph on Σg is simple if it defines a cell decomposition in the
universal cover such that each closed cell is embedded. In other words, if it defines
a simple planar graph on the universal cover in the graph theoretic sense, namely no
loops and no multiple edges.

A fundamental problem in the study of circle configurations on compact surfaces
would be to understand the moduli space of the pairs (S, C) of a projective Riemann
surface S and a circle configuration C on S under combinatorial control coming from
the nerve. The pairs (S, C) and (S′, C′) will be equivalent if there is a projective
isomorphism ϕ : S → S′ compatible with marking such that ϕ(C) = C′.
Problem 2.6. Given a simple graph τ onΣg , find the moduli space of all pairs (S, C)
of a projective Riemann surface S and a circle configuration C on S with a nerve
isotopic to τ through a marking up to equivalence.

Our main concern will be when τ defines a cell decomposition by only triangles
and quadrilaterals.

3 Rigidity

3.1 Rigidity theorems

Consider a circle packing P with nerve τ on the Riemann sphere Ĉ. Since any
projective transformation ϕ of Ĉ is isotopic to the identity and sends a circle to a
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circle, P ′ = ϕ(P ) defines also a circle packing on Ĉ with nerve isotopic to τ . Hence,
(Ĉ, P ) is equivalent to (Ĉ, P ′). Thus roughly speaking, the circle packing on Ĉ

dominated by τ has a complex 3-dimensional freedom to move on Ĉ. But this will be
the only freedom. The projective rigidity of circle packings on the Riemann sphere
was proved originally by Koebe and then rediscovered by Andreev.

Theorem 3.1 (Koebe [9] , Andreev [1]). Suppose a simple graph τ on Σ0 defines a
honest triangulation. Then there is a circle packing P on the Riemann sphere Ĉ, such
that the nerve of P is isotopic to τ . Moreover, for any two such packings P and P ′,
there is a projective transformation ϕ : Ĉ→ Ĉ such that ϕ(P ) = P ′.

Since every orientation preserving self-homeomorphism of the Riemann sphere
is isotopic to the identity, the map ϕ in the above theorem may not be unique. In
fact, every graph automorphism of τ which extends to an orientation preserving self-
homeomorphism of Ĉ can be realized by the restriction of a projective transformation.

When g ≥ 1, the marking will be involved in the rigidity. Remember that there
is a preferred homotopy class of a projective isomorphism between two surfaces with
markings. Theorem 3.1 was generalized for higher genus surfaces by Thurston as
marked projective rigidity within constant curvature structures. To see clearly the
difference of the results between the cases g = 1 and g ≥ 2, we split the statement
into two theorems.

Theorem 3.2 (Thurston [18]). Suppose a simple graph τ onΣ1 defines a cell decom-
position by triangles. Then there is a euclidean torus S with marking and a circle
packing P on S, such that the nerve of P is isotopic to τ . Moreover, for any two
such realizations (S, P ) and (S′, P ′), there is a projective isomorphism ϕ : S → S′
compatible with marking such that ϕ(P ) = P ′.

A projective isomorphism between euclidean tori with markings is either a con-
traction, an expansion or a parallel translation. Hence the realization of a marked
euclidean structure on the torus here is unique up to scaling.

When we fix a euclidean structure, the parallel transformation, which is isotopic
to the identity, moves a circle packing. Hence the circle packing on a euclidean torus
controlled by τ has a complex 1-dimensional freedom to move.

Also, ϕ in the above theorem may not be unique. In fact as in the spherical case,
every graph automorphism of τ which extends to a self-homeomorphism ofΣ1 isotopic
to the identity can be realized by the restriction of a projective transformation.

When g ≥ 2, we have

Theorem 3.3 (Thurston [18]). Suppose a simple graph τ onΣg (g ≥ 2) defines a cell
decomposition by triangles. Then there is a unique hyperbolic surface S with marking
and a unique circle packing P on S, such that the nerve of P is isotopic to τ .

Thus, in this case, the combinatorial structure of τ completely determines the
hyperbolic surface S with marking and the location of a circle packing P on S.
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If we combine the three theorems above, the rigidity will be established for the
constant curvature surfaces up to marked projective equivalence. The unified statement
is as follows.

Theorem 3.4. Suppose a simple graph τ onΣg (g ≥ 0) defines a cell decomposition
by triangles. Then there is a constant curvature surface S with marking and a circle
packing P on S such that the nerve of P is isotopic to τ . Moreover, for any two
such realizations (S, P ) and (S′, P ′), there is a projective isomorphism ϕ : S → S′
compatible with markings such that ϕ(P ) = P ′.

3.2 Unified proof

The theorems in the previous subsection can be proved uniformly by an argument due
to Thurston [18]. The hyperbolic case is the source.

To see this, let τ be a simple graph onΣg (g ≥ 2)which gives a cell decomposition
by triangles, and Vτ the set of vertices. Let

r : Vτ −→ R+
be any positive real valued function on the vertex set. This function will turn out to be an
assignment of radii to each vertex. Given r ∈ R

Vτ , and suppose three verticesu, v,w ∈
Vτ span a triangle, then r(u) + r(v), r(v) + r(w), r(w) + r(u) satisfy the triangle
inequality. Assigning a hyperbolic triangle with those side lengths to each tripleu, v,w
which span a triangle on Σg , pasting these triangles along edges according to a cell
decomposition defined by τ , we get a hyperbolic surface homeomorphic to Σg with
cone singularities at vertices. It admits a circle packing with centers at Vτ and radii r .

To each vertex, assign the curvature concentrated at that point, and we obtain a
curvature concentration map

	r : Vτ −→ R,

where the value at v ∈ Vτ is equal to 2π − sum of angles meeting at v. The value at
v is 0 if and only if v is not singular. Thus if the trivial map denoted by 0 in R

Vτ ,
which has no curvature concentration for any vertices, is uniquely attained by some
radii assignment, then we are done.

Thurston regards the correspondence r �→ 	r as a map

μ : RVτ+ −→ R
Vτ ,

and sets up the problem more globally. He shows that μ is injective onto its image by
comparing the images of different r’s based on the Gauss–Bonnet formula. Moreover
he shows that the image of μ contains 0 by looking at the asymptotic nature of μ
together with an invariance of domain argument. Thurston’s analysis actually provides
much more information about the map μ, but in particular it established that μ−1(0)
gives the unique nonsingular hyperbolic surface with a circle packing whose nerve is
isotopic to τ .
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When g = 1, an assignment of radii r : Vτ → R+, a curvature concentration
	r : Vτ → R and the map μ : R

Vτ+ → R
Vτ can be defined without any change.

However, since homothetic radii give the same curvature concentration, μ will not be
injective. Also the sum of curvature concentration at each vertex must be zero because
of the Gauss–Bonnet formula, and thus μ can never be locally surjective.

To rule out such redundancy coming from expansion and contraction on the source
and the target, we let


1 =
{
r ∈ R

Vτ+ |
∑
v∈Vτ r(v) = 1

}
.

Then by an argument similar to the argument used in the case g ≥ 2, μ restricted to

1 is shown to be injective onto its image in {	 ∈ R

Vτ |∑v∈Vτ 	(v) = 0}. Moreover,
the image contains 0.

Finally, the spherical case is reduced to the euclidean case. Choose three vertices
u, v,w ∈ Vτ which span a triangle in Ĉ, and locate u, v, w so that they span an
equilateral triangle in C with side length 2 and the other part of τ is contained in this
triangle. Letting


0 =
{
r ∈ R

Vτ+ | r(u) = r(v) = r(w) = 1
}
,

do the same construction of a singular euclidean surface for each r ∈ 
0 with a fixed
triangle boundary spanned by u, v and w. Let V0 be the set of vertices other than
u, v,w, namely V0 = Vτ − {u, v,w}. Then, the map

μ : 
0 −→ R
V0

in this case is also injective and the image contains 0. The circle configuration on
C corresponding to μ−1(0) is pulled back to a circle packing on Ĉ with nerve τ by
stereographic projection.

Remark 3.5. The setup by Thurston above has led to a variational approach to find
the solution μ−1(0) with respect to the sup norm of 	r by Colin de Verdière in [5].
Bennett and Luo took another variational viewpoint in [2] based on the combinatorial
Ricci flow.

Since for a given τ , the realization of the pair (S, P ) of a constant curvature surface
S and a circle packing P on S is unique up to marked projective equivalence, we give
a special name to this pair.

Definition 3.6. We call the unique pair (S, P ) provided by the rigidity theorems in
the previous subsection a KAT solution (the three letters stand for Koebe, Andreev and
Thurston).



Chapter 13. Circle packing and Teichmüller space 521

3.3 Density

One of the conclusions of the rigidity results is that the number of constant curvature
surfaces which admit a circle packing is at most countable, because the number of
cell decompositions by triangles on Σg is countable. In contrast with such a sparse
situation, Brooks showed that such structures are dense in Teichmüller space if the
combinatorial control is ignored. We here briefly review his idea.

Brooks starts with a circle configuration on the Riemann sphere by four circles with
two quadrilateral complementary regions. LetQ be one quadrilateral complementary
region normalized as located in a bounded part in Figure 5. The other quadrilateral
region is unbounded in this normalization. Then one adds a unique circle which is
tangent to either the top, left and bottom sides, or is tangent to the left, top and right
sides. The dotted circle in Figure 5 is the one we add. Brooks calls the former case as
in Figure 5 a horizontal circle and the latter a vertical circle. Notice that adding this
new circles cuts out two new triangles and one new quadrilateral, except in the rare
case where this circle is tangent to all four sides.

Figure 5. Normalized configuration by four circles

Now, iterate this process, each time adding a circle to the new quadrilateral created
in the previous step. Denote by n1 the number of horizontal circles obtained until one
adds a vertical circle, n2 the number of vertical circles then obtained until one adds a
horizontal circles, and so on, and consider the continued fraction expansion

c(Q) = n1 + 1

n2 + 1

n3 + · · ·
Note that the value c(Q) depends on which circle we put on the horizontal line in the
normalized picture. Hence, when we discuss about c(Q), we remember the reference
circle for Q.

In [3], the number c(Q) is shown to vary continuously as the original four circles
are varied. A rational number corresponds to a continued fraction which terminates
in finitely many steps. Geometrically, this means that a circle configuration can be
completed by a circle packing in Q by inserting finitely many circles. Otherwise, the
process of inserting circles inQ never ends. The number c(Q) is a primitive numerical
projective invariant for a curvilinear quadrilateral on Ĉ, which Brooks call a continued
fractional parameter.
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In [3], Brooks globalizes the argument above to a circle configuration on the Rie-
mann sphere Ĉ. Let τ be a simple graph on Ĉ which defines a cell decomposition by
triangles and quadrilaterals, andQτ the set of quadrilateral cells in the cell decompo-
sition defined by τ . Now, let Cτ be the set of circle configurations on Ĉ with nerve
isotopic to τ up to projective equivalence, endowed with a natural topology. The nerve
τ is a combinatorial object as before and Cτ is the moduli space. By Theorem 3.1,
if there are no quadrilateral complementary regions in the circle configuration, Cτ is
just a point. In general, we have

Theorem 3.7 (Brooks [3]). Suppose a simple graph τ on Ĉ defines a cell decomposi-
tion by triangles and quadrilaterals, and letQτ be the set of quadrilateral cells. Then
the map

cτ : Cτ −→ R
Qτ+ ,

assigning to each configuration C ∈ Cτ the continued fractional parameters of each
member ofQτ , is a homeomorphism.

This theorem can be understood in the language of the quasi-conformal deformation
theory. To see this, let us quickly review the theory. A finitely generated discrete
subgroup � of Möb is called a Kleinian group. The maximal region of Ĉ on which �
acts properly discontinuously is called the domain of discontinuity of � and denoted
by �� . By Ahlfors’ finiteness theorem, the quotient ��/� is a Riemann surface of
finite type. A Kleinian group�′ is quasi-conformally equivalent to� if there is a quasi-
conformal map ψ : Ĉ→ Ĉ such that �′ = ψ�ψ−1. Note here that �′ is assumed to
be a Kleinian group and thus a discrete subgroup of Möb. A culminating result of the
extensive quasi-conformal deformation theory developed by Ahlfors, Bers, Maskit,
Marden and many others gives an explicit description of the deformation space as
follows, see [15], [16] for the final form due to Sullivan.

Theorem3.8. The setQC(�) of quasi-conformal deformations of � is homeomorphic
to the Teichmüller space of the underlying topological surface of ��/�, in other
words, the space of Riemann surfaces homeomorphic to ��/� with marking up to
marked biholomorphic equivalence.

Let us come back to the circle packing problem. We have a circle configuration C
on Ĉ with only triangular and quadrilateral complementary regions. Let � be a group
generated by reflections about members in C. The group � will be a Kleinian group
and��/� in this case consists of finitely many triangles and quadrilaterals which can
be identified with the complementary regions of C. The Teichmüller space of each
region, namely, the space of all complex structures on the region with marked points
on the boundary, is homeomorphic to either a point or R according to whether it is
triangular or quadrilateral. Thus QC(�) in this case is homeomorphic to the euclidean
space of dimension equal to the number of quadrilateral complementary regions.

Now, notice that there is a rigidity property of reflections in quasi-conformal defor-
mations. If γ ∈ � is a reflection, then the corresponding element γ ′ ∈ �′ = ψ�ψ−1
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must also be a reflection, since a Möbius transformation which fixes a 1-dimensional
set is a reflection.

Thus any quasi-conformal deformation �′ ∈ QC(�) starting from a circle config-
uration C defines a circle configuration C′ whose nerve is isotopic to τ . Therefore,
the theory provides a homeomorphic correspondence

δ : QC(�) −→ Cτ

and gives a new parameterizatioin of the Teichmüller space of quadrilateral regions,
which is the underlying topological surface of��/�, in terms of continued fractions.

Corollary 3.9 (Brooks [3]). The composition cτ 
 δ : QC(�)→ R
Qτ+ is a homeomor-

phism.

This whole story can be extended to the study of circle packings on compact
projective Riemann surfaces of genus g ≥ 2. Let S be a compact hyperbolic surface,
� the image of a holonomy representation of π1(S) in PGL(2,C) and C a circle
configuration on S with only triangular and quadrilateral complementary regions.
Notice that� is a Fuchsian group. A circle configurationC defines C̃ on the universal
cover S̃ ⊂ Ĉ with infinitely many circles, but finitely many conjugacy classes of circles
with respect to the action of π1(S). Also, since S is a hyperbolic surface, the boundary
of the universal cover S̃ defines a circle C0 ⊂ Ĉ. Let � be a group generated by �
and reflections about circles of C̃ and C0. Since the number of conjugacy classes of
circles in C̃ by the action of π1(S) is finite, � is a finitely generated Kleinian group.

By the theory of quasi-conformal deformations, the deformation space QC(�) is
homeomorphic to the Teichmüller space of the union of quadrilateral complementary
regions of C ⊂ S, which is parameterized by continued fractional parameters by an
equivariant version of Theorem 3.7.

Since the quasi-conformal deformation �′ ∈ QC(�) contains a reflection about
the boundary of the universal cover of a deformed surface, the result becomes again
a hyperbolic surface. We can choose a rational valued continued fractional parameter
arbitrary close to the parameter of C. Then the quadrilateral regions in the deformed
configuration C′ on a hyperbolic surface S′ can be completed by a circle packing
by inserting finitely many circles. Since a hyperbolic surface S′ could be chosen
arbitrarily close to the original S, we get a twofold result by regarding Tg as the space
of Riemann surfaces with marking up to biholomorphic equivalence, and also as the
space of hyperbolic surfaces with marking up to isometry through the identification
by the section s : Tg → Pg .

Theorem 3.10 (Brooks [4]). The set of Riemann surfaces which admit a circle packing
is dense inTg . Equivalently, the set of hyperbolic surfaceswhich admit a circle packing
is dense in s(Tg).

The argument so far depends on the well-developed theory of Kleinian groups,
that is, discrete subgroups of Möb. On the other hand, the image of the holonomy



524 Sadayoshi Kojima

representation of a projective Riemann surface is not discrete in general, and some
difficulty for analyzing density arises.

When g = 1, as a byproduct of the study of one circle packing on complex affine
tori in [13], Mizushima proved the density of circle packing structures in A1. Since
A1 doubly covers P1 branched along s(T1), we have

Theorem 3.11 (Mizushima [13]). The set of projective Riemann tori which admit a
circle packing is dense in P1.

We may ask

Question 3.12. Is the set of projective Riemann surfaces which admit a circle packing
dense in Pg for g ≥ 2 ?

4 Flexibility

4.1 Constructing moduli

Despite of the rigidity discussed in the previous section, circle packings on projective
Riemann surfaces with combinatorics controlled by τ have a more flexible nature.
One expects to see the structure of a moduli space for the pairs (S, P ) of a projective
Riemann surface S and a circle packingP on S such that the nerve ofP is isotopic to τ .
To do this, a projective invariant of a circle packing on projective Riemann surfaces
based on the cross ratio is introduced in [10]. In this section, we briefly review it based
on the description in [12].

Suppose that (S, P ) is a pair consisting of a projective Riemann surface S and a
circle packing P on S. To each edge e of the nerve τ of P , we choose a lift ẽ in τ̃ and
associate a configuration of four circles on Ĉ in the developed image about D(ẽ), see
Figure 6. Recall that the cross ratio of four distinct ordered points in Ĉ is given by

(z1, z2, z3, z4) = (z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

It is the value of the image of z1 under the projective transformation which takes
z2, z3 and z4 to 1, 0 and∞ respectively. The value assigned to the edge e will be the
imaginary part of the cross ratio of the four contact points (p14, p23, p12, p13) of the
configuration chosen as in Figure 6 with orientation convention. The cross ratio of
these four points is always purely imaginary with positive imaginary part.

Since the cross ratio is a projective invariant, the value does not depend on the
choice of the lift ẽ and on the developing map. Collecting the values for each edge,
we obtain the map x of the edge set Eτ of τ ,

x : Eτ −→ R,
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which is called a cross ratio parameter. The cross ratio of the edge e determines the
position of the circle C4 in Figure 6 once the positions of C1, C2 and C3 are fixed, and
if the cross ratio of e approaches∞, then C4 approaches p13.

D(ẽ)

p23

p12

p13
p34

p14

C3

C4

C1

C2

Figure 6. Four circle configuration.

v

e1

e2

e3

e4

em

Figure 7. Surrounding circles.

Obviously, not all real valued maps of Eτ can be cross ratio parameters for some
circle packing. To obtain necessary conditions, consider a normalized picture of a
circle with its surrounding circles. The normalization we chose maps the central
circle to the real line and one of the adjoining interstices to the standard interstice
with vertices at ∞, 0 and

√−1. This leads one to introduce an associated matrix
A ∈ SL(2,R) to each edge e ∈ Eτ . If the value of a cross ratio parameter at e is x, A
is defined to be

(
0 1−1 x

) ∈ SL(2,R).
Then a simple computation shows that the associated matrix A represents a trans-

formation which sends the left triangular interstice of this configuration to the right
triangular interstice.

Let v be a vertex of τ with valence m. We read off the edges e1, . . . , em incident
to v in a clockwise direction to obtain a sequence of assigned values x1, . . . , xm of
cross ratio parameters. Let

Wj = A1A2 . . . Aj =
(
aj bj
cj dj

)
, j = 1, . . . , m,

where Ai is the matrix
( 0 1−1 xi

)
associated to ei . Then, it was shown in [10] that for

each vertex v of τ , we have

Wv = A1A2 . . . Am =
(−1 0

0 −1

)
, (4.1)

and {
aj , cj < 0, bj , dj > 0 for 1 ≤ j ≤ m− 1,

except for a1 = dm−1 = 0.
(4.2)
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The first condition comes from the fact that the chain of circles surrounding the circle
corresponding to v closes up. The second condition excludes overwinding, that is,
it eliminates the case where the chain surrounds the central circle more than once.
Notice here that the associated matrices are in SL(2,R) and not in PSL(2,R), so that
the inequalities of (4.2) make sense.

On the other hand, given a real valued map x of Eτ satisfying (4.1) and (4.2)
for each vertex of τ , it is relatively routine to construct a pair (S, P ) consisting of
a projective Riemann surface S and a circle packing P on S so that its cross ratio
parameter is x (see [10] for details). Thus set

Cτ = {x : Eτ → R | x satisfies (4.1) and (4.2) for each vertex},
and call it the cross ratio parameter space.

Remark 4.1. In §3.3, we defined Cτ as the moduli space of circle configurations
on Ĉ with nerve isotopic to τ up to projective equivalence, endowed with a natural
topology. When τ defines a cell decomposition by triangles, the space Cτ is a point.
A nontrivial moduli space appears only when the decomposition contains a quadri-
lateral cell. Here we use the same notation since Cτ is naturally identified with the
moduli space of circle packings on projective Riemann surfaces of genus g ≥ 1
controlled by τ . It will be nontrivial even if τ defines a cell decomposition by only
triangles.

Since Condition (4.1) gives a set of polynomial equations for the xi’s and (4.2)
are polynomial inequalities in the xi’s, the moduli space Cτ is a semi-algebraic set,
and we define the topology on Cτ to be the one induced by the tautological inclusion
ı : Cτ → R

Eτ . It turns out that this naive construction gives a correct parameterization
of the moduli space of pairs (S, P ) where S is a projective Riemann surface and P is
a circle packing on S with nerve τ .

Lemma 4.2. If g ≥ 1, and a simple graph τ on Σg defines a triangulation in the
universal cover, then we have the following:

(1) (Lemma 2.17 in [10]) A moduli space Cτ corresponds bijectively to the set of all
pairs (S, P ) where S is a projective Riemann surface and P is a circle packing
on S with nerve τ , up to marked projective equivalence.

(2) (Lemma 3.2 in [11]) The tautological inclusion ı : Cτ → R
Eτ is proper.

In view of the above results, Cτ is naturally identified with the moduli space of all
pairs (S, P ) with nerve τ . The study of the moduli space then reduces to the study of
its semi-algebraic representative Cτ .
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4.2 Thurston coordinates

To each pair (S, P ) in Cτ , assigning its first component, we obtain the forgetful map

f : Cτ −→ Pg.

The image f (Cτ ) consists of all projective Riemann surfaces which admit a circle
packing with nerve τ . The projective rigidity implies that f (Cτ ) intersects s(Tg) only
at f ({KAT}) and furthermore, the rigidity of the circle packing on f ({KAT}) means
that the inverse image of this point under f consists of exactly one point. We discuss
here the description of f (Cτ ) with respect to Thurston coordinates of Pg which we
will describe shortly.

In this subsection, we assume that the surface Σg has genus g ≥ 2. Roughly
speaking, a measured lamination onΣg is a closed subset ofΣg , locally homeomorphic
to a product of a totally disconnected subset of the interval with an interval, together
with a transverse measure. We refer to the other chapters of the Handbook for a precise
definition, in particular to Chapter 12 ([6]). Moreover, we restrict ourselves to the
case where every leaf is homotopic to a geodesic with respect to some (and hence any)
hyperbolic metric onΣg . A noncontractible simple closed curve onΣg with counting
measure for transverse arcs is an elementary, but important and fundamental example
of a measured lamination. The space of isotopy classes of measured laminations on
Σg (g ≥ 2) with the weak∗ topology on measures will be denoted by MLg . The set
of weighted homotopically nontrivial simple closed curves is dense in MLg . Also
MLg is known to be homeomorphic to R

6g−6. See [18], [19] for details.
Although a measured lamination is a topological concept, once we put a hyperbolic

metric onΣg , its support is canonically realized as a disjoint union of simple geodesics
which forms a closed subset on the surface. Such a lamination is called a geodesic
lamination with transverse measure.

Thurston has assigned to each projective Riemann surface a hyperbolic surface
with a measured geodesic lamination. Following [8], we briefly review his idea. Start
with a projective Riemann surface S which is not a hyperbolic surface. A maximal
disk in the universal cover S̃ is a maximal one under the inclusion. We consider the
set of maximal disks in the universal cover. Each maximal disk is naturally endowed
with the hyperbolic metric, the boundary of each disk intersects the ideal boundary
of S̃ in two or more points and we can take the convex hull of these ideal boundary
points. It can be shown that this gives a stratification of S̃ by ideal polygons, and ideal
bigons foliated by “parallel lines” joining the two ideal vertices of the bigons. The
polygonal parts support a canonical hyperbolic metric. Collapsing each bigon foliated
by parallel lines in S̃ to a line and taking the quotient of the result by the action of the
fundamental group, we obtain a hyperbolic surfaceH . This defines a hyperbolization
map

α : Pg −→ s(Tg) ⊂ Pg.

The stratification also defines a geodesic lamination λ on H by taking the union
of collapsed lines. Moreover, identifying Ĉ with the boundary of 3-dimensional hy-
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perbolic space H
3, and using the convex hull of the ideal points of the maximal disk

not on the disk itself but in H
3, we can assign a transverse bending measure supported

on λ. This defines a pleating map

β : Pg −→MLg.

Theorem 4.3 (Thurston, see [8]). The product of these maps

(α, β) : Pg −→ s(Tg)×MLg, (4.3)

is a homeomorphism.

We call the parameterization of Pg by the target of (4.3) Thurston coordinates. It
is known by Tanigawa [17] that the restriction of π : Pg → Tg to any slice s(T )×{∗}
by the first factor is proper, and by Scannell and Wolf [14] that this map is locally
injective. In particular, this map is a diffeomorphism. Dumas and Wolf also proved
that the same is true for the slice {∗} ×MLg by the second factor in [7]. Further
information on Thurston’s coordinates is contained in Chapter 12 of this volume [6].

On the other hand, we have:

Lemma 4.4 (Lemma 4.1 in [11]). If g ≥ 2, then the composition β 
f : Cτ →MLg

of a forgetful map f : Cτ → Pg with the pleating map β : Pg →MLg has bounded
image.

This is a property for projective Riemann surfaces admitting a circle packing dom-
inated by a single graph τ , and it is proved by observing how the developed image of
a projective Riemann surface is controlled by the combinatorial data of τ .

4.3 Speculation

To expect a deeper understanding of the moduli space Cτ and its image in Pg under
f , we formulate a conjecture which relates the moduli space with Teichmüller space.

Conjecture 4.5. Let τ be a simple graph onΣg which defines a cell decomposition by
triangles. Then the composition π 
 f : Cτ → Tg of the forgetful map f : Cg → Pg
with the projection π : Pg → Tg is a homeomorphism.

The motivation goes back to the result of Mizushima in [13] which we discuss in
the next subsection. Here are some expected implications of the affirmative solution
to Conjecture 4.5, which have been verified in certain special cases.
(1) Topology of Cτ . The moduli space Cτ would be homeomorphic to the euclidean

space of dimension 2 or 6g − 6 according to whether g = 1 or g ≥ 2.

(2) Rigidity for circle packings. The forgetful map f : Cτ → Pg would be injective.
Thus the rigidity of circle packings holds for all projective Riemann surfaces
in f (Cτ ), that is, each projective Riemann surface S admits at most one circle
packing with nerve τ up to projective automorphisms isotopic to the identity.
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(3) New section to π . The image f (Cτ ) of the forgetful map would define a new
natural section or a slice to π : Pg → Tg . It means for example that for each
biholomorphic class of a Riemann surface, there exists a unique projective Rie-
mann surface which admits a circle packing with nerve τ .

4.4 Evidence

4.4.1. Consider the moduli space Cτ of circle packings by one circle onΣ1. The nerve
τ in this case consists of one vertex v and 3 edges e1, e2 and e3 with cross ratios x > 0,
y > 0 and z > 0 respectively and associated matrices X = (

0 1−1 x

)
, Y = ( 0 1−1 y

)
and Z = (

0 1−1 z

)
. The word associated to the vertex is given byW = XYZXYZ, and

XYZXYZ = I implies

xyz = x + y + z.
Note that three equations derived from the matrix identity reduce to just one equation
in this case. By an easy computation, we can see that the cross ratio parameter space
Cτ is given by

Cτ = {(x, y, z) ∈ R
3 | xyz = x + y + z, x, y, z > 0},

which is homeomorphic to a convex domain in the xy-plane,

{(x, y) ∈ R
2 | xy − 1 > 0, x, y > 0},

by the projection.
Mizushima studied the moduli space of complex affine structures on the torus in

[13]. When we translate his result in our language, his moduli space is a doubly
branched cover of the moduli space and provides an affirmative solution to Conjec-
ture 4.5 for this very special case.

Theorem 4.6 (Mizushima [13]). If a simple graph τ on Σ1 has only one vertex, then
the compositionπ 
f : Cτ → T1 of the forgetful map f : Cτ → P1 with the projection
π : P1 → T1 is a homeomorphism.

4.4.2. The argument developed by Brooks, described in §3.3, is extendable to pro-
jective Riemann surfaces such that a developing map extends to an embedding of the
closure of the universal cover. Such a surface is here called strongly uniformizable.
Let τ be a simple graph onΣg which defines a cell decomposition with only triangular
and quadrilateral cells, S a strongly uniformizable surface, � the image of a holon-
omy representation in PGL(2,C) and C a circle configuration on S whose nerve is
isotopic to τ . In this case, the universal cover S̃ is embedded in Ĉ, but the boundary
∂S̃ would not be a round circle and is in general a quasi-circle on Ĉ. Adding to �
only reflections about members of C̃ without C0 in §3.3, we get a Kleinian group �.
Then the quasi-conformal deformation theory tells us that QC(�) is homeomorphic



530 Sadayoshi Kojima

to the product of the Teichmüller spaces of the quadrilateral complementary regions
of C ⊂ S and Tg which corresponds to the outside region of the closure of S̃ in Ĉ.

If C is a circle packing, namely, if all complementary regions are triangular, then
QC(�) is homeomorphic to Tg . This shows that there is a family of projective Riemann
surfaces parametrized by Tg which admit a circle packing with nerve isotopic to τ ,
and in fact we have an embedding

Tg ∼= QC(�) −→ QC(�) ∼= Tg × Tg ⊂ Pg

This observation establishes the local structure of Cτ at the KAT solution for g ≥ 2.
When g = 1, hyperbolic Dehn surgery theory developed by Thurston [18] plays

a role similar to the one of quasi-deformation theory in a small neighborhood of the
KAT solution. Thus one may establish

Theorem 4.7 (Theorem 1 in [10]). Let τ be a simple graph on Σg (g ≥ 1) which
defines a cell decomposition by triangles. Then there is a neighborhoodU of the KAT
solution in Cτ such that

(1) U is homeomorphic to the euclidean space of dimension 2 or 6g − 6 according
to whether g = 1 or g ≥ 2,

(2) the restriction of f to U is injective.

4.4.3. The restriction for τ to have only one vertex as in Mizushima’s setting simplifies
the situation even for the case g ≥ 2. In fact, Cτ is defined by just one matrix equation
and the set of inequalities corresponding to (4.1) and (4.2) respectively. This rather
simple setting enable us to prove for example,

Theorem 4.8. Let τ be a simple graph on Σg (g ≥ 2) with only one vertex, then

(1) (Theorem 2 in [10]) Cτ is homeomorphic to R
6g−6;

(2) (Lemma 5.1 in [10]) f : Cτ → Pg is injective;

(3) (Theorem 1.1 in [11]) π 
 f : Cτ → Tg is proper.

Theorem 4.8 comes fairly close to affirmatively answering Conjecture 4.5 for the
one circle packing case. What is missing is a proof that p restricted to f (Cτ ) is locally
injective.
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1 Introduction

A surface S is said to be of finite type if the following holds:

(1) It is of the form
S = Ŝ \ V

where (Ŝ, V ) is a closed oriented surface of genus g ≥ 0, with a set of r ≥ 0 marked
points V = {p1, . . . , pr}.

(2) The fundamental group of S is non Abelian, equivalently 2− 2g − r < 0.

The main aim of this chapter is to describe, for every S of finite type, and for every
κ = 0,±1, the geometry of 3-dimensional maximal globally hyperbolic Lorentzian
spacetimes of constant curvature κ that contain a complete Cauchy surface homeo-
morphic to S. We call them generically Einstein MGH spacetimes of finite type. The
(3-dimensional) general relativity background will be briefly recalled in Section 2.
These spacetimes are supported by the product S × R. Considered up to Lorentzian
isometry homotopic to the identity of S×R, they form, for every κ , a Teichmüller-like
space denoted by

MGHκ(S).

Clearly these notions make sense also if S is not necessarily of finite type. In the
monograph [15] we have developed a canonical Wick rotation-rescaling theory on
such general MGH spacetimes. It is easy to see that MGHκ(S) �= ∅ for every κ , if
and only if the universal covering of S is homeomorphic to the open disk D2. In [15]
we have actually analyzed MGHκ(D

2), by developing also an equivariant version of
the theory, with respect to the action of any discrete isometry group. Wick rotation-
rescaling theory includes a wide generalization of Mess’classification [55] (completed
by Scannell [60] for κ = 1) of MGH spacetimes with compact Cauchy surfaces (i.e.
V = ∅). Moreover, it establishes explicit geometric correlations between spacetimes
of different curvatures, and between spacetimes and complex projective structures
on S. In particular, this gives a clear geometric explanation of the occurrence of a
certain “universal” parameter space

ML(S)

shared by all MGHκ(S), κ = 0,±1, and by P (S), the Teichmüller-like space of
complex projective structures on S.

A large part of this chapter just reports on such a theory, by specializing it to the
case of a surface S of finite type. This class is large enough to display the main fea-
tures of the theory; on the other hand, spacetimes of finite type are possibly easier to
describe than completely general ones. In fact we will spell out several specific state-
ments that are quite implicit in the general treatment given in [15]. Hence the present
chapter represents an actual complement to that monograph. Moreover, there are in
this case direct relations between ML(S) and the more familiar Teichmüller spaces
of hyperbolic structures on S and, to some extent, with their corresponding tangent
bundles (see Section 3). For example, when S is compact ML(S) coincides with
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the (topologically trivialized) bundle Tg ×MLg of measured geodesic laminations
on hyperbolic structures on S. In general we will deal with hyperbolic structures F
on S whose completions FC have (non necessarily compact) geodesic boundary, and
with a kind of measured geodesic laminations λ on FC . In fact, another goal is to
convince a reader familiar with such topics of hyperbolic geometry that not only these
topics provide some important tools for studying Einstein spacetimes; in the reverse
direction, via Lorentzian geometry we get a new insight into several fundamental
hyperbolic constructions such as grafting, (3-dimensional hyperbolic) bending and
earthquakes along laminations. To support this claim we just mention here the “AdS
proof” of Thurston’s Earthquake Theorem for hyperbolic structures on compact sur-
faces S, that Mess obtained in [55] as a by-product of his classification of spacetimes
in MGH−1(S). An AdS look at earthquake theory beyond the compact case will be a
theme of Section 5.

Finally, we note that spacetimes of finite type occur (via canonical Wick rota-
tion) as “ending spacetimes” of geometrically finite hyperbolic 3-manifolds, which
furnish basic examples for a bordism category supporting (2 + 1) QFT pertinent to
3-dimensional gravity (see Section 1.11 of [15], and [11], [12], [13]).

In Section 5, we focus on the AdS case that displays the richer phenomenology,
mostly referring (besides [15]) to [7], [8] and [29]. In particular we will describe the
common maximal causal extension �(h) of the MGH spacetimes of finite type that
share a given AdS holonomy h. We will see that�(h) is still supported by the product
S × R but in general is not globally hyperbolic. This is a particularly interesting
case, because we can detect a specific one among the maximal globally hyperbolic
spacetimes contained in�(h) that can be truly considered as a black hole. The analysis
of the causal extension is also important to achieve a proof of the Earthquake Theorem.

Finally, in Section 6 we will outline (by following [17] and mostly [28]) how the
Wick rotation-rescaling theory (partially) extends to MGH spacetimes of finite type
that include world lines of “particles” (i.e. inextensible timelike lines of spacelike
conical singularities).

We stress that this chapter is not intended to be exhaustive of the subject. We
have made a few partial and subjective choices, organized around our favorite Wick
rotation-rescaling view point. Nevertheless, we hope that this would be enough to
show that 3-dimensional gravity is a fairly non-trivial and beautiful “toy model”.
In particular, we have neglected a classical analytic approach to the classification
of constant curvature MGH spacetimes in terms of solutions of the Gauss–Codazzi
equation at a Cauchy surface, possibly imposing some supplementary conditions to
such solutions, that translates some geometric property of the embedding of S as
Cauchy surface (see also Section 2). A widely studied possibility requires that the
surface has constant mean curvature (see for instance [56], [4], [10], [49]). At least
for compact S, the classical Teichmüller space of conformal structures on S and its
complex cotangent bundle arise in this way towards the classification. This approach
also selects a distinguished global time on MGH spacetimes, that basically coincides
with the mean curvature of its level surfaces.
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Wick rotation-rescaling theory is based on a rather different more geometric ap-
proach, initiated by Mess in [55]. It turns out that a key ingredient is another canonical
time, the so called cosmological time. Every MGH spacetime is in a sense determined
by the “asymptotic states” of the corresponding level surfaces, rather than the em-
bedding data of some Cauchy surface. The Wick rotation-rescaling mechanism is
ultimately based on the fact that MGH spacetimes (of different curvatures) can be
associated in such a way that the intrinsic geometry of these level surfaces does not
depend on the curvature, up to some scaling factor.

Acknowledgement. F. B. gratefully acknowledges partial support by A.N.R. through
the project GEODYCOS.

Notation

• A: r-uple of cone-angles at the marked points V of Ŝ;

• AdS: acronym of “Anti de Sitter”;

• α, β: horizontal and vertical rescaling functions;

• Bλ, Bλ: hyperbolic or AdS bending cocycle;

• BLλ : left-quake cocycle;

• β : T̃ (S)→ T (S), the natural retraction;

• β#: the quake-flow on ML#
c(S);

• B(h), W(h): black or white holes in �(h);

• (dλP , h
λ
P ), (d

λ
H
, hλ

H
): developing map and holonomy of mP (λ), and of its hyper-

bolic H -hull;

• Ci : see �, �;

• C(S): the subspace of H̃(S) of hyperbolic surfaces of finite area and such that
all boundary components of the completion are closed geodesics;

• D : a pant decomposition of �;

• E = H/h, E∞: a crown and the ideal part of H ;

• FC : see H̃(S);

• [F̂ ]: the image of [F ] via the natural retraction β;

• Grλ(F ): the grafting of F along λ;

• H̃(S): the space of non-necessarily complete hyperbolic surfaces F homeomor-
phic to S, such that their completions FC have geodesic boundary;

• H(S): the subspace of H̃(S) of complete surfaces;

• I: the marked measure spectrum;

• K : T̃ (S)→ Tc(S), the convex-core map;
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• K(F ), K(F ): the convex core of the hyperbolic surface F , and its interior;

• K(h): the convex core of �(h);

• K(C): the convex core of the standard AdS spacetime Y(C);

• L: the marked length spectrum;

• LS , LW : the simplicial and weighted parts of a measured geodesic lamination
λ = (L, μ);

• λ = (L, μ): a measured geodesic lamination;

• MGH: acronym of “maximal globally hyperbolic”;

• MGHκ(S): the Teichmüller-like space of MGH spacetimes of constant curvature
κ = 0,±1, and with a complete Cauchy surface homeomorphic to S;

• ML(S): the space of measured geodesic laminations on surfaces of T̃ (S);

• MLg: the space of measured geodesic laminations on a closed surface of genus
g ≥ 2;

• MLc(S): the subspace of ML(S) over Tc(S);

• MLc(S)
0: the subspace of MLc(S) of laminations that do not enter any cusp;

• ML(F ), MLc(F ): fibres of the projections p, pc;

• ML#
c(S), I

#: the space of enhanced laminations and the enhanced marked mea-
sure spectrum;

• MGH(h): the set of all spacetimes in MGH−1(S)with prescribed holonomy h;

• mP : ML(S)→ P (S), mκ : ML(S)→MGHκ(S): the materialization maps;

• MGHc(h): the set of all spacetimes in m−1(MLc(S)) with prescribed holon-
omy h;

• �(h), �̃(h): the largest causal AdS spacetime with prescribed holonomy h, and
its Lorentzian universal covering;

• p : ML(S)→ T̃ (S), pc : MLc(S)→ T̃c(S): the natural projections;

• P (C): the past part of Y(C);

• P (S): the Teichmüller-like space of complex projective structures on S;

• Rλ: the ray of measured geodesic laminations determined by the lamination λ;

• S: a fixed surface a finite type of the form S = Ŝ \ V , where Ŝ is closed of
genus g, V is a set of r marked points on Ŝ, and 2− 2g − r < 0;

• Ŝ: see S;

• �, �: the compact surface with boundary components C1, . . . , Cr , obtained
from Ŝ by removing r small open disks around each marked point in V , the
interior of �;

• S: the set of isotopy classes of essential simple closed curves on�, not isotopic
to any boundary components;
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• SD : a distinguished set of simple closed curves on � associated to the pant
decomposition D ;

• σ(λ) : VH → {±1}: the signature of a lamination λ;

• Tg: the classical Teichmüller space of a closed surface of genus g;

• Tg,r : the classical Teichmüller space of complete hyperbolic surfaces of finite
area, genus g with r punctures;

• T (S): the restricted Teichmüller space associated to H(S);

• Tc(S): the restricted Teichmüller space associated to C(S);

• T̃ (S) = H̃(S)/Diff0: the Teichmüller space associated to H̃(S);

• T̃ θ (S): the subspace of T̃ (S) of surfaces F such that β(F ) has fixed type θ ;

• Tc(S)
#, L#: the enhanced Teichmüller space and the enhanced length spectrum;

• T λκ , �λκ : the cosmological time and the initial singularity of Yλκ ;

• τ : M → (0,+∞]: the cosmological function;

• V : the set of marked points on Ŝ;

• V = VP ∪VH , rP , rH : the partition by types of the ends ofF ∈ T̃ (S), r∗ = |V∗|;
• Xκ : the 3-dimensional Minkowski (κ = 0), de Sitter (κ = 1), Anti de Sitter

(κ = −1) spaces;

• Yλκ , Uλ
κ , (dλκ , h

λ
κ): the spacetimes associated to the lamination λ via the maps

mκ , its Lorentzian universal covering, its developing map and holonomy;

• Y(C): the standard AdS spacetime given as the Cauchy development of an
achronal meridian of ∂X−1.

2 3-dimensional gravity

2.1 General background

For the basic notions of global Lorentzian geometry and causality we refer for instance
to [14], [44].

An (n+1) spacetime consists of an (n+1)-manifoldM equipped with a Lorentzian
metric h and with a time orientation, so that the causal past/future of every event
p ∈ (M, h) is determined. We also stipulate that M is oriented.

Roughly speaking, the general problem of gravity can be stated as follows. Given
an (n+ 1)-manifold M , a symmetric (0, 2)-Tensor T on M and a constant � (called
the cosmological constant), find out all spacetimes (M, h) such that:

(a) The metric h satisfies the Einstein equation

Rich +
(
�− 1

2Rh
)
h = T
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where Rich is the Ricci tensor of h and Rh is its scalar curvature.

(b) The global causal structure of (M, h) satisfies determined conditions.

These spacetime structures are considered up to diffeomorphism of M that pre-
serves the tensor T . Both features of the tensor T and of the causality conditions
are determined by physical (even logical) considerations. Normally, they also impose
some constraints on the topology of M . Requirements in (a) and (b) are basically of
independent nature.

The pure gravity case is when T = 0. In such a case, the solutions of the Einstein
equation coincide with the so called Einstein metrics: Rich = 2�

n−1h.
The basic causality condition is that (M, h) is chronological (causal), that is,

it does not contain any closed timelike (causal) curve c. A curve is said timelike
(causal) if its velocity field v(t) is timelike (nowhere spacelike): h(v(t), v(t)) < 0
(h(v(t), v(t)) ≤ 0).

The strongest causality condition is that (M, h) contains a Cauchy surface S; this
means that S is a spacelike hypersurface ofM (the restriction of h to S is Riemannian),
such that every causal inextensible line of (M, h) intersects S exactly once. In this
case we say that (M, h) is globally hyperbolic. If (M, h) is globally hyperbolic then
M turns out to be a product manifold M ∼= S × R so that (up to diffeomorphism
of M) the Cauchy surface S coincides with S × {0}, and every slice S × {t} is h-
spacelike (indeed we can also require that every such slice is a Cauchy surface of
(M, h)). Such a picture is coherent with the intuitive idea of a space evolving in time.
Globally hyperbolic spacetimes naturally arise as dependence domains (D(S), h|D(S))
of spacelike hypersurfaces S in arbitrary spacetimes (M, h); S turns to be a Cauchy
surface of D(S). Hence, globally hyperbolic spacetimes constitute a fundamental
sector of gravity theory.

2.2 (2 + 1)-spacetimes

3D gravity is much simpler than the higher dimensional case because in dimension
three the Riemann tensor is determined by the Ricci tensor. In particular 3D Einstein
metrics actually have constant (sectional) curvature. The sign of the curvature coin-
cides with the sign of the cosmological constant. We will be mainly concerned with
(2+ 1) globally hyperbolic Einstein spacetimes (M, h) (i.e. of constant curvature κ).

We recall two possible ways of studying such spacetimes. The first analytic one
is based on the important fact that the germ of the metric h at a Cauchy surface S
determines, in a sense that we will make precise, the whole spacetime. This leads to
consider the pairs (g, b) of a Riemannian metric, g, on the surface S and a g-symmetric
endomorphism, b, of T S, that verify the Gauss–Codazzi equation

d∇b = 0,

det b = κ − κg
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where d∇ is the differential with respect to the Levi-Civita connection of g, κ is a
constant and κg is the Gauss curvature of g.

It is possible to associate with such a pair (g, b) a Lorentzian metrich onM = S×R

of constant curvature κ , such thatS = S×{0} is a Cauchy surface, the first fundamental
form of S in (M, h) is g and the shape operator is b. (Recall that the shape operator of
a spacelike surfaceF in a Lorentzian or Riemannian manifoldM is the endomorphism
of T F that coincides with the covariant derivative of the normal field of F in M .) A
priori the pair (g, b) determines only the germ of h around S×{0}. On the other hand,
it is proved in [32] that there exists a unique (up to isometry) such globally hyperbolic
spacetime (Mmax, hmax) that is maximal in the following sense:

Given any globally hyperbolic spacetime (M, h) as above, there exists an isometric
embedding (M, h)→ (Mmax, hmax) that is the identity on S × {0} (and preserves the
orientations).

At first sight, this definition of “maximality” involves the choice of a Cauchy surface
(i.e. S×{0}). On the other hand, one can see that it is equivalent to the following one:

Every isometric embedding of (Mmax, hmax) into an Einstein spacetime (N, k) that
sends any Cauchy surface of Mmax onto a Cauchy surface of N actually is a global
isometry.

This last property gives a good definition of the class of maximal globally hyper-
bolic (MGH) Einstein spacetimes, that has an intrinsic sense, not depending on the
analytic approach we are outlining. It is reasonable to restrict to this class in order to
get a classification.

Continuing with the analytic approach, a well-defined map eventually associates
to every pair (g, b) as above the (isotopy class of the) maximal globally hyperbolic
spacetime (Mmax, hmax)(g,b). Such map is surjective, but not injective. In fact it estab-
lishes a bijective correspondence between pairs (g, b) and spacetimes with a marked
Cauchy surface. To get rid of this excess of degrees of freedom, some additional con-
dition on (g, b) has to be imposed, possibly translating some geometric property of
the Cauchy surface embedding. A widely investigated possibility consists in requiring
that the trace of b is constant, that is, S × {0} is a surface of constant mean curvature.

The second geometric approach makes use of the (G,X)-structure technology.
Indeed any (2+ 1) Einstein spacetimeM is a (Xκ , Isom(Xκ))-manifold, where Xκ is
a suitable isotropic model of constant curvature κ .

Denote by M̃ a universal covering of M . A very general “analytic continuation”
procedure allows to associate to every (G,X)-manifold, M , a compatible pair (d, h),
where d is a developing map, that is, a local isomorphism

d : M̃ → X

and h is a holonomy representation

h : π1(M)→ G
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such that (π1-equivariance)

d(γ x) = h(γ )d(x)
(where π1(M) is identified with the covering transformation group of M̃). The devel-
oping map is determined up to post-composition by any element of G, whereas the
holonomy is determined up to conjugation by the same element.

Conversely, a local diffeomorphism d : M̃ → X equivariant with respect to a
representation h : π1(M)→ G produces a well-defined (G,X)-structure on M .

In this chapter we will mainly focus on this second geometric approach. For this
reason we will briefly recall the principal features of the isotropic models of constant
curvature κ , that we will normalize to be κ = 0, 1,−1.

Minkowski space. The isotropic model of flat spacetimes, X0, is the Minkowski
space, that is, R

3 equipped with the flat metric −dx2
0 + dx2

1 + dx2
2 . Isometries of X0

are affine transformations whose linear part preserves the Minkowski product (that
is Isom(X0) = O(2, 1) � R

3). We consider the time-orientation on X0 such that the
x0-component of future-directed timelike vectors is positive. The set of future directed
unit timelike vectors is a hypersurface of X0 that inherits from X0 a Riemannian metric.
This is the hyperboloid model of the hyperbolic plane H

2. The isometric action
of SO+(2, 1) on it induces an identification between SO+(2, 1) and PSL(2,R) ∼=
Isom+(H2) (by using also the Poincaré half-plane model of H

2). The main advantage
of the hyperboloid model is that geodesics are just obtained by intersecting H

2 with
timelike planes. In particular, the duality between linear planes and linear straight
lines given by the orthogonality relation induces an identification between the set of
geodesics of H

2 and the set of unoriented spacelike directions of X0. The projection
of H

2 in the projective plane P(R3) is injective and the image is the set of timelike
directions. Notice that in this projective (Klein) model geodesics are just projective
lines. Moreover, the set of lightlike directions is the boundary of H

2 and the endpoints
of a geodesic l in H

2 are the two lightlike directions contained in the plane of X0
containing l.

By using the 4-dimensional Minkowski space in a similar way, we get the different
models of the hyperbolic space H

3.

De Sitter space. The set of unit spacelike vectors in 4-dimensional Minkowski space
is a Lorentzian submanifold of constant curvature 1. It is called de Sitter spacetime and
will be denoted by X̂1. The isometric action of SO(3, 1) on X̂1 shows that this model
is isotropic and that its isometry group coincides with SO(3, 1). Also in this model
geodesics are obtained by intersecting X̂1 with linear planes of Minkowski space. In
particular spacelike geodesics are closed with length equal to 2π , whereas timelike
geodesics are embedded lines with infinite length.

It is often convenient to consider the projection of X̂1 into the projective space
P(R4). Notice that the image, X1, is the set of spacelike directions, that is, it is the
exterior of H

3 into P(R4). Clearly the projection X̂1 → X1 is a 2-to-1 covering, so X1
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is not simply connected. On the other hand, since X1 = X̂1/{±Id}, and {±Id} is the
center of SO(3, 1), also X1 is an isotropic model of the de Sitter geometry. Its isometry
group is SO(3, 1)/{±Id} ∼= SO+(3, 1). An advantage in using this model is that X1 and
H

3 share the same asymptotic boundary and their isometry groups actually coincide.
By means of the duality between geodesic planes of H

3 and spacelike directions of
Minkowski space, X1 can be regarded as the set of unoriented geodesic planes of H

3.

Anti de Sitter space. Consider on R
4 a scalar product η with signature (2, 2). Then,

the set of unit timelike vectors is a Lorentzian submanifold X̂−1 of constant curvature
−1. Let R

4 be identified with the set of 2× 2 matrices, and consider the form η such
that η(X,X) = − detX. The signature of η is (2, 2), so an explicit model of X̂−1 is
SL(2,R) equipped with its Killing form. The isometric action of SL(2,R)×SL(2,R)
on SL(2,R) by left and right multiplication shows that X̂−1 is isotropic and that its
isometry group is SL(2,R)× SL(2,R)/(−Id,−Id).

As in the previous case, the projection of X̂−1 into the projective space P(R4) is a
2-to-1 covering map on a open set X−1 of P(R4). Thus, PSL(2,R) turns out to be an
explicit model of this space. Since the covering transformations of X̂−1 → X−1 are
±Id it follows that X−1 inherits from X̂−1 an isotropic Lorentzian metric of constant
curvature −1. The isometry group of X−1 turns out to be PSL(2,R)× PSL(2,R).

Topologically X−1 is a solid torus and its boundary in P(R4) can be identified
with the projective classes of rank 1 matrices. The Segre embedding produces a
double foliation on ∂X−1 by projective lines (actually it induces a product structure
∂X−1 = P

1 × P
1). Isometries of X−1 extend to the boundary: left multiplication

preserves each leaf of the left foliation and permutes those of the right foliation,
whereas right multiplication preserves each leaf of the right foliation and permutes
those of the left foliation. Notice that the product structure on the boundary can be
regarded as a conformal Lorentzian structure.

Geodesics and geodesic planes of X−1 are the intersection of X−1 with projective
lines and projective planes of P(R4). In particular projective lines contained in X−1
are timelike geodesics of length π , projective lines tangent to the boundary are light-
like lines and projective lines intersecting the boundary in two points are spacelike
geodesics of infinite length. Notice that spacelike geodesics are determined by their
endpoints on the boundary. Conversely, given two points on the boundary that do not
lie on the same left nor right leaf, there exists a unique spacelike geodesic connecting
them. Moreover, since lightlike rays are projective lines tangent to ∂X−1, the lightlike
cone at x ∈ X−1 is the tangent cone from x to ∂X−1.

Projective planes intersecting X−1 along compression disks are spacelike planes
and turn out to be isometric to H

2. Points of X−1 bijectively corresponds to spacelike
planes via the duality induced by η between points of P(R4) and projective planes.
Namely, the plane dual to a point x ∈ X−1 is the projective plane P(x) containing the
contact conic between the quadric ∂X−1 and the tangent cone with vertex at x.

There is a geometric interpretation of such a duality: given a point x ∈ X−1, its dual
plane P(x) is the set of points at distance π/2 from x along some timelike geodesic.
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Conversely, given a spacelike plane, its normal geodesics intersect at the dual point
of the plane. Given a spacelike geodesic line l, the points x such that l ⊂ P(x) form
another spacelike line l∗, that is the dual geodesic of l.

3 The space ML(S)

This section is entirely set in the framework of (2-dimensional) hyperbolic geometry,
and several facts that we are going to recall are well known. However, we will give later
a new insight (if not an outline of a foundation) to many constructions and concepts
in terms of Lorentzian geometry.

Let us fix once and for all some base surfaces that will support several geometric
structures:

(Ŝ, V )

is a compact closed oriented surface of genus g ≥ 0, with a set of r ≥ 0 marked points
V = {p1, . . . , pr}, and

S = Ŝ \ V.
� is obtained by removing from Ŝ a small open disk around each point pj . Hence �
is compact with r boundary components C1, . . . , Cr . We denote by � the interior of
�. We also fix a continuous map

φ : �→ Ŝ

such that for every j , φ(Cj ) = pj , and the restriction φ : � → S is an oriented
diffeomorphism that is the identity outside a regular neighbourhood of the boundary
of �. In this way, we will often tacitly identify S and �. We will also assume
that S is not elementary, that is, its fundamental group is non-Abelian, equivalently
2− 2g − r < 0. Such a surface S is said to be of finite type.

3.1 The Teichmüller space T̃ (S)

We denote by
H̃(S)

the space of non-necessarily complete hyperbolic structures F on S whose completion
FC is a complete hyperbolic surface with geodesic boundary. Note that we do not
require that the boundary components of FC are closed geodesics. Denote by Diff0

the group of diffeomorphisms of S homotopic to the identity. Set

T̃ (S) = H̃(S)/Diff0.

In other words, two hyperbolic structures in H̃(S) are identified up to isometries
homotopic to the identity. This is the “full” Teichmüller space we will deal with.
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3.2 The convex-core map

Let us point out some distinguished subspaces of T̃ (S). We denote by

H(S) ⊂ H̃(S)

the space of complete hyperbolic structures on S (i.e. F = FC). Hence every F ∈
H(S) can be realized as the quotient H

2/� by a discrete, torsion free subgroup
� ⊂ Isom+(H2) ∼= PSL(2,R), isomorphic to π1(S). The corresponding quotient
space

T (S) ⊂ T̃ (S)

can be identified with the space of conjugacy classes of such subgroups of PSL(2,R).
Further,

C(S) ⊂ H̃(S)

denotes the set of hyperbolic structures F of finite area and such that all boundary
components of FC are closed geodesics, and

Tc(S) ⊂ T̃ (S)

is the corresponding quotient space.
Clearly, if S is compact (V = ∅), then

Tg := Tc(S) = T (S) = T̃ (S)

is the classical Teichmüller space.
In general, notice that

Tg,r := T (S) ∩ Tc(S)

is the space of complete hyperbolic structures onSwith finite area. Via the Uniformiza-
tion Theorem, Tg,r is isomorphic to the Teichmüller space of conformal structures on Ŝ
(i.e. on S that extend to Ŝ) mod Diff0(Ŝ, relV ). T (S) is isomorphic to the Teichmüller
space of arbitrary conformal structures on S.

Proposition 3.1. There is a natural isomorphism

K : T (S)→ Tc(S).

Basically K[F ] coincides with [K(F )], where K(F ) denotes the interior of the
convex core K(F ) of F . Note that K(F )C = K(F ). This is a bijection because the
convex core determines the whole complete surface.

Proposition 3.2. There is a natural projection

β : T̃ (S)→ T (S)

such that β|T (S) = Id.

In fact the holonomy of any [F ] ∈ T̃ (S) is the conjugacy class of a faithful
representation of π1(S) onto a discrete, torsion free subgroup � of PSL(2,R), hence
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β([F ]) = [F̂ ], F̂ = H
2/�. Finally, we can compound the maps of Propositions 3.1

and 3.2 to define the convex-core map

K : T̃ (S)→ Tc(S), K([F ]) =K([F̂ ]).
In fact we can realize the representatives of the classes involved in such a way that

K(F̂ ) ⊂ FC ⊂ F̂
since FC is a closed convex set in F̂ homotopically equivalent to S, and K(F̂ ) is the
minimal one with these properties. In what follows we will often make the abuse of
identifying the classes with their representatives.

Partition by types

Proposition 3.3. For every complete hyperbolic surfaceF ∈ T (S) there is a partition

V = VP ∪ VH

such that a point p belongs to VP if and only if the following equivalent properties
are satisfied:

(1) F is of finite area at p (that is F has a cusp at p),

(2) the holonomy of a circle in S surrounding p is of parabolic type.

On the other hand, p belongs to VH if and only if the following equivalent properties
are satisfied:

(3) p corresponds to a boundary component of the convex core K(F ),

(4) the holonomy of a circle in S surrounding p is of hyperbolic type.

The partition V = VP ∪ VH , so that r = rP + rH , is called the type θ(F ) of F .
More generally, for every F ∈ T̃ (S), set θ(F ) = θ(F̂ ). Any fixed type θ determines
the subspace T̃ θ (S) of hyperbolic structures that share that type. Varying θ we get the
partition by types of T̃ (S).

The fibers of the convex-core map. We want to describe the fibers of the convex-core
map

K : T̃ (S)→ Tc(S).

Leth ∈ Isom+(H2)be of hyperbolic type. Denote byγ = γh its invariant geodesic.
Let P be the closed hyperbolic half-plane determined by γ such that the orientation
of γ as the boundary of P is opposite to the sense of the translation h|γ .

Definition 3.4. A crown is a hyperbolic surface of the form

E = H/h
whereH is the convex hull inP of an h-invariant closed subset, say E∞ ⊂ ∂H

2 = S1∞,
contained in the frontier at infinity of P .
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A crown E is complete and has geodesic boundary made out of the union of the
closed geodesic γ /h and complete open geodesics. E \ ∂E is homeomorphic to
S1 × (0,+∞).

Now, let F ∈ T̃ θ (S) and K(F̂ ) ⊂ FC ⊂ F̂ be as above. Then FC is obtained by
gluing a (possibly empty) crown at each boundary component C of K(F̂ ), associated
to some point p ∈ VH . This is possible if and only if, for every C we take a crown E
such that h is in the same conjugacy class of the F̂ -holonomy of the loop C, endowed
with the boundary orientation of K(F̂ ) (in other words, length(γ /h) = l(C) and both
orientations of K(F̂ ) and E are induced by the one of F̂ ).

Lemma 3.5. F is of finite area if and only if all crowns are. A crown E is of finite
area if and only if one of the following equivalent conditions is satisfied:
(1) E∞/h is a finite set.

(2) E has finitely many boundary components. For every boundary component l, the
hyperbolic distance between each end of l and ∂E \ l is 0.

Furthermore, every crown E (everyF ∈ T̃ (S)) is the union of exhaustive sequences
of increasing sub-crowns En ⊂ E (sub-surfaces Fn ⊂ F ) of finite area such that
En,∞ ⊂ E∞.

In fact if E∞/h is finite, then the area of E can be bounded by the sum of the area
of a finite set of ideal triangles. If E∞ is not a finite set, then E contains an infinite
family of disjoint ideal triangles.

Finally, for every F ∈ Tc(S), the fiber K−1(F ) can be identified with the set of
all possible patterns of rH gluable crowns.

Parameters for Tc(S). The fibers of the convex-core map are in every sense “infinite
dimensional”. On the other hand, the base space Tc(S) is tame and admits nice
parameter spaces, that we are going to recall.

Length/twist parameters. This parameterization is based on a fixed pant decomposi-
tion D of�. It is well known that D contains 2g+r−2 pants obtained by cut/opening
� at 3g − 3+ r (ordered) disjoint essential simple closed curves z1, . . . , z3g−3+r in
�, not isotopic to any boundary component. Each of the r boundary components
C1, . . . , Cr of � is in the boundary of some pant. For every boundary component of
a pant Pk , corresponding to some zj , we also fix the unique “essential” arc ρ in Pk
(shown in Figure 1) that has the endpoints on that component, and we furthermore
select one among these endpoints, say e.

We use the following notation:

R+ = {l ∈ R | l > 0}, R+ = {l ∈ R | l ≥ 0}.
First consider the simplest case of S having (g, r) = (0, 3). In this case, set

Tc(S) = Tc(0, 3).
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e

Figure 1. A pant and an arc ρ with endpoint e.

We have just one pant. Let us vary the types. If rH = 3, every hyperbolic structure
is determined by the three lengths (l1, l2, l3) of the geodesic boundary components.
If rH = 2, the hyperbolic structure is determined by the corresponding two lengths,
and it is natural to associate the value 0 to the boundary component that corresponds
to the cusp, and so on. Eventually the octant

R
3+ = {(l1, l2, l3) | lj ≥ 0}

is a natural parameter space for the entire space Tc(0, 3). The canonical stratification
by open cells of this closed octant corresponds to the partition by types.

In the general case, let F ∈ Tc(S). Then every pant of the topological decomposi-
tion D is associated to a suitable hyperbolic pant Pi = Pi(F ) belonging to Tc(0, 3).
Pant geodesic boundary components corresponding to some curve zj have the same
length, so that FC is obtained by isometrically gluing the hyperbolic pants at the
curves zj . Summing up, F is of the form

F = F(l, t),
(l, t) = (lC1, . . . , lCr , lz1, . . . lz3g−3+r , tz1, . . . , tz3g−3+r ) ∈ R̄

r+ × R
3g−3+r
+ × R

3g−3+r

where lCi (lzj ) is the length of the geodesic boundary component (the simple closed
geodesic) of FC corresponding to Ci (zj ). The twist parameter tzj ∈ R specifies the
isometric gluing at zj as follows. For every hyperbolic pant, the arc ρ is uniquely
realized by a geodesic arc orthogonal to this boundary. Then F(l, 0) is the unique
hyperbolic structure such that the selected endpoints e of such geometric ρ-arcs match
by gluing. A generic F(l, t) is obtained from F(l, 0) by modifying the gluing as
follows: if tzj > 0, the two sides at any geodesic line z̃j in H

2 over the closed geodesic
zj of F(l, 0) translate by tzj along z̃j on the left to each other. If tzj < 0, they
translate on the right by |tzj | (“left” and “right” are well defined and only depend on
the orientation of S). Notice that twist parameters are well-defined real numbers since
we are considering hyperbolic metrics up to diffeomorphisms isotopic to the identity.
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We eventually realize in this way that

R
r+ × R

3g−3+r
+ × R

3g−3+r

is a parameter space (depending on the choice of D) for the space Tc(S). The product
by R

3g−3+r
+ × R

3g−3+r of the natural stratification by open cells of R
r+, corresponds

to the partition by types. Every cell has dimension

6g − 6+ 2r + rH
according to its type. The top-dimensional cell (rH = r) corresponds to hyperbolic
surfaces without cusps. Tg,r is the lowest dimensional one. Cells that share the same
rH are isomorphic as well as the corresponding T θ

c (S). By varying D we actually
get an atlas for Tc(S) that gives it a real analytic manifold with corner structure.

Marked length spectrum. Length and twist parameters are of somewhat different
nature; in fact we can deal with length parameters only. For every j , consider the
“double pant” obtained by gluing the two pants of D at zj ; the simple closed curve z′j
obtained by gluing the respective two ρ arcs, and z′′j the curve obtained from z′j via a
Dehn twist along zj .

Thus we point out a set of essential simple closed curves in S

SD = {C1, . . . , Cr, z1, z
′
1, z
′′
1, . . . , z3g−3+r , z′3g−3+r , z′′3g−3+r} (3.1)

and for every F we take the length of the corresponding simple closed geodesics. In
this way we get an embedding

Tc(S) ⊂ R
r+ × R

9g−9+3r
+ .

This is the projection onto a finite set of factors of the marked length spectrum injection

L : Tc(S)→ R
r+ × R

S+
where S denotes the set of isotopy classes of essential simple closed curves in S, not
isotopic to any boundary component.

For more details about the length/twist parameters and the length spectrum see for
instance [37], [19].

Shear parameters. This is based on a fixed topological ideal triangulation T of
(Ŝ, V ), and works only if V �= ∅. By definition T is a (possibly singular-, multi- and
self-adjacency of triangles are allowed) triangulation of Ŝ such that V coincides with
the set of vertices of T . There are 6g − 6+ 3r edges E1, . . . , E6g−6+3r . The idea is
to consider every triangle of T as a hyperbolic ideal triangle and realize hyperbolic
structures F on S by isometrically gluing them at the geodesic edges, according to
the pattern of edge-identifications given by T . By the way, T will be converted into
a geometric ideal triangulation TF of F . Let us decorate every edge E of T by a real
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number s(E) and get

s = (s(E1), . . . , s(E6g−6+3r )) ∈ R
6g−6+3r .

These shear parameters encode the isometric gluing at each Ej , and are of the same
nature as the above twist parameters. Every edge of an ideal triangle has a distinguished
point, say e, that is the intersection of the edge with the unique geodesic line emanating
from the opposite ideal vertex and which is orthogonal to it. Then set F = F(0) to
be the unique hyperbolic structure such that the distinguished points match by gluing.
A generic F = F(s) is obtained from F(0) by modifying the gluing according to the
left/right moving rule as before. It turns out that all so obtained hyperbolic structures
F belong to Tc(S), and all elements of Tc(S) arise in this way. For every s and every
pi ∈ V , set

s(pi) =
∑

Ej∈Star(pi)

s(Ej ).

We realize that

lCi (F (s)) = |s(pi)|
so that, in particular, pi ∈ VP if and only if s(pi) = 0 and this determines the type
θ = θ(F (s)). This also shows that the map

S : R6g−6+3r → Tc(S)

that sends s to F(s), is not injective. For every pi ∈ VH , define the sign εs(pi) by

|s(pi)| = εs(pi)s(pi).
Then, the generic fiber S−1(F ) consists of 2rH points, that is, S realizes all the possible
signatures VH → {±1}. For the geometric meaning of these signs, see below. For
more details about shear parameters, see for instance [24].

The enhanced Tc(S)
#. Let us reflect a length/twist parameter space

R
r+ × R

3g−3+r
+ × R

3g−3+r

of Tc(S) along its boundary components to get

R
r × R

3g−3+r
+ × R

3g−3+r .

This can be considered as a parameter space of the enhanced Teichmüller space
Tc(S)

#, obtained by decorating each F with a signature

ε : VH → {±1}.
Moreover, we stipulate that the sign εi associated to i has the meaning of selecting an
orientation of the correspondingCi , by the rule: εi = +1 if and only ifCi is equipped
with the boundary orientation.
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To make the notation simpler, it is convenient to extend the signature ε to the whole
of V by stating that εi = 1 on VP . In this way an enhanced surface can be written as
(F, ε1, . . . , εr ) with εi ∈ {±1} and εi = 1 for i corresponding to a cusp of F .

In the same way one can show that the shearing parameters are global coordinates
on Tc(S)

#, namely the map

S# : R6g−6+3r → Tc(S)
#

defined by S#(s) = (F (s), sign(s(p1)), . . . , sign(s(pn))) is a homeomorphism (see
[38] for details).

There is a natural forgetting projection

φ# : Tc(S)
# → Tc(S).

We can also define in a coherent way the enhanced length spectrum

L# : Tc(S)
# → R

r × R
S+

by setting
l#Ci (F, ε) = εi lCi (F )

on the peripheral loops, and l#γ (F, ε) = lγ (F ) elsewhere. This is an injection of
Tc(S)

#, and already the projection onto the usual finite set of factors as above is an
embedding.

Remark 3.6. For each Ci , the enhanced length is a continuous function on T #
c (S).

On the other hand, notice that εi coincides with the sign of l#Ci , with the rule that the
sign of 0 is 1.

3.3 The space of measured geodesic laminations

Definition 3.7. A simple (complete) geodesic inF ∈ T̃ (S) is a geodesic which admits
an arc length parametrization defined on the whole real line R that either is injective
(and we call its image a geodesic line of F ), or such that its image is a simple closed
geodesic. A geodesic lamination L on F consists of

(1) a closed subset L of F (the support);

(2) a partition of L by simple geodesics (the leaves).

The leaves together with the connected components of F \Lmake a stratification
of S.

Definition 3.8. Given a geodesic lamination L on F ∈ T̃ (S), a rectifiable arc k in F
is transverse to the lamination if for every point p ∈ k there exists a neighbourhood
U of p in F such that U ∩ k intersects each connected component of U ∩ L in at
most a point and each connected component ofU \L in a connected set. A transverse
measure μ on L is the assignment of a Borel measure μk on each rectifiable arc k
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transverse to L (this means that μk assigns a non-negative mass μk(A) to every Borel
subset of the arc, in a countably additive way, and μk(A) is finite if A is compact) in
such a way that

(1) the support of μk is k ∩ L;

(2) if k′ ⊂ k, then μk′ = μk|k′ ;
(3) if k and k′ are homotopic through a family of arcs transverse to L, then the

homotopy sends the measure μk to μk′ .

Notice that we allow an arc k hitting the boundary of FC to have infinite mass, that
is, μk(k) = +∞.

Definition 3.9. A measured geodesic lamination on F is a pair λ = (L, μ), where L
is a geodesic lamination and μ is a transverse measure on L. For every F ∈ T̃ (S),
denote by ML(F ) the set of measured geodesic laminations on F . Finally, let us
define ML(S) to be the set of pairs (F, λ), such that F ∈ T̃ (S), and λ ∈ ML(F ).
We have a natural projection

p : ML(S)→ T̃ (S).

Definition 3.10. Given (F, λ) ∈ML(S), the simplicial part LS of L consists of the
union of the isolated leaves of L. Hence LS does not depend on the measure μ. A
leaf, l, is called weighted if there exists a transverse arc k such that k ∩ l is an atom
of μk . The weighted part of λ is the union of all weighted leaves. It depends on the
measure and it is denoted by LW = LW(μ).

Remark3.11. The word “simplicial” mostly refers to the “dual” geometry of the initial
singularity of the spacetimes that we will associate to every (F, λ), see Section 4.

By Property (3) of the definition of a transverse measure, if l is weighted then for
every transverse arc k the intersection of k with l consists of atoms ofμk whose masses
are equal to a positive number A independent of k. We call this number the weight
of l. Since every compact set K ⊂ F intersects finitely many weighted leaves with
weight bigger than 1/n, it follows that LW is a countable set. As L is the support of
μ, then we have the inclusion LS ⊂ LW(μ).

Remark 3.12. There is a slightly different but equivalent definition of ML(S) that
goes as follows. We can consider measured geodesic laminations λ = (L, μ) of FC

requiring furthermore that

(1) the boundary components of FC are leaves of L;

(2) every arc k hitting the boundary of FC necessarily has infinite mass (μk(k) =
+∞).

If a boundary component ofFC is isolated in L we stipulate that it has weight+∞.
Notice that while a geodesic lamination on FC can be regarded also as a particular
lamination on the associated complete surface F̂ , Condition (2) ensures that such a
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measured lamination cannot be extended beyond FC . On the other hand, a lamination
on F is not in general a lamination on F̂ .

Given any measured geodesic lamination λ of F we get a corresponding measured
lamination λ̂ of FC by adding the (possibly +∞-weighted) boundary components to
the lamination and keeping the same measure. Given λ̂ in FC we get λ in F just by
forgetting the boundary leaves. In particular the empty lamination onF corresponds to
the lamination on FC reduced to its boundary components. Clearly this establishes a
canonical bijection, hence an equivalent definition of ML(S). This second definition
could sound at present somewhat unmotivated, so in this section we prefer to deal with
F instead of FC . However, we will see in Section 4 that it is the suitable one when
dealing with the Lorentzian “materializations” of ML(S).

Marked measure spectrum. Similarly to the above length spectrum L, for every
F ∈ T̃ (S), one defines the marked measure spectrum

I : ML(F )→ R
r+ × R

S+
where for every λ ∈ML(F ) and for every isotopy class γ of essential simple closed
curves on S, Iγ (λ) is the minimum of the total variationμ(c) of the “λ-transverse com-
ponent” of c, c varying among the representatives of s. The first r factors correspond
as usual to the curves parallel to the boundary components.

Ray structure. Every λ = (L, μ) ∈ML(F ) determines a ray

Rλ = {tλ = (L, tμ) | t ∈ [0,+∞)} ⊂ML(F )

where we stipulate that for t = 0 we take the empty lamination of F . If Iλ �= 0, then
I(Rλ) = RIλ , that is the corresponding ray in R

r+ × R
S+ .

3.4 The subspace MLc(S)

We use the following notation:

MLc(S) = {(F, λ) ∈ML(S) | F ∈ Tc(S)}
and

pc : MLc(S)→ Tc(S)

is the natural restriction of p with fibers MLc(F ).
For any F ∈ Tc(S), we denote by MLc(F )

0 the set of laminations on F that do
not enter any cusp (namely the closure in FC of the lamination support is compact).
For a fixed type θ , we denote by

MLc(S)
θ = {(F, λ) | F ∈ T θ

c (S), λ ∈MLc(F )
0}

and we still denote by pc the restriction of the projection on every MLc(S)
θ .
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The spectrum I and the ray structure naturally restrict. In particular, if λ ∈
MLc(F )

0, and s surrounds a cusp of F , then Iλ(s) = 0. On the other hand, if s
is parallel to a boundary component of FC , then Iλ(s) = 0 if and only if the closure
in FC of the support L of the lamination does not intersect that boundary component.

The following proposition summarizes some basic properties of the fibers of pc.

Proposition 3.13. Let λ ∈MLc(F ). Then:

(1) F \ L has a finite number of connected components, and each component be-
longs to some T̃ (S′), provided that we drop out the requirement that S′ is non-
elementary.

(2) λ is the disjoint union of a finite set of minimal (with respect to inclusion) mea-
sured sublaminations. Every minimal sublamination is either compact (and
coincides with the closure of any of its half-leaves) or consists of a geodesic line
such that each sub half-line either enters a cusp or spirals towards a boundary
component of FC .

(3) LW = LS .

(4) Either any cusp or any boundary component has a neighbourhood U such that
L ∩ U = LS ∩ U .

(5) For every arc c in F transverse to λ, c ∩L is a union of isolated points and of a
finite union of Cantor sets.

For a proof when F ∈ Tg,r we refer for instance to the body and the references
of [21]. The details for the extension to the whole of MLc(S) are given for instance
in [29].

Remark 3.14. If the lamination λ̂ of FC corresponds to the lamination λ of F as in
Remark 3.12, then a leaf spiraling towards a boundary component of FC as in (2) is
no longer a minimal sublamination of λ̂.

Example 3.15. We refer to the above length/twist or shear parameters for Tc(S).

(a) Let F = F(l, t). The union of simple closed geodesics of F corresponding to
the curves zj is a geodesic lamination L = LS of F . By giving each zj an arbitrary
real weight wj > 0, we get λ(w) ∈MLc(F (l, t))

0.

(b) Let F = F(s). The 1-skeleton of the geometric ideal triangulation TF (which
is made out of geodesic lines) makes a geodesic lamination of F . Every geodesic line
is a minimal sublamination. By giving each geodesic line an arbitrary weightwj > 0,
we get λ(w) ∈MLc(F (s)). For such a λ = λ(w),

ICi (λ) =
∑

Ej∈Star(pi)

w(Ej ).
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Lamination signatures. Let λ ∈MLc(F ). Leaves of λ can spiral around a boundary
component Ci in the negative sense or in positive sense with respect to the orientation
of Ci . On the other hand two leaves that spiral around Ci must spiral in the same way
(otherwise they would meet each other).

This rotation phenomenon is not possible with a cusp, as a spiralling geodesic
returns after some time. This means that the only way to accumulate to a cusp is to
go straightly on it.

This determines a signature

σ(λ) : VH → {±1}
such that σi(λ) = −1 if and only if there are leaves of λ spiraling around the corre-
sponding geodesic boundary Ci with a negative sense with respect to the boundary
orientation. In other words, σi(λ) is possibly equal to −1 only if pi ∈ VH and
ICi (λ) �= 0, σi(λ) = 1 otherwise. The signature depends indeed only on the lamina-
tion L, not on the measure.

Remark 3.16. If λ = λ(w) as in Example 3.15 (b), then σλ recovers the signs εs(pi)
already defined at the end of Section 3.2.

3.5 Enhanced bundle MLc(S)
#

and measure spectrum Here we address the question to which extent the (restricted)
marked measure spectrum determines MLc(S). For example, this is known to be the
case if we restrict to ML0

g,r , i.e. to laminations over Tg,r that do not enter the cusps
(see for instance [21]). We want to extend this known result.

We have seen in Proposition 3.13 that a measured geodesic lamination λ on F ∈
Tc(S) is the disjoint union of a compact part, say λc (that is far away from the geodesic
boundary of FC and does not enter any cusp), with a part, say λb, made out of a finite
set of weighted geodesic lines l1, . . . , ln whose ends leave every compact subset of F .
Notice that σ(λ) = σ(λb).

Let us take such a geodesic line l on F ∈ Tc(S). We can select a compact inter-
val J in l such that both components of l \ J definitely stay either within a small
ε-neighbourhood of some boundary component of FC , or within some cusp. The
interval J can be completed to a simple arc c in Ŝ with endpoints in V , just by going
straight from each endpoint of J to the corresponding puncture. It is easy to see that
the homotopy class with fixed endpoints of the arc c obtained in this way does not
depend on the choice of J . For simplicity we refer to it as the “homotopy class” of l.
We can also give the endpoints of c a sign ±1 in the very same way we have defined
the signature of a lamination on F (recall that the sign is always equal to 1 at cusps).
We can prove

Lemma 3.17. Given any F ∈ Tc(S), every homotopy class α of simple arcs on Ŝ with
endpoints on V , and every signature of the endpoints (compatible with the type of F )
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can be realized by a unique geodesic line l of F whose ends leave every compact set
of F . Moreover, the members of a finite family of such geodesic lines are pairwise
disjoint if and only if the signs agree on every common endpoint and there are disjoint
representatives with endpoints on V of the respective homotopy classes. Analogously,
a geodesic line does not intersect a compact lamination λc, if any representative in its
homotopy class is disjoint from λc.

By using the lemma, we can prove (see [29]) the following statement.

Proposition 3.18. Let λ ∈ MLc(F ). Then the support of λb is determined by the
homotopy classes of its geodesic lines li and the signature of λ. More precisely, given
any λc, every finite set of homotopy classes of simple weighted arcs on Ŝ, with signed
endpoints inV (provided that the signature is compatible with the type ofF ), admitting
representatives that are pairwise disjoint and do not intersect λc, is uniquely realized
by a lamination λb such that λ = λb ∪ λc ∈MLc(F ).

Proposition 3.19. Let F,F ′ ∈ Tc(S). Assume that FC is without cusps (that is F
belongs to the top-dimensional cell of Tc(S)). Then there is a natural map

ι : MLc(F )→MLc(F
′)

such that for every (isotopy class of ) simple closed curve γ on S, we have

Iγ (λ) = Iγ (ι(λ)).

Proof. Assume first that λ = λc ∈ MLc(F ). Then there is a unique λ′ = λ′c ∈
MLc(F

′) with the same spectrum. Since we can embed F ′ in the double surfaces
of (F ′)C , say DF ′, which is complete and of finite area, the measure spectrum of λc
induces a measure spectrum of a unique lamination λ′′c onDF ′ (by applying the result
on the spectrum in the special case recalled at the beginning of this section). Finally
we realize that the compact support of λ′′c is contained in F ′ giving us the required λ′c.
So the map ι can be defined for laminations with compact support.

Given a general lamination λ = λc ∪ λb, we can define λ′c as before, while λ′b is
the unique lamination of F ′ (according to Proposition 3.18) that shares with λb the
same homotopy classes, weights and signs at VH (F

′) (since F is without cusps, signs
are defined for each puncture of S). Notice that λ′b is disjoint from λ′c: in fact one
can construct an isotopy of S sending the supports of λb and λc to the supports of λ′b
and λ′c. Finally set ι(λ) = ι(λb) ∪ ι(λc).

Corollary 3.20. If both F and F ′ are without cusps, then the map ι is bijective. More
generally, if only F is supposed to be without cusps, for every λ′ ∈MLc(F

′), ι−1(λ′)
consists of 2k points, where k is the number of cusps of F ′ entered by λ′.

In fact, for every F contained in Tc(S) (not necessarily in the top-dimensional
cell), there is a natural action of (Z/2Z)r on MLc(F ) determined as follows. Let
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ρi = (0, . . . , 1, . . . , 0), i = 1, . . . r , be the ith element of the standard basis of
(Z/2Z)r . Let λ ∈MLc(F ). First define the new signature ρiσ (λ) by setting

ρiσ (λ)(pj ) = σ(λ)(pj ) if i �= j ;

ρiσ (λ)(pi) = σ(λ))(pi) if either pi ∈ VP (F ) or pi ∈ VH (F ) and ICi (λ) = 0;

ρiσ (λ)(pi) = −σ(λ)(pi), otherwise.

This naturally extends to every ρ ∈ (Z/2Z)r , giving the signature ρσ(λ). Finally
set ρ(λ) = ρ(λb) ∪ λc where (according again to Proposition 3.18) ρ(λb) is the
unique lamination that shares with λb the homotopy classes and the weights, while
its signature is ρσ(λ). Clearly the orbit of λ consists of 2k points, where k is the
number of pi in VH (F ) such that ICi (λ) �= 0. Finally ι−1(λ′) in Corollary 3.20 is just
an orbit of such an action. We call the action on MLc(F ) of the generator ρi , the
reflection along Ci (even if it could be somewhat misleading, as in some case it is just
the identity).

If we restrict to the top-dimensional cell of Tc(S), pc is a bundle and we can use the
first statement of the corollary in order to fix a trivialization. The same fact holds for
every restriction pc : MLc(S)

θ → Tc(S)
θ , type by type. On the other hand, because

of the last statement of the corollary, this is no longer true for the whole pc. In order to
overcome such a phenomenon, one can introduce the notion of enhanced lamination.
An enhanced lamination on F ∈ Tc(S), is a couple (λ, η) where λ ∈ MLc(F ), and
η : V → {±1} is a relaxed signature such that

ηi = σi(λ) if either pi ∈ VH (F ) or pi ∈ VP (F ) and ICi (λ) = 0;

ηi is arbitrary otherwise.

Notice that there are exactly 2k relaxed signatures (λ, η) enhancing a given λ ∈
MLc(F ), where k is the number of cusps entered by λ. Clearly the above action of
(Z/2Z)r extends on enhanced laminations: ρ(λ, η) = (ρ(λ), ρ(η)), where ρ(η) is
uniquely determined by the above requirements and by the fact that ρσ(λ) possibly
modifies σ(λ) only on VH . In particular this holds for the generating reflections ρi .

We denote by ML#
c(F ) the set of such (λ, η) on F . Finally we can define the

enhanced measure spectrum

I# : ML#
c(F )→ R

r × R
S+

such that

I#
γ (λ, η) = Iγ (λ)

for every γ ∈ S, and

I#
Ci
(λ, η) = ηiICi (λ)

for every peripheral loop Ci .
Here is the enhanced version of Proposition 3.19.

Corollary 3.21. Let F,F ′ ∈ Tc(S). Then there is a natural bijection

ι# : MLc(F )
# →MLc(F

′)#
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such that for every (isotopy class of ) simple closed curve γ on S, we have

I#
γ ((λ, η)) = I#

γ (ι
#(λ, η)).

Proposition 3.22. (i) The enhanced spectrum I# realizes an embedding of every
MLc(F )

# into R
r × R

S+ . Only the empty lamination goes to 0. The image is

homeomorphic to R
6g−6+3r . The image of MLc(F )

#,0 (that is the set of enhanced
laminations that do not enter any cusp) is homeomorphic to R

6g−6+2r+rH .

(ii) For every pant decomposition D of �, consider the set of essential simple
curves defined in (3.1):

SD = {C1, . . . , Cr, z1, z
′
1, z
′′
1, . . . , z3g−3+r , z′3g−3+r , z′′3g−3+r}.

The projection onto this finite set of factors is already an embedding of MLc(F )
#. By

varying D we get an atlas of a PL structure on MLc(F )
# (i.e. on R

6g−6+3r ). Similar
facts hold for the restriction to MLc(F )

#,0.

(iii) Finite laminations are dense in MLc(F )
# (MLc(F )

#,0).

(iv) For every F,F ′ ∈ Tc(S), there is a canonical identification between the
respective sets of finite enhanced measured geodesic laminations, and this extends to
a canonical PL isomorphism between MLc(F )

# and MLc(F
′)#, which respects the

ray structures. Similarly for MLc( · )#,0.

Proof. We will sketch the proof of this proposition. We assume that the result is
known when S is compact (see [21], [37]). Thanks to Corollary 3.21 it is enough to
deal with F without cusps. Then the double DF of FC is compact, and we consider
onDF the involutionw that exchanges the two copies of F . Let us denote byML(F)
the set of w-invariant measured geodesic laminations on DF that do not contain any
component of ∂FC . The idea is to construct a map

T : MLc(F )→ ML(F)

that is surjective and such that
(1) the fiber over a lamination λ′ ∈ ML(F) consists of 2k laminations of MLc(F ),

where k is the number of boundary components of FC that intersect the support of λ′;
(2) for every λ ∈MLc(F ), the restrictions to S of both the spectrum of T (λ) and

of λ coincide.
The existence of the map T and the known results in the special cases recalled

above will imply the proposition.
The construction of the map T runs as follows. Let λ = λb ∪ λc ∈ MLc(F ) be

decomposed as above. We define T (λc) to be the double of λc in DF . For each leaf
li of λb, take a “big” segment Ji ⊂ li , and complete it to a simple arc l′i properly
embedded in (FC, ∂FC), obtained by going straight from each endpoint of Ji to the
corresponding boundary component along an orthogonal segment. Clearly the double
of l′i is a simple non-trivial curve in DF , so there is a geodesic representative, say ci ,
that is w-invariant and simple. Since for any other lj of λb, li ∩ lj = ∅, the other such
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cj does not meet ci . Moreover, since li ∩ λc = ∅, the intersection of ci with T (λc) is
also empty. So we can define

T (λ) = T (λc) ∪ (c1, a1) ∪ (c2, a2) ∪ · · · ∪ (cn, an),
where ai is the initial weight of li . This map satisfies (2) by construction; moreover,
it follows from Corollary 3.20 that (1) holds for every λ′ belonging to the image of T .
The only point to check is that the map is surjective. The key remark is that for every
λ′ ∈ ML(F), every leaf l hitting ∂FC is necessarily closed. As it is w-invariant, then
l is orthogonal to ∂FC , and if l intersects ∂FC twice, then it is closed. Suppose that l
is a geodesic line, so that l meets ∂F exactly once. On the other hand, we know that
the closure of l is a minimal sublamination λ′′, such that every leaf is dense in it. Thus
if l′′ �= l is another leaf in λ′′, then it intersects ∂FC in a point p. Since l is dense in
λ′′, there is a sequence of points in l ∩ ∂FC converging to p and this contradicts the
assumption that l intersects ∂FC once.

Thus a lamination in ML(F) is given by the double of a compact lamination λc
in F and of a finite number of weighted simple geodesics arcs in F hitting orthogo-
nally ∂FC . These arcs can be completed to give a family of simple arcs on Ŝ with
endpoints on V . Fix a signature on the endpoints of such arcs. Finally we can apply
Proposition 3.18 to these data and we get a suitable λ = λb ∪λc ∈MLc(F ) such that
T (λ) = λ′.

Finally we can define the map

p#
c : MLc(S)

# → T #
c (S).

The total space is defined as the set of pairs

((F, ε), (λ, η))

such that

(1) (F, ε) = (F, ε1, . . . , εr ) ∈ Tc(S)
#;

(2) (λ, η) = (λ, η1, . . . , ηr) ∈MLc(F )
#.

Clearly
φ# � p# = p � φ#

ML

where φ#
ML denotes the forgetting projection of MLc(S)

# onto MLc(S). We are
going to see that in fact pc determines a bundle of enhanced laminations, that admits
furthermore a natural trivialization t. It follows from the previous discussion that the
image of I# does not depend on the choice of F , hence I#(S) is well defined. We want
to define a natural bijection

t : T #
c (S)× I#(S)→MLc(S)

#.

Fix F0 a base surface in the top-dimensional cell of Tc(S). For every ξ ∈ I#(S) there
is a unique (λ0(ξ), η0(ξ)) ∈ MLc(F0)

# that realizes ξ . Moreover, in such a case
η0(ξ) = σ(λ0(ξ)). For every ε = (ε1, . . . , εr ), let ρε(λ0(ξ), η0(ξ)) ∈ MLc(F0)

#
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be obtained via the action of ρε ∈ (Z/2Z)r , where ρε is the composition of some
reflections ρj , one for each εj = −1. Recall the bijection

ι# : MLc(F0)
# →MLc(F )

#

and finally set
t(F, ε, ξ) = (F, ε, (ι#)−1(ρε(λ0(ξ), η0(ξ))).

It follows from the previous discussion that t is a bijection. We stipulate that it is
a homeomorphism, determining by the way a topology on MLc(S)

#. Summing up,
the map

p# : MLc(S)
# → Tc(S)

#

can be considered as a canonically trivialized fiber bundle having both the base space
and the fiber (analytically or PL) isomorphic to R

6g−6+3r . Different choices of the
base surface F0 lead to isomorphic trivializations, via isomorphisms that preserve all
the structures. These trivializations respect the ray structures. When S is compact this
specializes to the trivialized bundle Tg ×MLg → Tg mentioned in the Introduction.

Remark 3.23. The definition of t could appear a bit distressing at first sight. How-
ever the geometric meaning is simple. Given a spectrum of positive numbers, this
determines the lamination up to choosing the way of spiraling towards the bound-
ary components. If we give a sign to the elements of the spectrum corresponding to
the boundary components, this allows to reconstruct the lamination by the following
rule: if the sign is positive, the lamination spirals in the positive way, if the sign is
negative the lamination spirals in the negative way with respect to a fixed orientation
of the boundary component. In the non-enhanced set-up, we have stipulated to use
the boundary orientation induced by the one of the surface. Since the elements of an
enhanced Teichmüller space can be regarded as hyperbolic surfaces equipped with an
(arbitrary) orientation on each boundary component, it seems natural to reconstruct the
lamination from the spectrum I# by means of such boundary component orientations.

This choice is suitable in view of the earthquake flow that we are going to define
on Tc(S)

#.

3.6 Grafting, bending, earthquakes

Let (F, λ) ∈ML(S). Grafting (F, λ) produces a deformation Grλ(F ) of F in P (S),
the Teichmüller-like space of complex projective structures (i.e. (S2, PSL(2,C))-
structures) on S.

3-dimensional hyperbolic bending produces the H -hull of Grλ(F ), that is, in a
sense, its “holographic image” in H

3.
The left (right) earthquake produces (in particular) a new element βLλ (F ) (βRλ (F ))

in T̃ (S).
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We will see in Section 4 how these constructions are materialized within the canon-
ical Wick rotation-rescaling theory for MGH Einstein spacetimes. For example, graft-
ing is eventually realized by the level surfaces of the cosmological times; earthquakes
are strictly related to the Anti de Sitter bending procedure.

Here we limit ourselves to recalling a few details about earthquakes, purely in
terms of hyperbolic geometry.

Features of arbitrary (F, λ). In such a general case, the leaves of λ possibly enter
the crowns of F . If F is of finite area (see Lemma 3.5), basically the conclusions of
Proposition 3.13 still hold. The only new fact is that possibly there is a finite number of
isolated geodesic lines of λ having at least one end converging to a point of some E∞.

The situation is quite different if F is of infinite area. The set of isolated geodesic
lines of λ that are not entirely contained in one crown E is always finite. On the other
hand, (1), (2), (3) and (5) of Proposition 3.13 definitely fail. For example, the support
of a lamination λ could contain bands homeomorphic to [0, 1] × R, such that every
{t} × R maps onto a geodesic line of λ. Both ends of every such line converge to
some E∞. We can also construct transverse measures such that LW is dense in such
bands. This also shows that in general LS is strictly contained in LW .

In general the fibers of the marked measure spectrum map I are, in any sense,
infinite dimensional. For example we have:

Lemma 3.24. I−1(0) ⊂ ML(F ) consists of laminations such that the support is
entirely contained in the union of crowns.

On the other hand, the image of I is tame, in fact:

Proposition 3.25. I(ML(F )) = I(MLc(K(F )).

Earthquakes along finite laminations of MLc(F ). As finite laminations are dense,
and arbitrary laminations λ ∈ MLc(F ) look like finite ones at cusps and boundary
components of FC , it is important (and easy) to understand earthquakes in the finite
case.

Example 3.26. Let us consider again Examples 3.15. Let F(l, t) be such that all twist
parameters are strictly positive. Then, by definition, (F (l, t), λ(t)) is obtained from
(F (l, 0), λ(t)) via a left earthquake (along the measured geodesic lamination λ(t)
on F(l, 0)). (F (l,−t), λ(t)) is obtained from (F (l, 0), λ(t)) via a right earthquake
(along the measured geodesic lamination λ(t) on F(l, 0)). In the reverse direction,
(F (l, 0), λ(t)) is obtained from (F (l, t), λ(t)) via a right earthquake, and so on. This
pattern of earthquakes does preserve the types.

Similarly, let F(s) be such that all shear parameters are strictly positive. Then,
by definition (F (s), λ(s)) is obtained from (F (0), λ(s)) via a left earthquake (along
the measured geodesic lamination λ(s) on F(0)). (F (−s), λ(s)) is obtained from
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(F (0), λ(s)) via a right earthquake (along the measured geodesic lamination λ(s) on
F(0)). In the reverse direction, (F (0), λ(s)) is obtained from (F (s), λ(s)) via a right
earthquake, and so on. This pattern does not preserve the types, for F(0) ∈ Tg,r ,
while F(s) is without cusps. Moreover, λ(s) has the following special property:

For every boundary component Ci of F(s)C

lCi (F (s)) = ICi (λ(s)).

For every (F, λ) ∈MLc(S), λ being finite, the definition of (F ′, λ′) obtained from
(F, λ) via a left (right) earthquake extends verbatim the one of the above examples,
so that (F ′, λ′) ∈MLc(S), λ′ is also a finite lamination, and (F, λ) is obtained from
(F ′, λ′) via the inverse right (left) earthquake.

Quake cocycles and general earthquakes. It is convenient to describe earthquakes
by lifting everything to the universal coverings. Let it be as usual

K(F̂ ) ⊂ FC ⊂ F̂ = H
2/�.

Then FC lifts to a �-invariant straight convex setH of H
2 (i.e. H is the closed convex

hull of an ideal subset of S1∞), andλ lifts to a�-invariant measured geodesic lamination
on H̊ , that, for simplicity, we still denote by λ. If F ∈ Tc, then K(F̂ ) = FC .

Lemma 3.27. Let (F, λ) ∈MLc(S) such thatλ is finite. Then there exists a left-quake
cocycle

BLλ : H̊ × H̊ → PSL(2,R)

such that

(1) BLλ (x, y) � BLλ (y, z) = BLλ (x, z) for every x, y, z ∈ H̊ ;

(2) BLλ (x, x) = Id for every x ∈ H̊ ;

(3) BLλ is constant on the strata of the stratification of H̊ determined by λ;

(4) Bλ(γ x, γy) = γBλ(x, y)γ−1, for every γ ∈ �;

(5) For every x0 belonging to a 2-stratum of H̊ ,

H̊ � x �→ BLλ (x0, x)x ∈ H
2

lifts the left earthquake βLλ (F ) to H̊ . This cocycle is essentially unique.

There exists a similar right-quake cocycle BRλ .

The proof is easy and the earthquake is equivalently encoded by its cocycle. For
a general (F, λ) we look for (essentially unique) quake-cocycles that satisfy all the
properties of the previous lemma, with the exception of the last one, and requiring
furthermore that

(∗) If λn → λ on an ε-neighbourhood of the segment [x, y] and x, y /∈ LW , then
Bλn(x, y)→ Bλ(x, y).
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Given such cocycles we can use the map of (5) in the previous lemma as the general
definition of earthquakes.

For example, if (F, λ) ∈MLc(S) the cocycle can be derived by Lemma 3.27, the
density of finite laminations and the fact that we require (∗). If (F ′, λ′) results from
the left earthquake starting at (F, λ), then it belongs to MLc(S) and (F, λ) is obtained
from it via the inverse right earthquake.

In fact, in [36] Epstein–Marden defined these quake-cocycles in general (extending
the construction via finite approximations). Strictly speaking they consider only the
case of (arbitrary) measured geodesic laminations on H

2, but the same arguments hold
for laminations on arbitrary straight convex sets H - see also [15] for more details.
Hence general left (right) earthquakes

(F ′, λ′) = βL(F, λ)
so that

(F, λ) = βR(F ′, λ′)
are eventually defined for arbitrary (F, λ) ∈ML(S). We will also writeF ′ = βLλ (F ),
λ′ = βLλ (λ).

Earthquake flows on MLc(S). Let λ ∈ MLc(F ) and consider the ray (F, tλ),
t ∈ [0,+∞). Then, for every t > 0, set

(Ft , λt ) =
(
βLtλ(F ),

1
t
βLtλ(tλ)

)
, t ≥ 0.

This continuously extends at t = 0 by

(F0, λ0) = (F, λ).
We have

((Ft )s, (λt )s) = (Ft+s, λt+s)
hence this defines the so called left-quake flow on MLc(S). In particular this allows
to define a sort of “exponential” map

ψL : MLc(F )→MLc(S)

by evaluating the flow at t = 1. We do similarly for the right-quake flow.
For every t , we denote by l(t) the marked length spectrum of Ft , by θ(t) its type,

by I(t) the marked measure spectrum of λt , by σt : V → {±1} its signature, and so
on. The following lemma describes the behaviour of these objects along the flow.

Lemma 3.28. The marked measure spectrum is constant for every t , that is,

Iγ (t) = Iγ (0) for every γ ∈ S.

Let pi ∈ V and Ci be the curve surrounding it.
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If pi ∈ VH (0), then

lCi (t) = |lCi (0)− tσi(λ)ICi (0)|
and

σi(t) = sign[lCi − tσi(λ)ICi (0)]σi(0).
If pi ∈ VP (0), then

lCi (t) = tICi (0)
and

σi(t) = −1.

As every λ ∈ MLc(F ) looks finite at cusps and boundary components of FC ,
it is enough (and fairly easy) to check the lemma in the finite case, by using also
Examples 3.26.

Remark 3.29. If pi ∈ VP and the lamination enters the corresponding cusp, then
for t > 0 the cusp opens on a geodesic boundary component whose length linearly
depends on t with slope equal to ICi (0). The way of spiraling of λt around pi is always
negative (positive for right earthquakes).

Let us consider more carefully the case pi ∈ VH . Notice that if λ does not spiral
around Ci then the length of Ci is constant. In the other cases let us distinguish two
possibilities according to the sense of spiraling of λ.

(1) Case σi(0) = −1. Then for every t > 0,

σi(t) = −1, lCi = lCi (0)+ tICi (0).
Thus the length ofCi increases affinely with slope ICi (0) and the lamination continues
to spiral in the negative direction.

(2) Case σi(0) = 1 . There is a critical time ti = lCi (0)/ICi (0). Before ti the length
of Ci decreases affinely and the lamination spirals in the positive direction. At ti , Ci
becomes a cusp. After ti , Ci is again a boundary component but the way of spiraling
is now negative.

Remark 3.30. From the above lemma a remarkable subset of MLc(F ) is pointed
out, namely:

Vc(F ) = {λ | ICi (λ) < lCi (F ) for i ∈ VH }.
Note that this set is not preserved by the canonical bijections stated in Proposi-

tion 3.22 (iv).

Corollary 3.31. The restriction of the exponential-like mapψL to Vc(F )∩MLc(F )
0

preserves the type and the signatures. The restriction of this map to the whole of Vc(F )

has generic image over the top-dimensional cell of Tc(S).
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The quake-flow on MLc(S)
#. We will define an earthquake flow on MLc(S)

# that
satisfies the following properties:

(1) β#
t � β#

s = β#
t+s .

(2) Every flow line {β#
t (F, ε, λ, η) | t > 0} is horizontal with respect to the trivial-

ization of ML#
c(S). This means that the enhanced lamination is constant along

the flow.

(3) If we include MLc(S) into MLc(S)
# by sending (F, λ) to (F, ε, λ, η) with

εi = 1 for every i and ηi = 1 for every i ∈ VP then β = φ#
ML � β# (where φ#

ML
is the usual forgetting map).

Remark 3.32. Before giving the actual definition, we describe the qualitative idea.
Earthquake paths in Tc(S) rebounce when they reach a cusp. Since Tc(S)

# is obtained
by reflecting Tc(S) along its faces, it is natural to lift such paths to horizontal paths
on Tc(S)

#. Instead of rebouncing the enhanced lamination after a cusp is obtained
by a reflection along a boundary component of the initial lamination. This liftings
are unique (up to the choice of an initial signature ε) when F does not contain any
cusp. When F contains a cusp then there are many possible liftings due to the possible
choices of the signature of the cusp after the earthquake. Thus the data (F, ε, λ) are not
sufficient to determines the lifting. On the other hand the information of a signature
of λ around the cusp solves this ambiguity.

Let us come to the actual definition:

β#
t (F, ε, λ, η) = (F, η, λ, ε)

where

(a) similarly to the definition of the map t, (F, λ) = β(F, ρε(λ));
(b) ηi = εisign(lCi (F )+ tηiICi (λ));
(c) εi = ηisign(lCi (F )+ tηiICi (λ)).
Property (1) follows from the fact that β is a flow. Point (2) depends on the fact

that the spectrum of λt is constant and the products εi(t)ηi(t) are constant. Point
(3) is straightforward. The only point to check is that β# is continuous, as a map
R≥0×ML#

c(S)→ML#
c(S). By definition of the topology of ML#

c(S) it is enough
to show that for every essential closed curve γ the functions

(t, (F, ε, λ, η)) �→ l#γ (β
#
t (F, ε, λ, η)), (t, (F, ε, λ, η)) �→ I#

γ (β
#
t (F, ε, λ, η))

are continuous. If γ is not peripheral, then l#γ (β
#
t (F, ε, λ, η)) and I#

γ (β
#(t, F, ε, λ, η))

depend only on F and λ so the continuity is a consequence of the continuity of β.
If γ is peripheral, then by Lemma 3.28 we have

l#γ (β
#
t (F, ε, λ, η)) = l#γ (F, ε)− tI#

γ (F, ε, λ, η),

I#
γ (β

#
t (F, ε, λ, η)) = I#

γ (F, ε).
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For every ξ ∈ I#(S) let us consider the map R≥0 × T #
c (S) → T #

c (S) that sends
(t, F, ε) to the projection on T #

c (S) of βt (F, ε, ξ(F )) (where ξ(F ) is the realization
of ξ with respect to the structure given by F ). By (2) it is a flow on Tc(S)

#. We will
denote by E#

ξ the homeomorphism of Tc(S)
# corresponding to such a flow at time 1

(notice that Eξ � Eξ = E2ξ ), it will be called the enhanced earthquake along ξ .

Earthquake Theorems

Theorem 3.33 (Earthquake Theorem on Tc(S)). For every F0, F1 ∈ Tc(S), let us
denote by m the number of points in V that do not correspond to any cusp of F1 nor
of F2. Then there exist exactly 2m left earthquakes such that F1 = βLλ (F0). A similar
statement holds with respect to right-quakes.

This is a consequence of the somewhat more precise statement.

Theorem 3.34 (Earthquake Theorem on Tc(S)
#). For every (F0, ε0), (F1, ε1) ∈

Tc(S)
#, there is a unique ξ ∈ I#(S) such that E#

ξ (F0, ε0) = (F1, ε1). Similarly
for the right-quakes.

Given two “signed” surfaces (F0, σ0) and (F1, σ1) in Tc(S), where the respective
signatures are arbitrary maps σj : V → {±1}, we say that they are left-quake compat-
ible if there exists a left earthquake (F1, λ1) = βL(F0, λ0) such that σj = σλj . The
following is an easy corollary of Lemma 3.28 and of Theorem 3.33.

Corollary 3.35. The signed surfaces (F0, σ0) and (F1, σ1) are left-quake compatible
if and only if for every i = 1, . . . , r the following conditions are satisfied:

If lCi (F1) < lCi (F0), then σ0(i) = 1.

If lCi (F1) > lCi (F0), then σ1(i) = 1.

Symmetric statements hold with respect to the right-quake compatibility.

In Section 5 we will outline an AdS proof of the Earthquake Theorem (that has
been proved in [29]) that generalizes Mess’ proof in the special case of compact S.

MLc(S) as tangent bundle of Tc(S). We have seen above that the bundle

p# : MLc(S)
# → Tc(S)

#

shares some properties with the tangent bundle T T #
c of its base space. We are going

to substantiate this fact by means of quake-flows. In fact we have associated to every
ξ ∈ I#(S) a flow of Tc(S)

#, so we can consider the infinitesimal generator of such a
flow, that is a vector field on Tc(S)

#, say Xξ .

Proposition 3.36. The map

� : Tc(S)
# × I#(S)→ T Tc(S)

#
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defined by �(ξ, F ) = Xξ(F ) is a trivialization of T Tc(S).

Remark 3.37. The map � is only a topological trivialization. This means that the
identifications between tangent spaces arising from � are not linear.

For a fixed type θ , denote by I#(S)θ the points corresponding to laminations that
do not enter any cusp. It is clear that for a point F ∈ T θ

c (S)
# we have that Xξ(F )

is tangent to T θc (S)
#. So we get that the restriction of � to T θ

C (S)
# × I#(S)θ is a

trivialization of T T θ
c (S)

#.

4 Wick rotation-rescaling theory

We refer to [15]. Let S be a base surface of finite type. Recall from the Introduction
and Section 2, that MGHκ(S) denotes the Teichmüller-like space of Einstein maxi-
mal globally hyperbolic spacetimes of constant curvature κ = 0,±1, that contain a
complete Cauchy surface homeomorphic to S.

Denote by P (S) the Teichmüller-like space of complex projective structures (that
is, (S2, PSL(2,C))-structures) on S. Here S2 is the Riemann sphere, identified with
S2∞ = ∂H

3, and PSL(2,C) ∼= Isom+(H3) (see also [34]).

The aim of this section is to illustrate the following pattern of statements (given
here in a somewhat informal way):

Classifications. For every surface S of finite type, and every κ = 0,±1, there are
geometrically defined “materialization” maps

mP : ML(S)→ P (S),

mκ : ML(S)→MGHκ(S)

that actually make ML(S) a universal parameter space.

Canonical correlations. For every (F, λ) ∈ ML(S), there are geometrical correla-
tions between the spacetimes mκ(F, λ) or between them and the projective surface
mP (F, λ). Such correlations are either realized by means of canonical rescalings or
Wick rotations directed by the respective cosmological times, with universal rescaling
functions.

Let us explain first some terms entering the last statement.

Definition 4.1. Let (M, h) be any spacetime andX be a nowhere vanishing h-timelike
and future directed vector field on M . Let α, β : M → R>0 be positive functions.

We say that the Riemannian manifold (M, g) is obtained from (M, h) via the Wick
rotation directed by X, with vertical (resp. horizontal) rescaling function β (resp. α),
if for every y ∈ M , the g- and h-orthogonal spaces to X(y) coincide (denoted by
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〈X(y)〉⊥), and

g(X(y),X(y)) = −β(y)h(X(y),X(y)) and g|〈X(y)〉⊥ = α(y)h|〈X(y)〉⊥ .
Similarly, the spacetime (M, h′) is obtained from (M, h) via the rescaling directed

byX, with vertical (resp. horizontal) rescaling functionβ (resp.α), if for every y ∈ M ,
the h′- and h-orthogonal spaces to X(y) coincide, and

h′(X(y),X(y)) = β(y)h(X(y),X(y)) and h′|〈X(y)〉⊥ = α(y)h|〈X(y)〉⊥ .

4.1 Cosmological time

We refer to [3] for a general treatment of this matter. Here we limit ourselves to recall-
ing the main features of this notion. Let (M, h) be any spacetime. The cosmological
function

τ : M → (0,+∞]
is defined as follows. Let C−(q) be the set of past-directed causal curves in M that
start at q ∈ M . Then

τ(q) = sup{L(c) | c ∈ C−(q)},
where L(c) denotes the Lorentzian length of c. Roughly speaking, this gives the
(possibly infinite) proper time that every event q ∈ M has been in existence in M .
The function τ is said regular if it is finite valued for every q ∈ M , and τ → 0 along
every past-directed inextensible causal curve. In such a case it turns out that τ is a
continuous global time onM , called its cosmological time. This cosmological time (if
it exists) represents an intrinsic feature of the spacetime. Having cosmological time
has strong consequences for the structure of M , and τ itself has stronger properties
(it is locally Lipschitz and twice differentiable almost everywhere). In particular: M
is globally hyperbolic; for every q ∈ M , there exists a future-directed timelike unit
speed geodesic ray ending at q, whose length equals τ(q). Up to a suitable past-
asymptotic equivalence, these rays form the initial singularity of M . In a sense τ
gives the Lorentzian distance of every event from the initial singularity.

4.2 Grafting and Lorentzian grafting

Before describing in some formal way how to get parameterizations of MGHκ(S) and
P (S) in terms of ML(S), we will explain how to associate to a pair (F, λ) ∈ML(S)
a projective structure on S and a spacetime of constant curvature κ , in some simple
cases (see also [34]).

First consider the case where S is closed and λ is empty. Given a hyperbolic
structure F = (S, h) on S, the projective structure associated to it, that, with a little
abuse, we will denote simply by F , is the structure whose developing map coincides
(up to post-composition with g ∈ PSL(2,C)) with the isometric developing map
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of F . Structures obtained in this way are called Fuchsian and are characterized by the
following requirements:

(i) the developing map is injective;

(ii) the holonomy is conjugate to a representation into PSL(2,R).
For the Lorentzian side, define mκ(F ) to be the spacetime (S × I, gκ) where I is

the interval (0,+∞) for κ ≥ 0 and I = (0, π/2) for κ = −1 and gκ = gκ(F ) is so
defined

gκ =

⎧⎪⎨
⎪⎩
−dt2 + t2h if κ = 0,

−dt2 + sh 2(t)h if κ = 1,

−dt2 + sin2(t)h if κ = −1.

(4.1)

The fact that gκ has constant curvature κ is just a local computation independent
of the compactness of F . Thus one does the computation assuming F = H

2. For
instance, for κ = 0, one embeds H

2 in the Minkowski space X0 and takes the normal
evolution of H

2 (that is a map H
2 × R≥0 → X0 sending (x, t) to tx). The pull-back

of the Minkowski metric takes the form (4.1).

Remark 4.2. Strictly speaking m−1(F ) is not maximal. In fact the metric gκ can be
defined as well on the interval (0, π). On the other hand, for some reason that will
appear clear it is better to define m−1(F ) in this way and then to take its maximal
extension.

Now suppose S is closed and λ is a weighted curve (c, a). The projective surface
mP (F, λ) is the grafting of F along λ, that we sometimes denote by Grλ(F ). We
cut F along c and graft a projective annulus A = c × [0, a] whose developing map
can be explicitly described in the following way. We can choose a developing map
dev : F̃ → H

2 = {z ∈ C | Imz > 0} such that c lifts to a geodesic c̃ with endpoints
at 0 and∞. The developing map of A is given by

c̃ × [0, a] � (x, t)→ dev(x)eit ∈ CP 1 = S2.

The fact thatA can be grafted onF is based on the fact that the developing map of each
component of ∂A is conjugate by some element of PSL(2,C) to the developing map
of c. Notice that A carries a natural Euclidean metric. The length of each boundary
component of A is equal to the length of c whereas the width of A is equal to a.
Thus we can consider on Grλ(F ) the metric that is hyperbolic on F \ c and Euclidean
on A. Such a metric is C1 and compatible with the conformal structure underlying
the projective structure of Grλ(F ). We call it the Thurston metric of Grλ(F ). In
what follows we often indicate by Grλ(F ) both the projective structure and the metric
structure on S.

Remark 4.3. Thurston’s distance is defined on every projective structure on S and is
a metric compatible with the conformal class of the projective surface. The interesting
point shown by Thurston is that Thurston’s metric determines the projective structure.
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This means that a map between projective surfaces is a projective equivalence if and
only if it is an isometry with respect to the corresponding Thurston’s distances.

Remark 4.4. If a is small, then the holonomy group of Grλ(F ), say �, is quasi-
Fuchsian and the developing map is injective with image a component of the discon-
tinuity domain. Thus, Grλ(F ) can be regarded as an asymptotic end of the quasi-
Fuchsian manifold H

3/�. In fact, the boundary component of the convex core facing
Grλ(F ) is isometric to F bent along c with bending angle a, and the annulus A co-
incides with the set of points in Grλ(F ) that are sent by the retraction on the convex
core to the bending line.

Moreover, let us consider the connected component of the complement of the
convex core in H

3/� close to F . Then the distance d from the convex core is a C1-
function on it whose level surfaces are isometric to ch d ·Gr(tgh d)λ(F ) (ifX is a metric
space, λ · X denotes the metric space obtained by multiplying the distance function
by λ).

Thurston generalized this idea and showed how to associate to each projective
structure on S a non-complete hyperbolic structure on S × (0, 1), called the H -hull
such that

(i) its completion is S × [0, 1) and S × {0} is a locally convex bent surface F along
a lamination λ;

(ii) the asymptotic end S × {1} carries the original projective surface that in turns
coincides with Grλ(F ).

Moreover the distance d from S × {0} is a C1-function and level surfaces are
isometric to

ch d · Grtgh dλ(F ). (4.2)

Clearly in the quasi-Fuchsian case the H -hull is simply the end of the corresponding
quasi-Fuchsian manifold facing the projective surface.

Consider now the Lorentzian case.
To construct mκ(F, λ) we will deform the structure on mκ(F ) by means of a

construction that is reminiscent of the grafting procedure, so we call it the Lorentzian
grafting.

With a little abuse let us denote by c the geodesic representative of c with respect
to the hyperbolic structure F . Then one shows that the timelike surface c× I is totally
geodesic in mκ(F ) (it is still a local computation – for instance, in the flat case it is a
direct consequence of the fact that geodesics of H

2 are intersections of H
2 with linear

timelike planes of Minkowski space). Then one cuts mκ(F ) along c × I and grafts a
piece, say mκ(A) such that

(i) topologically mκ(A) = (c × [0, a]) × I , that is, the product of the annulus
A = c × [0, a] by the time interval I ;

(ii) mκ(A) is equipped with a Lorentzian metric of constant curvature κ;
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(iii) the restriction of the metric on each slice A× {t} is a Euclidean annulus, whose
width depends only on a and on t and whose boundary length is equal to the
length of c × {t} ⊂ mκ(F );

(iv) the boundary of mκ(A) (that is ∂A× I = c× I × {0, a}) is totally geodesic and
each component is isometric to c × I .

For instance in the flat case m0(A) is just (c× I )× [0, a] with the product metric
(which is flat since it is the product of two flat metrics). For the other curvatures, the
expression of the metric on m0(A) takes the more complicated form given by{

−dt2 + (ch 2(t)dr2 + sh 2(t)dθ2) for κ = 1,

−dt2 + (cos2(t)dr2 + sin2(t)dθ2) for κ = −1
(4.3)

where θ is an arc parameter on c and r is the variable on [0, a]. Notice that the width
of A× {t} is independent of t only in the flat case.

Remark 4.5. The piece m−1(A) is well defined only for t ∈ (0, π/2) and this ex-
plains the definition of m−1(F ). In general the spacetime obtained for κ = −1 is
never maximal, so more correctly m−1(F ) will denote the maximal extension of the
spacetime we have defined. In the next sections we will explain the reason of this
asymmetry and also how the spacetime we have defined is uniquely determined by its
maximal extension.

Remark4.6. A way to define mκ(F, λ) for a genericλ is by means of an approximation
argument. We take a sequence of simple weighted curves λn = (cn, an) converging
to λ and define mκ(F, λ) = lim mκ(F, λn). Clearly the existence of this limit has to
be checked. To this aim it is better to work in the framework of (G,X)-structures and
study the behaviour of the developing maps of mκ(F, λ). This will be the theme of
the next sections.

Notice that the construction of mκ(F, λ) gives, as a by-product, a natural foliation
of spacetime by spacelike surfaces homeomorphic to S. In fact, in both mκ(F ) and
mκ(A) we have pointed out a time-function t to express the metric in some explicit
way. These functions glue to a time-function on mκ(F, λ). Notice however that the
function we get in mκ(F, λ) is not smooth: its level surfaces are made out of hyperbolic
pieces and Euclidean annuli. In fact they are reminiscent of the usual grafted surfaces.

Let us consider the flat case. In such a case the t level surface corresponding to
some value t0 is obtained by multiplying the hyperbolic metric on F by the factor t20
(that is, by multiplying the hyperbolic distance by the factor t0), cutting along c and
gluing a Euclidean annulus of width a. This is the same as grafting an annulus of
width a/t0 on F and then multiplying the grafted distance by the factor t0.
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More generally one can check explicitly that for a weighted multi-curve λ = (c, a)
the surface t−1(t0) ⊂ mκ(F, λ) is metrically equal to

t0 · Grλ/t0(F ) if κ = 0,

sh t0 · Grλ/tgh t0(F ) if κ = 1,

sin t0 · Grλ/ tan t0(F ) if κ = −1.

(4.4)

The point that makes this remark interesting is that the function t is the cosmological
time of mκ(F, λ), so it is somehow independent of the parameterization and the same
formulae to express the level surface work for every (F, λ). This remark motivates the
idea of finding a canonical rescaling directed by the gradient of the cosmological time
transforming m0(F, λ) into m±1(F, λ) and a Wick rotation transforming m0(F, λ)

into the H -hull of Grλ(F ).

Remark 4.7. Consider the case where S is a surface of finite type. For F ∈ Tc(S) we
could try to define mκ(F ) as in the closed case. Notice however that the slice S × {t}
is in general not complete. In fact such a spacetime has a natural totally geodesic
timelike boundary that is homeomorphic to ∂FC × I . A way to get a complete level
surface is then for each boundary component c of F to glue a piece mκ(�) where
� = c×[0,+∞) is an annulus with infinite width and mκ(�) = �× I with a metric
given in (4.3). Notice that the definition of mκ(F ) is then consistent with the previous
case provided that we allow a boundary component of F to carry infinite weight.

In fact, one can show that to define mκ(F, λ) it is necessary to glue a cylindrical
end for each boundary component of F that is not close to the lamination. On the
other hand, if λ contains a leaf l spiraling around a boundary curve, it is clear that it
is possible to define the analogue of mκ(A) for this leaf (that now is the product of
a infinite band of width equal to the weight of l and the time-interval I ) and apply
the grafting procedure. Notice that if l spirals around a boundary component c, the
corresponding end on the slice S × {t} in mκ(F, λ) appears complete (in fact a path
entering the ends meets the band infinitely many times so its length cannot be bounded).

From this discussion it appears clearly that in this context it is more convenient
to use the notion of geodesic lamination on a surface given in Remark 3.12. That is,
we require that the boundary components of F are contained in the lamination and
that paths arriving on the boundary have infinite total mass. In particular, for each
boundary component either a leaf spirals around it or it carries an infinite weight. With
this definition the 0 lamination on F is obtained by putting the weight +∞ on each
boundary component.

4.3 Wick rotation-rescaling set-up

Let us go back to the statement concerning the canonical correlations. We will see that
every spacetime mκ(F, λ) has (rather tame) cosmological time, so that the geometry
of the initial singularity will quite naturally arise. The above mentioned Wick rotations
and rescalings (possibly only defined on suitable “slabs” of the spacetimes) will be
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directed by the gradient of the cosmological times. The rescaling functions will be
universal in the sense that their values only depend on the cosmological time values:
for every y in the domain of definition, β(y) = β(τ(y)), α(y) = α(τ(y)). We stress
that they do not depend on (F, λ).

We are going to outline the linked arguments establishing both the constructions
of the maps m∗, the geometric correlations and the fact that the materialization maps
induce bijections.

Let (F, λ) ∈ML(S). With the notation of Section 3, we have

F ⊂ FC ⊂ F̂ = H
2/�.

(FC, λ) lifts to a �-invariant couple (H, λ̃) where H is a straight convex set in H
2

equipped with the measured geodesic lamination λ̃. The universal covering map

H
2 → F̂

restricts to the universal covering mapsH → FC , H̊ → F , where H̊ is the interior of
H . To simplify the notation we make the abuse of always writing λ instead of either
λ̃, (F, λ) or (H̊, λ̃), that is, we will understand F or H̊ .

The projective surface
SλP = mP (λ)

will be given in terms of a pair (dλP , h
λ
P ) of compatible developing map

dλP : S̃ → S2

and holonomy representation

hλP : π1(S)→ PSL(2,C).

We denote by
pλP : S̃λP → SλP

the corresponding projective universal covering.
Similarly, every spacetime

Yλκ = mκ(λ)

will be specified by a compatible pair (dλκ , h
λ
κ),

dλκ : S̃ × R→ Xκ ,

hλκ : π1(S)→ Isom+(Xκ).

We denote
pλκ : Uλ

κ → Yλκ

the corresponding Lorentzian universal covering.
For simplicity, we will often identify S with F , S̃ with H̊ , π1(S)with �, and so on.
For everyF as above, denote by λ0 the measured geodesic lamination consisting of

the +∞ weighted boundary components of FC . Recall that λ0 is the initial endpoint
of any ray in ML(F ). We will describe explicitly the corresponding surface S0

P and
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spacetimes Y 0
κ , U0

κ . Every λ ∈ ML(F ) somehow encodes the instructions in order
to deform (d0∗ , h0∗) towards (dλ∗ , hλ∗) as it has been made explicit in the case of finite
laminations.

4.4 Flat spacetimes classification

Take the hyperboloid model H
2 ⊂ X0 of the hyperbolic plane. The chronological

future of 0 in X0 is the cone I+(0) = {−x2
0 + x2

1 + x2
2 < 0 | x2 > 0} from 0 over H

2.
I+(0) has cosmological time τ = (x2

0 − (x2
1 + x2

2))
1/2, so that H

2 = {τ = 1} and 0 is
the initial singularity. The future I+(r) = {−x2

0 − x2
2 < 0 | x2 > 0} of the spacelike

geodesic r = {x0 = x2 = 0} has cosmological time τ = (x2
0 − x2

2)
1/2; r is the initial

singularity.

Construction of U0
0. The cone C0H from 0 over H ⊂ H

2 is contained in I+(0).
The boundary of C0H is made by the cone over the boundary ofH . Each component
of ∂C0H , corresponding to a geodesic line γ ⊂ ∂H , is the intersection with I+(0)
of a hyperplane Pγ , orthogonal to a determined unitary spacelike vector vγ , that
points out of C0H . The developing map d0

0 is an embedding onto the convex domain
U0

0 of X0 made by the union of C0H with the future of all the rays of the form
{tvγ | t ≥ 0}.

A convenient description of the domain U0
0 is as the intersection of half-spaces. In

fact, for each x ∈ H , let x⊥ denote the spacelike plane orthogonal to x. Then I+(x⊥)
is a half-space and

U0
0 =

⋂
x∈H

I+(x⊥).

This shows that U0
0 is convex and future complete.

Up to isometry of X0, the local model for U0
0 at each component of ∂C0(H), is

the future I+(r+) of the ray {x1 ≥ 0} ⊂ r , that is,

I+(r+) = (I+(0) ∩ {x1 ≤ 0}) ∪ (I+(r) ∩ {x1 ≥ 0}).
The above cosmological times match at the intersection, producing the cosmological
time of the union, that turns out to be a C1-function. The ray r+ is the initial singularity.
Then the cosmological time of U0

0 coincides with the one of I+(0) onC0H . The initial
singularity is the spacelike tree with one vertex at 0 and rays tvγ , t ≥ 0, emanating
from the origin. The action of π1(S) on H naturally extends to the whole of U0

0,
giving the holonomy h0

0.

Construction of Uλ
0. Let us consider now an arbitrary lamination λ = (L,μ) ∈

ML(F ). The developing map dλ0 will always be an embedding onto a convex domain
Uλ

0 in X0, obtained as follows. Fix a basepoint x0 ∈ H̊ not belonging to the weighted
part LW of λ. For every x ∈ H̊ \ LW choose an arc c transverse to λ with endpoints
x0 and x. For t ∈ c ∩ L, let v(t) ∈ R

3 denote the unitary spacelike vector tangent to
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H
2 at t , orthogonal to the leaf through t and pointing towards x. For t ∈ c \ L, let us

set v(t) = 0. In this way we define a function

v : c→ R
3

whose restriction on the support of μ is continuous. We can define

s(x) =
∫
c

v(t)dμ(t).

As the homological intersection of a closed transverse path with each leaf is 0, using
that μ is invariant along L preserving homotopies, it is not hard to see that s does not
depend on the path c. Moreover, it is constant on every stratum of the stratification
determined by λ, and it is a continuous function on H \ LW .

The domain Uλ
0 can be defined in the following way:

Uλ
0 =

⋂
x∈H\LW

I+(s(x)+ x⊥).

Note that this definition is compatible with the one already given for U0
0.

The holonomy of Yλ0 can be defined in this way:

hλ0(γ ) = h0
0(γ )+ τ(γ )

where h0
0 : π1(S) → SO(2, 1) is the hyperbolic holonomy of F and τ(γ ) is the

translation by the vector s(γ x0). Since the lamination λ is h-invariant (being the pull-
back of a lamination on F ) the domain Uλ

0 turns out to be hλ0-invariant and Yλ0 is the
quotient of Uλ

0 by this action.
Let us summarize the main properties of these constructions (see [15], [7] for all

details).

Theorem 4.8. (1) Uλ
0 coincides with the intersection of the future of its null support

planes. In particular it is future complete.

(2) Uλ
0 has C1 cosmological time T λ0 with range (0,+∞). Every level surface

Uλ
0(a) = (T λ0 )

−1(a) is a complete Cauchy surface. For every y ∈ Uλ
0 , there is a

unique past timelike geodesic segment emanating from y that realizes T λ0 (y). The
union of the past endpoints of such segments makes the initial singularity �λ0 . This is
a spacelike R-tree injectively immersed in X0.

(3) The action of π1(S) onH induces a natural flat spacetime holonomy action on
Uλ

0 ∪�λ0 . The cosmological time descends to the quotient spacetime Yλ0 .

It is convenient to give a general definition of a convex subset of X0 satisfying
statement (1) in this theorem.

Definition 4.9. A regular domain is an open convex subset of X0 that coincides with the
intersection of the future of its null support planes and admits at least two non-parallel
null support planes.
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Hence we have a well-defined map

m0 : ML(S)→MGH0(S).

The spacetimes Uλ
0 (and Yλ0 ) are particularly simple to figure out when λ is a finite

lamination. In such a case, the local model consists of the future, say U0, of a segment
I = [0, α0v0], where v0 is a unitary spacelike vector and 0 < α0 < π . Here a local
model means that there is a neighbourhood of each point p ∈ Yλ0 that embeds in U0
via an isometry that preserves the cosmological time.

The cosmological time on U0 is realized by geodesics with starting point on
[0, α0v], so there is a natural projection say r : U0 → [0, α0v] sending p to the
point on the segment that realizes the cosmological time.

V0U−0 U+0

v0

Figure 2. The domain U0, its decomposition, and a level surface.

We have a decomposition of U0 in three pieces U−0 ,U
+
0 ,V defined in the following

way:

U−0 = r−1(0);
V = r−1(0, α0v0);

U+0 = r−1(α0v0).

We denote by U+0 (a),U
−
0 (a),V(a) the intersections of the corresponding domains

with the surface U0(a). The surfaces U±0 (a) are hyperbolic of constant curvature
−1/a2. On the other hand, the parametrization of V(a) given by

(0, α0)× l0 � (t, y) �→ ay + tv0 ∈ V(a)
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produces two orthogonal geodesic foliations on V. The parametrization restricted to
horizontal leaves is an isometry, whereas on the vertical leaves it acts as a rescaling of
factor a. Thus V(a) is a Euclidean band of width α0. Note that by formally setting
α0 = +∞, and removing U+0 , we recover the above local model for U0

0 at each
component of ∂C0(H).

The initial singularity of a flat spacetime corresponding to a finite lamination is a
simplicial metric tree. On the other hand, in [15] we prove also a suitable continuous
dependence of Uλ

0 on λ. By using the density of finite laminations, this implies that
spacetimes corresponding to finite laminations provide us with good approximations
of arbitrary ones.

Asymptotic states. In general, the cosmological time level surface Uλ
0(1) (Yλ0 (1)) is

a C1 spacelike surface; with the induced Riemannian metric it realizes the grafting
of H̊ (the hyperbolic surface F ) at the measured geodesic lamination λ. By taking
the rescaled level surface (1/a)Y λ0 (a), we get a 1-parameter family of grafting of F .
More precisely, we get that (1/a)Y λ0 (a) is obtained by grafting F along λ/a.

When a → +∞ the geometries of (1/a)Y λ0 (a) converge to F . The geometry
of the initial singularity �λ0 of Uλ

0, together with the isometric action of � on it, is
“dual” to the geometry of the measured lamination λ, and can be recovered by means
of the asymptotic behaviour of the level surfaces Uλ

0(a) (equipped with the respective
isometric actions of � on them), when a→ 0.

The inverse map of m0. The image of m0 consists of spacetimes whose universal
covering is a regular domain that is future complete. On the other hand, general
results due to Barbot [7] on flat spacetimes, applied in our finite type situation, imply
that, possibly reversing the time orientation, every spacetime Y in MGH0(S) is future
complete, and its universal covering is a regular domain U �= I+(r). So it is natural to
consider the quotient MGH0(S)/±, up to time orientation reversing. We are going to
outline the steps leading to the inverse map of m0, defined on it. First one shows that
every regular domainUhas cosmological timeT that satisfies point (2) ofTheorem 4.8.
We consider the level surface U(1). We have a natural continuous retraction

r : U(1)→ �U

onto the initial singularity. Moreover, the gradient of T is a unitary vector field, hence
it induces the Gauss map

N : U(1)→ H
2.

The closure HU of the image of N in H
2 is a straight convex set. If U → Y is a

universal covering of Y ∈MGH0(S), the action of π1(S) extends toHU, and makes it
a universal covering of FC

U, for some FU ∈ T̃ (S). We take the partition of U(1) given
by the closed sets r−1(y), y ∈ �U. Via the retraction, we can pullback to this partition
the metric structure of �U, and (in a suitable sense) we can project everything onto
HU, by means of the Gauss map. More precisely, if r−1(y) is 1-dimensional, then it
is a geodesic line, so that the union of such lines makes a lamination in U(1). We can
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define on it a transverse measure such that the mass of any transverse path is given by the
integral of the Lorentzian norm of the derivative of r . A measured geodesic lamination
λU on HU is obtained via the push-forward by N of this lamination on U(1). This
descends to a lamination λU on F . So we eventually get m−1

0 (Y ) = (FU, λU). This
achieves our classification of flat MGH spacetimes of finite type.

4.5 Wick rotation: flat Lorentzian vs. hyperbolic geometry

Although we adopt a slightly different definition of the measured geodesic laminations
involved, the bijective map

mP : ML(S)→ P (S)

is due to Kulkarni–Pinkall [50] and extends one due to Thurston for compact S. This
is unfolded in terms of a 3-dimensional hyperbolic construction. We are going to
describe it, by performing at the same time the canonical Wick rotation establishing
the correlation between flat spacetimes Y ∈ MGH0(S) and suitable hyperbolic 3-
manifolds.

For every Y ∈MGH0(S) (Y = Yλ0 ), with universal covering U→ Y and cosmo-
logical time T , we construct a local C1-diffeomorphism

dH : U(> 1)→ H
3

and a compatible holonomy

hH : π1(S)→ PSL(2,C)

realizing a (non complete) hyperbolic structure M = MY on Y (> 1). This verifies
the following properties:

(1) The hyperbolic metric of M is obtained by the Wick rotation of the flat
Lorentzian metric on Y (> 1), directed by the gradient of T , with universal rescaling
functions

α = 1

T 2 − 1
and β = 1

(T 2 − 1)2
.

(2) Recall that the closure H of the Gauss map image is the straight convex set
realizing the future asymptotic geometry of U. Then the map dH extends (in an hH

equivariant way) to

dH : U(≥ 1) ∪H → H
3

such that the following is valid.
(a) The restriction of dH to U(> 1) ∪ H corresponds to the completion of the

manifold M . The restriction to H̊ is a locally isometric pleated immersion in H
3,

having the measured geodesic lamination λ as bending locus. This gives the so-called
hyperbolic boundary ofM . The level surfaces U(a), a > 1, correspond via dH to level
surfaces of the distance function � on M from its hyperbolic boundary, so that the



578 Riccardo Benedetti and Francesco Bonsante

inverse Wick rotation is directed by the gradient of �. More precisely, the following
formula holds:

� = arctgh (1/T ).

(b) The restriction dH|U(1) actually coincides with the developing map of the com-
plex projective structure SλP

dP : U(1)→ S2

so that
hP = hH.

The spacelike metric of U(1) (Y (1)) coincides with the Thurston metric (see Re-
marks 4.3, 4.4) of this projective surface, and its canonical stratification coincides
with the stratification induced by the retraction r of U(1) onto the initial singularity.
This gives the so called asymptotic complex projective boundary of M . In fact M
turns to be the H -hull of Y (1).

Remark 4.10. We give here a more precise description of the Thurston metric speci-
fying what the canonical stratification is.

Let us take a complex projective structure on our surface S and consider a devel-
oping map

D : S̃ → S2.

Pulling back the standard unit-sphere metric of S2 on S̃ is not a well-defined operation,
as it depends on the choice of the developing map. Nevertheless, by the compactness
of S2, the completion S of S̃ with respect to such a metric is well defined. It turns out
that in our finite-type situation, S \ S̃ contains at least 2 points (we say that it is of
hyperbolic type). A round disk in S̃ is a set� such thatD|� is injective and the image
of� is a round disk in S2 (this notion is well defined because PSL(2,C) sends round
disks onto round disks). Given a maximal disk � (with respect to the inclusion), we
can consider its closure � in S.

The closed disk� is sent byD to the closed diskD(�). In particular, if g� denotes
the pull-back on � of the standard hyperbolic metric on D(�), we can consider the
boundary of� in Ŝ as its ideal boundary. Since� is maximal,� is not contained in S̃.
So, if�� denotes the set of points in�\ S̃, let �̂ be the convex hull in (�, g�) of��
(by maximality �� contains at least two points). In [50] it is proved that for every
point p ∈ S̃, there exists a unique maximal disk� containing p such that p ∈ �̂. So,
{�̂ | � is a maximal disk} is a partition of S̃. We call it the canonical stratification
of S̃. Clearly the stratification is invariant under the action of π1(S).

Let g be the Riemannian metric on S̃ that coincides at p with the metric g�, where
� is the maximal disk such that p ∈ �̂. It is a conformal metric, in the sense that it
makes D a conformal map. It is C1,1 and is invariant under the action of π1(S). So,
it induces a metric on S̃. We call it the Thurston metric on S̃.

Finally let us recall the construction of the H -hull of S. For p ∈ S̃, let �(p) be
the maximal disk such that p ∈ �̂. The image of � via dev is a round disk in S2, so
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its boundary is the trace of a hyperbolic plane P(p) in H
3. Let cp be the geodesic

half-line with an endpoint at dev(p) and an endpoint on P(p) and orthogonal to P(p).
Then the developing map of the H -hull of S is the map

S̃ × (0,+∞) � (p, t) �→ cp(t) ∈ H
3.

Notice that if S is quasi-Fuchsian, the H -hull is simply the end of the corresponding
quasi-Fuchsian manifold facing S.

About the rescaling function. Before proving the theorem we want to give some
heuristic motivation for the formulae of Wick rotation. The point is that we want
to construct a Wick rotation transforming Yλ0 (or some slab) into the H -hull, say
M , of Grλ(F ), in such a way that the cosmological time level surfaces are sent to
level surfaces of the distance function,�, from the hyperbolic boundary and rescaling
functions are constant on level surfaces. Now suppose that such a Wick rotation exists.
Let �(T ) be in such a way that the Wick rotation transforms Y (T ) into M(�(T )),
and let α(T ) and β(T ) be the horizontal and vertical rescaling functions.

By Formulae (4.2) and (4.4) we have

(α(T ))1/2TGrλ/T (F ) = ch�(T )Grtgh�(T )λ

Since Grtλ(F ) is conformally equivalent to Grsλ(F ) if and only if s = t , we deduce
that

T = 1/tgh (�(T )),

that is, �(T ) = arctgh 1/T . Moreover, we have

α(T ) = ch 2(�(T ))/T 2 = 1/(T 2 − 1).

Finally, let X denote the gradient of T with respect to the flat metric and Y denote
the gradient of � with respect to the hyperbolic metric. We have X = −β1/2Y .
On the other hand, 〈X, Y 〉Hyp = d�(X) = �′(T )dT (X) = −1/(T 2 − 1). Thus
β(T ) = 1/(T 2 − 1)2.

Summing up if some Wick rotation exists satisfying the required properties, then
necessarily α = 1/(T 2 − 1) and β = 1/(T 2 − 1)2.

Bending cocycle. A key step in the construction is the bending of H̊ in H
3 along a

measured geodesic lamination λ. We mostly refer to the Epstein–Marden paper [36]
where this hyperbolic bending has been carefully studied (in the case of H̊ = H

2;
however the constructions extend straightforwardly to the general case). In fact, in
[36] one considers quake-bend maps, more generally associated to complex valued
transverse measures on a lamination L. Bending maps correspond to imaginary valued
measures. So, given a measured geodesic lamination λ = (L, μ) ∈ML(F ), we take
iμ in order to get the corresponding bending map.

The bending cocycles. We fix once and for all an embedding of H
2 into H

3 as a
totally geodesic hyperbolic plane.
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Given λ on H as usual, we first define the associated bending cocycle (recall a
similar notion already introduced in Section 3 relatively to earthquakes). This is a
map

Bλ : H̊ × H̊ → PSL(2,C)

which satisfies the following properties:

(1) Bλ(x, y) � Bλ(y, z) = Bλ(x, z) for every x, y, z ∈ H̊ ;

(2) Bλ(x, x) = Id for every x ∈ H̊ ;

(3) Bλ is constant on the strata of the stratification of H̊ determined by λ;

(4) If λn → λ on an ε-neighbourhood of the segment [x, y] and x, y /∈ LW , then
Bλn(x, y)→ Bλ(x, y) .

If λ is finite, then there is an easy description of Bλ. If l is an oriented geodesic
of H

3, let Xl ∈ sl(2,C) denote the infinitesimal generator of the positive rotation
around l such that exp(2πXl) = Id (since l is oriented the notion of positive rotation
is well defined). Now take x, y ∈ H̊ . If they lie in the same leaf of λ, then put
Bλ(x, y) = Id. If both x and y do not lie in the support of λ, then let l1, . . . , ls be the
geodesics of λ meeting the segment [x, y] and a1, . . . , as be the respective weights.
Let us consider the orientation on li induced by the half plane bounded by li containing
x and non-containing y. Then, put

Bλ(x, y) = exp(a1Xl1) � exp(a2Xl2) � · · · � exp(asXls ),

where we have identified H
2 with a geodesic plane of H

3. If x lies in l1, use the same
construction, but replace a1 by a1/2; if y lies in ls replace as by as/2.

The bending cocycle is not continuous on the whole definition set. However, there
is a natural continuous “pull-back” of it to a cocycle defined on the flat spacetime
U = Uλ

0
B̂λ : U(1)×U(1)→ PSL(2,C)

such that
B̂λ(p, q) = Bλ(N(p),N(q))

for p, q such that N(p) and N(q) do not lie on LW .
This map is locally Lipschitz (with respect to the Euclidean distance on U). More-

over, for every compact set K of U, the Lipschitz constant on K × K depends only
on N(K), on the diameter of the retraction of K on U(1) (via r(1, · )) and on the
maximum M and minimum m of T on K .

The bending map. Fix a basepoint x0 of H̊ (x0 is supposed not to be in LW ). The
bending map of H̊ along λ is

F = Fλ : H̊ � x �→ B(x0, x) · x ∈ H
3.

The map F satisfies the following properties:

(1) it does not depend on x0 up to post-composition by elements of PSL(2,C);
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(2) it is a 1-Lipschitz map;

(3) if λn→ λ then Fλn → Fλ with respect to the compact open topology.

The Wick rotation. We are ready to construct the local C1-diffeomorphism

dH : U(> 1)→ H
3

with the properties outlined at the beginning of this section.
Recall the continuous cocycle B̂ = B̂λ defined above on the whole of U × U.

Since both H
3 and H

2 ⊂ H
3 are oriented, the normal bundle is oriented too. Let v

denote the normal vector field on H
2 that is positively oriented with respect to the

orientation of the normal bundle. Let us take p0 ∈ N−1(x0) and for p ∈ U(> 1)
consider the geodesic ray cp of H

3 starting at F(N(p)) with speed vector equal to
w(p) = B̂(p0, p)∗(v(N(p))). Thus dH is defined in the following way:

dH(p) = cp(arctgh (1/T (p))) = expF(N(p))

(
arctgh

(
1

T (p)

)
w(p)

)
.

As usual, we make everything explicit on the local models of U0
0 and of flat

spacetimes associated to finite laminations.

Local model of the Wick rotation for finite laminations. Consider as above the future
U0 of a spacelike segment [0, v0] in X0 (adopting the same notation). We introduce
suitable C1,1 coordinates on U0. For any a > 0, denote by la the boundary of U−0 (a)
and by da the intrinsic distance of U0(a). Let l0 be the geodesic in H

2 where each
la is sent by the Gauss map N . Fix a point z0 on l0 ⊂ H

2 and denote by ẑa ∈ la the
point such that N(ẑa) = z0.

For every x ∈ U0(a), there is a unique point π(x) ∈ la such that da(x, la) =
da(x, π(x)). Then, we consider coordinatesT , ζ, u, whereT is again the cosmological
time, and ζ, u are defined in the following way

ζ(x) = ε(x)dT (x)(x, lT (x))/T (x),
u(x) = ε′(x)dT (x)(π(x), ẑT (x))/T (x)

where ε(x) (resp. ε′(x) ) is −1 if x ∈ U−0 (resp. π(x) is on the left of ẑT (x)) and is 1
otherwise.

Choose coordinates (y0, y1, y2) of Minkowski space such that v0 = (0, 0, 1) and
z0 = (1, 0, 0). Thus, the parametrization induced by T , ζ, u is

(T , u, ζ ) �→

⎧⎪⎨
⎪⎩
T · (ch uch ζ, sh uch ζ, sh ζ ) if ζ < 0,

T · (ch u, sh u, ζ ) if ζ ∈ [0, α0/T ],
T · (ch uch ζ ′, sh uch ζ ′, sh ζ ′ + α0/T ) otherwise

where ζ ′ = ζ − α0/T .
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With respect to these coordinates the metric takes the following form:

h0(T , ζ, u) =

⎧⎪⎨
⎪⎩
−dT 2 + T 2(dζ 2 + ch 2ζdu2) if ζ < 0,

−dT 2 + T 2(dζ 2 + du2) if ζ ∈ [0, α0/T ],
−dT 2 + T 2(dζ 2 + ch 2(ζ ′)du2) otherwise.

Notice that the gradient of T is just the coordinate field ∂
∂T

.
The Gauss map takes the form

N(T , ζ, u) =

⎧⎪⎨
⎪⎩
(ch uch ζ, sh uch ζ, sh ζ ) if ζ < 0,

(ch u, sh u, 0) if ζ ∈ [0, α0/T ],
(ch uch ζ ′, sh uch ζ ′, sh ζ ′) otherwise,

and the bending cocycle B̂0(p0, (T , ζ, u)) is the rotation around l0 of angle equal to 0
if ζ < 0, ζ if ζ ∈ [0, α0/T ], α0/T otherwise.

Let H
3 be identified with the set of timelike unit vectors in the (3 + 1)-Min-

kowski space M
4. We can choose affine coordinates on M

4 in such a way that the
inclusion H

3 ⊂ H
4 is induced by the inclusion X0 → M

4 given by (x0, x1, x2) �→
(x0, x1, x2, 0). Thus the general rotation around l0 of angle α is represented by the
linear transformation Tα , such that

Tα(e0) = e0, Tα(e1) = e1,

T (e2) = cosα e2 + sin αe3, Tα(e3) = − sin αe2 + cosαe3

where (e0, e1, e2, e3) is the canonical basis of R
4. Thus, we can write in local coordi-

nates dH = D0

D0(T , u, ζ ) �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ch δ (ch ζch u, ch ζ sh u, sh ζ, 0)+ sh δ(0, 0, 0, 1) if ζ ≤ 0,

ch δ (ch u, sh u, 0, 0)

+ sh δ
(
0, 0,− sin ζ

tgh δ , cos ζ
tgh δ

)
if ζ ∈ [0, α0/T ],

ch δ(ch ζ ′ch u, ch ζ ′sh u, sh ζ ′ cosα0, sh ζ ′ sin α0)

+ sh δ(0, 0,− sin α0, cosα0) otherwise

where δ = arctgh (1/T ) and ζ ′ = η − α0/T . This map is clearly smooth for ζ �=
0, α0/T . Since the derivatives of D0 with respect to the coordinate fields glue along
ζ = 0 and ζ = α0T , the map D0 is C1. It is not hard to see that the derivatives are
locally Lipschitz. One can check by direct computation that D∗0(g) is obtained by
the canonical Wick rotation. The same formulae hold on U0

0, provided we replace
U+0 ∪ V by r−1(R+ · v0), the inverse image of the open ray.

The holonomy hH. Recall that (F, λ) ∈ ML(S), F ⊂ FC ⊂ F̂ = H
2/�, F =

H̊/�. Then (see [36]) the bending cocycle satisfies

Bλ(γ x, γy) = γ � B(x, y) � γ−1

for every γ ∈ �.



Chapter 14. (2+ 1) Einstein spacetimes of finite type 583

Figure 3. The image E0 of D0 and its decomposition.

Consider a bending map

Fλ : H̊ → H
3.

For γ ∈ � let us define

hH(γ ) = Bλ(x0, γ x0) � γ ∈ PSL(2,C).

Clearly Fλ is hH-equivariant. We eventually get that the Wick rotation descends on
the quotient spacetime Y = Yλ0 . This gives the required hyperbolic structure M on
Y (> 1), having as asymptotic boundary the projective surface SλP .

4.6 Flat vs. de Sitter Lorentzian geometry

In order to classify MGH de Sitter spacetimes of finite type in terms of complex
projective structures, we refer to [60] where the case of compact Cauchy surfaces was
treated. In fact we can check that all constructions work as well by simply letting the
Cauchy surface be complete of finite type. Let us summarize the main steps of this
classification:

(1) We associate with every complex projective structure on a surface of finite
type S a so-called standard spacetime belonging to MGH1(S). It turns out that it is
future complete. By composing with the parametrization mP : ML(S)→ P (S), we
eventually construct the injective map m1 : ML(S)→MGH1(S).



584 Riccardo Benedetti and Francesco Bonsante

(2) We show that, possibly inverting the time orientation, every spacetime in
MGH1(S) is standard, that is m1 : ML(S) → MGH1(S)/± is a bijection (with
the same meaning of ± as for m0).

We recall the construction of these standard spacetimes. Given a projective struc-
ture on S with developing map

d : S̃ → S2,

we perform a construction which is dual to the one made for the H -hulls. Recall
the canonical stratification of S̃ described in Remark 4.10. For every p ∈ S̃ let �(p)
denote the stratum passing throughp and�∗(p) be the maximal ball containing�(p).
Now d(�∗(p)) is a ball in S2 which determines a hyperbolic plane in H

3. Let ρ(p)
denote the point in X1 corresponding to this plane: the map ρ : S̃ → X1 turns out to
be continuous. There exists a unique timelike geodesic cp in X1 joining ρ(p) to d(p)
so we can define the map

d̂ : �(p)× (0,+∞) � (p, t) �→ cp(t) ∈ X1.

This map is a developing map for the required standard de Sitter spacetime. A com-
patible holonomy follows by a natural equivariant version of the construction.

Assume now that the projective structure is encoded by (F, λ) ∈ ML(S), via
mP . We eventually realize that the construction of m1 can be obtained via a canonical
rescaling performed on Y 0

λ (< 1). More precisely, we realize d̂ as a C1 developing
map

dλ1 : Uλ(< 1)→ X1

obtained as a sort of semi-analytic continuation of the hyperbolic developing map dH

constructed in the previous section, and we have:

Theorem 4.11. The spacetime U1
λ (Y 1

λ ), obtained from U0
λ(< 1) (Y 0

λ (< 1)) via
the rescaling directed by the gradient of its cosmological time T and with rescaling
functions

α = 1

1− T 2 and β = 1

(1− T 2)2

is the standard de Sitter spacetime corresponding to the projective structure on U0
λ(1)

(Y 0
λ (1)) produced by the Wick rotation.

The construction of dλ1 is very simple. We regard both H
3 and X1 as open sets of

the real projective space (Klein models), separated by the quadric S2. If s is a geodesic
integral line of the gradient of the cosmological time, s>1 = s ∩U0

λ (> 1) is sent by
dH onto a geodesic ray of H

3. We define dλ1 on s<1 in such a way that it parameterizes
the timelike geodesic ray in X1 contained in the projective line (in the Klein model)
determined by dH(s>1).

The proof, as well as the explicit computation for our favourite local models (evoked
in the figure) are similar to the ones made for the Wick rotation, so we omit them.

An essential step in proving that m1 is a bijection consists in
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Proposition 4.12. (1) Every Y ∈ MGH1(S) has C1 cosmological time, and every
level surface is a complete Cauchy surface.

(2) If Y = Y 1
λ with universal covering U1

λ, then the cosmological time of U1
λ is

τ = arctgh (T ),

T being the cosmological time of U0
λ (< 1). Hence the inverse rescaling is directed

by the gradient of τ and has universal rescaling functions.

(3) Let�0 be the initial singularity of U0
λ. Then the map dλ1 extends to a continuous

map
U0
λ (≤ 1) ∪�0 → X1 ∪ S2.

Moreover, its restriction to U0
λ(1) coincides with dH and the restriction to �0 is an

(equivariant) isometry onto the initial singularity �1 of U1
λ.

U−1

V1

U+1

Figure 4. A standard de Sitter spacetime – local model.

Note that, in contrast with the flat Lorentzian case, these de Sitter developing maps
as well as the dual hyperbolic ones are in general not injective.

4.7 Flat vs. Anti de Sitter Lorentzian geometry

We are going to outline first a few features of the spacetimes in MGH−1(S). Recall the
content of Section 2.2; in particular the duality between points x of X−1 and spacelike
planes P(x) of X−1, or between spacelike lines, l �→ l∗. Recall also that the boundary
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∂X−1 has a natural causal structure, so that the notion of a nowhere timelike simple
closed curve embedded in ∂X−1 makes sense.

Standard AdS spacetimes. Given such a curve C ⊂ X−1, assume furthermore that
C is a meridian of ∂X−1 with respect to X−1 (that means C is homologous to the
difference of a left and right future-oriented leaves). We callC an admissible achronal
curve. Then its Cauchy development is defined as

Y(C) = {p ∈ X−1 | ∂P (p) ∩ C = ∅}
and the so obtained spacetime is called a (simply connected) standard AdS spacetime.
C is called the curve at infinity of Y(C). An AdS spacetime is said to be standard if
its universal covering is standard.

The convex core. There exists a spacelike plane P not intersecting Y(C) (see [55]).
In the Klein model, we can cut P

3 along the projective plane P̂ containing P and we
have that Y(C) is contained in R

3 = P
3 \ P̂ .

Since C is nowhere timelike, the intersection of C with leaves of each foliation of
∂X−1 is either everywhere positive or negative. Since we assume C to be a meridian,
for every point p ∈ C the plane P(p) tangent to ∂X−1 at p (that cuts X−1 at a null
totally geodesic plane) does not separate C: the intersection of P(p)with ∂X−1 is the
union of the left and right leaves through p, thus P(p) intersects C only in p.

It follows that the convex hull K(C) of C in R
3 is actually contained in X−1. We

realize that K(C) does not depend on the choice of P̂ , and it is called the convex core
of Y(C).

Support planes of K(C) are non-timelike and the closure Y(C) of Y(C) in X−1
coincides with the set of points dual to spacelike support planes of K(C) whereas the
set of points dual to null support planes of K(C) coincides with C. Y(C) is convex
and the closure of Y(C) in X−1 is Y(C) ∪C. It follows that K(C) ⊂ Y(C). A point
p ∈ ∂K(C) lies in Y(C) if and only if it is touched only by spacelike support planes.

Being the boundary of a convex set in R
3, ∂K(C) ∪ C is homeomorphic to a

sphere. In particular, ∂K(C) (that is the boundary of K(C) in X−1) is obtained by
removing a circle from a sphere, so it is the union of two disks. These components will
be called the past and the future boundary of K(C) (with respect to time orientation),
and denoted by ∂−K(C) and ∂+K(C) respectively. Given any inextensible timelike
ray contained in K(C), its future endpoint lies on the future boundary, and the past
endpoint lies on the past boundary.

The intersection ∂+K(C) ∩ Y(C) is obtained by removing from ∂+K(C) the set
of points that admit a null support plane. Now suppose that a null support plane P
passes through x ∈ ∂+K(C). Then P ∩K(C) is a triangle with a vertex at some
point p ∈ ∂X−1, two ideal edges (that are segments on the leaves of the double
foliation of ∂X−1) and a complete spacelike geodesic of K(C). It follows that the
set ∂+K(C) ∩ Y(C) is obtained by removing from ∂+K(C) (at most) countably
many ideal triangles, so it is homeomorphic to an open disk. The only case where
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∂+K(C) ∩ Y(C) is empty is when the curve C is obtained by joining the endpoints
of a spacelike geodesic l with the endpoints of its dual geodesic l∗. In that case
Y(C) = K(C), and we call it the degenerate standard spacetime. So, from now on,
we incorporate in the definition of standard AdS spacetime that it is not degenerate.
Moreover, since we will be mainly interested in ∂+K(C) ∩ Y(C), from now on we
will use ∂+K(C) just to denote that set.

Proposition 4.13. ∂+K(C) is locally C0-isometric to H
2.

Remark 4.14. If ∂+K is complete then it is isometric to H
2. In general ∂+K is not

complete, not even in the special case where C is the graph of a homeomorphism of
S1 onto itself. Moreover, it can be not complete even when there are no null triangles
on the boundary.

The past part of a standard spacetime. The past part P = P (C) of a standard
AdS spacetime Y(C) is the past in Y(C) of the future boundary ∂+K of its convex
core. The complement of ∂+K in the frontier of P (C) in X−1 is called the past
boundary of Y(C), denoted by ∂−P .

Proposition 4.15. Let P be the past part of some Y(C). Then P has cosmological
time τ that takes values in (0, π/2). For every point p ∈ P there exist only one point
ρ−(p) ∈ ∂−P , and only one point ρ+(p) ∈ ∂+K such that the following holds:

(1) p is on the timelike segment joining ρ−(p) to ρ+(p).
(2) τ(p) is equal to the length of the segment [ρ−(p), p].
(3) The length of [ρ−(p), ρ+(p)] is π/2.

(4) P(ρ−(p)) is a support plane for P passing through ρ+(p) and P(ρ+(p)) is a
support plane for P passing through ρ−(p).

(5) The map p �→ ρ−(p) is continuous. The function τ is C1 and its gradient at p
is the unit timelike tangent vector grad τ(p) such that

expp (τ (p)grad τ(p)) = ρ−(p).

Summing up, given the past part P of a standard AdS spacetime Y(C), we can
construct

the cosmological time τ : P → (0, π/2);

the future retraction ρ+ : P → ∂+K;

the past retraction ρ− : P → ∂−P .

Corollary 4.16. (1) Given r in the past boundary of Y, ρ−1− (r) is the set of points p
such that the ray starting from r towards p meets at time π/2 the future boundary
of K .
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(2) The image of ρ− is the set of points of ∂−P whose dual plane meets C at least
in two points.

(3) The image of ρ+ is the whole ∂+K .

The image of the past retraction is called the initial singularity of Y(C).
For every surface of finite type S, Stand−1(S) denotes the Teichmüller-like space

of standard AdS spacetimes admitting a Cauchy surface homeomorphic to S. The
following is a fundamental step towards the classification.

Theorem 4.17. Stand−1(S) =MGH−1(S).

Note that a consequence of the inclusion⊃ stated in this theorem is that, similarly to
the flat case, the developing maps of finite type MGH AdS spacetimes are embeddings
onto convex domains.

Both inclusions of the theorem are not trivial. The fact that every spacetime in
MGH−1(S) is standard follows from the following more general result (Section 7
of [55]). The fact that every standard spacetime is MGH−1(S) is a consequence of
the fact that P (a) is a complete Cauchy surface (see Proposition 4.19).

Proposition 4.18. Let Y be an Anti de Sitter simply connected spacetime, and F ⊂ Y
be a complete Cauchy surface. Then the developing map Y → X−1 is an embedding
onto a convex subset of X−1.

The closure of F in X−1 is a closed disk and its boundary ∂F is a nowhere timelike
curve of ∂X−1.

If Y is the maximal globally hyperbolic Anti de Sitter spacetime containing F then
Y = Y(∂F ). The curve ∂F determines Y , namely p ∈ Y if and only if the dual plane
P(p) does not meet ∂F .

Conversely ∂F is determined by Y . In fact ∂F is the set of accumulation points of
Y on ∂X−1. If F ′ is another complete spacelike Cauchy surface of Y then ∂F ′ = ∂F .

The main step in order to prove the opposite inclusion is the following proposition
(recently achieved also by Barbot [8] with a different approach with respect to [15]),
that also holds for arbitrary standard spacetimes.

Proposition 4.19. If P is the past part of Y(C), then every level surface P (a) of the
cosmological time is complete.

Corollary 4.20. Every level surface P (a) of the past part P of a standard AdS
spacetime Y(C) is a complete Cauchy surface of Y(C), and the latter is the maximal
globally hyperbolic AdS spacetime that extends P .

Remark 4.21. The function τ extends to the cosmological time of Y(C), that takes
values on some interval (0, a0(C)), for some a0(C) satisfying π/2 < a0(C) < π .
Notice however that τ is C1 only on the past part.
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The map m−1. Let (F, λ) ∈ ML(S), F ⊂ FC ⊂ F̂ = H
2/� (FC, λ), with

universal coverings H
2 → F̂ , H → FC , and H̊ → F respectively, as usual. Fix an

embedding of H
2 in X−1 as a spacelike plane. The key ingredient to construct m−1

is the AdS version of the bending of H ⊂ H
2 along the lamination λ (see below).

This produces a convex embedding ϕλ : H̊ → X−1. Recall that to construct the H -
hull (via the Wick rotation) we used the bending map fλ : H̊ → H

3, that is a local
convex embedding, and then we followed the geodesic rays normal to fλ(H̊ ), in the
non-convex side bounded by fλ(H̊ ). Eventually the developing map dH has been
obtained by requiring that the integral lines of the cosmological times are sent to the
integral lines of the normal flow. Likewise, in the present situation, we construct a C1

developing map
dλ−1 : U0

λ→ X−1

by requiring that the integral lines of the cosmological time ofU0
λ are sent to the integral

lines of the normal flow. An important difference with respect to the hyperbolic case is
that the normal flow is followed now in the convex side bounded by ϕλ(H̊ ) (otherwise
singularities would be reached). It turns out that the image of dλ−1 is the past part of a
standard AdS spacetime, that plays here the role of a sort of AdS-hull. More precisely,
we have:

Theorem 4.22. (1) dλ−1 is an embedding onto the past part P λ of a determined
Uλ−1 = Y(Cλ), which is the universal covering of Yλ−1 ∈MGH−1(S). The image of
the AdS bending map ϕλ coincides with ∂+K(Cλ). The map dλ−1 continuously extends
to an isometry between the respective initial singularities.

(2) Uλ−1 is produced by the rescaling of Uλ
0 , directed by the gradient of the cos-

mological time T , with universal rescaling functions

α = 1

1+ T 2 and β = 1

(1+ T 2)2
.

(3) The cosmological time τ on P λ is given by

T (p) = tan τ(p).

In this way, we construct an injective map

m−1 : ML(S)→MGH−1(S).

The following general proposition (specialized to Stand−1(S)) implies that m−1 is in
fact a bijection.

Proposition 4.23. For every standard AdS domain Y = Y(C), the rescaling of its past
part P , directed by the gradient of the cosmological time τ , with universal rescaling
functions

α = 1

cos2 τ
and β = 1

cos4 τ
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produces a regular domain, whose cosmological time is given by the formula

T = tan τ.

It is not too hard to see, by means of local considerations, that such a rescaling
produces a flat spacetime. Showing that it is a regular domain is actually more de-
manding. This is equivalent to showing that the future boundary of the convex core is
isometric to a straight convex set pleated at a measured lamination. The key point is
the fact that level surfaces of τ are complete (Proposition 4.20).

On AdS bending. We are going to outline more precisely the construction of dλ−1.
The AdS bending runs similarly to the hyperbolic one, but with some remarkable
differences (that are eventually responsible, for example, that the AdS developing
maps are embeddings, in contrast with the hyperbolic ones). We also stress that
orientations play a subtle role in the AdS bending procedure. The basic difference
arises from the different behaviour of the “angles” between hyperbolic planes (that is,
spacelike planes) and of “rotations” around spacelike geodesics in X−1, with respect to
H

3. In fact, given two spacelike planes P1, P2 meeting each other along a geodesic l,
the dual points xi = x(Pi) lie on the geodesic l∗ dual to l. Then, we define the angle
between P1 and P2 as the distance between x1 and x2 along l∗. Notice the following:

Fix P1, then by varying P2, the angles between them are well-defined numbers that
span the whole interval (0,+∞).

Define a rotation around a spacelike geodesic l simply to be an isometry of X−1
which pointwise fixes l. We have

Lemma 4.24. Rotations around a geodesic l act freely and transitively on the dual
geodesic l∗. Such an action induces an isomorphism between the set of rotations
around l and the set of translations of l∗.

By duality, rotations around l act freely and transitively on the set of spacelike
planes containing l. Given two spacelike planes P1, P2 such that l ⊂ Pi , then there
exists a unique rotation T1,2 around l such that T1,2(P1) = P2.

Lemma 4.25. An isometry of X−1 is a rotation around a geodesic if and only if it is
represented by a pair (α, β) such that α and β are isometries of H

2 of hyperbolic type
with the same translation length.

Given two spacelike planes P1, P2 meeting along a geodesic l, let (α, β) be the
rotation taking P1 to P2. Then the translation length τ of α coincides with the angle
between P1 and P2.

There is a natural definition of positive rotation around an oriented spacelike
geodesic l (depending only on the orientations of l and X−1). Thus, an orienta-
tion on the dual line l∗ is induced by requiring that positive rotations act by positive
translations on l∗. In particular, if we take an oriented geodesic l in P(Id), and
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denote by X ∈ sl(2,R) the infinitesimal generator of positive translations along l
then it is not difficult to show that the positive rotations around l are of the form
(exp(−tX), exp(tX)) for t > 0. Actually, by looking at the action on the boundary
we deduce that both the maps (exp(−tX), Id) and (Id, exp(tX)) rotate planes through
l in the positive direction (see Figure 5).

(x−, x−)

p

L

R

(exp(−tX), Id)p

l

Figure 5. (exp(−tX), Id) rotates planes around l in the positive sense.

Given λ on H as usual, we construct now an AdS bending cocycle

Bλ = (Bλ−, Bλ+) : H̊ × H̊ → PSL(2,R)× PSL(2,R)

which formally satisfies properties similar to these of the quake cocycles of Section 3.6,
or the above hyperbolic bending cocycle. In fact, Bλ− and Bλ+ are exactly the Epstein–
Marden cocycles (like the quake cocycles), corresponding to the real-valued measured
laminations −λ and λ. Here −λ = (L,−μ), that is, we take the negative-valued
measure−μ. Although this is no longer a measured lamination in the ordinary sense,
the construction of [36] does apply. Besides the usual cocycle properties, Bλ also
verifies that if x, y lie in different strata then Bλ+(x, y) (resp. Bλ−(x, y)) is a non-trivial
hyperbolic transformation whose axis separates the stratum through x and the stratum
through y. Moreover the translation length is bigger than the total mass of [x, y].

All this is very simple in the usual local model for finite laminations. In fact, take
a finite measured geodesic lamination λ of H

2. Take a pair of points x, y ∈ H
2 and

enumerate the geodesics in λ that cut the segment [x, y] in the natural way l1, . . . , ln.
Moreover, we can orient li as the boundary of the half-plane containing x. With a little
abuse, denote by li also the geodesic in P(Id) corresponding to li , then letBλ(x, y) be
the isometry of X−1 obtained by composition of positive rotations around li of angle
ai equal to the weight of li . In particular, if Xi denotes the unit positive generator of
the hyperbolic transformations with axis equal to li , then we have

Bλ(x, y) = (Bλ−(x, y), Bλ+(x, y)) ∈ PSL(2,R)× PSL(2,R)
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where

Bλ−(x, y) = exp(−a1X1/2) � exp(−a2X2/2) � · · · � exp(−anXn/2)
and

Bλ+(x, y) = exp(a1X1/2) � exp(a2X2/2) � · · · � exp(anXn/2)

with the following possible modifications: a1 is replaced by a1/2 when x lies on l1
and an is replaced by an/2 when y lies on l1 The factor 1/2 in the definition of β±
arises because the translation length of exp tX is 2t .

By means of the bending cocycle, we construct an AdS bending map: take a
basepoint x0 in H̊ and set

ϕλ : H̊ � x �→ Bλ(x0, x)x.

Proposition 4.26. The bending map ϕλ is an isometric C0 embedding of H̊ onto an
achronal set of X−1.

Let U = U0
λ be the flat spacetime encoded by λ. Just as in the hyperbolic case,

we “pull-back” the bending cocycle Bλ to a continuous bending cocycle

B̂λ : U×U→ PSL(2,R)× PSL(2,R).

In fact, we get a natural extension such that the following holds true:
(1) For every p, q ∈ U such that N(p) and N(q) do not lie on the weighted part

of the lamination, we have

B̂λ(p, q) = Bλ(N(p),N(q)).
(2) B̂λ on the whole of U is constant along the integral geodesics of the gradient

of the cosmological time T .
(3) The extension is locally Lipschitzian (with respect to the Euclidean distance on

U), and the Lipschitz constant on K × K (K being any compact set in U) depends
only on the image of the Gauss map N(K), the maximum of the total masses of
geodesic paths of H joining points in N(K), and the maximum and the minimum of
the cosmological time T on K .

Finally, we can define our developing map dλ−1 : Uλ
0 → X−1. For every p ∈ U0

λ,

we define x−(p) as the dual point of the plane B̂λ(p0, p)(P (Id)) (that is, x−(p) =
B̂λ(p0, p)(Id)), and x+(p) = B̂λ(p0, p)(N(p)). Take representatives x̂−(p) and
x̂+(p) in SL(2,R) such that the geodesic segment between x̂−(p) and x̂+(p) is future
directed. Finally set

dλ−1(p) = [cos τ(p)x̂−(p)+ sin τ(p)x̂+(p)]
where τ(p) = arctan T (p).

As usual, we end with a few explicit computations for our favourite local model,
that is when λ is a single weighted geodesic.

Let us set λ0 = (l0, a0) and choose a basepoint p0 ∈ H
2 − l0. The surface

P = ϕλ(H
2) is simply the union of two half-planes P− and P+ meeting along a
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geodesic (that, with a little abuse of notation, is denoted by l0). We can suppose that
p0 is in P−, and l0 is oriented as the boundary of P−. If v± denote the dual points
of the planes containing P± we have v− = Id and v+ = exp(−a0X0), X0 being the
standard generator of translations along l0. The vector X0 is tangent to P(Id) along
l0, orthogonal to it, and points towards p0.

By definition, the image, say P , of �0 = d
λ0−1 is the union of three pieces: the

cone with vertex at v− and basis P−, say P−, the cone with vertex at v+ and basis P+,
say P+, and the join of the geodesic l0 and the segment [v−, v+], say Q.

Fix a point in l0, sayp0, and denote by v0 the unit positively oriented tangent vector
of l0 at p0 (that we will identify with a matrix in M(2,R)). Consider the coordinates
on U0, say (T , u, ζ ) introduced in Section 4.5. With respect to these coordinates we
have

�0(T , u, ζ )

=

⎧⎪⎨
⎪⎩

sin τ
(
ch ζ(ch u p̂0 + sh u v0)− sh ζ X0

)+ cos τ v̂− if ζ < 0,

sin τ(ch u p̂0 + sh u v0)+ cos τ exp(−ζ tan τ X0) if ζ ∈ [0, a0/T ],
sin τ

(
ch ζ ′(ch u p̂0 + sh u v0)− sh ζ ′X0

)+ cos τ v̂+ otherwise

where ζ ′ = ζ − a0/T , τ = arctan T and p̂0, v̂+, v̂− ∈ SL(2,R) are chosen as above.
Clearly�0 is C∞ for ζ �= 0, a0/T . A direct computation shows that the derivatives

along the coordinate fields glue on ζ = 0 and ζ = a0/T and this proves that�0 is C1.
By a direct computation we have

�∗0(η) =

⎧⎪⎨
⎪⎩
−dτ 2 + sin2 τ(dζ 2 + ch 2ζdu2) if ζ < 0,

−dτ 2 + sin2 τ(dζ 2 + du2) if ζ ∈ [0, a0/T ],
−dτ 2 + sin2 τ(dζ 2 + ch 2ζ ′du2) otherwise.

Since dτ 2 = dT 2

(1+T 2)2
and sin2 τ = T 2

1+T 2 , we finally see that �0 is obtained by a

rescaling directed by the gradient of T with the right rescaling functions.

Compatible holonomy. We obtain the holonomy representation of Yλ−1 ∈MGL(S),

hλ−1 : π1(S)→ PSL(2,R)×PSL(2,R), compatible with dλ−1 as follows. If x0 ∈ H̊ is
the usual fixed basepoint of the construction, then for every γ ∈ π1(S) = � we have

hλ−1(γ ) = Bλ(x0, γ x0) � (γ, γ ).

Remark 4.27. It follows from the previous discussion that the spacetimes in
MGH−1(S) have a few analogies with the hyperbolic 3-manifolds arising asH -hulls
of quasi-Fuchsian projective surfaces belonging to P (S). For instance, the curves at
infinity C ⊂ ∂X−1 of Y(C) play a similar role than the Jordan curves that bound the
universal coverings embedded in ∂H

3 = S2 of quasi-Fuchsian surfaces. However,
there are important differences that make the AdS behaviour much more “tame”. For
example such Jordan curves are in general rather wild, while the curves C are Lips-
chitz. Moreover, taking for example S compact, for every (F, λ) ∈ ML(S), along
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P−
Q

P+

Figure 6. The domain P with its decomposition. Also the surface P (a) is shown.

the ray (F, tλ) there is a critical value t0 > 0 such that Stλ ∈ P (S) is quasi-Fuchsian
only for t < t0. On the other hand, the description of Y tλ is qualitatively the same for
every t > 0; in particular all AdS developing maps are embeddings.

5 Causal AdS spacetimes, earthquakes and black holes

Beyond the classification achieved in the previous section, the AdS case displays a
rich phenomenology that we are going to point out.

5.1 On holonomy information

Let us recall first the following results of [55], in the case of compact S.

Theorem 5.1. If S is compact, and Y ∈ MGH−1(S), then, seeing Isom(X−1) as
PSL(2,R)× PSL(2,R):

(a) The holonomy h = (hL, hR) of Y is made by a pair of Fuchsian representations
of π1(S), and every such pair arises in this way (by varying Y ).

(b) Y is completely determined by its holonomy h = (hL, hR). In fact Y = Y(C),
where C is the graph in S1∞ × S1∞ = ∂X−1 of the unique orientation preserving
homeomorphism that conjugates the action of hL on S1∞ = ∂H

2 with that of hR .
This curve C is the unique h-invariant curve on ∂X−1.

In [8], [9] we can find the following generalization of point (a). Here we use the
notation of Section 3.
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Proposition 5.2. Let Y ∈MGH−1(S) be of finite type, with holonomy representation

h = (hL, hR) : π1(Y )→ PSL(2,R)× PSL(2,R).

Then both hL and hR are holonomy representations of hyperbolic structures belonging
to T (S). Conversely given a pair of representations h = (hL, hR) corresponding to
elements of T (S), then there exists a spacetime Y ∈ MGH−1(S) whose holonomy
is h.

Concerning point (b), the following partial generalization holds. Here we adopt
the notation of Corollary 3.31.

Proposition 5.3. Y ∈MGH−1(S) is completely determined by its holonomy provided
that Y = Yλ−1 for some λ ∈ Vc(F ) ∩MLc(F )

0.

This is essentially a consequence of the proof of the Earthquake Theorem consid-
ered below. On the other hand, non-equivalent spacetimes in MGH−1(S) can actually
share the same holonomy. This is the theme of the following construction.

5.2 Canonical causal AdS spacetimes with prescribed holonomy

We mostly refer to [8], [9]. Let us fix a representation h = (hL, hR) of π1(S, p0) as
in Theorem 5.2. We stress that the representation is fixed, and not only its conjugacy
class. For this reason, we have also fixed a basepoint p0 ∈ S. We consider the domain

�̃(h)

of points x ∈ X−1 such that, for every γ ∈ π1(S, p0), x and h(γ )(x) are not causally
related. We can prove:

Proposition 5.4. �̃(h) is simply connected and h-invariant; the action of π1(S, p0)

on it is free and properly discontinuous. The quotient, say �(h), is a causal AdS
spacetime homeomorphic to S × R.

Let us now consider the set
MGH(h)

of all AdS MGH spacetimes Y homeomorphic to S × R of the form Y = Y(C)/h
such that the nowhere timelike curve at infinity C is h-invariant. Note again that
each such maximal globally hyperbolic spacetime is fixed and not considered up to
Teichmüller-like equivalence. However, the following is not hard to see:

Remark 5.5. Ifh′ = ghg−1 is conjugate toh, then �̃(h′) = g�̃(h), and MGH(h′) =
gMGH(h), so that they have the same image in MGH−1(S). By fixing a representa-
tive h in any conjugation class, we get in this way an open partition of MGH−1(S).
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Lemma 5.6. The natural map MGH(h) → MGH−1(S) is injective. By fixing a
representative h in any conjugacy class we get a partition of MGH−1(S).

In fact we can prove

Proposition 5.7. �(h) is the union of the Y ∈ MGH(h), and �̃(h) is the union of
the h-invariant Y(C)’s.

See below for a description of the curves C arising in this way.

∂∞�̃(h) and the limit set. For a generic representation h, MGH(h) contains more
than one element. By Proposition 5.7 it follows that in general �(h) is not globally
hyperbolic. In a sense, it is just the maximal causal extension of every globally
hyperbolic Y ∈MGH(h). The reason is that the boundary at infinity

∂∞�̃(h)

of �̃(h) in the boundary of X−1 can have non-empty interior. Such a closure can
be explicitly described by means of the holonomy of the peripheral loops. Let γ ∈
π1(S, p0) freely homotopic to a loop surrounding a point in V . If hL(γ ) (resp.
hR(γ )) is of hyperbolic type, we set IL(γ ) (resp. IR(γ )) to be the interval of S1 whose
endpoints are the fixed points of hL(γ ) (resp. hR(γ )) and that does not meet the limit
set of hL (resp. hR). If hL(γ ) is parabolic, then let IL(γ ) be the fixed point of hL(γ ).
Similarly for IR(γ ). Then the “rectangle” R(γ ) = IL(γ )× IR(γ ) is contained in the
closure of �̃(h), and in fact ∂∞�̃(h) is the closure of

⋃
γ R(γ ). The closure of the

complement of the union of these rectangles R(γ ) in ∂∞�̃(h) can be regarded as a
limit set

� = �(h)
in the sense that it is contained in the closure of the orbit of any point x ∈ X−1.

A rectangle is non-degenerate if both hL(γ ), hR(γ ) are of hyperbolic type.

Lemma5.8. If some rectangleR(γ ) is non-degenerate, then the interior of ∂∞�̃(h) is
not empty. �(h) is not globally hyperbolic if and only if there is some non-degenerate
rectangles.

It is possible to find points p, q close to R(γ ) such that I+(p) ∩ I−(q) is not
pre-compact in X−1 and this contradicts global hyperbolicity.

The asymptotic regions. Notice that a non degenerate rectangle R(γ ) has exactly
two vertices that are the endpoints of a spacelike geodesic lγ that is invariant under
(hL(γ ), hR(γ )). The boundary lines of R(γ ) together with lγ span a surface H̃ (γ )
embedded in �̃(h) made by two null triangles intersecting at lγ . This surface divides
�̃(h) in two components. The component whose closure in ∂∞�̃(h) is R(γ ) is
called an asymptotic region of �̃(h), denoted by Ã(γ ), and H̃ (γ ) is its horizon.
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(A(γ ),H(γ )) is invariant under (hL(γ ), hR(γ )) and the quotient embeds in �(h)
giving us an asymptotic region A(γ ) with horizon H(γ ). The latter is the union
of two null annuli along a spacelike closed geodesic. The length of this spacelike
geodesic is called the size of the horizon, whereas the momentum is the twist factor
for the parallel transport along it. If lL, lR are the translation lengths of hL(γ ) and
hR(γ ), the size is simply

s = (lL + lR)/2,
whereas the momentum is

m = (lL − lR)/2.
�(h) has exactly k asymptotic regions, where k is the number of points p ∈ V such
that the surrounding circle is of hyperbolic type for both hL and hR .

More about Y(C) ⊂ �̃(h). Clearly the h-invariant curve at infinity C is contained
in ∂∞�̃(h). On the other hand, every nowhere timelike meridian of ∂X−1 contained
in ∂∞�̃(h) is determined by drawing in each non-degenerate rectangleR(γ ) an arc lγ
joining the vertices that are the endpoints of the spacelike geodesic of the corresponding
horizon. In the degenerate case the segment lγ coincides withR(γ ). The closureC of
the union of these lγ ’s is a nowhere timelike meridian. Moreover, if the segments are
chosen in an h-invariant way (that is, lαγ α−1 = h(α)lγ ), then C is the curve at infinity

of some Y(C) ⊂ �̃(h).

5.3 AdS bending and Earthquake Theorems

By extending the arguments given in [55] in the case of compact S, we have for a
general S of finite type:

Proposition 5.9. Let Y ∈ MGH−1(S) be encoded by (F, λ) ∈ ML(S), and let
h = (hL, hR) be its holonomy. Then hL (resp. hR) is the holonomy of the surface
FL = βLλ (F ) (resp. FR = βRλ (F )), that is, the surface in T̃ (S) obtained by the left
(right) earthquake on F along λ.

We stress that Proposition 5.9, together with Theorem 5.1, actually gives an AdS
proof of the Earthquake Theorem 3.33 when S is compact. For, given F 0, F 1 two
hyperbolic structures on a compact surface S, there exists a unique spacetime Yλ−1 ∈
MGH−1(S) whose holonomy is h = (h0, h1), where hj is the hyperbolic holonomy
of Fj . Then the left earthquake along 2λ transforms F 0 into F 1.

Now let us consider the general case (S non necessarily compact), we consider the
subset

MGHc(h)

of MGH(h) consisting of the spacetimes Y that satisfy the further condition of being
encoded by pairs (F, λ) ∈ MLc(S). In order to get such an AdS proof of the full



598 Riccardo Benedetti and Francesco Bonsante

Earthquake Theorem 3.33, we need to characterize the spacetimes Y = Y(C)/h ∈
MGHc(h) in terms of the curve at infinity C. Consider again the general description
of an h-invariant meridian C given above. A case of particular interest is when the
segments lγ are chosen on the boundary of R(γ ). Meridians C obtained in this way
are called extremal. Notice that for each asymptotic region there are only two ways to
choose such an arc: an upper extremal arc and a lower extremal arc. Thus, there are
exactly 2k h-invariant extremal arcs where k is defined as above. This holds also when
k = 0; in such a case �(h) = Y(C)/h is globally hyperbolic, and C is its extremal
meridian. Finally we note the following nice geometric characterization (see [29]).

Proposition 5.10. Y(C) is the universal covering of some Y ∈MGHc(h) if and only
if C is an h-invariant extremal meridian.

Corollary 5.11. �(h) is globally hyperbolic if and only if it belongs to MGHc(h)

and is encoded by (F, λ) such that F ∈ Tg,r and the lamination does not enter the
cusps.

We can now sketch the proof of Theorem 3.33. Let F 0, F 1 be the interior of the
convex cores of H

2/h0, H
2/h1 respectively, that are both homeomorphic to S. Set

h = (h0, h1) and take �(h). Let us apply Proposition 5.9 to every Y ∈ MGHc(h),
encoded by some (F, λ) ∈ MLc(S). As the convex cores are uniquely determined
by the holonomy, and Tc(S) is closed under earthquakes, it follows that F 0 = βLλ (F ),
F 1 = βRλ (F ), so that F 1 = βL2λ(F 0). The determined lack of uniqueness in Theo-
rem 3.33, the “enhanced” version 3.34, as well as Corollary 3.35 are now rather easy
consequences of Proposition 5.10, Lemma 3.28, and the definition of the (enhanced)
quake-flow.

5.4 Convex core of �(h) and black holes

We denote by
�c(h) ⊂ �(h)

the union of the spacetimes belonging to MGHc(h). We do similarly for �̃c(h) ⊂
�̃(h). It follows from Proposition 5.10 that the connected components of�(h)\�c(h)

coincide with the asymptotic regions defined above. Similarly for �̃(h) \ �̃c(h).
The limit set � is contained in the closure of �̃c(h) which is the union of a finite

number of globally hyperbolic spacetimes. Hence there is a spacelike plane P that
does not intersect �̃c(h), so that we can take the convex hull

K̃(h)

of � in R
3 = P

3 \ P̂ , where P̂ is the projective plane containing P . It turns out that
K̃(h) is contained in the closure of �̃c(h), it is h-invariant and does not depend on
the choice of P . K̃(h) is called the convex core of �̃(h), and its quotient

K(h)
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is the convex core of �(h). We can see that �̃(h) coincides with the set of points
in X−1 whose dual plane does not intersect K̃(h), and that every plane dual to some
point of K̃(h) does not intersect �̃(h). The boundary of K̃(h) contains the spacelike
geodesics of the horizons of �̃c(h). Such a geodesic disconnects ∂K̃(h) into two h-
invariant pleated surfaces whose quotients are homeomorphic to S. One of them, say
∂+K̃(h), is in the future of the other one, say ∂−K̃(h), and they are called the future
and the past boundary of K̃(h) respectively. It turns out that ∂+K̃(h) is obtained via
the AdS bending of (F+, λ+) ∈ MLc(S) (according to Section 4) so that it is the
future boundary of the past part of a specific Y(C+)/h ∈MGHc(h). In fact:

The extremal h-invariant meridian C+ is obtained by taking the lower extremal
arc in each rectangle.

Similarly ∂−K̃(h) is the past boundary of the future part of a specific spacetime
Y(C−)/h ∈MGHc(h) ( whose future boundary of the past part is obtained by bending
a certain (F−, λ−) ∈MLc(S)). The corresponding extremal h-invariant meridianC−
is obtained by taking the upper extremal arc in each rectangle. This makes sense also
when �(h) is globally hyperbolic; in such a case C− = C+.

Assume now that�(h) is not globally hyperbolic. For each boundary component ci
ofF+, lci is the size of the corresponding horizon, whereas Ici (λ+) is the corresponding
momentum. It follows thatλ+ belongs to the closure of Vc(F+) (recall Corollary 3.31).
In fact this property uniquely characterizes Y+ within MGHc(h). In particular this
selects a privileged one among the earthquakes of Theorem 3.33. For (F−, λ−)we have
the somehow opposite behaviour, that is, for every boundary component Ici (λ−) > lci .

Set

B̃(h) = Y(C−), B(h) = B̃(h)/h, W̃ (h) = Y(C+), W(h) = W̃ (h)/h.
Denote byKB(h),KW(h) the respective convex cores as MGH spacetimes. We have

Proposition 5.12. (1) K(h) = KB(h) ∩KW(h).
(2) �̃c(h) = B̃(h) ∪ W̃ (h), �c(h) = B(h) ∪W(h).
In Physics literature the special globally hyperbolic spacetime B(h) (W(h)) is

known as the multi black hole (multi white hole) contained in the causal spacetime
�(h). The attribute “multi” mostly refer to the fact that it has a “multi” horizon. B(h)
looks like an honest black hole in the sense that every future inextensible causal curve
emanating from any event in B(h) never leaves B(h) and eventually reaches the final
singularity �+ of B(h) in finite time. In particular, lightlike rays emanating from
B(h) do not reach ∂∞�(h). So the final singularity �+ is an actual singularity for
the spacetime�(h) itself, as it reflects its future timelike geodesic incompleteness (at
the initial singularity of B(h) that is contained in its interior, �(h) is perfectly non
singular). The initial singularity �− of the white hole W(h) plays a similar role with
respect to the past. However, �+ is “censured” by the multihorizon of B(h), while
�− is a “naked” singularity. In Figure 7 we see a schematic picture of �(h) with its
convex core and its black hole.



600 Riccardo Benedetti and Francesco Bonsante

A
A

B

K

KB

Figure 7. A schematic picture of�with its convex core K and asymptotic regions A. It contains
the black hole B with is convex core KB containing K .

Asymptotic regions and BTZ black holes. Every asymptotic region R = R(γ ) of
�(h) has by itself a natural extension to a maximal causal AdS spacetime B = B(γ ),
homeomorphic to (S1×R)×R. B contains a maximal globally hyperbolic spacetime
BH , with a complete Cauchy surface homeomorphic to the annulus S1×R, which is
known as the BTZ black hole contained in B (see [6], [30]). B has been particularly
studied because it supports Kerr-like metrics with several qualitative analogies with
the classical rotating black hole solutions of (3+ 1) gravity. Let us briefly recall this
matter. It is convenient to lift X−1 = PSL(2,R) to X̂−1 = SL(2,R) so that it is given
by the matrices of the form

X =
(
T1 +X1 T2 +X2
−T2 +X2 T1 −X1

)

such that det(X) = 1, 0 < T 2
1 − X2

1 < 1, X1, T1 have a definite sign. We also fix a
suitable SL(2,C)-lifting of the isometry (hL(γ ), hR(γ )) corresponding as above to
the given asymptotic region. Let us assume for simplicity that it is of the form((

exp(r+ − r−) 0
0 exp(r− − r+)

)
,

(
exp((r+ + r−)) 0

0 exp(−(r+ + r−))
))

and that r+ > r− ≥ 0. This isometry generates a group G that acts on the whole of
X̂−1, with a constant vector field ξ as infinitesimal generator, and we have q(ξ) =
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(T 2
2 −X2

2)r+ + (T 2
1 −X2

1)r− (q is defined in Section 2). Roughly speaking, B̃ is the
maximal region of X−1 such that:

(1) q(ξ) > 0 on B̃, so that we can take the function r = q(ξ)1/2 > 0;
(2) {r+ > r > r−} ⊂ B̃;

(3) B̃ is G-invariant, the group acts nicely and the quotient B is a causal spacetime
homeomorphic to (S1 × R)× R.

B̃ admits a G-invariant “tiling” by regions of three types I, II, III contained in
{r > r+}, {r+ > r > r−}, {r− > r} respectively. Each region is bounded by suitable
null horizons at which r = r±. We can see that our asymptotic regions Ã are of
type III.

By “joining” (the lifting of) the spacelike line lγ with the two liftings of the dual line
l∗γ respectively, we get two “tetrahedra” say B̃H and W̃H embedded in B̃ intersecting
at lγ . These are the two regions of type II that form the whole of {r+ > r > r−}. One
projects onto the BTZ black hole BH , the other one covers the white hole embedded
in B, say WH . Note that both BH and WH are instances of “degenerate” globally
hyperbolic spacetimes in the sense of Section 4.7.

For suitable coordinates (v, r, φ) on B, where (r, φ) look like polar coordinates
on the v-level surfaces, the Kerr-like metric is of the form

ds2 = (M − r2)dv2 + f−1dr2 + r2dφ2 − Jdvdφ
where

M = r2+ + r2−, J = 2r+r−, M ≥ J, f = −M + r2 + J 2

4r2

and they are related to the previously defined “size” and “momentum” by

M + J = s2, M − J = m2.

Each region of B supports this metric, the null horizons of the regions being just
“coordinate singularities”.

BTZ black holes naturally arise in the framework of Wick rotation-rescaling theory
for the elementary surfaces of finite type, that is having Abelian fundamental group:
S = S1×R andS = S1×S1. This displays an interesting role of quadratic differentials
instead of geodesic laminations. See Chapter 7 of [15] for more details.

5.5 (Broken) T -symmetry

Let Y ∈ MGH−1(S). By reversing time orientation we get another spacetime Y ∗ ∈
MGH−1. This involution is called T -symmetry as the involution induced on ML(S)
via the map m−1. If Y(C) is the universal covering of Y , then the universal covering
of Y ∗ is Y∗ = Y(C∗), where C∗ is the image of the curve C under the involution of
∂X−1 = S1∞ × S1∞

(x, y) �→ (y, x).
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Moreover, the holonomy h∗ of Y ∗ is obtained by exchanging the components of the
holonomy h of Y

h = (h−, h+)←→ h∗ = (h+, h−).
If B(h) is the black hole of �(h), then B(h)∗ = W(h∗). The opposite behaviour
“Ic(λ+) ≤ lc vs Ic(λ−) > lc” at the future boundary of the respective past parts (see
above), can be considered as the basic feature of “broken T -symmetry”. A particular
instance is when B(h) is encoded by (F, λ) such that F ∈ Tg,r = T (S) ∩ Tc(S) (the
smallest stratum of Tc(S)), and λ enters the cusps (in Figure 8 we show an example
of B(h) where F has g = 0, r = 3, and the lamination is like in Example 3.15
with respect to a standard ideal triangulation of F by two triangles). In this case F ∗
belongs indeed to a higher dimensional cell of Tc(S) and the white hole W(h∗) has
the property that Iλ∗(c) = l(c) at every boundary curve, and every asymptotic region
has null momentum.

Figure 8. The convex core of a black hole B(h). On the left the lamination with its dual spine.
On the right the bending of H

2 along λ in X−1. Grey regions are lightlike components of the
past boundary of Kλ.

6 Including particles

In 3-dimensional gravity massive point particles can be modeled as cone singularities
along timelike lines. In particular, the rest mass m of a particle is related to the
curvature k concentrated along its timelike geodesic “world line” by

k = 2πm, k = 2π − α
where α is the cone angle. If we require that the mass is positive, then it is bounded
by 0 ≤ m ≤ 1, while 2π ≥ α ≥ 0. However, there is no real geometric reason to
exclude cone angles bigger than 2π .
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It is a natural question whether Wick rotation-rescaling theory does apply also
on cone spacetimes. In such a perspective, it is quite natural to extend the space
Tc(S) defined in Section 3, by extending the notion of “type” to θ = VH ∪ VC ,
and allowing hyperbolic structures F on S whose completion FC is compact, with
geodesic boundary components corresponding to the points ofVH and possibly conical
singularities at the points of VC . In particular we allow also holonomy of elliptic type
at the circles surrounding these points. The parabolic holonomies correspond now to
cone angles equal to 0, hence to particles of extremal mass. In order to preserve the
conical structure, we consider measured geodesic laminations on such cone surfaces
F that have compact support L in F , that is whose closure in FC does not intersect
the singularities.

For the sake of simplicity (and following [28] to which we will refer for most results
stated in this section), from now on we will consider the particular case whereVH = ∅.
Even in this simplest case, a complete answer to the above question is unknown. Only
a few partial results are known, mostly concerning the case of “small” cone angles
(< π ), or equivalently the case of particles with “big” masses.

Let Ŝ, S = Ŝ \ V , V = {p1, . . . , pr} be as before. Let g be the genus of Ŝ. Fix an
r-tuple of angles A = (α1, . . . , αr), such that the “Gauss–Bonnet inequality”∑

j

(
1− αj

2π

)
> 2− 2g

holds; notice that we are not requiring here that the cone angles are smaller than 2π .
We denote by

Tc(S,A)

the Teichmüller space of hyperbolic structures F on S whose completion FC has
conical singularities at p1, . . . , pr , of cone angles α1, . . . , αr .

By a general result of Troyanov [65], we have

Proposition 6.1. The natural map

Tc(S,A)→ Tg,r

that associates to every F ∈ Tc(S,A) the unique complete hyperbolic structure of
finite area F̃ on S in the same conformal class of F , is a bijection.

This means in particular that Tc(S,A) is not empty. If αj = 0 for every j , then
F̃ = F and Tc(S, 0) just coincides with Tg,r .

For everyF ∈ Tc(S,A), we denote byMLc(F,A) the space of measured geodesic
laminations on F with compact support. The space of all such (F, λ)’s is denoted by
MLc(S,A). When A = 0, then MLc(F, 0) just coincides with MLc(F̃ )

0 (defined
in Section 3). More generally we have:

Proposition 6.2. Assume that for every j , αj < π . Then there is a natural identifica-
tion between MLc(F,A) and MLc(F̃ )

0.
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We give a brief sketch of the proof of this proposition, referring to [28] for details.
Since αi < π , for small ε > 0, any non-peripheral loop on F admits a geodesic
representative whose distance from V is at least ε.

Denote by �ε the complement of a regular neighborhood of V in FC of ray ε.
Given λ̃ ∈ MLc(F̃ )

0, its support is contained in �ε , for ε sufficiently small. Since
�ε is compact, it follows that the leaves of λ̃ are quasi-geodesic in F . So they can be
stretched to become geodesic with respect to F . The union of all these leaves makes
a geodesic lamination λ on F . A train-track carrying λ̃ carries also λ so the latter can
be equipped with a transverse measure corresponding to the measure on λ̃.

Remark 6.3. If some cone angle αi is bigger than π , then Proposition 6.2 fails. In
fact it is not difficult to construct a surface with cone angles bigger than π and a loop
c whose geodesic representative passes through the singular point.

6.1 Maximal globally hyperbolic spacetimes with particles

Since the causal structure of a spacetime with timelike geodesic world lines of conical
singularities extends also on the singular locus, we can extend as well the notion of
Cauchy surfaces. These turn out to be spacelike with conical singularities. Such
a cone spacetime is said to be globally hyperbolic if it contains a Cauchy surface.
Similarly to the smooth case, we can restrict our study to maximal globally hyperbolic
ones. More precisely we set

MGHκ(S,A)

the Teichmüller-like space of cone spacetime structures h on Ŝ × R, of constant
curvature κ ∈ {−1, 0, 1}, such that

– h is non singular on S × R;

– h has a timelike geodesic line of conical singularity of angle αi at each {pi}×R;

– h is maximal globally hyperbolic and has a Cauchy surface orthogonal to the
singular set;

– these structures are considered up to isotopies of Ŝ × R preserving V × R.

By easily adapting the constructions of Section 4 we get, for every κ = 0,±1, the
map

mκ : MLc(S,A)→MGHκ(S,A).

The main differences are that even for κ = 0,−1 the developing maps are no longer
embeddings; moreover, the asymptotic complex projective structures produced by the
Wick rotations have also conical singularities. As in the smooth case, the maps mκ

are injective. For the so obtained spacetimes have cosmological time, and one can
recover the corresponding data (F, λ) by looking at level surfaces of cosmological
time. Moreover, by construction, canonical Wick rotations and rescalings, directed
by the gradient of cosmological times, with the usual universal rescaling functions,
apply to the spacetimes belonging to the images of the maps mκ .
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On the other hand, the question of having an intrinsic characterization of the images
Im(mκ) is largely open. In particular one asks to determine, for every κ , the angle
assignments A such that mκ gives a parametrization of the whole of MGHκ(S,A)
(possibly inverting the time orientation). We have (see [28]):

Proposition 6.4. If all the cone angles are less than π , then the spacetimes belonging
to Im(m−1) are precisely those admitting a convex Cauchy surface orthogonal to the
singular locus.

In fact, under such a “big masses” hypothesis, being in the image of m−1 turns out to
be equivalent to admitting a convex core, that is a minimal convex subset. The convex
core is homeomorphic to Ŝ × R and its boundary is the union of two C0,1-spacelike,
intrinsically hyperbolic bent cone surfaces ∂+K(Y ) and ∂−K(Y ), orthogonal to the
singular locus. Just like the non-singular case, Y is encoded by (F, λ) if and only if
the future boundary of its convex core is obtained by bending F along λ; similarly for
the past boundary, via T -symmetry.

One would expect that for big masses, the map m−1 actually is a bijection, that is,
a convex Cauchy surface should always exist.

If some cone angle is bigger or equal than π , it is known that in general the maps
mκ are not onto, even if all masses are positive. For example in [17], by applying
a so called “patchwork” construction, one produces flat MGH cone spacetimes with
positive masses and with some cone angles equal to π , that do not belong to the image
of m0. In fact it is remarkable that these spacetimes have nevertheless cosmological
time whose level surfaces are orthogonal to the singular locus, and are flat instead of
hyperbolic at the singular points of cone angle π . The canonical rescalings apply to
them so that we finally also get spacetimes that do not belong to the images of m±1.

6.2 Earthquakes on hyperbolic cone surfaces

As every lamination λ ∈ MLc(F,A) avoids the conical points, the notion of earth-
quake along such a lamination is defined as well. Similarly to the non-singular case,
we have (see [28])

Theorem 6.5. If Y has big masses, belongs to Im(m−1), and is encoded by (F, λ) ∈
MLc(S,A), then the left (resp. right) earthquake on F along λ produces surfaces
βL(F, λ) (resp. βR(F, λ)) ∈ Tc(S,A) whose holonomy coincides with the right (resp.
left) holonomy of Y .

Under the big masses hypothesis, let us consider the map

μ : Im(m−1)→ Tc(S,A)× Tc(S,A)

that associates to every Y the points obtained by left and right earthquake on (F, λ)
respectively, as above. We have ([28])
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Theorem 6.6. The following equivalent facts hold.

(1) Given F,F ′ ∈ Tc(S,A) there exists a unique λ ∈ MLc(F,A) such that
βL(F, λ) = F ′.

(2) The map μ is bijective.

Notice that the first statement is in purely hyperbolic terms. The equivalence
between the two statements follows from Theorem 6.5. This equivalence between the
hyperbolic and Lorentzian formulations plays a subtle role in the proof of Theorem 6.6.
In fact by means of the hyperbolic formulation the map μ is proved to be locally
injective, whereas Lorentzian geometry is used to prove that it is a proper map.

Finally we mention that in Chapter 7 of [15], we have described a quite different
family of spacetimes with cone angles ≥ π (i.e. possibly with negative masses) that
are governed by quadratic differentials rather than by measured geodesic laminations,
and such that Wick rotation-rescaling machinery does apply to them.
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1 Introduction

The work of Fricke–Klein [21] develops the deformation theory of hyperbolic struc-
tures on a surface � in terms of the space of representations of its fundamental group
π = π1(�) in SL(2,C). This leads to an algebraic structure on the deformation
spaces. Here we expound this theory from a modern viewpoint.

We emphasize the close relationship between algebra and geometry. In particular
algebraic properties of 2×2 matrices are applied to hyperbolic geometry in low dimen-
sions. Our main object of interest is the deformation space of hyperbolic structures
on a fixed compact surface-with-boundary �. The points of this deformation space
correspond to equivalence classes of marked hyperbolic structures on int(�) where
the ends are either cusps (complete ends of finite area) or are collar neighborhoods of
closed geodesics. Such deformation spaces have been named Fricke spaces by Bers–
Gardiner [3]. When� is closed, then the uniformization theorem identifies hyperbolic
structures with conformal structures and the Fricke space is commonly identified with
the Teichmüller space of marked conformal structures on �.

Hyperbolic structures are a special case of locally homogeneous geometric struc-
tures modelled on a homogeneous space of a Lie group G. These structures were
first systematically defined by Ehresmann [15], and they determine representations
of the fundamental group π1(�) in G. Equivalence classes of structures determine
equivalence classes of representations, and the first part of this chapter deals with the
algebraic problem of determining the moduli space of equivalence classes of pairs of
unimodular 2× 2 matrices.

Our starting point is the following well-known yet fundamental fact when π is
a free group F2 of rank two. This fact may be found in the book of Fricke and
Klein [21] and the even earlier paper of Vogt [76]. Perhaps much was known at the
time about invariants of 2×2 matrices among the early practitioners of what has since
become known as “classical invariant theory”. Now this algebraic work is contained
in the powerful general theory developed by Procesi [67] and others, which in a sense
completes the work begun in the 19th century.

Procesi’s theorem implies that the ring of invariants on the space of representations

π
ρ−→ SL(2,C) is generated by characters

ρ
tγ�−→ tr

(
ρ(γ )

)
,

where γ ∈ π , and hence we call this ring the character ring. We begin by proving the
elementary fact that character ring R1 of a cyclic group is the polynomial ring C[tr]
generated by the trace function SL(2,C)

tr−→ C. From this we proceed to the basic
fact, that the character ring R2 of the rank two free group F2 is a polynomial ring on
three variables:

Theorem A (Vogt [76], Fricke [20]). Let SL(2,C) × SL(2,C)
f−→ C be a regular

function which is invariant under the diagonal action of SL(2,C) by conjugation.
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There exists a polynomial function F(x, y, z) ∈ C[x, y, z] such that

f (ξ, η) = F(tr(ξ), tr(η), tr(ξη)).

Furthermore, for all (x, y, z) ∈ C
3, there exists (ξ, η) ∈ SL(2,C) × SL(2,C) such

that ⎡
⎣xy
z

⎤
⎦ =

⎡
⎣ tr(ξ)

tr(η)
tr(ξη)

⎤
⎦ .

Conversely, if x2 + y2 + z2 − xyz �= 4 and (ξ, η), (ξ ′, η′) ∈ SL(2,C) × SL(2,C)
satisfy ⎡

⎣ tr(ξ)
tr(η)

tr(ξη)

⎤
⎦ =

⎡
⎣ tr(ξ ′)

tr(η′)
tr(ξ ′η′)

⎤
⎦ =

⎡
⎣xy
z

⎤
⎦ ,

then (ξ ′, η′) = g.(ξ, η) for some g ∈ G.

Algebro-geometrically, TheoremA asserts that the SL(2,C)-character varietyV2 of
a free group of rank two equals C

3. This will be our basic algebraic tool for describing
moduli spaces of structures on the surface � and their automorphisms arising from
transformations of �.

The condition x2 + y2 + z2 − xyz �= 4 also means that the matrix group 〈ξ, η〉
acts irreducibly on C

2. That is, 〈ξ, η〉 preserves no proper nonzero linear subspace
of C

2. The condition that ξ, η generate an irreducible representation is crucial in
several alternate descriptions of SL(2,C)-representations of F2. In particular, it is
equivalent to the condition that the PGL(2,C)-orbit is closed in Hom(F2, SL(2,C)).
This condition is in turn equivalent to the orbit being stable in the sense of Geometric
Invariant Theory.

A more geometric description involves the action of the subgroup 〈ξ, η〉 ⊂ SL(2,C)
on hyperbolic 3-space H3. The group PSL(2,C) acts by orientation-preserving isome-
tries of H3. An involution, that is, an element g ∈ PSL(2,C) having order two, is
reflection in a unique geodesic Fix(g) ⊂ H3. Denote the space of such involutions
by Inv. Denote the identity by Id.

Theorem B (Coxeter extension). Suppose that ξ, η ∈ SL(2,C) generate an irre-
ducible representation and let ζ = η−1ξ−1 so that

ξηζ = Id.

Then there exists a unique triple of involutions

ιξη, ιηζ , ιζ ξ ∈ Inv
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such that the corresponding elements P(ξ),P(η),P(ζ ) ∈ PSL(2,C) satisfy

P(ξ) = ιζ ξ ιξη,
P(η) = ιξηιηζ ,
P(ζ ) = ιηζ ιζ ξ .

From Theorem A follows the identification of the Fricke space of the three-holed
sphere in terms of trace coordinates as (−∞,−2]3. The three trace parameters corre-
spond to the three boundary components of�. From Theorem B follows the identifica-
tion of the Fricke space of the three-holed sphere with the space of (mildly degenerate)
right-angled hexagons in the hyperbolic plane H2. (Right-angled hexagons are allowed
to degenerate when some of the alternate edges covering boundary components de-
generate to ideal points.)

The condition x2 + y2 + z2 − xyz �= 4 means that 〈ξ, η〉 defines an irreducible
representation on C

2. This is equivalent to the condition that

tr[ξ, η] �= 2.

Thus the commutator trace plays an important role, partially because the fundamental
group of the one-holed torus admits free generators X, Y such that the boundary
component corresponds to [X, Y ]. In particular trace coordinates identify the Fricke
space of the one-holed torus with

{(x, y, z) ∈ (2,∞) | x2 + y2 + z2 − xyz ≤ 0},
where the boundary trace equals

tr[ξ, η] = x2 + y2 + z2 − xyz ≤ −2.

The trace coordinates are related to Fenchel–Nielsen coordinates. Similar descriptions
of the Fricke spaces of the two-holed cross-surface (projective plane) and the one-holed
Klein bottle are also given.

The character variety of F3 is more complicated. LetX1, X2, X3 be free generators.
The traces of the words

X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3, X1X3X2

generate the SL(2,C)-character ring of F3. We denote these functions by

x1, x2, x3, x12, x13, x23, x123, x132

respectively. However, the character ring is not a polynomial ring on these generators,
due to the trace identities expressing the triple traces x123 and x132 as the roots of a
monic quadratic polynomial whose coefficients are polynomials in the single traces xi



Chapter 15. Trace coordinates on Fricke spaces of some simple hyperbolic surfaces 615

and double traces xij :

x123 + x132 = x12x3 + x13x2 + x23x1 − x1x2x3,

x123 x132 = (x2
1 + x2

2 + x2
3)+ (x2

12 + x2
23 + x2

13)

− (x1x2x12 + x2x3x23 + x3x1x13)+ x12x23x13 − 4.

Furthermore the character variety is a hypersurface in C
7 which is a double branched

covering of C
6. In particular its coordinate ring, the character ring, is the quotient

R3 := C[x1, x2, x3, x12, x13, x23, x123]/I
by the principal ideal I generated by the polynomial

�(x1, x2, x3, x12, x13, x23, x123) := x1x2x3x123 + x12x13x23

− x1x2x12 − x1x3x13 − x2x3x23

− x1x23x123 − x2x13x123 − x3x12x123

+ x2
1 + x2

2 + x2
3 + x2

12 + x2
13 + x2

23 + x2
123 − 4.

We use this description to discuss the Fricke spaces of the four-holed sphere �0,4
and the two-holed torus �1,2. In these cases, the generators Xi and their products
correspond to curves on the surface, and we pay special attention to the elements
corresponding to the boundary ∂�.

In particular we describe the homomorphisms on character rings induced by the
orientable double coverings of the two-holed cross-cap C0,2,

�0,4 −→ C0,2,

and the one-holed Klein bottle C1,1,

�1,2 −→ C1,1,

respectively.
Finally we end with the important observation (see Vogt [76]) that the SL(2,C)-

character ring Rn of a free group Fn where n ≥ 4, is generated by traces of words of
length ≤ 3.

This chapter began as an effort [31], to provide a self-contained exposition of
Theorem A. Later it grew to include several results on hyperbolic geometry, which
were used, for example in [30] but with neither adequate proofs nor references to the
literature. In this version, we have tried to give a leisurely and elementary description of
basic results on moduli of hyperbolic structures using trace coordinates. In Chapter 17
of this volume, written by Feng Luo [18], there is another point of view on the trace
coordinates, following the Grothendieck reconstruction principle.
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Notation and terminology. We mainly work over the field C of complex numbers
and its subfield R of real numbers. Denote the ring of rational integers by Z. We
denote projectivization by P, so that if V is a C-vector space (respectively an R-
vector space), then P(V ) denotes the set of all complex (respectively real) lines in V .

Similarly ifV
ξ−→ W is a linear transformation between vector spacesV,W , denote the

corresponding projective transformation by P(ξ), wherever it is defined. For example
the complex projective line CP

1 = P(C2). The noncommutative field of Hamilton
quaternions is denoted H. The set of positive real numbers is denoted R+.

Denote the algebra of 2× 2 matrices over C by M2(C).
The trace and determinant functions are denoted tr and det respectively. Denote

the transpose of a matrix A by A.
Let k be a field (either R or C). Denote the multiplicative group of k (the group of

nonzero elements) by k∗.
Letn > 0 be an integer. The general linear group is denoted GL(n,k); for example

GL(2,C) is the group of all invertible 2 × 2 complex matrices. We also denote the
group of scalar matrices

k∗Id ⊂ GL(n,k)

by k∗. The special linear group consists of all matrices in GL(n,k) having deter-
minant one, and is denoted SL(n,k). The projective linear groups PGL(n,k) (and
respectively PSL(n,k)) are the quotients of GL(n,k) (respectively SL(n,k)) by the
central subgroup {λId | λ ∈ k∗} of scalar matrices, which we also denote k∗.

If A,B are matrices, then their multiplicative commutator is denoted [A,B] :=
ABA−1B−1 and their additive commutator (their Lie product) is denoted Lie(A,B) :=
AB − BA.

IfA is a transformation, denote its set of fixed points by Fix(A). Denote the relation
of conjugacy in a group by ∼. Denote free product of two groups A, B by A ∗ B. If
a1, . . . , an are elements of a group, then 〈a1, . . . , an〉 denotes the subgroup generated
by a1, . . . , an. The presentation of a group with generators g1, . . . , gm and relations
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r1(g1, . . . , gm), . . . rn(g1, . . . , gm) is denoted

〈g1, . . . , gm | r1, . . . , rn〉.
Denote the free group of rank n by Fn. Denote the symmetric group on n letters by Sn.

Denote the (real) hyperbolic n-space by Hn.
We briefly summarize the topology of surfaces.
A compact surface with n boundary components will be called n-holed. If M is a

closed surface, then the complement in M of n open discs will be called an “n-holed
M .” For example a one-holed sphere is a disc and a two-holed sphere is an annulus.

We adopt the following notation for topological types of connected compact sur-
faces, beginning with orientable surfaces. �g,n denotes the n-holed (orientable) sur-
face of genus g. Thus �0,0 is a sphere, �1,0 is a torus, �0,1 is a disc and �0,2 is an
annulus.

The connected sum operation # satisfies

�g1,n1 # �g2,n2 ≈ �g1+g2,n1+n2 .

Other basic facts about orientable surfaces involve the Euler characteristic and the
fundamental group:

χ(�g,n) = 2− 2g − n
and if n > 0, the fundamental group π1(�g,n) is free of rank 2g + n− 1.

For non-orientable surfaces, our starting point is the topological surfaceC0,0 home-
omorphic to the real projective plane, which J. H. Conway has proposed calling a
cross-surface. We denote the n-holed k + 1-fold connected sum of cross-surfaces by
Ck,n. Thus the Möbius band is represented by C0,1 and the Klein bottle by

C1,0 ≈ C0,0 # C0,0.

The operation of connected sum satisfies

�g,n1 # Ck,n2 ≈ C2g+k,n1+n2, and Ck1,n1 # Ck2,n2 ≈ Ck1+k2+1,n1+n2 .

The Euler characteristic and the fundamental group satisfy

χ(Ck,n) = 1− n− k
and π1(Ck,n) is free of rank n+ k if n > 0.

The orientable double covering space of Cg,n is �g,2n.

2 Traces in SL(2,C)

The purpose of this section is an elementary and relatively self-contained proof of
Theorem A. This basic result explicitly describes the SL(2,C)-character variety of
a rank-two free group as the affine space C

3, parametrized by the traces of the free
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generators X, Y and the trace of their product XY . Apparently due to Vogt [76], it is
also in the work of Fricke [20] and Fricke–Klein [21].

We motivate the discussion by starting with the simpler case of conjugacy classes
of single elements, that is cyclic groups (free groups of rank one). In this case the
SL(2,C)-character variety V1 is the affine line C

1, parametrized by the trace.

2.1 Cyclic groups

Theorem 2.1.1. Let SL(2,C)
f−→ C be a polynomial function invariant under inner

automorphisms of SL(2,C). Then there exists a polynomial F(t) ∈ C[t] such that
f (g) = F(tr(g)). Conversely, if g, g′ ∈ SL(2,C) satisfy

tr(g) = tr(g′) �= ±2,

then g′ = hgh−1 for some h ∈ SL(2,C).

Proof. Suppose f is an invariant function. For t ∈ C, define

ξt :=
[
t −1
1 0

]
and define F(t) by

F(t) = f (ξt ).
Suppose that t �= ±2 and tr(g) = t . Then g and ξt each have distinct eigenvalues

λ± = 1

2

(
t ± (t2 − 4)1/2

)
and hgh−1 = ξt for some h ∈ SL(2,C). Thus

f (g) = f (h−1ξth) = f (ξt ) = F(t)
as desired. If t = ±2, then by taking Jordan normal form, either g = ±Id or g is
conjugate to ξt . In the latter case, f (g) = F(t) follows from invariance. Otherwise
g lies in the closure of the SL(2,C)-orbit of ξt and f (g) = f (ξt ) = F(t) follows by
continuity of f .

The converse direction follows from Jordan normal form as already used above.

The map

SL(2,C)
tr−→ C

is a categorical quotient map in the sense of algebraic geometry, although it fails to
be a quotient map in the usual sense. The discrepancy occurs at the critical level sets
tr−1(±2). The critical values of tr are ±2, and the restriction of tr to the regular set

tr−1(C \ {±2})
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is a quotient map (indeed a holomorphic submersion). The critical level set tr−1(2)
consists of all unipotent matrices, and these are conjugate to the one-parameter sub-
group [

1 t

0 1

]
,

where t ∈ C. For t �= 0, these matrices comprise a single orbit. This orbit does
not contain the identity matrix Id (where t = 0), although its closure does. Any
regular function cannot separate a non-identity unipotent matrix from Id. Thus tr−1(2)
contains two orbits: the non-identity unipotent matrices, and the identity matrix Id.
Similar remarks apply to the other critical level set tr−1(−2) = −tr−1(2).

For example,

SL(2,C) −→ C,

ξ �−→ tr(ξ2)

is an invariant function and can be expressed in terms of tr(ξ) by

tr(ξ2) = tr(ξ)2 − 2 (2.1)

which follows from the Cayley–Hamilton theorem (see (2.3) below) by taking traces.

2.2 Two-generator groups

We begin by recording the first (trivial) normalization for computing traces:

tr(Id) = 2. (2.2)

This will be the first of three properties of the trace function which enables the com-
putation of traces of arbitrary words in elements of SL(2,C).

The Cayley–Hamilton theorem. If ξ is a 2× 2-matrix, then

ξ2 − tr(ξ)ξ + det(ξ) Id = 0. (2.3)

Suppose ξ, η ∈ SL(2,C). Multiplying (2.3) by ξ−1 and rearranging yields

ξ + ξ−1 = tr(ξ) Id (2.4)

from which follows (using (2.2)) that

tr(ξ) = tr(ξ−1). (2.5)

Multiplying (2.4) by η and taking traces, we obtain (switching ξ and η):

Theorem 2.2.1 (The Basic Identity). Let ξ, η ∈ SL(2,C). Then

tr(ξη)+ tr(ξη−1) = tr(ξ)tr(η). (2.6)
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As we shall see, the three identities (2.2), (2.4) and (2.5) apply to compute the trace
of any word w(ξ, η) for ξ, η ∈ SL(2,C).

Traces of reduced words: an algorithm. Here is an important special case of The-
orem A. Namely, let w(X, Y ) ∈ π be a reduced word. Then

SL(2,C)× SL(2,C) −→ C,

(ξ, η) �−→ tr
(
w(ξ, η)

)
is an SL(2,C)-invariant function on SL(2,C) × SL(2,C). Theorem A guarantees a
polynomial

fw(x, y, z) ∈ C[x, y, z]
such that

tr
(
w(ξ, η)

) = fw(
tr(ξ), tr(η), tr(ξη)

)
(2.7)

for all ξ, η ∈ SL(2,C). We describe an algorithm for computing fw(x, y, z). For
notational convenience we write

tr
(
w(ξ, η)

) := fw(X,Y )(x, y, z).
For example,

tr(Id) = 2,

tr(ξ−1) = tr(ξ) = x,
tr(η−1) = tr(η) = y,

verifying assertion (2.7) for words w of length �(w) ≤ 1. For symmetry, we write
Z = Y−1X−1, so that X, Y,Z satisfy the relation

XYZ = Id.

(For a geometric interpretation of this presentation in terms of the three-holed sphere
�0,3, compare §3.2.) Write ζ = (ξη)−1 so that ξηζ = Id. Then

tr(ξη) = tr(ηξ) = tr(ξ−1η−1) = tr(η−1ξ−1) = tr(ζ ) = tr(ζ−1) = z.
The reduced words of length two are

X2, Y 2, XY, XY−1, YX, YX−1,

X−2, Y−2, X−1Y−1, X−1Y, Y−1X−1, Y−1X.

As mentioned above, the trace of a square (2.1) follows immediately by taking the
trace of (2.3). Thus

tr(ξ2) = x2 − 2,

tr(η2) = y2 − 2,

tr
(
(ξη)2

) = z2 − 2.
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Further applications of the trace identities imply

tr(ξη−1) = xy − z,
tr
(
η(ξη)

) = tr(ηζ−1) = yz− x,
tr
(
(ξη)−1)ξ−1) = tr(ζ ξ−1) = zx − y.

For example, taking w(X, Y ) = XY−1,

tr(ξη−1) = tr(ξ)tr(η)− tr(ξη).

Furthermore,

tr(ξηξ−1η) = tr(ξη)tr(ξ−1η)− tr(ξ2)

= z(xy − z)− (x2 − 2)

= 2− x2 − z2 + xyz.
(2.8)

An extremely important example is the commutator word

k(X, Y ) := XYX−1Y−1.

Computation of its trace polynomial κ = fk follows easily from applying (2.6) to
(2.8):

tr(ξηξ−1η−1) = tr(ξηξ−1)tr(η)− tr(ξηξ−1η)

= y2 − (2− x2 − z2 + xyz)
= x2 + y2 + z2 − xyz− 2

whence

κ(x, y, z) = fk(x, y, z) = x2 + y2 + z2 − xyz− 2. (2.9)

Assume inductively that for all reduced words w(X, Y ) ∈ π with �(w) < m,
there exists a polynomial fw(x, y, z) = tr(w(ξ, η)) satisfying (2.7). Suppose that
u(X, Y ) ∈ F2 is a reduced word of length �(u) = m.

The explicit calculations above begin the induction for m ≤ 2. Thus we assume
m > 2.

Furthermore, we can assume that u is cyclically reduced, that is the initial symbol
of u is not inverse to the terminal symbol of u. For otherwise

u(X, Y ) = Su′(X, Y )S−1,

where S is one of the four symbols

X, Y, X−1, Y−1

and �(u′) = m− 2. Then u(X, Y ) and u′(X, Y ) are conjugate and

tr(u(X, Y )) = tr(u′(X, Y )).
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Ifm > 2, and u is cyclically reduced, then u(X, Y ) has a repeated letter, which we
may assume to equal X. That is, we may write, after conjugating by a subword,

u(X, Y ) = u1(X, Y )u2(X, Y ),

where u1 and u2 are reduced words each ending inX±1. Furthermore we may assume
that

�(u1)+ �(u2) = �(u) = m,
so that �(u1) < m and �(u2) < m. Suppose first that u1 and u2 both end in X. Then

u(X, Y ) = (
u1(X, Y )X

−1)X (
u2(X, Y )X

−1)X
and each of

u1(X, Y )X
−1, u2(X, Y )X

−1

has a terminal XX−1, which we cancel to obtain the corresponding reduced words
u′1(X, Y ), u′2(X, Y ) respectively with

�(u′i ), �(ui)

for i = 1, 2, and

u(X, Y ) = u1(X, Y )u2(X, Y ) = u′1(X, Y )Xu′2(X, Y )X
in F2. Then

(u1(X, Y )X
−1)(u2(X, Y )X

−1)−1 = u′1(X, Y )u′2(X, Y )−1

is represented by a reduced word u3(X, Y ) satisfying �(u3) < m. By the induction
hypothesis, there exist polynomials

fu1(X,Y ), fu2(X,Y ), fu3(X,Y ) ∈ C[x, y, z]
such that, for all ξ, η ∈ SL(2,C), i = 1, 2, 3,

tr
(
ui(ξ, η)

) = fui(X,Y )(tr(ξ), tr(η), tr(ξη)
)
.

By (2.6),

fu = fu1fu2 − fu3

is a polynomial in C[x, y, z]. The cases when u1 and u2 both end in the symbols
X−1, Y , Y−1 are completely analogous. Since there are only four symbols, the only
cyclically reduced words without repeated symbols are commutators of the symbols,
for example XYX−1Y−1. Repeated applications of the trace identities evaluate this
trace polynomial as κ(x, y, z) defined in (2.9). The other commutators of distinct
symbols also have trace κ(x, y, z) by identical arguments.
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Surjectivity of characters of pairs: a normal form. We first show that

τ : SL(2,C)× SL(2,C) −→ C
3,

(ξ, η) �−→
⎡
⎣ tr(ξ)

tr(η)
tr(ξη)

⎤
⎦

is surjective. Let (x, y, z) ∈ C
3. Choose z ∈ C so that

z+ z−1 = z,
that is, z = 1

2 (z±
√
z2 − 4). Let

ξx =
[
x −1
1 0

]
, η(y,z) =

[
0 z−1

−z y

]
. (2.10)

Then τ(ξx, η(y,z)) = (x, y, z).
Next we show that every SL(2,C)-invariant regular function

SL(2,C)× SL(2,C)
f−→ C

factors through τ . To this end we need the following elementary lemma on symmetric
functions:

Lemma 2.2.2. Let R be an integral domain where 2 is invertible, and let R′ =
R[z, z−1] be the ring of Laurent polynomials over R. Let R′ σ−→ R′ be the involution
which fixes R and interchanges z and z−1. Then the subring of σ -invariants is the
polynomial ring R[z+ z−1].

Proof. Let F(z, z−1) ∈ R[z, z−1] be a σ -invariant Laurent polynomial. Begin by
rewriting R′ as the quotient of the polynomial ring R[x, y] by the ideal generated by
xy − 1. Then σ is induced by the involution σ̃ of R[x, y] interchanging x and y.
Let f (x, y) ∈ R[x, y] be a polynomial whose image in R′ is F . Then there exists a
polynomial g(x, y) such that

f (x, y)− f (y, x) = g(x, y)(xy − 1).

Clearly g(x, y) = −g(y, x). Let

f̃ (x, y) = f (x, y)− 1

2
g(x, y)(xy − 1)

so that f̃ (x, y) = f̃ (y, x). By the theorem on elementary symmetric functions,

f̃ (x, y) = h(x + y, xy)
for some polynomial h(u, v). Therefore F(z, z−1) = h(z+ z−1, 1) as desired.

By definition f (ξ, η) is a polynomial in the matrix entries of ξ and η; regard two
polynomials differing by elements in the ideal generated by det(ξ)− 1 and det(η)− 1
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as equal. Thus f (ξx, η(y,z)) equals a function g(x, y, z) which is a polynomial in
x, y ∈ C and a Laurent polynomial in z ∈ C

∗ where ξx and η(y,z) were defined in
(2.10).

Lemma 2.2.3. Let ξ, η ∈ SL(2,C) such that κ(τ(ξ, η)) �= 2. Then there exists
h ∈ SL(2,C) such that

h · (ξ, η) = (ξ−1, η−1).

Proof. Let (x, y, z) = τ(ξ, η). By the commutator trace formula (2.9),

tr[ξ, η] = κ(x, y, z),
where [ξ, η] = ξηξ−1η−1.

Let L = ξη − ηξ . (Compare §4 of Jørgensen [43] or Fenchel [16].) Then

tr(L) = tr(ξη)− tr(ηξ) = 0.

Furthermore for any 2× 2 matrix M , the characteristic polynomial

λM(t) := det(t Id −M) = t2 − tr(M)t + det(M).

Thus

det(L) = det([ξ, η] − Id)det(ηξ)

= det([ξ, η] − Id)

= −λ[ξ,η](1)
= −2+ tr[ξ, η]
= −2+ κ(x, y, z) �= 0.

Choose μ ∈ C
∗ such that μ2det(L) = 1 and let h = μL ∈ SL(2,C).

Since tr(h) = 0 and det(h) = 1, the Cayley–Hamilton Theorem

λM(M) = 0

implies that h2 = −Id. Similarly

det(hξ) = det(h) = 1,

det(hη) = det(h) = 1,

and

tr(hξ) = μ(tr((ξη)ξ)− tr((ηξ)ξ)) = μ(tr(ξ(ηξ))− tr((ηξ)ξ)) = 0

and

tr(hη) = μ(tr((ξη)η)− tr((ηξ)η)) = μ(tr((ξη)η)− tr(η(ξη)) = 0,

so (hξ)2 = (hη)2 = −Id. Thus

hξh−1ξ = −hξhξ = Id
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whencehξh−1 = ξ−1.Similarlyhηh−1 = η−1, concluding the proof of Lemma 2.2.3.

Apply Lemma 2.2.3 to ξ = ξx and η = η(y,z) as above to obtain h such that
conjugation by h maps

ξ �−→ ξ−1 =
[

0 1
−1 x

]
and

η �−→ η−1 =
[
y −1/z
z 0

]
.

If

u =
[

0 1
1 0

]
,

then

uhξ(uh)−1 = uξ−1u−1 =
[
x −1
1 0

]
= ξ

and

uhη(uh)−1 = uη−1u−1 =
[

0 z
−1/z y

]
= η(y,z−1).

Thus

g(x, y, z) = f (ξ, η) = f (uhξ(uh)−1, uhη(uh)−1) = g(x, y, z−1).

Lemma 2.2.2 implies that

g(x, y, z) = F(x, y, z+ 1/z) (2.11)

for some polynomial F(x, y, z) ∈ C[x, y, z], whenever κ(x, y, z + 1/z) �= 2. Since
this condition defines a nonempty Zariski-dense open set, (2.11) holds on all of C

2×C
∗

and
f (ξ, η) = F(tr(ξ), tr(η), tr(ξη))

as claimed.

Injectivity of SL(2,C)-characters of pairs. Finally we show that if (ξ, η), (ξ ′, η′) ∈
H satisfy ⎡

⎣ tr(ξ)
tr(η)

tr(ξη)

⎤
⎦ =

⎡
⎣ tr(ξ ′)

tr(η′)
tr(ξ ′η′)

⎤
⎦ =

⎡
⎣xy
z

⎤
⎦ , (2.12)

and κ(x, y, z) �= 2, then (ξ, η) and (ξ ′, η′) are SL(2,C)-equivalent. By §2.2, the
triple ⎡

⎣xy
z

⎤
⎦ =

⎡
⎣ tr(ξ)

tr(η)
tr(ξη)

⎤
⎦
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determines the character function

π −→ C,

w(X, Y ) �−→ tr
(
w(ξ, η)

) = fw(x, y, z).
Let ρ and ρ′ denote the representations π → SL(2,C) taking X, Y to ξ, η and ξ ′, η′
respectively and let χ , χ ′ denote their respective characters. Then our hypothesis
(2.12) implies that χ = χ ′.

2.3 Injectivity of the character map: the general case

The conjugacy of representations (one of which is irreducible) having the same char-
acter follows from a general argument using the Burnside theorem. I am grateful to
Hyman Bass [1] for explaining this to me.

Suppose ρ and ρ′ are irreducible representations on C
2. Burnside’s Theorem

(see Lang [49], p. 445) implies the corresponding representations (also denoted ρ, ρ′
respectively) of the group algebra Cπ into M2(C) are surjective. Since the trace form

M2(C)×M2(C) −→ C,

(A,B) �−→ tr(AB)

is nondegenerate, the kernel K of Cπ
ρ−→ M2(C) consists of all∑

α∈π
aαα ∈ Cπ

such that

0 = tr
(( ∑

α∈π
aαρ(α)

)
ρ(β)

)
=

∑
α∈π

aα tr
(
ρ(αβ)

) =∑
α∈π

aα χ(αβ)

for all β ∈ π . Thus the kernels of both representations of Cπ are equal, and ρ and ρ′
respectively induce algebra isomorphisms

Cπ/K −→ M2(C),

denoted ρ̃, ρ̃′.
The composition ρ̃′ � ρ̃−1 is an automorphism of the algebra M2(C), which must

be induced by conjugation by g ∈ GL(2,C). (See, for example, Corollary 9.122,
p. 734 of Rotman [69].) In particular ρ′(γ ) = gρ(γ )g−1 as desired.

Irreducibility. The theory is significantly different for reducible representations.
Representations

ρ1, ρ2 ∈ Hom(π, SL(2,C))
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are equivalent if and only if they define the same point in the character variety, that is,
for all regular functions f in the character ring,

f (ρ1) = f (ρ2).

If both are irreducible, then ρ1 and ρ2 are conjugate. Closely related is the fact that the
conjugacy class of an irreducible representation is closed. Here are several equivalent
conditions for irreducibility of two-generator subgroups of SL(2,C):

Proposition 2.3.1. Let ξ, η ∈ SL(2,C). The following are equivalent:

(1) ξ, η generate an irreducible representation on C
2.

(2) tr(ξηξ−1η−1) �= 2.

(3) det(ξη − ηξ) �= 0.

(4) The pair (ξ, η) is not SL(2,C)-conjugate to a representation by upper-triangular
matrices [

a b

0 a−1

]
,

where a ∈ C
∗, b ∈ C.

(5) Either the group 〈ξ, η〉 is not solvable, or there exists a decomposition

C
2 = L1 ⊕ L2

into an invariant pair of lines Li such that one of ξ, η interchanges L1 and L2.

(6) {Id, ξ, η, ξη} is a basis for M2(C).

In the next section we will find a further condition (Theorem 3.2.2) involving
extending the representation to a representation of the free product Z/2 ∗ Z/2 ∗ Z/2.

Proof. The equivalence (1)⇐⇒ (2) is due to Culler–Shalen [13]. For completeness
we give the proof here.

To prove (2)�⇒(1), suppose that ρ is reducible. If ξ, η generate a representation
with an invariant subspace of C

2 of dimension one, this representation is conjugate to
one in which ξ and η are upper-triangular. Denoting their diagonal entries by a, a−1

and b, b−1 respectively, the diagonal entries of ξη are ab, a−1b−1. Thus

x = a + a−1,

y = b + b−1,

z = ab + a−1b−1.

By direct computation, κ(x, y, z) = 2.
To prove (1)�⇒(2), suppose that κ(x, y, z) = 2. Let A ⊂ M2(C) denote the linear

span of Id, ξ, η, ξη. Identities derived from the Cayley–Hamilton theorem (2.3) such
as (2.4) imply that A is a subalgebra of M2(C). For example, ξ2 equals the linear
combination

ξ2 = −Id + xξ (2.13)
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and
ηξ = (z− xy)Id + yξ + xη − ξη. (2.14)

The latter identity follows by writing

ξ−1η + η−1ξ = tr(ξ−1η) Id = (xy − z) Id

and summing

xη = ξη + ξ−1η,

yξ = ηξ + η−1ξ

to obtain
ξη + ηξ = (z− xy) Id + xη + yξ

as desired.
In the basis of M2(C) by elementary matrices, the linear map

C
4 −→ M2(C),⎡

⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ �−→ x1Id + x2ξ + x3η + x4ξη

has determinant 2−κ(x, y, z) = 0 and is not surjective. Thus A is a proper subalgebra
of M2(C) and the representation is reducible, as desired.

(2)⇐⇒ (3) follows from the suggestive formula, valid for ξ, η ∈ SL(2,C),

tr(ξηξ−1η−1)+ det(ξη − ηξ) = 2, (2.15)

whose proof is left as an exercise.
The equivalence (1)⇐⇒ (4) is essentially the definition of reducibility. If L ⊂ C

2

is an invariant subspace, then conjugating by a linear automorphism which maps L to
the first coordinate line C× {0} makes the representation upper triangular.

(4)⇐⇒ (5) follows from the classification of solvable subgroups of SL(2,C): a
solvable subgroup is either conjugate to a group of upper-triangular matrices, or is
conjugate to a dihedral representation, where one of ξ, η is a diagonal matrix and the
other is the involution

i

[
0 1
1 0

]
(where the coefficient i is required for unimodularity). A dihedral representation is
one which interchanges an invariant pair of lines although the lines themselves are not
invariant. For a description of these representations in terms of hyperbolic geometry,
see §3.2.

(1)⇐⇒ (6) follows from the Burnside lemma, and identities such as (2.13) and
(2.14) to express products of Id, ξ , η, ξηwith the generators ξ , η as linear combinations
of Id, ξ , η, ξη.
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3 Coxeter triangle groups in hyperbolic 3-space

An alternate geometric approach to the algebraic parametrization using traces involves
right-angled hexagons in H3. Specifically, a marked two-generator group corresponds
to an ordered triple of lines in H2, no two of which are asymptotic. This triple completes
to a right-angled hexagon by including the three common orthogonal lines. We use this
geometric construction to identify, in terms of traces, which representations correspond
to geometric structures on surfaces. However, since the trace is only defined on
SL(2,C), and not on PSL(2,C), we must first discuss the conditions which ensure
that a representation into PSL(2,C) lifts to SL(2,C).

3.1 Lifting representations to SL(2,C)

The group of orientation-preserving isometries of H3 identifies with PSL(2,C), which
is doubly covered by SL(2,C). In general, a representation � → PSL(2,C) may or
may not lift to a representation to SL(2,C). Clearly if � is a free group, every
representation lifts, since lifting each generator suffices to define a lifted representation.
In general the obstruction to lifting a representation �→ PSL(2,C) is a cohomology
class o ∈ H 2(�,Z/2). Furthermore there exists a central Z/2-extension �̂ → �

(corresponding to o) and a lifted representation �̂ such that

�̂

��

�� SL(2,C)

��
� �� PSL(2,C)

commutes. This lift is not unique; the various lifts differ by multiplication by homo-
morphisms

� −→ {±Id} = center
(
SL(2,C)

)
which comprise the group

Hom
(
π1(�), {±Id}) ∼= H 1(�;Z/2).

The cohomology class in H 2(�,Z/2) may be understood in terms of Hopf’s for-
mula for the second homology of a group. (See, for example, Brown [6].) Consider
a presentation � = F/R where F is a finitely generated free group and R � F is
a normal subgroup. A set {f1, . . . , fN } of free generators for F corresponds to the
generators of � and R corresponds to the relations among these generators. Then
Hopf’s formula identifies H2(�) with the quotient group([F,F ] ∩ R)

/[F,R],
where [F,F ]� F is the commutator subgroup and [F,R] is the (normal) subgroup
of F generated by commutators [f, r] where f ∈ F and r ∈ R. Intuitively, H2(�) is
generated by relations which are products of simple commutators [a1, b1] . . . [ag, bg],
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where ai, bi ∈ F are words in f1, . . . , fN . Such commutator relations correspond to

maps of a closed orientable surface�g into the classifying space B� of �. If �
ρ−→ G

is a homomorphism into G and G̃ → G is a central extension (such as a covering
group of a Lie group), then the obstruction is calculated for each commutator relation

w = [a1, b1] . . . [ag, bg] ∈ [F,F ] ∩ R
corresponding to a 2-cycle z, as follows. (Here each ai, bi ∈ F is a word in the free
generators f1, . . . , fN .) Lift each generator ρ(fi) to ρ̃(fi) ∈ G̃ and evaluate the
wordw(f1, . . . , fN) on the lifts ρ̃(fi) to obtain an element in the kernelK of G̃→ G

(since w ∈ R). Furthermore since w ∈ [F,F ] and two lifts differ by an element
of K ⊂ center(G̃), this element is independent of the chosen lift ρ̃. This procedure
defines an element of

H 2(�,K) ∼= Hom
( [F,F ] ∩ R
[F,R] ,K

)

which evidently vanishes if and only if ρ lifts. (Compare Milnor [59]. For more
discussion of lifting homomorphisms to SL(2,C), compare Culler [12], Kra [48],
Goldman [27] or Patterson [65]. According to Patterson [65], the first result of this
type, due to H. Petersson [66], is that a Fuchsian subgroup of PSL(2,R) lifts to
SL(2,R) if and only if it has no elements of order two.)

A representation �→ PSL(2,C) is irreducible if one (and hence every) lift �̂→
SL(2,C) is irreducible.

3.2 The three-holed sphere

The basic building block for hyperbolic surfaces is the three-holed sphere �0,3.

Geometric version of Theorem A. Theorem A has a suggestive interpretation in
terms of the three-holed sphere �0,3, or “pair-of-pants.” Namely, the fundamental
group

π1(�0,3) ∼= F2

admits the redundant geometric presentation

π = π1(�0,3) = 〈X, Y,Z | XYZ = 1〉,
where X, Y,Z correspond to the three components of ∂�0,3. Denoting the corre-
sponding trace functions by lower case, for example

Hom(π,G)
x−−→ C,

ρ �−→ tr
(
ρ(X)

)
,

Theorem A asserts that the SL(2,C)-character ring of π is the polynomial ring
C[x, y, z].
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Theorem 3.2.1. The equivalence class of a flat SL(2,C)-bundle over �0,3 with irre-
ducible holonomy is determined by the equivalence classes of its restrictions to the
three components of ∂�0,3. Furthermore any triple of isomorphism classes of flat
SL(2,C)-bundles over ∂�0,3 whose holonomy traces satisfy

x2 + y2 + z2 − xyz �= 4

extends to a flat SL(2,C)-bundle over �0,3.

Thehexagonorbifold. Every irreducible representationρ corresponds to a geometric
object in H3, a triple of geodesics. Any two of these geodesics admits a unique common
perpendicular geodesic. These perpendiculars cut off a hexagon bounded by geodesic
segments, with all six angles right angles. Such a right hexagon in H3 is an alternate
geometric object corresponding to ρ.

Figure 1. The three-holed sphere double covers a hexagon orbifold.

The surface �0,3 admits an orientation-reversing involution

�0,3
ιHex−−−→ �0,3

whose restriction to each boundary component is a reflection. The quotient Hex by
this involution is a disc, combinatorially equivalent to a hexagon. The three boundary
components map to three intervals ∂i(Hex), for i = 1, 2, 3, in the boundary ∂Hex.
The other three edges in ∂Hex correspond to the three arcs comprising the fixed point
set Fix(ιHex). The orbifold structure on Hex is defined by mirrors on these three arcs
on ∂Hex. The quotient map

�0,3
�Hex−−−−→ Hex

is an orbifold covering-space, representing �0,3 as the orientable double covering of
the orbifold Hex. The orbifold fundamental group is

π̂ := π1(Hex) = 〈ιYZ, ιZX, ιXY | ι2YZ = ι2ZX = ι2XY = 1〉
∼= Z/2 ∗ Z/2 ∗ Z/2.
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The covering-space �0,3
�Hex−−−→ Hex induces the embedding of fundamental groups:

π1(�0,3)
( �Hex)∗−−−−−→ π1(Hex);

X �−→ ιZXιXY ,

Y �−→ ιXY ιYZ,

Z �−→ ιYZιZX.

Theorem 3.2.2. Let π
ρ−→ PGL(2,C) be an irreducible representation. Then there

exists a unique representation π̂
ρ̂−→ PGL(2,C) such that ρ = ρ̂ � (�Hex)∗.

Every element of order two in PGL(2,C) is reflection about some geodesic. There-
fore a representation ρ̂ corresponds exactly to an ordered triple of geodesics in H3.
Denote this ordered triple of geodesics in H3 corresponding to ρ by ιρ .

Corollary 3.2.3. Irreducible representationsπ
ρ−→ PGL(2,C) correspond to triples ιρ

of geodesics in H3, which share neither a common endpoint nor a common orthogonal
geodesic.

The proofs of Theorem 3.2.2 and Corollary 3.2.3 occupy the remainder of this
section.

Involutions in PGL(2,C). We are particularly interested in projective transforma-
tions of CP

1 of order two, which we call involutions. Such an involution is given by
a matrix ξ ∈ GL(2,C) such that ξ2 does act identically on CP

1 but ξ does not act
identically on CP

1. Thus ξ is a matrix whose square is a scalar matrix but ξ itself is
not scalar. Since det(ξ) �= 0, replacing ξ by

det(ξ)−1/2ξ

– for either choice of det(ξ)−1/2 – ensures that det(ξ) = 1. Then the scalar matrix
ξ2 = ±Id. If ξ2 = Id, then det(ξ) = 1 implies ξ = −Id, a contradiction. Hence
ξ2 = −Id, and ξ must have distinct reciprocal eigenvalues±i. Thus ξ is conjugate to[

i 0
0 −i

]
.

The corresponding projective transformation P(ξ) has two fixed points. The orbit of
any point not in Fix

(
P(ξ)

)
has cardinality two.

Proposition 3.2.4. Let ξ ∈ M2(C). The following conditions are equivalent:

• P(ξ) ∈ Inv;

• ξ is conjugate to

[
i 0
0 −i

]
;

• det(ξ) = 1 and tr(ξ) = 0;
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• ξ2 = −Id and ξ �= ±i Id;

• ξ2 = −Id and ξ is not a scalar matrix.

The proof is left as an exercise. Denote the collection of such matrices by

Ĩnv := SL(2,C) ∩ sl(2,C)

= {ξ ∈ M2(C) | det(ξ) = 1, tr(ξ) = 0}.
Notice that Ĩnv is invariant under ±Id, and the quotient

Inv := Ĩnv/{±Id} ⊂ PGL(2,C)

consists of all projective involutions of CP
1. It naturally identifies with the collection

of unordered pairs of distinct points in CP
1, that is, the quotient(

CP
1 × CP

1 \�
CP

1
)
/S2

of the complement in CP
1 × CP

1 of the diagonal

�
CP

1 ⊂ CP
1 × CP

1

by the symmetric group S2. In §3.2, we interpret Ĩnv as the space of oriented geodesics
in hyperbolic 3-space H3.

Involutions and the complex projective line. Denote by Inv the closure of Inv
in the projective space P(sl(2,C)). The complement Inv \ Inv corresponds to CP

1

embedded as the diagonal �
CP

1 in the above description. For example the elements
of Inv corresponding to 0,∞ ∈ CP

1 are the respective lines[
0 ∗
0 0

]
,

[
0 0
∗ 0

]
⊂ M2(C).

The closure corresponds to the full quotient space(
CP

1 × CP
1)/S2.

An element ξ ∈ PGL(2,C) \ {Id} stabilizes a unique element ιξ ∈ Inv. If ξ is semi-
simple (#Fix(ξ) = 2), then ιξ is the unique involution with the same fixed points.
Otherwise ξ is parabolic (#Fix(ξ) = 1), and ιξ corresponds to the line

Fix
(
Ad(ξ)

) = Ker
(
Id − Ad(ξ)

) ⊂ sl(2,C),

the Lie algebra centralizer of ξ in sl(2,C). Further discussion of semisimple elements
in SL(2,C) and PSL(2,C) is given in §3.2.

Here is an elegant matrix representation. If ξ ∈ SL(2,C) is semisimple and �= Id,
then the two lifts of ιξ ∈ Inv to Ĩnv ⊂ SL(2,C) differ by ±Id. Since ξ is semisimple,
its traceless projection

ξ ′ := ξ − 1

2
tr(ξ) Id

satisfies
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• tr(ξ ′) = 0;

• ξ ′ commutes with ξ ;

• det(ξ ′) �= 0 (semisimplicity).

Choose δ ∈ C
∗ such that

δ2 = det(ξ ′) = 4− tr(ξ)2

4
.

Then δ−1ξ ′ ∈ Ĩnv and represents the involution ιξ centralizing ξ :

ι̃ξ = ± 2√
4− tr(ξ)2

(
ξ − tr(ξ)

2
Id

)
. (3.1)

This formula will be used later in (4.3).

3-dimensional hyperbolic geometry. The group GL(2,C) acts by orientation-pre-
serving isometries on hyperbolic 3-space H3. The kernel of the action equals the center
of GL(2,C), the group C

∗ of nonzero scalar matrices. The quotient

PGL(2,C) := GL(2,C)/C∗

acts effectively on H3. The restriction of the quotient homomorphism

GL(2,C) −→ PGL(2,C)

to SL(2,C) ⊂ GL(2,C) defines an isomorphism

PSL(2,C)
∼=−−→ PGL(2,C).

The projective line CP
1 identifies naturally with the ideal boundary ∂H3. The center

of SL(2,C) consists of ±Id, which is the kernel of the actions on H3 and CP
1. The

only element of order two in GL(2,C) is −Id, and an element of even order 2k in
PGL(2,C) corresponds to an element of order 4k in GL(2,C). Elements of odd order
2k + 1 in PGL(2,C) have two lifts to SL(2,C), one of order 2k + 1 and the other of
order 2(2k + 1).

We use the upper-half-space model of H3 as follows. The algebra H of Hamilton
quaternions is the R-algebra generated by 1, i, j subject to the relations

i2 = j2 = −1, i j+ ji = 0.

H contains the smaller subalgebra C having basis {1, i}. Define

H3 := {z+ uj ∈ H | z ∈ C, u ∈ R, u > 0},
where

ξ =
[
a b

c d

]
∈ GL(2,C)

acts by

z+ uj �−→ (
a(z+ uj)+ b)(c(z+ uj)+ d)−1

.
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PSL(2,C) is the group of orientation-preserving isometries of H3 with respect to the
Poincaré metric

u−2(|dz|2 + du2)
of constant curvature−1. The restriction of GL(2,C) to ∂H3 identifies with the usual
projective action of PGL(2,C) on

∂H3 := CP
1 = C ∪ {∞},

the space of complex lines (1-dimensional linear subspaces) in C
2.

Oriented geodesics in H3 correspond to ordered pairs of distinct points in CP
1, via

their endpoints. Unoriented geodesics correspond to unordered pairs. For example
geodesics with an endpoint at∞ are represented by vertical rays z+R+j, where z ∈ C

is the other endpoint. The unit-speed parametrization of this geodesic is

R −→ H3,

t �−→ z+ et j.
Distinct z1, z2 ∈ C span a geodesic in H3 whose unit-speed parametrization is

R −→ H3,

t �−→ z1 + z2

2
+ z2 − z1

2

(
tanh(t)+ sech(t)j

)
.

A geodesic l ⊂ H3 corresponds uniquely to the involution ι = ιl ∈ PSL(2,C) for
which

l = Fix(ι).

For example, if z1, z2 ∈ C, the involution in PGL(2,C) fixing z1, z2 is given by the
pair of matrices

± i

z1 − z2

[
z1 + z2 −2z1z2

2 −(z1 + z2)

]
∈ SL(2,C). (3.2)

If z2 = ∞, the corresponding matrices are

± i
[−1 2z1

0 1

]
∈ SL(2,C). (3.3)

Compare Fenchel [16] for more details.
Let ξ ∈ SL(2,C) be non-central: ξ �= ±Id. Then the following conditions are

equivalent:

• ξ has two distinct eigenvalues;

• tr(ξ) �= ±2;

• the corresponding collineation of CP
1 has two fixed points;

• the corresponding orientation-preserving isometry of H3 leaves invariant a unique
geodesic �ξ , each of whose endpoints is fixed;

• a unique involution ιξ centralizes ξ .
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(In the standard terminology, the corresponding isometry of H3 is either elliptic or
loxodromic.)

We shall say that ξ is semisimple. Otherwise ξ is parabolic: it has a repeated
eigenvalue (necessarily ±1, because det(ξ) = 1), and fixes a unique point on CP

1.
Suppose ξ ∈ SL(2,C) and the corresponding isometry P(ξ) ∈ PSL(2,C) leaves

invariant a geodesic l ⊂ H3. Then the restriction P(ξ)|l is an isometry of l ≈ R. Any
isometry of R is either a translation of R, a reflection in a point of R, or the identity.
We distinguish these three cases as follows. For concreteness choose coordinates so
that l is represented by the imaginary axis R+j ⊂ H3 in the upper-half-space model.
The endpoints of l are 0,∞:

• P(ξ)|l acts by translation. Then P(ξ) is loxodromic, represented by[
λ 0
0 λ−1

]
, (3.4)

where λ ∈ C
∗ is a nonzero complex number and |λ| �= 1. The fixed point set is

Fix
(
P(ξ)

) = {0,∞}.
The restriction of P(ξ) to l is translation along l by distance 2 log |λ|, in the
direction from 0 (its repellor) to∞ (its attractor) if |λ| > 1. (If |λ| < 1, then 0
is the attractor and∞ is the repellor.)

• P(ξ)|l acts identically. Now P(ξ) is elliptic and is represented by the diagonal
matrix (3.4), except now |λ| = 1. If λ = eiθ , then P(ξ) represents a rotation
through angle 2θ about l. In particular if λ = ±i, then P(ξ) is the involution
fixing l. Although P(ξ) has order two in PGL(2,C), its matrix representatives
in SL(2,C) each have order 4. (Compare Proposition 3.2.4.)

• P(ξ)|l acts by reflection. In this case P(ξ) interchanges the two endpoints
0,∞ and is necessarily of order two. Its restriction P(ξ)|l to l fixes the point
p = Fix

(
P(ξ)

) ∩ l, and is reflection in p. The corresponding matrix is[
0 −λ
λ−1 0

]
,

where λ ∈ C
∗ and p = |λ|j is the fixed point of P(ξ)l . Necessarily P(ξ) ∈ Inv

and
Fix

(
P(ξ)

) = {±iλ}.
Dihedral representations. The following lemma is crucial in the proof of Theo-
rem 3.2.2.

Lemma 3.2.5. Suppose that ξ ∈ SL(2,C) \ {±Id} and ι ∈ Inv.

(1) Suppose that #Fix
(
P(ξ)

) = 2. Let �ξ ⊂ H3 denote the unique ξ -invariant
geodesic (the geodesic with endpoints Fix

(
P(ξ)

)
). Then

ιξ ι = ξ−1 (3.5)
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if and only if ι preserves �ξ and its restriction acts by reflection. In that case ι
interchanges the two elements of Fix

(
P(ξ)

)
.

(2) Suppose that #Fix
(
P(ξ)

) = 1. Then ιξ ι = ξ−1 if and only if Fix
(
P(ξ)

) ⊂ Fix(ι).

Proof. Consider first the case that ξ is semisimple, that is, when #Fix
(
P(ξ)

) = 2. Let
�ξ ⊂ H3 be the ξ -invariant geodesic with endpoints Fix

(
P(ξ)

)
. Then ι interchanges

the two elements of Fix
(
P(ξ)

)
. In terms of the linear representation, ξ preserves a

decomposition into eigenspaces

C
2 = L1 ⊕ L2,

where each line Li ⊂ C
2 corresponds to a fixed point in CP

1, and ι interchanges L1
and L2.

When #Fix
(
P(ξ)

) = 1, the corresponding matrix has a unique eigenspace, which
we take to be the first coordinate line. Then ξ is represented by the upper-triangular
matrix

±
[

1 u

0 1

]
,

and ι is also represented by an upper-triangular matrix of the form

±
[
i w

0 −i
]
.

Rewrite (3.5) as

(ιξ)2 = Id,

so that ιξ ∈ Inv. Thus ξ factors as the product of two involutions

ξ = ι(ιξ).
Conversely if ι, ι′ ∈ Inv, then the product ξ := ιι′ satisfies (3.5).

Geometric interpretation of the Lie product. These ideas provide an elegant for-
mula for the common orthogonal of the invariant axes of elements of PSL(2,C).
Suppose ξ, η ∈ SL(2,C). Then the Lie product

Lie(ξ, η) := ξη − ηξ (3.6)

has trace zero, and vanishes if and only if ξ, η commute. Furthermore (2.15) and
Proposition 2.3.1, (1)⇐⇒ (2) imply that Lie(ξ, η) is invertible if and only if 〈ξ, η〉
acts irreducibly (as defined in §3). Suppose 〈ξ, η〉 acts irreducibly, so that Lie(ξ, η)
defines an element λ ∈ PSL(2,C). Since tr

(
Lie(ξ, η)

) = 0, the isometry λ has order
two, that is, lies in Inv.
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Now

tr
(
ξ Lie(ξ, η)

) = tr
(
ξ(ξη)

)− tr
(
ξ(ηξ)

)
= tr

(
ξ(ξη)

)− tr
(
(ξη)ξ

)
= 0

which implies that ξλ also has order two, that is, λξλ = ξ−1. Lemma 3.2.5 implies
that λ acts by reflection on the invariant axis �ξ . Similarly λ acts by reflection on the
invariant axis �η. Hence the fixed axis �λ is orthogonal to both �ξ and �η:

Proposition 3.2.6. If ξ, η ∈ GL(2,C), then the Lie product Lie(ξ, η) represents the
common orthogonal geodesic⊥ (�P(ξ), �P(η)) to the invariant axes �P(ξ), �P(η) of P(ξ)

and P(η) respectively.

Compare Marden [55] and the references given there.

Geometric proof of Theorem 3.2.2

Proof of Theorem 3.2.2. Abusing notation, write X, Y,Z for

ρ(X), ρ(Y ), ρ(Z) ∈ PGL(2,C)

respectively. We seek respective involutions

ρ(ιXY ), ρ(ιYZ), ρ(ιZX),

which we respectively denoteρXY , ρYZ , ρZX. These involutions will be the ones fixing
the respective pairs. For example we take ρXY to be the involution fixing ⊥ (lX, lY ),
and similarly for ρYZ and ρZX.

Suppose that 〈X, Y 〉 ⊂ SL(2,C) acts irreducibly on C
2. Write Z = Y−1X−1 so

that
XYZ = Id.

Since 〈X, Y 〉 acts irreducibly, none of X, Y,Z act identically.
Let ρXY ∈ Ĩnv be the unique involution such that

ρXYXρXY = X−1,

ρXY YρXY = Y−1
(3.7)

respectively. (By Proposition 3.2.6, it is represented by the Lie product Lie(X, Y ).)
The involution ρXY will be specified by its fixed line lXY = Fix(ρXY ), which is
defined as follows: If bothX, Y are semisimple, then Lemma 3.2.5 implies ρXY is the
involution fixing the unique common orthogonal geodesic to the invariant axes of X
or Y . If both X, Y are parabolic, then ρXY is the involution in the geodesic bounded
by the fixed points ofX, Y . Finally consider the case when one element is semisimple
and the other element is parabolic. Then lXY is the unique geodesic, for which one
endpoint is the fixed point of the parabolic element, and which is orthogonal to the
invariant axis of the semisimple element.
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Similarly define lines lYZ, lZX with respective involutions ρYZ, ρZX ∈ Inv. The
triple (ρXY , ρYZ, ρZX) defines the homomorphism ρ̂ of Theorem 3.2.2.

Claim. X = ρZXρXY . To this end we show XρXY equals ρZX. First, XρXY fixes
Fix(X), since both X and ρXY fix Fix(X). By (3.7),

ρXYXYρXY = X−1Y−1 = X−1(XY)−1X.

Equivalently,
ρXYZ

−1ρXY = X−1Y−1 = X−1ZX,

which implies
(XρXY )Z

−1(XρXY )
−1 = Z.

Now Lemma 3.2.5 (1) implies that XρXY preserves Fix(Z) and its restriction to the
corresponding line is a reflection. ThusXρXY is itself an involution �Z with Fix(XρXY )
orthogonal to the axis of Z.

Since XρXY fixes Fix(X), it follows that XρXY = ρZX as claimed. Similarly
YρYZ = ρXY and ZρZX = ρYZ , completing the proof of Theorem 3.2.2.

3.3 Orthogonal reflection groups

An algebraic proof of Theorem 3.2.2 involves three-dimensional inner product spaces
and is described in Goldman [27]. This proof exploits the isomorphism PSL(2,C)→
SO(3,C).

The 3-dimensional orthogonal representation of PSL(2,C). Let W = C
2 with a

nondegenerate symplectic formω. The symmetric square Sym2(W) is a 3-dimensional
vector space based on monomials e · e, e · f, f · f , where e, f is a basis of W , and
x · y denotes the symmetric product of x, y (the image of the tensor product x ⊗ y
under symmetrization). Sym2(W) inherits a symmetric inner product defined by:

(u1 · u2, v1 · v2) �−→ 1

2

(
ω(u1, v1)ω(u2, v2)+ ω(u1, v2)ω(u2, v1)

)
.

If e, f ∈ W is a symplectic basis forW , the corresponding inner product for Sym2(W)

has matrix ⎡
⎣0 0 1

0 −1/2 0
1 0 0

⎤
⎦

with respect to the above basis of Sym2(W). In particular the inner product is nonde-
generate. Every ξ ∈ SL(2,C) induces an isometry of Sym2(W) with respect to this
inner product. This correspondence defines a local isomorphism

SL(2,C)
Sym2

−−−→ SO(3,C)

with kernel {±Id} and a resulting isomorphism PSL(2,C)→ SO(3,C).
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If ξ ∈ SL(2,C), then

tr
(
Sym2(ξ)

) = tr(ξ)2 − 1. (3.8)

For example, the diagonal matrix

ξ =
[
λ 0
0 λ−1

]
induces the diagonal matrix

Sym2(ξ) =
⎡
⎣λ2 0 0

0 1 0
0 0 λ−2

⎤
⎦

and
tr
(
Sym2(ξ)

) = λ2 + 1+ λ−2 = (λ+ λ−1)2 − 1.

Alternatively, this is the adjoint representation of SL(2,C) on its Lie algebra
sl(2) ∼= Sym2(W). Here the standard basis of C is

e =
[

1
0

]
, f =

[
0
1

]
and the monomials correspond to

e · e =
[

1 0
0 0

]
, e · f =

[
0 1
1 0

]
, f · f =

[
0 0
0 1

]
.

The inner product corresponds to the trace form

(X, Y ) �−→ 1

2
tr(XY)

which is 1/8 the Killing form on sl(2,C).

3-dimensional inner product spaces. Let e1, e2, e3 denote the standard basis of C
3.

A 3× 3 symmetric matrix B determines an inner product B on C
3 by the usual rule:

(v,w)
B�−→ vBw.

We suppose that B is nonzero on e1, e2, e3; in fact, let’s normalize B so that its basic
values are 1:

B(ei, ei) = 1 for i = 1, 2, 3.

In other words, the diagonal entries satisfy B11 = B22 = B33 = 1.
Let Ri = R(B)i denote the orthogonal reflection in ei defined by B:

v
Ri�−→ v − 2 B(v, ei)ei,

with corresponding matrix

Ri := Id − 2ei(ei)
B.
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(ei(ei)B is the 3 × 3 matrix with the same i-th row as B and the other two rows
zero.) Since

Id = B(ei, ei) = (ei)Bei (matrix multiplication),

Ri BRi − B =
(
Id − 2Bei(ei)

)
B

(
Id − 2ei(ei)

B
)− B

= −2Bei(ei)
B − 2Bei(ei)

B + 4Bei(ei)
Bei(ei)B

= −2Bei(ei)
B − 2Bei(ei)

B + 4Bei(ei)
B

= 0,

so Ri is orthogonal with respect to B.
Thus the matrix B determines a triple of involutions R(B)1 , R

(B)
2 , R

(B)
3 in the or-

thogonal group of B:

O(C3,B) := {ξ ∈ GL(2,C) | ξBξ = B}.
In other words, B defines a representation ρ̂ := ρ̂(B) of the free product

π̂ := Z/2 ∗ Z/2 ∗ Z/2

in O(C3,B), taking the free generators ιXY , ιYZ, ιZX of π̂ into R(B)1 , R
(B)
2 , R

(B)
3 re-

spectively. The restriction ρ := ρ(B) of ρ̂(B) to the index-two subgroup

Z ∗ Z ∼= π ⊂ π̂
(compare §3.2) assumes values in the subgroup

SO(C3,B) := SL(3,C) ∩ O(C3,B).

When B is nondegenerate, then SO(C3,B) ∼= SO(3,C) (a specific isomorphism cor-
responds to an orthonormal basis for B). There are exactly four lifts ρ̃ of ρ to the
double covering-space

SL(2,C) −→ SO(3,C)
∼=−−→ SO(C3,B).

To see this, for each generatorX, Y ,Z of π , its ρ-image has exactly two lifts, differing
by ±Id. Lifting the generators to ρ̃(X), ρ̃(Y ), ρ̃(Z) respectively, exactly half of the
eight choices satisfy

ρ̃(X)ρ̃(Y )ρ̃(Z) = Id (3.9)

(as desired), and for the other four choices the product equals −Id.
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Choose one of the four lifts satisfying (3.9), and denote it ρ̃. If i �= j , the trace of
RiRj ∈ SL(3,C) equals 4(Bij )2 − 1. For example, take i = 1, j = 2:

ρ̃(Z) = R1R2 =
⎡
⎣−1 −2B12 −2B13

0 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 0
−2B12 −1 −2B23

0 0 1

⎤
⎦

=
⎡
⎣4(B12)

2 − 1 −2B12 4B23B12 − 2B13
−2B12 −1 −2B23

0 0 1

⎤
⎦

has trace 4(B12)
2 − 1.

This calculation gives another proof of surjectivity in Theorem A (as in [27]). For
(x, y, z) ∈ C

3, the matrix

B =
⎡
⎣ 1 z/2 y/2
z/2 1 x/2
y/2 x/2 1

⎤
⎦ (3.10)

defines a bilinear form B and a representation ρ(B) as above.
The corresponding SL(2,C)-traces of the ρ̃-images of the generators X, Y,Z of

π satisfy

tr
(
ρ̃(X)

) = ±2B23,

tr
(
ρ̃(Y )

) = ±2B13,

tr
(
ρ̃(Z)

) = ±2B12,

because (using (3.8))

tr
(
ρ̃(X)

)2 = 1+ tr
(
Sym2(ρ̃(X))) = 1+ tr(R2R3) = 4(B23)

2,

tr
(
ρ̃(Y )

)2 = 1+ tr
(
Sym2(ρ̃(Y ))) = 1+ tr(R3R1) = 4(B31)

2,

tr
(
ρ̃(Z)

)2 = 1+ tr
(
Sym2(ρ̃(Z))) = 1+ tr(R1R2) = 4(B12)

2.

Now adjust the lifts as above to arrange a representation π
ρ̃−→ SL(2,C) with

tr
(
ρ̃(X)

) = x,
tr
(
ρ̃(Y )

) = y,
tr
(
ρ̃(Z)

) = z
as desired.

When κ(x, y, z) = 2, the matrix B is singular and we obtain reducible represen-
tations. There are two cases, depending on whether rank(B) = 2 or rank(B) = 1.
(Since B �= 0, its rank cannot be zero.)
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3.4 Real characters and real forms

A real character (x, y, z) ∈ R
3 corresponds to a representation of a rank-two free

group in one of the two real forms SU(2), SL(2,R) of SL(2,C). This was first stated
and proved in general by Morgan–Shalen [61]. Geometrically, SU(2)-representations
are those which fix a point in H3, and SL(2,R)-representations are those which pre-
serve a plane H2 ⊂ H3 as well as an orientation on the plane.

Theorem 3.4.1. Let (x, y, z) ∈ R
3 and

κ(x, y, z) := x2 + y2 + z2 − xyz− 2.

Let π
ρ−→ SL(2,C) be a representation with character (x, y, z). Suppose first that

κ(x, y, z) �= 2.

• If −2 ≤ x, y, z ≤ 2 and κ(x, y, z) < 2, then ρ(π) fixes a unique point in H3

and is conjugate to an SU(2)-representation.

• Otherwise ρ(π) preserves a unique plane in H3 and its restriction to that plane
preserves orientation.

If κ(x, y, z) = 2, then ρ is reducible and one of the following must occur:

• ρ(π) acts identically on H3, in which case ρ(π) ⊂ {±Id} is a central represen-
tation.

• ρ(π) fixes a line in H3, in which case −2 ≤ x, y, z ≤ 2 and ρ is conjugate to a
representation taking values in SO(2) = SU(2) ∩ SL(2,R).

• ρ(π) acts by transvections along a unique line in H3, in which case

x, y, z ∈ R \ (−2, 2).

Then ρ is conjugate to a representation taking values in SO(1, 1) ⊂ SL(2,R).

• ρ(π) fixes a unique point on ∂∞H3.

Recall that SO(1, 1) is isomorphic to the multiplicative group R
∗ of nonzero real

numbers, and is conjugate to the subgroup of SL(2,R) consisting of diagonal matrices.
Corollary 3.2.3 associates to a generic representation ρ an ordered triple ιρ of

geodesics in H3. When ρ is irreducible, the corresponding cases for ιρ are the follow-
ing:

• If ρ fixes a unique point p ∈ H3, then the three lines are distinct and intersect
in p. Conversely if the three lines are concurrent, then ρ is conjugate to an
SU(2)-representation.

• If ρ preserves a unique plane P , then the three lines are distinct. There are two
cases:

– The three lines are orthogonal to P .

– The three lines lie in P .
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The first case, when the lines are orthogonal to P , occurs when κ(x, y, z) < 2. In this
case the corresponding involutions preserve orientation on P . The second case, when
the lines lie in P , occurs when κ(x, y, z) > 2. In that case the involutions restrict to
reflections in geodesics in P which reverse orientation.

Real symmetric 3×3matrices. We deduce these facts from the classification given in
Theorem A. First assume that (x, y, z) is an irreducible character, i.e., κ(x, y, z) �= 2.
Theorem A implies that (x, y, z) is the character of the representation ρ given by
(2.10), and all such characters are PGL(2,C)-conjugate.

The matrix B defining the bilinear form B in (3.10) satisfies

4 det(B) = 2− κ(x, y, z)
so B is degenerate if and only if κ(x, y, z) = 2, in which case ρ is reducible.

Suppose that B is nondegenerate, so that either κ(x, y, z) > 2 or κ(x, y, z) < 2.
Suppose first that κ(x, y, z) > 2. Then det(B) < 0. Since the diagonal entries of
B are positive, B is indefinite of signature (2, 1). In particular, it cannot be negative
definite. In this case the triple of lines corresponding to ρ are all coplanar. The
corresponding involutions reverse orientation on P and act by reflections of P in the
three geodesics respectively.

When κ(x, y, z) < 2, there are two cases: either B is positive definite (signature
(3, 0)) or indefinite (signature (1, 2)). The restriction of B to the coordinate plane
spanned by ei and ej is given by the 2× 2 symmetric matrix[

1 Bij

Bij 1

]

which is positive definite if and only if −1 < Bij < 1. Thus B is positive definite if
and only if −2 < x, y, z < 2.

Otherwise B is indefinite and ρ corresponds to a representation in SO(1, 2). In
this case the triple of lines in H3 are all orthogonal to the invariant plane P in H3.
The corresponding three involutions preserve orientation on P and act by symmetries
about points in P .

The two-dimensional normal form. Another approach to finding a representation
with given traces involves a direct computation with the explicit normal form (2.10)
as follows. Let (x, y, z) be as above. First solve z = 2 cos(θ) to obtain representative
matrices:

ξx :=
[
x −1
1 0

]
, ηy,θ :=

[
0 e−iθ

−eiθ y

]
,

with a slight change of notation from (2.10).
A Hermitian form on C

2 is given by a Hermitian 2×2-matrixH . A complex 2×2
matrix H is Hermitian if and only if H = H. The corresponding Hermitian form
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on C
2 is:

(u, v) �−→ v̄Hu,

where u, v ∈ C
2. A linear transformation C

2 ξ−→ C
2 preserves H if and only if

ξ̄Hξ = H .
The ξx-invariant Hermitian forms comprise the real vector space with basis[

2 x

x 2

]
,

[
0 i

−i 0

]
and the ηy,θ -invariant Hermitian forms comprise the real vector space with basis[

2 −y sec(θ)
−y sec(θ) 2

]
,

[
0 i − y tan(θ)

−i − y tan(θ) 0

]
.

The ρ-invariant Hermitian forms thus comprise the intersection of these two vector
spaces, the vector space with basis

H =
[

2 sin(θ) x sin(θ)− i(y + xz/2)
x sin(θ)+ i(y + xz/2) 2 sin(θ)

]
.

This Hermitian matrix is definite since its determinant is positive:

det(H) = 4 sin2(θ)− x2 sin2(θ)− (y − xz/2)2
= 2− κ(x, y, z) > 0

(since sin2(θ) = 1− (z/2)2 and κ(x, y, z) < 2).

4 Hyperbolic structures on surfaces of χ = −1

We apply this theory to compute, in trace coordinates, the deformation spaces of hy-
perbolic structures on compact connected surfaces� with χ(�) = −1. Equivalently,
such surfaces are characterized by the condition that π1(�) is a free group of rank
two. There are four possibilities:

• � is homeomorphic to a three-holed sphere (a “pair-of-pants” or “trinion”)�0,3;

• � is homeomorphic to a one-holed torus �1,1;

• � is homeomorphic to a one-holed Klein bottle C1,1;

• � is homeomorphic to a two-holed projective plane C0,2.

Each of these surfaces can be realized as a ribbon graph with three bands connecting
two 2-cells. The number of boundary components and the orientability can be read
off from the parities of the number of twists in the three bands. Compare Figures 2–5.
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Figure 2. A ribbon graph for a three-holed sphere.

Figure 3. A ribbon graph for a one-holed torus.

Figure 4. A ribbon graph for a two-holed cross-surface.

Figure 5. A ribbon graph for a one-holed Klein bottle.
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4.1 Fricke spaces

The Fricke space F(�) is the space of isotopy classes of marked hyperbolic structures
on � with ∂� geodesic. The group of isometries of H2 equals PGL(2,R), which
embeds in PSL(2,C). Its identity component PSL(2,R) consists of the isometries
of H2 which preserve an orientation on H2. The holonomy map embeds F(�) in the
deformation space

Hom
(
π1(�), PGL(2,R)

)
//PGL(2,R).

Since ∂� �= ∅, π1(�) is a free group, and the problem of lifting a representation of
π1(�) to GL(2,R) is unobstructed.

The various lifts are permuted by the group H 1(�;Z/2), which is isomorphic to
Z/2 ⊕ Z/2 when χ(�) = −1. In terms of trace coordinates on the R-locus of the
character variety this action is given by:⎡

⎣xy
z

⎤
⎦ ,

⎡
⎣ x

−y
−z

⎤
⎦ ,

⎡
⎣−xy
−z

⎤
⎦ ,

⎡
⎣−x−y
z

⎤
⎦ .

Theorem 4.1.1. Using trace coordinates of the boundary, the Fricke space of the
three-holed sphere �0,3 identifies with the quotient of the four octants

(−∞,−2] × (−∞,−2] × (−∞,−2]∐(−∞,−2] × [2,∞)× [2,∞)∐[2,∞)× [2,∞)× (−∞,−2]∐[2,∞)× (−∞,−2] × [2,∞) ⊂ R
3

by H 1(�,Z/2). The octant

(−∞,−2] × (−∞,−2] × (−∞,−2]
defines a slice for the H 1(�,Z/2)-action.

The proof will be given in §4.3.

Theorem 4.1.2. The Fricke space of the one-holed torus �1,1 identifies with the
quotient of

κ−1((−∞,−2]) = {(x, y, z) ∈ R
3 | x2 + y2 + z2 − xyz ≤ 0}

by H 1(�,Z/2). The region

{(x, y, z) ∈ (2,∞)3 | x2 + y2 + z2 − xyz ≤ 0}
is a connected component of κ−1

(
(−∞,−2]), defines a slice for the H 1(�,Z/2)-

action, and hence identifies with the Fricke space of �.

The proof will be given in §4.4.
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4.2 Two-dimensional hyperbolic geometry

We take for our model of the hyperbolic plane H2 the subset of H3 comprising quater-
nions z+ uj, where u > 0 and z ∈ R. A matrix

A =
[
a b

c d

]
∈ GL(2,C)

determines a projective transformation of CP
1 = ∂H3 which extends to an orientation-

preserving isometry of H3. This isometry preserves H2 if and only if it is a scalar
multiple of a real matrix. As usual, normalize A ∈ GL(2,C) by dividing by a square
root
√

det(A) ∈ C
∗. An element of

SL(2,C) ∩ C
∗GL(2,R)

is either:

• a real matrix of determinant 1, or

• a purely imaginary matrix iA′ where A′ ∈ GL(2,R) satisfies det(A′) = 1.

In the first case the corresponding orientation-preserving isometry of H3 preserves
orientation on H2, and in the second case its restriction reverses orientation on H2.
The traces of their representative matrices in SL(2,C) distinguish these cases. We
emphasize that these representatives are only determined up to ±1. Suppose that
A ∈ PSL(2,C) preserves a plane P ⊂ H3 and let Ã ∈ SL(2,C) be a lift of A. Then:

• The restriction of A to P preserves orientation if and only if tr(Ã) ∈ R.

• The restriction of A to P reverses orientation if and only if tr(Ã) ∈ iR.

Observe that an element Ã ∈ SL(2,C) with P(Ã) = A whose trace is both real and
purely imaginary – that is, equals zero – is an involution in a line � := Fix(A). The
A-invariant planes fall into two types: those which contain �, upon which A reverses
orientation, and those which are orthogonal to �, upon which A preserves orientation.

The hyperbolic plane and involutions of H3. The proof of Theorem 4.1.1 requires
an algebraic representation of half-planes in H2. Given an orientation on H2, and an
oriented geodesic � ⊂ H2, there is a well-determined half-plane bounded by �, defined
as follows. Let x ∈ �. Choose the unit vector v� tangent to � at x determined by the
orientation of �. The choice of half-plane H ⊂ H2 \ � is determined by the normal
vector ν to � at x pointing outward from H. Choose H so that the basis {v�, ν} ⊂ TxH2

is positively oriented.
The points of H2 identify with geodesics in H3 which are orthogonal to H2; the

endpoints of such geodesics are complex-conjugate elements of CP
1 \ RP

1. An in-
volution which interchanges these endpoints is given by matrices ±Ix+ju, where the
2× 2 real matrix

Ix+ju := 1

u

[
x −(x2 + u2)

1 −x
]

(4.1)
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has determinant 1 and trace 0. (Apply (3.2), taking z1 = x+ iu and z2 = x− iu.) The
space of such matrices has two components, depending on the signs of the off-diagonal
elements. A matrix

A ∈ SL(2,R) ∩ sl(2,R)

equals Ix+ju, for some x + ju ∈ H2 if and only if A12 < 0 < A21, in which case

u = (A21)
−1, x = (A21)

−1A11.

The above inequalities determine one of the two sheets of the two-sheeted hyperboloid
in sl(2,R) defined by the unimodularity condition det(A) = 1.

This gives a convenient form of the Klein hyperboloid model for H2, as the quadric
in sl(2,R) ∼= R

3 defined by

1 = det(A) = −1

2
tr(A2).

Next we represent oriented geodesics by involutions. A geodesic in H2 determines
an involution by (3.2) and (3.3), where z1, z2 are distinct points in RP

1. Such a matrix
is purely imaginary, has trace zero and determinant one. Multiplying by i, we obtain
an element A of sl(2,R) which has determinant −1. Such a matrix has well-defined
1-dimensional eigenspaces with eigenvalues ±i. These eigenspaces determine the
respective fixed points in RP

1. Replacing A by−A interchanges the±i-eigenspaces.
In this way, we identify the set of oriented geodesics in H2 with

{A ∈ sl(2,R) | det(A) = −1}.
This is just the usual hyperboloid model. Think of sl(2,R) as a 3-dimensional real
inner product space under the inner product

〈A,B〉 := 1

2
tr(AB).

The corresponding quadratic form relates to the determinant by

〈A,A〉 = 1

2
tr(A2) = −det(A).

This quadratic form is readily seen to have signature (2, 1) since its value on[
a b

c −a
]

equals a2+bc. Then H2 corresponds to one component of the two-sheeted hyperboloid
(say the one with b < 0 < c)

{v ∈ sl(2,R) | 〈v, v〉 = −1}
and the space of oriented geodesics corresponds to the de Sitter space

dS2
1 := {v ∈ sl(2,R) | 〈v, v〉 = 1}.
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A vector v ∈ dS2
1 determines a half-plane H(v) by:

H(v) := {w ∈ H2 | 〈w, v〉 ≥ 0}. (4.2)

In particular, H(−v) is the half-plane complementary to H(v).
For example, the half-plane corresponding to[

1 0
0 −1

]
consists of all x + uj where x ≥ 0, as can easily be verified using (4.1).

The main criterion for disjointness of half-planes is the following lemma, whose
proof is an elementary exercise and left to the reader. (Recall that two geodesics in H2

are ultraparallel if and only if they admit a common orthogonal geodesic; equivalently
distances between their respective points have a positive lower bound.)

Lemma 4.2.1. Let v1, v2 ∈ dS2
1 determine geodesics �1, �2 ⊂ H2 and half-planes

Hi := H(vi) with ∂Hi = �i . The following conditions are equivalent:

• |〈v1, v2〉| > 1.

• The invariant geodesics �1 and �2 are ultraparallel.

In this case, the following two further conditions are equivalent:

• 〈v1, v2〉 > 1.

• Either H1 ⊂ H2 or H2 ⊂ H1.

Contrariwise, the following two conditions are equivalent:

• 〈v1, v2〉 < −1.

• Either H1 and H2 are disjoint or their complements are disjoint.

Hyperbolic isometries. An element A ∈ SL(2,R) is hyperbolic if it satisfies any of
the following equivalent conditions:

• tr(A) > 2 or tr(A) < −2.

• A has distinct real eigenvalues.

• The isometry of H2 defined by A has exactly two fixed points on ∂H2.

• The isometry of H2 defined byA leaves invariant a (necessarily unique) geodesic
�A, upon which it acts by a nontrivial translation.

A geodesic � in H2 is specified by its reflection ρ�, an isometry of H2 whose fixed point
set equals �. If v ∈ dS2

1 is a vector corresponding to �, then ρ� is the restriction to H2

of the orthogonal reflection in SO(2, 1) fixing v:

u
ρv�−→ −u+ 2〈u, v〉v.

(3.1) implies the following useful formula for the invariant axis of a hyperbolic element:
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Lemma 4.2.2. Let A be hyperbolic. Then

Â := 2A− tr(A) Id√
tr(A)2 − 4

∈ Ĩnv ∩ SL(2,R) (4.3)

defines the reflection in the invariant axis of A.

Notice that

−̂A = Â−1 = −Â,
so that A and A−1 determine complementary half-planes.

For example

A =
[
el/2 0
0 e−l/2

]

represents translation along a geodesic (the imaginary axis in H2) by distance l > 0
from 0 to∞. The corresponding reflection is

Â =
[

1 0
0 −1

]
which determines the half-plane

H(Â) = {x + uj ∈ H2 | x ≥ 0, u > 0}
as above.

4.3 The three-holed sphere

We now show that a representation corresponding to a character (x, y, z) ∈ R
3 sat-

isfying x, y, z < −2 is the holonomy representation of a hyperbolic structure on a
three-holed sphere. We find matrices X, Y , Z of the desired type and compute the
corresponding reflections X̂, Ŷ , Ẑ. Then we show that the corresponding half-planes
are all disjoint (after possibly replacing X̂, Ŷ , Ẑ by their negatives). From this we
construct a developing map for a hyperbolic structure on �. For details on geometric
structures on manifolds and their developing maps, see Goldman [28], [30] ,[32] or
Thurston [75].

Lemma 4.3.1. Suppose X, Y,Z ∈ SL(2,C) satisfy XYZ = Id and have real traces
x, y, z < −2 respectively. Then the inner products

〈X̂, Ŷ 〉, 〈Ŷ, Ẑ〉, 〈Ẑ, X̂〉
are all < −1.
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Proof. The proof breaks into a series of calculations. By symmetry it suffices to prove
〈X̂, Ŷ 〉 < −1. By the definition (4.3)

〈X̂, Ŷ 〉 = 1

2
tr

(
2X − x Id√
x2 − 4

2Y − y Id√
y2 − 4

)

= tr
(
4XY − 2xY − 2yX + xy Id

)
2
√
(x2 − 4)(y2 − 4)

= 2z− xy√
(x2 − 4)(y2 − 4)

(4.4)

since tr(XY) = z, tr(Y ) = y, tr(X) = x and tr(Id) = 2. Because

x, y, z < −2 �⇒ 2z− xy < 0,

the calculation above implies
〈X̂, Ŷ 〉 < 0. (4.5)

Now
x2 + y2 + z2 − xyz− 4 > 4+ 4+ 4− 8− 4 = 0

implies that

(2z− xy)2 − (x2 − 4)(y2 − 4) = 4(x2 + y2 + z2 − xyz− 4) > 0

and (
2z− xy√

(x2 − 4)(y2 − 4)

)2

> 1. (4.6)

Thus (4.4) and (4.6) imply
〈X̂, Ŷ 〉2 > 1

whence (4.5) implies
〈X̂, Ŷ 〉 < −1

as claimed.

Conclusion of proof of Theorem 4.1.1. Thus the half-planes H
X̂
,H

Ŷ
,H

Ẑ
are either

all disjoint or their complements are all disjoint. Replacing X̂, Ŷ, Ẑ by their negatives
if necessary, assume that the complements to H

X̂
, H

Ŷ
, H

Ẑ
are pairwise disjoint.

The intersection
�∞ := H

X̂
∩H

Ŷ
∩H

Ẑ

is bounded by the three geodesics

�X = ∂HX̂
, �Y = ∂HŶ

, �Z = ∂HẐ

and three segments of ∂H2. When some of ρ(X), ρ(Y ), ρ(Z) are parabolic, then these
segments degenerate into ideal points. If a, b are lines or ideal points, denote their
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common orthogonal segment by ⊥ (a, b). Define:

σXY :=⊥ (�X, �Y ),
σYZ :=⊥ (�Y , �Z),
σZX :=⊥ (�Z, �X).

Let Hexρ ⊂ �∞ denote the right hexagon bounded by σXY , σYZ , σZX and segments
of �X, �Y , �Z as in Figure 6. Map the abstract hexagon Hex of §3.2 to Hexρ so that

∂1(Hex) �−→ �X,

∂2(Hex) �−→ �Y ,

∂3(Hex) �−→ �Z

and the other three edges of ∂Hex map homeomorphically to σXY , σYZ, σZX respec-
tively. This mapping embeds Hex into H2.

Y

σyz

lz

Z

σzx

σxy

Rxyσyz

Rxylz

Rxyσzx

X

Figure 6. Fundamental domain for hyperbolic structure on �0,3.

A fundamental domain for the action of

π1(�) = 〈X, Y,Z | XYZ = 1〉
on the universal covering surface

�̃ := (
Hex× π̂)

/ ∼
is the union

� := Hex ∪ ιXY (Hex).

We shall extend the embedding Hex ↪→ H2 to a local diffeomorphism (a developing
map)

�̃ −→ H2
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which isπ1(�)-equivariant with respect to the actionρ on H2. Pull back the hyperbolic
structure from H2 to obtain a π1(�)-invariant hyperbolic structure on �, as desired.

Extend Hex ↪→ H2 to � → H2 as follows. Map the reflected image of Hex to
ιXYHexρ . Then

X = ιZXιXY
identifies the two sides of � corresponding to σZX and ιXY σZX, and

Y = ιXY ιYZ
identifies the two sides of� corresponding to ιXY σYZ and σYZ . (Compare Figure 6.)
This defines a hyperbolic structure on � with geodesic boundary developing to �X,
�Y and �Z .

This completes the proof that every character (x, y, z) ∈ (−∞, 2]3 is the holonomy
of a hyperbolic structure on �0,3.

4.4 The one-holed torus

Now consider the case � ≈ �1,1. Present π = π1(�) as freely generated by X, Y
corresponding to simple closed curves which intersect transversely in one point. Then
the boundary ∂� corresponds to the commutator K = [X, Y ] and we obtain the
presentation

π = 〈X, Y,Z,K | XYZ = Id, XY = KYX〉
The corresponding trace functions are

x([ρ]) := tr
(
ρ(X)

)
,

y([ρ]) := tr
(
ρ(Y )

)
,

z([ρ]) := tr
(
ρ(Z)

)
,

k([ρ]) := tr
(
ρ(K)

)
= κ(x, y, z) = x2 + y2 + z2 − xyz− 2,

which we denote by x, y, z, k (without reference to ρ) when the context is clear.
The goal of this section is to prove Theorem 4.1.2.

Lemma 4.4.1. Suppose (x, y, z) ∈ R
3 satisfies x2+ y2+ z2− xyz < 4. Then either

• (x, y, z) ∈ [−2, 2]3, or

• |x|, |y|, |z| > 2.

In the first case (x, y, z) is the character of an SU(2)-representation as in Theo-
rem 3.4.1.

Proof. Rewriting the hypothesis as

(x2 − 4)(y2 − 4) > (2z− xy)2,
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it follows that (x2 − 4)(y2 − 4) > 0. By symmetry (y2 − 4)(z2 − 4) > 0 and
(z2 − 4)(x2 − 4) > 0 as well. Thus none of |x|, |y|, |z| equal 2, and either

x2 − 4, y2 − 4, z2 − 4

are all positive or all negative. If

|x|, |y|, |z| < 2

then (x, y, z) is an SU(2)-character as in Theorem 3.4.1; otherwise

|x|, |y|, |z| > 2

as desired. This completes the proof of Lemma 4.4.1.

Denote by X ⊂ � a simple closed curve corresponding to the generator X ∈
π1(�). The surface-with-boundary �′ := �|X obtained by splitting � along X is

homeomorphic to a three-holed sphere. Denoting the quotient map by �′ �−→ �, the
three components of ∂�′ are the connected preimage ∂ ′ := �−1(∂�) and the two
componentsX± of the preimage�−1(X). Choose arcs from the basepoint toX+ and
represent the boundary generators of π1(�

′) by the elements ∂ ′, X+, X− subject to
the relation X−X+∂ ′ = Id. The quotient map induces a monomorphism

π1(�
′)

�∗
↪−→ π1(�),

X+ �−→ X,

X− �−→ YX−1Y−1,

∂ ′ �−→ ∂ = X−1YXY−1;
compare Figure 7.

X+ X−

∂ ′

�′ �

∂

X

Figure 7. The one-holed torus as an identification space. The identification map Y conjugates
X to a boundary element of π1(�

′), but with the opposite orientation.

Lemma 4.4.2. The composition ρ ��∗ is the holonomy representation of a hyperbolic
structure on �′ ≈ �0,3.
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Proof. ByTheorem 4.1.1, it suffices to show that the images of the boundary generators
∂ ′, X−, X+ ∈ π1(�

′) under ρ ��∗ have trace ≤ −2. By Lemma 4.4.1,

tr
(
�∗ � ρ(X−)

) = tr
(
�∗ � ρ(X+)

) = x
is either > 2 or < −2. In the former case, replace ρ(X) by −ρ(X) to assume that
x < −2. Now by assumption

tr
(
�∗ � ρ(∂ ′)

) = tr
(
ρ(K)

) = k ≤ −2

so that all three boundary generators of π1(�
′) have trace ≤ −2, as desired.

Conclusion of proof of Theorem 4.1.2. Thus we obtain a hyperbolic structure on �′
with geodesic boundary. Two of the boundary components correspond toX− andX+.
Choosing a developing map with holonomy �∗ � ρ, the isometry ρ(Y ) realizes the
identification ofX− withX+ for which� is the quotient map. The resulting quotient
space is homeomorphic to � and inherits a hyperbolic structure from the one on �′
and the identification. Therefore ρ is the holonomy representation of a hyperbolic
structure on �. This concludes the proof of Theorem 4.1.2.

Compare Goldman [30] for a different proof.
The algebraic methods discussed here easily imply several other qualitative geo-

metric facts:

Proposition 4.4.3. Suppose that x, y, z ∈ R satisfy κ(x, y, z) ≤ −2 and (x, y, z) �=
(0, 0, 0). Then (x, y, z) is the character of a representation π

ρ−→ SL(2,R) and ρ(X)
and ρ(Y ) are hyperbolic elements whose axes cross.

Proof. Since κ(x, y, z) ≤ −2 < 2, Lemma 4.4.1 applies. The representation ρ
with character (x, y, z) is conjugate to either an SU(2)-representation or an SL(2,R)-
representation. Since

tr
(
ρ([X, Y ])) ≤ −2,

the only possibility for an SU(2)-representation occurs if κ(x, y, z) = −2. Then ρ is
conjugate to the quaternion representation

ρ(X) =
[

0 −1
1 0

]
, ρ(Y ) =

[
i 0
0 −i

]
,

and (x, y, z) = (0, 0, 0), a contradiction. (Compare §2.6 of Goldman [30].) Thus
(x, y, z) corresponds to an SL(2,R)-representation ρ. Lemma 4.4.1 implies that
ρ(X) and ρ(Y ) are both hyperbolic. Proposition 3.2.6 implies that the involution
fixing the common orthogonal ⊥ (�ρ(X), �ρ(Y )) of their respective invariant axes is
given by the Lie product Lie

(
ρ(X), ρ(Y )

)
. In particular their axes cross if and only if

⊥ (�ρ(X), �ρ(Y )) is orthogonal to the real plane H2 ⊂ H3, that is, if Lie
(
ρ(X), ρ(Y )

)
defines an orientation-preserving involution of H2. This occurs precisely when
the matrix Lie

(
ρ(X), ρ(Y )

)
has positive determinant. By (2.15), the Lie product
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Lie
(
ρ(X), ρ(Y )

)
has positive determinant if and only if the commutator trace in-

equality

tr([ρ(X), ρ(Y )]) < 2

holds, as assumed. The proof of Proposition 4.4.3 is complete.

4.5 Fenchel–Nielsen coordinates

In an influential manuscript written in the early 20th century but only recently pub-
lished, Fenchel and Nielsen [17] gave geometric coordinates for Fricke space. We
briefly relate these coordinates to trace coordinates for the surfaces of Euler charac-
teristic −1.

Pants decompositions. Decompose � into a union of three-holed spheres (“pants”)

P1, . . . , Pl

along a system of N disjoint simple curves

γ1, . . . , γN ⊂ int(�).

Let ∂1, . . . , ∂n denote components of ∂�. For a given marked hyperbolic structure on
�, the curves γi, ∂j may be taken to be simple closed geodesics. Theorem A implies
that the isometry type of the complementary subsurfaces Pk are determined by the
lengths of the three closed geodesics representing ∂Pk . The resulting map

F(�)
F−→ (R+)N × (R≥0)

n,

〈M〉 �−→ �M(γi)× �M(∂j )
which associates to a hyperbolic surfaceM the lengths of the geodesics γi, ∂j is onto.
Its fibers correspond to the various ways in which the subsurfaces Pk are identified
along interior curves γi .

Choose a section σ of the map F as follows. Each interior curve γ bounds two
subsurfaces, which we denote P ′ and P ′′. The corresponding boundary curves are
denoted γ ′ ⊂ P ′ and γ ′′ ⊂ P ′′ respectively. The twist parameter τi ∈ R represents
the displacement between points on the marked surfaces P, P ′ corresponding to the
section σ . This realizes the Fenchel–Nielsen map F as a principal R

N -bundle over
F(�). Wolpert [80], [81], [82] shows that, when � is closed and orientable, the
Fenchel–Nielsen coordinates on F(�) are canonical or Darboux coordinates for the
symplectic structure arising from the Weil–Petersson Kähler form on Teichmüller
space, and indeed F is a moment map for a completely integrable system on F(�).

In the orientable case, � ≈ �g,n, then

N = 3(g − 1)+ n. (4.7)
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Since χ(�) = 2 − 2g + n and each Pk has Euler characteristic −1, the number l of
subsurfaces Pk equals

l = −χ(�) = 2+ 2g + n.
Consider the set S of pairs (α, C), where α is one of the N + n curves ∂i, γj and
C ⊂ Pk is a collar neighborhood of α inside Pk for some k. Each C lies in exactly
one Pk and each subsurface Pk contains exactly three pairs (α, C), the cardinality of
S equals 3l. Furthermore the number of collars C equals 2N + n, since each γi is
two-sided in � and each ∂j is one-sided. Computing the cardinality of S in two ways

2N + n = 3l = 3(2g − 2+ n)
implies (4.7).

The nonorientable case, say � ≈ Ck,n, reduces to the orientable case by cutting
along a disjoint family of simple loops: k of them reverse orientation andN = k+2−n
preserve orientation. This follows easily from the classification of surfaces: Ck,n can
be obtained from the planar surface�0,k+n by attaching k cross-caps (copies of C0,k)
to k of the components of �0,k+n. In the nonorientable surface � ≈ Ck,n are k
disjoint orientation-reversing simple loops s1, . . . , sk so that the surface �′ obtained
by splitting � along s1, . . . , sk identifies to �. Denote the resulting quotient map by

�′ ≈ �0,n+k
φ−→ � ≈ Ck,n.

Let s′i ⊂ �′ denote the preimage φ−1(si). Given a hyperbolic structure on�′, there is
a unique way of extending this hyperbolic structure to� as follows. As usual, assume
that each s′i ⊂ �′ is a closed geodesic. Choose ε > 0 sufficiently small so that all the
ε-collars Nε(s′i ) of s′i are disjoint. Denote the complement of these collars by

�′′ := �′ \
k⋃
i=1

Nε(s
′
i ).

Represent the geodesic s′i as the quotient s̃/〈ξ〉, where ξ ∈ PSL(2,R) is hyperbolic
and s̃ ⊂ H2 is the ξ -invariant geodesic. That is, ξ is a transvection along the geodesic
s̃. Let

√
ξ denote the unique glide-reflection whose square is ξ ; it is the composition of

reflection in s̃ with the transvection of displacement �(ξ)/2 where �(ξ) is the displace-
ment of ξ . If a matrix representative of ξ has trace x > 2, then x = 2 cosh

(
�(ξ)/2

)
and a matrix representing the glide-reflection

√
ξ equals

1√
x − 2

(ξ − Id).

Let Nε(s̃) ⊂ H2 be the tubular neighborhood of width ε about s̃. The quotient
Nε(s̃)/〈√ξ〉 is a cross-cap bounded by a hypercycle (equidistant curve). The union

�′′ ∪Nε(s̃)/
〈√
ξ

〉
is the desired hyperbolic structure on �.
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Fenchel–Nielsen coordinates on �1,1. We relate the Fricke trace coordinates to
Fenchel–Nielsen coordinates as follows. We suppose that the boundary ∂� has length
b ≥ 0, the case b = 0 corresponding to the complete finite-area structure (where the
holonomy around ∂� is parabolic).

Suppose that X ⊂ � has length l > 0, and has holonomy represented by

ρ̃(X) :=
[
el/2 0
0 e−l/2

]
,

where x = 2 cosh(l/2). Then

Fix
(
ρ(X)

) = {0,∞}.
A fundamental domain for the cyclic group 〈ρ(X)〉 is bounded by the geodesics with
endpoints ±e−l/2 and ±el/2 respectively.

Normalize the twist parameter τ so that τ = 0 corresponds to the case that the
invariant axes �ρ(X), �ρ(Y ) are orthogonal. In that case take Fix(ρ(Y )) = ±1 and
define

ρ̃0(Y ) :=
[

cosh(μ/2) sinh(μ/2)
sinh(μ/2) cosh(μ/2)

]
,

where y = 2 cosh(μ/2).
A fundamental domain for the cyclic group 〈ρ(Y )〉 is bounded by the geodesics

with endpoints −e±μ/2 and e±μ/2 respectively. For this representation,

z = tr
(
ρ̃(X)ρ̃0(Y )

) = xy/2 = 2 cosh(l/2) cosh(μ/2).

Let τ ∈ R be the twist parameter for Fenchel–Nielsen flow. (Compare Wolpert [80].)
The orbit of the Fenchel–Nielsen twist deformation is defined by the representation

ρ(Y ) := ρ0(Y ) exp
(
(τ/2) ̂̃ρ(X)

)
,

where

̂̃ρ(X) =
[

1 0
0 −1

]

defines the one-parameter subgroup

exp
(
(τ/2) ̂̃ρ(X)

) = [
eτ/2 0

0 e−τ/2
]
.

Now x = 2 cosh(l/2) is constant but

y = tr
(
ρ̃(Y )

) = tr

(
ρ̃0(Y )

[
eτ/2 0

0 e−τ/2
] )

= 2 cosh(l/2) cosh(τ/2).
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Similarly,

z = tr
(
ρ̃(X) ρ̃(Y )

) = tr

( [
el/2 0
0 e−l/2

]
ρ̃0(Y )

[
eτ/2 0

0 e−τ/2
] )

= 2 cosh(μ/2) cosh
(
(l + τ)/2)

.

Now the commutator trace tr
(
ρ̃([X, Y ])) equals

−2 cosh(b/2) = κ(x, y, z) = 2− sinh2(l/2) sinh2(μ/2)

whence

cosh2(μ/2) = 1− 4 csch2(l/2) sinh2(b/4).

Therefore the Fricke trace coordinates are expressed in terms of Fenchel–Nielsen
coordinates by

x = 2 cosh(l/2),

y = 2
√

1− 4 csch2(l/2) sinh2(b/4) cosh(τ/2),

z = 2
√

1− 4 csch2(l/2) sinh2(b/4) cosh
(
(τ + l)/2).

4.6 The two-holed cross-surface

Following John H. Conway’s suggestion, we call a surface homeomorphic to a real
projective plane a cross-surface. Suppose that � = C0,2 is a two-holed cross-surface
(Figure 4). Then π1(�) is freely generated by two orientation-reversing simple loops
P , Q on the interior. These loops correspond to the two 1-handles in Figure 4. The
two boundary components ∂± of � correspond to elements

R := Q−1P−1, R′ := QP−1,

obtaining a redundant geometric presentation of π1(�):

π = 〈P,Q,R,R′ | PQR = PQ−1R′ = Id〉.
The characters of the generators of this presentation define a presentation of the char-
acter ring

C[fP , fQ, fR, fR′ ] /
(
fR + fR′ − fP fQ

)
the relation being (2.6). Of course p, q, r (respectively p, q, r ′) are free generators
for the character ring (a polynomial ring in three variables).

The Fricke space of � was computed by Stantchev [72]; compare also the forth-
coming paper by Goldman–McShane–Stantchev–Tan [33]. For a given hyperbolic
structure on �, the holonomy transformations ρ(P ) and ρ(Q) reverse orientation,
their traces are purely imaginary, and the traces of ρ(R) and ρ(R′) are real. For this



Chapter 15. Trace coordinates on Fricke spaces of some simple hyperbolic surfaces 661

reason we write

ip = fP = tr
(
ρ(P )

) ∈ iR,
iq = fQ = tr

(
ρ(Q)

) ∈ iR,
r = fR = tr

(
ρ(R)

) ∈ R,

r ′ = fR′ = tr
(
ρ(R′)

) ∈ R,

where p, q, r, r ′ ∈ R and

r ′ := r + pq ∈ R.

By an analysis similar to that of �0,3 and �1,1, the Fricke space of � identifies with

{(p, q, r) ∈ R
3 | r ≤ −2, pq + r ≥ 2}.

Compare [72], [35], [33] for further details.

4.7 The one-holed Klein bottle

Now suppose � is a one-holed Klein bottle. (Compare Figure 5.) Once again we
choose free generators P,Q for π corresponding to the two 1-handles in Figure 5
which reverse orientation. The boundary component D corresponds to P 2Q2 and,
writing R = (PQ)−1, we obtain a redundant geometric presentation

π = 〈P,Q,R,D | PQR = Id,D = P 2Q2〉
and the character ring has presentation

C[fP , fQ, fR, fD]/
(
fD − (fP fQfR − f 2

P − f 2
Q + 4)

)
.

Since P,Q reverse orientation on H2, the functions fP , fQ are purely imaginary and
fR, fD are real. Thus we write

ip = fP = tr
(
ρ(P )

) ∈ iR,
iq = fQ = tr

(
ρ(Q)

) ∈ iR,
r = fR = tr

(
ρ(R)

) ∈ R,

d = fD = tr
(
ρ(D)

) ∈ R,

and the Fricke space of � identifies with

{(p, q, r) ∈ R
3 | p2 + q2 − pqr ≥ 0}.

See Stantchev [72] and [33] for details.
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5 Three-generator groups and beyond

Let � be a compact connected surface-with-boundary. Suppose ∂� �= ∅. Then
the fundamental group π1(�) is free of rank 3 if and only if the Euler characteristic
χ(�) = −2. Such a surface is homeomorphic to one of the four topological types:

• a four-holed sphere �0,4;

• a two-holed torus �1,2;

• a three-holed cross-surface (projective planes) C0,3;

• a two-holed Klein bottle C1,2.

In this section we only consider the orientable topological types, namely �0,4 and
�1,2. We relate their character varieties to those of nonorientable surfaces C0,2 and
C1,1, discussed in §4.6 and §4.7.

5.1 The SL(2,C)-character ring of F3

Representations ρ of the free group 〈X1, X2, X3〉 of rank three correspond to arbitrary
triples (

ρ(X1), ρ(X2), ρ(X3)
) ∈ SL(2,C)3.

As before we consider the quotient space (in the sense of Geometric Invariant Theory)
under the action of SL(2,C) by inner automorphisms, the character variety. Its
coordinate ring is by definition the subring of invariants (the character ring)

C[SL(2,C)3]PSL(2,C) ⊂ C[SL(2,C)3]
of the induced effective PSL(2,C)-action on the ring of coordinate ring C[SL(2,C)3].

We saw in §2 that for a free group of rank two, the character variety is an affine
space and the character ring is a polynomial ring. The situation in rank three is more
complicated. The character variety V3 is a six-dimensional hypersurface in C

7, which
admits a branched double covering onto the six-dimensional affine space C

6.
Explicitly, the character ring R3 is generated by eight trace functions

t1, t2, t3, t12, t23, t13, t123, t132

defined by

ti(ρ) := tr
(
ρ(Xi)

)
, tij (ρ) := tr

(
ρ(XiXj )

)
and tijk(ρ) := tr

(
ρ(XiXjXk)

)
subject to two relations expressing the sum and product of traces of the length 3
monomials in terms of traces of monomials of length 1 and 2:

t123 + t132 = t12t3 + t13t2 + t23t1 − t1t2t3, (5.1)

t123 t132 = (t21 + t22 + t23 )+ (t212 + t223 + t213)

− (t1t2t12 + t2t3t23 + t3t1t13)+ t12t23t13 − 4.
(5.2)
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We call (5.1) the Sum Relation and (5.2) the Product Relation respectively. They imply
that the triple traces t123 and t132 are the respective roots λ of the irreducible monic
quadratic equation

λ2 − f�λ+ f� = 0,

where the coefficients

f� := t12t3 + t23t1 + t13t2 − t1t2t3
and

f� := (t21 + t22 + t23 )
+ (t212 + t223 + t213)

− (t1t2t12 + t2t3t23 + t3t1t13)

+ t12t23t13 − 4

are the polynomials appearing in the right-hand sides of (5.1) and (5.2) respectively.

V3 is a hypersurface in C
7. Eliminating t132 in (5.1) as

t132 = t12t3 + t13t2 + t23t1 − t1t2t3 − t123, (5.3)

realizes V3 as the hypersurface in C
7 consisting of all(

t1, t2, t3, t12, t23, t13, t123
) ∈ C

7

satisfying

t123
(
t12t3 + t13t2 + t23t1 − t1t2t3 − t123

)
= (t21 + t22 + t23 )+ (t212 + t223 + t213)− (t1t2t12 + t2t3t23 + t3t1t13)+ t12t23t13 − 4.

V3 double covers C
6. The double covering ofV3 over C

6 arises from the composition

V3 ↪−→ C
8 �−−→ C

6, (5.4)

where

C
8 �−−→ C

6,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1
t2
t3
t12
t23
t13
t123
t132

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

t1
t2
t3
t12
t23
t13

⎤
⎥⎥⎥⎥⎥⎥⎦

is the coordinate projection.
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Proposition 5.1.1. The composition (5.4)

V
t−−→ C

6,

[ρ] �−→

⎡
⎢⎢⎢⎢⎢⎢⎣

t1(ρ)

t2(ρ)

t3(ρ)

t12(ρ)

t23(ρ)

t13(ρ)

⎤
⎥⎥⎥⎥⎥⎥⎦

is onto. Furthermore it is a double covering branched along the discriminant hyper-
surface in C

6 defined by(
t12t3 + t13t2 + t23t1 − t1t2t3

)2 = 4
(
(t21 + t22 + t23 )+ (t212 + t223 + t213)

− (t1t2t12 + t2t3t23 + t3t1t13)+ t12t23t13 − 4
)
.

The goal of this section is to prove the identities (5.1), (5.2) and Proposition 5.1.1.

Proof of the Sum Relation. To prove these identities, we temporarily introduce the
following notation. Let ξ = ρ(X1), η = ρ(X2), ζ = ρ(X3), so that (5.1) becomes

tr(ξηζ )+ tr(ξζη) = tr(ξη)tr(ζ )− tr(ζ )tr(ξ)tr(η)

+ tr(ζ ξ)tr(η)+ tr(ηζ )tr(ξ).
(5.5)

To prove (5.5), apply the Basic Identity (2.6) three times:

tr(ξηζ )+ tr(ξηζ−1) = tr(ξη)tr(ζ ), (5.6)

tr(ζ−1ξη)+ tr(ζ−1ξη−1) = tr(ζ−1ξ)tr(η)

= (tr(ζ )tr(ξ)− tr(ζ ξ))tr(η),
(5.7)

tr(η−1ζ−1ξ)+ tr(η−1ζ−1ξ−1) = tr(η−1ζ−1)tr(ξ)

= tr(ηζ )tr(ξ).
(5.8)

Now add (5.6), subtract (5.7) and add (5.8) to obtain(
tr(ξηζ )+ tr(ξηζ−1)

)− (
tr(ζ−1ξη)+ tr(ζ−1ξη−1)

)
+ (

tr(η−1ζ−1ξ)+ tr(ξζη)
)

= tr(ξη)tr(ζ )− (
tr(ζ )tr(ξ)− tr(ζ ξ)

)
tr(η)+ tr(ηζ )tr(ξ).

(5.9)

The right hand side of (5.9) is the right-hand side of (5.5). The left-hand side of (5.9)
equals

tr(ξηζ )+ (
tr(ξηζ−1)− tr(ζ−1ξη)

)+ (− tr(ζ−1ξη−1)+ tr(η−1ζ−1ξ)
)+ tr(ξζη)

= tr(ξηζ )+ tr(ξζη),

the left-hand side of (5.5), from which (5.5) follows.
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Proof of the Product Relation. We derive this formula in several steps. Directly
applying the Basic Identity (2.6):

tr(ζ ξζη) = tr(ζ ξ)tr(ζη)− tr(ξη−1)

= tr(ζ ξ)tr(ζη)− (tr(ξ)tr(η)− tr(ξη))

= tr(ζ ξ)tr(ζη)− tr(ξ)tr(η)+ tr(ξη).

(5.10)

Apply a calculation similar to (2.8) to ξ, ζ−1:

tr(ξζ−1ξ−1ζ−1) = tr(ξ)tr(ζ )tr(ζ ξ)− tr(ζ ξ)2 − tr(ξ)2 + 2, (5.11)

tr(ξηζξζη) = tr(ξη)tr(ζ ξζη)− tr(ξζ−1ξ−1ζ−1)

= tr(ξη) (tr(ζ ξ)tr(ζη)− tr(ξ)tr(η)+ tr(ξη))

− (
tr(ξ)tr(ζ )tr(ζ ξ)− tr(ζ ξ)2 − tr(ξ)2 + 2

)
(by (5.10) and (5.11))

= tr(ξη)tr(ζ ξ)tr(ηζ )

− tr(ξ)tr(η)tr(ξη)− tr(ζ )tr(ξ)tr(ζ ξ)

+ tr(ξη)2 + tr(ξ)2 − 2.

(5.12)

Finally, applying (5.12) and the Commutator Identity (2.9) to η, ζ :

tr(ξηζ )tr(ξζη) = tr(ξηζξζη)+ tr(ηζη−1ζ−1)

= (
tr(ξη)tr(ζ ξ)tr(ηζ )− tr(ξ)tr(η)tr(ξη)

− tr(ζ )tr(ξ)tr(ζ ξ)+ tr(ξη)2 + tr(ζ ξ)2 + tr(ξ)2 − 2
)

+ (
tr(η)2 + tr(ζ )2 + tr(ηζ )2 − tr(η)tr(ζ )tr(ηζ )− 2

)
which yields (5.2).

Proof that t is onto. Now we prove Proposition 5.1.1. For a more general treatment
see Florentino [19].

Theorem A guarantees ξ1, ξ2 ∈ SL(2,C) such that

tr(ξ1) = t1,
tr(ξ2) = t2, (5.13)

tr(ξ1ξ2) = t12.

We seek ξ3 ∈ SL(2,C) such that

tr(ξ3) = t3,
tr(ξ2ξ3) = t23,

tr(ξ1ξ3) = t13. (5.14)
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To this end, consider the affine subspace W of M2(C) consisting of matrices ω satis-
fying

tr(ω) = t3,
tr(ξ2ω) = t23, (5.15)

tr(ξ1ω) = t13.

Since the bilinear pairing

M2(C)×M2(C) −→ C,

(ξ, η) �−→ tr(ξη)

is nondegenerate, each of the three equations in (5.15) describes an affine hyperplane
in M2(C). We first suppose that (t1, t2, t12) describes an irreducible character, that is
κ(t1, t2, t12) �= 2:

4− t21 − t22 − t212 + t1t2t12 �= 0. (5.16)

Our goal will be to find an element ξ3 ∈ W such that det(ξ3) = 1.

Lemma 5.1.2. There exist ξ1, ξ2 ∈ SL(2,C) satisfying (5.13) such that W is a
(nonempty) affine line.

Proof. Since κ(t1, t2, t12) �= 2, Proposition 2.3.1, (2) implies that the pair ξ1, ξ2
generates an irreducible representation.

We claim that {Id, ξ1, ξ2} is a linearly independent subset of the 4-dimensional
vector space M2(C). Otherwise the nonzero element ξ1 is a linear combination of ξ2
and Id. Let v �= 0 be an eigenvector of ξ2. Then the line (v) spanned by v is invariant
under ξ1 as well, and hence under the group generated by ξ1 and ξ2. This contradicts
irreducibility of the representation generated by ξ1 and ξ2.

Since {Id, ξ1, ξ2} is linearly independent, the three linear conditions of (5.15) are
independent. Hence W ⊂ M2(C) is an affine line.

Let ω0, ω1 ∈ W be distinct elements in this line. Then the function

C −→ C,

s �−→ det
(
sω1 + (1− s)ω0

)
is a polynomial of degree ≤ 2, and is thus onto unless it is constant.

We shall show that this map is onto, and therefore W ∩SL(2,C) �= ∅. The desired
matrix ξ3 will be an element of W ∩ SL(2,C).

Lemma 5.1.3. Let ω0, ω1 ∈ M2(C). Then

det
(
sω1 + (1− s)ω0

) = det
(
ω0 + s(ω1 − ω0)

)
= det(ω0)+ s

(
tr(ω0)tr(ω1 − ω0)− tr

(
ω0(ω1 − ω0)

))
+ s2det(ω1 − ω0).
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Proof. Clearly

tr
(
ω0 + s (ω1 − ω0)

) = tr(ω0)+ str(ω1 − ω0). (5.17)

Now

det(ω) = tr(ω)2 − tr(ω2)

2
(5.18)

whenever ω ∈ M2(C). Now apply (5.18) to (5.17) taking

ω = ω0 + s(ω1 − ω0).

Thus the restriction det|W is constant only if det(ω1 − ω0) = 0.
Choose a solution ξ of ξ + ξ−1 = t12. Work in the slice

ξ1 =
[
t1 −1
1 0

]
, ξ2 =

[
0 ξ

−ξ−1 t2

]
.

The matrix ω0 ∈ M2(C) defined by

ω0 =
[

t3
(
(t13 − t1t3)ξ + t23

)
ξ/(ξ2 − 1)(

(t13 − t1t3)+ t23ξ
)
/(ξ2 − 1) 0

]
satisfies (5.15). Any other ω ∈ W must satisfy

tr
(
ω − ω0

) = 0,

tr
(
ξ2(ω − ω0)

) = 0, (5.19)

tr
(
ξ1(ω − ω0)

) = 0.

Lemma 5.1.4. Any solution ω − ω0 of (5.19) is a multiple of

Lie(ξ1, ξ2) = ξ1ξ2 − ξ2ξ1 =
[
ξ−1 − ξ −t2 + t1ξ
−t2 + ξ−1t1 ξ − ξ−1

]
.

Proof. The first equation in (5.19) asserts that ω−ω0 lies in the subspace sl(2), upon
which the trace form is nondegenerate. The second and third equations assert that
ω − ω0 is orthogonal to ξ1 and ξ2. By (5.16), ξ1, ξ2 and Id are linearly independent
in M2(C), so the solutions of (5.19) form a one-dimensional linear subspace. The Lie
product

Lie(ξ1, ξ2) = ξ1ξ2 − ξ2ξ1

is nonzero and lies in sl(2). Furthermore, for i = 1, 2,

tr(ξiξ1ξ2) = tr(ξiξ2ξ1)

implies that Lie(ξ1, ξ2) is orthogonal to ξ1 and ξ2. The lemma follows.

Parametrize W explicitly as ω = ω0 + s Lie(ξ1, ξ2). By (2.15),

det
(
Lie(ξ1, ξ2)

) = 4− (t21 + t22 + t212 − t1t2t12) = 2− κ(t1, t2, t12) �= 0.
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By (5.16), the polynomial

W
det−−→ C

is nonconstant, and hence onto. Taking

ω1 ∈ (det|−1
W )(1),

the proof of Proposition 5.1.1 is complete assuming (5.16).
The case when 4− t21 − t22 − t212 + t1t2t12 = 0 remains. Then

ti = ai + (ai)−1

for i = 1, 2, for some a1, a2 ∈ C
∗. Then either

t12 = a1a2 + (a1a2)
−1 (5.20)

or

t12 = a1(a2)
−1 + (a1)

−1a2. (5.21)

In the first case (5.20), set

ξ1 :=
[
a1 t13 − a1t3
0 (a1)

−1

]
,

ξ2 :=
[
a2 t23 − a2t3
0 (a2)

−1

]
,

ξ3 :=
[
t3 −1
1 0

]
,

and in the second case (5.21), set

ξ1 :=
[
(a1)

−1 t13 − (a1)
−1t3

0 a1

]
,

ξ2 :=
[
a2 t23 − a2t3
0 (a2)

−1

]
,

ξ3 :=
[
t3 −1
1 0

]

obtaining (ξ1, ξ2, ξ3) ∈ SL(2,C)3 explicitly solving (5.13) and (5.14). The proof of
Proposition 5.1.1 is complete.

5.2 The four-holed sphere

Let� ≈ �0,4 be the four-holed sphere, with boundary componentsA,B,C,D subject
to the relation

ABCD = Id.
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The fundamental group is freely generated by

A = X1, B = X2, C = X3

which represent three of the boundary components. The fourth boundary component
is represented by an element

D := (X1X2X3)
−1,

satisfying the relation
ABCD = Id.

The resulting redundant presentation of the free group is

π = 〈A,B,C,D | ABCD = Id〉.
The elements

X := X1X2, Y := X2X3, Z := X1X3

correspond to simple loops on� separating� into two three-holed spheres. (Compare
Figure 8.) The (even more redundant) presentation

π = 〈A,B,C,D,X, Y,Z |ABCD = Id, X = AB, Y = BC, Z = CA〉
gives regular functions

a = t1,
b = t2,
c = t3,
x = t12,

y = t23,

z = t13,

d = t123

Z

B                          C

D
AX

Y

Figure 8. Seven simple curves on �0,4.
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generating the character ring. Using (5.1) to eliminate t132 as in (5.3), the product
relation (5.2) implies

x2 + y2 + z2 + xyz = (ab + cd)x
+ (ad + bc)y
+ (ac + bd)z
+ (4− a2 − b2 − c2 − d2 − abcd).

(5.22)

This leads to a presentation of the character ring as a quotient of the polynomial ring
C[a, b, c, d, x, y, z] by the principal ideal (�) generated by

�(a, b, c, d; x, y, z) = x2 + y2 + z2 + xyz
− (ab + cd)x − (ad + bc)y − (ac + bd)z
+ a2 + b2 + c2 + d2 + abcd − 4.

(5.23)

Thus the SL(2,C)-character variety is a quartic hypersurface in C
7, and for fixed

boundary traces (a, b, c, d) ∈ C
4, the relative SL(2,C)-character variety is the cu-

bic surface in C
3 defined by (5.22), as was known to Fricke and Vogt. (Compare

Benedetto–Goldman [2], Goldman [29], Goldman–Neumann [34], Cantat–Loray [11]
and Cantat [10], Iwasaki [41].)

The Fricke space of �0,4. We identify the Fricke space F(�0,4) in terms of trace
coordinates.

Theorem 5.2.1. The Fricke space of a four-holed sphere with boundary traces a, b,
c, d > 2 is defined by the following conditions in R

4 × R
3 for (a, b, c, d) ∈ R

4 and
(x, y, z) ∈ R

3:

a, b, c, d ≥ 2 and x < −2,

F−, F+ > 0,

F−F+ = (x2 + a2 + b2 − abx − 4)(x2 + c2 + d2 − cdx − 4)

x2 − 4
,

where

F− = √2− x
(
y − z− (a − b)(d − c)

2− x
)
−√−2− x

(
y + z− (a + b)(d + c)−2− x

)
,

F+ = √2− x
(
y − z− (a − b)(d − c)

2− x
)
+√−2− x

(
y + z− (a + b)(d + c)−2− x

)
.

Proof. For a given hyperbolic structure on �, the holonomy generators ρ(A), ρ(B),
ρ(C), ρ(D) ∈ PSL(2,R) are hyperbolic or parabolic. Choose lifts

ρ̃(A), ρ̃(B), ρ̃(C), ρ̃(D) ∈ SL(2,R)
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which have positive trace. Since ρ is a representation π1(�)→ PSL(2,R),

ρ̃(A)ρ̃(B)ρ̃(C)ρ̃(D) = ±Id.

We claim that ρ̃(A)ρ̃(B)ρ̃(C)ρ̃(D) = Id. Since

tr
(
ρ̃(A)

) ≥ 2,

tr
(
ρ̃(B)

) ≥ 2,

tr
(
ρ̃(C)

) ≥ 2,

tr
(
ρ̃(D)

) ≥ 2,

each of ρ̃(A), ρ̃(B), ρ̃(C) and ρ̃(D) lies in a unique one-parameter subgroup of
SL(2,R). The corresponding embeddings define trivializations of the corresponding
flat PSL(2,R)-bundle over each component of ∂� as in Goldman [23], [27]. Namely,
since each component ∂i(�) is a closed 1-manifold, lifting a homeomorphism R/Z→
∂i(�) to

R −→ ∂̃i (�)

the flat bundle over ∂i(�)with holonomy γi lifts to the quotient of the trivial principal
PSL(2,R)-bundle R× PSL(2,R) by the Z-action generated by

(t, g) �−→ (t + 1, γig).

The corresponding trivialization is covered by the Z-equivariant isomorphism

(t, g) �−→ (
t, exp

(− t log(γi)g
))
,

where {
exp

(
t log(γi)

)}
t∈R

is the unique one-parameter subgroup of PSL(2,R) containing γi as above.
Since χ(�) = −2, the Euler class of the representation ρ equals −2 and is even.

The obstruction to lifting a representation to the double covering space

SL(2,R) −→ PSL(2,R)

is the second Stiefel–Whitney class, which is the reduction of the Euler class modulo 2.
Therefore ρ̃ defines a representation and ρ̃(A)ρ̃(B)ρ̃(C)ρ̃(D) = Id as claimed.

Furthermore, if ρ is a Fuchsian representation, then X is represented by a unique
closed geodesic on � and

ρ(X) = ρ(A)ρ(B)
is hyperbolic. The relative Euler classes of the restriction of ρ to the subsurfaces
complementary to X sum to ±2. Since they are constrained to equal −1, 0,+1, they
both must be equal to +1 or both equal to −1. (Compare [23], [27].) It follows that
the trace x = tr(X) < −2.
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We study (5.22) using the following identity:

4(4− x2)
{
x2 + y2 + z2 + xyz− (

(ab + cd)x + (ad + bc)y + (ac + bd)z)
+ (
a2 + b2 + c2 + d2 + abcd − 4

)}
= (2+ x){(y − z)(2− x)+ (a − b)(c − d)}2

+ (2− x){(y + z)(2+ x)− (a + b)(c + d)}2 − 4κa,b(x)κc,d(x),
(5.24)

where

κp,q(x) := x2 + p2 + q2 − pqx − 4. (5.25)

This function equals κ(p, q, x)−2, where κ is the commutator trace function defined
in (2.9).

When x �= ±2, rewrite (5.22) using (5.24) as follows:

2+ x
4

(
(y + z)− (a + b)(d + c)

2+ x
)2

+ 2− x
4

(
(y − z)− (a − b)(d − c)

2− x
)2

= κa,b(x)κc,d(x)

4− x2 .

(5.26)

(Compare (3-3) of Benedetto–Goldman [2].)
We fix a, b, c, d ≥ 2. As x varies, (5.26) defines a family of conics parametrized

by x. For x < −2, this conic is a hyperbola, denotedHa,b,c,d;x . The solutions of (5.26)
for a, b, c, d ≥ 2 and x < −2 fall into two connected components corresponding to
the two components of the hyperbolas.

We explicitly describe these components. First observe that if a, b ≥ 2 and x <
−2, then

κa,b(x) > 16, κc,d(x) > 16, 4− x2 < 0,

so the left-hand side (5.26) is negative. For notational simplicity denote its opposite
by k = κa,b,c,d;x :

k = κa,b,c,d;x := κa,b(x)κc,d(x)

x2 − 4
> 0.

Rewrite (5.26) as

2− x
4

(
(y − z)− (a − b)(d − c)

2− x
)2

− −2− x
4

(
(y + z)− (a + b)(d + c)

2+ x
)2

= k.

Factoring the left-hand side of this equation, rewrite (5.26) as:

F+(y, z) F−(y, z) = k, (5.27)
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where the functions F±(y, z) are defined as

F−(y, z) = F−
a,b,c,d;x(y, z) :=

√
2− x

(
y − z− (a − b)(d − c)

2− x
)

−√−2− x
(
y + z− (a + b)(d + c)−2− x

)
,

(5.28)

F+(y, z) = F+
a,b,c,d;x(y, z) :=

√
2− x

(
y − z− (a − b)(d − c)

2− x
)

+√−2− x
(
y + z− (a + b)(d + c)−2− x

)
.

(5.29)

For fixed a, b, c, d ≥ 2 and x < −2, the functions F±(y, z) are affine functions of
y, z.

We identify each of the two components of the hyperbola Ha,b,c,d;x defined by
(5.27). One component, denoted H+

a,b,c,d;x , is the intersection of Ha,b,c,d;x with the
open half plane

F−
a,b,c,d;x(y, z) > 0.

Equivalently, H+
a,b,c,d;x is the intersection of Ha,b,c,d;x with the open half-plane

F+
a,b,c,d;x(y, z) > 0.

Similarly the other componentH−
a,b,c,d;x is the intersection ofHa,b,c,d;x with the open

half-plane
F−
a,b,c,d;x(y, z) < 0,

or, equivalently,
F+
a,b,c,d;x(y, z) < 0.

The union of these hyperbola components correspond to values of the relative Euler
class (compare [27]) as follows. Either

H+ :=
⋃

a,b,c,d≥2,x<−2

H+
a,b,c,d;x

or
H− :=

⋃
a,b,c,d≥2,x<−2

H−
a,b,c,d;x

corresponds to characters of representations with relative Euler class 0. The other
component corresponds to representations with relative Euler class ±1. There is no
way to distinguish between relative Euler class +1 and −1 since the characters are
equivalence classes under the group PGL(2,R), which does not preserve orientation.
To determine which one is which, it suffices to check one single example and use
continuity of the integer-valued relative Euler class.

Here is an example whose relative Euler class is zero. Choose

ρ(A) = ρ(D)−1, ρ(B) = ρ(C)−1
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so that the relation
ρ(A)ρ(B)ρ(C)ρ(D) = Id

is trivially satisfied. Clearly such a representation depends only on the pair ρ(A), ρ(B)
which is arbitrary. Furthermore we restrict the boundary traces to satisfy

a = tr
(
ρ(A)

) ≥ 2, b = tr
(
ρ(B)

) ≥ 2.

This space is connected and contains the character of the trivial representation, whose
relative Euler class is zero. Now consider the specific example

ρ(A) :=
[

1 1
0 1

]
, ρ(B) :=

[
1 0

x − 2 1

]
,

where x < −2 is arbitrary. Then a = b = c = d = 2 and

y = 2, z = 4− x.
In particular y − z < 0 and y + z > 0. and therefore (5.28) implies

F±
a,b,c,d;x < 0

proving that this representation has a character in H−, proving Theorem 5.2.1.

5.3 The two-holed torus

The two-holed torus admits a redundant geometric presentation corresponding to the
ribbon graph depicted in Figure 9:

〈A,B,U,X, Y | A = UXY, B = UYX〉.

u
x

y

u

x

y

Figure 9. A ribbon graph representing a two-holed torus.
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The 1-handles correspond to free generatorsU,X, Y and the boundary components
correspond to the triple products

A = UXY,
B = UYX.

Since the curves corresponding to X, Y,U in Figure 9 intersect transversely at the
basepoint, the double products

V = UX,
W = UY,
Z = XY

are represented by simple loops as well. The Sum Relation (5.1) and the Product
Relation (5.2) imply that the relative character variety for �1,2 is defined by

a + b = yv + xw + zu− uxy
ab = x2 + y2 + u2 + v2 + w2 + z2 − xyz− yuw − uxv + vwz− 4. (5.30)

Button [9] gives defining inequalities for the Fricke space, where the boundary
components are mapped to parabolics, as follows. First consider the R-locus of the
character variety, defined as the set of all (a, b, u, x, y, z, v,w) ∈ R

8 satisfying (5.30)
above, and

a = b = 2.

The regular neighborhood of the union of the loops corresponding to a pair ofX, Y,U
is an embedded one-holed torus. For example corresponding to the pair X, Y is a
one-holed torus whose boundary corresponds to the commutator [X, Y ], and cuts
� into the one-holed torus and a three-holed sphere. This commutator has trace
κ(x, y, z). Similarly the pair Y,U determines a separating curve whose corresponding
trace function is κ(y, u,w) and the pair U,X determines a separating curve whose
corresponding trace function is κ(u, x, v). The preceding discussions of the Fricke
spaces of the one-holed torus and the three-holed sphere imply

κ(x, y, z) < −2, κ(y, u,w) < −2, κ(u, x, v) < −2.

Button [9] shows that these necessary conditions are sufficient, thus obtaining an
explicit description of the Fricke–Teichmüller space of �1,2 in terms of traces. (The
reader should draw these curves on the ribbon graph depicted in Figure 9.)

5.4 Orientable double covering spaces

Let� be a nonorientable surface ofχ(�) = −1 and �̂
�̂−→ � be its orientable covering

space. There are two cases:

• � ≈ C0,2 and �̂ ≈ �0,4;
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• � ≈ C1,1 and �̂ ≈ �1,2.

Then π1(�) ∼= F2 and π1(�̂) ∼= F3. Denote a set of free generators of π1(�) by
X1, X2 which correspond to orientation-reversing loops on �. The image of

π1(�̂)
�̂∗
↪−→ π1(�) = 〈X1, X2〉

equals the kernel of the homomorphism

π1(�) −→ {±1},
X1 �−→ −1,

X2 �−→ −1,

which is freely generated by, for example,

Y1 = X2
1,

Y2 = X−1
1 X−1

2 ,

Y3 = X2
2.

The nontrivial deck transformation of �̂
�̂−→ � is induced by the restriction of the

inner automorphism Inn(X1) to (�̂)∗
(
π1(�)

)
:

Y1 �−→ Y1,

Y2 �−→ Y−1
3 Y−1

2 Y−1
1 ,

Y3 �−→ Y1Y2Y3Y
−1
2 Y−1

1 .

The character ring of π1(�) ∼= F2 is the polynomial ring C[x1, x2, x12]. The character
ring of π1(�̂) ∼= F3 is the quotient

C[y1, y2, y3, y123, y12, y23, y13]/(I),
where (I) is the principal ideal generated by

�(y1, y2, y3, y123, y12, y23, y13)

= y2
12 + y2

13 + y2
23 + y12y13y23

− (y1y2 + y3y123)y12 − (y1y123 + y2y3)y23

− (y1y3 + y2y123)y13 + y2
1 + y2

2 + y2
3 + y2

123 + y1y2y3y123 − 4

(5.31)

with � the polynomial (5.23). The automorphism

Inn(X1)|(�̂)∗(π1(�))



Chapter 15. Trace coordinates on Fricke spaces of some simple hyperbolic surfaces 677

corresponding to the deck transformation induces the involution of character rings:

R3 ←→ R3,

y1 ←→ y1,

y2 ←→ y123,

y3 ←→ y3,

y12 ←→ y23,

y13 ←→ y1y3 − y13 − y12y23 + y123y2,

y23 ←→ y12,

y123 ←→ y2.

The covering space �̂ induces the embedding of character rings:

R3 ↪−→ R2,

y1 �−→ x2
1 − 2,

y2 �−→ x12,

y3 �−→ x2
2 − 2,

y12 �−→ x1x2 − x12,

y13 �−→ x1x2x12 − x2
1 − x2

2 + 2,

y23 �−→ x1x2 − x12,

y123 �−→ x12.

The two topological types for � differ by their choice of peripheral structure:

• � ≈ C0,2 has two boundary components corresponding to

δ1 := Y2 = X−1
1 X−1

2 , δ2 = Y1Y2 = X1X
−1
2 .

• � ≈ C1,1 has one boundary component corresponding to

δ := Y1Y3 = X2
1X

2
2.

5.5 The two-holed cross-surface

The fundamental group of the two-holed cross-surface C0,2 is free of rank two, with
presentation

π1(C0,2) := 〈U,V,W,W ′ | W = UV, W ′ = V −1U〉 ∼= F2.

The free generators U,V correspond to orientation-reversing simple curves on C0,2
and W,W ′ correspond to the components of ∂C0,2.

The orientable double covering-space Ĉ0,2 → C0,2 is connected, has four boundary
components (since C0,2 has two boundary components, each of which is orientable)
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and has Euler characteristic −2 = 2χ(C0,2). Therefore Ĉ0,2 ≈ �0,4, the four-holed
sphere, and has presentation

π = 〈A,B,C,D | ABCD = Id〉.
The corresponding monomorphism of fundamental groups is

π1(�0,4) ↪−→ π1(C0,2),

A �−→ W = UV,
B �−→ W ′ = V −1U,

C �−→ Inn(U−1)(W ′)−1 = U−2VU,

D �−→ Inn(U−1)(W)−1 = U−1V −1.

The character ring of π1(C0,2) is the polynomial ring R2 ∼= C[u, v,w] and the
character ring ofπ1(�0,4) is the quotient of C[a, b, c, d, x, y, z] by the relation defined
by (5.22). The induced homomorphism of character rings is

R3 −→ R2 = C[u, v,w],
a �−→ w,

b �−→ uv − w = w′,
c �−→ uv − w = w′,
d �−→ w,

x �−→ u2 − 2,

y �−→ u2 + v2 + w2 − uvw − 2,

z �−→ v2 − u2(u2 + v2 + w2 − uvw − 2
)− 2,

evidently satisfying the defining equation (5.22) for the character variety of �0,4.

5.6 The one-holed Klein bottle

The fundamental group of the one-holed Klein bottle C1,1 is free of rank two, with
presentation

π1(C1,1) := 〈P,Q,R,D | PQR = P 2Q2D = Id〉 ∼= F2.

The free generators P,Q correspond to orientation-reversing simple curves on C1,1
and D corresponds to ∂C1,1.

The orientable double covering-space Ĉ1,1 → C1,1 is connected, has two boundary
components (since ∂C1,1) is connected and orientable) and has Euler characteristic
−2 = 2χ(C1,1). Therefore Ĉ0,2 ≈ �1,2, the two-holed torus.
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This covering-space �1,2 → C1,1 induces the monomorphism

π1(�1,2) ↪−→ π1(C1,1),

U �−→ PQ,

X �−→ QP−1,

Y �−→ P 2,

A �−→ PQ2P ∼ P 2Q2,

B �−→ PQP 2QP−1 ∼ P 2Q2,

where π1(�1,2) is presented as

〈A,B,U,X, Y | A = UXY, B = UYX〉.
The character ring of π1(C1,1) is the polynomial ring R2 ∼= C[p, q, r] and the

character ring of π1(�1,2) is the quotient of C[a, b, x, y, z, u, v,w] by the relations
defined by (5.30). The covering space �1,2 → C1,1 induces the homomorphism of
character rings:

R3 −→ R2 = C[p, q, r],
u �−→ r,

x �−→ pq − r,
y �−→ p2 − 2,

v �−→ q2 − 2,

w �−→ r,

z �−→ p(pr − q)− r,
a �−→ 2− p2 − q2 + pr,
b �−→ 2− p2 − q2 + pr,

which evidently satisfies the relations of (5.30).
We briefly give a geometric description of the deck transformation of the double

covering of the SL(2,C)-character variety V3 of the rank three free group F3.
Consider the elliptic involution ι of the torus �1,0. Writing �1,0 as the quotient

R
2/Z2, this involution is induced by the map

R
2 −→ R

2,

u �−→ −u.
This involution has four fixed points, and its quotient orbifold is S2 with four branch
points of order two. Choose a small disc D ⊂ �1.0 such that D and its image ι(D)
are disjoint. Then ι induces an involution on the complement

�1,0 \ (D ∪ ι(D)) ≈ �1,2.
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This involution of the two-holed torus �1,2 induces the involution of π1(�1,2) =
〈U,X, Y 〉:

U �−→ U−1,

X �−→ X−1,

Y �−→ Y−1.

The quotient orbifold is a disc with four branch points of order two. The corresponding
involution of character varieties is the branched double covering (5.4) of the character
variety V3 over C

6 described in Proposition 5.1.1.

5.7 Free groups of rank ≥ 3

The basic trace identity (2.6), the Sum Relation (5.1) and the Product Relation (5.2)
imply that the trace polynomial fw of any word w(X1, X2, . . . , Xn) can be written in
terms of trace polynomials of words

Xi1Xi2 . . . Xi1Xir ,

where 1 ≤ i1 < i2 < · · · < ir ≤ n. The following identity, which may be found in
Vogt [76], implies that it suffices to choose r ≤ 3:

2 t1234 = t1t2t3t4 + t1t234 + t2t341 + t3t412 + t4t123

+ t12t34 + t41t23 − t13t2t24 − t1t2t34 − t12t3t4 − t4t1t23 − t41t2t3.

The SL(2,C)-character variety of a rank n free group has dimension 3n− 3, as it
corresponds to the quotient of the 3n-dimensional complex manifold SL(2,C)n by the
generically free action of the 3-dimensional group PGL(2,C). Thus the transcendence
degree of the field of fractions of the character ring equals 3n − 3. In contrast, the
above discussion implies that this ring has

n+
(
n

2

)
+

(
n

3

)
= n(5+ n2)

6

generators, considerably larger than the dimension 3n− 3 of the character variety.
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1 Introduction

The purpose of this chapter is to demonstrate the utility of a graphical calculus in the
algebraic study of SL.2; C/-representations of the fundamental group of an oriented
surface of Euler characteristic �1.

Let F2 be a rank 2 free group, the fundamental group of both the three-holed
sphere and the one-holed torus. The set R D Hom.F2; SL.2; C// of representations
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inherits the structure of an algebraic set from SL.2; C/. The subset of representations
that are completely reducible, denoted by Rss , have closed orbits under conjugation.
Consequently, the orbit space Rss=SL.2; C/ D R==SL.2; C/ is an algebraic set re-
ferred to as the character variety . The character variety encodes Teichmüller space
and other moduli of geometric structures [17].

Graphs known as spin networks permit a concise description of a natural additive
basis for the coordinate ring of the character variety

CŒR==SL.2; C/� D CŒR�SL.2;C/:

We will refer to the basis elements as central functions. The central functions are
indexed by Clebsch–Gordan injections

Vc ,! Va ˝ Vb;

where Vc D Symc.C2/ denotes an irreducible representation of SL.2; C/. Our main
results use the spin network calculus to describe a strong symmetry within the central
function basis, a graphical means of computing the product of two central functions,
and an algorithm for computing central functions. This provides a concrete descrip-
tion of the regular functions on the SL.2; C/-character variety of F2 and a new proof
of a classical result of Fricke, Klein, and Vogt.

We are motivated by a greater understanding of the invariant ring, and the subse-
quent knowledge of various geometric objects of interest encoded within the charac-
ter variety. Consequently, the main results in this chapter concern the structure of the
central function basis. The results and methods of this chapter may also provide new
insight into gauge theoretic questions. However, we are most interested in a method-
ology and point of view that allows for generalizations to other Lie groups and other
surface groups.

History of central functions and spin networks

The first reference to the central function basis in the literature appears in [2], where
Baez used spin networks to describe a basis of quantum mechanical “state vectors.”
He considered the basis abstractly, showing that the space of square integrable func-
tions on a related space of connections modulo gauge transformations is spanned by
a set of labelled graphs. He also demonstrated that the basis is orthonormal with re-
spect to the L2 inner product. His basis, when restricted to SU.2/, is precisely the
one under consideration here.

More recently, Florentino, Mourão, and Nunes use a like basis to produce distri-
butions related to geometric quantization of moduli spaces of flat connections on a
surface [13]. Adam Sikora has also used spin networks to study the character variety
for SL.n; C/, although without using the central function basis [30]. The construction
of arbitrary rank SL.2; C/ central functions is described in [25], while much of the
diagrammatic theory required for the SL.n; C/ case is covered in [8], [9], [25], [30].
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The history of the diagrammatic calculus in this chapter is hard to trace, due to
the historical difficulty in publishing papers making extensive use of figures. While
it is likely that many works on diagrammatic notation have been lost over the years,
the specific notation used in this chapter is due to Roger Penrose. In a 1981 letter to
Predrag Cvitanović, a physicist who also used diagrams extensively, Penrose recalls
developing the notation in the early 1950s while “trying to cope with Hodge’s lectures
on differential geometry” [24].

Diagrammatic notations have also played an important role in modern physics.
Feynman diagrams are probably the most famous example, but spin networks have
also been used for many years, as a graphical description of quantum angular mo-
mentum [23]. The use of diagrams in physics is probably best summarized in [31].
Cvitanović also has a thorough description of such notations, which he calls bird-
tracks in [8], [9]. In his work, birdtracks play a starring role in a new classification
of semi-simple Lie algebras. Using primitive invariants, which have unique diagram-
matic depictions, the exceptional Lie algebras arise in a single series in a construction
that he calls the “Magic Triangle.”

This chapter is organized as follows.
Section 2 gives some basic definitions and results from invariant theory, as well

as a short history of SL.2; C/ invariant theory. It also covers necessary material from
representation theory.

In Section 3, we introduce spin networks, which are special types of graphs that
may be identified with functions between tensor powers of C2. We give a full treat-
ment of the spin network calculus, a powerful means for working with regular func-
tions on R==SL.2; C/.

Section 4 begins by constructing an additive basis for CŒR==SL.2; C/�. This basis,
denoted by f�a;b;c

g, is indexed by triples of nonnegative integers .a; b; c/ satisfying
the admissibility condition:

1
2
.�aC b C c/; 1

2
.a � b C c/; 1

2
.aC b � c/ 2 N:

The functions �a;b;c
2 CŒR==SL.2; C/� are central in

End.Vc/ ,! End.Va/˝ End.Vb/;

and are referred to as central functions. The construction of the central function basis
uses the decomposition

CŒSL.2; C/� Š
X
n�0

V �n ˝ Vn:

We include a constructive proof of this decomposition, since it is hard to find in the
literature. The section concludes by examining the SL.2; C/-central functions of a
rank one free group.

Section 5 contains the main results of this chapter, which concern the case of a
rank two free group. In this case, central functions may be written as polynomials in
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three trace variables, a consequence of a theorem due to Fricke, Klein, and Vogt [14],
[32]. The results we prove are summarized below.

� Theorem 5.2 describes a symmetry property of the central function basis: per-
muting the indices of a central function is equivalent to permuting the variables
of its polynomial representation.

� Corollary 5.7 states that, with an appropriate definition of rank, any central func-
tion may be written in terms of at most four central functions of lower rank:

�a;b;c
D x � �a�1;b;c�1

�
.aCb�c/2

4a.a�1/
�a�2;b;c

�
.�aCbCc/2

4c.c�1/
�a;b;c�2

�
.aCbCc/2.a�bCc�2/2

16a.a�1/c.c�1/
�a�2;b;c�2:

Together with Theorem 5.2, this result gives an algorithm for computing central
functions explicitly.

� Proposition 5.8 states that central functions are monic, and gives the leading
term of the central function �a;b;c .

� Proposition 5.9 describes a Z2 � Z2 grading on the central function basis.

� Theorem 5.11 gives the coefficients in the expression of the product of two cen-
tral functions as a sum of central functions, and therefore a precise description
of the ring structure of CŒR�SL.2;C/ in terms of central functions.

Finally, as another consequence of the recurrence relation and Theorem 5.2, we pro-
vide a new constructive proof of the following classical theorem [14], [32]:

Theorem 5.12 (Fricke–Klein–Vogt Theorem). Let G D SL.2; C/ act on G � G by
simultaneous conjugation. Then

CŒG �G�G Š CŒtx; ty ; tz�;

the complex polynomial ring in three indeterminates. In particular, every regular
function f W SL.2; C/ � SL.2; C/! C satisfying

f .x1; x2/ D f .gx1g�1; gx2g�1/ for all g 2 SL.2; C/;

can be written uniquely as a polynomial in the three trace variables x D tr.x1/,
y D tr.x2/, and z D tr.x1x�1

2 /.
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2 Preliminaries

2.1 Algebraic structure of the character variety R==SL.2 ; C/

The group G D SL.2; C/ has the structure of an irreducible algebraic set, since it
is the zero set of the irreducible polynomial det.x/ � 1. Since the product of two
varieties is again a variety, the representation variety R D Hom.F2; G/ Š G �G of
a rank 2 free group F2 is an irreducible algebraic set as well. The coordinate ring of
R is

CŒR� D
CŒxk

ij W 1 � i; j; k � 2�

.det.x1/ � 1; det.x2/ � 1/
:

Stated otherwise, it is the free commutative polynomial ring in 8 indeterminates over
C subject to the ideal generated by the two polynomials det.xk/ � 1, where xk D

.xk
ij / are called generic matrices .
There is an action of G on R by simultaneous conjugation. Given .x1; x2/ 2

G �G, then
g � .x1; x2/ D .gx1g�1; gx2g�1/:

This is a polynomial action, since R �G ! R is a regular mapping.

Definition 2.1. The ring of invariants CŒR�G consists of elements of the coordinate
ring CŒR� which are invariant under the action of simultaneous conjugation:

CŒR�G D ff 2 CŒR� W g � f D f g:

Recall that an algebraic group is linearly reductive if its finite dimensional rational
representations are decomposable as direct sums of irreducible representations. Since
G D SL.2; C/ is linearly reductive, the ring of invariants CŒR�G D ff 2 CŒR� W

g � f D f g is finitely generated [10]. This implies that the space of maximal ideals
of CŒR�G is also an irreducible algebraic set, permitting the following definition:

Definition 2.2. The G-character variety of F2 is the space of maximal ideals

X D Specmax.CŒR�G/ D R==G:
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The character variety X is identified with conjugacy classes of completely re-
ducible representations in R [1], [27]. Procesi [26] has shown that CŒR�G is gen-
erated by traces of products of matrix variables of word length less than or equal to
three [26]. Hence CŒX� is generated, although not minimally, by

ftr.x1/; tr.x2/; tr.x1x2/; tr.x1x2
2/; tr.x2x2

1/g:

2.2 A partial history of SL.2 ; C/ invariant theory

The following paragraphs provide a partial account of the long history of
SL.2; C/ invariant theory. Two pioneering papers on the subject were authored by
Vogt in 1889 [32], and by Fricke and Klein in 1896 [14]. Both investigated the invari-
ants of pairs of unimodular 2 � 2 matrices with respect to simultaneous conjugation.
They showed this ring of invariants to be the free commutative polynomial ring in
three indeterminates, given by the trace of each generic matrix and the trace of their
product. This chapter concludes with a reproof of this classical result using the spin
network calculus.

In 1972, Horowitz investigated the algebraic structure of this ring, saying that
Fricke’s approach was principally analytic, and partially incomplete [20]. In 1980,
Magnus made clear the priority of Vogt’s approach [32] and worked out the defining
polynomial relations for an arbitrary number of matrices under simultaneous conju-
gation [22]. In 1983, Culler and Shalen defined the character variety and showed that
it is in fact an algebraic set [6]; the set is the image under a “trace” map. González-
Acuña and Montesinos-Amilibia showed in 1993 that the relations of Magnus in fact
determine the algebraic set that Culler and Shalen had defined [19]. In 2001, Sikora,
using results of Procesi [26], showed that the character variety of SL.n; C/ can be
realized as spaces of graphs subject to topologically motivated relations [30]. These
graphs correspond to the spin networks discussed in this chapter when n D 2.

Closely related is the ring of invariants of arbitrary generic 2 � 2 matrices un-
der simultaneous conjugation. The works of Procesi (1976) and Razmyslov (1974)
generalized the work above to the case of n � n matrices [26], [28], and showed that
the invariant ring is generated by traces of words in generic matrices. Methods from
geometric invariant theory (see Dolgachev [10]) show that the character variety is the
variety whose coordinate ring is the ring of invariants. Restricting to unimodular ma-
trices gives like results for the unimodular ring of invariants. From this point of view,
the character variety begins as an algebraic set and so is obviously closed. However,
the defining relations and minimal generators are not at all obvious.

A central question in invariant theory is a description of the generators and rela-
tions of an invariant ring. Indeed, a theorem that characterizes the generators of an
invariant ring is called a first fundamental theorem, and a theorem giving the relations
is called a second fundamental theorem. In [26], [28] both Procesi and Razmyslov
gave the two fundamental theorems, although they offered only sufficient generators
and an implicit description of the relations.
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It is much more difficult to determine minimal generators and explicit relations.
In this more general context, which bears strongly on the unimodular case, minimal
generators and defining relations for the invariants of an arbitrary number of generic
2 � 2 matrices were found only recently by Drensky in 2003 [11].

2.3 Representation theory of SL.2 ; C/

The coordinate ring CŒG� decomposes into a direct sum of tensor products of the
finite-dimensional irreducible representations of G. We will use this decomposition,
given explicitly by Theorem 4.1, to understand the coordinate ring of the character
variety X. To this end, we review the representation theory of G (see [3], [10], [15]).

The symmetric powers of the standard representation of G are all irreducible rep-
resentations and moreover they comprise a complete list. Let V0 D C D V �0 be
the trivial representation of G. Denote the standard basis for C2 by e1 D

�
1
0

�
and

e2 D
�

0
1

�
, and the dual basis by e�1 D eT

1 and e�2 D eT
2 . Then the standard represen-

tation and its dual are

V D V1 D Ce1 ˚ Ce2 and V � D V �1 D Ce�1 ˚ Ce�2 ;

respectively. Denote the symmetric powers of these representations by

Vn D Symn.V / and V �n D Symn.V �/:

Since Vn admits an invariant non-degenerate bilinear form, Vn Š .Vn/�.
Moreover, V �n is naturally isomorphic to .Vn/�, so elements in Vn pair with el-

ements in V �n . Denote the projection of v1 ˝ v2 ˝ � � � ˝ vn 2 V ˝n to Vn by
v1 B v2 B � � � B vn. There exist bases for Vn and V �n , given by the elements

nn�k D en�k
1 ek

2 D e1 B e1 B � � � B e1„ ƒ‚ …
n�k

B e2 B e2 B � � � B e2„ ƒ‚ …
k

and

n�n�k D .e�1 /n�k.e�2 /k
D e�1 B e�1 B � � � B e�1„ ƒ‚ …

n�k

B e�2 B e�2 B � � � B e�2„ ƒ‚ …
k

;

respectively, where 0 � k � n. In these terms, this pairing is given by

n�n�k.v1 B v2 B � � � B vn/ D
1

nŠ

X
�2†n

.nn�k/�.v�.1/ ˝ v�.2/ ˝ � � � ˝ v�.n//;

where †n is the symmetric group on n elements. In particular,

n�n�k.nn�l/ D
.n � k/ŠkŠ

nŠ
ıkl D ıkl

.�
n
k

�
:
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Let g D

�
g11 g12

g21 g22

�
2 G. Then the G-action on Vn is given by

g � nn�k D .g11e1 C g21e2/n�k.g12e1 C g22e2/k

D

X
0�j�n�k

0�i�k

�
n�k

j

��
k
i

��
g

n�k�j
11 gk�i

12 g
j
21gi

22

�
nn�.iCj /:

For the dual, G acts on V �n in the usual way:

.g � n�n�k/.v/ D n�n�k.g�1
� v/ for v 2 Vn:

The tensor product Va ˝ Vb; where a; b 2 N, is also a representation of G and
decomposes into irreducible representations as follows:

Proposition 2.3 (Clebsch–Gordan formula).

Va ˝ Vb Š

min.a;b/M
jD0

VaCb�2j :

Finally, we give several versions of Schur’s Lemma, which will be used frequently.

Proposition 2.4 (Schur’s Lemma). Let G be a group, V and W representations of
G, and f 2 HomG.V; W / a non-zero G-equivariant linear mapping from V to W .

(1) If V is irreducible, then f is injective.

(2) If W is irreducible, then f is surjective.

(3) If V D W is irreducible, then f is a homothety.

(4) Suppose V; W are irreducible:

if V Š W , then dimC HomG.V; W / D 1;

if V 6Š W , then dimC HomG.V; W / D 0.

See [3] or [7] for proof of Propositions 2.3 and 2.4.

3 The spin network calculus

This section provides a self-contained introduction to spin networks and the spin
network calculus. Our treatment employs a nonstandard definition of spin networks
which is more natural when working with traces. This definition leads to different
versions of the usual spin network relations in the literature [5], [8], [9], [21], [23],
[31].
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3.1 Spin networks and representation theory

At its heart, a spin network is a graph that is identified with a specific function be-
tween tensor powers of V D C2, the standard SL.2; C/ representation.

In order for this function to be well-defined, the edges incident to each vertex of
the spin network must have a cyclic ordering. This ordering is often called a ciliation,
since it is represented on paper by a small mark drawn between two of the edges. The
edges adjacent to a ciliated vertex are ordered by proceeding in a clockwise fashion
from this mark. For example, in the degree 2 case, there are two possible ciliations:

1

2
and

2

1
:

Definition 3.1. A spin network S is a graph with vertex set Si t So t Sv consisting
of degree 1 ‘inputs’ Si , degree 1 ‘outputs’ So and degree 2 ‘ciliated vertices’ Sv . If
there are ki D jSi j inputs and ko D jSoj outputs, then S is identified with a function
fS W V ˝ki ! V ˝ko . If the spin network is closed, meaning ki D 0 D ko, it is
identified with a complex scalar fS 2 C.

Spin networks are drawn in general position inside an oriented rectangle with
inputs at the bottom and outputs at the top. This convention allows us to equate the
composition of functions fS0 B fS with the concatenation of diagrams S0 B S formed
by placing S0 on top of S.

For example, the following spin network has two ciliated vertices and represents
a function from V ˝5 ! V ˝3:

3 outputs‚ …„ ƒ

„ ƒ‚ …
5 inputs

D

� �
B

� �
B

� �
:

Note that the marks on the local extrema do not indicate vertices of the graph, but are
indicators of how to decompose the graph.

Since spin networks are just graphs with ciliations, it does not matter how the
graph is represented inside the square. Strands may be moved about freely and cil-
iations may “slide” along the strands. As long as the endpoints remain fixed, the
underlying spin network does not change.

Let v; w 2 V and let fe1; e2g be the standard basis for C2. The function fS of
a spin network S is computed by decomposing S into four spin network component
maps:

� the identity W V ! V , v 7! v;

� the cap W V ˝ V ! C, v ˝ w 7! vT w (inner product);

� the cup W C! V ˝ V , 1 7! e1 ˝ e1 C e2 ˝ e2;
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� the cap vertex W V ˝ V ! C, v ˝ w 7! detŒv w�.

For example, since and are the same ciliated graph,

.v ˝ w/ D .v ˝ w/ D B .v ˝ w/ D .w ˝ v/ D detŒw v�:

The definition given here differs from the literature [5], [21], [23]. In particular,
we omit the i D

p
�1 factor in the definition of to gain an advantage in trace

calculations. Also, the maps and are included in order to simplify the proof
that fS is well-defined.

Theorem 3.2. The spin network function fS is well-defined.

Proof. We need to show that every decomposition of S into the component maps
gives the same function.

If S has n ciliated vertices, then any decomposition of S into component maps has
n occurrences of . The remainder of the diagram consists of loops or arcs without
any vertices. Two corresponding arcs in different decompositions will differ only by

the insertion or deletion of a number of ‘kinks’ of the form . Finally, since

.v/ D B .v/ D .v/

for all v 2 V , these kinks do not change the resulting function. For alternate proofs,
see [5], [21].

This theorem allows us to freely interpret a spin network S as a function. The
computation of fS will be easier once the functions for a few simple spin networks
are known.

Proposition 3.3. As spin network functions,

(1) the swap W V ˝ V ! V ˝ V takes v ˝ w 7! w ˝ v;

(2) the vertex on a straight line W V ! V takes v 7!
�

0 �1
1 0

�
v;

(3) the vertex on a cup W C! V ˝ V takes 1 7! e1 ˝ e2 � e2 ˝ e1;

(4) with opposite ciliations, D � , D � , and D � .

Proof. First (1) is the statement that crossings change only the order of the outputs.
Statement (2) follows from, for v D

�
v1

v2

�
:

.v/ D

� �
B

� �
.v/ D

� �
.v ˝ e1 ˝ e1 C v ˝ e2 ˝ e2/

D detŒv e1�e1 C detŒv e2�e2 D �v2e1 C v1e2 D
�

0 �1
1 0

�
v:
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Statement (3) is computed similarly, using the decomposition

D

� �
B
� �

:

Finally, (4) follows from the observation D D � ; which has already been

demonstrated.

Given these facts, the function of the earlier example can be computed. The reader
may check that the function given by

takes e1 ˝ e2 ˝ e2 ˝ e1 ˝ e2 to �e2 ˝ e2 ˝ e2.
The maps and are unnecessary for trace computations, and so we make the

following assumption:

Convention 3.4. For the remainder of this chapter, the set of ciliated vertices will
coincide exactly with the set of local extrema. The ciliations are usually omitted, with
the understanding that

D W 1 7! e1 ˝ e2 � e2 ˝ e1

and

D W v ˝ w 7! detŒv w�:

Under this assumption, each straightened kink $ introduces a sign, and
more generally

..
.... ..

n

D .�1/n
n

.. :

Thus, any diagram manipulation in which kinks are straightened must be done care-
fully.

Spin networks exhibit considerable symmetry, which can be exploited for calcu-
lations. For example:

Proposition 3.5. Let S be a spin network with function fS W V ˝ki ! V ˝ko . De-
note its images under reflection through vertical and horizontal lines by

 !
S and Sl,

respectively. Then

f !
S
D .�1/jSv j

 !
fS W V

˝ki ! V ˝ko ;
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where jSvj is the number of local extrema in the diagram and
 !
f indicates that the

ordering of inputs and outputs is reversed. Also, fSl D .fS/� where

.fS/�.v1 ˝ � � � ˝ vki
/ D

X
eb2B.V ˝ki /

�
fS.eb/ � .v1 ˝ � � � ˝ vko

/
�

eb;

where � indicates the dot product with respect to the standard basis for V ˝ko and
B.V ˝ki / is the basis for V ˝ki . That is, .fS/� and fS are dual with respect to the
standard inner product on V .

Proof. The first statement is an extension of the fact that reflecting through a
vertical line gives D � :

For the second statement, consider S D . If vi D
� v1

i

v2
i

�
, then

.fS/�.v1 ˝ v2/ D .1/ � .v1 ˝ v2/ D .e1 ˝ e2 � e2 ˝ e1/ � .v1 ˝ v2/

D v1
1v2

2 � v2
1v1

2 D detŒv1 v2� D .v1 ˝ v2/:

This computation, together with the corresponding one for S D , are sufficient to
prove the second claim (see [25] for details).

The next theorem, which follows from Proposition 3.5, describes how to apply
these symmetries to relations among spin networks:

Theorem 3.6 (Spin network reflection theorem). A relationX
m

˛mSm
D 0

among some collection of spin networks fSmg is equivalent to the same relation for
the vertically reflected spin networks fSl

m
g and .up to sign/ for the horizontally

reflected spin networks f
 !
S mg, that isX

m

˛mSl
m
D 0 and

X
m

˛m.�1/jS
m
v j
 !
S m
D 0:

3.2 Basic diagram manipulations

In this section, we describe the spin network calculus, which governs diagram ma-
nipulations.

Proposition 3.7. Any spin network can be expressed as a sum of diagrams with no
crossings or loops. In particular,

D � I S D tr.I /S D 2S: (3.1)
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The proof is given in [25]. The first of these relations is called the fundamental
binor identity, and represents a fundamental type of structure in mathematics; it is the
core concept in defining both the Kauffman bracket skein module in knot theory [4]
and the Poisson bracket on the set of loops on a surface, which Goldman describes in
[16]. It can also be identified with the characteristic equation for 2� 2 matrices [25],
[30].

Since 2 � 2 matrices act on V , the definition of spin networks may be extended

to allow matrices to act on diagrams: x is the action v 7! x � v. The corresponding

action on the tensor product V ˝n is represented by

x x x

n

..

..
.v1 ˝ � � � ˝ vn/ D xv1 ˝ � � �xvn:

The matrices x 2 SL.2; C/ of interest in this chapter satisfy the following special
property:

Proposition 3.8. The spin network component maps ; D ; and D ,
and therefore all spin networks, are equivariant under the natural action of SL.2; C/

on V described above.

Proof. The case for the identity is clear, while

x x .v ˝ w/ D detŒxv xw� D det.x � Œv w�/

D det.x/ � detŒv w� D 1 � detŒv w� D .v ˝ w/

shows that B x D D x B .
The proof for follows by reflecting this relation.

This means that matrices in such a diagram can “slide across” a vertex (local
extremum) by simply inverting the matrix, so that

if Nx D x�1
2 SL.2; C/; then x

D
Nx :

For a general matrix x 2M2�2, the determinant is introduced in such relations since
x x

D det
�

x

�
. If x is invertible, this implies

x
D det

�
x

�
Nx :

A closed spin network with one or more matrices is called a trace diagram, and
may be identified with a map G � � � � �G ! C. One of the primary motivations for
this chapter is the study of invariance properties of such maps. The simplest cases are
given by:
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Proposition 3.9. For x 2M2�2 and I D
�

1 0
0 1

�
,

D 2 D tr.I/I x D tr.x/I x x D det.x/ � tr.I/: (3.2)

3.3 Symmetrizers and irreducible representations

Another important SL.2; C/-equivariant map is the symmetrizer.

Definition 3.10. The symmetrizer n..
..
W V ˝n ! V ˝n is the map

v1 ˝ v2 ˝ � � � ˝ vn 7!
1

nŠ

X
�2†n

v�.1/ ˝ v�.2/ ˝ � � � ˝ v�.n/; (3.3)

where vi 2 V and †n is the group of permutations on n elements.

For example,

2 D
1
2

�
C

�
D �

1
2

� �
I

3 D
1
6

�
C C C C C

�
D �

2
3

�
C

�
�

1
3

�
C

�
Note that the crossings are removed by applying the fundamental binor identity.

The defining equation (3.3) of n..
..

should look familiar: its image is a subspace

of V ˝n isomorphic to the nth symmetric power SymnV , and thus it can be thought
of as either the projection � W V ˝n ! SymnV or as the inclusion i W SymnV ! V ˝n

(see [15], page 473).
What does this mean for us? If a diagram from V ˝ki to V ˝ko has symmetrizers at

its top and bottom, it can be thought of as a map between Vki
and Vko

. We freely inter-
pret such spin networks as maps between tensor powers of these irreducible SL.2; C/-
representations.
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Proposition 3.11 (Basic symmetrizer properties).

Invariance:
n

AA A.... D

n

AA A

.. I (3.4)

stacking relation:
n

k.... D
n

.... I (3.5)

capping/cupping: n
..

D 0 D
n

.. I (3.6)

symmetrizer sliding:
.. ..

n
D

....
n
I (3.7)

Proof. The first relation (3.4) is evident if one expands the symmetrizer in terms of
permutations, since permutations are SL.2; C/-equivariant.

The stacking relation is the statement that symmetrizing the last k elements of a
symmetric tensor has no effect, since they are already symmetric.

For the capping and cupping relations, notice that

B 2 .v ˝ w/ D .1
2
.v ˝ w C w ˝ v// D 1

2
.detŒv w�C detŒw v�/ D 0:

This implies the general case because, by the stacking relation, one may insert 2

between and n..
..

. The other case is similar.

There are a number of ways to demonstrate (3.7). It follows by reflection (Propo-

sition 3.5) or as a special case of SL.2; C/-equivariance, since D D
x for

x D g D
�

0 1
�1 0

�
2 SL.2; C/. More directly, expand the symmetrizer into a sum

of permutations. Since each permutation is a product of transpositions, then (3.7)
follows from the simple relation D . See [25] for more details.

We now move on to some more involved relations among symmetrizers. Although

it is easy to write down an arbitrary n..
..

in terms of permutations, it is usually rather

difficult to write it down in terms of diagrams without crossings (the Temperley-Lieb
algebra). The next two propositions describe how to do exactly this. As such, they
are a fundamental step in the proof of Theorem 5.6, which permits a fast computation
of rank two central functions.
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Proposition 3.12. The symmetrizer n..
..

satisfies:

n

.. D
n � 1

.. �

�
n � 1

n

�
n � 1

.. �

�
n � 2

n

�
n � 1

.. C � � �

�

�
n � i

n

�
n � 1

.. .. � � � � �

�
1

n

�
n � 1

.. :

(3.8)

Proof. If †n is the group of permutations on the set Nn D f1; 2; : : : ; ng, then

j†nj D jNnjj†n�1j:

Interpret j†nj as the number of ways to arrange n people in a line. To do this, one may
first select someone to be at the front of the line (jNnj choices), and then rearrange
the remaining n � 1 people (j†n�1j choices).

In diagram form, the selection of someone to head the line corresponds to one of
the diagrams

.. ; .. ; .. ; : : : ; ..
.. .. ; : : : ; ..

..
:

The arrangement of the remaining people corresponds to
n � 1

.. . Thus, the dia-
grammatic form of the above interpretation is:

n

.. D
1
n

n � 1

.. B

�
.. C .. C .. C � � � C ..

.. .. C � � � C ..
.. �

:

Now, use the binor identity to remove crossings. Most of the resulting terms
disappear, since any term whose cups are not in the ‘first position’ on top will vanish
due to the capping relation. In particular:

n � 1

.. B ..
.. .. D

n � 1

.. �
n � 1

.. �
n � 1

.. � � � � �
n � 1

.. .. ;

where i is the number of ‘kinks’ .. in ..
.. .. or 1 plus the number of kinks in

n � 1

.. .. . Finally, group the number of terms on the righthand side with the same
number of kinks together: there will be n � i � 1 terms with i kinks.

Proposition 3.13. n..
..

also satisfies the recurrence relations:

n

..

..
D

i n � i

n � 1

.. .. �

�
n � i

n

�
i n � i

n � 1

..
.. .. I (3.9)

n

..

..
D n � 1

..

..
�

�
n � 1

n

� n � 1

n � 1

.. : (3.10)
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Proof. Compose Relation (3.8) with i

..

..
˝ n � i

..

..
. This has no effect on the left-

hand side, by the stacking relation. On the righthand side, all but one of the terms
with a cap on the bottom vanish, due to the capping relation, since they will cap off

either the i

..

..
or the n � i

..

..
. The one term which remains ‘caps between’ these two

symmetrizers. The coefficient is �
�

n�i
n

�
since in recurrence (3.8), i is equal to one

more than the number of kinks .. in
n � 1

.. .. .

Relation (3.10) is a special case of (3.9) for i D 1.

The next relations follow directly from these recurrences:

Proposition 3.14 (Looping relations).

n

..

..
D

�
nC 1

n

�
n � 1

..

..
: (3.11)

When k strands of n..
..

are closed off:

n.. ..
.. ..

..
k
n

D

�
nC 1

n � k C 1

�
n � k

..

..
: (3.12)

.. ..
.. n
D nC 1: (3.13)

Proof. Close off the left strand in (3.10) above. Then, n

..

..
; n � 1

..

..
; and

n � 1

n � 1

..

become n

..

..
, n � 1

..

..
D 2 n � 1

..

..
and n � 1

..

..
, respectively. Now collect terms

to get (3.11), and proceed to (3.12) by applying the first relation k times. Finally,
(3.13) is a special case of (3.12) with k D n.

3.4 Symmetrizers and trivalent spin networks

Recall the Clebsch–Gordan decomposition (Proposition 2.3):

Va ˝ Vb Š

M
c2da;bc

Vc ; da; bc D faC b; aC b � 2; : : : ; ja � bjg:

The requirement c 2 da; bc is equivalent to the following symmetric condition:

Definition 3.15. A triple .a; b; c/ of nonnegative integers is admissible, and we write
c 2 da; bc, if

1
2
.�aC b C c/; 1

2
.a � b C c/; 1

2
.aC b � c/ 2 N: (3.14)
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Two maps arise from the Clebsch–Gordan decomposition: an injection �
a;b
c W Vc !

Va ˝ Vb and a projection .��/c
a;b
W Va ˝ Vb ! Vc . Both have simple diagrammatic

depictions [5]:

�a;b
c D

a b

c

.. ....
W Vc ! Va ˝ VbI .��/c

a;b D

a b

c

.. .... W Va ˝ Vb ! Vc :

The admissibility condition (3.14) is the requirement that there is a nonnegative num-
ber of strands connecting each pair of symmetrizers. These “strand numbers” ap-
pear frequently in diagram manipulations, and will be referenced by the Greek letters
˛; ˇ;  .

Convention 3.16. Given an admissible triple .a; b; c/, denote by ˛, ˇ, and  the total
number of strands connecting Vb to Vc , Va to Vc , and Va to Vb , respectively. Also,
denote by ı the total number of strands in the diagram. Then:

˛ D 1
2
.�aCbC c/; ˇ D 1

2
.a�bC c/;  D 1

2
.aCb� c/I ı D 1

2
.aCbC c/:

Note that .a; b; c/ is admissible if and only if ˛; ˇ;  2 N.

Convention 3.17. Because the maps �
a;b
c and .��/c

a;b
will be so important for the

remainder of this chapter, we introduce a notation which simplifies their depiction.
Let n lines with a symmetrizer be represented by one thick line labelled n, so that
n

� n..
..

.

Definition 3.18. A trivalent spin network S is a graph drawn on the plane with ver-
tices of degree � 3 and edges labelled by positive integers such that:

� 2-vertices are ciliated and coincide with local extrema;

� 3-vertices are drawn ‘up’ or ‘down’ ;

� any two edges meeting at a 2-vertex have the same label;

� the three labels adjacent to any vertex form an admissible triple.

If there are m input edges with labels li for i D 1; : : : ; m and n output edges with la-
bels l 0i for i D 1; : : : ; n, the network is identified with a map between tensor products
of irreducible SL.2; C/ representations,

fS W Vl1
˝ � � � ˝ Vlm

! Vl 0
1
˝ � � � ˝ Vl 0

n
:
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This map is computed by identifying S with a regular spin network using the follow-
ing identifications:

n

�
n

..

..
;

n

� . .
. . n

;
n
D

n
�

n

.. .. ;

a b

c
�

a b

c

.. ....
;

a b

c

�

a b

c

.. .... :

Note that ciliations are normally chosen to be on the local extrema, and degree-3
vertices, when expanded, also have a number of ciliated vertices. The need to keep
track of these ciliations makes diagram manipulation a more delicate operation.

3.5 Trivalent diagram manipulations

This section describes in detail the relations which may be used to manipulate triva-
lent spin networks. For the remainder of this chapter, we assume that all sets of labels
incident to a common vertex in a diagram are admissible. Moreover, whenever we
sum over a label in a diagram, the sum is taken over all possible values of that label
which make the requisite triples in the diagram admissible.

Any closed trivalent spin network may be interpreted as a constant. The simplest
such diagrams are given by

Proposition 3.19. Let ‚.a; b; c/ D
b

a
c

and �.c/ D
c

. Then ‚.a; b; c/ is

symmetric in fa; b; cg and explicitly (recall the ˛; ˇ; ; ı given in Convention 3.16):

�.c/ D c C 1 D dim.Vc/I (3.15)

‚.a; b; c/ D

�
�aCbCc

2

�
Š
�

a�bCc
2

�
Š
�

aCb�c
2

�
Š
�

aCbCcC2
2

�
Š

aŠbŠcŠ
D

˛ŠˇŠŠ.ıC1/Š
aŠbŠcŠ

I (3.16)
‚.1; a; aC 1/ D �.aC 1/ D aC 2: (3.17)

Proof. The first equation (3.15) is a consequence of the looping relation (3.11). That
‚.1; a; aC1/ D �.aC1/ is a consequence of the stacking relation, and demonstrates
(3.17). We refer the reader to [5] for the ‚.a; b; c/ formula.

Ratios of � and ‚ show up in the next two propositions, which tell us how to
“pop bubbles” and how to “fuse together” two thick edges. The first demonstrates the
usefulness of Schur’s Lemma (Proposition 2.4) in diagrammatic techniques.

Proposition 3.20 (Bubble identity).
b

d

a
c

D

�
‚.a;b;c/

�.c/

c �
ıcd , where ıcd is the

Kronecker delta.
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Proof. Schur’s Lemma requires
b

d

a
c

D C
c

ıcd for some constant C , since
b

d

a
c

is a map between irreducible representations. This equation remains true if we “close
off” the diagrams, giving:

b

a
c
D C

c
H) C D

‚.a; b; c/

�.c/
:

Proposition 3.21 (Fusion identities).

a b

D

X
c2da;bc

�
�.c/

‚.a; b; c/

�
a

a

c

b

b

a b

D

X
c2da;bc

.�1/
1
2 .a�bCc/

�
�.c/

‚.a; b; c/

� a b

ab

c
:

Proof. Maps of the form
a

a

c

b

b

for c 2 da; bc form a basis for the space of SL.2; C/-

equivariant maps Va ˝ Vb ! Va ˝ Vb [5]. Thus, we may express the first diagram
as a linear combination:

a b

D

X
c2da;bc

C.c/
a

a

c

b

b

:

For a fixed d 2 da; bc, the constant C.d/ is computed by composing this expression

with
a b

d
:

a b

d
D

X
c2da;bc

C.c/
a b

c
B

b
d

a
c

D

X
c2da;bc

C.c/

�
‚.a; b; c/

�.c/

� a b

c
B

d

ıcd

D C.d/

�
‚.a; b; d/

�.d/

� a b

d
H) C.d/ D

�.d/

‚.a; b; d/
:
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The second equation follows from the first and from Proposition 3.22 below:

a b

D .�1/b
a b

D

X
c2da;bc

.�1/b

�
�.c/

‚.a; b; c/

�
c

a

a

b

b

D

X
c2da;bc

.�1/
1
2 .a�b�c/

�
�.c/

‚.a; b; c/

�
c

a

a

b

b

D

X
c2da;bc

.�1/
1
2 .a�bCc/

�
�.c/

‚.a; b; c/

� a b

ab

c
: �

The identity D gives rise to the following compendium of sign changes through
diagram manipulations:

Proposition 3.22.
n

D .�1/n
n

I (3.18)

c

ba

D .�1/
1
2 .aCb�c/

a b

c

I (3.19)

a

c

b
D .�1/

1
2 .�aCbCc/

a b

c

I (3.20)

e

c

a

d

b

D .�1/
1
2 .aCbCcCd�2e/

a b

cd

e
I (3.21)

.�1/
1
2 .aCc/

a b

cd

e
D .�1/

1
2 .bCd/

a b

cd

e
I (3.22)

e

c

a

d

b

D .�1/bCd�e
a b

cd

e
: (3.23)

Proof. First, (3.18) is just a restatement of ..
.... ..

n

D .�1/n
n

.. , and (3.19) follows

directly from the Proposition 3.5, since
a b

c

contains  D 1
2
.a C b � c/ local

extrema and
c

ba

D
b a

c

.
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For (3.20), notice that in the simplest case

D � ;

the negative sign comes from the strand on top of the diagram. Similarly, the general

case for transforming
a

c

b
into

a b

c

has a sign for each strand between b and c,

giving .�1/˛ D .�1/
1
2 .�aCbCc/. This identity is used twice to give (3.21).

Finally, (3.22) follows from:

a b

cd

e
D .�1/e

a b

cd

e
D .�1/eC 1

2 .dCe�aCbCe�c/
a b

cd

e
;

and (3.23) is given by combining (3.21) and (3.22).

The above relations permit the definition of a “ �
4

-reflection” on certain types of
diagrams, which will be important later:

Proposition 3.23. If a relation consists entirely of terms of the form
a b

cd

e and

d

a

f

c

b

, then one may “reflect about the line through a and c” in the following sense:

X
e

˛e

a b

cd

e
D

X
f

f̌

d

a

f

c

b

()

X
e

˛e

b

a

e

c

d

D

X
f

f̌

a d

cb

f
:

Proof. By horizontally reflecting the first relation, using Theorem 3.6,

X
e

˛e

a b

cd

e
D

X
f

f̌

d

a

f

c

b

()

X
e

˛e.�1/
1
2 .aCbCcCd�2e/

b a

dc

e
D

X
f

f̌ .�1/
1
2 .aCbCcCd�2f /

c

b

f

d

a

()

X
e

˛e

b a

dc

e
D

X
f

f̌
c

b

f

d

a

;

where the signs cancel due to the admissibility conditions.
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Now, add strands to both sides, so that the right side
c

b

f

d

a

becomes

f

c

a

b

d

D .�1/bCd�f
a d

cb

f
:

Likewise, on the left side,
b a

dc

e becomes .�1/bCd�e

b

a

e

c

d

. Once again, admis-

sibility implies that e and f must have the same parity, so these signs cancel.

Two alternate versions of this proposition follow (see [25]).

Corollary 3.24.

X
e

˛e

a b

cd

e
D

X
f

f̌

d

a

f

c

b

()

X
e

˛e

b

a

e

c

d

D

X
f

f̌

a d

cb

f

X
e

˛e

a b

cd

e
D

X
f

f̌

d

a

f

c

b

()

X
e

˛e.�1/
1
2 .e�b/

cba

d

e D

X
f

f̌ .�1/
1
2 .d�f /

a b c

d

f :

4 Decomposition of CŒG�

The following theorem is a consequence of the “unitary trick”[10], the Peter–Weyl
Theorem, and the fact that the set of matrix coefficients of G is exactly its coordinate
ring [7]. We offer a self-contained constructive proof in Section 4.2, since it gives an
explicit correspondence between regular functions and spin networks.

Theorem 4.1. There is a G-module isomorphism

CŒG� Š
X
n�0

V �n ˝ Vn:

4.1 Central functions

Theorem 4.1 allows CŒG �G�G to be described in terms of an additive basis of class
functions that have an elegant realization as spin networks. Indeed, together with the
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Clebsch–Gordan decomposition, it implies

CŒG �G� Š CŒG�˝ CŒG�

Š

�X
a�0

V �a ˝ Va

�
˝

�X
b�0

V �b ˝ Vb

�
Š

X
a�0

X
b�0

V �a ˝ Va ˝ V �b ˝ Vb

Š

X
0�a;b<1

�
V �a ˝ V �b

�
˝ .Va ˝ Vb/

Š

X
0�a;b<1

� min.a;b/X
iD0

V �aCb�2i

�
˝

� min.a;b/X
jD0

VaCb�2j

�
Š

X
0�a;b<1

0�i;j�min.a;b/

V �aCb�2i ˝ VaCb�2j :

Since the above maps are G-equivariant,

CŒG �G�G Š
X

0�a;b<1
0�i;j�min.a;b/

�
V �aCb�2i ˝ VaCb�2j

�G
: (4.1)

By Schur’s Lemma (Proposition 2.4),

dimC
�
V �aCb�2i ˝ VaCb�2j

�G
D

(
1 if i D j

0 if i 6D j
;

so
CŒG �G�G Š

X
0�a;b<1

0�j�min.a;b/

End.VaCb�2j /G :

Definition 4.2. Given the above isomorphism, for each c 2 da; bc (see Defini-
tion 3.15), there exists a class function �a;b;c

2 CŒG � G�G which corresponds to
a generating homothety (unique up to scalar) in End.Vc/G . We refer to the functions
�a;b;c as central functions.

Denote by C �a;b;c
� CŒG�G�G the linear span over C of �a;b;c . Then (4.1) may

be rewritten as

CŒG �G�G Š
X

0�a;b<1
c2da;bc

C �a;b;c:

Thus, the central functions �a;b;c form an additive basis for the ring of regular func-
tions on X D Specmax.CŒR�G/ D R==G. In Section 5, we describe the multiplicative
structure of CŒG �G�G in terms of this basis.
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The central functions may be described using the Clebsch–Gordan injection �
a;b
c W

Vc ,! Va ˝ Vb:

�a;b;c.x1; x2/ D tr
�
�.c�i /

�
.x1; x2/ � �.cj /

��
ij

;

where fcj g is a basis for Vc . We will omit indices on � when they are clear from
context.

The functions �a;b;c take a natural diagrammatic form. If the matrix x is repre-

sented diagrammatically by x W V ! V , then its action on Va can be represented by

x

a

�
a

x x x.... : A closed spin network with r different matrices is an invariant reg-

ular function G�r ! C. In particular, since and are the Clebsch–Gordan
injection and projection, respectively,

�a;b;c.x1; x2/ D x1 x2

a b c

D

x1 x2

c
a b :

As a special case, setting x1 D x2 D I, where I is the identity matrix in G, gives
�a;b;c.I; I/ D ‚.a; b; c/.

4.2 Proof of CŒG� decomposition theorem

Define
‡ W

X
n�0

V �n ˝ Vn �! CŒG�

by linear extension of the mapping

n�n�k ˝ nn�l 7! n�n�k.x � nn�l/;

where x D

�
x11 x12

x21 x22

�
is a matrix variable.

Proposition 4.3. ‡ is a well-defined G-equivariant morphism.

Proof. The image of ‡ consists of regular functions since

n�n�k.x � nn�l/ D n�n�k

�
.x11e1 C x21e2/n�l.x12e1 C x22e2/l

�
D

X
iCjDk

0�i�n�l
0�j�l

�
n
k

��1�n�l
i

��
l
j

�
xn�l�i

11 x
l�j
12 xi

21x
j
22:
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Equivariance is verified by the calculation:

‡.g � .n�n�k ˝ nn�l// D ‡
�
.g � n�n�k/˝ .g � nn�l/

�
D .g � n�n�k/.x � .g � nn�l// D n�n�k..g�1xg/ � nn�l/

D g � n�n�k.x � nn�l/ D g � ‡.n�n�k ˝ nn�l/: �

There is a right action of G on CŒG� given by f � g.x/ D f .xg/: Denote by
CŒG�right the ring CŒG� with this right action, to distinguish it from the conjugation ac-
tion already imposed on CŒG�. Additionally, G acts on the left of HomG.Vn; CŒG�right/

by
.g � /.v/.x/ D v.g�1x/;

where v D .v/: This action is well-defined since

.g � /.g0 � v/.x/ D g0�v.g�1x/ D v.g�1xg0/ D
�
.g � /.v/

�
� g0.x/:

The next two lemmas, whose proofs are deferred, define two additional maps
which will be used to prove the theorem.

Lemma 4.4. The map

ˆ W
X
n�0

HomG.Vn; CŒG�right/˝ Vn �! CŒG�

defined by linearly extending the mappings  ˝ v 7! .v/ is an isomorphism of
G-modules.

Lemma 4.5. Define the map ‰n W V
�

n ! HomG.Vn; CŒG�right/ by w� 7! Fw� , where
Fw�.v/.x/ D w�.x � v/. Then the map

‰ W
X
n�0

V �n ˝ Vn �!

X
n�0

HomG.Vn; CŒG�right/˝ Vn

given by ‰ D
P

.‰n ˝ id/ is an isomorphism of G-modules.

Assuming the above lemmas, Theorem 4.1 is equivalent to showing that the fol-
lowing diagram commutes:X

n�0

V �n ˝ Vn ‡ //

‰

$$JJJJJJJJJ

CŒG�

X
n�0

HomG.Vn; CŒG�right/˝ Vn.

ˆ

<<yyyyyyyyyyy

The proof of commutativity follows:

ˆ B‰.w� ˝ v/ D ˆ.Fw� ˝ v/ D Fw�.v/ D w�.x � v/ D ‡.w� ˝ v/: �
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It remains to establish Lemmas 4.4 and 4.5. The proof of Lemma 4.4 requires
some preliminary technical results.

Lemma 4.6. Every regular function is contained in a finite-dimensional sub-repre-
sentation of CŒG�.

Proof of Lemma 4.6. The following G � G-action encompasses both the right and
diagonal G-actions defined above. Let

˛ W G �G �G �! G

be defined by .g1; g2; x/ 7! g1xg�1
2 , and further let

˛� W CŒG� �! CŒG �G �G� Š CŒG�˝3 (4.2)

be defined by f 7! f B˛, the pull-back of regular functions on G to regular functions
on G � G � G. For f 2 CŒG�, (4.2) implies that there exist nf 2 N and regular
functions fi ; f 0i ; f 00i for 1 � i � nf such that

˛�.f / D

nfX
iD1

fi ˝ f 0i ˝ f 00i :

Therefore

˛�.f /.g�1
1 ; g�1

2 ; x/ D

nfX
iD1

fi .g
�1
1 /f 0i .g�1

2 /f 00i .x/:

On the other hand,

˛�.f /.g�1
1 ; g�1

2 ; x/ D f .˛.g�1
1 ; g�1

2 ; x// D f .g�1
1 xg2/ D ..g1; g2/ � f /.x/;

which implies

.g1; g2/ � f D

nfX
iD1

fi .g
�1
1 /f 0i .g�1

2 /f 00i : (4.3)

Let .G � G/f D f.g1; g2/ � f W f 2 Gg be the G � G-orbit of f , and let Wf

be the linear subspace spanned over C by .G � G/f in CŒG�. By (4.3), ff 00i g is a
spanning set for Wf , and so Wf is finite-dimensional. Clearly Wf is G�G-invariant,
and so invariant with respect to the diagonal and right G-actions. Thus, it is a finite-
dimensional sub-representation containing f .

Lemma 4.7. CŒG� is completely G �G-reducible.

Proof of Lemma 4.7. Let I be the set of direct sums of irreducible finite-dimensional
sub-representations of CŒG�. I is partially ordered by set inclusion and is nonempty.
Thus, by Zorn’s lemma there exists a maximal element M 2 I. If M ¤ CŒG�,
then consider any f … M . By Lemma 4.6, there exists a finite-dimensional sub-
representation Wf that contains f . Let K D SU.2/ be the maximal compact sub-
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group of G. Restrict the action of G�G to K�K to find an invariant orthogonal com-
plement to Wf in M [Wf . Denote this complement by M?. Then M? ˚Wf 2 I,
since K �K representations extend to G �G representations. Hence M is not max-
imal, which is a contradiction. Therefore CŒG� is completely reducible with respect
to the G �G-action, and so

CŒG� Š
X
j�0

cj Vj ;

where cj is the (possibly infinite) multiplicity of Vj in CŒG�. This decomposition also
holds for CŒG� with both the right and diagonal actions since they are restrictions of
the same G �G-action.

Proof of Lemma 4.4. By Lemma 4.7,

ˆ W
X
n�0

�
HomG.Vn; CŒG�right/˝ Vn

�
�! CŒG�

is an isomorphism if and only ifX
n�0

�X
j�0

HomG.Vn; cj Vj /˝ Vn

�
�!

X
j�0

cj Vj

is an isomorphism. By Schur’s Lemma, this reduces toX
n�0

.cnC˝ Vn/ Š
X
n�0

.HomG.Vn; cnVn/˝ Vn/ �!
X
n�0

cnVn:

However, this is the map sending
P

�˝ v 7!
P

�v for � 2 C and v 2 Vn, which is
canonically an isomorphism.

The final task is to show that ‰ is an isomorphism:

Proof of Lemma 4.5. Recall that

‰n W V
�

n �! HomG.Vn; CŒG�right/

was defined by w� 7! Fw� , where Fw�.v/.x/ D w�.x � v/. ‰n is well-defined since

Fw�.g � v/.x/ D w�.x � .g � v// D w�..xg/ � v/ D Fw�.v/.xg/ D .Fw�.v// � g.x/;

and is G-equivariant because

‰n.g � w�/.v/.x/ D Fg �w�.v/.x/ D .g � w�/.x � v/ D w�..g�1x/ � v/

D Fw�.v/.g�1x/ D .g � Fw�/.v/.x/ D g �‰n.w�/.v/.x/:

Since V �n is irreducible, Schur’s Lemma implies ‰n is injective. We now show
surjectivity. Consider  2 HomG.Vn; CŒG�right/: For I 2 G, .v/.I/ is a linear func-
tional on Vn. Hence there exists w� 2 V �n such that w�.v/ D .v/.I/ for all v 2 Vn.
The following computation establishes that ‰n.w�/ D  :

Fw�.v/.x/ D w�.x � v/ D .x � v/.I/ D ..v// � x.I/ D .v/.Ix/ D .v/.x/:
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Therefore ‰n is an isomorphism and so is ‰ D
P

.‰n ˝ id/:X
n�0

V �n ˝ Vn Š

X
n�0

�
HomG.Vn; CŒG�right/˝ Vn

�
:

4.3 Ring structure of CŒG�G

We have established
CŒG� Š

X
n�0

V �n ˝ Vn:

By Schur’s Lemma and the fact that V �n ˝ Vn Š End.Vn/,

CŒG�G Š
X
n�0

.V �n ˝ Vn/G
Š

X
n�0

C �n;

where �n
2 End.Vn/G is a multiple of the identity.

The isomorphism End.Vn/! V �n ˝ Vn is given by

nn�l.nn�k/T
7!
�

n
k

�
n�n�k ˝ nn�l :

Therefore, the central function �n corresponds to an invariant function in CŒG�G by

�n
D

nX
iD0

ni .ni /
T
7�!

nX
iD0

�
n
i

�
n�i ˝ ni

‡
7�!

nX
iD0

�
n
i

�
n�i .x � ni /:

We will freely identify �n with its image in CŒG�G .
For example, the trivial representation V0 gives �0

D 1. The standard representa-
tion V1 has diagonal matrix coefficients x11 and x22, hence

�1
D x11 C x22 D tr.x/:

The remaining functions may be computed directly, or by using the following
product formula:

Theorem 4.8 (Product formula).

�a�b
D

X
c2da;bc

�c (4.4)

Proof. From the Clebsch–Gordan decomposition,

.Va ˝ Vb/� ˝ .Va ˝ Vb/ Š
X

c;d2da;bc

V �c ˝ Vd :

Hence
End.Va ˝ Vb/G

Š

X
c2da;bc

End.Vc/G
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and the characters satisfy

�a�b
D �

.Va˝Vb/ D �
˚cVc D

X
c2da;bc

�c :

There is an alternate diagrammatic proof of this statement, which uses the fusion and

bubble identities in Propositions 3.20 and 3.21. If the matrix x is represented by x ,
then

�a�b
D x

a

x b D

X
c2da;bc

�
�.c/

‚.a; b; c/

�
x

a
x b

c

D

X
c2da;bc

�
�.c/

‚.a; b; c/

� a

b
x

c

D

X
c2da;bc

�
�.c/

‚.a; b; c/

�
x

c

a b

D

X
c2da;bc

�
�.c/‚.a; b; c/

‚.a; b; c/�.c/

�
x

c

D

X
c2da;bc

x
c

D

X
c2da;bc

�c : �

The product formula (4.4) and the initial calculations of �0 and �1 may be used
to show:

Theorem 4.9. CŒG�G Š CŒt �.

Proof. Consider the ring homomorphism ˆ W CŒt �! CŒG�G defined by f 7! f B tr:
Suppose f .tr.g// D 0 for all g 2 G. If f ¤ 0, then since f has a finite number of
zeros, tr.g/ must have a finite number of values. However,�

t 1

�1 0

�
2 G

for all values of t . Hence, f D 0 and ˆ is injective. It remains to establish surjec-
tivity. We have already shown t 7! �1 and 1 7! �0: Suppose a � 2 and �b is in the
image of ˆ for all b < a. Equation (4.4) implies �1�a�1

D �a
C �a�2: Thus, by

induction,

tˆ�1.�a�1/ �ˆ�1.�a�2/ 7! �a:

The following closed formula for �n is given in [25]:

�n.t/ D

bn
2 cX

rD0

.�1/r

 
n � r

r

!
tn�2r :
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The characters �n may also be expressed as functions of eigenvalues, since �n is
determined by its values on normal forms�

� �

0 ��1

�
2 G:

Explicitly,
�

� �

0 ��1

�
acts on Vn by the matrix26666664

�n � � � � � �

0 �n�2 � � � � �

::: 0
: : : � �

0
::: 0 �2�n �

0 0 � � � 0 ��n

37777775 :

Hence,

�n
D �n

C �n�2
C � � � C �2�n

C ��n
D

�nC1 � ��n�1

� � ��1
D ŒnC 1��;

where ŒnC 1�� is the quantized integer for q D �.

5 Structure of CŒG � G�G

Recall the decomposition

CŒG �G�G Š
X

a;b2N
c2da;bc

C �a;b;c;

where �a;b;c corresponds by ‡ to the image of
cX

kD0

ck.ck/T
7!

cX
kD0

�
c
k

�
c�k ˝ ck

under the injection V �c ˝ Vc ,! V �a ˝ V �
b
˝ Va ˝ Vb . This inclusion is determined

by the Clebsch–Gordan injection � W Vc ,! Va ˝ Vb: Hence, an explicit formula for �

provides a means to compute �a;b;c directly. We freely use �a;b;c to denote its image
in CŒG �G�G .

A few simple examples will motivate the construction of �. For k D 1; 2, let
xk D Œxk

ij � be 2 � 2 matrix variables, and let

x D tr.x1/ D x1
11 C x1

22;

y D tr.x2/ D x2
11 C x2

22;

z D tr.x1x�1
2 / D .x1

11x2
22 C x1

22x2
11/ � .x1

12x2
21 C x1

21x2
12/:
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Recall that the map W V0 ,! V1 ˝ V1 given by

c0 7! a1 ˝ b0 � a0 ˝ b1

is invariant, using the notation defined in section 2.3. More generally, the injection
V0 ,! Va ˝ Va is given by

a
W c0 7�!

aX
mD0

.�1/m
�

a
m

�
aa�m ˝ bm: (5.1)

Hence, �0;0;0
D 1 and �1;1;0 may be computed by:

�1;1;0
7! c�0 ˝ c0

7! .a�1 ˝ b�0 � a�0 ˝ b�1/˝ .a1 ˝ b0 � a0 ˝ b1/

7! .a�1 ˝ a1/˝ .b�0 ˝ b0/ � .a�0 ˝ a1/˝ .b�1 ˝ b0/

� .a�1 ˝ a0/˝ .b�0 ˝ b1/C .a�0 ˝ a0/˝ .b�1 ˝ b1/

7! x1
11 ˝ x2

22 � x1
12 ˝ x2

21 � x1
21 ˝ x2

12 C x1
22 ˝ x2

11

7! .x1
11x2

22 C x1
22x2

11/ � .x1
12x2

21 C x1
21x2

12/ D z:

The representation Vc may be identified with a subset of V ˝c via the equivariant
maps

Vc

Sym

%%
V ˝c

Proj

dd

where ProjBSym D id. Thus, when c D aCb, � is given by the commutative diagram

V ˝c

˚
V ˝a ˝ V ˝b

Proj˝Proj

��
Vc �

//

Sym

OO

Va ˝ Vb:

In particular, �
c
k

�
ck

�
7�!

X
0�i�a
0�j�b
iCjDk

�
a
i

�
ai ˝

�
b
j

�
bj : (5.2)

For example, consider �1;0;1. In this case, c0 7! a0 ˝ b0 and c1 7! a1 ˝ b0. Hence,

�1;0;1
7! c�

0 ˝ c0 C c�
1 ˝ c1 7! .a�

0 ˝ a0/˝ .b�
0 ˝ b0/C .a�

1 ˝ a1/˝ .b�
0 ˝ b0/

7! x1
11 ˝ 1C x1

22 ˝ 1 7! x1
11 C x1

22 D x:

A similar computation shows that �0;1;1
7! y.
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The general form of � is determined by combining (5.1) and (5.2) in the following
diagram:

Vc
� //

�

��
˚

Vˇ ˝ V˛

id˝

˝id

��
Va ˝ Vb Vˇ ˝ V ˝ V ˝ V˛ .oo

It follows that the mapping � W Vc ! Va ˝ Vb is explicitly given by�
c
k

�
ck 7�!

X
0�i�ˇ
0�j�˛
0�m�
iCjDk

�
ˇ
i

�
ai ˝

�
.�1/m

�

m

�
a�m ˝ bm

�
˝
�

˛
j

�
bj

7�!

X
0�i�ˇ
0�j�˛
0�m�
iCjDk

.�1/m
�

ˇ
i

��
˛
j

��

m

�
aiC�m ˝ bjCm:

5.1 Symmetry of central functions

Our first theorem regarding central functions is a symmetry property that is essentially
trivial in diagram form, despite being highly nontrivial algebraically. A portion of the
Fricke–Klein–Vogt Theorem (5.12) is required to state the theorem. We begin with a
diagrammatic proof of this classical result, in which the binor identity plays the role
of the characteristic equation in the classical proof.

Lemma 5.1. Each central function �a;b;c is associated to a unique polynomial pa;b;c ,
denoted for all pairs .x1; x2/ 2 G �G by

�a;b;c.x1; x2/ D pa;b;c.tr.x2/; tr.x1/; tr.x1x�1
2 //:

Proof. Expanding the symmetrizers in �a;b;c gives a collection of circles with matrix
elements, each of which correspond to a product of traces of words in x1 and x2, so
it suffices to show that every loop can be reduced to a collection of loops containing
one of x1, x2, or x1x�1

2 .
This reduction depends entirely on the binor identity (3.1), which when composed

with x1 ˝ x2 D
x1 x2 gives:

x1 x2

D
x1 x2

�
x1 x2

: (5.3)
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Denote x�1
1 by Nx1. Two special cases of (5.3) follow:

x1 Nx1

D
x1 Nx1

�
x1 Nx1

D x1 Nx1 �

x2
1

and
x1 x1

D
x1 x1

�
x1 x1

D x1 x1 �
I

:

The first relation allows us to assume no loop has both x1 and x�1
1 , while the second

allows us to assume no loop has more than one of any matrix. The remaining cases are
the traces tr.x1/, tr.x2/, tr.x1x2/, and tr.x1x�1

2 /. Finally, closing off (5.3) permits
the reduction of tr.x1x2/:

tr.x1x2/ D tr.x1/tr.x2/ � tr.x1x�1
2 /:

We can now prove the symmetry result. In the statement and proof below,
�.}1;}2;}3/ denotes the ordered triple .}�.1/;}�.2/;}�.3// obtained by applying
a given permutation � 2 †3 to the triple .}1;}2;}3/. This result was first outlined
in [29].

Theorem 5.2 (Symmetry of central functions). The family of polynomials

�a;b;c.x1; x2/ D pa;b;c.tr.x2/; tr.x1/; tr.x1x�1
2 //

possesses the following symmetry:

p�.a;b;c/.y; x; z/ D pa;b;c.��1.y; x; z//:

Proof. Define the following function G �G �G ! C:

�
˛;ˇ;.x; y; z/ D

. . . . . . . . . . . .
x x y y z z

˛ ˇ 

where the symmetrizer on the right is assumed to ‘wrap around’ to the one on the left
(imagine this diagram being drawn on a cylinder). By construction this function is
symmetric, in the sense that:

�
�.˛;ˇ;/

�
�

�
x1 ; x2 ; x3

��
D �

˛;ˇ;

�
x1 ; x2 ; x3

�
:

A central function �a;b;c.x1; x2/ may be drawn as:

x1 x2

a b c

D

. . . . . . . . . . . .
x2x2x2x2x1x1x1x1

a�bCc
2

aCb�c
2

�aCbCc
2

D

. . . . . . . . . . . .
Nx1 Nx1 x1 Nx2x1 Nx2 x2 x2

ˇ  ˛

;
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with the symmetrizers in the last two diagrams assumed to wrap around as before.
Thus, pa;b;c.y; x; z/ D �

˛;ˇ;.x2; x�1
1 ; x1x�1

2 / and so:

p�.a;b;c/.y; x; z/ D �
�.˛;ˇ;/.x2; x�1

1 ; x1x�1
2 /

D �
˛;ˇ;.��1.x2; x�1

1 ; x1x�1
2 //

D pa;b;c.��1.y; x; z//: �

Table 1 contains six central functions illustrating this symmetry.

Table 1. Rank two central function symmetry.

�1;2;3
D xy2 �

2
3
.yz C x/ �3;2;1

D xz2 �
2
3
.yz C x/

�2;3;1
D yz2 �

2
3
.xz C y/ �1;3;2

D y2z � 2
3
.xy C z/

�3;1;2
D x2z � 2

3
.xy C z/ �2;1;3

D x2y � 2
3
.xz C y/

5.2 A recurrence relation for central functions

Define the degree of a central function to be:

ı D deg.�a;b;c/ D 1
2
.aC b C c/:

We will obtain a recurrence relation for an arbitrary central function �a;b;c by ma-
nipulating diagrams to express the product

tr.x1/ � �a;b;c.x1; x2/

as a sum of central functions. This formula can be rearranged to write �a;b;c as a lin-
ear combination of central functions with lower degree. There are three main ingre-
dients to the diagram manipulations: the bubble identity and the fusion identity from
Section 3.5, and two recoupling formulae which we prove in the following lemma.

Lemma 5.3. For i D 1
2
.aC 1 � b C c/ and appropriate triples admissible,

1 a

bc

c�1
D

c

1

aC1

b

a

C

�
aCb�cC1

2.aC1/

�
c

1

a�1

b

a

I (5.4)

1 a

bc

cC1
D

�
�aCbCcC1

2.cC1/

�
c

1

aC1

b

a

C

�
.aCbCcC3/.a�bCcC1/

4.aC1/.cC1/

�
c

1

a�1

b

a

: (5.5)
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Proof. Note that i is just the number of strands connecting aC 1

..

..
to c

..

..
in

c

1

aC1

b

a

D

c b

aC1

. For (5.4), use n D aC 1 and i in recurrence relation (3.9) to get:

aC 1

..

..
D

i aC 1 � i

aC 1 � 1

.. .. �

�
aC 1 � i

aC 1

�
i aC 1 � i

aC 1 � 1

..
.. .. :

Compose this equation with
c b

.. ....
i aC1�i

to get, via the stacking relation (3.5):

c

1

aC1

b

a

D
c b

aC1

D

1 a

bc

c�1
�

�
aC 1 � i

aC 1

�
c

1

a�1

b

a

;

which is the desired result.
To prove (5.5), notice that if we switch a and c in the previous relation, and apply

a �
4

-reflection to the relation about the 1 $ b axis as in Proposition 3.23, then i is
unchanged and the equation becomes:

1 a

bc

cC1
D

c

1

a�1

b

a

�

�
c C 1 � i

c C 1

� 1 a

bc

c�1
:

Rearrange this equation, and use (5.4) in its exact form to get:

1 a

bc

cC1
D

c

1

a�1

b

a

�
�

cC1�i
cC1

�0@
c

1

aC1

b

a

C
�

aC1�i
aC1

�
c

1

a�1

b

a
1A

D �
�

cC1�i
cC1

�
c

1

aC1

b

a

C

�
1 � .aC1�i/.cC1�i/

.aC1/.cC1/

�
c

1

a�1

b

a

D �

�
�aCbCcC1

2.cC1/

�
c

1

aC1

b

a

C

�
.aCbCcC3/.a�bCcC1/

4.aC1/.cC1/

�
c

1

a�1

b

a

:

To show the last computation, note that aC1� i D 1
2
.aCb�cC1/ and cC1� i D

1
2
.�aC b C c C 1/, so the numerator of the last term is:

4..aC 1/.c C 1/ � .aC 1 � i/.c C 1 � i//

D 4.aC 1/.c C 1/ � ..b C 1/C .c � a//..b C 1/ � .c � a//

D 4.aC 1/.c C 1/ � .b C 1/2
C .a � c/2

D ..aC 1/ � .c C 1//2
C 4.aC 1/.c C 1/ � .b C 1/2
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D ..aC 1/C .c C 1//2
� .b C 1/2

D .aC 1C c C 1C b C 1/.aC 1C c C 1 � b � 1/

D .aC b C c C 3/.a � b C c C 1/: �

The coefficients we have computed are examples of 6j-symbols, most easily de-
fined to be the coefficients

�
a b f
d c e

�0 in the following change of basis equation:

a b

cd

e
D

X
f 2da;bc\dc;dc

�
a b f
d c e

�0
�

d

a

f

c

b

:

We use a prime because we will need an alternate version later:

Definition 5.4. The 6j-symbols
�

a b f
d c e

�
are the coefficients given by

cba

d

e D

X
f 2da;bc\dc;dc

�
a b f
d c e

�
�

a b c

d

f :

Both versions given here differ from those in the literature [5], [21]. It is not hard
to show, using Corollary 3.24, that�

a b f
d c e

�0
D .�1/

1
2 .bCd�e�f /

�
a b f
d c e

�
:

Thus, as a corollary to the above lemma we have the following 6j -symbols, given by
replacing c with c C 1 or c � 1, which will be used to prove the next theorem:

Corollary 5.5.�
1 a aC1

cC1 b c

�
D 1I

�
1 a a�1

cC1 b c

�
D �

.aCb�c/
2.aC1/

I�
1 a aC1

c�1 b c

�
D C

.�aCbCc/
2c

I
�

1 a a�1
c�1 b c

�
D

.aCbCcC2/.a�bCc/
4.aC1/c

:

We can now prove the “multiplication by x” formula.

Theorem 5.6.

x � �a;b;c
D �aC1;b;cC1

C
.aCb�c/2

4a.aC1/
�a�1;b;cC1

C
.�aCbCc/2

4c.cC1/
�aC1;b;c�1

C
.aCbCcC2/2.a�bCc/2

16a.aC1/c.cC1/
�a�1;b;c�1:

(5.6)

This equation still holds for a D 0 or c D 0, provided we exclude the terms with a or
c in the denominator.

Proof. Diagrammatically, x � �a;b;c.x; y; z/ is represented by

1
c

x1 x1

a
x2

b

;
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since x D tr.x1/ D x1 and multiplication is automatic on disjoint diagrams. Now

manipulate the diagram to obtain a sum over �’s with the following three steps.

First, apply the fusion identity to connect the lone x1 strand to the �a;b;c:

1
c

x1 x1

a
x2

b

D
c

c C 1

1 c

x1 x1

a
x2

b

C
c

c C 1 c
c � 1

1 c

x1 x1

a
x2

b

; (5.7)

where the coefficients are evaluated from

�.c ˙ 1/

‚.1; c; c ˙ 1/
D

c ˙ 1C 1

c C 3
2
˙

1
2

:

Second, use the 6j -symbols computed in Corollary 5.5 above to move the a strand
from one side of the diagram to the other:

c
c C 1

1 c

x1 x1

a
x2

b

D
c C 1

x1

aC 1
x2

b

C
.aCb�c/2

4.aC1/2
a�1

c C 1
a�1

1

x1 x1

a
x2

b

(5.8)

c
c � 1

1 c

x1 x1

a
x2

b

D
.�aCbCc/2

4c2 c � 1

x1

aC 1
x2

b

C
.aCbCcC2/2.a�bCc/2

16.aC1/2c2
a�1

c � 1
a�1

1

x1 x1

a
x2

b

: (5.9)

In each case, we are recoupling twice: once for the top piece and once for

the corresponding bottom piece. In doing this, we would actually get four terms, but
since the a˙1 labels must be the same on both the top and the bottom (a consequence
of Schur’s Lemma or the bubble identity), two of the terms vanish.

In the final step, use the bubble identity to collapse the final pieces:

aC1
c ˙ 1

aC1
1

x1 x1

a
x2

b

D

�
‚.1;a;aC1/

�.aC1/

�
c ˙ 1

x1

aC 1
x2

b

D �aC1;b;c˙1
I

a�1
c ˙ 1

a�1
1

x1 x1

a
x2

b

D

�
‚.1;a;a�1/

�.a�1/

�
c ˙ 1

x1

a � 1
x2

b

D
�

aC1
a

�
�a�1;b;c˙1:
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At this point, obtaining (5.6) is simply a matter of multiplying the coefficients ob-
tained in the previous formulae.

Now consider the special cases. For a D 0, since b D c and consequently c
cC1
D

.�aCbCc/2

4c.cC1/
, the desired formula is exactly (5.7). Similarly, for c D 0, the desired

formula is (5.8).

We find it interesting that, for all our discussion of signs introduced by non-
topological invariance, all signs introduced are eventually squared and thus do not
show up in this result.

We can rearrange the terms in (5.6) and re-index to get:

Corollary 5.7 (Central function recurrence). Provided a > 1 and c > 1, we can
write

�a;b;c
D x � �a�1;b;c�1

�
.aCb�c/2

4a.a�1/
�a�2;b;c

�
.�aCbCc/2

4c.c�1/
�a;b;c�2

�
.aCbCc/2.a�bCc�2/2

16a.a�1/c.c�1/
�a�2;b;c�2:

The relation still holds for a D 1 or c D 1, provided we exclude the terms with a � 1

or c � 1 in the denominator.

The condition a > 1, c > 1 arises because decrementing a and c in (5.6) means
.a � 1; b; c � 1/ must now be admissible. Also, note that formulae for multiplication
by y and z may be obtained by applying the symmetry relation of Theorem 5.2. This
fact is indispensable in our proof of Theorem 5.12.

5.3 Graded structure of the central function basis

The majority of the content in this section was suggested to us by Carlos Florentino
[12] after he read an early draft of this chapter.

Recall the ˛; ˇ;  notation used earlier, and the notation

�
˛;ˇ;.x2; x�1

1 ; x1x�1
2 / D �a;b;c.x1; x2/

introduced in the proof of Theorem 5.2. The recurrence in Corollary 5.7 may be
rewritten as

�
˛;ˇ; D �

0;1;0
�

˛;ˇ�1; �
2

a.a�1/
�

˛C1;ˇ�1;�1 �
˛2

c.c�1/
�

˛�1;ˇ�1;C1

�
ı2.ˇ�2/2

a.a�1/c.c�1/
�

˛;ˇ�2; :

The interchangeability of .a; ˛/ and .c; / is guaranteed by the symmetry theorem.

Proposition 5.8. The polynomial �a;b;c
D �

˛;ˇ; is monic, with highest degree mono-
mial xˇ y˛z .

Proof. Induct on the degree ı D ˛ C ˇ C  of central functions. The statement
is clearly true for the base cases, since �

0;0;0 D 1; �
0;1;0 D x; �

1;0;0 D y, and
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�
0;0;1 D z. The recurrence relation implies that the highest order term of �

˛;ˇ; is x

times the highest order term of �
˛;ˇ�1; , hence x.xˇ�1y˛z / D xˇ y˛z . This fact,

together with the appropriate symmetric facts for y and z, completes the induction.

The basis also preserves a certain grading on CŒx; y; z�. To define this grading,
partition the standard basis B D fxaybzcg of this space as follows. Let gr W B !

Z2 � Z2 be defined by:

gr.xaybzc/ D .aC c; b C c/ mod 2:

If B is considered as a semigroup under multiplication, then gr is a homomorphism
since

gr.xaybzc/C gr.xa0

yb0

zc0

/ D .aC c; b C c/C .a0 C c0; b0 C c0/ mod 2

D .aC a0 C c C c0; b C b0 C c C c0/ mod 2

D gr.xaCa0

ybCb0

zcCc0

/ mod 2:

Therefore, gr defines a grading on this basis.

Proposition 5.9. The basis f�a;b;c
g respects the Z2�Z2-grading on CŒx; y; z� defined

by gr, in the sense that

�a;b;c
2 C

�
gr�1.a; b/ mod 2

�
:

Proof. This is another proof by induction on the degree ı. Clearly, �0;0;0
D 1 2

gr�1.0; 0/, and likewise �1;0;1
D x 2 gr�1.1; 0/, �0;1;1

D y 2 gr�1.0; 1/, and
�1;1;0

D z 2 gr�1.1; 1/. In the induction step, note that

.a; b/ D .1; 0/C .a � 1; b/ D .a � 2; b/ mod 2;

so all terms on the righthand side of the recurrence relation in Corollary 5.7 have the
same grading. Thus �a;b;c

2 gr�1.a; b/.

5.4 Multiplication of central functions

It is not difficult to write down the formula for the product of two central functions,
although the formula is by no means simple. The proof that follows was motivated
by [29]. We begin with a lemma which encapsulates the most tedious diagram ma-
nipulations:

Lemma 5.10.

a
a0 b

b0

c c0

a
a0 b

b0

D

X
i;j;k;l;m

Cabc;a0b0c0

j1k1l1;j2k2l2;m

a
a0 b

b0
k2 l2

m
k1 l1

a
a0 b

b0

;
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where the coefficients are given by the formula

Cabca0b0c0

j1k1l1;j2k2l2;m
D

‚.c;c0;m/
�.m/

Y
iD1;2

�.ji /
‚.a0;b;ji /

�
�

a a0 ki

c ji b

��
b0 b li

c0 ji a0

�� ki li m

c c0 ji

�
;

and the following 15 triples are assumed to be admissible:

.a; a0; ki /, .b; b0; li /, .c; c0; m/, .a0; b; ji /, .c; ji ; ki /, .c0; ji ; li /, .b; ji ; li /,
.ki ; li ; m/.

Proof. We will just demonstrate the diagram manipulation for the top half of the
diagram, which by symmetry must be the same as for the bottom half. Combining
these two manipulations and applying a bubble identity will give the desired result.
We will save enumeration of admissible triples until after the manipulation, but keep
a close eye on signs in the meantime.

c

a b

c0

a0 b0

D

X
j

.�1/
1
2 .a0�bCj / �.j /

‚.a0;b;j /

c

a

c0

b0

b
a0

ja0 b

D

X
j;k

.�1/
1
2 .a0�bCj /Cj �.j /

‚.a0;b;j /

�
a a0 k
c j b

�
c0

b0

c

k

a a0

j
a0

b

D

X
j;k;l

.�1/
1
2 .a0�b�j / �.j /

‚.a0;b;j /

�
a a0 k
c j b

��
b0 b l
c0 j a0

�
c

k

a a0

c0

l

b b0

j

D

X
j;k;l

.�1/
1
2 .a0�b�j /C 1

2 .j Cl�c0/ �.j /
‚.a0;b;j /

�
a a0 k
c j b

��
b0 b l
c0 j a0

� a a0 b b0

c

k

c0

j l

D

X
j;k;l;m

.�1/
1
2

.a0�bCc�c0�j �m/Cl �.j /
‚.a0;b;j /

�
a a0 k
c j b

��
b0 b l
c0 j a0

��
k l m
c c0 j

� a a0 b b0

c c0

m

k l

The .�1/ terms all cancel in the end, a consequence of the fact that the following
triples must be admissible:

.a; a0; k/, .b; b0; l/, .c; c0; m/, .a0; b; j /, .c; j; k/, .c0; j; l/, .b; j; l/, .k; l; m/.

One computes the 13-parameter coefficients Cabc;a0b0c0

j1k1l1;j2k2l2;m above by reflecting this
result vertically, taking two sets of indices for the variables j; k; l; m on the two
halves, and noting that the resulting bubble in the middle collapses with a factor
of ‚.c;c0;m/

�.m/
for m D m1 D m2.
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With that out of the way, we can describe the central function multiplication ta-
ble explicitly. Note the symmetry with respect to k; l; m, which is guaranteed by
Theorem 5.2.

Theorem 5.11 (Multiplication of central functions). The product of two central func-
tions �a;b;c and �a0;b0;c0 is given by

�a;b;c�a0;b0;c0

D

X
j1;j2;k;l;m

Cj1klmCj2klm
‚.a;a0;k/‚.b;b0;l/‚.c;c0;m/

�.k/�.l/�.m/
�k;l;m;

where the sum is taken over admissible triples

.a; a0; k/, .b; b0; l/, .c; c0; m/, .a0; b; ji /, .c; ji ; k/, .c0; ji ; l/, .b; ji ; l/, .k; l; m/

and the coefficients are given by

Cji klm D
�.ji /

‚.a0;b;ji /

�
a a0 k
c ji b

��
b0 b l
c0 ji a0

��
k l m
c c0 ji

�
:

Proof. By the previous lemma and the bubble identity, we have:

c c0

x1

a

x1
a0

x2
b

x2

b0
D

X
j1;k1;l1;j2;k2;l2;m

Cabc;a0b0c0

j1k1l1;j2k2l2;m
k2 l2

m
k1 l1

x1

a

x1
a0

x2
b

x2

b0

D

X
j1;j2;k;l;m

Cabc;a0b0c0

j1kl;j2kl;m

�
‚.a; a0; k/‚.b; b0; l/

�.k/�.l/

�
m

x1

k
x2

l

D

X
i;j;k;l

Cj1klmCj2klm
‚.a;a0;k/‚.b;b0;l/‚.c;c0;m/

�.k/�.l/�.m/ m

x1

k
x2

l

:

�

5.5 Applications

Spin networks offer a novel approach to a classical theorem of Fricke, Klein, and Vogt
[14], [32]. We give here a new constructive proof which depends on the symmetry,
recurrence, and multiplication formulae for central functions.

Theorem 5.12 (Fricke–Klein–Vogt Theorem). Let G D SL.2; C/ act on G � G by
simultaneous conjugation. Then

CŒG �G�G Š CŒtx; ty ; tz�;
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the complex polynomial ring in three indeterminates. In particular, every regular
function f W SL.2; C/ � SL.2; C/! C satisfying

f .x1; x2/ D f .gx1g�1; gx2g�1/ for all g 2 SL.2; C/;

can be written uniquely as a polynomial in the three trace variables x D tr.x1/,
y D tr.x2/, and z D tr.x1x�1

2 /.

Proof. Define the ring homomorphism

� W CŒtx; ty ; tz�! CŒG �G�G

by f .tx; ty ; tz/ 7! f .tr.x1/; tr.x2/; tr.x1x�1
2 //:

We first show that � is injective. Suppose f .tr.x1/; tr.x2/; tr.x1x�1
2 // D 0 for

all pairs .x1; x2/ 2 G � G. Let .�x; �y ; �z/ 2 C3, �x D

�
�x 1

�1 0

�
, and �y;z D�

�y
1
�

�� 0

�
; where � C ��1 D �z . Then

.�x; �y ; �z/ D .tr.�x/; tr.�y;z/; tr.�x��1
y;z//:

Hence f D 0 on C3, Ker.�/ D f0g, and � is injective. This is the “Fricke slice”
given by Goldman in [18].

It remains to show that � is surjective. Theorem 4.1 implies that the central func-
tions form a basis for CŒG � G�G . Since tx 7! x, ty 7! y, and tz 7! z, it suffices
to show that every �a;b;c may be written as a polynomial in x; y, and z. This was
already done via Lemma 5.1, but we provide here a constructive proof.

Proceed by induction on the degree ı D 1
2
.aC bC c/ of a central function �a;b;c .

For the base cases ı D 0; 1 recall our earlier computations demonstrating

�0;0;0
D 1; �1;0;1

D x; �0;1;1
D y; �1;1;0

D z:

For ı > 0, we may inductively assume that all central functions with degree less
than ı are in CŒx; y; z�. The admissibility conditions imply that at least two out of the
triple .a; b; c/ are positive. Without loss of generality, using Theorem 5.2, we may
assume that a and c are positive. In this case, the recurrence given by Corollary 5.7,

�a;b;c
D x � �a�1;b;c�1

�
.aCb�c/2

4a.a�1/
�a�2;b;c

�
.�aCbCc/2

4c.c�1/
�a;b;c�2

�
.aCbCc/2.a�bCc�2/2

16a.a�1/c.c�1/
�a�2;b;c�2;

allows us to write �a;b;c in terms of central functions of lower degree, which by
induction must be in CŒx; y; z�. Thus, �a;b;c

2 CŒx; y; z�, and we have established
surjectivity.

The recurrence relations provide an algorithm for writing any �a;b;c as a polyno-
mial in fx; y; zg. Conversely, in [25] the following formula is established, which may
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be used to express any polynomial in CŒx; y; z� in terms of central functions:

xaybzc
D

ba
2 c;b

b
2 c;b

c
2 cX

r;s;tD0
k;l;m

��
a
r

�
�
�

a
r�1

����
b
s

�
�
�

b
s�1

����
c
t

�
�
�

c
t�1

��

�

�
�.l/�.m/‚.a�2r;c�2t;k/

�.k/‚.a�2r;b�2s;m/‚.b�2s;c�2t;l/

��
a�2r c�2t k

m l b�2s

�2�k;l;m:

Table 2 lists several central functions that were computed with Mathematica using
Corollary 5.7. Only one function per triple of indices is listed; the others follow
directly from Theorem 5.2.

Table 2. SL.2; C/-central functions.

ı �a;b;c �
˛;ˇ; pa;b;c.y; x; z/

0 �0;0;0 �
0;0;0 1

1 �1;0;1 �
0;1;0 x

2 �2;0;2 �
0;2;0 x2 � 1

�1;1;2 �
1;1;0 xy � 1

2
z

3 �3;0;3 �
0;3;0 x3 � 2x

�2;1;3 �
1;2;0 x2y � 2

3
.xz C y/

�2;2;2 �
1;1;1 xyz � 1

2
.x2 C y2 C z2/C 1

4 �4;0;4 �
0;4;0 x4 � 3x2 C 1

�3;1;4 �
1;3;0 x3y � 3

4
x2z � 1

2
.3xy � z/

�2;2;4 �
2;2;0 x2y2 � xyz C 1

6
z2 �

1
2
.x2 C y2/C 1

3

�3;2;3 �
1;2;1 x2yz � 2

3
.xz2 C xy2/ � 1

2
x3 �

1
9
.2yz � 13x/
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1 Introduction

The goal of this chapter is an attempt to relate some ideas of Grothendieck in his
Esquisse d’un programme [10] and some of the recent results on 2-dimensional topol-
ogy and geometry. Especially, we shall discuss Teichmüller theory, the mapping class
groups, the SL(2,C) representation variety of surface groups, and Thurston’s theory
of measured laminations.

A prominent idea in surface theory is that to study a surface, one should consider
all subsurfaces inside it. Indeed, there is a hierarchy of compact oriented surfaces of
negative Euler number under (essential) inclusion. Each surface in the hierarchy is
indexed by its level which is the number of disjoint simple loops needed to decompose it
into 3-holed spheres (i.e., the complex dimension of the Teichmüller space of complete
hyperbolic metrics of finite area). The first three levels in the hierarchy are listed as
follows. The level-0 surface is the 3-holed sphere, the level-1 surfaces are the 1-holed
torus and the 4-holed sphere, and the level-2 surfaces are the 2-holed torus and the
5-holed sphere.

Figure 1. The first three levels of the hierarchy of surfaces.

One of the key ideas in [10] which we would like to discuss at length in this chapter
is Grothendieck’s reconstruction principle for the “Teichmüller tower”. We quote the
relevant paragraph in [10] below. On page 11, lines 2–6, Grothendieck wrote (with
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English translation by L. Schneps) “The a priori interest of a complete knowledge of
the first two levels of the tower is to be found in the principle that the entire tower
can be reconstructed from these two first levels, in the sense that via the fundamental
operation of ‘gluing’, level-1 gives the complete system of generators, and level-2 a
complete system of relations.” One may interpret this principle broadly as follows.
To study a structure (for instance, hyperbolic structure, complex projective structure,
measured lamination, or linear representation of the surface group) and its moduli
space on a surface, one should consider the restrictions of the structure to the level-1
subsurfaces and reconstruct the structure from its restrictions. The level-2 surfaces
should serve as “relators” in the reconstruction process. For example, one may ask if
the reconstruction principle holds for the characters of representations of the surface
groups into the general linear group GL(n,C). Namely, suppose f is a complex valued
function defined on the fundamental group of the surface so that the restriction of f
to the fundamental group of each essential level-1 subsurface is a GL(n,C)-character.
Is f the character of some GL(n,C) representation of the surface group? In [27], we
show that the answer is affirmative for SL(2,C) representations of surface groups. It
is interesting to note that this principle of reconstruction was taken as one of the basic
axioms by physicists in conformal field theory ([30]).

The main theorems in [25], [26] state that the Teichmüller space and Thurston’s
measured lamination space for surfaces obey the reconstruction principle. Also using
the work of Gervais [7], we see that the mapping class group of a surface fits the
principle as well [24]. These will be the main topics of this chapter. We shall also
discuss some open questions arising from reading [10].

We remark that as far as we know, there is no precise definition of the Teichmüller
tower in [10]. See also the books [22], [37]. What follows is my interpretation of
Grothendieck’s reconstruction principle and there should be other ways of interpreting
it (for instance in algebraic geometry).

One way to illustrate Grothendieck’s reconstruction principle is to consider convex
planar n-sided polygons. According to the principle, to construct a convex n-sided
(n ≥ 5) polygon, one should consider all convex quadrilaterals inside the polygon
(each vertex of the quadrilateral is a vertex of the polygon). The convex polygon is a
union of these quadrilaterals by gluing along their overlaps. Now these quadrilaterals
overlap in two different ways. An essential overlap of two quadrilaterals contains
an edge or diagonal. Otherwise, they overlap inessentially (see Figure 2). The re-

and a hexagon is a union of 15 quadrilateral
A pentagon is a union of 5 quadrilaterals An essential overlap An inessential overlap

Figure 2



736 Feng Luo

construction principle states that it suffices to glue quadrilaterals along the essential
overlaps. The gluing along the inessential overlaps is a consequence of the gluing
along essential overlaps (see §2 for more details). As a consequence, to study the
geometry of the moduli space of convex polygons, it suffices to understand that of
quadrilaterals.

The situation for surfaces is analogous to that of polygons where the 3-holed sphere
corresponds to a triangle and the 1-holed torus and the 4-holed sphere correspond to
quadrilaterals. (One should think of the polygons forming a hierarchy under inclusion.
And the level of a polygon is the number of disjoint diagonals needed to decompose
a polygon into triangles.) Thus according to the reconstruction principle, to construct
a hyperbolic metric on a surface of negative Euler number, one should consider all
(isotopy classes of) subsurfaces which are homeomorphic to the 1-holed torus or the
4-holed sphere. These subsurfaces overlap in two different patterns: an overlap is
essential if there is a homotopically non-trivial loop in the overlap, otherwise it is
inessential (see Figure 3). The reconstruction principle says that we can glue along
essential overlaps to recover the original hyperbolic structure. To be more precise,
assign to each level-1 subsurface a hyperbolic structure so that when two level-1
subsurfaces overlap essentially, they overlap geometrically (i.e., the geodesic lengths
of all overlapping simple loops are the same in both level-1 surfaces). Then the
reconstruction principle states that there exists a hyperbolic metric on the surface
whose restrictions to level-1 subsurfaces are (isotopic to) the assigned hyperbolic
structures. This is the main result established in [25].

Essential overlaps An inessential overlap

Figure 3

The organization of this chapter is as follows. In §2, we study the moduli space of
convex polygons in details and use it to illustrate Grothendieck’s principle. We also
discuss ideal triangulations of surfaces. In §3, we recall basic facts about Teichmül-
ler spaces, the mapping class groups, and Thurston’s projective measured lamination
spaces. It is well known that these three themes represent the geometric, algebraic,
and topological aspects of surface theory. In the case of the torus, these three themes
correspond to the upper-half space H, the group SL(2,Z), and the projective line
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RP 1 = R ∪ {∞} which appears as the boundary of H. The natural action of the
mapping class group corresponds to the actions of SL(2,Z) on H and on R∪ {∞} by
Möbius transformations. We shall also recall related topics for level-1 surfaces. In
§4, we state the reconstruction theorems for Teichmüller spaces, measured lamination
spaces and mapping class groups. In §5, we discuss the key ingredient in the proofs
of the reconstruction theorem, namely simple loops on surfaces. We also recall the
notion of SL(2,Z) modular structure on a set. The role of modular structures, equiv-
alently, of (QP 1, SL(2,Z)) structures, is prominent in the reconstruction program
as predicted by Grothendieck (see page 248–249 in [10] or §4.8). Topologists have
known the role of modular configuration for simple loops on level-1 surfaces since
the fundamental work of Max Dehn [4] in 1938. Dehn actually used such a structure
to give an elegant derivation of the mapping class group of the 4-holed sphere (see
§5.1). The special feature of a modular configuration is the huge symmetry built in
the configuration. This is, in our view, one reason why the set of homotopy classes of
simple loops on the surface is more useful than the fundamental group in establishing
the reconstruction principle for many structures (see §4.7, §7.1 and Figure 9). In
§6 we give a fairly general reason which indicates the special role played by level-2
surfaces in the reconstruction principle. In the last section, we discuss the characters
of SL(2,C) representations.

Acknowledgement. I would like to thank X. S. Lin for inviting me to write the paper
for publication in 1998 and Athanase Papadopoulos for inviting me to contribute it
as a chapter to the Handbook. Discussions with F. Bonahon, L. Keen, X.-S. Lin and
C. Series have been very helpful for me in developing ideas in the chapter. I thank the
referee, P. Landweber and A. Papadopoulos for careful reading of the manuscript and
for suggestions on improving the exposition of the chapter. This work was partially
supported by the NSF. The chapter is an updated version of an article that originally
appeared in the Communications in Contemporary Mathematics, Vol. 1, No. 2, (1999),
125–153, and is printed with permission from the World Scientific Publishing Com-
pany.

2 A simple example of convex polygons

We shall illustrate the reconstruction principle and its applications by considering the
configuration space of convex n-sided polygons. Let us begin with the following
problem.

Problem 1. Describe the space T (n) of all convex n-sided polygons up to isometries.
Here polygons have marked vertices and isometries preserve markings.

To be more precise, let us distinguish the topological (or combinatorial) and geo-
metric aspects of the problem. By an n-sided polygon we mean a topological disk with
n marked points (the vertices) on its boundary. A convex structure on a polygon is a
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metric on the polygon which is isometric to a convex n-sided planar polygon so that
the marked points correspond to the vertices. An edge in a convex polygon is a line
segment joining two vertices, and a diagonal is an edge which does not joint adjacent
vertices. Given an n-sided polygon P , the space of all convex structures on P modulo
isometries preserving the vertices is denoted by T (P ) which is essentially T (n).

Having introduced these notations, we may rephrase the problem as follows.

Problem 2. Assign to each edge in a convex n-sided polygon a positive number. When
does the assignment correspond to the edge lengths of an n-sided convex polygon?

The solution for triangles n = 3 is well known. The assignment must satisfy the
triangular inequalities, namely, that the sum of two is larger than the third. For gen-
eral n, the assignment must satisfy triangular inequalities over three edges forming a
triangle and equations over six edges forming a quadrilateral. Grothendieck’s recon-
struction principle asserts that these are the set of all constrains, i.e., the quadrilaterals
(= level-1 polygons) are the “generators” in building convex polygons.

2.1 Hierarchies of polygons and surfaces

It is instructive to compare the hierarchies of polygons and surfaces. One first observes
that the isometry class of a convex polygon is determined by the lengths of all edges.
The corresponding fact in hyperbolic geometry is a result of Fricke–Klein [5], that the
isometry class of a hyperbolic metric on a surface is determined by the lengths of
simple geodesic loops. The solution for T (3) is given by T (3) = {(a1, a2, a3) ∈
R

3 | ai + aj > ak} reflecting the fact that a triangle is determined up to isometry by
its three edge lengths subject to the triangular inequalities. The corresponding fact in
hyperbolic geometry is the well-known theorem of Fricke–Klein [5], that a hyperbolic
metric on a 3-holed sphere is determined up to isometry by the three lengths of the
boundary geodesics, and these lengths subject no constraints. For n ≥ 4, an old
way of solving the problem for T (n) is to triangulate the n-sided polygon by (n− 3)
edges, i.e., one uses the triangle as the basic building block. This corresponds to
the Fenchel–Nielsen decomposition of surfaces into 3-holed spheres (using the 3-
holed sphere as the basic building block). In this way, one parametrizes the convex
polygon by the lengths of the edges in the triangulation. These lengths have to satisfy
complicated inequalities due to the convexity. Unlike the Fenchel–Nielsen coordinates
for Teichmüller space which can be used to express the Weil–Petersson symplectic
form by Wolpert’s formula [43], the length coordinates for convex polygons seem to
be less useful in extracting geometric information about T (n) except that they can be
used to show that T (n) is a real analytic manifold diffeomorphic to R

2n−3.
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2.2 Reconstruction principle for polygons

Now Grothendieck’s reconstruction principle asserts that quadrilaterals are the basic
building blocks. Thus given an n-sided polygon P , one considers all quadrilaterals
whose edges are edges in P . If the polygon has a convex structure, each quadrilateral
in P becomes a convex quadrilateral. These convex quadrilaterals satisfy the obvious
consistency condition:

(∗) If two quadrilaterals overlap essentially (i.e., there is an edge in the overlap), then
the convex quadrilaterals overlap geometrically, i.e., the corresponding lengths
of edges in both convex quadrilaterals are the same.

It turns out that the condition (∗) is also sufficient to recover the convex polygon
for obvious reason.

Reconstruction principle for polygons. To construct a convex n-sided polygon with
n ≥ 5, it suffices to assign to each quadrilateral in the polygon a convex structure so
that the assignment satisfies the consistency condition (∗).

2.3 A solution to Problem 2

In terms of the reconstruction principle, the solution to Problem 2 is simply that the
assignment must be realized by a convex quadrilateral for each choice of six edges
forming a quadrilateral.

This principle essentially reduces the study of T (n) to that of T (4). To understand
T (4), one uses the lengths of the six edges of a quadrilateral. First of all, the lengths
satisfy the triangular inequalities, that is, that the sum of two lengths is larger than the
third one over each of the four triangles in the quadrilateral. By a simple calculation,
one shows that these six lengths satisfy the following constraint:

xxx
yy

y z
z

(1)
∑
(x2y + xy2)+∑

xyz =∑
xyz

Figure 4
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where the sums are over all specified subgraphs (of the complete graph on 4 vertices)
whose edges are labelled by the squares of their lengths. The convexity condition is
equivalent to the following Largest Root Condition. Fix five lengths and think of (1)
as a quadratic equation in the square of the length of the remaining diagonal. It has
two real roots and the convexity condition says that the largest root is the square of the
length. As a consequence of (1), the Largest Root Condition, the triangular inequali-
ties, and the reconstruction principle, one obtains a complete solution to Problem 2.

2.4 Observable invariants

Given a convex polygon P , the observable invariants of P seem to be the area of the
polygon, the lengths of edges and the angles of intersections of edges. These define
the “observable” area, length and angle functions on the configuration space T (P ).
To be more precise, fixing an isotopy class of an edge e in P (resp. a pair of isotopy
classes of intersecting edges), one defines a length function (resp. angle function)
from T (P ) to R by sending a convex structure to the length (resp. angle) of e in the
convex structure. These naturally defined functions seem to play an important role in
the geometry of the configuration space T (P ). And indeed they do. Here is one way
to see it using Thurston’s invariant of oriented triangles.

u

v

wz

zz

z

A B

C

0 1

1/(1− z)

1/(1− z)1/(1− z)

(z− 1)/z

(z− 1)/z(z− 1)/z

1/(1− w)

(w − 1)/w

Change of coordinates

u = (w − 1)/w · 1/(1− z)
v = (z− 1)/z · 1/(1− w)

Figure 5. Right-hand orientation in the plane.
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Suppose�ABC is an oriented triangle in the plane so that the cyclic order (A,B,C)
is the orientation. Then the Thurston invariant zA of the triangle at edgeBC is defined
to be the complex number C−A

B−A . The edge invariants zB = A−B
C−B and zC = B−C

A−C for
AC and AB are given by zB = 1/(1 − zA) and zC = 1/(1 − zB) = (zA − 1)/zA
respectively. In particular zAzBzC = −1. Evidently if two oriented triangles differ by
a similarity transformation (f (w) = aw + b, a, b ∈ C, a �= 0), then their Thurston
invariants are the same. For an oriented convex quadrilateral with a marked diagonal,
one defines the Thurston invariant to be the pair (z, w) ∈ C × C where each coor-
dinate is the invariant of a triangle at the marked diagonal. For instance, in terms
of Thurston’s invariants, parallelograms are exactly those convex quadrilaterals with
Thurston invariant (z, z). A simple calculation shows that if the marked diagonal is
changed, then the invariant becomes (u, v) where u = w−1

w(1−z) and v = z−1
(1−w)z as

shown in Figure 5.
Furthermore, the convexity condition is equivalent to either all z, w, u, v are in H

or all z, w, u, v are in the lower-half plane {t ∈ C | t ∈ H}. As a consequence of
the transformation formulas, one sees that the space of similarity classes of convex
quadrilaterals has a natural complex structure. Combining these with the reconstruc-
tion principle, one obtains the fact that the projectivized space T (n)/R+ of similarity
classes of convex polygons has a natural complex structure so that angle functions and
the logarithm of the ratio of the length functions are pluriharmonic. Furthermore, the
space T (n)/R+ can be explicitly described. This result itself is not surprising since
another way of parametrizing T (n)/R+ is by taking vertices as coordinates. But the
fact that the complex structure is built on that of T (4)/R+ seems to be interesting.
Evidently these “observable” length and angle functions also exist on Teichmüller
spaces. It is natural to ask if these functions are somehow related to the complex
structure of Teichmüller space.

2.5 Spherical and hyperbolic polygons

The reconstruction principle also holds for hyperbolic or spherical convex polygons.
Thus the same picture holds in these cases as well. The most interesting case seems
to be one of the ideal polygons in hyperbolic plane where one assigns to each oriented
ideal quadrilateral with a marked diagonal the Bonahon–Thurston shearing coordinate
([2], [39] and [40]). Recall that the shearing coordinate is defined as follows. The
mid-point of an edge in an ideal triangle is the point of tangency between the inscribed
circle and the edge. Given an oriented ideal quadrilateral with a marked diagonal,
the Bonahon–Thurston coordinate for the marked quadrilateral is the exponential of
the signed hyperbolic distance from the left mid-point to the right mid-point of the
diagonal. Note that the coordinate is independent of the choice of the orientation on
the diagonal. If one changes the diagonal, the coordinate changes to its inverse. The
change of coordinate formula for other four edges is given in Figure 6.

Note that the transformation formulas are real algebraic. Since each non-closed
surface has an ideal triangulation, this gives an easy way to parametrize the Teichmüller
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Switch the diagonal

changes the coordinates

 

z1

z2

z3

z4

z

w1

w2

w3

w4

w

w = 1/z
w1 = z1(1+ z)
w2 = z2z/(1+ z)
w3 = z3(1+ z)
w4 = z4z/(1+ z)

Figure 6. Right-hand orientation in the plane.

space of the surface using Bonahon–Thurston coordinates. As a consequence, one
proves easily that Teichmüller space is a real analytic manifold diffeomorphic to a
Euclidean space. (This seems to be one of the quickest ways of showing that the
Teichmüller space of a non-closed surface is contractible. The other proof using the
Fenchel–Nielsen coordinate seems to be always running into the technical difficulties
of showing that the Fenchel–Nielsen coordinates associated to different 3-holed sphere
decompositions differ by a diffeomorphisms.) These shearing coordinates are closely
related to Penner’s coordinates for decorated Teichmüller spaces (see [34]). See also
[31] for related material on measured laminations.

3 Teichmüller space, the mapping class group, and the space of
measured laminations

Given a compact orientable surface� with or without boundary, there are three themes
naturally associated to the surface. Namely, the Teichmüller space T (�), the mapping
class group�(�), and the spaceS(�) of isotopy classes of unoriented simple loops not
homotopic to a point (or its completion, Thurston’s space of measured laminations).
These three themes represent the geometric, algebraic, and topological aspects of
surface theory. Recall that the mapping class group �(�) = Homeo+(�, ∂�)/Iso is
the group of orientation preserving self-homeomorphisms modulo isotopies so that the
boundary of the surface is fixed pointwise by the homeomorphisms and the isotopies.
For a surface of negative Euler number, the Teichmüller space T (�) is the space
of all hyperbolic metrics with geodesic boundary on the surface modulo isometries
isotopic to the identity. These three themes interact with each other in the sense that
the mapping class group acts naturally on both T (�) and S(�) by pull back, and the
space S(�) appears in Thurston’s compactification of the Teichmüller space T (�).
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3.1 The example of the torus

One may illustrate these three themes and their interaction by the classical example
of the oriented torus �1,0 where the Teichmüller space T (�1,0) is defined to be the
space of all flat metrics modulo similarity maps isotopic to the identity. In his doctoral
thesis in 1913, J. Nielsen proved that two homologous homeomorphisms (resp. simple
loops) of the torus are isotopic. Thus the space of simple loops S(�1,0) can be
identified naturally with the set of primitive elements inH1(�1,0,Z)modulo±1, and
the mapping class group �(�1,0) is naturally isomorphic to the automorphism group
Aut+(H1(�1,0,Z)). Define a marking on �1,0 to be a pair of oriented simple loops
(a, b) intersecting transversely at one point. Fix a marking (a, b) on �1,0. Their
homology classes [a], [b] form a basis for the first homology group H1(�1,0,Z).
In terms of the basis, one can identify S(�1,0) with QP 1 = Q ∪ {∞} by sending
each primitive class ±(p[a] + q[b]) to its “slope” p/q. One can also identify the
automorphism group Aut+(H1(�1,0,Z)) with SL(2,Z). The natural action of the
mapping class group �(�1,0) on S(�1,0) becomes the standard action of SL(2,Z) on
the rationals by fractional linear transformations. The marking (a, b) can also be used
to parametrize the Teichmüller space T (�1,0) as follows. Fix a flat metric d on �1,0.
We isotope a and b into two d-geodesics â and b̂ which intersect at one point p. Let
θ be the angle measured from â to b̂ at p in the orientation of the surface and let la
and lb be the lengths of the geodesics â and b̂. Assign to the flat metric d the complex

number zd = lae
iθ

lb
in the upper-half plane H. Evidently the invariant zd depends

only on the similarity class of the flat metric d. Thus one obtains a maps πm from
the Teichmüller space T (�1,0) to H. This map is a bijection since the inverse can be
constructed by sending z ∈ H to the torus C/(Z + zZ) with marking corresponding
to 1 and z. Note that the invariant zd is independent of the orientations on a and b.
Furthermore, the pair (zd, zd) is the Thurston invariant of the parallelogram obtained
by cutting the flat torus (�1,0, d) open along the geodesics â, b̂. Now if we are
given a different marking m′ = (a′, b′), there is an SL(2,Z) matrix A which sends
[a] to [a′] and [b] to ±[b′]. A simple calculation shows that two invariants πm and
πm′ are related by A acting as a fractional linear transformation on H. Thus the
Teichmüller space T (�1,0) can be naturally identified with H so that the action of
the mapping class group becomes the standard action of SL(2,Z) on H by fractional
linear transformations. In short, the three themes T (�1,0), �(�1,0), and S(�1,0) for
the torus are exactly (H, SL(2,Z),QP 1). It is interesting to note that the complex
structure on the Teichmüller space makes both the angle function and the logarithm
of ratio of length functions pluriharmonic. Indeed, by fixing a markingm = (a, b) on
the torus�1,0, one obtains a fundamental domain map fm : T (�1,0)→ T (4)/R+ by
sending the similarity class [d] to the parallelogram based on â and b̂ which forms a
fundamental domain for the flat metric. The complex structure on T (�1,0)makes the
map fm holomorphic, i.e., holomorphic motions in the Teichmüller space correspond
to the homomorphic motions of the fundamental domains. The same phenomenon
does not seem to hold for the complex structure on the Teichmüller space of a closed
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surface of higher genus with hyperbolic metrics ([19], [44]). (A natural choice of
fundamental domains for closed surfaces of higher genus seems to be those associated
to chains in the surface. See Maskit [29] for more information.) However, there is
evidence indicating that the complex structure of Teichmüller space is more closely
related to the singular flat metrics on the surface. To be more precise, given a closed
Riemann surface � of genus g and a fixed point on the surface, there exists a unique
singular flat metric of area 1 in the conformal class of� so that its singularity is at the
fixed point having cone angle 2π(2g − 1).

3.2 Thurston’s compactification

There is a natural compactification of the upper-half plane H by the extended real
line RP 1 = R ∪ {∞} where the action of SL(2,Z) extends continuously. This
produces a compactification of the Teichmüller space of the torus. Thurston’s deep
work on surface theory shows that the same compactification also exists for all surfaces.
We shall discuss briefly Thurston’s work in this section. See [6] and [41] for more
details. To begin with, a proper 1-dimensional submanifold s in a compact surface
� is called a curve system if no component of s is homotopic into ∂� relative to
∂�. The set of isotopy classes of all curve systems on � is denoted by CS(�) and
was introduced by Dehn who called it the Arithmetic field of the surface. In the case
of a torus, the set CS(�) is naturally identified with the set of all non-zero lattice
points in H1(�1,0,Z) modulo ±1. There exists a quadratic pairing on CS(�) given
by the geometric intersection number I (α, β) = min{|a ∩ b| | a ∈ α, b ∈ β}.
For the torus, the pairing is I ((p, q), (p′, q ′)) = |pq ′ − p′q| which is the absolute
value of the canonical symplectic form on Z

2. This pairing satisfies the homogeneity
and non-degenerate property in the sense that I (k1α1, k2α2) = k1k2I (α1, α2) (ki ∈
Z+ and kiαi means ki copies of the curve system αi), and for each α there exists
β so that I (α, β) �= 0. Thurston’s space of measured laminations ML(�) is the
completion of CS(�) with respect to the pairing I . In linear algebra, given a non-
degenerate quadratic form ω on a lattice L of rank r , one can form a completion of
(L, ω) by canonically embedding L into Rr so that the form w extends continuously
on Rr . If the form is definite, the simplest way to construct the completion is by
formally extending ω to QL and taking the metric completion of QL. If the form
ω is not definite, one may embed L into the infinite dimensional space R

L (with the
product topology) by sending x ∈ L to the linear function π(x) = ω( · , x). The
canonical completion is given by taking the closure of the set Qπ(L). Since the
form ω is non-degenerate, the Riesz representation theorem says that the closure is
isomorphic to a vector space R

r and the form ω extends continuously to the closure.
Thurston’s completion of (CS(�), I ) is an analogous construction. The space CS(�)
is embedded into R

S(�) by sending α to the intersection function Th(α) = I ( · , α) and
the closure of Q+Th(CS(�)) is defined to be the completion, the space of measured
laminations ML(�). Thurston proved a remarkable theorem that the space ML(�) is
homeomorphic to a Euclidean space and the quadratic pairing extends continuously to
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ML(�) ([3], [6], [35], [39]). Since Thurston’s completion is canonically constructed,
the mapping class group �(�) acts continuously on ML(�). In the case of the torus,
ML(�) is canonically H1(�1,0,R)/ ± 1 and the action of the mapping class group
SL(2,Z) is the standard action. The projectivized space PML = (ML(�)− 0)/R>0
is Thurston’s compactification of Teichmüller space.

4 Restriction maps and the reconstruction theorems

4.1 Restriction maps

A compact subsurface �′ in � is called essential if no component of ∂�′ is null
homotopic in �. If �′ is essential with negative Euler number, there exists a natural
restriction map from the Teichmüller space T (�) to T (�′) (resp. from ML(�) to
ML(�′)). The restriction map is defined as follows. Given a hyperbolic metric d on
�, we isotope the open surface int(�′) (the interior of�′) to an open subsurface�′′ so
that�′′ is bounded by disjoint simple geodesics. The metric completion of (�′′, d|�′′)
is a hyperbolic metric d ′ on�′ with geodesic boundary. The restriction map sends [d]
to [d ′]. The restriction map for measured laminations is defined similarly (see [26]).
The key step is to define the restriction map from the space of curve systems CS(�)
to CS(�′). Given α ∈ CS(�), choose a representative a ∈ α so that the number of
components of a ∩ �′ is minimal. Then the restriction map sends [a] to [a|�′ ]. The
restriction maps are natural in the sense that if we are given two essential subsurfaces
�1 ⊂ �2 ⊂ �, then the composition of restrictions is the restriction.

To state the reconstruction theorems, we say that two essential subsurfaces�1 and
�2 overlap essentially if there is a non-trivial simple loop which is isotopic into both
�1 and�2. If furthermore both�1 and�2 are level-1 subsurfaces, then their possible
intersection surfaces are either essential annuli, or an essential 3-holed sphere or they
are isotopic.

4.2 Reconstruction theorems

With this preparation, we can state the main theorems in [25], [26], and [24] as follows.
These can be considered as establishing Grothendieck’s reconstruction principle for
Teichmüller spaces, measured lamination spaces and mapping class groups.

Theorem 4.1 (Reconstruction of Teichmüller spaces and measured lamination spaces).
Each hyperbolic metric (resp. measured lamination) on a surface of level at least 2 is
constructed uniquely up to isotopy by assigning a hyperbolic metric (resp. measured
lamination) to each essential level-1 subsurface so that when two level-1 subsurfaces
overlap essentially, the restrictions of the metrics (resp. measured laminations) to their
intersection are isotopic. Furthermore, the restriction of the hyperbolic metric (resp.
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measured lamination) on the surface to each level-1 essential subsurface is isotopic
to the assigned one.

For the mapping class group, it was a theorem of Dehn and Lickorish that the
mapping class group �(�) is finitely generated by Dehn twists along simple loops.
The main result in [24], based on the work of [7], states that

Theorem 4.2 (Reconstruction of the mapping class group). Each orientation preserv-
ing self-homeomorphism of a surface which fixes the boundary pointwise is isotopic to
a composition of finitely many Dehn twists so that the composition is unique modulo
cancellation laws supported in subsurfaces of level 1.

Earlier work on the subject was done by Hatcher and Thurston [16] who showed
among other things that the subsurfaces can be taken to be genus 2 with 3 holes and
Gervais [7] who proved that subsurface can be taken to be genus 1 with 2 holes.
Theorem 4.2 is just a simplification of the work of Gervais.

4.3 Thurston’s embedding

Before discussing the related theorems for surfaces of levels 0 or 1, let us recall
Thurston’s embeddings of Teichmüller space T (�) and the measured lamination
space ML(�). Given an isotopy class [d] ∈ T (�), the geodesic length function
ld : S(�)→ R≥0 sends an isotopy class of simple loop to the length of its geodesic rep-
resentative. For a measured laminationm ∈ ML(�), the geometric intersection num-
ber function, or simply intersection function Im : S(�)→ R≥0 is given by Im(α) =
I (α,m). Thurston’s embedding Th : T (�) → R

S(�)
≥0 (resp. Th : ML(�) → R

S(�)
≥0 )

sends the isotopy class of a metric to its geodesic length function, i.e., Th([d]) = ld
(resp. sends a measured lamination to its intersection function). The fact that the map
Th is injective for Teichmüller space was a result of Fricke and Klein. The works of
Okumura [32], [33] and Schmutz [36] determine the smallest finite set F ⊂ S(�) so
that the restriction ld |F determines the metric d. See also Hamenstädt [11] who sim-
plified Schmutz’s proof. A result of Thurston shows that 9g − 9 simple loops suffice
to determine the intersection function for closed surfaces of genus g ([39], [6]). But
the number 9g− 9 is not the smallest. Hamenstädt in [11] showed that 6g− 5 simple
loops suffice. It is unknown whether 6g − 6 suffice.

4.4 Level-0 surfaces

For the level-0 surface, i.e., the 3-holed sphere, the space of simple loops S(�0,3)

consists of isotopy classes of the three boundary components. The Teichmüller space
T (�0,3), the measured lamination space ML(�0,3) and the mapping class group
�(�0,3) can be described as follows. By a theorem of Fricke and Klein mentioned
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before, each isotopy class of a hyperbolic metric on�0,3 is determined by the lengths
of three boundary components and these lengths are subject to no constraints, i.e.,

Th(T (�0,3)) = R
S(�0,3)

>0 . For an exposition of the work of Fricke and Klein, we
refer the reader to Chapter 15 of this Handbook written by W. Goldman, [9]. The
work of Thurston shows that each measured lamination is determined by its inter-
section number with three boundary components and these three numbers subject to

no constraints, i.e., Th(ML(�0,3)) = R
S(�0,3)

≥0 . Dehn proved in 1938 that �(�0,3) is
isomorphic to the free abelian group on three generators which are the Dehn twists on
three boundary components.

With these results on the 3-holed sphere, one can restate Theorem 4.1 in an equiv-
alent form as follows. Given a surface � of level at least 2, a real valued function
on the set of simple loops S(�) is a geodesic length function (resp. an intersection
function) if and only if for each essential surface �′ of level 1, the restriction of the
function to S(�′) is.

4.5 Level-1 subsurfaces

For level-1 surfaces �, i.e., the 1-holed torus �1,1 and 4-holed sphere �0,4, the set of
simple loops S(�), the Teichmüller space T (�) and the mapping class group �(�)
are essentially the same as those of the torus. To be more precise, let us consider the
subset S′(�) ⊂ S(�) of isotopy classes of simple loops which are not homotopic
into the boundary ∂�, i.e., S′(�) = S(�) ∩ CS(�). There exists a natural bijection
i∗ between S′(�1,1) and S(�1,0) induced by the inclusion map from �1,1 to �1,0.
This isomorphism preserves the intersection pairing. For the 4-holed sphere �0,4,
there exists a natural isomorphism P ∗ between S′(�0,4) and S′(�1,1) which satisfies
I (α, β) = 2I (P ∗(α), P ∗(β)). It is defined as follows. Let τ be a hyperelliptic
involution on the 1-holed torus �1,1 and let P : �1,1 → �1,1/τ be the quotient map
where �1,1,/τ is the disc with three cone points of order two (an orbifold). It is well
known that the hyperelliptic involution τ preserves the isotopy class of each simple
loop and τ commutes with each homeomorphism up to isotopy. Let the 4-holed
sphere �0,4 be the subsurface of �1,1/τ with three small disc neighborhoods of the
cone points removed. Then the isomorphism P ∗ from S′(�0,4) to S′(�1,1) sends
the isotopy class [a] to [b] where b is a component of P−1(a). To summarize, for a
level-1 surface �, there exists a bijection π from S′(�) to QP 1 so that π(α) = p/q
and π(β) = p′/q ′ satisfy pq ′ − p′q = ±1 if and only if I (α, β) = 1 for �1,1
and 2 for�0,4. Draw a hyperbolic geodesic in the upper-half plane ending at p/q and
p′/q ′ when pq ′ −p′q = ±1. One obtains the so called “modular configuration” (see
Figure 7). Call three elements in S′(�) forming an triangle if they correspond to the
vertices of an ideal triangle in the modular configuration and call four elements inS′(�)
forming a quadrilateral if they correspond to the vertices of an ideal quadrilateral. The
modular structure on the space of simple loops S′(�) for level-1 surfaces was known
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to Fricke and Klein ([19]) and to Dehn ([4]) who used the rational numbers to code
the set S′(�). See also [16], [38], [41] and others.
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Figure 7

A special feature of the modular configuration is the huge symmetry built in the
configuration. This is, in our view, one reason why the set of homotopy class of
simple loops on the surface is more useful than the fundamental group in establish-
ing the reconstruction principle for many structures. Suppose we take four vertices
(α, β, γ ; γ ′) forming a quadrilateral in S′(�) so that both (α, β, γ ) and (α, β, γ ′)
are triangles. Then there is an orientation reversing involution of QP 1 leaving the
quadrilateral invariant and interchanging γ and γ ′. This involution is realized by an
orientation reversing involution of the surface � which is the reflection of Figure 8
(where γ = αβ) about the yz-plane. On the other hand, given any triangle (α, β, γ )

Resolution from  to
x

y

 z

α

α

α β

β

β
αβ

αβ

a

b

p

ab

Figure 8. Right-hand orientation on the front faces

in the modular configuration S′(�), there is a Z3 action on QP 1 which permutes the
three vertices. Thus there is a Z3 action on the surface� permuting the isotopy classes.
This symmetry is illustrated in Figure 9 below where the 1-holed torus is the Seifert



Chapter 17. Grothendieck’s reconstruction principle 749

α

α

β
β

γ

γ

Figure 9. The three-fold symmetry in the modular configuration viewed in three-space.

surface of the trefoil knot and the 4-holed sphere is the truncated boundary surface
of a cube. The symmetry involved in the 4-holed sphere is huge which is difficult to
visualize in Figure 8. Indeed, as one can see from Figure 9, any permutation of the four
boundary components is realized by a homeomorphism preserving the set {α, β, γ },
i.e., the permutation group on four letters acts on �0,4 preserving the set {α, β, γ }.

As an application of this 24-fold symmetry, we consider the trace relations for
SL(2,C) matrices. In this case, the analogous question to Problem 2 for triangles
and quadrilaterals is the following. Given three complex numbers a, b, c, do there
exist two matrices A,B ∈ SL(2,C) so that tr(A) = a, tr(B) = b and tr(AB) = c?
It is well known that the answer is positive. Next, in analogy to six edge lengths
of a quadrilateral, given seven complex numbers a1, a2, a3, a12, a23, a31 and a123,
under what condition do there exist three SL(2,C) matrices A1, A2, and A3 so that
tr(Ai) = ai , tr(AiAj ) = aij and tr(A1A2A3) = a123? A solution by Fricke–Klein
[5] and Vogt [42] was the following. These three matrices exist if and only if a2

123 −
a123(a1a23+a2a31+a3a12−a1a2a3)+a2

1+a2
2+a2

3+a2
12+a2

23+a2
31+a12a23a31−

a1a2a12−a2a3a23−a3a1a31−4 = 0. This equation, as it stands, is quite complicated.
One can easily notice the 3-fold symmetry of the equation under cyclic permutation
of {a1, a2, a3}. In fact, there exists a 24-fold symmetry in the equation. Namely,
the equation is invariant under any permutation of {a1, a2, a3, a123}. This can be
seen using the modular configuration. Indeed, if we choose the generators of the
fundamental group of the 4-holed sphere carefully (see for instance, Figure 5 in [25]),
then the four boundary components are represented by x1, x2, x3, x1x2x3 and three
simple loops forming a triangle in the modular configuration by x1x2, x2x3 and x3x1.
The first equation in Theorem A.4 (b) in Appendix A is a rewriting of the above
polynomial equation in terms of the modular configuration.
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4.6 Constraints on level-1 surfaces

Teichmüller space, measured lamination space and the mapping class groups for level-
1 surfaces can be explicitly constructed from the modular configuration on the set
of simple loops. To be more precise, the geodesic length functions, the geometric
intersection number functions and the Dehn twists satisfy universal relations at the
vertices of triangles and quadrilaterals in QP 1. Furthermore, these universal relations
form a complete set of relations. See Appendix A for the list of universal relations.

The relations for the Dehn twists were found by Dehn in [4]. D. Johnson [18]
independently rediscovered the lantern relation (relation (IV) in Theorem A.3 in Ap-
pendix A) in 1979. Dehn also proved that these relations are complete for the mapping
class group of level-1 surfaces. The relations for the geodesic length function were
essentially discovered by Fricke and Klein [5] and Vogt [42] (thought they were not
stated in terms of modular relations). These are derived from the trace identities for
SL(2,C) matrices. That the set of all relations is complete was proved by Keen [20]
for the 1-holed torus and was proved in [25] for 4-holed spheres using Maskit combi-
nation theorem. The relations for measured laminations are just degenerations of the
relations for hyperbolic metrics and they are shown to be complete in [26].

4.7 Relationship between the 1-holed torus and the 4-holed sphere

The relationship between Teichmüller spaces and the mapping class groups among
level-1 surfaces becomes clearer if one considers the Teichmüller spaces T1,1 and T0,4
of complete hyperbolic metrics with cups ends (on the open surface), and the reduced
mapping class group �∗(�) which is the quotient of the mapping class group by the
subgroup generated by Dehn twists on boundary components. The key fact is that the
hyperelliptic involution τ on �1,1 induces the identity map on both the Teichmüller
space T1,1 and S(�1,1) and is in the center of the mapping class group. Indeed, one
has a natural biholomorphism between T1,1 and T0,4 induced by the pull back map
P : �1,1 → �1,1/τ . A natural isomorphism from �∗(�1,1) to �(�1,0) = SL(2,Z) is
induced by inclusion of �1,1 to �1,0. Since the hyperelliptic involution τ commutes
with each homeomorphism, there is a monomorphism from the reduced mapping
class group �∗(�0,4) to �∗(�1,1)/〈τ 〉 = PSL(2,Z) whose image is the principal
congruence subgroup of order 2.

4.8 Grothendieck’s view

It is instructive to read [10] on related topics. We cite the paragraph on page 248ff.
in [10] (with English translation by L. Schneps). “There is a striking analogy, and I
am certain it is not merely formal, between this principle and the analogous principle
of Demazure for the structure of reductive algebraic groups, if we replace the term
‘level’ or ‘modular dimension’ with ‘semi-simple rank of the reductive group’. The
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link becomes even more striking if we recall that the mapping class group �∗1,1 is no
other than SL(2,Z), i.e., the group of integral points of the simple group scheme of
‘absolute’ rank 1 SL(2)Z. Thus, the fundamental building block for the Teichmüller
tower is essentially the same as for the tower of reductive groups of all ranks – a group
of which, moreover, we may say that it is doubtless in all the essential disciplines of
mathematics.”

5 The space of simple loops on surfaces and the modular
structure

Unlike subsurfaces in a surface, simple loops on surfaces have been the focus of more
attention for a long time. Indeed, most of the surface problems can be reduced to ones
concerning simple loops and the proofs of Theorems 4.1 and 4.2 are no exception.
The topological investigation of the set S(�) of isotopy classes of essential simple
loops began in Dehn’s work [4] on the mapping class groups. As an example of use of
simple loops to solve surface problems, let us recall the elegant proof of Dehn that the
(reduced) mapping class group�∗(�0,4) is the free group on two generators generated
by Dehn twists on two simple loops intersecting at two points. Dehn first observed that
the set S′(�0,4) of essential simple loops not homotopic into the boundary forms the
modular configuration QP 1 and the mapping class group �∗(�0,4) acts on the mod-
ular configuration faithfully preserving both the modular relation and the orientation.
Thus �∗(�0,4) is a subgroup of the modular group PSL(2,Z). Since each boundary
component of�0,4 is fixed by the mapping class group elements, �∗(�0,4) is actually
in the principal congruence subgroup of level 2 generated by the two matrices

(
1 2
0 1

)
and

(
1 0−2 1

)
. But these two matrices correspond to two Dehn twists mentioned above.

To go from simple loops to subsurfaces, one takes the regular neighborhood of a
union of simple loops. In this way, it can be shown for instance that given any two
level-1 essential subsurfacesA,B, there is a sequence of level-1 essential subsurfaces
starting from A and ending at B so that any two adjacent level-1 subsurfaces overlap
in an essential level-0 subsurface.

5.1 The works of Dehn and Lickorish

The works of Dehn [4] and Lickorish [21] already suggested strongly that level-1
subsurfaces are fundamental in simplifying the intersections of two simple loops.
Indeed, Lemma 2 in [21] states that if two simple loops a, b satisfy either |a ∩ b| ≥ 3
or |a ∩ b| = 2 with non-zero algebraic intersection number, then there is a Dehn twist
which sends b to a new loop having fewer intersection points with a. Thus the only
situations which cannot be simplified are: 1) a, b are disjoint, 2) a intersects b at one
point and 3) a intersects b at two points of different intersection signs. In these cases,
the lowest-level connected subsurface which contains both a and b is either a level-0
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or a level-1 subsurface. Furthermore, the pair of curves a, b satisfying condition 2)
or 3) corresponds to the basic relation in the modular configuration.

5.2 A modular structure

We mentioned in several places the notion of modular structure. Here is a formal
definition after Thurston’s geometric structures on manifolds.

Definition 5.1. (a) A (QP 1, PSL(2,Z)) modular structure on a set X is a maximal
collection of charts {(Ui, φi) | φi : Ui → QP 1 is injective} so that the following hold.

(1) X =⋃
i Ui .

(2) The transition function φiφ
−1
j is the restriction of an element in PSL(2,Z).

(b) A modular structure on a set X is called compact if the group of bijections of
X which preserve the modular structure acts on X with finite orbits.

It seems that compactness is essential for developing a useful “function theory”
on a set with a modular structure. All interesting examples that we encounter have
compact modular structures.

For an oriented surface� of level at least 1, the set S′(�) of isotopy classes of non-
boundary parallel essential simple loops on� has a natural compact modular structure
invariant under the action of the mapping class group. A special collection of charts
for the modular structure is given by (S′(�′), φ�′) where �′ is an essential level-1
subsurface and φ�′ : S′(�′) → S′(�1,1) = QP 1 is a bijection induced by either
an orientation preserving homeomorphism or by an orientation preserving quotient
map (see §4.6). To see that Condition (2) in the definition holds, one simply notes
that if two essential level-1 subsurfaces intersect at two non-homotopic simple loops,
then they are isotopic. To see the compactness, we note that the mapping class group
acts on S′(�) preserving the modular structure and the action of the mapping class
group has finite orbits. Thus we can talk about triangles and quadrilaterals in S′(�).
Furthermore, since the set of rational numbers QP 1 has a natural orientation invariant
under PSL(2,Z), we can talk about oriented triangles in S′(�).

Another example of a compact modular structure is the set of isotopy classes of 3-
holed sphere decompositions of a surface. This set is related to the Heegaard splittings
of 3-manifolds and Weil–Petersson geometry. See Appendix B for more detail.

5.3 Resolution of intersection

One way to see the modular structure on the space of simple loops S(�) is to use the
notion of resolution of intersection points. Recall that two rational numbers p/q and
p′/q ′ are modular related if pq ′ − p′q = ±1 and are denoted by p/q ⊥ p′/q ′. Two
isotopy classes α and β of curves on surfaces corresponding to a modular related pair
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are denoted by α ⊥ β or α ⊥0 β. Here α ⊥ β means that their intersection number
I (α, β) = 1 and α ⊥0 β means that I (α, β) = 2 so that their algebraic intersection
number is zero. To find out the vertices of ideal triangles based on {α, β}, we use
the resolutions of intersections. Recall that surfaces are oriented and simple loops
are not oriented. If a, b are two arcs intersecting at one point transversely, then the
resolution of a ∪ b at the intersection point from a to b is defined as follows. Fix
any orientation on a and use the orientation on the surface to determine an orientation
on b. Then resolve the intersection according to the orientations (see Figure 8). The
resolution is independent of the orientation chosen on a. If α ⊥ β or α ⊥0 β, take
a ∈ α and b ∈ β so that |a ∩ b| = I (α, β). Then the curve obtained by resolving
all intersection points in a ∩ b from a to b is again an essential non-boundary parallel
simple loop. We denote its isotopy class byαβ. One sees easily that positively oriented
triangles and quadrilaterals in the modular structure on S ′(�) are exactly (α, β, αβ)
and (α, β, αβ, βα). If α ⊥ β or α ⊥0 β, we use ∂(α ∪ β) to denote the isotopy class
of the boundary of a regular neighborhood of a ∪ b. In terms of these notations, all
universal relations for the geodesic length functions, the intersection functions and the
Dehn twists are expressed in terms of α, β, αβ, βα and the components of ∂(α ∪ β).
For instance, the relations for the Dehn twists are: 1) if α ⊥ β, thenDαDβ = DβDαβ
and (DαDβDαβ)4 = D∂(α∪β), and 2) if α ⊥0 β, then DαDβDαβ = D∂(α∪β) (the
lantern relation). Since the modular relation (QP 1,⊥) has a Z3-symmetry leaving an
ideal triangle invariant, we obtain α(βα) = (αβ)α = β.

5.4 A lemma of Lickorish

One of the most useful properties of the modular structure on S′(�) is the following
lemma (Lemma 7 in [25]) which generalizes Lickorish’s Lemma 2 in [21]. It states that
given two intersecting elements α, β ∈ S′(�) which are not related by the modular
relation ⊥ or ⊥0, then we can write β = γ1γ2 with γ1 ⊥ γ2 or γ1 ⊥0 γ2 so that
(1) I (α, γi) < I (α, β) and I (α, γ2γ1) < I (α, β) for i = 1, 2 and (2) if γ1 ⊥0
γ2, then for each component δ of ∂(γ1 ∪ γ2) we have I (α, δ) < I (α, β). As an
easy consequence, one shows that the reconstruction principle for Teichmüller spaces
follows from Theorem 4.1 for level-2 surfaces. As another consequence, one shows
that the space S(�) is finitely generated in the following strong sense: There is a finite
subsetX0 in S(�) so that S(�) =

⋃∞
n=0Xn whereXi+1 = Xi ∪{α | α = γ1γ2 where

either (1) γ1 ⊥ γ2, and γ1, γ2, γ2γ1 are in Xi or (2) γ1 ⊥0 γ2 and γ1, γ2, γ2γ1 and
each component of ∂(γ1 ∪ γ2) are in Xi}.

5.5 Level-2 surfaces

The proof of the reconstruction theorem for level-2 surfaces has always been one of
the key steps in establishing the reconstruction principle. In dealing with simple loops
on level-2 surfaces, the following collection of five curves (the pentagon relation)



754 Feng Luo

a1a1

a2

a2

a3
a3

a4

a4

a5

a5

Figure 10. The pentagon relations.

{α1, . . . , α5 in S′(�) | I (αi, αj ) = 0 for indices |i − j | �= 1 mod(5)} (see Figure 10)
appears constantly and plays an important role. For the 5-holed sphere, one has
the following relation αiαi+1αi+2 = αi+3αi+4 and for the 2-holed torus, we have
α1α2α3α4 = α3α2α1 (see [26]). These five curves for the 5-holed sphere were first
observed by Dehn in [4] who showed that the Dehn twists on them generate the reduced
mapping class group of the 5-holed sphere. Furthermore, these five curves are rigid in
the sense that any other collection of five curves with the same disjointness property
is the image of {αi} under a homeomorphism ([28]).

5.6 A multiplicative structure on the space of curve systems

We finish this section with an application of the notion of intersection resolving to a
multiplicative structure on the space of curve systems CS(�). Given two curve systems
a, b on an oriented surface with |a ∩ b| = I ([a], [b]), the multiplication ab is defined
to be the 1-dimensional submanifold obtained by resolving all intersection points in
a ∩ b from a to b. It can be shown that ab is again a curve system (see Appendix C
for a simple proof when a, b contain no arcs). This induces a multiplicative structure
on CS(�) by defining αβ = [ab] where a ∈ α, b ∈ β and |a ∩ b| = I (α, β). For
instance the Dehn twist on a simple loop α applied to β is given by Dα(β) = αkβ

where k = I (α, β). This multiplication is natural with respect to the action of the
mapping class group and is highly non-commutative. Indeed, if α contains no arc
component, then αβ = βα implies I (α, β) = 0. As a consequence of this, one
obtains a new proof of a result of Ivanov [17] that Dehn twists on two intersecting
isotopy classes of simple loops can never commute up to isotopy. The most interesting
property of the multiplication seems to be the “cancellation law” saying that if each
component of α is not an arc and intersects β, than α(βα) = (αβ)α = β. This is a
generalization of the Z3-symmetry in the modular configuration. As an application
of the cancellation law, let us prove a weak form of a result of Thurston [41] that if
α and β are two surface filling simple loops (i.e., I (α, γ ) + I (β, γ ) > 0 for all γ ∈
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S′(�)), then the self-homeomorphism f = D−1
α Dβ does not leave any curve system

invariant up to isotopy (in fact Thurston proved that f is pseudo-anosov). Indeed, if f
leaves an element γ ∈CS(�) invariant, thenDα(γ ) = Dβ(γ ), i.e., αkγ = βlγ . Now
multiply the equation by γ from the left and use the cancellation law. One obtains a
contradiction to the surface filling property.

6 Reduction to level-2 surfaces

The goal of this section is to establish a fairly general criterion to reducing problems
concerning all surfaces to that of level-2 surfaces.

6.1 The restriction map and essential subsurfaces

We shall begin by some abstract definitions. Let Y be a set. Given a subsetX of the set
Y S(�) of all maps from S(�) to Y , we say that the subsetX has property RP if for any
decomposition of the surface � into a union of two essential subsurfaces A1 and A2
which overlap in a level-0 essential subsurface, then the restriction map from Y S(�)

to Y S(A1)∪S(A2) is injective on X. In other words, if f, g are two elements in X such
that f |S(A1)∪S(A2) = g|S(A1)∪S(A2), then f = g. For simplicity, we call the function
f |S(Ai) the restriction of f to Ai . We say that a subset X ⊂ Y S(�) with property RP
is complete if for any two elements f1 and f2 in the restrictions of X to A1 and A2 so
that their restrictions to the overlapA1∩A2 are the same, then there exists an element
f ∈ X whose restriction to Ai is fi for i = 1, 2. For instance, the set of all geodesic
length functions and the set of all intersection functions have complete property RP.
This is equivalent to the following gluing lemma for hyperbolic metrics and measured
laminations. Namely, suppose the surface� is a union of two essential subsurfacesA1
and A2 which overlap in an essential level-0 surface. If we are given two hyperbolic
metrics di on Ai whose restrictions to the overlap of A1 with A2 are isotopic, then
there is a hyperbolic metric unique up to isotopy on the surface � whose restriction
to Ai is isotopic to di . The same gluing lemma holds for measured laminations. Note
that SL(2, C) characters do not have property RP due to the existence of reducible
representations. The mapping class group �(�) considered as a subset of S(�)S(�)

does not have property RP either. But if one modifies the definition of S(�) by taking
the isotopy classes of all oriented simple loops, then the mapping class group has
complete property RP.

6.2 A reduction lemma

The main reduction lemma says the following. If X is a subset of Y S(�) such that for
each level-2 essential subsurface �′ the restriction of X to Y S(�

′) has property RP,
then X has property RP. See Appendix D for a proof of this reduction lemma. As a
consequence of this reduction lemma, we have the following fact. Suppose � is a
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surface of level at least three and X and X′ are two subsets of Y S(�) so that for each
level-2 essential subsurface �′ the restrictions of X and X′ to Y S(�

′) are the same.
If furthermore X ⊂ X′ and X has complete property RP, then X = X′. To see this,
we use induction on the levels of subsurfaces. First of all, by the reduction lemma,
both X and X′ have property RP. Now to show X′ ⊂ X, take an element x′ ∈ X′
and decompose � into a union of two essential surfaces A1 and A2 of smaller levels
so that they overlap in a level-0 surface. By the induction hypothesis, we find two
elements x1 and x2 which are in the restrictions of X to A1 and A2 so that xi is the
restriction of x′ to Ai . But the restrictions of xi to the overlap are the same, namely, it
is the restriction of x′ to the overlap. Thus by the completeness, there is an element x
in X whose restrictions to Ai is xi . Thus x = x′ by property RP. This shows X′ ⊂ X.

By taking X to be the set of all geodesic length functions and X′ to be the set of
all real valued functions on S(�)which satisfy the universal relations in Theorem A.1
in Appendix A, we see that the reconstruction principle for all Teichmüller spaces
follows from that for level-2 surfaces.

Also, the reduction lemma shows that the problem on the automorphisms of the
curve complex of a surface is essentially a problem on level-2 surfaces (see [28]).

6.3 Relationship to Grothendieck’s idea

The above gives some hints on the special role played by level-2 surfaces. It also
supports Grothendieck’s principle that in the reconstruction process “relations are
supported in level-2 surfaces”.

7 SL(2,C) representation variety of surface groups

An SL(2,C) representation of a group is a homomorphism of the group into SL(2,C).
The character of the representation sends each group element to the trace of the repre-
sentation matrix. If the group is the fundamental group of a surface, by using a result
of Fricke and Klein [5] and Vogt [42], one shows that the character function is deter-
mined by its restriction to the set S(�) of homotopy classes of simple loops. The main
result in [27] shows that the character function on S(�) satisfies the reconstruction
principle, i.e., except for finitely many (at least 2n−1) exceptional functions defined
on S(�0,n) for n ≥ 5, a function on S(�) is an SL(2,C) character if and only if for
each essential level-1 subsurface �′ in � the restriction of the function to S(�′) is an
SL(2,C) character. An exceptional function f : S(�0,n)→ C satisfies the following:

(1) f (S(�0,n)) = {2,−2},
(2) for each level-1 subsurface, the restriction of f to the subsurface is a character,

(3) there exists a level-2 subsurface �′ so that f |S(�′) is exceptional.
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All exceptional functions are constructed from the basic one defined on S(�0,5)which
sends bi to 2 and all others to −2. There are no representations whose characters are
these exceptional functions.

Given a surface� of level 1, SL(2,C) characters on S(�) are characterized by the
trace identities on the vertices of triangles and quadrilaterals in the modular relation
(see Appendix A for the exact statement). Thus the space of all SL(2,C) characters
of a surface group can be explicitly described. The reconstruction theorem also holds
for any SL(2,K) characters where the field K is quadratically complete (i.e., each
quadratic equation with coefficients in K has roots in K).

7.1 Reducible representations

The main difficulty in establishing the reconstruction principle for SL(2,C) char-
acters is due to the existence of reducible representations. Recall that an SL(2,C)
representation is reducible if it leaves a 1-dimensional linear subspace in C

2 invariant.
Unlike the discrete faithful subgroups in SL(2,R) which occur in Teichmüller theory,
there are many irreducible representations of a surface group so that its restriction to a
subgroup coming from an essential subsurface of negative Euler number is reducible.
Now the reduction lemma (see §6.2) is valid only for representations so that their
restrictions to the fundamental group of the intersection surface are irreducible. Thus
one should choose the decomposition of a surface� as a union of two subsurfaces�1
and �2 carefully. It turns out that the following which plays a key role in choosing
the decomposition of a surface is true. Namely, a representation of a surface group
into SL(2,C) is irreducible if and only if its restriction to the subgroup of an Euler
number-1 essential subsurface is irreducible [27].

As a consequence, we obtain the following result concerning SL(2,K) characters
on any group. Suppose K is a field so that each quadratic equation with coefficients
in K has roots in K . Given a group G, we are interested in finding all SL(2,K)
characters on G. In his work on SL(2,R) characters, Helling [15] introduced the
notion of trace function. Recall that a K valued function f on G is a trace function
if any two elements x, y in G, f (xy) + f (xy−1) = f (x)f (y) and f (id) = 2.
Evidently all SL(2,K) characters on G are trace functions due to the trace identity
tr(AB)+ tr(AB−1) = tr(A)tr(B). One consequence of the characterization theorem
is that each trace function is also a character.

7.2 The role of level-1 surfaces

The role of level-1 surfaces among all surfaces is similar to the role of 2-generator
groups among all groups. For instance, by Jorgensen’s inequality, a non-elementary
subgroup in SL(2,C) is discrete if and only if each of its 2-generator subgroups
is discrete. The reconstruction theorem for Teichmüller space says that a faithful
representation of a surface group into SL(2,R) is discrete if and only if its restriction
to each subgroup of its level-1 subsurface is discrete and uniformizing a surface of the
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same type. It is natural to ask if a similar description exists for discrete close surface
subgroup of SL(2,C).

7.3 A question on high dimension

It is interesting to ask if the reconstruction principle holds for representations of sur-
faces groups into the general linear group GL(n,C). To be more precise, suppose f is
a complex valued function defined on the conjugacy classes of the fundamental group
of the surface so that the restriction of f to the conjugacy classes of the fundamental
group of each essential level-1 subsurface is a GL(n,C)-character. Is f the character
of some GL(n,C) representation of the surface group?

Appendix A. The statement of the reconstruction theorems for
level-1 surfaces

Given a hyperbolic metric d on a surface, the trace of the metric d is the function
2 cosh(ld/2) where ld is the geodesic length function associated to d.

TheoremA 1. (a) For the surface�1,1 with b = ∂�1,1, a function t : S(�1,1)→ R≥2
is a trace function of a hyperbolic metric if and only if the following hold:

3∏
i=1

t (αi) =
3∑
i=1

t2(αi)+ t (b)− 2

and

t (α3)t (α
′
3) =

2∑
i=1

t2(αi)+ t (b)− 2

where (α1, α2, α3) and (α1, α2, α
′
3) are distinct ideal triangles in S′(�1,1).

(b) For the surface�0,4 with ∂�0,4 =⋃4
i=1 bi , a function t : S(�0,4)→ R≥2 is a

trace function of a hyperbolic metric if and only if for each ideal triangle (α1, α2, α3)

so that (αi, bj , bk) bounds a �0,3 in �0,4 the following hold:

3∏
i=1

t (αi) =
3∑
i=1

t2(αi)+
4∑

j=1

t2(bj )+
4∏

j=1

t (bj )+ 1

2

3∑
i=1

4∑
j=1

t (αi)t (bj )t (bk)− 4

and

t (α3)t (α
′
3) =

2∑
i=1

t2(αi)+
4∑

j=1

t2(bj )+
4∏

j=1

t (bj )+ 1

2

2∑
i=1

4∑
j=1

t (αi)t (bj )t (bk)− 4

where (α1, α2, α
′
3) and (α1, α2, α3) are two distinct ideal triangles in S′(�0,4).
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Part (a) of Theorem A.1 was a result of Fricke–Klein [5] and Keen [20], and part
(b) was proved in [25]. See also [9].

Theorem A 2. (a) For the surface �1,1, a function f : S(�1,1) → R≥0 is an inter-
section function if and only if the following hold:

f (α1)+ f (α2)+ f (α3) = max
i=1,2,3

(2f (αi), f ([∂�1,1]))
where (α1, α2, α3) is an ideal triangle, and

f (α3)+ f (α′3) = max(2f (α1), 2f (α2), f ([∂�1,1]))
where (α1, α2, α3) and (α1, α2, α

′
3) are two distinct ideal triangles.

(b) For the surface�0,4 with ∂�0,4 = b1∪b2∪b3∪b4, a function f : S(�0,4)→
R≥0 is an intersection function if and only if for each ideal triangle (α1, α2, α3) so
that (αi, bs, br) bounds a �0,3 in �0,4 the following hold:

3∑
i=1

f (αi) = max
1≤i≤3
1≤s≤4

(2f (αi), 2f (bs),
4∑
s=1

f (bs), f (αi)+ f (bs)+ f (br)),

f (α3)+ f (α′3) = max
1≤i≤2
1≤s≤4

(2f (αi), 2f (bs),
4∑
s=1

f (bs), f (αi)+ f (bs)+ f (br))

where (α1, α2, α3) and (α1, α2, α
′
3) are two distinct ideal triangles.

Theorem A.2 was proved in [26].
Below is the statement of the presentation of the mapping class group for all surfaces

of negative Euler number (see [27], [7]).

Theorem A 3. For a compact oriented surface � of negative Euler number, the
mapping class group �(�) has the following presentation.

Generators: {Dα | α ∈ S(�)}.
Relations:

(I) DαDβ = DβDα if α ∩ β = ∅,
(II) Dαβ = DαDβD−1

α if α ⊥ β,

(III) (DαDβDαβ)4 = D∂(α∪β) if α ⊥ β,

(IV) DαDβDαβ = D∂(α,β) if α ⊥0 β.

The characterization of the SL(2,C) characters for surface group representations
is given by the following. The theorem is proved by Fricke and Klein [5] and Vogt
[42], thought stated in different terminologies. See for instance [8] and [27].
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Theorem A 4. (a) For the surface �1,1 with b = ∂�1,1, a function t : S(�1,1)→ C

is an SL(2,C) trace function if and only if the following hold:

3∏
i=1

t (αi) =
3∑
i=1

t2(αi)− t (b)− 2

and

t (α3)+ t (α′3) = t (α1)t (α2)

where (α1, α2, α3) and (α1, α2, α
′
3) are distinct ideal triangles in S′(�1,1).

(b) For the surface �0,4 with ∂�0,4 = ⋃4
i=1 bi , a function t : S(�0,4) → C is

an SL(2,C) trace function if and only if for each ideal triangle (α1, α2, α3) so that
(αi, bj , bk) bounds a �0,3 in �0,4 the following hold:

3∏
i=1

t (αi) = −
3∑
i=1

t2(αi)−
4∑

j=1

t2(bj )−
4∏

j=1

t (bj )+ 1

2

3∑
i=1

4∑
j=1

t (αi)t (bj )t (bk)+ 4

and

t (α3)+ t (α′3) = −t (α1)t (α2)+ 1

2

2∑
i=1

4∑
j=1

t (αi)t (bj )t (bk)

where (α1, α2, α′3) and (α1, α2, α3) are two distinct ideal triangles in S′(�0,4).

Appendix B. The modular structure on the space of 3-holed
sphere decompositions

The other natural example of compact modular structure is the set HD(�) of all isotopy
classes of 3-holed sphere decompositions of a surface�. The charts are constructed as
follows. Suppose (a1, . . . , ak) is an element in HD(�). Take an essential subsurface
�′ of level 1 so that all but one, say ai , of the coordinates are disjoint from �′. Now
the chart associated to �′ is the set of elements {(a1, . . . , ai−1, bi, ai+1, . . . , ak) ∈
HD(�)|bi ∈ S′(�′)} with chart map sending the element to the slope of bi . Again
if two charts overlap in two elements, they coincide. A result of Hatcher–Thurston
[16] says that given any two elements in HD(�) there is a sequence of charts whose
union contains these two elements so that any two adjacent charts overlap in at least
one element. On the other hand, each element in HD(�) determines a handlebody
structure on the surface � obtained by attaching 2-cells to the components of the
3-holed sphere decomposition and then 3-cells. Evidently if two elements in HD(�)
lie in a chart associated to a 4-holed sphere, then they determine the same handlebody
structure. The main result in [28] shows that the converse is also true. Namely, if two
elements in HD(�) determine the same handlebody structure, then there is a sequence
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of charts associated to 4-holed spheres whose union contains these two elements so
that any two adjacent charts overlap in at least one element.

Appendix C. A simple proof that multiplication produces a
curve system

For simplicity, let us assume that the surface is closed (see [26] for general cases). We
will give a simple proof of the following fact used in §5. Namely, if a and b are two
curve systems that intersect minimally in their isotopy classes, then the 1-dimensional
submanifold ab obtained by resolving all intersection points in a ∪ b from a to b is
again a curve system.

Suppose otherwise that the 1-submanifold ab contains a null homotopic compo-
nent c. By the Jordan curve theorem, we see that c is the boundary of an embedded disk
D in the surface. Replacing c by components of ab in the interior ofD if necessary, we
may assume that c is the “inner-most” component, i.e., there are no other components
of ab in the interior of D. By the definition of resolution, the disk D is obtained as
follows. There exists a collection of components A1, . . . , Ak of � − (a ∪ b) so that,
after we resolve all intersection points of a and b, these components A1, . . . , Ak are
joint at some of their vertices to form D. Each component Ai is an open disc since c
is the inner-most. The boundary of Ai consists of arcs in a and b, and the corners (or
vertices) of Ai correspond to the intersection points of a and b. Let us call each Ai
a polygon bounded by sides in a and b alternatively. Since a intersects b minimally
within their isotopy classes, each Ai has at least four sides. Now by the definition
of the resolution, the disc D is obtained by resolving corners of Ai’s from a to b.
Considering the resolutions at the vertices along the boundary ofAi , one sees that cor-
ners open and close alternatively in a cyclic order on the boundary. (See Figure 11.)
Form a graph in D by assigning a vertex to each Ai , so that this vertex lies in Ai and
joining an edge between two vertices if their corresponding polygons Ai and Aj have
the same vertex which is opened by the resolution. Then, on one hand, the graph is a
tree since it is homotopic to the disk D. On the other hand, each vertex of the graph
has valence at least two since the valence of a vertex is half of the number of sides of
the corresponding polygon Ai (by the alternating property). This contradicts the fact
that a tree must have a vertex of valence one.

Appendix D. A proof of the reduction lemma in §6.2

We shall prove the following reduction lemma stated in §6.2. Suppose � is a surface
of level at least 3. IfX is a subset of Y S(�) so that for each level-2 essential subsurface
�′ the restriction of X to Y S(�

′) has property RP, then X has property RP.
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Figure 11. The pentagon relations.

To begin the proof, suppose the surface � is decomposed into a union of two
essential subsurfaces A1 and A2 overlapping in an essential level-0 surface and we
are given two elements f, g in X whose restrictions to Ai are the same. The goal is
to show that f = g. To this end, let us construct a 3-holed sphere decomposition
(a1, . . . , ak) of the surface � so that each 3-holed sphere in the decomposition is
either in A1 or in A2 and A1 ∩A2 is bounded by ai’s. Thus if s is an element in S(�)
which intersects only one element of {a1, . . . , ak}, then s is in S(Ai) for i = 1 or 2. In
particular f (s) = g(s). Now suppose we make an elementary move on {a1, . . . , ak}
to produce a new 3-holed sphere decomposition {b1, . . . , bk} where all but one of bi
are ai and the exceptional component, say bj is modular related to aj (i.e., bj ⊥ aj
or bj ⊥0 aj )(these moves were introduced in the appendix of [16]). We claim that
if f (s) = g(s) for all elements s which intersect at most one of {a1, . . . , ak} and if
{b1, . . . , bk} is obtained from {a1, . . . , ak} by an elementary move, then f (s) = g(s)
for all elements s which intersect at most one of {b1, . . . , bk}. Indeed, by the property
RP for level-2 surfaces, we see that f (s) = g(s) for all elements s inside any level-2
subsurface which is bounded by elements in {a1, . . . , ak}. Now if s is an isotopy class
which intersects at most one element in {b1, . . . , bk}, then s intersects at most two
elements in {a1, . . . , ak}. Thus the isotopy class s is in a level-2 subsurface which
is bounded by elements in {a1, . . . , ak}. Thus f (s) = g(s). Now by the result in
[16] that any two 3-holed sphere decompositions of the surface are related by a finite
sequence of elementary moves, it follows that f (s) = g(s) for any element s in S(�).

In view of the importance of the 3-holed sphere decompositions, it is tempting
to make a 2-dimensional cell-complex Z based on 3-holed sphere decompositions of
the surfaces as follows. The vertices of Z are the isotopy classes of 3-holed sphere
decompositions of the surface and the edges are those pair of vertices related by an
elementary move. Now attach a 2-cell to each 5-gon associated to each pentagon rela-
tion (see Figure 8), a 2-cell to each 4-gon associated to four elementary moves which
are supported in two disjoint level-1 surfaces, and a 2-cell to each 3-gon associated to
three elementary moves supported in a level-1 surface. This cell-complex was implic-
itly introduced in the appendix of [16]. The simple connectivity of this cell-complex
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seems to be asserted in [16]. Hatcher defined, later on, a related complex, called the
pants decomposition complex, and he showed that it is simply connected (see [13] and
[14]). See also [12] for related topics.
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1 Introduction

In this chapter, we give an introduction to the theory of dessins d’enfants. They
provide a charming concrete access to a special topic of arithmetic geometry: Curves
defined over number fields can be described by such simple combinatorial objects as
graphs embedded into topological surfaces. Dessins d’enfants are in some sense an
answer of Grothendieck to the beautiful Theorem of Belyi, which characterises curves
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defined over number fields by the existence of certain coverings of the projective line.
Grothendieck was fascinated by the fact that such a covering is completely determined
by the preimage of the real interval [0, 1] and called this a dessin d’enfants. As one
consequence that especially attracted people one has an action of the absolute Galois
group Gal(Q/Q) on the set of dessins which is faithful. Therefore in principle all the
information on Gal(Q/Q) is hidden in some mysterious way in these combinatorial
objects. The study of dessins d’enfants leads to the Grothendieck–Teichmüller group
in which Gal(Q/Q) injects. It is still an open question whether these two groups are
equal or not.

In the next three sections we introduce dessins d’enfants and the Galois action
on them. We begin in Section 2 with a review of the correspondence between closed
Riemann surfaces and regular complex projective curves. Since the link between these
two fields is an essential tool which is used throughout the whole chapter, we provide
a sketch of the proof. In Section 3 we give characterizations of dessins d’enfants
in terms of Belyi pairs, graphs embedded into surfaces, ribbon graphs, monodromy
homomorphisms and subgroups of the free group on two generators and explain how
to get from one of these descriptions to the other. Section 4 is devoted to the action of
Gal(Q/Q) on dessins d’enfants. We review some of the known results on faithfulness
and Galois invariants and explain how it gives rise to an action on the algebraic
fundamental group F̂2 of the three-punctured sphere. The explicit description of
how Gal(Q/Q) acts on the topological generators leads us to the definition of the
Grothendieck–Teichmüller group. We finish the section by indicating how Gal(Q/Q)
embeds into this group.

In the second part of the chapter we turn to connections between origamis and
dessins d’enfants. Similar to the latter, origamis are given by combinatorial data and
define arithmetic objects, more precisely curves in moduli space which are defined
over Q. Following the same approach as for dessins, one can study the action of the
absolute Galois group on them. Besides these analogies, origamis and dessins are
linked by several explicit constructions.

Section 5 gives an introduction to origamis and explains how they define curves
in the moduli spaceMg of smooth algebraic curves of genus g. We call them origami
curves; they are in fact special examples of Teichmüller curves. In Section 6 we
describe the action of Gal(Q/Q) on them and state some known results. The last two
sections present two explicit constructions of dessins d’enfants associated to a given
origami. Section 7 interprets the origami curve itself as a dessin. In Section 8 we
associate a dessin to every cusp of an origami curve. We illustrate these constructions
by several nice examples.

The subject of dessins d’enfants has been treated from different points of view
in several survey articles, as e.g. [34], [40] and [19, Chapter 2] to mention only a
few. A collection of articles on dessins d’enfants including many explicit examples
is contained in [33]. More on origamis can be found e. g. in [20] and [31] and the
references therein. Almost all results in this chapter were known previously, with the
exception of the examples in the last sections.



Chapter 18. Dessins d’enfants and origami curves 769

Acknowledgments. We would like to thank Pierre Lochak, who has initially drawn
our attention to the beautiful topic of origamis and their relations to dessins d’enfants.
Furthermore, we thank André Kappes and Florian Nisbach for proofreading. The
second author is indebted to the LANDESSTIFTUNG Baden-Württemberg for facil-
itating the analysis entailed in this chapter.

2 From Riemann surfaces to algebraic curves

One fascinating aspect of the theory of dessins d’enfants is that it touches two different
fields of mathematics, namely algebraic geometry and complex geometry. The bridge
between these two fields is built on the following observation which was already
understood by Riemann himself: The classes of closed Riemann surfaces and of regular
complex projective curves can be considered to be the same. More precisely, we have
an equivalence between the following three categories (see e.g. [28, Theorem 7.2])
and [12, Corollary 6.12]):

• closed Riemann surfaces with non-constant holomorphic maps;

• function fields over C of transcendence degree 1 with C-algebra homomorphisms;

• regular complex projective curves with dominant algebraic morphisms.

Recall that a function field over a field k is a finitely generated extension field of k. We
give here only a brief outline of the above equivalences and refer for further readings
to literature in complex geometry (e.g. [7, §16], [24, IV, 1]) and algebraic geometry
(e.g. [12]).

In a first step we describe how to get from the category of closed Riemann surfaces
to the category of function fields over C of transcendence degree 1. LetX be a Riemann
surface and C(X) the field of meromorphic functions from X to C. Then C(X) is a
function field: The fact that C(X) has transcendence degree 1 essentially follows from
the Riemann–Roch theorem. Recall that the theorem determines for a divisor D on
X the dimension of the complex vector space L(D) = H 0(X,OD) of meromorphic
functions f satisfying div(f ) ≥ −D. It states in particular that if the divisor D is
effective, i.e. D =∑

i aiPi with ai ≥ 0, then dim(L(D)) ≤ 1+ degD.
Suppose now that the degree of C(X)were greater or equal to 2. Then there would

exist two algebraically independent meromorphic functions f and g. Let P1, . . . , Pk
be the poles of f and Q1, . . . ,Qm be the poles of g, with degrees a1, . . . , ak and
b1, . . . , bm respectively. One picks the divisor D = ∑

aiPi +∑
j bjQj . By the

definition of D we have, for i + j ≤ n, f igj ∈ L(nD). Since f and g are alge-
braically independent, we have that all the f igj are linearly independent. Therefore
dim(L(nD)) ≥ (n2 + 3n+ 2)/2. On the other hand, one obtains from the Riemann–
Roch theorem that dim(L(nD)) ≤ 1 + deg(nD) = 1 + n deg(D). These two in-
equalities give a contradiction for n large enough. Hence the transcendence degree
of C(X) is ≤ 1. Equality follows from the fact that each compact Riemann surface
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admits a non-constant meromorphic function. The Riemann–Roch theorem precisely
guarantees the existence of meromorphic functions. E.g. if we fix a divisor of degree
greater or equal to g + 1, then dim(L(D)) ≥ 2, therefore we have a non-constant
meromorphic function in L(D). Altogether we have seen that each closed Riemann
surface defines a function field of transcendence degree 1. Furthermore a non-constant
holomorphic function defines a morphism of C-algebras between the function fields
by pulling back the rational functions. We have thus constructed a contravariant func-
tor from the category of closed Riemann surfaces to the category of function fields of
transcendence degree 1.

The equivalence between function fields and regular projective complex curves is
described e.g. in [12, Chapter I]. In fact the statement holds a bit more generally. One
may replace the field C by any algebraically closed field k. Similarly as before one
obtains a function field k(C) of degree 1 starting from an algebraic curve C over k.
In this case k(C) is the field of all rational functions from C to P

1(k), the projective
line over k. Two algebraic varieties are birationally equivalent if and only if they have
the same function field [12, I Corollary 4.5] and nonsingular curves are birationally
equivalent if and only if they are isomorphic [12, Proposition 6.8]. Hence it remains
to show that for each function fieldK of degree 1 over k one can construct a projective
regular curveC whose function field isK . This construction is described in [12, I, §6].
It is based on the following observation: Each point p on an algebraic curveC defines
a discrete valuation ring whose quotient field is K = k(C), namely the local ring Op
of germs of regular functions on C near p. The main idea is to identify the points
of the curve with the valuation rings which they induce, in order to reconstruct the
projective curve C from its function field k(C).

Hence, given a function field K , we take the set CK of discrete valuation rings
of K . We want to think of its elements R as points of the algebraic curve that we are
going to construct. First, CK becomes a topological space by taking the finite sets and
the whole space to be the closed sets. Next, we can cover CK by affine regular curves
as follows. Suppose that R is a point of CK , i.e. R is a discrete valuation ring in K .
HenceK is the quotient field of R and R is a local ring of dimension 1. LetmR be its
maximal ideal. We want to define an affine curve Y together with an embedding of Y
into CK , such that the image contains the point R. We pick an arbitrary y ∈ R\k and
define B to be the integral closure of k[y] in K . It follows from commutative algebra
that B is contained in R, it is a Dedekind domain and a finitely generated k-algebra.
Thus B is in particular the affine coordinate ring of an affine regular curve Y . Finally,
we want to construct an injective continuous map from Y toCK . Recall from algebraic
geometry that the points in Y correspond to the maximal ideals of B. Let Q be in Y
and nQ the corresponding maximal ideal of B. Then BnQ is a local ring in K , and
indeed a discrete valuation ring. Hence we may mapQ ∈ Y to BnQ ∈ CK . This gives
a continuous map from Y to CK . Let mQ be the unique maximal ideal in BnQ . Then
nQ = mQ ∩ B. Hence the map is injective. Furthermore R is in the image, since
mR ∩ B is a maximal ideal in B.

One then shows that CK with this structure is a regular projective curve.
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In order to close the circle between the three categories, one constructs for each
regular complex projective curveC a closed Riemann surfaceXwith the same function
field: Suppose that C lies in P

n(C). P
n(C) becomes a complex manifold using the

natural cover by A
n(C)’s for charts to C

n. (Be aware that A
n(C) and C

n do not have the
same topology. Therefore one speaks of the Zariski topology and the complex topology
of P

n(C) and later also of the curveC). C is the zero set of finitely many homogeneous
polynomials f1, . . . , fm. Since C is regular, the Jacobian matrices ( δfi

∂xj
(p))i,j are

invertible for all points p on C. The implicit functions theorem, together with the fact
that the complex dimension of C is 1, provides us locally with a function from C to C,
which is invertible. Its inverse map is a chart for C. C becomes a closed Riemann
surface X with these chart maps. Finally, one shows that the function fields are the
same by checking that rational functions on C become meromorphic functions on the
Riemann surface X and vice versa.

We will use this equivalence between the category of closed Riemann surfaces
and the category of regular complex projective curves throughout the whole chapter.
Observe in particular that the Riemann sphere corresponds to the projective line P

1(C)

under this identification.

3 Dessins d’enfants

In this section we give a brief introduction to dessins d’enfants. They are a nice
way to describe coverings β : X → P

1(C) from a closed Riemann surface X to the
Riemann sphere P

1(C) which are ramified at most over the three points 0, 1 and∞.
Such coverings are called Belyi morphisms. One reason why they are particularly
interesting is the famous Theorem of Belyi. This theorem establishes a connection
between complex Riemann surfacesX, which allow a Belyi morphism, and projective
algebraic curvesCwhich are defined over the algebraic closure Q of Q. As described in
Section 2 we identify the closed Riemann surfaceX with the corresponding projective
regular curve C defined over C. C is defined over Q if it can be described as the zero
set of polynomials whose coefficients lie in Q. Observe that in this case the curve C
actually is defined over a number field, since a curve can be defined by finitely many
polynomials and therefore there exists a finite field extension of Q which contains all
coefficients. Therefore Belyi morphisms provide a tool for studying complex curves
over number fields.

Theorem 3.1 (Theorem of Belyi, [3]). Let X be a regular complex projective curve.
Then X is defined over Q if and only if there exists a finite morphism β : X→ P

1(C)

from X to the projective line P
1(C) which is ramified at most over 0, 1 and∞.

It follows from the proof of the theorem that if the condition of the theorem holds,
we can choose the morphism β such that it is defined over Q. Therefore in the
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following, if we call β a Belyi morphism, we will always assume that it is defined
over Q.

The surprising part of Belyi’s result was the only-if direction. Belyi gave an
elementary but tricky algorithm for how to calculate the morphism β. For the if part
of the proof, Belyi referred to a very general result of A. Weil. Later on, more direct
proofs were given by B. Köck in [18] in the language of algebraic geometry and by
J. Wolfart in [39] using uniformisation theory. We shall sketch the main idea of the
proof in Section 4.2.

The theorem makes it particularly desirable to describe Belyi morphisms β as
simply as possible. Fortunately, this can be done using “objects so simple that a child
learns them while playing” (Grothendieck in [9]). In the following we present several
methods on how to describe β and give an idea of the proofs of why they are all
equivalent and how one can retrieve β from them. A nice and broad overview on these
ideas as well as more references can be found e.g. in [33].

Let (X, β) be a Belyi pair, i.e. a closed Riemann surface X together with a Belyi
morphism β : X → P

1(C). We say that two Belyi pairs (X1, β1) and (X2, β2) are
equivalent if there exists an isomorphism f : X1 → X2 such that β2 � f = β1. We
consider Belyi pairs up to this equivalence relation.

Proposition 3.2. A Belyi pair (X, β) is up to equivalence uniquely determined by:

• a dessin d’enfants (defined below) up to equivalence;

• a bipartite connected ribbon graph up to equivalence;

• a monodromy map α : F2 → Sd for some d ≥ 1, i.e. a transitive action of F2 on
{1, . . . , d}, up to conjugation in Sd ;

• a finite index subgroup of F2 up to conjugation.

Here F2 denotes the free group on two generators and Sd the symmetric group on d
objects. The first part of Proposition 3.2, namely the equivalence between Belyi pairs
and dessins, is often called the Grothendieck correspondence. In the following we will
sketch the proof of the proposition by explaining how to pass from one description to
the next.

From a Belyi pair to a dessin. One starts from the observation that a Belyi pair
(X, β) naturally defines a bipartite graph G on the surface X: Let I be the closed
segment on the real line R between 0 and 1. Then its preimage β−1(I ) is a graph
on X. Its vertices are the preimages of the two points 0 and 1. It carries a natural
bipartite structure: we may colour all preimages of 0 with one colour (e.g. black) and
all preimages of 1 with another colour (e.g. white). It is a striking fact which we will
see in the rest of this section that the graph embedded into the topological surface
already carries enough information. It uniquely determines the Belyi pair (X, β) up
to equivalence and thus in particular the complex structure on X.
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Furthermore, one observes thatX−G decomposes into components each of them
containing precisely one preimage of∞. The holomorphic map β restricted to one
of the components is therefore ramified at most in one point and hence at this point is
locally of the form z 	→ zn. Its image is an open cell. Therefore the component itself
is an open cell and thus holomorphically equivalent to the open unit disk. Altogether,
the graphG decomposes the surface into open cells containing precisely one preimage
of∞.

Example 3.3. In Figure 1 we show the dessin on the elliptic curve

C : y2 = x(x − 1)(x − λ0)

with λ0 = 1/2 + (√3/2)i. The curve C has an automorphism of order 3. The Belyi
morphism β is the quotient map with respect to this automorphism.

β

Figure 1. A Belyi morphism and its dessin d’enfants.

Definition 3.4. A dessin d’enfants is a bipartite connected graphGwhich is embedded
into an orientable closed topological surface X, such that it fills the surface, i.e. X\G
is a union of open cells. Two dessins d’enfants (X1,G1) and (X2,G2) are called
equivalent if there exists a homeomorphism f : X1 → X2 such that f (G1) = G2.

Dessins and bipartite ribbon graphs. Ribbon graphs are a handy way to describe
dessins. Let D be a dessin, i.e. D = (G, i), where G is a connected graph and
i : G ↪→ X is a continuous embedding of G into a closed topological surface X.
We start from the observation that the abstract graph G does not uniquely determine
the dessin. One can e.g. embed the same graph into surfaces of different genera, see
Example 3.6. How much information do we have to add to the graph in order to
nail down the dessin? It turns out that it suffices to assign to each vertex a cyclic
permutation of the edges which are adjacent to the vertex. To simplify notations, we
divide each edge into two half edges and number them with 1, . . . , 2d, where d is the
number of edges of the graph. For each vertex v of G we take a chart (U, ϕ) of a
small neighbourhood U of v in X to the plane R

2 such that the image of G ∩ U is a
star with the vertex ϕ(v) as centre. Imagine we circle anticlockwise around the vertex
in ϕ(U). Let πv be the cyclic permutation which denotes the order in which we meet
the images of the half edges adjacent to v. Hence πv is in the symmetric group S2d .
For the dessin in Figure 1 we obtain e.g. the cyclic permutations (1 3 5) and (2 4 6),
if we label the half edges as in Figure 2.
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1
2

3 4

5

6
e

f

g

Figure 2. Labelling the half edges of the dessin in Figure 1.

Definition 3.5. A ribbon graph (G,O) – often also called fat graph – is a connected
graphG together with a ribbon structureO = {πv | v a vertex of G}, which assigns to
each vertex v ofG a cyclic permutation πv of the half edges adjacent to v. Two ribbon
graphs (G1,O1) and (G2,O2) are called equivalent if there exists an isomorphism
h : G1 → G2 of graphs such that the pull back of O2 is equal to O1.

Let π be the product of all the πv’s and τ the transposition which maps each half
edge to the other half edge that belongs to the same edge. Then the tuple (π, τ )
determines the ribbon graph.

Recall that by the definition of dessins the graph G fills the surface X, i.e. X\G
consists of disjoint open cells C1, . . . , Cs . Observe that we obtain the edges of the
cycle bounding a cell C clockwise successively by taking the edges on which the
half edges e, τπ(e), (τπ)2(e), . . . lie. Here e is the half edge at the beginning of an
edge in the cycle, where the cycle carries the natural anti-clockwise orientation. For
example, for the dessin in Figure 2 we obtain one cell which is bounded by the cycle
(e f g e f g).

One gets the dessin back from the ribbon graph doing the reverse procedure: Each
cycle (e, τπ(e), . . . , (τπ)k(e)) defines a cycle in the graph which is the union of the
corresponding edges. One glues a cell to each such cycle . Then each edge is on the
boundary of precisely two cells (which may coincide) and one obtains a closed surface
X in which G is embedded.

Example 3.6. In Figure 3 we show two ribbon graphs (G1,O1) and (G2,O2).
Observe that the two ribbon graphs have the same underlying graph, but the ribbon

structures are different and they define different surfaces. The second one is the ribbon
graph from Figure 2.

For both ribbon graphs we have τ = (1 2)(3 4)(5 6). Hence for the first graph we
obtain τπ = (1 6)(2 3)(4 5) and for the second graph we have τπ = (5 4 1 6 3 2).
Thus, in the first case we obtain three cells: The first one is bounded by e3 and e1, the
second one is bounded by e3 and e2 and the third one is bounded by e2 and e1. Gluing
the disks along their edges gives a genus 0 surface. This can be checked with a short
Euler characteristic calculation. As we already saw above, we obtain in the second
case one cell bounded clockwise by the edges e1, e2, e3, e1, e2 and e3, and a surface
of genus 1.
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G1:

•0 �1
e1

65

e2

43

e3
21

with ribbon structure

O1 = {π1 = (5 3 1), π2 = (2 4 6)}.

G2:

•0 �1
e1

65

e2

43

e3
21

with ribbon structure

O2 = {π1 = (5 3 1), π2 = (2 6 4)}.

Figure 3. Two ribbon graphs.

Hence we may equivalently talk about dessins or about bipartite ribbon graphs.
One can check that the respective equivalence relations match each other.

Remark 3.7. The constructions above define a bijection between the set of equivalence
classes of dessins and the set of equivalence classes of bipartite connected ribbon
graphs. Furthermore we described a natural way to assign to each Belyi pair an
equivalence class of dessins.

In order to see how we can retrieve the Belyi pair from a given dessin or a given
ribbon graph, it is convenient to introduce monodromy maps.

Monodromy maps and subgroups of F2. Recall that for an unramified degree d
covering p : X∗ → Y ∗ of surfaces we obtain the monodromy map α : π1(Y

∗)→ Sd
to the symmetric group Sd on d letters as follows: Fix a point y ∈ Y ∗. Call its d
preimages x1, . . . , xd . For [c] ∈ π1(Y

∗, y) map i ∈ {1, . . . , d} to j , if xj is the end
point of the lift of c to X, which starts in xi . The resulting map α is independent of
the chosen point y and of the choice of the labeling of its preimage up to composition
with a conjugation in Sd .

Let us now consider the natural embedding π1(X
∗) ↪→ π1(Y

∗) induced by p and
letU be its image. U depends on the chosen base points of the fundamental groups only
up to conjugation. Hence we may assume that the base point ofπ1(X

∗) is the preimage
of the base point of π1(Y

∗) labeled by 1. Then the image of π1(X
∗) ↪→ π1(Y

∗) α→ Sd
is the stabilizer StabSd (1) of 1 in Sd and U is its full preimage in π1(Y

∗). Hence one
obtains U directly from α, namely U = α−1(StabSd (1)). Conversely given U one
obtains α as follows: π1(Y

∗) acts on the d cosetsUgi ofU inπ1(Y
∗) by multiplication

from the right; α is the induced action from the right on the indices.
Starting now from a Belyi pair (X, β), we obtain an unramified cover by removing

the three ramification points 0, 1 and ∞ from P
1(C) and all their preimages from

X. We denote the resulting punctured surfaces by
...
P and X∗, respectively. We fix an

isomorphism between π1(
...
P) andF2, the free group in two generators. Thenp : X∗ →
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...
P is an unramified covering and defines a monodromy map from F2 ∼= π1(

...
P) to Sd

(where d is the degree of p) or equivalently a finite index subgroup U of F2 ∼= π1(
...
P).

Finally we describe how to retrieve the Belyi pair from the subgroup U . The main
ingredient that we use is the universal covering theorem. Let us choose a universal
covering u : H̃ → ...

P. By the theorem we may identify F2 ∼= π1(
...
P) with the group of

deck transformations Deck(H̃/
...
P). By the same theorem each finite index subgroup of

π1(
...
P) defines an unramified covering β from some surfaceX∗ to

...
P such that it induces

an embedding Deck(H̃/X∗) ↪→ Deck(H̃/
...
P) whose image is the subgroup U . There

is a unique complex structure on X∗ which makes β holomorphic, namely the lift of
the complex structure on

...
P via β. It follows from the classical theory of Riemann

surfaces that there is a unique closed Riemann surface X which is the closure of X∗.
It is obtained by filling in one point for each puncture. Furthermore β can be extended
in a unique way to β : X→ P

1(C).
One can check that all this is independent of the choices that we did in between

up to the equivalence relations, that the equivalence relations fit together and that the
constructions are inverse to each other.

Remark 3.8. The above constructions define bijections between the set of equivalence
classes of Belyi pairs, the set of conjugacy classes of group homomorphismsF2 → Sd
which are transitive actions, and the set of conjugacy classes of finite index subgroups
of F2.

As a last step, we have to show how we can relate dessins and ribbon graphs to
monodromy maps or finite index subgroups of F2.

FromadessinD to aBelyi pair (X, β). LetD be a dessin and (G,O = {π1, . . . , πs})
the corresponding ribbon graph from Remark 3.7. How can we retrieve the mon-
odromy of β from these data? Recall thatG is bipartite and the vertices are coloured:
the preimages of 0 are black and those of 1 are white. We may also colour the half
edges used in the construction of Remark 3.7 with the colour of the vertex which lies
on them. Observe that π acts on the setEblack of black half edges and the setEwhite of
white half edges separately. Thus we can decompose π = πblack �πwhite with πblack ∈
Perm(Eblack) and πwhite ∈ Perm(Ewhite).

Let us now choose a base point y ∈ ...P on the segment between 0 and 1 close to 0.
Hence all its preimages xi lie on black half edges. Furthermore we pick two curves
c1 and c2 as generators of π1(

...
P) ∼= F2, where c1 is a simple closed circle around 0

and c2 is a simple closed circle around 1; both starting in y and both anti-clockwise.
(See Figure 4.) By the definition of π (see Remark 3.7), the monodromy α(c1) is the
permutation πblack and the monodromy α(c2) is the permutation τπwhiteτ . Here we
identify the point xi with the black half edge on which it lies.

Hence, we may assign to a dessin the monodromy map

F2 → Sd, x 	→ πblack, y 	→ τπwhiteτ.

Again one can check that this construction is inverse to the construction given in
Remark 3.7 and the equivalence relations fit together.
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c1 c2

y

Figure 4. Generators of the fundamental group of
...
P.

Furthermore it follows from the above construction that given the monodromy map
α : F2 → Sd of a Belyi pair (X, β), one obtains the corresponding bipartite ribbon
graph (G,O) directly as follows: Label the black half edges with 1, . . . , d and the
white half edges with d+1, . . . , 2d. Then (G,O) is described by the two permutations

τ : i 	→ d + i and π = πblack � πwhite

with

πblack : i 	→ α(x)(i) and πwhite : d + i 	→ d + α(y)(i).
Remark3.9. The above construction defines a bijection between the set of equivalence
classes of dessins and the set of equivalence classes of Belyi pairs. This map is the
inverse map to the one described before Remark 3.7.

With Remark 3.9 we have finished the outline of the proof of Proposition 3.2.
It follows in particular that we can describe a Belyi pair (X, β) or equivalently the

corresponding dessin D by a pair of permutations (σ1, σ2), namely σ1 = α(c1) and
σ2 = α(c2), where α : F2 → Sd is the monodromy map. We will say the dessin has
monodromy (σ1, σ2). This description is unique up to simultaneous conjugation with
an element in Sd . Furthermore the group generated by σ1 and σ2 acts transitively on
{1, . . . , d} and each pair of permutations with this property defines a Belyi pair.

The genus of a dessin. Suppose that a dessin (X, β) of degree d has monodromy
(σ1, σ2). The dessin naturally defines a two-dimensional cell complex. By the con-
struction in Remark 3.9 we have:

• The black vertices are in one-to-one correspondence with the cycles inσ1. Denote
their number by s1.

• The white vertices are in one-to-one correspondence with the cycles inσ2. Denote
their number by s2.

• The faces of the complex are in one-to-one correspondence with the cycles in
σ1 � σ2. Denote their number by f .
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Hence, we can calculate the genus as follows:

g = 2− χ
2

with χ = s1 + s2 − d + f.

Definition 3.10. We call g as above the genus of the dessin D.

4 The Galois action on dessins d’enfants

One of the original motivations to study dessins d’enfants was the hope to get new
insights into the structure of the “absolute” Galois group Gal(Q/Q) of the algebraic
closure Q of the rational number field Q. This hope came from the fact that, as a
consequence of the Grothendieck correspondence between dessins d’enfants and Belyi
pairs explained in the previous section, Gal(Q/Q) acts on the set of dessins d’enfants.
We shall see that this action is faithful, so in principle, all information about Gal(Q/Q)
is somehow contained in the dessins d’enfants. Unfortunately, except for very special
cases, it is so far not known how to describe the action of a Galois automorphism on a
dessin in terms of the combinatorial data that determine the dessin. Nevertheless this
approach led to many beautiful results concerning e. g. the faithfulness of the action
on special classes of dessins d’enfants. Perhaps the most conceptual outcome of the
investigation of the Galois action on dessins is the embedding of Gal(Q/Q) into the
Grothendieck–Teichmüller group ĜT .

4.1 The action on dessins

In this section we explain the action of Gal(Q/Q) on dessins d’enfants by saying how
it acts on Belyi pairs.

By the theorem of Belyi, every Riemann surface X that admits a Belyi morphism
β is defined over a number field and thus in particular over Q. As explained in the first
paragraph of Section 3, this means that, as an algebraic curve, X can be described as
the zero set of polynomials with coefficients in Q. The fancier language of modern
algebraic geometry expresses this property by saying that X admits a morphism of
finite type ϕ : X → Spec(Q) to the one point scheme Spec(Q). Such a ϕ is called a
structure morphism of X.

Every Galois automorphism σ ∈ Gal(Q/Q) induces an automorphism σ ∗ of
Spec(Q). Composing it with the structure morphism ϕ gives a new structure mor-
phism σϕ := (σ−1)∗ � ϕ : X → Spec(Q). We call σX the scheme X endowed with
the structure morphism σϕ. In more elementary language, σX is obtained from X by
applying σ to the polynomials defining X. In general, X and σX are not isomorphic
as Q-schemes or as Riemann surfaces, i.e. there is in general no isomorphism making
the following diagram commutative:
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X
? ��

ϕ
����

��
��

��
�

σX

σϕ�����
���

���

Spec(Q)

Example 4.1. Let E be an elliptic curve over C, in other words a Riemann surface of
genus 1. E can be embedded into the projective plane as the zero set of a Weierstrass
equation y2 = x3+ax+b (or rather its homogenisation). It is defined over a number
field if and only if a, b ∈ Q. A Belyi map for E is obtained e. g. by applying Belyi’s
algorithm to the four critical values of the projection β0 : E → P

1, (x, y) 	→ x.
The elliptic curve σE is the zero set of y2 = x3 + σ(a)x + σ(b). It is well known
that Weierstrass equations define isomorphic Riemann surfaces if and only if their j -
invariants agree. Thus σE is isomorphic toE if and only if j (E) = j (a, b) = a3

4a3+27b2

is fixed by σ .

To describe the Belyi map σβ : σX → P
1 that gives the image of the Belyi pair

(X, β) under σ , we first look at the characterization ofX as the zero set of polynomials
f1, . . . , fk in variables x1, . . . , xn: thenβ is, at least locally, also given as a polynomial
in x1, . . . , xn with coefficients in Q, and σβ is obtained by applyingσ to the coefficients
of this polynomial.

The description of σβ in terms of schemes is as follows: Let π : P1 → Spec(Q)
denote the (fixed) structure morphism of the projective line P

1; π is related to the
structure morphism ϕ of X by the equation

ϕ = π � β.
Since P

1 clearly is defined over Q, for every σ ∈ Gal(Q/Q) the induced automorphism
σ ∗ of Spec(Q) lifts to an automorphism ρσ of P

1. Then we have

σβ = ρσ−1 � β.
This is summarized in the following commutative diagram:

X

σβ

��

β

��

ϕ

����
��

��
��

�
σϕ

���������������������

Spec(Q)
(σ−1)∗

�� Spec(Q)

P
1

π
����������� ρ

σ−1
��
P

1

π

		����������
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4.2 Fields of definition and moduli fields

Before studying properties of the Galois action on dessins d’enfants, we shortly digress
for the following question: Given a Riemann surfaceX, what is the smallest field over
which X can be defined?

In general we say that a variety (or scheme)X/K over a fieldK can be defined over
a subfield k ⊂ K if there is a schemeX0/k over k such thatX is obtained fromX0 by
extension of scalars: X = X0 ×k K . In this case, we call k a field of definition for X.

For example, a Riemann surface can always be defined over a field K which is
finitely generated over Q. Namely, considered as an algebraic curve, X is the zero set
of finitely many polynomials, and we may takeK to be the extension field of Q which
is generated by the finitely many coefficients of these polynomials.

It is not true in general that there is a unique smallest subfield of K over which
a given variety X/K can be defined. Therefore we cannot speak of “the field of
definition” of X. But there is another subfield of K associated with X, called the
moduli field, which is uniquely determined by X and turns out to be closely related to
fields of definition:

Definition 4.2. Let Aut(C) be the group of all field automorphisms of C. For a
Riemann surface X denote by U(X) the subgroup of all σ ∈ Aut(C) for which σX is
isomorphic to X. The fixed field M(X) ⊂ C of U(X) is called the moduli field of X.

There are two rather straightforward observations about moduli fields:

Remark 4.3. Let X be a Riemann surface of genus g.
a) If k ⊂ C is a field of definition for X, then M(X) ⊆ k.
b)Assume thatX can be defined over Q and let [X] be the corresponding point in the

moduli spaceMg,Q of regular projective curves defined over Q (considered as a variety

over Q). Recall thatMg,Q is obtained from a varietyMg,Q which is defined over Q by

extension of scalars. Then the orbit of [X] under the action of Gal(Q/Q) onMg,Q gives
a closed point [X]Q in the variety Mg,Q whose residue field is isomorphic to M(X).

Proof. a) IfX is defined over k and if σ ∈ Aut(C) fixes k, then idX is an isomorphism
between σX and X. Thus {σ ∈ Aut(C) | σ |k = idk} ⊆ U(X), hence M(X) ⊆ k.

b) (Sketch) LetV ⊂ Mg,Q be an affine neighbourhood of [X]Q and letAbe its affine
coordinate ring. Then [X]Q corresponds to a maximal ideal m in A, and k = A/m
is its residue field. In A⊗ k, m decomposes into maximal ideals m1, . . . , md which
are in bijection with the points in the Galois orbit of [X]. Thus the fixed field of the
stabilizer of, say, m1 in Gal(Q/Q) is A⊗ k/m1 = k.

The relation between the field of moduli and fields of definition of a Riemann
surface is much closer than indicated in part a) of the remark:

Proposition 4.4. Any Riemann surface can be defined over a finite extension of its
moduli field.
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This result is proved in [39]. For a proof in the language of algebraic geometry
that holds for curves over any field, see [10]. Further results on moduli fields, in
particular on the moduli field of a Belyi pair, can be found in [18]. There it is shown,
among other nice properties, that for “most” curves, the moduli field is also a field of
definition. The precise statement is thatX/Aut(X) can be defined overM(X) for any
curve X of genus g ≥ 2. This implies in particular that X can be defined over M(X)
if X admits no nontrivial automorphism. In this case, which holds for a generically
chosen Riemann surface of genus ≥ 3, the moduli field is the unique smallest field of
definition.

Proposition 4.4 plays a key role in the proof of the “if”-direction of Belyi’s theorem.
As explained in Section 3 one has to show that a Riemann surface can be defined over Q

if it admits a finite covering β : X→ P
1(C)which is ramified at most over 0,1 and∞.

Observe that, up to isomorphism, there are only finitely many coverings Y → P
1(C)

from some Riemann surface Y of a fixed degree that are unramified outside 0, 1,∞
(see [18, Proposition 3.1] for an elementary proof of this fact). It follows that the
moduli field of β and hence in particular that of X is a finite extension of Q. From
Proposition 4.4 we then conclude that X can be defined over a number field.

4.3 Faithfulness

We have established an action of Gal(Q/Q) on Belyi pairs by defining σ · (X, β) to
be the Belyi pair (σX, σβ) for σ ∈ Gal(Q/Q). Example 4.1 shows that this action
is faithful, since for every Galois automorphism σ �= id we can find a, b ∈ Q such
that σ(j (a, b)) �= j (a, b) and thus σE is not isomorphic to E, where E is the elliptic
curve with Weierstrass equation y2 = x3 + ax + b. Translating the Galois action to
dessins d’enfants via the Grothendieck correspondence we deduce:

Proposition 4.5. The action of Gal(Q/Q) on dessins d’enfants is faithful.

Several nice examples for this Galois action on dessins are worked out in the
manuscript [40] by J. Wolfart; he attributes the following one to F. Berg: Let σ ∈
Gal(Q/Q) be an element that maps the primitive 20th root of unity ζ = eπi/10 to ζ 3.
Then σ maps the left hand dessin in Figure 5 to the right hand one:

Figure 5. Two Galois equivalent dessins which are not isomorphic.
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The dessin on the left lies on the elliptic curve y2 = (x + 1)(x − 1)(x − cos π
10 ),

whereas the right hand dessin lies on y2 = (x + 1)(x − 1)(x − cos 3π
10 ). The Belyi

map is in both cases the composition of the projection β0(x, y) = x with the square
T 2

5 (z) of the fifth Chebyshev polynomial.
In the proof of Proposition 4.5 we have shown more precisely that the action is

faithful on dessins of genus 1. The same faithfulness result holds for the Galois action
on dessins of any fixed genus g ≥ 1. This can be seen for example using hyperelliptic
curves: for mutually distinct numbers a1, . . . , a2g in P

1(C), the (affine) equation y2 =
(x − a1) . . . (x − a2g) defines a nonsingular curve X of genus g. The automorphism
(x, y) 	→ (x,−y) is called the hyperelliptic involution on X; the quotient map is the
projection (x, y) 	→ x. It is a covering X → P

1 of degree 2, ramified exactly over
a1, . . . , a2g . Two hyperelliptic curves with equations y2 = (x − a1) . . . (x − a2g)

and y2 = (x − a′1) . . . (x − a′2g) are isomorphic if and only if there is a Möbius
transformation that maps the set {a1, . . . , a2g} to the set {a′1, . . . , a′2g}.

A hyperelliptic curve is defined over Q if all the ai are algebraic numbers. In
this case, for σ ∈ Gal(Q/Q), the curve σX is given by the equation y2 = (x −
σ(a1)) . . . (x−σ(a2g)). It is then easy, if σ �= id, to choose a1, . . . , a2g in such a way
that there is no Möbius transformation that maps the ai to the σ(aj ). An explicit way
to find suitable ai’s is explained in [1].

With a bit more work, it is also possible to show that the Galois action on genus 0
dessins is faithful. Since all Riemann surfaces of genus zero are isomorphic to the
projective line, it is not possible to find, as in the case of higher genus, a Riemann
surface X such that σX �∼= X. Rather one has to provide, for a given σ ∈ Gal(Q/Q),
σ �= id, a rational function β(z) such that σβ is not equivalent to β, i.e. not of the
form β � ρ for some Möbius transformation ρ. L. Schneps [34] showed that one can
always find a suitable polynomial. The dessin d’enfants obtained from a polynomial
is a planar graph whose complement in the plane is connected, hence the dessin is a
tree. Schneps’ result thus is

Proposition 4.6. The Galois action on trees is faithful.

Using a similar argument as for the hyperelliptic curves, F. Armknecht [1] gave an
alternative proof of this result. L. Zapponi [42] improved the result to trees of diameter
at most 4.

4.4 Galois invariants

To understand the Galois action on dessins d’enfants one can look for Galois invariants,
i.e. properties of a dessin that remain unchanged under all Galois automorphisms.
The idea, or rather the dream, is to find a complete list of invariants; then two dessins
d’enfants would be Galois conjugate if and only if they agreed on all the data from
the list. Unfortunately such a list is not known up to now.
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But several Galois invariants are known and can at least help distinguishing differ-
ent orbits. The most fundamental invariants are derived from the correspondence of
dessins d’enfants with Belyi pairs: If (X, β) is a Belyi pair and σ ∈ Gal(Q/Q), there is
a bijection between the ramification points of β onX and the ramification points of σβ
on σX; moreover this bijection preserves the ramification orders. It therefore follows
from the Riemann–Hurwitz formula that X and σX have the same genus. Translating
these remarks to the corresponding dessinD and observing that the ramification points
of β over 0, 1 and∞ correspond to the black vertices, the white vertices and the cells
of D, respectively, we obtain:

Proposition 4.7. The genus and the valency lists of a dessin d’enfants are Galois
invariants.

Recall that the genus of a dessin d’enfants D = (G, i) is the genus of the surface
onto which the dessin is drawn, see Definition 3.10. D has 3 valency lists: one for the
black vertices, one for the white vertices, and one for the cells. These lists contain an
entry for each vertex (resp. cell), and the entry is the valency of this vertex (resp. cell).

A famous example that these invariants do not suffice to separate Galois orbits is
“Leila’s flower”, see [34], [41]. A few more subtle Galois invariants are known: the
automorphism group of D, properties of the action of Aut(D) on vertices or edges
(like “regularity”); Zapponi [41] introduced the spin structure of a dessin and showed
that it is a Galois invariant and in particular that it separates the two non-equivalent
versions of Leila’s flower.

4.5 The action on F̂2

Recall that
...
P is the projective line P

1(C)with the three points 0, 1 and∞ removed. We
saw in Proposition 3.2 that dessins d’enfants correspond bijectively to finite unramified
coverings of

...
P and thus to (conjugacy classes of) finite index subgroups ofF2 = π1(

...
P).

In this section we explain how the Galois action on dessins induces an action of
Gal(Q/Q) on F̂2, the profinite completion of F2, and thus an embedding of Gal(Q/Q)
into Aut(F̂2).

We restrict our attention to dessins for which the associated covering of
...
P is Galois.

The corresponding subgroup of F2 is then normal, and we have no ambiguity “up to
conjugation”. Moreover the action of Gal(Q/Q) on finite index subgroups of F2 can
also be interpreted as an action on the set of finite quotient groupsF2/N , whereN runs
through the normal subgroups of F2. These finite quotient groups form a projective
system of finite groups, with projections F2/N

′ → F2/N coming from inclusions
N ′ ⊂ N . The inverse limit of this projective system is F̂2, the profinite completion
of F2.

The action of Gal(Q/Q) on F̂2 can be described quite explicitly. We sketch the
approach by Y. Ihara, P. Lochak and M. Emsalem, see [17] and [6]; the details are
worked out in e.g. [29]. Let x and y be generators of F2 = π1(

...
P) that correspond to
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loops around 0 and 1, respectively. Their residue classes in the finite quotients F2/N

of F2 define elements (x mod N)N and (y mod N)N of F̂2, that we still denote by
x and y. They are called topological generators since the subgroup they generate is
dense in the profinite (or Krull) topology of F̂2. Note that the group theoretical and the
topological data are related as follows: if N is a finite index normal subgroup of F2
which corresponds to the normal covering p : Y → P

1, then the order of x mod N in
F2/N is the ramification index of p above 0, i.e. the l.c.m. of the ramification indices
of the points in the fibre p−1(0); we denote this number by e(N). With this notation
at hand we can state the announced result:

Proposition 4.8. For σ ∈ Gal(Q/Q) and x and y the topological generators of F̂2
described above we have

σ · x = xχ(σ) and σ · y = f−1
σ yχ(σ)fσ .

The element fσ ∈ F̂2 in the second formula will be explained at the end of this
subsection; xχ(σ) is the element of F̂2 defined by xχ(σ)N = (x mod N)χe(N)(σ ), N
running through the finite index normal subgroups ofF2, where for a positive integer e,
χe : Gal(Q/Q)→ (Z/eZ)× is the cyclotomic character, i.e. χe(σ ) = n if σ(ζe) = ζ ne
for a primitive e-th root of unity ζe. Note that χ(σ) = (χe(N)(σ ))N can be considered
as an element of Ẑ

×.
The starting point for the proof of Proposition 4.8 is the equivalence of the following

categories:

• finite normal coverings of P
1(C) unramified outside 0, 1 and∞;

• finite normal coverings of P
1(Q) unramified outside 0, 1 and∞;

• finite normal holomorphic unramified coverings of
...
P;

• finite Galois extensions of Q(T ) unramified outside T , T − 1 and 1
T

.

The first equivalence is a consequence of Belyi’s theorem, the others are standard
results on Riemann surfaces and algebraic curves (cf. Section 2 and the paragraph
before Remark 3.8).

A crucial technical tool in the proof is the notion of a tangential base point of a
Riemann surface X. It consists of a point together with a direction in this point. For
the fundamental group with respect to a tangential base point, only closed paths are
considered that begin and end in the prescribed direction. For example, we denote by
�01 the tangential base point of P

1(C) which is located at 0 and whose direction is the
positive real axis. We take the element x ∈ π1(

...
P, �01) to be a small loop around 0, that

begins and ends in 0 in the direction towards 1. (See Figure 6.)
Another important tool is the field P�u of convergent Puiseux series in a tangential

base point �u. For �u = �01, these are series of the form
∑∞
n=k anT

n
e for some integer k,

some positive integer e and complex coefficients an, such that the series converges in
some punctured neighbourhood of 0. These Puiseux series then define meromorphic
functions in a neighbourhood of 0 that is slit along the real line from 0 to 1.
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Figure 6. The generator x in the tangential base point �u = �01.

Given a covering p : X → P
1 that is possibly ramified over 0, the function field

C(X) of X can be embedded into P�u as follows: fix a point v ∈ X above 0 and
choose a local coordinate z in v such that p is given by z 	→ ze in a neighbourhood
of v. For a meromorphic function f ∈ C(X), let f (z) = ∑

anz
n be the Laurent

expansion in v, and take
∑
anT

n
e to be its image in P�u, where e is the ramification

index of p in v. If ζ is an e-th root of unity, we get another embedding by sending∑
anz

n to
∑
anζ

nT
n
e . These embeddings of C(X) into P�u correspond bijectively to

the tangential base points in v that are mapped to �u by z.
Lifting the (small!) loop x via p to X with starting point v we again get a closed

path, but it may end in v in a direction different from the starting one. In this way we
get an action of x on the tangential base points over �u and hence on the embeddings
of C(X) into P�u.

Now let σ ∈ Gal(Q/Q). To describe σ · x, we have to specify, for each Belyi pair
(X, β), the embedding of C(X) into P�u induced by σ · x. By the above equivalences
of categories, it suffices to take the function field Q(X) and Puiseux series with coef-
ficients in Q. Then σ acts on the coefficients of the Puiseux series, and an embedding
that maps f ∈ Q(X) to the series

∑
anT

n
e is transformed by σ ·x into the embedding

f 	→
∑

anT
n
e 	→

∑
σ−1(an)T

n
e 	→

∑
σ−1(an)ζ

nT
n
e 	→

∑
anσ(ζ )

nT
n
e

where ζ is the root of unity corresponding to x. Since σ(ζ ) = ζχe(σ ), this shows the
first formula of Proposition 4.8.

The second formula is proved similarly using a small loop y around 1. The differ-
ence is that here we need the path t from 0 to 1 along the real line to make y into a
closed path around �u. But t can also be interpreted as acting on embeddings of Q(X)

into the field of Puiseux series. Working with fundamental groupoids instead of the
fundamental group, we can calculate σ · t in a similar way as σ · x. The element fσ
in the formula then turns out to be t−1 σ · t .

4.6 The action on the algebraic fundamental group

At first glance the action of Gal(Q/Q) on F̂2 described in the previous section might
look very special. But in fact it is an explicit example of the very general and conceptual
construction of Galois actions on algebraic fundamental groups. We shall briefly
explain this relation in this section.
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The algebraic fundamental group πalg
1 (X) of a scheme X is defined as the pro-

jective limit of the Galois (or deck transformation) groups of the finite normal étale
coverings of X. In general, a morphism of schemes is called étale if it is “smooth
of relative dimension 0”. If X is an algebraic curve over the complex numbers, this
property is equivalent to the usual notion of an unramified covering. So in this case
the projective system defining π alg

1 (X) is the system of the finite quotient groups of
the topological fundamental group π1(X). It follows that the algebraic fundamental
group of a Riemann surface is the profinite completion of its topological fundamental
group, cf. [27, p. 164].

In the proof of Proposition 4.8 we used the equivalence of four categories, namely
the normal coverings of P

1 as a variety over C resp. Q that are unramified outside 0,
1 and∞, the unramified coverings of

...
P, and the suitably ramified Galois extensions

of the function field Q(T ) of P
1
Q

. In all four categories, to every object there is
associated a finite group (the Galois group of the covering resp. the field extension).
The morphisms in the respective category make these groups into a projective system.
The inverse limits of these systems are resp. the algebraic fundamental groups of

...
P

C

and
...
P

Q
, the profinite completion F̂2 of the topological fundamental groupπ1(

...
P) = F2,

and the Galois group of �/Q(T ), where � is the maximal Galois field extension of
Q(T ) which is unramified outside T , T − 1 and 1

T
. As a corollary to Proposition 4.8

we thus obtain:

Remark 4.9. We have the following chain of group isomorphisms:

π
alg
1 (

...
P

C
) ∼= πalg

1 (
...
P

Q
) ∼= F̂2 ∼= Gal(�/Q(T )).

From the chain of Galois extensions Q(T ) ⊂ Q(T ) ⊂ � we obtain the exact
sequence

1→ Gal(�/Q(T ))→ Gal(�/Q(T ))→ Gal(Q/Q)→ 1

of Galois groups (since Gal(Q(T )/Q(T )) ∼= Gal(Q/Q)). Using the isomorphisms of
Remark 4.9, we obtain the following special case of Grothendieck’s exact sequence
of algebraic fundamental groups, cf. [27, Theorem 8.1.1]:

1→ π
alg
1 (

...
P

Q
)→ π

alg
1 (

...
P

Q
)→ Gal(Q/Q)→ 1.

This exact sequence provides us a priori with an outer action of Gal(Q/Q) onπalg
1 (

...
P

Q
),

i.e. a group homomorphism from Gal(Q/Q) to the outer automorphism group
Out(F̂2) = Aut(F̂2)/Inn(F̂2) of F̂2 ∼= π

alg
1 (

...
P

Q
). The additional information that

we obtain from the explicit results in Section 4.5 is that the sequence splits, and that
the outer action thus is in fact a true action. In other words, the construction in Sec-
tion 4.5 corresponds to a particular splitting homomorphism Gal(Q/Q)→ π

alg
1 (

...
P

Q
).
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4.7 The Grothendieck–Teichmüller group

In the last two sections we established a group homomorphism τ : Gal(Q/Q) →
Aut(F̂2) coming from the Galois action on dessins. It follows from Proposition 4.5
that τ is injective. In this way, Gal(Q/Q) is embedded into a group whose definition
does not refer to field extensions or number theory; but since Aut(F̂2) is a very large
group that is not well understood, there is not much hope that this embedding alone
can shed new light on the structure of the group Gal(Q/Q).

In his paper [4], V. Drinfel’d defined a much smaller subgroup of Aut(F̂2), which
still contains the image of Gal(Q/Q) under τ . He called this group the Grothendieck–
Teichmüller group and denoted it by ĜT . It is still an open question whether Gal(Q/Q)
is equal to ĜT . In this section we present the definition of ĜT and indicate how
Gal(Q/Q) is embedded into ĜT .

We saw in Proposition 4.8 that for σ ∈ Gal(Q/Q), the automorphism τ(σ ) ∈
Aut(F̂2) is completely determined by the “exponent” λσ = χ(σ) ∈ Ẑ

× and the
“conjugator” fσ ∈ F̂2. The explicit knowledge of fσ makes it possible to show that
it acts trivially on abelian extensions of Q(T ) and therefore that fσ is contained in
the (closure of the) commutator subgroup F̂ ′2 of F̂2, see [17, Proposition 1.5] or [29,
Section 4.4]. The composition of automorphisms implies that pairs in Ẑ

× × F̂ ′2 that
come from Galois automorphisms, are multiplied according to the rule

(λ, f ) · (μ, g) = (λμ, f Fλ,f (g)), (4.1)

where Fλ,f is the endomorphism of F̂2 which is induced by x 	→ xλ and y 	→
f−1yλf . Motivated by his investigations of braided categories Drinfel’d found some
natural conditions to impose on such pairs (λ, f ):

Definition 4.10. a) Let ĜT0 be the set of pairs (λ, f ) ∈ Ẑ
× × F̂ ′2 that satisfy

(I) θ(f ) f = 1,

(II) ω2(f xm) ω(f xm) f xm = 1,

wherem = 1
2 (λ− 1) and θ resp. ω are the automorphisms of F̂2 defined by θ(x) = y,

θ(y) = x resp. ω(x) = y, ω(y) = (xy)−1.
b) Let ĜT0 be the group of elements in ĜT0 that are invertible for the composition

law (4.1).
c) The Grothendieck–Teichmüller group ĜT is the subgroup of ĜT0 of elements

that satisfy the further relation

(III) ρ4(f̃ ) ρ3(f̃ ) ρ2(f̃ ) ρ(f̃ ) f̃ = 1

which takes place in the profinite completion K̂5 of the pure braid group K5 on five
strands. This group is generated by elements xi,i+1 for i ∈ Z/5Z, and ρ is the
automorphism that maps xi,i+1 to xi+3,i+4; finally f̃ = f (x1,2, x2,3).
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It is not obvious from the definition that ĜT0 is a group, more precisely the group
of all elements in ĜT0 that induce automorphisms on F̂2. The proofs of these facts
can be found in [21] and [35]; a careful proof with all details is contained in [8].

The relation between the Galois group and the Grothendieck–Teichmüller group
is stated in

Theorem 4.11. Via the homomorphism τ , Gal(Q/Q) becomes a subgroup of ĜT.

That the pairs (λσ , fσ ) coming from Galois automorphisms satisfy the first two
relations (I) and (II) can be shown using the explicit computations of the action on F̂2,
see e.g. [6] or [29, Section 5.1] for a detailed version. The proof of the third relation
is a bit more complicated; we refer to [17].

5 Origamis

5.1 Introduction to origamis

In the world of dessins d’enfants we study finite unramified holomorphic coverings
β : X∗ → ...

P between Riemann surfaces. We have seen in Section 3 that such a covering
is up to equivalence completely determined by the coveringR∗ → ...

S of the underlying
topological surfaces. It is very tempting to generalize this and look at general finite
unramified coverings between punctured closed surfaces, i.e. closed surfaces with
finitely many points removed. It turns out that choosing the once-punctured torus
E∗ = E\∞ (∞ some point on the torus E) as base surface instead of

...
S is in some

sense the next “simplest” case. Following the spirit and the denominations of [20],
we call a covering p : R → E ramified at most over the point∞ an origami. Note
that this defines the unramified covering R∗ → E∗, where R∗ = R\p−1(∞), and
conversely each finite unramified cover of E∗ is obtained in this way. Similarly as
for Belyi pairs we call two origamis O1 = (p1 : R1 → E) and O2 = (p2 : R2 → E)

equivalent, if there exists some homeomorphism f : R1 → R2 such that p2 �f = p1.
The first observation is that the different combinatorial descriptions of a topological

covering R∗ → ...
S explained in Section 3 smoothly generalize to arbitrary unramified

coverings of punctured closed surfaces. In the case of origamis we obtain the equivalent
descriptions stated in Proposition 5.1. The generalization of a dessin d’enfants can be
done as follows: In the case of the three-punctured sphere

...
S, we used that we obtain a

cell if we remove the interval I = [0, 1] from
...
S. For the once-punctured torus E∗ we

remove two simple closed curves a and b starting in the puncture as shown in Figure 7.
The cell that we obtain in this way is bounded in E by four edges labeled with

a and b. We identify it with a quadrilateral. Similarly as described in Section 3,
we have for an origami p : R∗ → E∗ that R∗\(p−1(a) ∪ p−1(b)) decomposes into
a finite union of quadrilaterals. Unlike the case of dessins, the map p restricted to
R∗\(p−1(a) ∪ p−1(b)) is unramified and the number of quadrilaterals is the degree
d of p. We retrieve the surface R∗ by gluing the quadrilaterals. Hereby only edges
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ab

a

b

a

b

Figure 7. Removing two simple closed curves from the torus E gives a cell.

labeled with the same letter a or b may be glued. Furthermore we have to respect
orientations. Altogether this leads to the following “origami-rules”: Glue finitely
many copies of the Euclidean unit square such that

• each left edge is glued to a unique right edge and vice versa;

• each upper edge is glued to a unique lower one and vice versa;

• we obtain a connected surface R.

R has a natural covering map p : R→ E by mapping each square to one square which
forms the torusE. The mapp is unramified except possibly above∞, which is the one
point onE that results from the vertices of the square. Thus p : R→ E is an origami.
Note that for the moment we are only interested in the topological covering p and it
would not be necessary to take Euclidean unit squares which endows R in addition
with a metric.

It is remarkable that by some fancy humour of nature the fundamental groups of
...
P

and E∗ are both the same abstract group, the free group F2 in two generators.

Proposition 5.1. An origami p : R∗ → E∗ is up to equivalence uniquely determined
by the following:

• A surface obtained from gluing Euclidean unit squares according to the “origami
rules” (see above).

• A finite oriented graph whose edges are labeled with a and b such that each
vertex has precisely two incoming edges and two outgoing edges one of which is
labeled with a and one with b, respectively.

• A monodromy map α : F2 → Sd for some d ≥ 1 up to conjugation in Sd . We
denote σa = α(a) and σb = α(b). Similarly as in Section 3 we require a
monodromy map by definition to induce a transitive action on {1, . . . , d}.

• A finite index subgroup U of F2 up to conjugation in F2.

The equivalences stated in Proposition 5.1 are carried out in detail e.g. in [32,
Section 1]. Thus we restrict here to giving the different descriptions for an example.

Example 5.2. In the following we describe the origami, commonly known as L2,2,
in the different ways assembled in Proposition 5.1.
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1 2

3

Gluing squares according to the
origami-rules: Opposite edges age glued.

�������	3

b





a
��

�������	1

b

��

a ���������	2

a



b

��

The finite graph which
describes the origami.

The monodromy map is the map α : F2 → S3 which is given by a 	→ σa = (1 2) and
b 	→ σb = (1 3) and a corresponding subgroup ofF2 isU = 〈a2, b2, aba−1, bab−1〉.

A short Euler characteristic calculation shows that for this example the surface R
has genus 2. The covering map p : R→ E has degree 3 and the puncture∞ has one
preimage on R.

5.2 Teichmüller curves

So far, we have only considered coverings between topological surfaces. A crucial
point of the theory of dessins d’enfants is that the three-punctured sphere

...
S has a

unique complex structure as a Riemann surface. Therefore choosing a finite unramified
covering β : R∗ → ...

S defines a closed Riemann surface of genus g = genus(R): Take
the unique complex structure on the sphere and lift it via p to R∗. For the so obtained
Riemann surface X∗ there is a unique closed Riemann surface X into which we can
embed X∗ holomorphically. Hence, β defines the point [X] in Mg , respectively [X∗]
inMg,n, whereMg is the moduli space of regular complex curves of genus g,Mg,n is
the moduli space of regular complex curves with nmarked points and n is the number
of points in X\X∗. Recall from algebraic geometry thatMg andMg,n are themselves
complex varieties. In fact they are obtained by base change from schemes defined
over Z. By Belyi’s Theorem the image points [X] ∈ Mg , respectively [X∗] ∈ Mg,n

are points defined over Q.
How can we generalize this construction for origamis? Since we have a one-

dimensional family of complex structures on the torusE, an origamiO = (p : S → E)

will define a collection of Riemann surfaces depending on one complex parameter.
More generally, an unramified cover p : R∗1 → R∗2 between punctured closed surfaces
naturally defines the holomorphic and isometric embedding

ιp : T (R∗2) ↪→ T (R∗1), [μ] 	→ [p∗μ], (5.1)

from the Teichmüller space T (R∗2) to the Teichmüller space T (R∗1), which maps a
complex structure μ on R∗2 to the complex structure p∗μ on R∗1 obtained as pull back
via p. We now project the image B := ιp(T (R∗2)) to Mg,n and further to Mg . How
do the images in the moduli spaces look like? Can we describe their geometry based
on the combinatorial data of the map p with which we started?
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In the following we restrict to the case of origamis. Thus we obtain an embedding
ιp : H ∼= T1,1 ↪→ Tg,n which is holomorphic and isometric. Such a map is called a
Teichmüller embedding and its image in Teichmüller space is called a Teichmüller disk.
Teichmüller disks arise in general from the following construction, which is described
in detail and with further hints to literature e.g. in [15]: Let X be a compact Riemann
surface together with a flat structure ν on it; i.e. we have an atlas onX\{P1, . . . , Pn} for
finitely many pointsPi such that all transition maps are locally of the form z 	→ ±z+c
with some constant c. Suppose furthermore that the Pi’s are cone singularities of ν.
Then each matrix A ∈ SL2(R) induces a new flat structure νA by composing each
chart with the affine map z 	→ A · z. This defines a map

ιν : H ∼= SL2(R)/SO2(R)→ Tg, [A] 	→ [νA] (5.2)

which is in fact a holomorphic and isometric embedding, i.e. it is a Teichmüller em-
bedding. It is a nice feature that for an origami O = (p : S → E) the surface S
comes with a flat structure: One identifies E with C/(Z⊕ Zi). This quotient carries
a natural flat structure induced by the Euclidean structure on C. It is actually a trans-
lation structure, i.e. the transition maps are of the form z 	→ z + c. Note that in the
description of origamis with the “origami-rules” we obtain the translation structure for
free, if we glue the edges of the unit squares via translations. The translation surfaces
arising in this way are often called square tiled surfaces. It is not hard to see that
for an origami O the induced maps ιν defined in (5.2) and projg,n � ιp (with ιp from
(5.1)) from H to Tg are equal (see e.g. [31, p. 11]); here projg,n : Tg,n → Tg is the
natural projection obtained by forgetting the marked points. In the following we will
therefore denote the map projg,n � ιp = ιν just by ιO .

The study of Teichmüller disks has lead to vivid research activities connecting
different mathematical fields such as dynamical systems, algebraic geometry, complex
analysis and geometric group theory. Many different authors have contributed to this
field in the last years with a multitude of interesting results (see e.g. [13] in Volume I
of this Handbook, [26] in this volume, or [15] for comments on literature). Important
impacts to this topic were already given in [36]. An important tool for the study of
Teichmüller disks is the Veech group, which was introduced in [37]. For a translation
surface (X, ν) one takes the affine group Aff(X, ν) of diffeomorphisms which are
locally affine. The Veech group �(X, ν) is its image in SL2(R) under the derivative
map D, which maps each affine diffeomorphism to its linear part. The article [26] in
this volume gives a more detailed introduction to Veech groups, an overview on recent
results and hints to more literature. In Theorem 5.3 we list the properties of Veech
groups that we will use. It is a collection of results contributed by different authors,
which we have learned mainly from [37], [5] and [23]. Section 2.4 in [15] contains a
quite detailed summary of them and further references. An important ingredient is the
fact that if we have a translation structure and pull it back by an affine diffeomorphism
f , it is changed by composing each chart with the affine map z 	→ Az, where A is
the inverse of the derivative of f . Therefore the elements in the mapping class group
which come from affine diffeomorphisms stabilize the image � of the Teichmüller
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embedding ιν . One shows that in fact, they form the full stabilizer of�. Furthermore
the group Trans(X,μ) = {f ∈ Aff(X,μ) | D(f ) = identity matrix} acts trivially on
� and �(X, ν) ∼= Aff(X, ν)/Trans(X, ν).

Theorem 5.3. Let X be a compact Riemann surface and ν a translation structure on
X with finitely many cone singularities. Let ι = ιν : H ↪→ Tg be the corresponding
Teichmüller embedding, � its image in Tg , pg : Tg → Mg the natural projection and
�g the mapping class group for genus g. Then we have:

• Stab�g (�) ∼= Aff(X, ν).

• pg|� factors through the quotient map q : � → �/�(X, ν), i.e. we obtain a
map n : �/�(X, ν)→ Mg with pg|� = n � q.

• The image of � in Mg is an algebraic curve C if and only if the Veech group
�(X, ν) is a lattice in SL2(R). If this is the case, C is called a Teichmüller
curve, and n is a birational map. Therefore it is the normalization of C. C is
birationally equivalent to a mirror image of H/�(X, ν).

In the following we will only consider Teichmüller embeddings coming from
origamis. In this case, the Veech group is commensurable to SL2(Z) and thus a
lattice in SL2(R). It turns out to be useful given an origami O = (p : X → E),
to consider only affine diffeomorphisms which preserve p−1(∞). The image of this
group is in fact a subgroup of SL2(Z). Following the notations in [31], we denote it
by �(O) and call it the Veech group of the origami O. If we replace Tg by Tg,n and
Mg by Mg,n in Theorem 5.3, then �(O) becomes the effective stabilizing group of
� ⊆ Tg,n. [30] describes an algorithm which computes �(O).

Coming back to the question asked at the beginning of this section, we state that
in the case of an origami the image of the map ιp in Mg is an algebraic curve which
comes from a Teichmüller disk. In the following sections we study these curves, which
we call origami curves. More precisely we point out some explicit relations between
them and dessins d’enfants.

6 Galois action on origamis

In [20], Lochak suggested to study the action of Gal(Q/Q) on origamis in some
sense as a generalization of the action on dessins d’enfants following the spirit of
Grothendieck’s Esquisse d’un programme. Recall from Section 4 that for each σ ∈
Gal(Q/Q) and each projective curve X defined over Q, we obtain a projective curve
σX. This actually defines an action of Gal(Q/Q) onMg,Q, the moduli space of regular

projective curves which are defined over Q.
In the following we want to make the definition of an action of Gal(Q/Q) on

origamis more precise: Let O = (p : R → E) be an origami with genus(R) = g.
Recall that O defines a whole family of coverings pA : XA → EA (A ∈ SL2(R))
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between Riemann surfaces. It follows from Theorem 5.3 that two coverings pA and
pA′ are equivalent, if and only if A and A′ are mapped to the same point on C̃(O) =
H/�(O), where �(O) is the Veech group; furthermore XA and XA′ are isomorphic,
if and only if the two matrices are mapped to the same point on the possibly singular
curveC(O). In particular we may parametrize the family of coverings by the elements
t of C̃(O) and denote them as pt : Xt → Et . In the following we will restrict to those
t for which pt : Xt → Et is defined over Q. We denote this subset of C̃(O) by C̃

Q
(O)

and similarly we write C
Q
(O).

Let us now pick some σ ∈ Gal(Q/Q). One immediately has two ideas on how σ

could act on origami curves; both lead at first glance to a problem:

• C = C
Q
(O) is mapped to its image σC

Q
= {σ(Xt ) | t ∈ C̃Q

(O)}. Is the image
again an origami curve? Or more precisely is there some origami σO such that
σC

Q
= C

Q
(σO)?

• For pt : Xt → Et (defined over Q) define σpt similarly as σβ in Section 4. Each
σpt defines an origami. Do they all lead to the same origami curve?

In [25, Proposition 3.2] Möller showed that the two approaches lead to the same unique
origami curve σC. We denote the corresponding origami by σO, i.e. σC = C(σO).

The basic ingredient of the proof in [25] is to consider the Hurwitz space of all cover-
ings with the same ramification behaviour asp for a given origamiO = (p : X→ E).
By a result of Wewers in [38], one obtains a smooth stack over Q. The covering p lies
in a connected component of it, whose image in moduli space is the origami curve
C(O). Möller deduces from this that C(O) is defined over a number field and that
one has the natural action of Gal(Q/Q) described above.

The Galois action on origamis is faithful in the following sense: For each σ in
Gal(Q/Q) there exists an origamiO such that C(O) �= σC(O). This is shown in [25,
Theorem 5.4]. The proof uses the faithfulness of the action of Gal(Q/Q) on dessins
of genus 0 (see Proposition 4.6). Starting with a Belyi morphism β : P1(C)→ P

1(C)

with σβ �∼= β, one takes the fibre product of β with the degree 2 morphism E →
P

1(C), where E is an elliptic curve which is defined over the fixed field of σ in Q.
Precomposing the obtained morphism with the normalization and postcomposing with
multiplication by 2 on E, gives an origami as desired.

This is a nice example for some interplay going on between origamis and dessins
in the way it was proposed in [20]. In the next two sections we describe two further
ways, how origamis and dessins can be related.

7 A dessin d’enfants on the origami curve

Let O = (p : R → E) be an origami and let �(O) be its Veech group. In this
section we consider the corresponding Teichmüller curve in the moduli spaceMg,n of
n-punctured curves and denote it by C(O). As always, g is the genus of R and n is
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the number of preimages of the ramification point∞ ∈ E. Let C̃(O) be the quotient
H/�(O). Recall from Theorem 5.3 that C̃(O) is the normalization of C(O).

The quotient C̃(O) naturally defines a dessin d’enfants, as it was pointed out in
[20, Proof of Proposition 3.2]: �(O) is a finite index subgroup of SL2(Z). Thus we
obtain a finite covering q : H/�(O) → H/SL2(Z) ∼= A

1(C). We may fill in cusps
and extend q to a finite covering q : X → P

1(C) of closed Riemann surfaces. This
covering has ramification at most above three points of P

1(C): the two ramification
points of the map H → H/SL2(Z) and the cusp∞ = P

1(C)\A1(C). Hence q is a
Belyi morphism. Applying once more the Theorem of Belyi, one obtains for free that
the complex curve C̃(O) is defined over Q.

The dessin corresponding to q is obtained quite explicitly from this description, as
we explain in the following. Recall that SL2(Z) is generated by the two matrices

T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
.

We take our favourite fundamental domain for SL2(Z), namely the ideal triangle with

vertices P = ζ3 = e 2πi
3 , Q = ζ3+1 and the cuspR = ∞, see Figure 8. Recall that P

H

R

QP

i

Figure 8. Fundamental domain of SL2(Z).

is a fixed point of the matrix S �T , which is of order 3 in PSL2(Z). Furthermore, i is a
fixed point of the order 2 matrix S and thus a further hidden vertex of the fundamental
domain. Finally, the transformation T maps the edge PR toQR and S maps the edge
P i to Qi. We obtain P

1(C) by “gluing” PR to QR and P i to Qi and filling in the
cusp at∞.

In order to make the dessin explicit, we identify the image of P on P
1(C) with 0,

the image of i with 1 and the image of the cusp with∞. The geodesic segment PQ
is then mapped to our interval I ; its preimage q−1(I ) on X is the dessin.

The algorithm in [30] gives the Veech group � by a system G of generators and a
system C of coset representatives. C is in fact a Schreier-transversal with respect to
the generators S and T of SL2(Z), i.e. each element inC is given as a word in S and T
such that each prefix of it is also in C. Therefore C defines a connected fundamental
domain F of � which is the union of translates of the triangle PQR; for each coset we
obtain one translate. The identification of the boundary edges of F are given by the
generators inG. Thus the fundamental domain F is naturally tessellated by triangles,
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which indicate the Belyi morphism. The dessin is the union of all translates of the
edge PQ.

In the following we describe the dessin for an example. We take the origami D
drawn in Figure 9, which is studied in [32]. The Veech group � = �(D) and the

1 2 3

4

5

a

ab

b
• • •

•

• •
� �
* *

*

*

Figure 9. The origami D. Edges with the same label and unlabeled edges that are opposite are
glued.

fundamental domain of � are given in Section 3 of [32]. The index of � in SL2(Z)

is 24 and the quotient H/� is a surface of genus 0 with six cusps. Figure 10 shows a
fundamental domain of �(D).
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d
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A
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E
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13

4

43

5

1

7

7

8

8

7

6

6

5

1

2

2

ST ST

6

Figure 10. The fundamental domain for the Veech group �(D).

We use a schematic diagram: Each triangle represents a translate of the triangle
PQR. The vertices labeled withA, . . . , F are the cusps. The thickened edges form the
dessin. The planar graph is redrawn in Figure 11. This picture matches its embedding
into P

1(C).
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*

A

B

F

DC

1

2

3

* E

4

7

8

5 6

**

*

*

Figure 11. The dessin on the origami curve C̃(D).

8 Dessins d’enfants related to boundary points of origami
curves

Let O = (p : X → E) be an origami of genus g ≥ 2 and C(O) the corresponding
origami curve in the moduli space Mg . Recall that the algebraic variety Mg can

be compactified by a projective variety Mg , the Deligne–Mumford compactification,
which classifies stable Riemann surfaces, i.e. surfaces with “nodes” (see below for
a precise definition). The closure C(O) of C(O) in Mg is a projective curve; its
boundary ∂C(O) = C(O)− C(O) consists of finitely many points, called the cusps
of the origami curve.

In this section we shall associate in a natural way dessins d’enfants to the cusps of
origami curves.

8.1 Cusps of origami curves

There is a general procedure to determine the cusps of algebraic curves in moduli
space, called stable reduction. We first recall the notion of a stable Riemann surface:

Definition 8.1. A one-dimensional connected compact complex space X is called
stable Riemann surface if

(i) every point of X is either smooth or has a neighbourhood which is analytically
isomorphic to {(z, w) ∈ C

2 | z · w = 0} (such a point is called a node), and

(ii) every irreducible component ofX that is isomorphic to P
1(C) intersects the other

components in at least three points.
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Now let C0 be an algebraic curve inMg and x ∈ ∂C a cusp of C. We may assume
that C0 is smooth (by removing the finitely many singular points of C0) and that also
C = C0 ∪ {x} is smooth (by passing to the normalization). Next we assume that we
have a family π0 : C0 → C0 of smooth curves over C0, i.e. a proper flat morphism
π0 such that the fibre Xc = π−1(c) over a point c ∈ C0 is isomorphic to the compact
Riemann surface which is represented by c (for this we may have to pass to a finite
covering of C0). The stable reduction theorem (see [11, Proposition 3.47]) states that,
after passing to another finite covering C′ of C (which can be taken totally ramified
over x), the family C0 ×C0 C

′
0 extends to a family π : C → C′ of stable Riemann

surfaces, and that the stable Riemann surfaceX∞ = π−1(x), that occurs as fibre over
the cusp x, is independent of the choice of C′.

Although the proof of the stable reduction theorem is constructive, this construction
usually becomes quite involved: First examples are discussed in [11, Section 3C]; a
particularly nice example for the cusp of an origami curve is worked out in [2].

If the algebraic curve C0 in Mg is a Teichmüller curve, there is a much more
direct way to find the stable Riemann surface associated to a cusp, avoiding the stable
reduction theorem. This construction is based on the description of Jenkins–Strebel
rays in [22] and worked out in detail in [15, Section 4.1]. The basic observation is
that for every cusp x of a Teichmüller curve C there is a direction on the flat surface
X defining C in which X is decomposed into finitely many cylinders; this direction
is associated to a Jenkins–Strebel differential on X. The stable Riemann surface
corresponding to the cusp is now obtained by contracting the core curves of these
cylinders. See [15, Section 4.2] for a proof of this result.

In the special case of a Teichmüller curve coming from an origami, the construction
is particularly nice: Let O = (p : X → E) be an origami as above. The squares
define a translation structure on X and divide it into horizontal cylinders, which we
denote by C1, . . . , Cn. The core lines c1, . . . , cn of these cylinders are the connected
components of the inverse imagep−1(a) of the horizontal closed path a on the torusE.
Contracting each of the closed paths ci to a point xi turns X into a surface X′∞ which
is smooth outside x1, . . . , xn. It is described in [15, Section 4.1] how to put, in a
natural way, a complex structure on X′∞. Then X′∞ satisfies the above Definition 8.1,
except perhaps (ii). If an irreducible component of X′∞ violates (ii), we can contract
this component to a single point and obtain a complex space which still satisfies (i).
After finitely many such contractions we obtain a stable Riemann surface X∞. This
process of contracting certain components is called “stabilizing”. For simplicity we
used here the horizontal cylinders. But the construction is the same for any direction
in which there is a decomposition into cylinders.

If we apply this construction to the torusE itself, we obtain a surfaceE∞ which has
a single node and whose geometric genus is zero. This surface is known as Newton’s
node and can algebraically be described as the singular plane projective curve with
affine equation y2 = x3 − x2.

Note that in the above construction, the covering p naturally extends to a covering
p∞ : X∞ → E∞, which is ramified at most over the critical point∞ of p (or, to be
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precise, the point on E∞ that corresponds to ∞ on E), and over the node. This is
illustrated in the following picture for the origami W from [16]:

- - - - - - - - - - - -

- - - - - - - - - - - -
/ \ /// /// \ /

//// \\\ // \\

\\\ //// \\ //

c1

c2

�
p

- - - a

Figure 12. The origami covering for the cusp of W .

8.2 The dessin d’enfants associated to a boundary point

The construction in 8.1 leads in a natural way to a dessin d’enfants, as was ob-
served in [20, Section 3.1], where it is attributed to L. Zapponi. Let, as before,
O = (p : X→ E) be an origami of genus g ≥ 2 andC(O) the corresponding origami
curve inMg . Furthermore let x ∈ ∂C(O) be a cusp andX∞ the stable Riemann surface
that is represented by x. Denote by X1, . . . , Xn the irreducible components of X∞
and by p∞ : X∞ → E∞ the covering discussed at the end of the previous section. For
each i = 1, . . . , n, the restriction of p∞ to Xi gives a finite covering pi : Xi → E∞.
For the degrees di of pi we have the obvious relation

n∑
i=1

di = d = deg(p).

Now let Ci be the normalization of Xi (i = 1, . . . , n). Then pi induces a covering
fi : Ci → P

1(C) (which is the normalization of E∞).

Proposition 8.2. For every boundary point x of the origami curve C(O) and each
irreducible component Xi of the stable Riemann surface X∞, the covering fi : Ci →
P

1(C) is a Belyi morphism.

Proof. We already noticed in Section 8.1 that the coveringp∞ : X∞ → E∞ is ramified
at most over the critical point ∞ of p and over the node. The normalization map
P

1(C)→ E∞ maps two different points to the node, so each fi can be ramified over
these two points, and otherwise only over the inverse image of∞.

In Section 3 we explained that a dessin d’enfants is completely determined by the
monodromy map of the corresponding Belyi map β, i.e. two permutations σ0 and σ1
in Sd , where d is the degree of β.
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Similarly, an origami O = (p : X → E) is also determined by two permutations
σa and σb, see Proposition 5.1. Recall that they describe the gluing of the squares in
horizontal resp. vertical direction. Thus a horizontal cylinder consists of the squares
in a cycle of σa , and a vertical cylinder consists of the squares in a cycle of σb.

There is a nice relation between the permutations σa and σb of the origami O and
the permutations σ0 and σ1 of the dessin d’enfants associated to the boundary point x
on ∂C(O)which is obtained by contracting the centre lines of the horizontal cylinders.
It was first made explicit (but not published) by Martin Möller as follows:

Proposition 8.3. Let O = (p : X → E) be an origami of degree d, and let σa , σb
be the corresponding permutations in Sd . Then the dessin d’enfants associated to the
horizontal boundary point on C(O) is defined by

σ0 = σa, σ1 = σbσaσ−1
b .

In this proposition, we use a slightly more general definition of a dessin d’enfant.
We allow the surface to be not connected. The dessin is then by definition the union
of the dessins on the irreducible components described above in Proposition 8.2.

Proof. Recall the construction of the covering p∞ : X∞ → E∞ and the Belyi map
f∞ : ⋃n

i=1Xi → P
1(C): E∞ is obtained from the torus E by contracting the hor-

izontal path a to a single point, the node of E∞. Let U be a neighbourhood of the
node, analytically isomorphic to {(z, w) ∈ C

2 | |z| ≤ 1, |w| ≤ 1, z · w = 0}. U is
the union of two closed unit disks U0, U1 which are glued together at their origins.
In the normalization P

1(C) of E∞, the node has two preimages, and the preimage of
U is the disjoint union of the two disks U0 and U1. The loops l0 and l1 can be taken
as simple loops in U0 resp. U1 around the origin. On E∞, l0 and l1 are the images of
parallels a0 and a1 of a, one above a, the other below:

•P

a1

a

a0

E

�

�
�
�
�
�
��

�
�
�
�
�

•P
l0

l1

E∞

�

•P ��
���

��
���

��
��
��

l0

l1

P
1

Figure 13. The loops on E, E∞ and P
1.

Since all our loops have to be considered as elements of the respective fundamental
groups, we have to choose base points in P

1(C), E∞, and E. Since l0 and l1 may not
pass through the origin (resp. the node), a0 and a1 may not intersect a. Therefore, if
we choose the base point P as in the figure, a0 is homotopic to a, but a1 is homotopic
to bab−1.
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Finally we have to lift a0 and a1 toX∞ resp.
⋃n
i=1Xi and write down the order in

which we traverse the squares if we follow the irreducible components of these lifts.
Thereby clearly the lift of a0 induces σa , whereas the lift of a1 induces σbσaσ

−1
b .

The Belyi map f∞ : ⋃n
i=1Xi → P

1(C) can also be described directly in a very
explicit way: In the above proof, E∞−{node} is obtained by gluing U0 and U1 along
their boundaries (with opposite orientation). We may assume that the distinguished
point∞, over which the origami map p is ramified, lies on this boundary, and that,
for the given Euclidean structure, the boundary has length 1. In this way we have
described an isomorphism between E∞ − {node} and

...
P.

Now letC1, . . . , Cn be the horizontal cylinders of the origami surfaceX. Contrac-
ting the centre line ci of Ci to a point turns Ci − ci into the union of two punctured
disks U0,i and U1,i . If Ci consists of di squares, the boundary of U0,i and U1,i has
length di , and is subdivided by the squares into di segments of length 1. The Belyi
map f∞ is obtained by mapping each U0,i to U0 and each U1,i to U1 in such a way
that the lengths are preserved. Thus in standard coordinates, the restriction of f∞ to
U0,i is z 	→ zdi .

8.3 Examples

8.3.1 The origami L2,2. The smallest origami with a surface X of genus > 1 (ac-
tually 2) is the one called L2,2 in Example 5.2; it is also the smallest one in the
family Ln,m of L-shaped origamis defined in Section 8.3.2 below. The origami map
p : L2,2 → E is of degree 3 and totally ramified over the point∞ ∈ E (the vertex
of the square). As explained in the previous section, the same holds for the covering
p∞ : X∞ → E∞ of the degenerate surfaces corresponding to the boundary points
in the horizontal direction. As X = L2,2 has 2 cylinders in the horizontal direction,
X∞ has 2 singular points which both are mapped by p∞ to the node of E∞. X∞
is irreducible, and its geometric genus is 0. Thus the normalization of X∞ is P

1(C),
and the induced map f∞ : P

1(C) → P
1(C) is of degree 3. The two points of the

normalization of E∞ that lie over the node (and which we normalized to be 0 and 1),
both have two preimages under f∞, one ramified, the other not. Thus we obtain the
following dessin for the Belyi map f∞:

• � • �

Figure 14. The dessin for a cusp of L2,2.

Since f∞ is totally ramified over∞, we can take it to be a polynomial. If we further
normalize it so that 0 is a ramification point, we find that f∞ is of the form

f∞(x) = x2(x − a)
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for some a ∈ C. The derivative of f∞ is

f ′∞(x) = 3x2 − 2ax = x(3x − 2a),

thus the other ramification point of f∞ in C is 2a
3 . Since the corresponding critical

value is 1, we must have

1 = f∞
(2a

3

)
= 4a2

9

(
− 1

3
a
)
=

(a
3

)3 · (−4)

or

a = 3 · 3

√
−1

4
.

All three choices of the third root lead to the same dessin, as can be seen from the
following observation: The polynomial fa(x) = f∞(x) = x2(x− a) has its zeroes at
0 and a, and takes the value 1 at 2

3a and− a3 , as can easily be checked. The cross ratio
of these four points is −8, hence rational. This means that for all possible choices of
a, the Belyi map fa is equivalent to fa � σa , where the Möbius transformation σa is
determined by

σa(0) = 0, σa(1) = −1

3
a, σa(∞) = a,

and consequently σa(−8) = 2
3a. An easy calculation shows

σa(x) = ax

x − 4
and fa � σa(x) = −27

x2

(x − 4)3
.

Note that fa � σa has a triple pole (at 4), a double zero at 0 (and another zero at∞),
and it takes the value 1 with multiplicity 2 at −8 (and a third time at 1).

It was shown in [31] that the origami curve C(L2,2) has only one further cusp
besides the one just discussed. It corresponds to cylinders in the “diagonal” direction
(1, 1). In fact, there is only one cylinder in this direction (of length 3), and by taking
this direction to be horizontal, the origami looks like

//

///

/

Figure 15. Another view on L2,2.

where as usual edges with the same marking are glued.
The corresponding singular surface X∞ has one irreducible component with one

singular point. Its normalization is an elliptic curveE0 which admits an automorphism
of order 3 (induced by the cyclic permutation of the three “upper” and the three “lower”
triangles of X∞). This property uniquely determines E0: It is the elliptic curve with
Weierstrass equation y2 = x3 − 1 and j -invariant 0.
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The corresponding dessin d’enfants is

Figure 16. The dessin of a boundary point of C(L2,2).

It is the same ribbon graph asG2 in Example 3.6. The Belyi map f for this dessin
is, up to normalization, the quotient map for the automorphism of order 3. If E0 is
given in Weierstrass form as above, this automorphism is the map (x, y) 	→ (ζ3x, y),
where ζ3 = − 1

2 + i
2

√
3 is a primitive third root of unity. Such a quotient map is

(x, y) 	→ y. It is easily seen to be totally ramified over i, −i and∞. To make the
critical values 0, 1 and∞, we have to compose with the linear map z 	→ i

2 (z − i).
This shows that our Belyi map is

f (x, y) = i

2
(y − i).

8.3.2 General L-shaped origamis. Denote by Ln,m the L-shaped origami with n
squares in the horizontal and m squares in the vertical direction:

. . .

...

m

n

Figure 17. The origami Ln,m; opposite edges are glued.

These origamis have been studied from several points of view by Hubert and Lelièvre,
Schmithüsen, and others. The genus of Ln,m is 2, independent of n andm. The index
of the Veech group gets larger if n and m increase, and the genus of C(Ln,m) can be
arbitrarily large. Also the number of cusps of C(Ln,m) grows with n and m.

In this section we only discuss the cusp of Ln,m which is obtained by contracting
the core lines of the horizontal cylinders. The resulting singular surface X∞ has
m − 1 irreducible components: there is one component that contains the cylinder of
length n and also the upper half of the top square. All other components consist of the
upper half of one square, together with the lower half of the next square. Each such
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component is a projective line that intersects two of the other components. Moreover
such a component contains a vertex, i.e. a point which is mapped to∞ by f∞ (but not
ramified). It follows that the Belyi map fi corresponding to such a component is the
identity map P

1(C)→ P
1(C).

Thus the only interesting irreducible component of X∞ is the one that contains
the “long” horizontal cylinder. For simplicity we only discuss the case where there
are no components of the other type, i.e. m = 2. In this case we have, as for L2,2,
exactly 2 singular points on X∞. They are both mapped to the node of E∞ by p∞,
one unramified, the other one with ramification order n (note that the degree of p∞
is n + 1, the number of squares of Ln,2). As in the previous subsection, this picture
is preserved if we pass to the normalization. Thus f−1∞ (0) and f−1∞ (1) both consist
of 2 points, one unramified, the other one ramified of order n, and the dessin looks as
follows:

• �
1

2

n−1

...
• �

Figure 18. The dessin at the cusp of Ln,2.

The n−1 cells of the dessin correspond to the fact thatLn,2 has n−1 different vertices:
one of order 3 and n − 2 of order 1. Therefore the two vertices of order one of the
dessin lie in the same cell.

Note that there is only one dessin of genus 0 with these properties, namely two
vertices of order n and two vertices of order one, which are in the same cell. Hence
our dessin is completely determined by its Galois invariants. This implies in particular
that the moduli field of the dessin is Q.

It is also possible to determine explicitly the associated Belyi map: To simplify
the calculation, we first exhibit a rational function with a zero and a pole of order n,
and in addition a simple zero and a simple pole; later we shall change the roles of 1
and∞ to get the proper Belyi map. So we begin with a rational function of the type

f0(x) = xn · x − 1

x − c .

The condition that f0 has a further ramification point of order 3 implies that f ′0 has a
double zero somewhere. A straightforward calculation shows that this happens if and
only if the parameter c has the value

c = cn =
(n− 1

n+ 1

)2
.

The corresponding ramification point is

vn = √cn = n− 1

n+ 1
.
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Since we want the critical value in this point to be 1, we have to replace f0 by

f1(x) = b−1
n · f0(x) with bn = −

(n− 1

n+ 1

)n−1 = −c
n−1

2
n .

Now we interchange 1 and∞ (keeping 0 fixed); to give the final function a nicer form,
we bring the zeroes to 0 and∞, and the places where the value 1 is taken to 1 and a
fourth point which is determined by the cross ratio of the zeroes and poles of f1, i.e.
0, 1,∞ and cn; it turns out to be dn = 1− 1

cn
. Altogether we replace f1 by

fn = β � f1 � σ, where β(x) = x

x − 1
and σ(x) = x

x − dn .
The final result is

fn(x) = γnx
n

γnxn − (x − dn)n(x − 1)
with γn =

(n+ 1

n− 1

)n+1
.

By construction, fn has a triple pole; it turns out to be pn = 2n
n−1 . Putting in the values

of the constants we find e. g.

f2(x) = −27x2

(x − 4)3
and f3(x) = −16x3

(x − 3)3(x + 1)
.

8.3.3 The quaternion origami. Let W be the quaternion origami which was illus-
trated at the end of Section 8.1 and studied in detail in [16]. It has genus 3, and the
origami map p : W → E is a normal covering of degree 8 with Galois group Q8, the
classical quaternion group. Its Veech group is SL2(Z), which implies that the origami
curveC(W) inM3 has only one cusp. As indicated in Figure 12, this cusp corresponds
to a stable curve W∞ with two irreducible components, both nonsingular of genus 1;
the components intersect transversely in two points. Both components of W∞ admit
an automorphism of order 4 and are therefore isomorphic to the elliptic curve E−1
with Weierstrass equation y2 = x3 − x. The normalization of W∞ then consists of
two copies of E−1. On each of them, p induces a Belyi map f : E−1 → P

1(C) of
degree 4, which is totally ramified over the 2 points that map to the node ofE∞ (these
are the points of intersection with the other component). Over∞ we have two points
on E−1, both ramified of order 2.

Thus the corresponding dessin d’enfants is the one shown in Figure 19. The Belyi
map in this case is a quotient map for the automorphism c of order 4, which acts
by (x, y) 	→ (−x, iy). Such a quotient map is (x, y) 	→ x2; it is ramified at the
four 2-torsion points of E−1: two of them are the fixed points of c, the other two are
exchanged by c. The critical values are 0, 1 and∞, but not in the right order: To have
the values 0 and 1 at the fixed points of c we have to change the roles of 1 and∞ in
P

1(C), and then obtain the Belyi map f : E−1 → P
1(C) as

f (x, y) = x2

x2 − 1
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Figure 19. The dessin of the boundary point of C(W).

or, in homogeneous coordinates,

f (x : y : z) = (x2 : x2 − z2) = (y2 + xz : y2).

8.3.4 The characteristic origami of order 108. Our last example in this section
is the origami B with 108 squares which corresponds to a normal origami covering
p : B → E with Galois group

G = {
(σ1, σ2, σ3) ∈ S3 × S3 × S3 |∏3

i=1 sign(σi) = 1
}
.

As for W in the previous section, the Veech group of B is SL2(Z). It was the first
normal origami of genus > 1 that was discovered to have the full group SL2(Z) as
Veech group. It is studied in detail in [2] and also (more shortly) in [14].

The genus of B is 37; the horizontal cylinders all have length 6. Contracting their
core lines gives a stable curve B∞ with 6 irreducible components, each nonsingular
of genus 4. Each of the irreducible components intersects three others in two points
each. The intersection graph of B∞ is shown in Figure 20.

� �

� �

� �

Figure 20. The intersection graph of the 108 origami.

Since the group G acts transitively on the irreducible components of B∞, they are all
isomorphic. Let us denote byC one of them. The stabilizer ofC inG is a subgroupH
of order 18. The quotient mapf : C → C/H = P

1(C) is the Belyi map corresponding
to this (unique) cusp of the origami curve C(B).

The ramification of f over∞ comes from the fixed points of the elements of H .
There are two different subgroups of order 3 that have 3 fixed points each, and no
other fixed points. The other ramification points lie over the two points in P

1(C), that
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are mapped to the node of E∞. Hence they are the 6 points where C meets other
components, and each of them has ramification order 6. These considerations show
by the way that the genus of C is in fact 4, since by Riemann–Hurwitz we have

2g − 2 = 18 · (−2)+ 6 · (6− 1)+ 6 · (3− 1) = −36+ 42 = 6.

On the original origami B, the component C corresponds to 36 half squares. The 18
upper halves among them are the lower halves of three horizontal cylinders, and in the
same way, the 18 lower halves contributing to C are the upper halves of three other
cylinders. The core lines of these six cylinders give the six ramification points of f
that lie over 0 and 1. The precise picture looks as follows:

a b c d e fA B C

f c b e d aD E F

�� ��– – –– ––

g gh hi ij jk k
ABC DEF

1

5
4

2

6

6 3

3

Figure 21. The 36 half squares of which a component of the curve B∞ is composed. Vertical
gluings are indicated by capital letters, horizontal gluings by small letters. The dashed lines are,
in the order 1, . . . , 6, the boundary of one of the six cells of the dessin.

In each row of the figure, the upper horizontal edges give one vertex of the dessin
(corresponding to a point lying over 0). The lower edges of the second row give two
vertices over 1, and the third vertex comes from the six lower edges in the first and
the last row.

The 18 edges of the dessin are vertical centre lines of the squares; some of them
are shown in the figure. Each of the three “upper” vertices is connected to two of the
“lower” vertices by three edges each, and not connected to other vertices. The order
in which the edges leave the vertices is determined by the horizontal gluing of the
squares.

One way of describing the resulting dessin d’enfants is to consider its cells and
their gluing. Since f−1(∞) consists of 6 points of ramification order 6, our dessin
has 6 cells, and each of them is a hexagon. In the origami, these hexagons are found
as follows: begin with an arbitrary edge (i.e. a vertical centre line of a square); at its
end point, go one square to the right and continue with the edge that starts at its centre.
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Go on like this until you reach the first edge again. The figure shows one example for
this. Note that the 6 vertices of this hexagon are all different. By symmetry this holds
for all 6 hexagons. The way how these hexagons have to be glued can be read off from
the origami. Thus finally we find the following dessin, in which, as in the pictures of
origamis, edges with the same label have to be glued:

• •
�

�
�

�
�

�
�

�

� � �

• • •�
�

�
�

�
�

�
�

�
�

�
�

� � � �

• • • •�
�

�
�

�
�

�
�

�
�

�
�

� � �

• • •�
�

�
�

�
�

�
�

� �

1 12 2

3 3

4 4

5

5

6

6

7

7

8

8

9

9

10

10

11

1112

12

Figure 22. The dessin d’enfants to the cusp of the 108 origami. The surface consists of the six
outer hexagons, with edges glued as indicated by the labels.
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1 Introduction

The compact solenoid S (also called the universal hyperbolic solenoid) was introduced
by Sullivan [44] as a universal object in the category of all pointed, unbranched, finite-
sheeted coverings of a (base) closed surface of genus at least two (S can be thought
of as a “universal closed surface”). The compact solenoid S is independent (as a
topological space) of the choice of the base surface in the definition (as long as the
genus is at least two).
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More explicitly, the compact solenoid S is the inverse limit of the system of all
pointed, unbranched, finite-sheeted coverings of a closed surface of genus at least two.
Alternatively, one can consider a tower of coverings in place of all coverings. Then
the inverse limits of any two infinite towers of pointed, unbranched, finite-sheeted
coverings are homeomorphic as long as the intersection of all fundamental groups
in each tower (when considered as subgroups of the fundamental group of the base
surface) is trivial. A particularly interesting tower is obtained by defining the n-
th covering in the tower to have fundamental group equal to the intersection of all
subgroups of index at most n.

Another description of the compact solenoid S is that it is a principal fiber bundle
over a closed surface of genus at least two. The fibers are homeomorphic to a Cantor
set with a topological group structure such that the base surface fundamental group
is realized as a dense subgroup of the fiber group. If the base surface is given a
fixed hyperbolic metric then the compact solenoid is explicitly realized as follows
(see Section 2.2 or [38]). Let G be a co-compact subgroup of the Möbius group
acting on the unit disk D which uniformizes the base surface and let ω ⊂ D be a
fundamental polygon for G. Then there exists a Cantor set Ĝ with the structure of a
topological group and an injective homomorphism G ↪→ Ĝ whose image is dense in
Ĝ (the group Ĝ is defined in Section 2 and later in the Introduction). The compact
solenoid S is the quotient of ω×D by the action of finitely many elements ofGwhich
pairwise identify the sides of ω. The action of these elements on ω × D is given by
the side pairing Möbius action on the ω-factor and by the right multiplication in the
group Ĝ using the identification of G with its image in Ĝ (on the Ĝ-factor). Thus a
neighborhood of a point in the compact solenoid S is given by the product of the open

fundamental polygon
�
ω and a Cantor set Ĝ. The boundary sides of ω are identified

with the corresponding boundary sides of ω but on different “levels”, i.e., the second
factors (in Ĝ) are different. The path component of a single ω×{t}, for a fixed t ∈ Ĝ,
in the quotient approaches any point of S arbitrary close (because the image of G in
Ĝ is dense).

The compact solenoid S is locally homeomorphic to a 2-disk times a Cantor set;
each leaf (i.e., a path component) of S is dense in S and it is homeomorphic to the
unit disk; a distinguished leaf of S is called the baseleaf. Moreover, S has a unique
transverse measure, i.e., a holonomy invariant measure on each transverse set, which
is induced by the Haar measure on the fiber group. The holonomy map is given by
the action of the base surface group on the fiber group via its natural identification as
a subgroup of the fiber.

We give some motivation for the study of the compact solenoid S. The Ehrenpreis
conjecture [13] states that for any two closed non-conformal Riemann surfaces of the
same genus greater than 1 and for any ε > 0 there exist two finite-sheeted, unbranched,
conformal covers that are (1+ ε)-quasiconformal. Since the universal cover of both
surfaces is the unit disk, this question can be interpreted as to whether finite covers
approximate the universal cover. Instead of considering two Riemann surfaces at the
same time and finding their appropriate finite covers, it is (at least) conceptually more
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appropriate to have all Riemann surfaces in a single space. The space is the union
of properly normalized embeddings in the universal Teichmüller space T (D) of the
Teichmüller spaces of all closed Riemann surfaces covering the base surface. The
group of all isomorphisms between finite index subgroups of the fundamental group
(called the commensurator of the surface group) acts naturally on the above union
and the Ehrenpreis conjecture is equivalent to the statement that the action has dense
orbits in the union [32]. It is natural to take the closure of the union in the universal
Teichmüller space to obtain a Banach manifold and the action of the commensurator
extends naturally to the closure [32].

Sullivan noticed the connection with the compact solenoid S: instead of consider-
ing Riemann surfaces of different genera as points in a single space T (D) as well as
their limit points in T (D), it is natural to form a single topological space (the com-
pact solenoid S) using all finite coverings of a base surface and to express Riemann
surfaces of different genera as well as their limit points in T (D) as different complex
structures on the compact solenoid S. Then the Ehrenpreis conjecture is equivalent to
the statement that the action of the commensurator group Comm(π1(S)) of the base
surface group π1(S) on the Teichmüller space T (S) of the compact solenoid S has
dense orbits [5], [32].

C. Odden [38] showed that the modular group Mod(S) of the compact solenoid S
is isomorphic to the commensurator group Comm(π1(S)) of the fundamental group
π1(S) of the base surface S. This is in an analogy with the classical statement that
the group of outer isomorphisms of the closed surface group is the mapping class
group of the surface ([8], [33], [2]). Thus, the compact solenoid S is a natural space
for which the commensurator group is its modular group. From the group theoretic
point of view, the modular group Mod(S) ≡ Comm(π1(S)) describes the “hidden
symmetries” of the surface group [26].

We are also interested in studying complex structures on the compact solenoid S
from the viewpoint of the complex analytic theory of Teichmüller spaces. The Teich-
müller space T (S) is a first example of a Teichmüller space which is an infinite-
dimensional but separable complex Banach manifold. Recall that Teichmüller spaces
of Riemann surfaces are either finite dimensional complex manifolds or infinite-
dimensional non-separable Banach manifolds. It appears that the complex analytic
and the metric structure of T (S) is quite different from the Teichmüller spaces of
geometrically finite as well as geometrically infinite Riemann surfaces. Inverse limit
spaces commonly appear in dynamics ([44], [45], [24], [31]) and the compact solenoid
is a first non-trivial example of an inverse limit with interesting Teichmüller space.

The non-compact solenoid Snc (also called the punctured solenoid) is the inverse
limit of the system of all pointed, unbranched, finite-sheeted coverings of a base
punctured surface with negative Euler characteristic [37]. The covering surfaces are
punctured with the covering maps sending punctures to punctures. If we fill in the
punctures, the covering maps become finitely branched at the punctures. Therefore,
the branching in the covering tower is restricted by allowing it only over the punctures
of the base surface (unlike for towers of rational maps where branching appears to be
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“wild” [24]). The inverse limit Snc is a non-compact space because we do not include
the backward orbits of punctures in the space, each leaf is homeomorphic to the unit
disk D and the ends of each leaf are universal covers of neighborhoods of punctures on
surfaces, i.e., the ends are horoballs with the induced non-standard topology from Snc.
The analog of the Ehrenpreis conjecture for punctured surfaces asks whether every
two finite Riemann surfaces have finite covers which are (1 + ε)-quasiconformal.
This is equivalent to the statement that the modular group Mod(Snc) has dense orbits
in the Teichmüller space T (Snc) of the non-compact solenoid Snc. (The Ehrenpreis
conjecture has recently been proved for the punctured surfaces [21] and the normalized
Weil–Petersson metric, which is an important result. However, the conjecture is still
open for the Teichmüller metric.) In analogy to the compact case, the modular group
Mod(Snc) is isomorphic to a subgroup of the commensurator of the base punctured
surface group which preserves the peripheral elements [37]. The existence of ends of
leaves allows for a combinatorial decomposition of the (decorated) Teichmüller space
of Snc (see [37]) which gives a better understanding of the modular group Mod(Snc)

of the non-compact solenoid than of the modular group of the compact solenoid S.
In this chapter, we survey results on the Teichmüller space T (S) of the compact

solenoid S regarding its metric structure with respect to the Teichmüller metric and
its complex structure. We also survey results on the modular group Mod(S) of the
compact solenoid S and the modular group Mod(Snc) of the non-compact solenoid Snc.
We give more details below.

In Section 2 we give different equivalent definitions of the compact solenoid S. In
addition to defining S as an inverse limit space, we define it as a principal fiber bundle
space as follows. For a fixed Fuchsian groupG uniformizing a closed Riemann surface
of genus at least two, we define a profinite group completion Ĝ of G with respect to
the profinite metric. The profinite metric on G is defined by [38]

dpf(A,B) = e− 1
n ,

where AB−1 is an element of all subgroups of G of index at most n, and there exists
a subgroup of G of index n + 1 which does not contain AB−1. Then the G-tagged
compact solenoid SG is the quotient of D × Ĝ by an action of G, where G acts by
Möbius maps on the unit disk component D and shifts the levels by acting on Ĝ by
right translations on the group. The G-tagged solenoid SG is homeomorphic to the
compact solenoid S. The natural map from D × Ĝ to the Riemann surface D/G

obtained by “forgetting” the second coordinate and by mapping the first coordinate to
its orbit under G projects to a map from the quotient (D × Ĝ)/G = SG onto D/G;
the fibers of the map are homeomorphic to Ĝ. Thus SG is a Ĝ-fiber bundle over D/G.

A complex structure on the compact solenoid S is by definition an atlas whose
transition maps when restricted to local leaves are holomorphic and are continuous
for the transverse variations of local leaves [44]. Candel [7] proved a uniformization
theorem for laminations which, in particular, implies that each transversely continuous
conformal structure on S has a unique transversely continuous leafwise hyperbolic
metric representative. The compact solenoid S is a fiber bundle over a closed surface
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such that the restriction to any leaf of the fiber map is the universal covering of the
base surface. Thus, any complex structure on the base surface lifts to a complex
structure on the compact solenoid S. Each lifted complex structure has a sub-atlas
whose transition maps are constant in the (Cantor set) transverse directions. Nag and
Sullivan [32] showed that every such complex structure is obtained by forming a G-
tagged solenoid SG, for some uniformizing Fuchsian group G of a closed Riemann
surface (see Section 3 for more details). The G-tagged punctured solenoid is formed
similarly by using the punctured Riemann surface uniformizing Fuchsian group G
(see Section 4).

The Teichmüller space T (SG) of the compact solenoid SG consists of all marked
complex solenoids f : SG → X up to post-composition by conformal maps and up
to homotopy, where G is fixed and f is a differentiable, quasiconformal map (see
Definitions 5.1 and 5.3). (Equivalently, the Teichmüller space T (SG) is a quotient of
the space of smooth Beltrami coefficients on SG continuous in the transverse direc-
tions.) The Teichmüller distance of [f ] ∈ T (SG) to the basepoint [id] ∈ T (SG) is the
infimum of the logarithm of the quasiconformal constants of maps in the homotopy
class [f ] of the map f . The Teichmüller metric is not degenerate, namely T (SG) is
a Hausdorff space (see [44]; see Section 5 for an alternative proof).

The restrictions of the pull-backs of complex structures on the marked solenoids
f : SG→ X to the baseleaf l of SG defines a map πl : T (SG)→ T (D). This map is
a homeomorphism onto its image (a proof is sketched in [44]; see Section 5.2 for an
alternative proof). In fact, a consequence of Theorem 7.1 and McMullen’s solution
[30] to Kra’s theta conjecture is that πl is a bi-Lipschitz map onto its image with
constant 1/3.

The study of the Teichmüller metric on T (SG) starts with the Reich–Strebel in-
equality (see [42] and Section 6) which estimates the (complex) distortion (i.e., the
Beltrami coefficient) of a quasiconformal self-map of the compact solenoid SG which
is homotopic to the identity in terms of the leafwise Euclidean structures given by the
restrictions of holomorphic quadratic differentials on the leaves of SG. The Reich–
Strebel inequality is a non-trivial generalization of Grötzsch’s length-area method for
determining extremal maps between rectangles. In this chapter we give a different
proof of the Reich–Strebel inequality from the proof in [42] (see Theorem 6.1 and its
proof).

The consequences of the Reich–Strebel inequality give a better understanding of
the Teichmüller metric on T (SG). In Section 6, we summarize consequences related to
the infinitesimal structure of T (SG) from [42]. In particular, a Beltrami differential is
tangent to a trivial path of Beltrami coefficients (i.e., it represents a trivial infinitesimal
deformation) if and only if it is zero when paired with all holomorphic quadratic
differentials on SG (see Theorem 6.2). In Section 7, we analyze extremal maps in a
given homotopy (Teichmüller) class. A consequence of the Reich–Strebel inequality
is that Teichmüller-type maps (i.e., vertical stretch maps in the natural parameter
of a holomorphic quadratic differential on SG) are extremal in their corresponding
homotopy (Teichmüller) classes (see Theorem 7.1). Moreover, the natural inclusion
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map from the Teichmüller space of a closed surface into T (SG) obtained by lifting a
complex structure on the surface to SG is an isometry (see Corollary 7.3).

We also give an account of the question of the existence of Teichmüller-type ex-
tremal maps in a given Teichmüller class considered in a joint work of the author with
A. Epstein and V. Markovic [14]. The results on extremal maps for Riemann surfaces
fall into two cases; either every point in Teichmüller space has a Teichmüller-type
representative for closed and finite punctured surfaces – Teichmüller’s theorem, or
an open, dense subset of Teichmüller space has Teichmüller-type representatives for
geometrically infinite surfaces [22]. Therefore, in both cases, a large subset of the
Teichmüller space has Teichmüller-type representatives. For the Teichmüller space
T (SG) of the compact solenoid SG the situation is quite different. In fact, a generic
point in T (SG) does not have Teichmüller-type representatives, i.e., only a set of the
first kind in T (SG) in the sense of Baire has Teichmüller-type representatives (see
[14], or Theorem 7.4 together with a brief account of the proof.) We also give a nec-
essary condition for a point in T (SG) to have a Teichmüller-type representative (see
[14], or Corollary 7.5).

In Section 8, we survey basic results on the modular group (see [38], [28]). The
modular group Mod(SG) is isomorphic to the commensurator group of the base surface
group (see [38] or Theorem 8.3). In a joint work with V. Markovic, we established
that there exist orbits of Mod(SG) in T (SG) with accumulation points [28]; and that
finite subgroups of Mod(SG) are cyclic and mapping class like (i.e., they are lifts of
self-maps of closed surfaces) [28].

In Section 9, we give a quasiconformal definition of the Teichmüller space T (Snc)

of the non-compact solenoid Snc and an equivalent representation-theoretic definition
from our joint work with R. Penner (see [37]). In Section 10, we define the decorated
Teichmüller space T̃ (Snc)of the non-compact solenoidSnc and give its parametrization
in terms of lambda lengths (see our work with R. Penner [37] or Theorem 10.3). We
also describe a convex hull construction for decorations on the punctured solenoid
and show that a dense, open subset of T̃ (Snc) is combinatorially interesting (see [37]
or Theorem 10.6 for the punctured solenoid; for punctured surfaces see [15], [35];
see [34] for the universal Teichmüller space; see [20] for a related construction for
punctured surfaces).

In Section 11, we give a generating set for Mod(Snc) in terms of Whitehead home-
omorphisms and PSL2(Z) (see our work with R. Penner [37] or Theorems 11.3, 11.4
and 11.5). Moreover, we define a natural triangulation 2-complex, show that it is
connected and simply connected, and show that the modular group Mod(Snc) acts
cellularly on it (see our joint work with S. Bonnot and R. Penner [6] or Theorem 11.6).
Using the triangulation complex, we give a presentation for Mod(Snc) (see [6] or
Theorem 11.7).
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2 The compact solenoid

In this section we give two equivalent definitions of the compact solenoid S which is
usually called the universal hyperbolic solenoid [44], [32], [38].

Let (S0, x0) be a fixed closed surface of genus at least two with basepoint x0.
Consider all finite-degree, unbranched, pointed covers πi : (Si, xi)→ (S0, x0) up to
isomorphisms of covers. The family of such covers has a natural partial ordering “≤”
defined by

(πi, Si, xi) ≤ (πj , Sj , xj )
if there exists a pointed, unbranched, finite-degree cover πi,j : (Sj , xj ) → (Si, xi)

such that
πj = πi � πi,j .

Given two arbitrary covers πi : (Si, xi) → (S0, x0) and πj : (Sj , xj ) → (S0, x0)

from the above family, there exists a third cover πk : (Sk, xk) → (S0, x0) such
that (πi, Si, xi), (πj , Sj , xj ) ≤ (πk, Sk, xk). Namely, the family of all covers
πi : (Si, xi) → (S0, x0) is inverse directed; thus the inverse limit of the family is
well defined. Sullivan [44] introduced the compact solenoid S by

S = lim←−(Si, xi).

By definition, S ⊂ ∏
i∈I Si , where I is the index set of coverings, consists of all

y = (yi)i∈I ∈ ∏
i∈I Si such that whenever (Si, xi) ≤ (Sj , xj ) then πi,j (yj ) = yi .

The product space
∏
i∈I Si is compact in the Tychonov topology because each Si is

compact. The subset S is closed in
∏
i∈I Si and therefore it is also a compact space.

The compact solenoid S is universal in the sense that it does not depend on the
base surface S0. Namely, if we take the inverse limit of all finite-degree unbranched
covers of another closed surface S′0 of genus at least two then it is homeomorphic to S.
(This follows from the fact that the inverse limit of any given cofinal subsystem of
covers is homeomorphic to the inverse limit of the original system of covers. Recall
that a subsystem of covers is cofinal if any surface in the original system is covered
by a surface of the subsystem.) To show that S is independent of the base surface,
it is enough to note that any two such inverse systems of covers have homeomorphic
cofinal subsystems because there exist two surfaces in these two systems that are
homeomorphic.

The universal property of the compact solenoid enables us to consider a tower of
covers of a closed surface of genus at least two instead of all finite covers (as long as the
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intersection of all fundamental groups in the tower when identified via pointed covers
with subgroups of the base surface is the trivial group; this is required for a tower to
be cofinal by the residual finiteness of the base surface group). For example, we can
consider the system of covers given by the tower of covers whose n-th level surface
has fundamental group equal to the intersection of all index at most n subgroups of
the base surface (see [38]). The choice of the subgroup at the n-th level uniquely (up
to isomorphism) determines the pointed cover of the base surface. For each m > n

the group at level m is a subgroup of the group at level n. Thus the system of covers
is a tower and its inverse limit is homeomorphic to S.

For convenience, we work with the above tower of covers from now on. Thus we
can replace the index set I for the covers by the natural numbers N, whereπj : Sj → S0
factors through a cover πi : Si → S0 if and only if j > i. Then a point y in S is given
by a backward sequence y = (y0, y1, y2, . . .) with respect to the tower of covers,
namely yi ∈ Si and πi,i+1(yi+1) = yi for i ∈ N∪{0}. A neighborhood of a point in S
is homeomorphic to a (2-disk)× (Cantor set). To see this, note that by the definition
of the Tychonov topology a neighborhood of a point y = (y0, y1, y2, . . .) in

∏
i∈N Si

is the set V (y) consisting of all z = (z0, z1, z2, . . .) such that each zi is in a small
ball Ui(yi) with center yi ∈ Si for all i < i0, with i0 ∈ N fixed, and the rest of the
coordinates of z are arbitrary. If y ∈ S then a neighborhood V (y) ⊂ S is given by
successively taking a single liftUi(yi) ⊂ Si of a ballU0(y0) ⊂ S0 for all i < i0, where
i0 ∈ N is fixed, and the rest of the coordinates of the points in V (y) belong to all lifts
π−1
i (U0) such thatπi,i0 maps them intoUi0 , for i ≥ i0. The lifts to the tower {Si}i∈N of

a ball in S0 are enumerated by the locally finite tree of all possibilities of lifts from Si
to Si+1 for i ∈ N. The local structure of S is given by taking a 2-disk for each infinite
path (without backtracking) in the tree with the induced product topology, where the
2-disk has the standard topology, and points in two 2-disks for two different infinite
paths are close if they are close as points in the 2-disk and if the infinite paths follow
the same finite paths for a long time. The set of all infinite paths without backtracking
is a Cantor set and we have completely described the local structure of S.

A path component of S is called a leaf. A local leaf is a path component in any
local chart of the above form (2-disk)× (Cantor set), namely a local leaf is a 2-disk.
Therefore, a (global) leaf of the compact solenoid S is a surface. There is a natural
projection �i : S → Si , for i ∈ N ∪ {0}, to any surface in the tower of covers given
by

�i(y0, y1, y2, . . .) = yi,
for y = (y0, y1, y2, . . .) ∈ S. Since the intermediate covers πi,i+1 in the tower are
unbranched, the restriction of the projection�i to each leaf is an unbranched covering.
We claim that each leaf is simply connected. If a leaf of S is not simply connected,
then a closed curve which is not homotopic to a point maps under each �i to a curve
on Si which is not homotopic to a point. However, the covers in the tower are chosen
so that each closed homotopically non-trivial curve on any surface cannot be lifted to a
closed curve in a high enough cover. (If one considers all finite covers in the definition
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of S, this follows because the fundamental group of S0 is residually finite.) Thus each
leaf is a simply connected unbranched cover of closed surfaces. Namely, each leaf
of S is homeomorphic to the unit disk and the restriction of the natural projection to
each leaf is the universal covering map.

2.1 The profinite completion

Denote by G the fundamental group of S0. We define the profinite metric on G as
follows. Let Gn be the intersection of all subgroups of G of index at most n. There
are only finitely many such subgroups and their intersectionGn is also of finite index.
(It is possible thatGn = Gn+1 for some n and we ignore the repeating groups.) From
now on, {Gn}n∈N is a sequence of decreasing (as sets) subgroups ofG of finite index.
EachGn is a characteristic subgroup ofG and in particular a normal subgroup. Since
G is residually finite, it follows that

⋂
n∈NGn = {id}. We define the profinite distance

of A,B ∈ G by

dpf(A,B) = e− 1
n ,

where AB−1 ∈ Gn \Gn+1. In particular, an element of G is close to the identity in
the profinite metric dpf if it belongs to Gn for n large.

We denote by Ĝ the metric completion of G in the profinite metric dpf (see [38]).
Each point of Ĝ is an equivalence class of Cauchy sequences in (G, dpf). The mul-
tiplication of two sequences is given by multiplying corresponding elements and the
product of two Cauchy sequences is Cauchy. The operation of multiplying equiva-
lence classes of Cauchy sequences is well defined and Ĝ is a group with respect to
multiplication. The group Ĝ is homeomorphic to the Cantor set and there is a natural
injective homomorphism ofG into Ĝ obtained by mappingA ∈ G into the equivalence
class of the constant sequence (A,A,A, . . .). The image of G is dense in Ĝ.

Since Ĝ is a compact topological group, there exists a unique left and right trans-
lation measure m on Ĝ such that m(Ĝ) = 1. The measure m is called Haar measure
and it is a positive Radon measure.

2.2 The G-tagged compact solenoid

At this point we fix a Fuchsian groupG such that the Riemann surface D/G has genus
at least two, where D is the unit disk. We describe the compact solenoid S using the
profinite group Ĝ. Consider the product D × Ĝ. The action of A ∈ G on D × Ĝ is
defined by

A(z, t) = (Az, tA−1),

where (z, t) ∈ D × Ĝ and A acts by hyperbolic isometries on the disk component
and by right multiplication by A−1 on the group Ĝ component. By the universality
of the compact solenoid S, the quotient (D× Ĝ)/G is homeomorphic to the compact
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solenoid S (see [38]). The natural projection � : (D × Ĝ)/G → D/G is given by
forgetting the second coordinate. Thus the fiber over a point in D/G is homeomorphic
to Ĝ. The orbit in D× Ĝ underG of a single disk D×{t} is a leaf of the solenoid. We
define the orbit of D×{id} to be the baseleaf and the orbit of (0, id) to be the basepoint.
After fixing the baseleaf and the basepoint, each fiber has a unique identification with
Ĝ and the projection � : (D× Ĝ)/G→ D/G is a Ĝ-bundle.

We define the G-tagged compact solenoid SG by

SG = (D× Ĝ)/G.
Let ω ⊂ D be a fundamental polygon for the action of G on D. Then ω × Ĝ is a

fundamental set for the action of G on D× Ĝ. The action of G identifies a boundary
side of ω × {t} with a boundary side of ω × {tA−1}, where A ∈ G identifies the
boundary side of ω onto another boundary side of ω. The groupG is countable while
Ĝ is an uncountable set. Since G glues together the ω-pieces to make a single leaf,
we conclude that SG ≈ S has uncountably many leaves.

The holonomy of the leaves of the G-tagged compact solenoid SG is given by the
right translation of the group G in the group Ĝ. Since m is a translation invariant
measure on the group Ĝ, we conclude thatm induces a holonomy invariant transverse
measure on the compact solenoid SG.

3 Complex structures and hyperbolic metrics
on the compact solenoid

A local chart of the compact solenoid S is homeomorphic to a (2-disk)× (Cantor set).
A transition function between two local charts is a homeomorphism from an open
subset of a (2-disk)× (Cantor set) onto another such set. In particular, the restriction
of the transition map to each 2-disk is a homeomorphism and the family of home-
omorphisms varies continuously in the Cantor set direction for the C0-topology on
continuous maps.

A complex structure on the compact solenoid S is a choice of charts such that tran-
sition maps are holomorphic when restricted to each local leaf and vary continuously
in the Cantor set direction for the C0-topology. Since maps are holomorphic, the con-
tinuous variation in theC0-topology implies continuous variation in theC∞-topology.

A hyperbolic metric on the compact solenoid S is an assignment of a metric of
curvature −1 to each local leaf such that it varies continuously in the Cantor set
direction. Namely, there is a choice of an atlas whose transition functions are leafwise
isometries and vary continuously in the Cantor set direction, and the metric in the
charts has curvature −1 on each local leaf.

It follows from the work of Candel [7] that any conformal structure on the compact
solenoid S contains a unique hyperbolic metric. Any complex structure on the compact
solenoid S corresponds to a conformal structure and any conformal structure gives a



Chapter 19. The Teichmüller theory of the solenoid 821

unique complex structure by the continuous dependence on the parameters of the
solution of the Beltrami equation (see Ahlfors–Bers [1]).

The above construction of the G-tagged compact solenoid provides an example
of a complex structure on S as well as a hyperbolic metric (by simply inducing the
complex structure and the hyperbolic metric on the leaves of S from the unit disk D).
The local charts of S are chosen to be of the form D × Ĝ, where D ⊂ D is a small
hyperbolic disk such that no two points of D × Ĝ are in the same orbit of G. The
complex structure on the unit disk D gives complex charts for S such that the transition
maps between any two chartsD× Ĝ andD1× Ĝ are constant in Ĝ (namely, they are
given by Möbius mapsA ∈ G) and therefore continuous. The hyperbolic metric on D

gives a hyperbolic metric on S which is also constant in the Ĝ direction.
Complex structures on S whose transition maps are locally constant in the Cantor

set direction are called transversely locally constant (TLC) complex structures. (It
is enough to find a subfamily of charts which cover S for which transition maps are
constant in the Cantor set direction.) Similarly, a hyperbolic metric on S is TLC if there
exists a cover of S by charts in which the hyperbolic metric is locally constant in the
Cantor set direction. It is a fact that any TLC complex structure (hyperbolic metric) is
obtained by taking aG-tagged solenoid, whereG is a Fuchsian group uniformization
of a closed surface of a (possibly large) genus greater than one. This follows by
the compactness of S and the fact that each transverse direction corresponds to the
profinite completion of a finite index subgroup of the fundamental group of a genus
two surface (see also [32]). Therefore, the set of all TLC complex structures on S is
given by lifting complex structures on Riemann surfaces. Sullivan [44] showed that
any complex structure on S can be approximated by TLC complex structure in the
C0-topology, which is equivalent to the C∞-topology.

4 The G-tagged non-compact solenoid

We introduce the non-compact solenoid Snc (see [37]). Since we require that the
topological ends of leaves are well-behaved, our construction immediately assigns a
hyperbolic metric on Snc. It will follow that Snc has finite area in an appropriate sense.

LetG < PSL2(Z) be such that D/G is the modular, once punctured torus. Denote
by Ĝ the profinite completion of G. The action of G on D× Ĝ is given by A(z, t) =
(Az, tA−1) for z ∈ D, t ∈ Ĝ and A ∈ G. We define the non-compact solenoid Snc by

Snc = (D× Ĝ)/G.
A leaf of Snc is the orbit underG of a single disk D× {t}. Let ω be a fundamental

polygon for the action of G on D such that the boundary edges are infinite geodesics
which project to the geodesics on the torus D/G connecting the puncture to itself.
Then ω × Ĝ is a fundamental set for the action of G on D × Ĝ. The identifications
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by G on ω × Ĝ are identifying only the boundary edges in pairs on different levels
according to the G-action on Ĝ.

Any compact subset of Snc is a subset of a compact set of the form ((Dr∩ω)×Ĝ)/G,
where Dr , 0 < r < 1, is the Euclidean disk of radius r with center 0 and Dr ∩ ω is
a compact subset of ω. The complement of ((Dr ∩ ω) × Ĝ)/G when restricted to a
leaf (D× {t})/G ≡ D as is given by the G-orbit of a single horoball ζ in D centered
at the fixed point of a parabolic element of G. In the topology induced from S on the
set G{ζ } each horoball accumulates onto itself since it is preserved by the action of
an infinite cyclic group generated by the parabolic element of G with the fixed point
at the center of the horoball. A fundamental set η in the horoballs for the action of the
cyclic group is the intersection of the horoball and the region between a geodesic with
endpoint at the center of the horoball and its image under the generating parabolic
map. Then the corresponding points in η and Cn(η) are close for n ∈ Z with |n|
large, where C ∈ G is the generating parabolic element with fixed point at the center
of the horoball. Moreover, the corresponding points in the horoballs ζ and A(ζ ) are
close provided that A ∈ Gn for n large. Therefore, each leaf of Snc has countably
many topological ends corresponding to the fixed points of the parabolics in G. The
non-compact solenoid Snc has only one end given by the equivalence class of the set
(G(ζ )× Ĝ)/G.

Given a local chart of the form (2-disk)×(Cantor set), there is a transversal identifi-
cation of local charts. We consider only local charts of the formD×Ĝ ⊂ D×Ĝ forD
a hyperbolic disk sufficiently small such that the projection map fromD×Ĝ to Snc is a
homeomorphism. The transverse identification of local leaves is an isometry because
the hyperbolic metric is constant in Ĝ and it extends to an isometric identification of
global leaves. This identification is specified by fixing two local leaves of two global
leaves. In the above identification, the ends of leaves correspond to each other. The
ends are called “punctures” by abuse of notation. We say that two punctures of Snc are
close if they correspond to each other under an identification of the leaves on which
they reside, where the identification is specified by two local leaves which are close
in a given chart.

The above construction gives a hyperbolic metric on the leaves of Snc which is
transversely locally constant. We will consider an arbitrary non-compact solenoid X
with a hyperbolic metric on leaves which varies continuously in the transverse direc-
tion together with a marking map f : Snc → X. The marking f is a homeomorphism
which is quasiconformal and differentiable on leaves, varies continuously in the trans-
verse direction for theC1-topology on differentiable maps and for the quasiconformal
topology when global leaves are identified using local charts as above. In particular,
the supremum of quasiconformal constants over the leaves is bounded. The end of Snc
is homeomorphically mapped onto the end of X. Moreover, the intersection of a leaf
of Snc with the end is quasi-isometrically mapped onto the corresponding leaf of X.
Therefore, our notion of ends being close on the TLC non-compact solenoid Snc is
transferable to an arbitrary non-compact marked solenoid f : Snc → X.
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5 The Teichmüller space of the compact solenoid

We define the Teichmüller space T (S) of the compact solenoid S. Let G be a fixed
Fuchsian group such that D/G is a closed Riemann surface of genus at least two. Let
SG be theG-tagged compact solenoid with the induced complex structure from D/G.
The complex structure on the solenoid SG is a TLC complex structure.

Definition 5.1. A homeomorphism f : S → X of a complex compact solenoid S onto
a complex compact solenoid X is said to be quasiconformal if it is differentiable and
quasiconformal on each leaf and if it varies continuously in the transverse direction in
the C1-topology on the C1-maps.

By the above definition, the compositiong�f of two quasiconformal mapsf : S →
X and g : X→ Y is quasiconformal.

Remark 5.2. Since S is compact, it follows that the continuity in the C1-topology for
the variations on the local leaves implies the continuity in the quasiconformal topology
on the global leaves. It is necessary to require smoothness of quasiconformal maps in
order to preserve quasiconformality under the composition. One is tempted to require
that Beltrami coefficients of leafwise quasiconformal maps vary continuously in the
transverse direction in the essential supremum norm. However, the chain rule for
Beltrami coefficients shows that the composition of two such maps does not satisfy
the same continuity property unless the quasiconformal maps have additional C1

smoothness and continuity in the transverse direction in the C1-topology.

Definition 5.3. The Teichmüller space T (SG) of the compact G-tagged solenoid
SG consists of all quasiconformal maps f : SG → X up to an equivalence. Two
quasiconformal maps f, g : SG → X,Y are Teichmüller equivalent if there exists a
conformal map c : X → Y such that g−1 � c � f : SG → SG is homotopic to the
identity. Denote by [f ] ∈ T (SG) the Teichmüller class of the quasiconformal map
f : SG → X, i.e., all quasiconformal maps homotopic to f up to post-composition
by conformal maps.

Since the transverse set T for S is totally disconnected, any homotopy does not mix
the leaves. Any two homotopic quasiconformal maps of a complex compact solenoid
are isotopic through uniformly bounded quasiconformal maps [28, Theorem 3.1].

Definition 5.4. The Teichmüller distance dT on T (SG) is given by

dT ([f ], [g]) = inf
f1∈[f ],g1∈[g]

1/2 logK(f1 � g−1
1 ),

where K(f ) is the supremum of the quasiconformal constants of the restrictions of
f : S → X to the leaves of S. Since f is transversely continuous in the C1-topology
and since each leaf is dense in S, we conclude thatK(f ) is equal to the quasiconformal
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constant on each leaf of S. In particular, the restriction of f to each leaf has the same
quasiconformal constant.

Sullivan [44] showed that the Teichmüller (pseudo-)metric is a genuine metric, i.e.,
that it is not degenerate. We give an alternative proof in this section.

5.1 The universal coverings of complex compact solenoids

Recall that theG-tagged complex solenoid SG is given by the quotient of D×Ĝ under
the action ofG. The complex structure and the hyperbolic metric on SG are inherited
from D and they are transversely locally constant. The natural quotient map

π : D× Ĝ→ (D× Ĝ)/G ≡ SG

is a local homeomorphism which is leafwise conformal and which varies continuously
in Ĝ for theC0-topology on continuous maps (which is equivalent to theC∞-topology
on conformal maps). The space D× Ĝ is globally much simpler (a product) than SG.
Thus we consider D× Ĝ as a complex “universal covering” of a TLC solenoid SG and
we consider G as the covering group with its action on D× Ĝ.

Let f : SG → X be a quasiconformal map, where X is a hyperbolic compact
solenoid not necessarily TLC. We form a complex universal covering for X using the
marking map f . We recall (see [42]) that there exists a chart (U × T ,ψ) of X, where
U a disk with center 0, such that ψ � f ({0} × Ĝ) = {0} × T . Then f induces a
homeomorphism of Ĝ and T . Consider a family of maps πX

t : D → X, for t ∈ T ,
such thatπt is an isometry onto a leaf of X (with its hyperbolic metric),ψ �πX

t (0) = 0
and (ψ � πX

t )
′(0) > 0. Then the maps πX

t fit together to a single map

πX : D× T → X,

defined byπX( ·, t) := πX
t ( ·). The mapπX is a local homeomorphism and a leafwise

isometry. We consider D × T as a hyperbolic (or a complex) “universal covering”
with πX as a cover map [42].

There is a well-defined lift

f̃ : D× Ĝ→ D× T
of the map f : SG → X given by the formula f̃ (z, t) := (πX

t )
−1 � f � π(z, t) (see

[42]).
The group G acts on D× Ĝ as a covering group of SG and we use f̃ to introduce

a conformal covering group for X. Since

πX � f̃ = f � π,
it follows that

πX � f̃ � A = πX � f̃
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for all A ∈ G. Let (z, t) ∈ D × Ĝ, f̃ (z, t) = (w1, t1) ∈ D × T and (f̃ � A)(z, t) =
(w2, t2) ∈ D× T . By the above,

πX(w2, t2) = πX(w1, t1).

Consequently,

(πX)−1(πX(w1, t1))

contains (w2, t2). Note that (πX
t2
)−1 �πX

t1
is an isometry of D×{t1} onto D×{t2} and

((πX
t2
)−1 � πX

t1
)(w1) = w2. We induce an action of A ∈ G on T by its natural action

(by right multiplication) on Ĝ via the identification ψ � f � π : Ĝ ≡ T . We introduce
a covering map AX on the universal covering D× T of X corresponding to A by

AX(z, t) = ((πX
tA−1)

−1 � πX
t (z), tA

−1),

where t, tA−1 ∈ T ≡ Ĝ. The covering mapAX is an isometry on each leaf. Moreover,
AX is transversely continuous and f̃ � A = AX � f̃ from the definition (see [42]).
Then we defineGX := f̃ Gf̃−1 to be the covering group of X, namely (D× T )/GX

is conformally equivalent to X.

5.2 Beltrami coefficients and holomorphic quadratic differentials
on the compact solenoid

Given a quasiconformal map f : SG→ X, there is a corresponding leafwise smooth

(i.e.,C1) Beltrami coefficientμ = ∂̄f
∂f

which is continuous for the transverse variations

in the local charts for theC1-topology onC1-maps. The lift f̃ has Beltrami coefficient
μ̃ (which is the lift of μ) and it satisfies

μ̃(z, t) = μ̃(Az, tA−1)
A′(z)
A′(z)

, (5.1)

for A ∈ G.
More generally, if g : X → Y is a quasiconformal map of complex compact

solenoids then there exists a lift g̃ : D× T1 → D× T2 to their universal covers. The
Beltrami coefficient ν of g lifts to the Beltrami coefficient ν̃ on D× T1 such that

ν̃(z, t) = ν̃(AX(z, t))
A′X(z, t)
A′X(z, t)

,

forAX ∈ GX, whereAX(z, t) = (AtX(z), tA−1) andA′X(z, t) is the leafwise deriva-
tive. Note that A′X(z, t) depends on t .

By the compactness of SG, the continuity in the local charts for the transverse
variations of a Beltrami coefficient μ on SG implies that

‖μ̃( ·, t)− μ̃( ·, t1)‖∞ → 0 (5.2)
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as t → t1, for all t1 ∈ Ĝ. In the opposite direction, a Beltrami coefficient μ̃ on D× Ĝ
which is leafwise C1, which is continuous in the C1-topology for the variations in Ĝ
on the compact subsets of D × Ĝ and which satisfies (5.2) is the lift of the Beltrami
coefficient of a quasiconformal map f : SG→ X, where X is determined by μ̃.

Let f̃ μ̃ denote the leafwise solution to the Beltrami equation with the coefficient
μ̃ on D × Ĝ normalized such that 1, i and −1 are fixed on each leaf. Then f̃ μ̃

conjugates the action of G on D × Ĝ to the action of Gμ̃ = f̃ μ̃ � G � (f μ̃)−1 on
D× Ĝ. Let Xμ = (D× Ĝ)/Gμ̃ be the induced complex solenoid. Then f̃ μ̃ projects
to a quasiconformal map f μ : SG→ Xμ.

Definition 5.5. A transversely locally constant (TLC) Beltrami coefficient on a TLC
compact solenoidS is a leafwise Beltrami coefficient which is constant in the transverse
direction in some atlas of local charts.

Definition5.6. A holomorphic quadratic differentialϕ on a complex compact solenoid
X is a leafwise holomorphic quadratic differential which varies continuously in the
local chart in the transverse direction in the C0-topology. Equivalently, a leafwise
holomorphic function ϕ̃ on the universal cover D× T of X is a lift of a holomorphic
quadratic differential if

ϕ̃(z, t) = ϕ̃(AX(z, t))A
′
X(z, t)

2 (5.3)

for AX ∈ GX and if
‖ϕ̃( ·, t)− ϕ̃( ·, t1)‖Bers → 0 (5.4)

as t → t1, where ‖f ‖Bers := supz∈D |ρ−2(z)f (z)| with ρ the Poincaré density on D

(see [42]).

Definition 5.7. A transversely locally constant (TLC) holomorphic quadratic differen-
tial on a complex compact solenoid S is a leafwise holomorphic quadratic differential
which is constant in the transverse direction in some atlas of local charts.

Using the above notion of Beltrami coefficients on the universal cover of SG we
give an equivalent definition of the Teichmüller space T (SG).

Definition 5.8. The Teichmüller space T (SG) of the compactG-tagged solenoid SG
consists of all smooth Beltrami coefficients μ̃ on D×Ĝwhich vary continuously in the
C1-topology on compact subsets of D×Ĝ and which satisfy (5.1) and (5.2) modulo an
equivalence relation. Two Beltrami coefficients μ̃ and ν̃ are (Teichmüller) equivalent
if there exists a conformal map c : Xμ → Xν such that (f ν)−1 � c � f μ : SG → SG
is isotopic to the identity map.

5.3 The restriction map πl

We recall the definition of the restriction map πl : T (SG)→ T (D) from [44]. Given
a quasiconformal map f : SG → X, the restriction to the baseleaf f |l : l → f (l)
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maps l to the leaf f (l) ⊂ X. We fix a conformal identification l ≡ D and take an
arbitrary conformal identification f (l) ≡ D. Then f |l : D→ D is well defined up to
post-composition with a conformal map of D (because of the choice f (l) ≡ D). This
gives a well-defined element of the universal Teichmüller space T (D). Sullivan [44]
showed that πl is injective. We give a different proof.

Theorem 5.9. The map πl : T (SG)→ T (D) is injective.

Proof. It is enough to show that ifπl([f ]) is trivial in T (D) then [f ] ∈ T (SG) is trivial.
Let f̃ : D× Ĝ→ D× T be a lift of f : SG→ X to the universal coverings. Denote
by GX the covering group of X. Our assumption implies that f̃ |S1×{id} is a Möbius

map. By the invariance of f̃ we conclude that f̃ |S1×{A} = (AX)
−1 � f̃ |S1×{id} � A is

also a Möbius map, for each A ∈ G. Since G is dense in Ĝ, we conclude that f̃ is a
Möbius map on the boundary S1 × {t}, t ∈ Ĝ, of each leaf.

Thus, when restricted to a leaf, f̃ is homotopic to a Möbius map (where different
leaves can give different Möbius maps). We need to show that there is a homotopy
Ft , 0 ≤ t ≤ 1, of f̃ to Möbius maps on leaves such that F1 = f̃ , Ft |S1×Ĝ = f̃ |S1×Ĝ
for each t , and the Beltrami coefficients μ̃t of Ft satisfy (5.1) and (5.2), for each t .

Let μ̃ be the Beltrami coefficient of f̃ . Then we consider a path of Beltrami
coefficients t �→ ν̃t = tμ̃, for 0 ≤ t ≤ 1, which satisfy (5.1) and (5.2). Then ν̃t
converges to the trivial (i.e., zero) Beltrami coefficient as t → 0 and the path of
properly normalized solutions t �→ f̃ ν̃t give a homotopy from f̃ ν̃1 = f̃ to the Möbius
maps. However, it is not guaranteed that f̃ ν̃t extends to the Möbius maps (determined
by f̃ ) on the boundaries S1 × Ĝ for 0 < t < 1. Let ht be the boundary map for
f̃ � (f̃ μ̃t )−1. Let gt be the leafwise barycentric extensions of ht , for 0 ≤ t ≤ 1.
Then g1 = g0 = id because h1 = h0 = id on the boundary (by the properties of
the barycentric extension [9]). The Beltrami coefficients of gt � f̃ ν̃t satisfy (5.1) and
(5.2) for each t (again by the properties of the barycentric extension [9]) and the path
t �→ gt � f̃ ν̃t gives a homotopy from f̃ = g1 � f̃ ν̃1 to the leafwise Möbius maps.
(The idea of using barycentric extensions to find homotopies first appears in [12] for
plane domains, and it is utilized in [28] to show that homotopic maps of the compact
solenoid are isotopic as well.)

Sullivan [44] showed that the Teichmüller metric on T (SG) is a genuine metric.
We use the above theorem to give an alternative argument.

Theorem 5.10. The Teichmüller metric on the Teichmüller space T (SG) of the com-
pact solenoid is a genuine metric, i.e., T (SG) is a Hausdorff space for the Teichmüller
metric.

Proof. Note that πl : T (SG)→ T (D) is a contracting map with respect to the Teich-
müller metrics on T (SG) and T (D). Since the Teichmüller metric on T (D) is a
genuine metric the theorem follows.
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5.4 The complex Banach manifold structure on T (SG)

The Teichmüller space T (SG) embeds as an open subset in a complex Banach vector
space as follows. Denote by f̃ : D× Ĝ→ D×T the lift to the universal covering of a
quasiconformal map f : SG→ X. The Bers embedding for the universal Teichmüller
space assigns to each f̃ |D×{t} a holomorphic quadratic differential ϕ̃|D×{t}. The holo-
morphic quadratic differential ϕ̃ satisfies (5.4) because of the continuous dependence
on the parameters of the solutions to the Beltrami equation [1] and it satisfies (5.3)
because the Beltrami coefficient of f̃ satisfies (5.1).

We denote by B(SG) the space of all holomorphic quadratic differentials on SG
which vary continuously in the transverse direction in the local charts for the C0-
topology. Note that B(SG) is conformally isometric to the space of all leafwise
holomorphic functions on ϕ̃ : D× Ĝ→ C that are uniformly leafwise Bers bounded,
i.e., sup

t∈Ĝ ‖ϕ̃|D×{t}‖Bers <∞, and that vary continuously in the transverse direction

for Bers norm, i.e., ‖ϕ̃|D×{t} − ϕ̃|D×{t1}‖Bers → 0 as t → t1, for each t1 ∈ Ĝ, and that
are invariant under the action of G, i.e., they satisfy (5.3) (see [42]).

Therefore, we obtained a map � : T (SG) → B(SG) which is injective because
the Bers map for the universal Teichmüller space is injective and the restriction map
πl is injective. Moreover, � is a homeomorphism onto an open subset of B(SG) (see
[42] for details). Note that � : T (SG) → B(SG) is the quotient of the holomorphic
map �̃ : U∞s (SG)→ B(SG), where U∞s (SG) is the unit ball in the space L∞s (SG) of
all leafwise smooth, transversely continuous Beltrami differentials with the essential
supremum norm and where �̃ is obtained by taking the leafwise Bers embedding
construction as above. Thus we define � : T (SG)→ B(SG) to be a complex global
chart for T (SG). For details see Sullivan [44].

Since T (SG) has a complex structure, there is a well-defined Kobayashi pseudo-
metric on T (SG). The Kobayashi pseudometric is the largest metric on T (SG) which
makes all holomorphic maps from the unit disk with the Poincaré metric into T (SG)
weakly contracting. It is a well-known fact that the Kobayashi pseudometric coincides
with the Teichmüller metric for the Teichmüller spaces of Riemann surfaces (see [41],
[17]). We showed that the same is true for T (SG) [42].

Theorem 5.11. On the Teichmüller space T (SG) of the universal hyperbolic solenoid
SG, the Kobayashi pseudometric equals the Teichmüller metric. In particular, the
Kobayashi pseudometric is a metric.

6 The Reich–Strebel inequality

The study of the Teichmüller metric on Teichmüller spaces of Riemann surfaces de-
pends on the Reich–Strebel inequality which is a (highly non-trivial) generalization of
the length-area method for finding extremal maps between quadrilaterals. We give a
proper generalization of the Reich–Strebel inequality for the marked compact solenoid
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X from [42]. If ϕ is a transversely continuous holomorphic quadratic differential then
|ϕ| is a leafwise area form on X. The product |ϕ|dm is a measure on X. Recall thatm
is the Haar measure on the profinite completion group Ĝ of G and that the transverse
sets in the local charts for X are identified with Ĝ.

Definition 6.1. Let ϕ be a holomorphic quadratic differential on a complex compact
solenoid X. Then

‖ϕ‖L1(X) :=
∫∫

X
|ϕ| dm.

Definition 6.2. The space of all holomorphic quadratic differentials on a complex
compact solenoid X is called A(X).

The proof of the Reich–Strebel inequality for the closed solenoid used a careful ap-
proximation argument (of holomorphic quadratic differentials and complex solenoids
by TLC holomorphic quadratic differentials on TLC complex solenoids) in [42] and
we give a different proof below utilizing an idea of Gardiner [17, Section 2] for the
proof in the closed surface case.

Definition 6.3. A Beltrami coefficientμon a complex solenoid X is called Teichmüller
trivial if it is equivalent to the trivial coefficient 0, i.e., the solution of the Beltrami
equation is homotopic to a conformal map.

Theorem 6.4 (Reich–Strebel inequality). Let ϕ be a holomorphic quadratic differen-
tial on the solenoid X and let μ be a Teichmüller trivial Beltrami coefficient. Then

‖ϕ‖L1(X) ≤
∫

X

∣∣1+ μ ϕ
|ϕ|

∣∣2

1− |μ|2 |ϕ| dm. (6.1)

Proof. Let ϕ ∈ A(X) and let f : X→ X be the quasiconformal map whose Beltrami
coefficient is μ. Then f is homotopic to the identity on X and its restriction to each
leaf is homotopic to the identity. Since ϕ is a holomorphic function on each leaf, the set
of zeroes of ϕ on each leaf is at most countable and they accumulate at the boundary of
the leaf. Thus, the set of critical vertical (as well as horizontal) trajectories is countable
on each leaf and does not influence the integration of |ϕ| on compact subsets of a leaf.

For a given arc β ⊂ X, we denote by hϕ(β) the height of β, namely the length in
the metric |Im(√ϕ(z, t)dz)| given in the local chart. We claim that there existsM > 0
such that for any compact segment β on a non-critical vertical trajectory we have

hϕ(β) ≤ hϕ(f (β))+M. (6.2)

Let t �→ ft be a homotopy from f0 = id to f1 = f . Recall that if γ is a path in
S connecting the endpoints of β then hϕ(β) ≤ hϕ(γ ) (see, for example, [43] or [17,
Lemma 2, page 41]).

Let p be the initial point and let q be the terminal point of β. We define a path γ
connecting the endpoints of β by taking γ0 : t �→ ft (p) followed by f (β) followed
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by γ1 : t �→ f1−t (q). Then

hϕ(β) ≤ hϕ(γ0)+ hϕ(f (β))+ hϕ(γ1).

We define the displacement function d : X → R for the map f . Since f is
homotopic to the identity and since the transverse set is totally disconnected, it follows
that f fixes each leaf. Then d(p), for p ∈ X, is defined by taking the leafwise
distance in the metric

√|ϕ||dz| from p to f (p). The displacement function d is
continuous because ϕ varies continuously for the transverse variations in charts and
f is continuous as well for the transverse variations. Since S is a compact space,
there exists a maximum M1 for the displacement function d. Then, from the above
inequality, we obtain the desired inequality (6.2) by using the above triangle inequality
for heights, by observing that the height hϕ of a curve is shorter that the distance in
the above metric

√|ϕ||dz| and by taking M = 2M1.
We claim that each ray of a non-critical vertical trajectory of ϕ is of infinite length.

To see this, assume that a ray r of a non-critical vertical trajectory is of finite length in
the
√|ϕ||dz| metric, namely hϕ(r) = h <∞. Then let 0 < un < h be an increasing

sequence of parameters for r with un→ h such that r(un) converges to a point q ∈ X
(there is a convergent sequence by the compactness of X). Then either q belongs to
the same leaf as r or to a different leaf. We consider both cases below.

If q belongs to the same leaf as r then a standard argument shows that q must be
a zero of ϕ [43], [17]. This implies that r is critical which is a contradiction.

If q belongs to another leaf, then q must be a zero of ϕ as well. Otherwise, there
would exist a neighborhood of q in X in which ϕ does not have any zeroes. This
neighborhood contains the product of a Cantor set and a disk with fixed radius in the
metric

√|ϕ||dz|. But r has to enter this neighborhood intersecting the disks of half
the radius infinitely many times. This implies that r has an infinite length which is a
contradiction.

Therefore q is a zero of ϕ. Then there exists a neighborhood of q in X consisting
of disks with small fixed radius around a transverse neighborhood of q such that all
zeroes of ϕ in this neighborhood are in the disks of 1/3 the radius. Note that the
vertical ray r has to enter infinitely many times in the smaller disks and exit the larger
disk. In particular, r crosses infinitely many times the annulus whose outer boundary
is the boundary of the larger disk and whose inner boundary is the boundary of the
smaller disk. The holomorphic quadratic differential has no zeros in the annulus. It
follows that the length of r is infinite, which is again a contradiction. Thus r has
infinite length.

At this point we modify the standard arguments in [17] to the compact solenoid X.
On the set of points p ∈ X which do not lie on the critical vertical trajectories of ϕ,
we define the function

g(p) = hϕ(f (βp))
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where βp is a compact vertical segment with center p and length b. By a change of
variable, we obtain

g(p) =
∫
βp

|Im(√ψdz)|,
where ψ = (ϕ � f )f 2

z (1 − μϕ
|ϕ| )

2 is a quadratic differential on X. At this point, we
write all the integration in terms of the natural parameter ζ = ξ + iη for ϕ. Then∫

X
g(p) dξ dη dm = b

∫
X
|Im√

ψ | dξ dη dm

by Fubini’s theorem. By (6.2), we obtain b − M ≤ ∫
βp
|Im(√ψdζ)| for p ∈ X.

By integrating both sides of the above inequality over X with respect to the measure
dξdηdm, we obtain

b −M
b

∫
X
dξ dη dm ≤

∫
X
|Im√

ψ(ζ )| dξ dη dm.

By letting b → ∞ and inserting |√ϕ(ζ )| = 1 under the integral on the right, we
obtain ∫

X
|ϕ| dm ≤

∫
X
|√ϕ√

ψ | dm,

and after substituting the expression for ψ and using Cauchy–Schwarz’s inequality,
we obtain the desired inequality called the Reich–Strebel inequality.

We consider equivalence classes of Beltrami coefficients on the compact solenoid
SG as elements of the Teichmüller space T (SG). If f : SG→ X is a marked solenoid
andμ is a Beltrami coefficient onX, then there is a marked solenoidf μ�f : SG→ Xμ

such that the Beltrami coefficient off μ : X→ Xμ isμ. Then the class of the Beltrami
coefficient of f μ �f determines a point in T (SG). In this sense, we consider the class
of a Beltrami coefficient on a marked solenoid X as an element of T (SG).

A derivative of a path of Beltrami coefficients on a marked compact solenoid X
is called a Beltrami differential (when the derivative exists) and it is considered as a
representative of a tangent vector to T (SG) at the marked point X. A Beltrami differ-
ential has finite essential supremum norm while a Beltrami coefficient has essential
supremum norm less than 1.

One important question is when do two Beltrami differentials on X represent the
same tangent vector. The Reich–Strebel inequality gives the answer (see [42]) similar
to the Riemann surface case. We say that a Beltrami coefficient μ on a complex
solenoid X is infinitesimally trivial if∫

X

μϕ dm = 0

for each holomorphic quadratic differential ϕ on X.
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Theorem 6.5. A smooth Beltrami differential ν on a complex solenoid X is infinites-
imally trivial if and only if there exists a holomorphic curve μs of Teichmüller trivial
smooth Beltrami coefficients on X such that μs = sν +O(s2) in the essential supre-
mum norm on X.

Denote by L∞s (X) the space of all smooth Beltrami differentials on X that vary
continuously in the transverse direction for the C1-topology. Denote by N(X) the
space of infinitesimally trivial smooth Beltrami differentials. The above theorem
identifies the space of tangent vectors at [f : SG→ X] ∈ T (SG)withL∞s (X)/N(X).
Since L∞s (X) and N(X) are not complete, it is not obvious that the tangent space is
a complete vector space.

Recall thatA(X) is the space of all (transversely continuous) holomorphic quadratic
differentials on X. We introduce a surjective continuous linear map P : L∞s (X) →
A(X), where A(X) is equipped with the Bers norm. Note that L∞s (X) is identified
with the space of all essentially bounded leafwise smooth function μ̃ on the universal
cover D× T of X that are continuous for the transverse variations in the C1-topology
and for the essential supremum norm, i.e.,

‖μ̃(z, t)− μ̃(z, t1)‖∞ → 0

as t → t1 for all t1 ∈ T , and that satisfy

μ̃(z, t) = μ̃(AX(z, t))
A′X(z, t)
A′X(z, t)

for all AX ∈ GX.
Then P : L∞s (X) → A(X) is defined by taking leafwise Bers’ reproducing for-

mula and noting that the invariance of μ̃with respect toGX gives the invariance of the
leafwise holomorphic functions P(μ̃) with respect to GX. The transverse continuity
of P(μ̃) follows by the continuity of the Bers’ reproducing formula.

We showed in [42] that P induces a linear isomorphism P̄ from the tangent space
at the point [f : SG→ X] ∈ T (SG) onto A(X).

Corollary 6.6. The map P : L∞s (X) → A(X) induces a continuous linear isomor-
phism from the normed space L∞s (X)/N(X) onto the Banach space A(X) equipped
with the Bers norm. Consequently, the tangent space L∞s (X)/N(X) at any point
[f : SG→ X] ∈ T (SG) is a complex Banach space.

Thus the tangent space to T (SG) has a nice interpretation in terms of the harmonic
Beltrami differentials as in the case of Teichmüller spaces of Riemann surfaces. We
considered in [42] to which extent the duality between the integrable holomorphic
quadratic differentials and tangent vectors carries from Teichmüller spaces of Riemann
surfaces to T (SG). It is worth noting that A(X) is a complete space in the Bers norm
and it is not complete in the L1-norm. This accounts for the difference from the
Riemann surface case.
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Theorem6.7. The dualA∗(X) forL1-norm onA(X) is strictly larger than the tangent
space at [f : SG→ X] ∈ T (SG).

Denote by A1(X) the space of integrable, a.e. leafwise holomorphic quadratic
differentials on X. ThenA(X) � A1(X) and we showed in [42] the density statement
in the L1-norm.

Theorem 6.8. The closure of A(X) for the L1-norm is equal to A1(X).

7 The Teichmüller-type extremal maps

The Teichmüller distance between a point [f : SG→ X] ∈ T (SG) and the basepoint
[id] ∈ T (SG) is the infimum of the logarithms of the quasiconformal constants of
all maps homotopic to f . A map f1 ∈ [f ] is called extremal if it has the least
quasiconformal constant in the homotopy class [f ]. If f1 ∈ [f ] is extremal then

dT ([f ], [id]) = 1/2 logK(f1).

A Beltrami coefficient μ on SG is called extremal if its corresponding quasiconformal
map is extremal.

Given a holomorphic quadratic differential ϕ on X, the Beltrami coefficient k |ϕ|
ϕ

is called a Teichmüller-type Beltrami coefficient. The corresponding quasiconformal

map f k
|ϕ|
ϕ is called a Teichmüller-type map; the quasiconformal constant of f k

|ϕ|
ϕ is

K = 1+k
1−k ; in the natural parameter ζ = √ϕ, f k

|ϕ|
ϕ is given by stretching the horizontal

direction by a factor
√
K and by shrinking the vertical direction by a factor 1/

√
K .

An important consequence of the Reich–Strebel inequality is that the Teichmüller-
type Beltrami coefficients are extremal in their classes (see [42]). In fact, a path of
Teichmüller-type Beltrami coefficients gives a geodesic in T (SG).

Theorem 7.1. Let f : SG → X be a quasiconformal map and let ϕ �= 0 be a
holomorphic quadratic differential on X. Then the path t �→ t

|ϕ|
ϕ

, −1 < t < 1,
of Teichmüller type Beltrami coefficients on X gives a geodesic (in the Teichmüller
metric) through the point [f ] ∈ T (SG). In addition, any two points on this geodesic
have no other geodesics connecting them.

Remark 7.2. Note thatϕ ∈ A(X) can have zeros on X which makes Teichmüller-type
Beltrami coefficient discontinuous at these points. Strictly speaking a Teichmüller-
type Beltrami coefficient does not belong to a Teichmüller class of smooth Beltrami
coefficients on X. However, this is a technical difficulty which was addressed in [42].
In fact, any zero of ϕ on a leaf of X has a neighborhood in X such that each local leaf
has at least one zero. It can happen that a multiple zero of ϕ on one leaf is a limit of
several simple zeros of ϕ on nearby leaves. The idea is to replace the Teichmüller-type
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Beltrami coefficient in such small neighborhoods of zeros of ϕ by a smooth Beltrami
coefficient such that the new global Beltrami coefficient on X is smooth. This can
be done in such a way that the restriction to each leaf of the original Teichmüller-
type Beltrami coefficient and the new smooth Beltrami coefficient represent the same
point in the universal Teichmüller space T (D) and that the sequence of new smooth
Beltrami coefficients (obtained by shrinking the neighborhoods of zeros of ϕ to a
zero area set) converges to the Teichmüller-type Beltrami coefficient uniformly on the
compact subsets of the complement of the set of zeros of each leaf. Moreover, the
essential supremum norm of the approximating sequence approaches the norm of the
Teichmüller-type Beltrami coefficient (see [42, Proposition 5.1]). Thus, Teichmüller-
type Beltrami coefficients are “well” approximated by smooth Beltrami coefficients
and we can consider them as elements of Teichmüller classes as well.

Remark 7.3. We noted that the union of the lifts of the Teichmüller spaces of all
finite unbranched coverings of the base surface to the Teichmüller space T (SG) of
the compact solenoid SG is dense in T (SG). Moreover, if the covering surface S1 is
covered by another covering surface S2 then T (S1) embeds by isometry into T (S2) (a
consequence of the Teichmüller’s theorem for surfaces). One can consider a metric on
T (SG) to be the “limit” metric of the Teichmüller metrics on the union of the Teich-
müller spaces of finite coverings. The above theorem says that the Teichmüller metric
on T (SG) (induced by taking the quasiconformal constants of the quasiconformal
maps between the compact solenoids) agrees with the “limit” metric (because they
agree on a dense subset). In particular, the extremal quasiconformal map between two
TLC complex solenoids is given by the lift of the extremal maps between the surfaces
(note that the Teichmüller class contains quasiconformal maps which are not lifts of
maps between surfaces).

We note that Definition 5.8 is equivalent to the following definition of T (SG)
because each leaf is dense in SG. LetG be a Fuchsian group such that D/G is a closed
surface and let Gn be the intersection of all subgroups of G of index at most n. Then
Gn is a finite index characteristic subgroup of G.

Definition 7.4. The Teichmüller space T (SG) of the compact solenoid SG is the space
of all smooth Beltrami coefficients μ on the unit disk D which are “almost invariant”
under G, i.e., which satisfy

sup
A∈Gn
‖μ− A∗(μ)‖∞ → 0

as n → ∞, up to the Teichmüller equivalence in the universal Teichmüller space
T (D).

Remark 7.5. The proof of Theorem 7.1 uses the Reich–Strebel inequality in an es-
sential way. It is important that we have a transverse measure m on SG in order to
be able to integrate leafwise holomorphic quadratic differentials on SG. If we use
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Definition 7.4 for T (SG), then the Teichmüller metric is defined in terms of the qua-
siconformal constants of the quasiconformal maps of the unit disk D. If we consider
a holomorphic quadratic differential ϕ on D such that the Teichmüller type Beltrami
coefficient k |ϕ|

ϕ
is almost invariant, then it seems difficult to directly show that it is ex-

tremal among all equivalent almost invariant Beltrami coefficients. Thus, even though
Definition 7.4 is simpler than Definition 5.8, it seems beneficial to work with the later
definition when studying extremal maps.

Any TLC Beltrami coefficient μ̃ on SG is a lift of a Beltrami coefficient μ on a
closed Riemann surface Sn in the tower of Riemann surfaces defining a TLC complex
structure of S which is possibly different from the fixed TLC structure obtained from
D/G. By Teichmüller’s theorem for closed surfaces, there exists 0 < k < 1 and
ϕ ∈ A(Sn) such that k |ϕ|

ϕ
∈ [μ]. Then ϕ lifts to a TLC holomorphic quadratic

differential ϕ̃ ∈ A(SG) and k |ϕ̃|
ϕ̃
∈ [μ̃]. By the above theorem, we get immediately

that dT ([μ̃], [0]) = dT ([μ], [0]). In other words [42],

Corollary 7.6. Let S be a closed Riemann surface such that the TLC complex structure
on the compact solenoid SG can be obtained by lifting the complex structure of S. Then
the natural inclusion map

i : T (S)→ T (SG)

obtained by mapping Beltrami coefficients on S to their lifts on SG is an isometry for
the Teichmüller metrics.

The Teichmüller space T (S) of a closed surface S is a finite-dimensional complex
manifold. Any two points [f : S → S1] and [g : S → S2] in T (S) are connected by
a unique Teichmüller-type geodesic path t �→ [

t
|ϕ|
ϕ

]
, 0 ≤ t ≤ k, for ϕ ∈ A(S1) and

some 0 < k < 1.
On the other hand, the Teichmüller space T (D) of the unit disk D is an infinite-

dimensional non-separable complex Banach manifold. There are points inT (D)which
are not connected by a Teichmüller-type geodesic path. However, Lakic [22] observed
that an open, dense subset of T (D) is connected by a Teichmüller-type geodesic to
the basepoint [0] ∈ T (D).

The Teichmüller space T (SG) of the universal hyperbolic solenoid SG is also an
infinite-dimensional complex Banach manifold, but it is separable. This is the first
example of a separable Teichmüller space which is the “smallest” possible infinite-
dimensional space. Moreover, even though each leaf is non-compact, the solenoid SG
is a compact space. In addition, the union of lifts of Teichmüller spaces of all closed
surfaces of genus at least two is dense in T (SG) (see Nag–Sullivan [32] or [42]) and
we showed in the above corollary that each such point is connected to the basepoint by
a Teichmüller-type geodesic path. Based on the above remarks, one would hope that
each point in T (SG) is connected by a Teichmüller-type geodesic to the basepoint. If
not, at least one would expect this to be true for a large subset of T (SG). However,
the situation for T (SG) is unexpectedly different (see [14]).
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Theorem 7.7. The set of points in the Teichmüller space T (SG) of the compact
solenoid SG which do not have a Teichmüller-type extremal representative is generic
in T (SG). That is, the set of points that do have a Teichmüller-type representative is
of the first kind in the sense of Baire with respect to the Teichmüller metric.

Proof. For the benefit of the reader, we give a short description of the ideas involved
in the proof. The key idea is to exploit the difference between the L1-norm and the
Bers norm on the space of transversely continuous holomorphic quadratic differentials
A(SG) on SG. In particular, A(SG) is complete for the Bers norm and incomplete for
the L1-norm.

We sketch the proof that there exist points in T (SG)which do not have a Teichmül-
ler-type Beltrami coefficient representatives. The proof that they are generic is just an
easy modification.

Assume on the contrary that all points in T (SG) have Teichmüller-type representa-
tives. Let A1 = {ϕ ∈ A(SG); ‖ϕ‖L1 = 1} and let A1(N) = {ϕ ∈ A1; ‖ϕ‖Bers ≤ N},
where N ∈ N. Then A1 =⋃∞

N=1A1(X)(N). We define a map

π : T (SG)→ A1 ∪ {0}, π([0]) = 0 and π([μ]) = ϕ if [μ] �= [0],
where k |ϕ|

ϕ
∈ [μ] and ϕ is normalized such that ‖ϕ‖L1(X) = 1. Then

T (SG) =
∞⋃
N=1

π−1(A1(N)) ∪ {[0]}.

We recall (see [14, Proposition 4.2]) that eachπ−1(A1(N))∪[0] is closed in T (SG)
under our assumption above. To see this, note that if

[
kn
|ϕn|
ϕn

]→ [
k
|ϕ|
ϕ

]
then kn → k

and
∫
SG
|ϕn|
ϕn
ϕ dm → 1 as n → ∞, by the Reich–Strebel inequality. We assume

that
[
kn
|ϕn|
ϕn

] ∈ π−1(A1(N)). Then
∫
SG
|ϕn|
ϕn
ϕ dm→ 1 implies that ϕ ∈ A1(N), i.e.,[

k
|ϕ|
ϕ

] ∈ π−1(A1(N)).

This implies that at least one π−1(A1(N)) is of the second kind in the sense of
Baire and hence it has an interior. We obtain a contradiction by showing that each
π−1(A1(N)) is nowhere dense, hence is of the first kind in the sense of Baire.

The rest of the proof depends on a geometric construction. Assume thatπ−1(A1(N))

has an interior. Let [μ] be a TLC point in the interior, which is equivalent to k |ϕ̃|
ϕ̃

, where
ϕ̃ is a lift of a holomorphic quadratic differential ϕ on a closed Riemann surface S.
Denote by Sb a surface obtained by cutting S along a non-separating simple closed
geodesic b. We consider a Zn-cover Sn of S obtained by cyclically gluing n copies of
the surface Sb. Let 0 < r < 1 and denote by Sn,r the [rn]/n portion of Sn which is
made out of [rn] neighboring copies of Sb, where [rn] is the greatest integer which is
at most rm. The boundary of Sn,r consists of two curves which are copies of b. Let ϕn
be a quadratic differential on Sn obtained by lifting ϕ on the Sn,r part and defining it
to be zero on the Sn \ Sn,r part. Let ϕ̃n be the lifted quadratic differential to SG. Note
that ϕn and ϕ̃n are piecewise holomorphic. It turns out that ϕ̃n can be approximated



Chapter 19. The Teichmüller theory of the solenoid 837

by holomorphic quadratic differential ψ̃n on SG in the L1-norm such that ψ̃n is a lift
of a holomorphic quadratic differential ψn on Sn (see [14, Lemma 4.3]).

Let S̃n,r denote the pre-image of Sn,r in the solenoid SG. Then α(S̃n,r ) = [nr]/n,
where α is the product measure of the leafwise hyperbolic area measure and the
transverse Haar measuremmultiplied by an appropriate constant such thatα(SG) = 1.
We keep the notation [μ] for the fixed TLC point in the interior of π−1(A1(N)). Let
νn on SG be defined by νn = (1+ r)k |ϕ̃|ϕ̃ on S̃n,r and νn = k |ϕ̃|ϕ̃ on SG − S̃n,r . By the
Reich–Strebel inequality, the Beltrami coefficient νn when considered as a functional
on A(SG) is close to achieving its norm on a holomorphic quadratic differential ψ̃∗n
which is “similar” to ψ̃n in the L1 sense. More precisely, the integral of |ψ̃∗n | when
coupled with the Haar measure over SG − S̃n,r is converging to zero as n→∞.

If r is small enough then [νn] ∈ π−1(A1(N)). This implies that ψ̃∗n is in A1(N).
This is a contradiction with

1 =
∫

SG

|ψ̃∗n | dm ≤ ‖ψ̃∗n‖Bersα(S̃n,r )+
∫

SG−S̃n,r
|ψ̃∗n | dm

because the right side can be made arbitrary small for n large and r small enough.
Therefore, our starting assumption that all points have Teichmüller-type extremal
representatives is not correct.

To show the stronger statement that the set of points which have Teichmüller-type
Beltrami coefficient representatives is of the first kind, it is enough to assume that
it is of the second kind and use this set instead of the whole T (SG) in the above
argument.

We recall that each point [μ] ∈ T (SG) is approximated by a sequence [μn] ∈
T (SG) of TLC points. Each μn is Teichmüller equivalent to a unique Teichmüller-
type Beltrami coefficient kn

|ϕn|
ϕn

, where ϕn is a TLC holomorphic quadratic differential
on SG. We say that [μ] is well-approximated by the TLC sequence [μn] if

∞∑
n=1

‖knϕn − kn+1ϕn+1‖Bers <∞.

Theorem 7.8. If a non locally transversely constant point in T (SG) is well-approxi-
mated by transversely locally constant points then it contains a Teichmüller-type ex-
tremal Beltrami coefficient representative.

Remark 7.9. We note that the above two theorems have counterparts in the infinitesi-
mal setting. Namely, a generic vector in the tangent space at the basepoint [0] ∈ T (SG)
does not achieve its norm onA(SG) (when considered as a linear functional onA(SG)),
namely it cannot be represented by a Teichmüller-type Beltrami coefficient k |ϕ|

ϕ
, for

k > 0 and ϕ ∈ A(SG) (see [14, Theorem 3]). A well-approximated non TLC vector
in the tangent space at the basepoint [0] ∈ T (SG) does achieve its norm on A(SG)
(see [14, Theorem 2′]).
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The set of real numbers which are not well-approximated by rational numbers is
of full Lebesgue measure on the real line. From Theorem 7.7 and Theorem 7.8, we
immediately obtain a similar statement for well-approximation with TLC points in
T (SG) (see [14]).

Corollary 7.10. The set of points in T (SG) which are not well-approximated by
transversely locally constant marked complex structures is generic in T (SG).

8 The modular group of the compact solenoid

The following definition was given by C. Odden [38]:

Definition 8.1. The modular groupMod(SG) consists of all quasiconformal self-maps
of SG which preserve the baseleaf up to isotopy.

The modular group Mod(SG) acts on the Teichmüller space T (SG) by

[f : SG→ X] �→ [f � g−1 : SG→ X],
where [g : SG→ SG] ∈ Mod(SG) and [f ] ∈ T (SG).

Definition 8.2 (see [5], [38]). A partial automorphism of the fundamental group
G = π1(S0) is an isomorphism between two finite index subgroups ofG. Two partial
automorphisms ψ1 : K1 → H1 and ψ2 : K2 → H2 are said to be equivalent if they
agree on the intersection of their domains. The virtual automorphism group Vaut(G)
of the surface group G is by definition the group of equivalence classes of partial
automorphisms. Note that the virtual automorphism group is also called the (abstract)
commensurator group Comm(G) of the surface group G and we use this notation in
the rest of the chapter.

In [5], a natural group in which each element is given by two non-isomorphic
pointed covers of the same degree of the base surface (S0, x0) is shown to act on the
union of Teichmüller spaces of all closed surfaces of genus at least two, namely the
subset of T (SG) consisting of all TLC points. The above group is naturally isomorphic
to the commensurator group Comm(G) of the surface groupG = π1(S0). The action
is isometric for the Teichmüller distance on the union of Teichmüller spaces of all
closed surfaces of genus at least two and it extends by continuity to the action on
the Teichmüller space T (SG). One should note that our definition of the Teichmüller
metric on T (SG) does not guarantee that the above union embeds isometrically in
T (SG); this is a consequence of the Reich–Strebel theorem for SG (see Corollary 7.6).
However, we do not need to use Corollary 7.6 to show that a continuous extension
is possible; it is enough to note that the Teichmüller metric on the above union is
bi-Lipschitz (with constant 1/3) to the Teichmüller metric on T (SG) (which is a
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consequence of the standard result comparing the Teichmüller metric on Teichmüller
space of a Riemann surface with the restriction of Teichmüller metric of the universal
Teichmüller space T (D) to its embedding into T (D) due to McMullen [30], [18]).

The following theorem (see [38]) gives a natural interpretation of the commensu-
rator group Comm(G) in terms of the solenoid.

Theorem 8.3. Let SG be the G-tagged compact solenoid. Fix an identification of
the baseleaf of SG with D. Then the modular group Mod(SG) is isomorphic to the
commensurator group Comm(G) of the base surface group G. The isomorphism is
given by the restriction of Mod(SG) to the baseleaf.

The group of baseleaf preserving conformal maps of SG (which is a subgroup of the
modular group Mod(SG)) is identified with the commensurator group CommPSL2(R)(G)

ofG in PSL2(R) [38], where CommPSL2(R)(G) consists of allM ∈ PSL2(R) for which
there exist two finite index subgroupsK andH ofG such thatMKM−1 = H . There
are two cases, eitherG is an arithmetic group in which case CommPSL2(R)(G) is dense
in PSL2(R) orG is not arithmetic in which case CommPSL2(R)(G) is a finite extension
ofG. In both cases, the group of conformal maps of theG-tagged solenoid (D×Ĝ)/G
is infinite (because it contains G in both cases), unlike for Riemann surfaces where
it is finite. (Note that G acts non-trivially on T (SG) even though it acts trivially on
T (D/G).) Biswas and Nag [4] showed that the action of CommPSL2(R)(G) on theG-
tagged solenoid is ergodic (with respect to the product of the hyperbolic area measure
on leaves and the transverse measure) if and only ifG is arithmetic. For any Fuchsian
uniformizing group G of a closed Riemann surface, a G-tagged solenoid represents
the lift of the complex structure on D/G to SG. Thus, the isotropy group (in Mod(SG))
of a marked TLC point in T (SG) is always infinite. We showed [28] that the isotropy
group of any non-TLC point in T (SG) is infinite as well. The basic idea was to show
that the right action of the conformal covering group GX for a non-TLC solenoid X
commutes with the left action of GX.

If a sequence of homeomorphisms of a closed surface converges uniformly on
compact subsets to the identity, then the elements of its tail are isotopic to the identity.
In [28] we showed a corresponding statement for the solenoid SG.

Theorem 8.4. Let SG be a TLC complex solenoid and let fn : SG→ SG be a sequence
of baseleaf preserving quasiconformal self maps of SG that uniformly converges to the
identity map. Then there exists n0 such that fn is homotopic to a baseleaf preserving
conformal self map cn : SG→ SG, for all n > n0.

A classical result on closed surfaces states that any two homeomorphisms which
are homotopic are isotopic. Moreover, any two quasiconformal maps of two Riemann
surfaces (possibly geometrically infinite) which are homotopic through bounded ho-
motopy are isotopic through bounded quasiconformal isotopy, namely the quasicon-
formal constants of maps in the isotopy are uniformly bounded. We showed [28]
similar result for the solenoid.
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Theorem 8.5. Let f : X → Y and g : X → Y be two homotopic quasiconformal
maps of complex solenoids X and Y . Then f and g are isotopic by a uniformly
quasiconformal isotopy.

We also considered the orbits of Mod(SG) in T (SG). It is an observation of
Sullivan that the Ehrenpreis conjecture is equivalent to the statement that orbits of
Mod(SG) are dense. In a joint work with Markovic, we showed the weaker statement
that orbits have accumulation points [28].

Theorem 8.6. There exists a dense subset of T (SG) such that the orbit of the modular
group Mod(SG) of any point in this subset has accumulation points in T (SG). This
subset contains only non-TLC points.

An element h of Mod(SG) is called mapping class like if h conjugates a finite index
subgroupK of the base surface groupG onto itself, i.e., hKh−1 = K . C. Odden [38]
showed that if a power hn, n �= 0, is mapping class like then h is mapping class like.

The Nielsen realization problem states that any finite subgroup of the modular group
of a closed surface is realized as a conformal group of a homeomorphic Riemann
surface. We showed in [28] a version of the Nielsen realization problem for the
solenoid SG.

Theorem 8.7. Any finite subgroup of Mod(SG) is cyclic and mapping class like.
Consequently, elements of Mod(SG) which are not mapping class like are of infinite
order.

9 The Teichmüller space of the non-compact solenoid

Let G < PSL2(Z) be such that D/G is the once punctured modular torus (which we
shall henceforth call the “modular torus”).

Definition 9.1. The G-tagged non-compact solenoid Snc is the quotient of D× Ĝ by
the action of G, where A(z, t) := (Az, tA−1) for (z, t) ∈ D × Ĝ and A ∈ G. The
base leaf of Snc is (D× {id})/G.

Definition 9.2. An arbitrary non-compact marked complex solenoid is a complex
solenoid X together with a differentiable, quasiconformal map f : Snc → X which
is continuous in the transverse direction in the local charts for the C1-topology, and
whose leafwise Beltrami coefficients are continuous in the transverse direction for
the essential supremum norm when nearby leaves are identified using the canonical
identifications coming from the G-tagged TLC complex structure of Snc.

The requirement that Beltrami coefficients are close on the whole leaves as opposed
to being close in local charts is necessary because Snc is non-compact. For marked
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compact solenoids we obtain the same property from the continuity in local charts
because of the compactness. In a joint work with R. Penner we introduced in [37] the
Teichmüller space T (Snc) of the non-compact solenoid Snc as follows.

Definition 9.3. The Teichmüller space T (Snc) of the non-compact solenoid Snc is
the space of all differentiable, quasiconformal maps f : Snc → X from theG-tagged
solenoid to an arbitrary non-compact complex solenoid X up to conformal maps of
the range and up to homotopy, where f is required to be continuous in the transverse
direction in the local charts in the C1-topology and the leafwise Beltrami coefficients
of f are required to vary continuously on the global leaves in the essential supremum
norm when leaves are canonically identified using the G-tagged complex structure
ofSnc.

The definition of T (Snc) is justified by the following density theorem analogous
to the finite surface case (see [37]).

Theorem 9.4. The union of the lifts of the Teichmüller spaces of all finite punctured
hyperbolic surfaces covering the modular torus is dense in the Teichmüller space
T (Snc) of the non-compact solenoid Snc.

In [37] we introduced a representation definition of the Teichmüller space T (Snc)

as follows. Consider the space Hom(G× Ĝ, PSL2(R)) of all functions ρ : G× Ĝ→
PSL2(R) satisfying the following three properties:

Property 1. ρ is continuous.

Property 2. (G-equivariance). For each γ1, γ2 ∈ G and t ∈ Ĝ, we have

ρ(γ1 � γ2, t) = ρ(γ1, tγ
−1
2 ) � ρ(γ2, t).

Property 3. For every t ∈ Ĝ, there is a quasiconformal mappingφt : D→ D depending
continuously on t ∈ Ĝ so that for every γ ∈ G, the following diagram commutes,
where ρ(γ, t) � φt (z) = φtγ−1 � γ (z):

D× Ĝ

φt× id

��

(z,t) �→ (γ z,tγ−1) ��
D× Ĝ

φ
tγ−1× id

��
D× Ĝ

(φt (z),t) �→ (ρ(γ,t)�φt (z) = φtγ−1�γ (z),tγ−1)

��
D× Ĝ.

Since G is discrete, ρ is continuous if and only if it is continuous in its second
variable. Therefore, it is enough to require continuity in the second variable in Prop-
erty 1. Property 2 is a kind of homomorphism property of ρ mixing the leaves; notice
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in particular that taking γ2 = id gives ρ(id, t) = id for all t ∈ Ĝ. Property 3 mandates
that for each t ∈ Ĝ, φt conjugates the standard action of γ ∈ G on D× Ĝ at the top
of the diagram to the action

γρ : (z, t) �→ (ρ(γ, t)z, tγ−1)

at the bottom, and we let Gρ = {γρ : γ ∈ G} ≈ G. Notice that the action of Gρ
on D× Ĝ extends continuously to an action on (D ∪ S1)× Ĝ. We finally define the
solenoid (with marked hyperbolic structure)

Sρ = (D×ρ Ĝ) = (D× Ĝ)/Gρ.
Define the group Cont(Ĝ, PSL2(R)) to be the collection of all continuous maps

α : Ĝ → PSL2(R), where the product of two α, β ∈ Cont(Ĝ, PSL2(R)) is taken
pointwise (αβ)(t) = α(t)�β(t) in PSL2(R). An element α ∈ Cont(Ĝ, PSL2(R)) acts
on ρ ∈ Hom(G× Ĝ, PSL2(R)) according to

(αρ)(γ, t) = α(tγ−1) � ρ(γ, t) � α−1(t).

We introduced the topology on Hom(G× Ĝ, PSL2(R)) as follows. Consider the
natural metric d on PSL2(R) induced by identifying it with the unit tangent bundle
of the unit disk D. Let ρ1, ρ2 ∈ Hom(G× Ĝ, PSL2(R)) and let γ1, . . . , γj ∈ G be a
generating set of G. The distance between ρ1 and ρ2 is given by

max
1≤i≤j, t∈Ĝ

d(ρ1(γi, t), ρ2(γi, t)). (9.1)

This metric is not canonical, but any such two metrics induce the same topology.
Note that Hom′(G× Ĝ, PSL2(R)) := Hom(G× Ĝ, PSL2(R))/Cont(Ĝ, PSL2(R)) is
equipped with the quotient topology of the above topology on Hom(G×Ĝ, PSL2(R)).
We showed that Hom′(G×Ĝ, PSL2(R)) is naturally homeomorphic to T (Snc) ([37]).

Theorem 9.5. There is a natural homeomorphism of the Teichmüller space T (Snc) of
the solenoid Snc with

Hom′(G× Ĝ, PSL2(R)),

given by assigning to each ρ ∈ Hom′(G × Ĝ, PSL2(R)) the corresponding marked
hyperbolic solenoid Sρ .

10 The decorated Teichmüller space of the non-compact
solenoid

We introduced in [37] the decorated Teichmüller space T̃ (Snc) of the punctured
solenoid Snc. Points in T̃ (Snc) are decorations of (homotopy classes of) marked hy-
perbolic structures up to isometries. It is convenient to use the presentation definition
of the Teichmüller space T (Snc) for assigning decorations to hyperbolic metrics.
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Recall that a puncture on Snc is an end of a single leaf of Snc. Since Snc is a G-
tagged solenoid with G < PSL2(Z) the punctured torus group, an end has an explicit
description in the universal cover D× Ĝ. Denote by Q ⊂ S1 the set of fixed points of
the parabolic elements ofG. Then the set of lifts to D× Ĝ of ends of Snc is identified
with Q× Ĝ.

Given a quasiconformal map f : Snc → X, the images of the ends in Snc are the
ends of X. A decoration on X is easiest to understand in terms of a presentation
description ρ ∈ Hom(G × Ĝ, PSL2(R)). Let Sρ be a hyperbolic solenoid obtained
from the representation ρ with corresponding quasiconformal map φ : Snc → Sρ .

In [37] we described the punctures of Sρ using the representation ρ. The quasicon-
formal map φ : D× Ĝ→ D× Ĝ extends continuously to a leafwise quasi-symmetric
map φ : S1×Ĝ→ S1×Ĝ. Recall that Q ⊂ S1 parametrizes the endpoints of the stan-
dard triangulation of D invariant under PSL2(Z). We say that a point (p, t) ∈ S1× Ĝ
is a ρ-puncture if φ−1(p, t) ∈ Q, and a puncture of Sρ itself is the Gρ-orbit of a
ρ-puncture. A ρ-horocycle at a ρ-puncture (p, t) is the horocycle in D× {t} centered
at (p, t) and a horocycle on Sρ is the Gρ-orbit of a ρ-horocycle.

We introduce an identification of horocycles with points in the light cone in
Minkowski three space. Recall that Minkowski three space is R

3 with the indefi-
nite pairing 〈 ·, ·〉 whose quadratic form is x2 + y2 − z2 for (x, y, z) ∈ R

3. The upper
sheet of the hyperboloid H := {w = (x, y, z); 〈w,w〉 = −1, z > 0} is a model
for the hyperbolic plane and rays in the positive light cone L+ := {u = (x, y, z) :
〈u, u〉 = 0, z > 0} are identified with boundary points to the hyperbolic plane.
The hyperbolic distance between w1, w2 ∈ H is equal to cosh〈w1, w2〉. The set of
horocycles in H is identified with points of the positive light cone L+ by the duality
w �→ {u ∈ H; 〈w, u〉 = −1} (see [35]). A topology on the set of horocycles is induced
by the correspondence with L+ with its natural topology as a subset of R

3.

Definition 10.1. A decoration on Sρ , or a decorated hyperbolic structure on Sρ , is a
function ρ̃ : G× Ĝ×Q→ PSL2(R)× L+, where

ρ̃(γ, t, q) = ρ(γ, t)× h(t, q)
with ρ(γ, t) ∈ Hom(G× Ĝ, PSL2(R)), which satisfies the following conditions:

Property 4. For each t ∈ Ĝ, the image h(t,Q) ⊆ L+ is discrete and the center of the
horocycle h(t, q) is φt (q), for all (t, q) ∈ Ĝ×Q (using here the identification of L+
with the space of horocycles).

Property 5. For each q ∈ Q, the restriction h( ·, q) : Ĝ→ L+ is a continuous function
from Ĝ to L+.

Property 6. h(t, q) is ρ invariant in the sense that

ρ(γ, t)(h(t, q)) = h(tγ−1, ρ(γ, t)q).

We introduced in [37] the decorated Teichmüller space T̃ (Snc) as follows. Let
Hom(G × Ĝ × Q, PSL2(R) × L+) denote the space of all decorated hyperbolic
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structures satisfying the properties above. We define a topology on Hom(G × Ĝ ×
Q, PSL2(R)×L+). A neighborhood of ρ̃(γ, t, q) = ρ(γ, t)× h(t, q) consists of all
ρ̃1(γ, t, q) = ρ1(γ, t)×h1(t, q) such that ρ1 belongs to a chosen neighborhood of ρ in
Hom(G× Ĝ, PSL2(R)), and the maps h1( ·, q) : Ĝ→ L+ and h( ·, q) : Ĝ→ L+ are
close in the supremum norm, for each q ∈ Q. The above condition and the invariance
Property 6 implies that the set h1(t,Q) is close to the set h(t,Q) in the Hausdorff
metric on the closed subsets of R

3, for each t ∈ Ĝ.

Definition 10.2. The decorated Teichmüller space T̃ (Snc) is the quotient

T̃ (Snc) := Hom(G× Ĝ×Q, PSL2(R)× L+)/Cont(Ĝ, PSL2(R)),

where α : Ĝ→ PSL2(R) acts on ρ̃ by

(αρ̃)(γ, t, q) = (
α(tγ−1) � ρ(γ, t) � α−1(t)

)× (
α(t)h(t, q)

)
.

It is immediate that the forgetful map T̃ (Snc)→ T (Snc) is a continuous surjection
(see [37, Proposition 5.2]).

Given two horocycles in the hyperbolic plane, consider a geodesic connecting their
centers. The horocycles intersect the geodesic at two points and the lambda length of
the pair is defined as

√
2 exp δ, where δ is the signed length of the arc of the geodesic

between the two points (see [35], [36]). The sign of δ is positive if the arc is outside
the horoballs and it is negative if the arc is inside the horoballs. If u, v ∈ L+ represent
the horocycles then the lambda length is given by λ(u, v) = √−〈u, v〉.

Let τ∗ be the Farey tesselation of the unit disk (see, for example, [34], [37], [36]).
Then the vertices of τ∗ are at Q and τ∗×Ĝ is a tesselation of the universal cover D×Ĝ
of Snc. Given a decoration ρ̃ = (ρ, h) ∈ T̃ (Snc), we consider the image tesselation
φ(τ∗× Ĝ) of the universal cover D× Ĝ of Sρ (where φ is the union of quasiconformal
maps from Property 3). Then there is an assignment of lambda length λ(e, t) to each
edge (e, t), e ∈ τ∗ and t ∈ Ĝ, in the tesselation τ∗ × Ĝ by

λ(e, t) = λ(h(p, t), h(q, t)),
where p, q are the endpoints of e. Thus we obtain a lambda length map λ : T̃ (Snc)→
(R
τ∗
>0)

Ĝ, where (Rτ∗>0)
Ĝ are maps from Ĝ into the function space R

τ∗
>0 (see [37]).

We consider the supremum norm over edges in τ∗ on the function space R
τ∗
>0. Let

Cont(Ĝ,Rτ∗>0) be the space of continuous functions in the compact-open topology. In
other words,

f ∈ Cont(Ĝ,Rτ∗>0)

if
sup
e∈τ∗
|f (t)(e)− f (t1)(e)| → 0

as t → t1, for all t1 ∈ Ĝ. Moreover, we define ContG(Ĝ,Rτ∗>0) to be the set of G-
invariant functionsf in Cont(Ĝ,Rτ∗>0), i.e., f ∈ ContG(Ĝ,Rτ∗>0) iff ∈ Cont(Ĝ,Rτ∗>0)
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and
f (tA−1)(A(e)) = f (t)(e),

for A ∈ G and t ∈ Ĝ. In [37] we obtain

Theorem 10.3. The assignment of lambda lengths

λ : T̃ (Snc)→ ContG(Ĝ,Rτ∗>0)

is a surjective homeomorphism. Namely, ContG(Ĝ,Rτ∗>0) parametrizes the decorated
Teichmüller space T̃ (Snc).

A direct corollary to the above theorem is (see [37])

Corollary 10.4. The union of the lifts of the decorated Teichmüller spaces of all finite
punctured surfaces covering the modular torus is dense in the decorated Teichmüller
space T̃ (Snc) of the non-compact solenoid Snc.

We consider the convex hull construction introduced in [15] and further utilized
in [35] for punctured surfaces and in [34] for the universal Teichmüller space. The
construction in [35] gives a decomposition of the decorated Teichmüller space of a
punctured surface similar to [20]. Our approach is based on the universal Teichmüller
space construction from [34] where the construction of [20] does not work.

A lambda length function f ∈ R
τ∗
>0 is said to be pinched if there exists M > 1

such that
1/M ≤ f (e) ≤ M

for all e ∈ τ∗ (see [34]). Let h ∈ (L+)Q and assume that the corresponding lambda
length function λ : e �→ λ(h(e)), e ∈ τ∗, is pinched. Consider the image h(Q) ⊂ L+
ofh and let C(h(Q)) denote its convex hull as a subset of R

3. Then the results from [34]
give that h(Q) is a discrete and radially dense subset of L+. Moreover, h : Q→ L+
projects to a map h̄ : Q→ S1 which extends to a quasisymmetric homeomorphism of
S1. In addition, the set of faces of the boundary ∂C(h(Q)) of the convex hull C(h(Q))
consists of Euclidean polygons which meet along their boundary edges, the set of
faces is locally finite and boundary edges of faces of ∂C(h(Q)) project to a locally
finite geodesic lamination on the hyperbolic plane H whose geodesics have endpoints
in Q (see [34] for more details and proofs).

A decoration ρ̃ ∈ T̃ (Snc) of the non-compact solenoid Snc gives a lambda length
function λ(ρ̃) ∈ ContG(Ĝ,Rτ∗>0). Namely, we obtain a Cantor set of lambda lengths
λ(ρ̃)(t) : τ∗ → R>0, for t ∈ Ĝ, and note that the lambda lengths are pinched uni-
formly in t ∈ Ĝ by the compactness of Ĝ and the transverse continuity of ρ̃ (see [34,
Lemma 6.1]). The above convex hull construction applied to each leaf D × {t} of
the universal cover D× Ĝ gives a Cantor set of convex hulls which in turn produce a
Cantor set of geodesic laminations on D×Ĝwhich are invariant under the action ofG.
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Denote by τρ̃ such obtained leafwise geodesic lamination on D× Ĝ. The endpoints of

geodesics in τρ̃ lie in Q× Ĝ and we call such a geodesic lamination a tesselation if all
complementary regions are ideal triangles. In general, the complementary regions of
τρ̃ on leaves can be arbitrary ideal hyperbolic polygons. A tesselation τ of D×Ĝ such
that the restriction to each leaf τ(t) ⊂ D, t ∈ Ĝ, is invariant under some finite index
subgroup K of G is called a TLC tesselation. Equivalently, τ is a TLC tesselation of
D× Ĝ if it is a lift of a tesselation on a Riemann surface D/K , for some finite index
subgroup K < G.

Definition 10.5. Let τ be a leafwise geodesic lamination on D× Ĝ. Denote by C(τ)
the set of all decorations for which the convex hull construction produces λ, i.e.,

C(τ) := {ρ̃ ∈ T̃ (Snc); ∂C(λ(ρ̃)) = τ }.
We showed in [37] that generically in T̃ (Snc) convex hull constructions yield TLC

tesselations. In more details,

Theorem 10.6. The subset C(τ) of T̃ (Snc) is open for each TLC tesselation τ , and⋃
τ C(τ) is a dense open subset of T̃ (Snc), where the union is over all TLC tessela-

tions τ .

11 A presentation for the modular group
of the non-compact solenoid

We define the modular group Mod(Snc) of the non-compact solenoid Snc to consist
of (analogously to the compact solenoid) all quasiconformal differentiable baseleaf
preserving self-maps of Snc up to isotopy (see [37]). We showed in [37] an appropriate
version of the characterization of Mod(Snc) similar to the compact solenoid (see [38]).
As in Section 9, letG < PSL2(Z) be the once punctured modular torus group. Recall
that the commensurator of G consists of all isomorphisms of finite-index subgroups
of G modulo a natural equivalence (see Section 8, Definition 8.2).

Theorem 11.1. The restriction to the baseleaf of Mod(Snc) gives an isomorphism of
Mod(Snc) with the subgroup of the commensurator group ofG consisting of elements
which map parabolic elements of G onto parabolic elements of G.

The action of the modular group Mod(Snc) on the decorated Teichmüller space
T̃ (Snc) preserves the decomposition into sets C(τ), for τ a leafwise geodesic lamina-
tion on the solenoid, or equivalently aG-invariant geodesic lamination on the universal
cover. It is convenient to consider TLC tesselations only. Then, as a consequence of
the above theorem, the modular group preserves the subspace of TLC tesselations.
We showed in [37] that an analogue of the Ehrenpreis conjecture in the decorated
Teichmüller space T̃ (Snc) is not correct.
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Theorem 11.2. The quotient
⋃
τ C(τ)/Mod(Snc) is Hausdorff, where the union is

over all TLC tesselations τ . Moreover, no orbit under Mod(Snc) of a point in T̃ (Snc)

is dense in T̃ (Snc).

From now on, we restrict the action of Mod(Snc) to the baseleaf. Then Mod(Snc)

preserves the space of all TLC tesselations on D, i.e., it preserves the space of lifts
of all ideal hyperbolic triangulations of all Riemann surfaces D/K , where K < G

is of finite index. The Farey tesselation τ∗ on D is a TLC tesselation which will be
considered as a basepoint in our considerations.

We showed a transitivity statement for the family of TLC tesselations, or equiva-
lently for the family {C(τ)}τ , where τ belongs to all TLC tesselations (see [37]).

Theorem 11.3. Mod(Snc) acts transitively on {C(τ) : τ is TLC}.
Proof. We give a brief description of the proof. It is enough to show that any TLC
tesselation of the unit disk D is mapped onto any other TLC tesselation of D by a
homeomorphism of S1 which conjugates one finite index subgroup ofG onto another
finite index subgroup of G. Such a homeomorphism of S1 induces an element of the
commensurator group of G which preserves parabolics, and conversely any element
of the commensurator group of G which preserves parabolics is induced by a home-
omorphism of S1. Recall that a TLC tesselation of D is a lift of an ideal triangulation
of D/K , where K < G is of finite index. In particular, the set of ideal vertices of the
lifted TLC tesselation of D is Q and the tesselation is K-invariant.

Moreover, it is enough to show that the Farey tesselation τ∗ can be mapped by
a homeomorphism inducing a parabolics-preserving element of the commensurator
group ofG onto any other TLC tesselation of D. Let τ be an arbitrary TLC tesselation
of D which is invariant under a finite index subgroupK ofG. We define a characteristic
map for τ by giving an identification of the edges of τ∗ and τ as follows (see [34]).
We choose the edge e0 of τ∗ which joins −1 and 1 and orient it from −1 to 1. Such
a distinguished oriented edge is called a DOE. We choose an arbitrary edge e of τ
and give it an arbitrary orientation; e is a DOE of τ . The characteristic map is built
by induction. We first identify DOEs e0 and e with orientations. The construction of
the map proceeds by identifying complementary ideal triangles of τ∗ and τ according
to their relative positions with respect to DOEs e0 and e; in fact, the identifications
of the triangles uniquely determine an identification of the edges of τ∗ and τ . The
DOEs e0 ∈ τ∗ and e ∈ τ separate D into left and right half-disks according to their
orientations. We identify the immediate left triangle �0 of τ∗ with respect to e0 to
the immediate left triangle � of τ with respect to e. This forces the identification of
boundary edges of�0 and� such that the edges with endpoints at the initial points of
DOEs get identified and the edges at terminal points of DOEs get identified. To proceed
with the construction of the map, we give orientations to both edges of both triangles
�0 and � such that the triangles are on the right of the edges. Then we continue the
identifications of the triangles on the immediate left of the two edges in τ∗ with the
triangles on the immediate left of the two edges in τ as above. This process continues
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indefinitely on the left side of DOEs and we do similar identifications on the right side
of DOEs. It is not hard to see that the characteristic map between the edges of τ∗ and τ
extends to an order-preserving map h from the set of ideal boundary points Q ⊂ S1

onto itself. Then the characteristic map h extends to a homeomorphism of S1 because
the ideal points of the tesselations are dense in S1 and the map is order-preserving
(see [37]).

We show that the characteristic maph : S1 → S1 conjugates a finite index subgroup
H of G onto K (see [37]). Let ω be an ideal fundamental polygon for K whose
boundary edges are in τ . Then h−1(ω) is an ideal polygon with boundary edges in τ∗.
The boundary sides of ω are identified in pairs by elements of K and we consider
the corresponding boundary sides pairs in h−1(ω). Since PSL2(Z) acts freely and
transitively on the oriented edges of τ∗, there exist unique maps in PSL2(Z) which
identify corresponding boundary side pairs of h−1(ω) with the correct orientation
such that the quotient is homeomorphic to D/K . Let H be the subgroup of PSL2(Z)

generated by these elements. Then h conjugates H onto K (see [37]).

We consider the isotropy group in Mod(Snc) of a single TLC tesselation of D. A
basic result states that any orientation preserving homeomorphism of S1 which setwise
fixes the Farey tesselation is necessarily an element of PSL2(Z) (see [37, Lemma 7.3]).
Then

Theorem 11.4. The isotropy subgroup in Mod(Snc) of τ , for τ a TLC tesselation, is
quasiconformally conjugate to PSL2(Z). The isotropy subgroup of τ∗ is PSL2(Z).

Let τ be a TLC tesselation of D which is invariant under K < G. Fix an edge e
of τ . Then e is on the boundary of exactly two complementary ideal triangles of τ .
The union of the two triangles is an ideal quadrilateral P ⊂ D one of whose diagonals
is e. If no two edges in the set K{e} are immediate neighbors, then the operation of
changing diagonals K{e} along the orbit K{P } of quadrilaterals is well defined and
produces a new TLC tesselation which is also invariant underK . Such an operation is
called aK-equivariant Whitehead move (see [37]). This is a lift to the unit disk D of a
classical Whitehead move on surface D/K considered by Hatcher and Thurston [19],
Harer [20] and Penner [35]. Penner [34] also considered Whitehead moves on D

without the equivariance property.
The above transitivity result implies that any TLC tesselation of D can be mapped

by an element of Mod(Snc) to its image under an equivariant Whitehead move. An
element of Mod(Snc) which achieves this is not unique; the ambiguity is up to pre-
composition by an element of Mod(Snc) which fixes the initial tesselation. If we are
given a DOE e1 on the initial TLC tesselation τ , then a DOE e2 on the image tesselation
τ1 under a K-equivariant move on K{e} is determined by e2 := e1 if e1 /∈ K{e}, or
otherwise e2 := f1, where f1 is the other diagonal in the quadrilateral containing
e1 oriented such that (e1, f1) is a positive basis at their intersection point. In this
case the element of Mod(Snc), called the Whitehead homeomorphism, is uniquely
determined by mapping DOE onto DOE. Let hτ and hτ1 be the characteristic maps
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for τ and τ1, namely hτ (τ∗) = τ , hτ (e0) = e1, hτ1(τ∗) = τ1 and hτ1(e0) = e2, where
e0 = (−1, 1) is DOE of τ∗. Then the above Whitehead homeomorphism is given by
hτ1 � h−1

τ (see [37]).
A basic fact due to Thurston, Hatcher, Harer and Penner is that any two ideal

triangulations of a punctured surface are connected by a sequence of Whitehead moves.
Therefore, if two TLC tesselations are invariant underK then they can be connected by
a sequence ofK-equivariant moves. If one TLC tesselation is invariant underK1 and
the other is invariant under K2 then they can be connected by (K1 ∩K2)-equivariant
Whitehead moves (because they are both invariant under K1 ∩K2). This transitivity
of all equivariant Whitehead moves on the set of TLC tesselations allows us to give
generators of Mod(Snc) (see [37]). A composition of Whitehead homeomorphisms is
called geometric if they are all K-equivariant, for a fixed subgroup K , and they are
formed from a geometric sequence of Whitehead moves. We obtained

Theorem 11.5 ([37]). Any element of the modular group Mod(Snc) can be written
as a composition w � γ , where γ ∈ PSL2(Z) and w is a geometric composition of
K-equivariant Whitehead homeomorphisms for some fixed K .

In joint work with S. Bonnot and R. Penner we give a presentation of the modular
group Mod(Snc) in [6]. We first define a 2-complex called the triangulation complex
X (see [6]). The vertices are all TLC tesselations of the unit disk D. We already
showed that Mod(Snc) preserves the set of vertices X0 and it acts transitively on them.
The Farey tesselation τ∗ is the basepoint of X.

The set of edges X1 is first defined at the base point τ∗. A vertex τ ∈ X0 is con-
nected to the basepoint τ∗ by an edge if τ is obtained from τ∗ by a singleK-equivariant
Whitehead move, for some finite index subgroup K of G. An edge at an arbitrary
τ ∈ X0 is the image under hτ ∈ Mod(Snc) of an edge at the basepoint. Therefore, an
edge connecting arbitrary τ, τ1 ∈ X0 is obtained by a single “generalized” Whitehead
move, namely the move is equivariant under a conjugate of K , [G : K] < ∞, by
hτ : S1 → S1 which induces an element of Comm(G). The difference from a (regu-
lar) Whitehead move is that hτ conjugates a proper subgroup K1 of K onto another
subgroup H1 of G and the move is along the orbit of an edge for hτKh−1

τ which
is not a subgroup of G. However, the generalized hτKh−1

τ -equivariant Whitehead
move can be decomposed into finitely many H1-equivariant Whitehead moves. On
the other hand, the image at the basepoint of an edge at an arbitrary point is necessarily
obtained by a (regular) Whitehead move [6]. Thus we do not introduce new edges at
the basepoint τ∗. The set of edges X1 is invariant under Mod(Snc) by definition.

The two cells X2 are introduced first at the basepoint τ∗. There are three kinds of
two cells.

The square two cells are defined by adding a two cell to each cycle of four edges
which are based at τ∗ and have the following properties. The four edges are given
by Whitehead moves equivariant with respect to the same finite index subgroup K
of G. We assume that e1, e2 ∈ τ∗ are two edges such that their corresponding orbits
K{e1} and K{e2} have no pairs (whose one element is from K{e1} and the other
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is from K{e2}) of adjacent edges in τ∗. (Since we take a K-equivariant Whitehead
move for ei , we implicitly assume that K{ei} ⊂ τ∗ does not have adjacent edges
in τ∗, for i = 1, 2.) Let f1, f2 be the other diagonals in the two quadrilaterals in
(D − τ∗) ∪ {e1}, (D − τ∗) ∪ {e2} containing e1, e2. Then we form a TLC tesselation
τ1 by performing a K-equivariant Whitehead move on τ∗ along e1; we form a TLC
tesselation τ2 by performing a K-equivariant Whitehead move on τ1 along e2; we
form a TLC tesselation τ3 by performing a K-equivariant Whitehead move on τ2
along f1; and we return to τ∗ by performing a K-equivariant Whitehead move on τ3
along f2. The corresponding edges E1 = (τ∗, τ1), E2 = (τ1, τ2), E3 = (τ2, τ3) and
E4 = (τ3, τ∗) make a closed path. We add a square two cell to X whose boundary is
the above closed edge path.

The pentagon two cells are defined by adding a two cell whose boundary is a closed
edge path of length five as follows. Let K be a finite index subgroup of G and let
e1, e2 be two adjacent edges in τ∗. Assume that e1 /∈ K{e2}. Let P be the pentagon
in (D − τ∗) ∪ {e1, e2}; the orbit of pentagons K{P } has pairwise mutually disjoint
interiors with possible identifications of their boundaries. We define a closed edge
path of length five by Whitehead moves: E1 is given by a Whitehead move along
K{e1} where K{e1} �→ K{f1}; E2 is given by a Whitehead move along K{e2} where
K{e2} �→ K{f2}; E3 is given by a Whitehead move along K{f1} where K{f1} �→
K{f3}; E4 is given by a Whitehead move along K{f2} where K{f2} �→ K{e1}; and
E5 is given by a Whitehead move along K{f3} where K{f3} �→ K{e2} (this is the
classical pentagon relation on a surface lifted to D; see, for example, [35], [34], [37]).
We add a pentagon two cell whose boundary is such an edge path.

The coset two cells are defined by subdividing a single equivariant Whitehead
move into several equivariant Whitehead moves as follows. Let K be a finite index
subgroup of G and let K1 be a finite index subgroup of K . Let e ∈ τ∗ be such that
no two edges in the orbit K{e} are adjacent in τ∗. The long edge E is given by K-
equivariant Whitehead move alongK{e}. The short edges are given byK1-equivariant
Whitehead moves as follows. Since k := [K : K1] < ∞, there exists finitely many
e1, e2, . . . , ek ∈ K{e} such that ei /∈ K1{ej }, for i �= j , and

⋃k
i=1K1{ei} = K{e}.

We define a sequence of short edges E1, . . . Ek by Ei = (τi−1, τi), where τi , for
i = 1, 2, . . . , k, is obtained from τi−1 by performing a K1-equivariant Whitehead
move on τi−1 along K1{ei} and τ0 = τ∗. The edge path E1, E2, . . . , Ek starts at τ∗
and ends at the endpoint of E. Thus E1, . . . , Ek, E is a closed edge path based at τ∗
and we add a coset two cell whose boundary is the given path (see [6]).

A general two cell in X is the image under Mod(Snc) of a two cell based at τ∗. It
turns out that an image of a square or a pentagon two cell based at τ∗ under Mod(Snc)

whose one vertex on its boundary is τ∗ is of the same form as above. Namely, all
the edges are Whitehead moves equivariant under a subgroup of PSL2(Z), while an
image of a coset two cell under Mod(Snc) has generalized Whitehead moves as edges
whenever the long edge does not limit at τ∗. It may happen that two short edges limit
at τ∗. The modular group Mod(Snc) preserves the set of two cells X2 by its definition
(see [6]).



Chapter 19. The Teichmüller theory of the solenoid 851

We showed that the triangulation complex is simply connected [6].

Theorem 11.6. The modular group Mod(Snc) acts cellularly on the triangulation
complex X. The triangulation complex X is connected and simply connected.

In [6] we give a presentation of the modular group Mod(Snc) using its action on X.
We already showed that Mod(Snc) acts transitively on the vertices of X and that the
isotropy group of τ∗ is PSL2(Z). Therefore, each orbit of an edge contains an edge
with one endpoint at τ∗. To give a presentation, it is necessary to find the isotropy
groups of edges. There are two types of edges with one endpoint in τ∗, the set E+ of
edges which are not inverted by the action of Mod(Snc) and the set E− of edges which
are inverted by the action of Mod(Snc). If E ∈ E+ is obtained by a K-equivariant
Whitehead move then the isotropy group of E has to be contained in PSL2(Z) and it
contains K . In fact, the isotropy group of E is a finite extension K ′ of K by elliptic
elements in PSL2(Z) which preserve the other vertex τ of the edge E = (τ∗, τ ). Let
E1 = (τ∗, τ1) ∈ E− be an edge reversed by Mod(Snc), where τ1 is obtained by a
K1-equivariant Whitehead move and fixed by K ′1 > K . Then the isotropy group of
E1 is generated by K ′1 < PSL2(Z) which does not reverse the orientation of E1 and
by k ∈ Mod(Snc) which reverses the orientation, where k is mapping class like (i.e.,
k conjugates a finite index subgroup of G onto itself) and k2 ∈ K ′1 − K1 is elliptic
fixing an edge in τ∗ which implies k4 = id (see [6]).

We choose a single Whitehead move for each edge E = (τ∗, τ ) starting at τ∗ by
taking e0 = (−1, 1) to be a DOE of τ∗ and defining a DOE of the other vertex τ as
above. The set of these Whitehead moves together with PSL2(Z) generate Mod(Snc).
We describe relations coming from two cells in X for the chosen generating set.

LetQ be a square two cell based at τ∗ with edgesEi = (τi−1, τi), for i = 1, . . . , 4,
with τ0 = τ4 = τ∗ such that τi are K-equivariant. Let h1 ∈ Mod(Snc) be the
Whitehead homeomorphism corresponding toE1, h2 the Whitehead homeomorphism
corresponding to the edge E′2 = (τ∗, h−1

1 (τ∗)), h3 the Whitehead homeomorphism
corresponding to the edge E′3 = (τ∗, (h1 � h2)

−1(τ∗)), and h4 the Whitehead homeo-
morphism corresponding to the edgeE′4 = (τ∗, (h1�h2�h3)

−1(τ∗)). If e0 /∈ K{e1, e2},
where K{e1} and K{e2} are orbits which get changed in the definition of Q, then
h1 � · · · � h4(e0) = e0 which implies that

h1 � · · · � h4 = id. (11.1)

If e0 ∈ K{e1, e2} then h1 � · · · � h4(e0) = ē0, where ē0 is the opposite orientation
of e0, which implies that

h1 � · · · � h4 = se0, (11.2)

where se0 ∈ PSL2(Z) is an elliptic element reversing the orientation of e0.
Let P be a pentagon two cell based at τ∗ with boundary edge pathEi = (τi−1, τi),

for i = 1, . . . , 5, where τ0 = τ5 = τ∗ and τi are K-equivariant. Let K{e1, e2} be the
orbits which get changed to obtain P . Let hi be the Whitehead move corresponding
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to (h1 � · · · � hi−1)
−1(Ei) as defined above. Then we have a pentagon relation

h1 � · · · � h5 = id, (11.3)

whenever e0 /∈ K{e1, e2}. We get

h1 � · · · � h5 = γe0,ē2, (11.4)

when e0 ∈ K{e1}, where γe0,ē2 ∈ PSL(Z) maps e0 onto ē2 and ē2 has orientation
opposite to e2. Finally, we get

h1 � · · · � h5 = γe0,ē1, (11.5)

when e0 ∈ K{e2}, where γe0,ē1 ∈ PSL(Z) maps e0 onto ē1 and ē1 has orientation
opposite to e1.

Let C be a coset two cell given by a long edge determined by a Whitehead move
along K{e} and by short edges with respect to K1 < K , where n = [K : K1] < ∞.
We note that givenK1, there are n! paths of short edges connecting the two endpoints
of the long edge. If e0 /∈ K{e} then we obtain the coset relation

h � h1 � · · · � hn = id, (11.6)

where h is the Whitehead homeomorphism corresponding to the long edge and hi is
the Whitehead homeomorphism corresponding to the image (h�h1 �· · ·�hi−1)

−1(Ei)

of the i-th short edge Ei . If e0 ∈ K{e} then we obtain coset relation

h � h1 � · · · � hn = se0, (11.7)

where se0 ∈ PSL2(Z) reverses the orientation of e0.
We obtained [6] a presentation for Mod(Snc) as follows.

Theorem 11.7. The modular group Mod(Snc) is generated by the isotropy subgroup
PSL2(Z) of the basepoint τ∗ ∈ X, the isotropy subgroups �(E) for E ∈ E±, and
by the Whitehead homeomorphism gE for E ∈ E+ chosen as above. The following
relations on these generators give a complete presentation of Mod(Snc):

a) The inclusions of �(E) into PSL2(Z), for E ∈ E+, given by �(E) = K ′,
where the terminal endpoint of E is invariant under the finite-index subgroup
K ′ < PSL2(Z).

b) The inclusions of �+(E) into PSL2(Z), for E ∈ E−, given by �(E) = K ′,
where the terminal endpoint of E is invariant under the finite-index subgroup
K ′ < PSL2(Z).

c) The relations introduced by the boundary edge-paths of two-cells in F given by
the equations (11.3), (11.4), (11.5), (11.1), (11.2), (11.6) and (11.7).

d) The redundancy relations: for any two edges E and E′ in E± and for any
γ ∈ PSL2(Z) such that γ (E) = E′, we have the relation

gE′ � γ ′ = γ � gE,
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where γ ′ is the unique element of PSL2(Z) that satisfies γ ′(e0) = e′1 with e′1 =
g−1
E′ (γ (e0)).

Remark 11.8. The redundancy relations d) in the above theorem are introduced be-
cause we used more generators than necessary. We could have used Whitehead home-
omorphisms of representatives of orbits of edges based at τ∗ instead. Then we would
not have to add relations d). However, it is not easy to give a proper enumeration of
such orbits which would necessarily complicate the relations in c). Thus, for the sake
of simplicity of relations, we used a larger set of generators in the above theorem.

We also showed [6] that Mod(Snc) has no center.

Theorem 11.9. The modular group Mod(Snc) of the non-compact solenoid Snc has
trivial center.

12 Elements of Mod(Snc) with small non-zero dilatations

In a recent joint work with V. Markovic [29], we showed the following

Theorem 12.1. For every ε > 0 there exist two finite index subgroups of PSL2(Z)

which are conjugated by a (1+ ε)-quasisymmetric homeomorphism of the unit circle
and this conjugation homeomorphism is not conformal.

To construct the above groups and the quasisymmetric map, we use the generators
of the modular group Mod(Snc) introduced in [37] (see also the proof of Theorem 11.3).

We obtained [29] the following corollary to the above theorem.

Corollary 12.2. Let T0 denote the modular torus. Then for every ε > 0 there are
finite-degree, regular coverings π1 : M1 → T0 and π2 : M2 → T0, and a (1 + ε)-
quasiconformal homeomorphism F : M1 → M2 that is not homotopic to a conformal
map.

The following corollary is an interpretation of Theorem 12.1 in terms of the Teich-
müller space T (Snc) of the non-compact solenoid Snc. This is a significant progress
in understanding the quotient T (Snc)/Mod(Snc) for the Teichmüller metric.

Corollary 12.3. The closure in the Teichmüller metric of the orbit (under the modular
group Mod(Snc)) of the basepoint in T (Snc) is strictly larger than the orbit. Moreover,
the closure of this orbit is a perfect set and thus uncountable.
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13 Some open problems

We discuss some open question concerning the Teichmüller space T (SG) and the
modular group Mod(SG) of the solenoid.

As we already mentioned, a conjecture by L. Ehrenpreis states that given any
two closed Riemann surfaces of genus at least two and given any ε > 0 there exist
unbranched, finite-sheeted, holomorphic covers of these surfaces that are (1 + ε)-
quasiconformal. D. Sullivan gave the following equivalent formulation in terms of the
compact solenoid:

1. Is it true that the modular group Mod(SG) has dense orbits (for the Teichmüller
metric) in the Teichmüller space T (SG) of the compact solenoid SG?

We also considered the Teichmüller space T (Snc) and the modular group Mod(Snc)

of the noncompact solenoid Snc. Therefore we can ask the analogous question in this
setup:

2. Is it true that the modular group Mod(Snc) has dense orbits (for the Teichmüller
metric) in the Teichmüller space T (Snc) of the noncompact solenoid Snc?

It is interesting to note that a positive answer to question 1 does not immediately
give a positive answer to question 2. This is easiest to understand in terms of the
original formulation by Ehrenpreis. To see this, assume for the moment that any two
closed surfaces have unbranched, finite-sheeted, holomorphic covers which are quasi-
conformal with arbitrary small dilatation. When considering two punctured surfaces,
one is tempted to fill in the punctures and find unbranched holomorphic covers of
the compactified surfaces which are quasiconformal with small dilatation. However,
the problem is that the quasiconformal map does not necessarily send the lifts of the
punctures on one surface to the lifts of the punctures on the other surface.

We considered the Teichmüller metric on T (SG) and the existence of geodesics
between points. If a map is of Teichmüller-type then we showed that it is extremal and
that there is a unique geodesic between the point determined by the Teichmüller-type
map and the base point of T (SG). Moreover, we showed that only a small subset of
T (SG) has Teichmüller-type representatives. We ask

3. Is it true that any point in the Teichmüller space T (SG) has an (unique) extremal
representative?

If the answer is positive, then any two points are connected by a (unique) geodesic.
Even if the answer is negative, it is still possible to have geodesics connecting a point
in T (SG) without an extremal representative to the base point.

4. Is it possible to connect any two points in T (SG) by a (unique) geodesic?

We also established a sufficient condition for a point in T (SG) to have a Teichmül-
ler-type representative. The condition is given in terms of the approximating sequence
of TLC structures. We ask for additional sufficient conditions.
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5. Is there a sufficient condition for a point [f ] ∈ T (SG) expressed only in terms of
the geometry of the point [f ] to have a Teichmüller-type representative?

A classical statement about duality of the cotangent and tangent space for Teich-
müller spaces of Riemann surfaces is false for T (SG). We therefore ask

6. Does the tangent space L∞s (SG)/N(SG) at the basepoint of T (SG) have a
pre-dual?

It is a classical fact that any biholomorphic map of the Teichmüller space of a
finite Riemann surface is given by the geometric action of an element of the extended
mapping class group. This is recently proved for all infinite Riemann surfaces as
well [27] (see also [41], [11], [10], [23] and Chapter 2 of this volume [16]). We ask
analogous question of T (SG).

7. Does every biholomorphism (isometry) of T (SG) arise by the geometric action of
the full mapping class group Modfull(SG) (i.e., homotopy classes of self maps of SG
not necessarily fixing the baseleaf and allowing orientation reversing elements)?

We considered the modular group Mod(Snc) of the noncompact solenoid Snc and
found an explicit set of generators and a presentation. We ask the analogous question
for the compact solenoid.

8. Find an explicit set of generators of Mod(SG) of the compact solenoid SG.

9. Find a presentation of Mod(SG).

We expect that these modular groups are infinitely generated.

10. Show that Mod(SG) and Mod(Snc) are infinitely generated.

Recall that an element of Mod(SG) is called mapping class like if it is a lift of a
self map of a closed surface. C. Odden [38] asked the following question:

11. Is it true that Mod(SG) and Mod(Snc) are generated by mapping class like ele-
ments?

Study properties of Mod(SG). In particular,

12. Is there a classification of the elements of Mod(SG) according to their actions on
SG similar to the Thurston’s classification of the mapping class group elements of a
closed surface?
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holonomy representation, 459, 460, 513
holonomy transversality, 501
homogeneous quasi-homomorphism, 242
homology with local coefficients, 432
homotopical monodromy, 104
homotopical monodromy of a

representation, 104
homotopy long exact sequence, 397
Hopf differential, 495–497, 499
Hopfian group, 402
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horizon, 597
horizontal cylinder, 797
horizontal foliation, 492
horizontal lamination, 492
Hubbard–Masur theorem, 492
Hurwitz

equivalence, 280
move, 279

hyperbolic (δ-), 246
hyperbolic geometry, 512
hyperbolic isometry, 247, 650
hyperbolic metric

transversely locally constant, 821
hyperbolic modular transformation, 102
hyperbolic three-space, 634
hyperbolization map, 527
hyperelliptic component, 371
hyperelliptic curve, 133
hyperelliptic mapping class group, 288
hyperplane arrangement, 424

ideal triangulation, 159, 548
independent pseudo-Anosov

elements, 252
initial singularity, 574
initial state, 418
injectivity of character map for F2, 625
intersection diagram, 436
intersection graph, 805
intersection number, 744
invariant Borel map, 336
invariant theory, 690
inverse limit, 812
involution, 632, 633
irreducible Artin group, 404
irreducible Coxeter group, 404
irreducible fiber, 274
irreducible group, 254
irreducible modular transformation, 102
irreducible representation, 626, 628
islands of quasi-Fuchsian holonomy, 489
isomorphic, 97
isomorphism, 117

of projective structures, 458
iterated transition function, 418

Johnson homomorphism, 229, 230
extended, 230

KAT solution, 520
Kauffman Bracket Skein Module, 697
Kleinian group, 522
Kobayashi distance, 100
Kobayashi metric, 75, 473
Kodaira surface, 98
Kodaira–Spencer map, 220
K(π, 1) space, 398

lamination signature, 554
language

regular, 418
large group, 265
lattice, 254, 297
leaf, 812
Lefschetz fibration, 273

achiral, 290
broken, 292
genus of a, 274
relatively minimal, 274

Lefschetz pencil, 273, 278
length

as intersection number, 161
extremal, 185
horocyclic, 191
hyperbolic, 175
in a ribbon graph, 168

length/twist parameters, 546
level, 734
Lie product, 638
Lie product, geometric interpretation, 637
lifting representations to SL(2,C), 630
limit set, 596
linear fractional transformation, 511
linear twist, 115
LKB representation, 430
locally trivial, 97
locally CAT(0), 495
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locally convex pleated plane, 470
locally convex pleated plane, 482
locally convex pleated surface, 488
Lorentzian grafting, 567

Möbius transformation, 511
Magnus expansion, 231

harmonic, 231
map

extremal, 815
mapping class

pure, 306
mapping class group, 48, 51–53, 81,

157, 251, 275, 303, 398
extended, 303
hyperelliptic, 288

marked length spectrum, 548
marked measure spectrum, 552
marked projectively equivalent, 512
marked Riemann surface, 98

equivalent, 99
marking, 512
maximal globally hyperbolic

spacetimes, 540
maximal round disk, 470
ME coupling, 298
measurable Banach bundle, 334
measure

invariant, 311
quasi-invariant, 311

measure equivalence (ME), 298
measure space

standard, 309
standard finite, 309

measure space isomorphism, 309
measured geodesic lamination, 551
measured lamination, 468

horizontal, 492
projective, 491
vertical, 492

metric, 168
minimal volume, 262
Minkowski space, 541

modular curve, 144
modular structure, 737, 752

compact, 752
moduli field, 780
moduli map, 104
moduli space, 117, 172
modulus, 185

reduced, 185
momentum, 597
monodromy, 275, 777, 798

factorization, 276
map, 772, 775, 789
representation, 275
transitive, 281

monodromy representation, 435, 459
monoid

atomic, 412
Garside, 413

Mordell conjecture, 105
Morita–Mumford class, 218
morphism

of a nonsingular graph, 165
multi black hole, 599
multi white hole, 599
multi-curve, 251, 253
multiplication, 754
Mumford conjecture, 207

nearest-point projection, 470
negative Dehn twist, 109
negative root, 407
negative type, 95, 111
nerve, 515
Newton class, 228
node, 116
non-amphidrome, 111
non-compact solenoid, 813
non-elementary representation, 478
nonpositively curved (NPC), 474
norm

of a quadratic differential, 466
on a monoid, 413

normal form, 418
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normal form for characters of F2, 644
normal form in a Garside monoid, 417
Novikov additivity, 283

open book decomposition, 291
orbit equivalence (OE), 265, 314
Ore conditions, 414
orientable double covering space, 675
origami, 382, 788

rules, 789
Veech group of, 792

origami curve, 792
cusp of, 796

orthogonality, 493
osculation, 462, 463
Osgood–Stowe Schwarzian derivative,

500

pants decomposition, 176, 479, 488,
546, 657

pants graph, 49, 53
parabolic modular transformation, 102
parabolic type, 110
parameter

length, 176
twist, 176

part, 102, 116
particle, 602
past, 538
past boundary, 586
past part of a AdS spacetime, 587
period coordinates, 372
period map, 225
periodic, 110
Perron–Vannier representation, 437
Peter–Weyl Theorem, 707
planar graph, 774
plaque, 470, 481–483
pleated plane

convex, 469
locally convex, 470, 482

pleated surface
locally convex, 488

pleating map, 528

pluricanonical map, 141
Poincaré series, 143
Poincaré theta series, 84
Poisson bracket, 697
positive root, 407
precise admissible system of curves, 111
presentation, 816
product of subgroups, 258
product relation, 663, 665
profinite completion, 783
projection, 191, 514
projective deformation, 480
projective geometry

complex, 511
projective line, 771

complex, 511
projective measured lamination, 491
projective metric, 473
projective Riemann surface, 512
projective structure, 512

branched, 479
complex, 458
embedded, 469
exotic Fuchsian, 483
exotic quasi-Fuchsian, 486
Fuchsian, 483
quasi-Fuchsian, 465
relative, 465
standard Fuchsian, 461
standard quasi-Fuchsian, 486

projectively immersed disk, 473
proper simplex, 157
pseudo-Anosov, 252
pseudo-hyperbolic modular

transformation, 102
pseudo-periodic map, 94, 110

amphidrome, 111
negative type, 95
non-amphidrome, 111
of negative type, 111
of parabolic type, 110
periodic, 110
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reducible with all component
maps being of finite order,
110

screw number, 111
standard form, 115
surface transformation of

algebraically finite type,
110

Puiseux series, 784
pure braid group, 393
pure gravity, 539
pure mapping class, 306

quadratic differential
critical point of, 183
holomorphic, 513
integrable holomorphic, 177
Jenkins–Strebel, 185, 188
meromorphic, 182
regular point of, 183
transversely locally constant,

826
quake cocycle, 561
quakebend, 481
quasi-Fuchsian component, 486
quasi-Fuchsian section, 465
quasi-Fuchsian space, 478
quasi-geodesic, 247
quasi-homomorphism, 242
quasi-invariant measure, 311
quasiconformal, 66
quasimorphism, 242
quaternion origami, 804

R-tree, 473
rank three free group, 680
rational

4-manifold, 283
elliptic surface, 280

Rauch’s variational formula, 225
real character, 643
realizing path, 249
recoupling formula, 719
reduced expression, 408

reduced map, 102
reduced norm, 186
reduced word, 415
reducible

element, 252
map, 102
subgroup, 253

reducible fiber, 274
reducible with all component maps being

of finite order, 110
reductive, 689
regular domain, 574
regular fiber, 274
regular language, 418
regular projective curve, 769
Reich–Strebel inequality, 815, 829
relative Euler class, 671
relative projective structure, 465
relative tangent bundle, 218
relatively minimal Lefschetz fibration, 274
relaxed signature, 556
representation, 103, 756

reducible, 757
representation variety, 689
rescaling, 567
residually finite, 257
residually finite group, 402
residue, 222

of a quadratic differential, 222
resolution, 752
restriction, 103, 311
resultant, 397
retraction on the singularity, 575
reversible word, 415
ribbon graph, 162, 646, 772, 774
Riemann sphere, 511
Riemann surface

finite analytic type, 73
infinite analytic type, 74

Riemann surface with nodes, 116
allowable map of, 117
deformation of, 117
deformation space of, 117
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moduli space, 117
node of, 116
part of, 116

Riemann–Roch theorem, 769
right hexagon orbifold, 631
Rigidity theorem, 104
ring of invariants, 689
root system, 407
round disk, 470, 578
ruled

4-manifold, 283
surface, 280

saddle connection, 371
Salvetti complex, 425
saturation, 311
Schur’s Lemma, 692, 703, 708
Schwarzian compactification, 497
Schwarzian derivative, 69, 133, 461,

462, 500, 514
Schwarzian equation, 134, 463
Schwarzian of a projective structure,

464
Schwarzian parameterization, 461
screw number, 111
section, 274, 514
self-bumping, 487
semi-stable reduction, 173
separation, 257
Shafarevich conjecture, 105
shape operator, 540
shear parameters, 548
Siegel upper halfspace, 224
σ -operator, 160
simple element, 410, 417
simple graph, 517
simple root, 407
simplicial part, 551
simplicial volume, 262
singly degenerate, 490
singular fiber, 274
singularity, 371
6j -symbols, 721

sliding circuits, 420
small type Coxeter graph, 430
solenoid

compact, 811, 817
extremal map, 815
fiber bundle description, 812
G-tagged, 814
G-tagged compact, 820
G-tagged non-compact, 821
modular group, 813, 838
non-compact, 813, 840

spacetime, 538
special twist, 115
spherical geometry, 511
spin network, 693

calculus, 696
component maps, 693
equivariance, 697
looping relation, 701
reflection, 695, 696, 706, 707
trivalent, 702

spine, 191, 194
sporadic surface, 252
square tiled surface, 382, 791
stability of quasi-geodesics, 247
stable commutator length, 243, 282
stable reduction, 796
stable Riemann surface, 796
stable torsion length, 284
standard Anti de Sitter spacetime, 586
standard de Sitter spacetime, 584
standard form, 115
state, 418
Stein structure, 291
straightening, 492
strata, 470, 472–475, 499
stratification, 174

canonical, 470
strongly uniformizable, 529
structure morphism, 778
subgroup

elementary, 248
irreducible amenable (IA), 307
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reducible, 253, 307
sufficiently large, 253, 307

subgroupoid, 310
irreducible amenable (IA), 343
normal, 350
reducible, 343

subsurface
complementary, 157
invisible, 158
visible, 158, 169, 194

sum relation, 663, 664
superrigidity, 254
support plane, 470
surface

decorated, 191
stable hyperbolic, 192
truncated, 191

surface braid group, 399
surface bundle, 289
surface transformation of algebraically

finite type, 110
surjectivity of character map for F2, 622
SU(2)-representation, 643
syllable length, 287
Sylvester matrix, 396
symmetric language, 418
symmetrizer, 698

invariance, 699
recurrence, 700
stacking, 699

symplectic basis, 226
symplectic manifold, 278
system of annuli, 185
systole, 161, 168

T-symmetry, 601
tangent map, 476
tangentiable, 476
tangential base point, 784
Taubes theorem (Lefschetz fibration),

284
tautological

ring, 179

system, 179
section, 173

Teichmüller curve, 790, 792
Teichmüller disk, 90, 791
Teichmüller distance, 100

solenoid, 823
Teichmüller embedding, 791
Teichmüller metric, 69, 76

definition, 48
geodesic-length comparison

expressions, 57
Teichmüller modular group, 100

of a finitely generated
Fuchsian group, 100

of a Riemann surface, 100
Teichmüller modular transformation, 100

elliptic, 102
homotopical monodromy, 104
hyperbolic, 102
of a Riemann surface, 100
parabolic, 102
pseudo-hyperbolic, 102
topological monodromy, 104

Teichmüller space, 68, 99, 171, 193, 289,
513, 543, 813

automorphism group, 81
Bers Teichmüller space, 99
complex structure, 73
of a finitely generated Fuchsian

group, 99
of a Riemann surface, 99
solenoid, 823
universal, 68

Teichmüller space of the torus, 743
Teichmüller-type map, 815
Temperley-Lieb algebra, 699
Theorem of Belyi, 771
thick–thin decomposition, 48
thimble, 275
three-by-three real symmetric matrix, 644
three-dimensional inner product space,

640
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three-dimensional orthogonal
representation, 639

Thurston boundary, 305
Thurston compactification, 305, 491
Thurston coordinates, 528
Thurston invariant, 741
Thurston map, 498
Thurston metric, 473, 499
tight geodesic, 260
time orientation, 538
Tits alternative, 248, 253
topological generators, 784
topological monodromy, 94, 104
topological monodromy of a

representation, 104
topological realization

of a graph, 166
of an enriched ribbon graph, 169

topology of surfaces, 617
Torelli group, 229, 277
torsion length, 284

stable, 284
torus

once-punctured, 788
trace, 617
trace diagram, 697
trace function, 757
trace function of a metric, 758
trajectory

closed, 183
critical, 183
horizontal, 183
periodic, 184
vertical, 183

transition function, 418
translation length, 247
translation structure, 791
transvection, 442, 443
transverse measure, 812
triangulation complex, 816
trivalent spin network, 702
trivial family, 97
two-holed torus, 674

type of a hyperbolic surface, 545
type of a reducible singular fiber, 274

uniformization, 175
uniqueness property (language), 418
unitary trick, 707
universal Teichmüller space, 68

valence
hyperbolic surface, 191

valency list, 783
valency of an oriented simple closed curve,

111
vanishing cycle, 275
Veech group, 369, 791
vertex

invisible, 181
marked, 164
nodal, 164
special, 164
visible, 181

vertical lamination, 492
vertical foliation, 492
very large automorphism group, 137
Virasoro cocycle, 223
virtual automorphism group, 838
virtual duality group, 162
visible equivalence, 181

wall, 427
weak orbit equivalence (WOE), 315
weight, 160

projective, 160
weighted part, 551
Weil–Petersson

bivector field, 194
completion, 177
form, 178, 194
Hermitian pairing, 177
metric, 178, 194

Weil–Petersson metric, 47, 222
CAT(0) geometry, 52
Alexandrov tangent cone, 59
Brock’s quasi isometric model, 53
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convexity, 54
current research themes, 47
definition, 48
dense geodesics, 56
distance to augmentation set, 56
geodesic-length comparison

expressions, 57
model metric, 58

Weil–Petersson pairing, 222
Whittaker’s conjecture, 137
Wick rotation, 566
word length, 407
word problem, 408
word-hyperbolic group, 246
WPD, weak proper discontinuity, 252
wrapping invariant, 485
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