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D. Hilbert Theory of Algebraic Invariants

W. V. D. Hodge, D. Pedoe Methods of Algebraic Geometry, Volumes
I, II & III

R. W. H. Hudson Kummer’s Quartic Surface
A. E. Ingham The Distribution of Prime Numbers

H. Jeffreys, Bertha Jeffreys Methods of Mathematical Physics, 3rd
Edition

Y. Katznelson An Introduction to Harmonic Analysis,
3rd Edition

H. Lamb Hydrodynamics, 6th Edition
J. Lighthill Waves in Fluids

M. Lothaire Combinatorics on Words, 2nd Edition
F. S. Macaulay The Algebraic Theory of Modular Systems

C. A. Rogers Hausdorff Measures, 2nd Edition
L. C. G. Rogers, D. Williams Diffusions, Markov Processes and

Martingales, 2nd Edition, Volumes I & II
L. Santalo Integral Geometry and Geometric

Probability
W. T. Tutte Graph Theory

G. N. Watson A Treatise on the Theory of Bessel
Functions, 2nd Edition

A. N. Whitehead, B. Russell Principia Mathematica to ∗56, 2nd
Edition

E. T. Whittaker A Treatise on the Analytical Dynamics of
Particles and Rigid Bodies

E. T. Whittaker, G. N. Watson A Course of Modern Analysis, 4th Edition
A. Zygmund Trigonometric Series, 3rd Edition



Thermodynamic Formalism
The Mathematical Structures of Equilibrium

Statistical Mechanics

Second Edition

DAVID RUELLE
Institut des Hautes Etudes Scientifiques



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

First published in print format

ISBN-13 978-0-521-54649-2

ISBN-13 978-0-511-26581-5

© First edition Addison-Wesley Publishing Company, Inc. 1978
Second edition Cambridge University Press 2004

2004

Information on this title: www.cambridg e.org /9780521546492

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-26581-6

ISBN-10 0-521-54649-4

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (NetLibrary)

eBook (NetLibrary)

paperback

http://www.cambridge.org
http://www.cambridge.org/9780521546492


We haven’t seen everything yet,
but when we do
it won’t be for the first time
or the last, either.
You know us.

J. Vinograd





Contents

Foreword to the first edition page xv
Preface to the first edition xvii
Preface to the second edition xix

Introduction 1
0.1 Generalities 1
0.2 Description of the thermodynamic formalism 3
0.3 Summary of contents 9

1 Theory of Gibbs states 11
1.1 Configuration space 11
1.2 Interactions 12
1.3 Gibbs ensembles and thermodynamic limit 13
1.4 Proposition 14
1.5 Gibbs states 14
1.6 Thermodynamic limit of Gibbs ensembles 15
1.7 Boundary terms 16
1.8 Theorem 18
1.9 Theorem 18
1.10 Algebra at infinity 19
1.11 Theorem (characterization of pure Gibbs states) 20
1.12 The operators M� 20
1.13 Theorem (characterization of unique Gibbs states) 21
1.14 Remark 22

Notes 23
Exercises 23

vii



viii Contents

2 Gibbs states: complements 24
2.1 Morphisms of lattice systems 24
2.2 Example 25
2.3 The interaction F∗� 25
2.4 Lemma 26
2.5 Proposition 26
2.6 Remarks 27
2.7 Systems of conditional probabilities 28
2.8 Properties of Gibbs states 29
2.9 Remark 30

Notes 30
Exercises 31

3 Translation invariance. Theory of equilibrium states 33
3.1 Translation invariance 33
3.2 The function A� 34
3.3 Partition functions 35
3.4 Theorem 36
3.5 Invariant states 39
3.6 Proposition 39
3.7 Theorem 40
3.8 Entropy 42
3.9 Infinite limit in the sense of van Hove 43
3.10 Theorem 43
3.11 Lemma 45
3.12 Theorem 45
3.13 Corollary 47
3.14 Corollary 48
3.15 Physical interpretation 48
3.16 Theorem 49
3.17 Corollary 49
3.18 Approximation of invariant states by equilibrium states 50
3.19 Lemma 50
3.20 Theorem 52
3.21 Coexistence of phases 53

Notes 54
Exercises 54



Contents ix

4 Connection between Gibbs states and Equilibrium states 57
4.1 Generalities 57
4.2 Theorem 58
4.3 Physical interpretation 59
4.4 Proposition 59
4.5 Remark 60
4.6 Strict convexity of the pressure 61
4.7 Proposition 61
4.8 Zν-lattice systems and Zν-morphisms 62
4.9 Proposition 62
4.10 Corollary 63
4.11 Remark 63
4.12 Proposition 64
4.13 Restriction of Zν to a subgroup G 64
4.14 Proposition 65
4.15 Undecidability and non-periodicity 65

Notes 66
Exercises 66

5 One-dimensional systems 69
5.1 Lemma 70
5.2 Theorem 70
5.3 Theorem 71
5.4 Lemma 72
5.5 Proof of theorems 5.2 and 5.3 73
5.6 Corollaries to theorems 5.2 and 5.3 75
5.7 Theorem 76
5.8 Mixing Z-lattice systems 78
5.9 Lemma 78
5.10 Theorem 79
5.11 The transfer matrix and the operator L 80
5.12 The function ψ> 81
5.13 Proposition 81
5.14 The operator S 82
5.15 Lemma 82
5.16 Proposition 82
5.17 Remark 83
5.18 Exponentially decreasing interactions 83



x Contents

5.19 The space F
θ and related spaces 84

5.20 Proposition 85
5.21 Theorem 85
5.22 Remarks 86
5.23 Lemma 86
5.24 Proposition 87
5.25 Remark 88
5.26 Theorem 88
5.27 Corollary 89
5.28 Zeta functions 89
5.29 Theorem 90
5.30 Remark 93

Notes 93
Exercises 94

6 Extension of the thermodynamic formalism 101
6.1 Generalities 101
6.2 Expansiveness 101
6.3 Covers 102
6.4 Entropy 103
6.5 Proposition 103
6.6 Pressure 104
6.7 Other definitions of the pressure 105
6.8 Properties of the pressure 106
6.9 The action τ a 107
6.10 Lemma 107
6.11 Lemma 107
6.12 Theorem (variational principle) 108
6.13 Equilibrium states 110
6.14 Theorem 111
6.15 Remark 111
6.16 Commuting continuous maps 112
6.17 Extension to a Zν-action 112
6.18 Results for Z ν

�-actions 113
6.19 Remark 115
6.20 Topological entropy 115
6.21 Relative pressure 115
6.22 Theorem 116



Contents xi

6.23 Corollary 117
Notes 117
Exercises 118

7 Statistical mechanics on Smale spaces 121
7.1 Smale spaces 121
7.2 Example 123
7.3 Properties of Smale spaces 123
7.4 Smale’s “spectral decomposition” 124
7.5 Markov partitions and symbolic dynamics 124
7.6 Theorem 125
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Foreword to the first edition

Thermodynamics is still, as it always was, at the center of physics, the standard-
bearer of successful science. As happens with many a theory, rich in applica-
tions, its foundations have been murky from the start and have provided a
traditional challenge on which physicists and mathematicians alike have tested
their latest skills.

Ruelle’s book is perhaps the first entirely rigorous account of the foundations
of thermodynamics. It makes heavier demands on the reader’s mathematical
background than any volume published so far. It is hoped that ancillary volumes
in time will be published which will ease the ascent onto this beautiful and
deep theory; at present, much of the background material can be gleaned from
standard texts in mathematical analysis. In any case, the timeliness of the content
shall be ample reward for the austerity of the text.

Giovanni Gallavotti
General Editor, Section on Statistical Mechanics

and
Gian-Carlo Rota

Editor, Encyclopedia of Mathematics and its Applications.
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Preface to the first edition

The present monograph is based on lectures given in the mathematics depart-
ments of Berkeley (1973) and of Orsay (1974–1975). My aim has been to
describe the mathematical structures underlying the thermodynamic formalism
of equilibrium statistical mechanics, in the simplest case of classical lattice spin
systems.

The thermodynamic formalism has its origins in physics, but it has now
invaded topological dynamics and differentiable dynamical systems, with ap-
plications to questions as diverse as the study of invariant measures for an
Anosov diffeomorphism (Sinai [3]), or the meromorphy of Selberg’s zeta func-
tion (Ruelle [7]). The present text is an introduction to such questions, as well
as to more traditional problems of statistical mechanics, like that of phase tran-
sitions. I have developed the general theory – which has considerable unity –
in some detail. I have, however, left aside particular techniques (like that of
correlation inequalities) which are important in discussing examples of phase
transitions, but should be the object of a special study.

Statistical mechanics extends to systems vastly more general than the classi-
cal lattice spin systems discussed here (in particular to quantum systems). One
can therefore predict that the theory discussed in this monograph will extend
to vastly more general mathematical setups (in particular to non-commutative
situations). I hope that the present text may contribute some inspiration to the
construction of the more general theories, as well as clarifying the conceptual
structure of the existing formalism.

xvii





Preface to the second edition

Twenty-five years have elapsed since the first printing of Thermodynamic For-
malism, and in the meantime a number of significant developments have taken
place in the area indicated by the subtitle The Mathematical Structures of Equi-
librium Statistical Mechanics. Fortunately, our monograph was concerned with
basics, which have remained relatively unchanged, so that Thermodynamic For-
malism remains frequently quoted. In the present re-issue, some misprints have
been corrected, and an update on the open problems of Appendix B has been
added. We shall now outline briefly some new developments and indicate un-
systematically some source material for these developments. The mathematical
aspects of the statistical mechanics of lattice systems, including phase transi-
tions, are covered in the monographs of Sinai [a], and Simon [b]. It may be
mentioned that research in this important domain has become less active than
it was in the 1960s, ’70s, and ’80s (but a really good idea might reverse this
evolution again). The relation between Gibbs and equilibrium states has been
extended to more general topological situations (see Haydn and Ruelle [c]). For
a connection of Gibbs states with non-commutative algebras and K-theory, see
for instance [d] and the references given there, in particular to the work of Put-
nam. Particularly fruitful developments have taken place which use the concepts
of transfer operators and dynamical zeta functions. In the present monograph
these concepts are introduced (in Chapters 5 and 7) in a situation corresponding
to uniformly hyperbolic smooth dynamics (Anosov and Axiom A systems, here
presented in the topological setting of Smale spaces). The hyperbolic orienta-
tion has led to very interesting results concerning the distribution of periods of
periodic orbits for hyperbolic flows (in particular the lengths of geodesics on a
manifold of negative curvature). These results have been beautifully presented
in the monograph of Parry and Pollicott [e]. More recent results of Dolgopyat on
exponential decay of correlation for hyperbolic flows [f,g] may be mentioned at
this point. It was realized by Baladi and Keller that the ideas of transfer operators

xix



xx Preface to the second edition

and dynamical zeta functions work well also for piecewise monotone maps of
the interval (which are not uniformly hyperbolic dynamical systems). This new
development can in particular be related to the kneading theory of Thurston and
Milnor. We have thus now a much more general theory of transfer operators,
very usefully presented in the monograph of Baladi [h], which has in particular
an extensive bibliography of the subject. For a general presentation of dynam-
ical zeta functions see also Ruelle [i]. As we have seen, the ideas of statistical
mechanics, of a rather algebraic nature, have found geometric applications in
smooth dynamics, and particularly the study of hyperbolic systems. Extensions
to nonuniformly hyperbolic dynamical systems are currently an active domain
of research, with SRB states playing an important role for Sinai, Ruelle, Bowen,
Strelcyn, Ledrappier, Young, Viana, . . . ). This, however, is another story.

References

[a] Y. G. Sinai. Phase Transitions: Rigorous Results. Pergamon Press, Oxford, 1982.
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Introduction

0.1 Generalities

The formalism of equilibrium statistical mechanics – which we shall call ther-
modynamic formalism – has been developed since G. W. Gibbs to describe
the properties of certain physical systems. These are systems consisting of a
large number of subunits (typically 1027) like the molecules of one liter of air
or water. While the physical justification of the thermodynamic formalism re-
mains quite insufficient, this formalism has proved remarkably successful at
explaining facts.

In recent years it has become clear that, underlying the thermodynamic for-
malism, there are mathematical structures of great interest: the formalism hints
at the good theorems, and to some extent at their proofs. Outside of statistical
mechanics proper, the thermodynamic formalism and its mathematical methods
have now been used extensively in constructive quantum field theory∗ and in
the study of certain differentiable dynamical systems (notably Anosov diffeo-
morphisms and flows). In both cases the relation is at an abstract mathematical
level, and fairly inobvious at first sight. It is evident that the study of the physical
world is a powerful source of inspiration for mathematics. That this inspiration
can act in such a detailed manner is a more remarkable fact, which the reader
will interpret according to his own philosophy.

The main physical problem which equilibrium statistical mechanics tries to
clarify is that of phase transitions. When the temperature of water is lowered,
why do its properties change first smoothly, then suddenly as the freezing point is
reached? While we have some general ideas about this, and many special results,

∗ See for instance Velo and Wightman [1].
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2 Introduction

a conceptual understanding is still missing.† The mathematical investigation of
the thermodynamic formalism is in fact not completed; the theory is a young
one, with emphasis still more on imagination than on technical difficulties. This
situation is reminiscent of preclassic art forms, where inspiration has not been
castrated by the necessity to conform to standard technical patterns. We hope
that some of this juvenile freshness of the subject will remain in the present
monograph!

The physical systems to which the thermodynamic formalism applies are
idealized to be actually infinite, i.e. to fill Rν (where ν = 3 in the usual world).
This idealization is necessary because only infinite systems exhibit sharp phase
transitions. Much of the thermodynamic formalism is concerned with the study
of states of infinite systems.

For classical systems the states are probability measures on an appropriate
space of infinite configurations; such states can also be viewed as linear func-
tionals on an abelian algebra (an algebra of continuous functions in the case of
Radon measures). For quantum systems the states are “expectation value” linear
functionals on non-abelian algebras. Due to their greater simplicity, classical
systems have been studied more than quantum systems. In fact attention has
concentrated on the simplest systems, the classical lattice systems where Rν

is replaced by Zν (a ν-dimensional crystal lattice). For such systems the con-
figuration space is a subset 	 of

∏
x∈Zν 	x (where 	x is for instance the set

of possible “spin values” or “occupation numbers” at the lattice site x). We
shall assume that 	x is finite. Due to the group invariance (under Zν or Rν)
the study of states of infinite systems is closely related to ergodic theory. There
are however other parts of the thermodynamic formalism concerned with quite
different questions (like analyticity problems).

The present monograph addresses itself to mathematicians. Its aim is to give
an account of part of the thermodynamic formalism, and of the corresponding
structures and methods. We have restricted ourselves to classical lattice systems.
The thermodynamic formalism extends to many other classes of systems, but
the theory as it exists now for those systems is less complete, more singular,
and filled with technical difficulties. The formalism which we shall describe
would not apply directly to the problems of constructive quantum field theory,
but it is appropriate to the discussion of Anosov diffeomorphisms and related
dynamical systems.

† At a more phenomenological level, a good deal is known about phase transitions and much
attention has been devoted to critical points and “critical phenomena”; the latter remain
however for the moment inaccessible to rigorous investigations.
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The mathematics underlying the thermodynamic formalism consists of gen-
eral methods and special techniques. We have restricted ourselves in this mono-
graph to the general methods; we hope that a complement on special techniques
will be published later. As a rough rule, we have decided that a result was not
“general” if it required that the configuration space of the system factorize com-
pletely in the form 	 =∏	x , where 	x is the finite set of “spin values” at
the lattice site x . The body of general methods thus defined has considerable
unity. As for the special techniques, let us mention the correlation inequalities,
the method of integral equations, the Lee-Yang circle theorem, and the Peierls
argument. These techniques look somewhat specialized from the general point
of view taken in this monograph, but are often extremely elegant. They provide,
in special situations, a variety of detailed results of great interest for physics.

0.2 Description of the thermodynamic formalism

The contents of this section are not logically required for later chapters. We
describe here, for purposes of motivation and orientation, some of the ideas and
results of the thermodynamic formalism.∗ The reader may go over this material
rapidly, or skip it entirely.

I. Finite systems

Let 	 be a non-empty finite set. Given a probability measure σ on 	 we define
its entropy

S(σ ) = −
∑
ξ∈	

σ {ξ} log σ {ξ},

where it is understood that t log t = 0 if t = 0. Given a function U : 	 → R, we
define a real number Z called the partition function and a probability measure
ρ on 	 called the Gibbs ensemble by

Z =
∑
ξ∈	

exp[−U (ξ )],

ρ{ξ} = Z−1 exp[−U (ξ )]. (0.1)

Proposition (Variational principle). The maximum of the expression†

S(σ )− σ (U )

∗ We follow in part the Séminaire Bourbaki, exposé 480.
† We write σ (U ) =∑ξ σ {ξ}U (ξ ) or more generally σ (U ) = ∫ U (ξ )σ (dξ ).



4 Introduction

over all probability measures σ on 	 is log Z, and is reached precisely for
σ = ρ.

For physical applications, 	 is interpreted as the space of configurations of a
finite system. One writes U = βE , where E(ξ ) is the energy of the configuration
ξ , and β = 1/kT , where T is the absolute temperature and k is a factor known
as Boltzmann’s constant. The problem of why the Gibbs ensemble describes
thermal equilibrium (at least for “large systems”) when the above physical
identifications have been made is deep and incompletely clarified. Note that the
energy E may depend on physical parameters called “magnetic field,” “chemical
potential,” etc. Note also that the traditional definition of the energy produces
a minus sign in exp[−βE], which is in practice a nuisance. From now on we
absorb β in the definition of U , and call U the energy. We shall retain from the
above discussion only the hint that the Gibbs ensemble is an interesting object
to consider in the limit of a “large system.”

The thermodynamic formalism studies measures analogous to the Gibbs
ensemble ρ in a certain limit where 	 becomes infinite, but some extra structure
is present. Imitating the variational principle of the above Proposition, one
defines equilibrium states (see II below). Imitating the definition (0.1), one
defines Gibbs states (see III below).

II. Thermodynamic formalism on a metrizable compact set

Let 	 be a non-empty metrizable compact set, and x → τ x a homomorphism of
the additive group Zν(ν � 1) into the group of homeomorphisms of 	. We say
that τ is expansive if, for some allowed metric d, there exists δ > 0 such that

(d(τ xξ, τ xη) � δ for all x) ⇒ (ξ = η).

Definition of the pressure. If A = (Ai ), B = (B j ) are covers of 	, the cover
A ∨B consists of the sets Ai ∩B j . This notation extends to any finite family
of covers. We write

τ−xA = (τ−xAi ),

A� = ∨
x∈�

τ−xA if � ⊂ Zν,

diam A = sup
i

diam Ai ,

where diam Ai is the diameter of Ai for an allowed metric d on 	.
The definition of the pressure which we shall now give will not look simple

and natural to someone unfamiliar with the subject. This should not alarm the
reader: the definition will give us quick access to a general statement of theorems
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of statistical mechanics. It will otherwise recur only in Chapter 6, with more
preparation.

We denote by C = C (	) the space of continuous real functions on 	. Let
A ∈ C , A be a finite open cover of 	, and � be a finite subset of Zν ; define

Z�(A, A) = min

{∑
j

exp

[
sup
ξ∈Bj

∑
x∈�

A(τ xξ )

]

: (B j ) is a subcover of A�

}
.

If a1, . . . , aν are integers >0, let a = (a1, . . . , aν) and

�(a) = {(x1, . . . , xν) ∈ Zν : 0 � xi < ai for i = 1, . . . , ν}.

The function a → log Z�(a)(A, A) is subadditive, and one can write
(with |�(a)| = card �(a) =∏i ai )

P(A, A) = lim
a1,...,aν→∞

1

|�(a)| log Z�(a)(A, A)

= inf
a

1

|�(a)| log Z�(a)(A, A),

and

P(A) = lim
diam A→0

P(A, A).

The function P : C → R ∪ {+∞} is the (topological) pressure. P(A) is finite
for all A if and only if P(0) is finite; in that case P is convex and continuous
(for the topology of uniform convergence in C). P(0) is the topological entropy;
it gives a measure of the rate of mixing of the action τ .

Entropy of an invariant measure. If σ is a probability measure on 	, and
A = (Ai ) a finite Borel partition of 	, we write

H (σ, A) = −
∑

i

σ (Ai ) log σ (Ai ).

The real measures on 	 constitute the dual C
∗ of C. The topology of weak dual

of C on C
∗ is called the vague topology. Let I ⊂ C

∗ be the set of probability
measures σ invariant under τ , i.e. such that σ (A) = σ (A ◦ τ x ); I is convex and
compact for the vague topology. If A is a finite Borel partition and σ ∈ I , we
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write

h(σ,A) = lim
a1,...,aν→∞

1

|�(a)|H (σ, A�(a))

= inf
a

1

|�(a)|H (σ, A�(a));

h(σ ) = lim
diam A→0

h(σ, A).

The function h : I → R ∪ {+∞} is affine � 0; it is called the (mean) entropy.
If τ is expansive, h is finite and upper semi-continuous on I (with the vague
topology).

Theorem 1 (Variational principle).

P(A) = sup
σ∈I

[h(σ )+ σ (A)]

for all A ∈ C.

This corresponds to the variational principle for finite systems if – A is
interpreted as the contribution to the energy of one lattice site.

Let us assume that P is finite. The set IA of equilibrium states for A ∈ C is
defined by

IA = {σ ∈ I : h(σ )+ σ (A) = P(A)}.

IA may be empty.

Theorem 2 Assume that h is finite and upper semi-continuous on I (with the
vague topology).

(a) IA = {σ ∈ C
∗ : P(A + B) � P(A)+ σ (B) for all B ∈ C}. This set is not

empty; it is convex, compact; it is a Choquet simplex and a face of I.
(b) The set D = {A ∈ C : card IA = 1} is residual in C .
(c) For every σ ∈ I ,

h(σ ) = inf
A∈C

[P(A)− σ (A)].

The fact that IA is a metrizable simplex implies that each σ ∈ IA has a unique
integral representation as the barycenter of a measure carried by the extremal
points of IA. It is known that I is also a simplex. The fact that IA is a face
of I implies that the extremal points of IA are also extremal points of I (i.e.
τ -ergodic measures on 	).
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III. Statistical mechanics on a lattice

The above theorems extend results known for certain systems of statistical
mechanics (classical lattice systems). For instance, if F is a non-empty finite
set (with the discrete topology), we can take 	 = FZν

with the product topology,
and τ x defined in the obvious manner. More generally we shall take for 	 a
closed τ -invariant non-empty subset of FZν

. For the physical interpretation,
note that 	 is the space of infinite configurations of a system of spins on a
crystal lattice Zν . Up to sign and factors of β, P can be interpreted as the “free
energy” or the “pressure,” depending on the physical interpretation of F as the
set of “spin values” or of “occupation numbers” at a lattice site. For simplicity
we have retained the word “pressure.”

If x = (xi ) ∈ Zν , we write |x | = max |xi |. Let 0 < λ < 1; if ξ, η ∈ 	, with
ξ = (ξx )x∈Zν , η = (ηx )x∈Zν , we define

d(ξ, η) = λk with k = inf{|x | : ξx = ηx }.
d is a distance compatible with the topology of 	. One checks with this defini-
tion that τ is expansive; hence Theorem 2 applies.

We shall henceforth assume that there exists a finite set � ⊂ Zν and G ⊂ F�

such that

	 = {ξ ∈ FZν

: τ xξ |� ∈ G for all x}.
If � ⊂ Zν we denote by pr�, pr′� the projections of FZν

on F� and FZν\�

respectively.
Let 0 < α � 1, and denote by C

α the Banach space of real Hölder continuous
functions of exponent α on 	 (with respect to the metric d). Let ξ = (ξx ) ∈
	, η = (ηx ) ∈ 	. If ξx = ηx except for finitely many x , and A ∈ C

α , we can
write

gA(ξ, η) =
∏
x∈Zν

exp[A(τ xξ )− A(τ xη)]

because |A(τ xξ )− A(τ xη)| → 0 exponentially fast when |x | → ∞. For finite
�, a continuous function f� : pr�	× pr′�	 → R is then defined by

f�(ξ ) =

⎧⎪⎨
⎪⎩
[ ∑

η∈	:pr′�η=pr′�ξ

gA(η, ξ )

]−1

if ξ ∈ 	,

0 if ξ ∈ 	.

Definition. Let A ∈ C
α; we say that a probability measure σ on 	 is a Gibbs

state if the following holds.
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For every finite � ⊂ Zν , let ε� be the measure on pr�	 which gives to each
point of this set the mass 1. Then

σ = f� · (ε� ⊗ pr′�σ );

(we have again denoted by σ the image of this measure by the canonical map
	 �→ pr�	× pr′�	).

Another formulation of the definition is this: σ is a Gibbs state if, for every
finite �, the conditional probability that ξ |� is realized in �, knowing that
ξ |(Zν\�) realized in Zν\�, is f�(ξ ).

Theorem 3 Let A ∈ C
α .

(a) Every equilibrium state is a τ -invariant Gibbs state.
(b) If 	 = FZ ν

, every τ -invariant Gibbs state is an equilibrium state.

In view of (a), the Gibbs states are the probability measures which have
the same conditional probabilities f� as the equilibrium states. Part (b) of the
theorem holds under conditions much more general than 	 = FZν

. The as-
sumption A ∈ C

α can also be considerably weakened. For simplicity we have in
this section made an unusual description of statistical mechanics, using (Hölder
continuous) functions on 	, rather than the “interactions” which are much more
appropriate to a detailed study.

Theorem 4 The set of Gibbs states for A ∈ C
α is a Choquet simplex.

Every Gibbs state has thus a unique integral decomposition in terms of
extremal (or “pure”) Gibbs states.

Physical interpretation. The extremal equilibrium states are τ -ergodic mea-
sures. They are interpreted as pure thermodynamic phases. Since the equilib-
rium states correspond to tangents to the graph of P (Theorem 2(a)), the dis-
continuities of the derivative of P correspond to phase transitions. One would
thus like to know if P is piecewise analytic (in a suitable sense) on C

α . An ex-
tremal equilibrium state σ may have a non-trivial decomposition into extremal
Gibbs states (those will not be τ -invariant, because of Theorem 3(b)). This
is an example of symmetry breaking (the broken symmetry is the invariance
under τ ).

The main problem of equilibrium statistical mechanics is to understand the
nature of phases and phase transitions. Because of this, the main object of
the thermodynamic formalism is to study the differentiability and analyticity
properties of the function P , and the structure of the equilibrium states and
Gibbs states. As already mentioned, detailed results are known only in special
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cases, but we shall restrict ourselves in the present monograph to the general
theory, as it is known at the time of writing.

For “one-dimensional systems,” i.e. for ν = 1, there are fairly complete
results, which can be summarized by saying that there are no phase transitions.
Let us assume that

	 = {ξ = (ξx )x∈Z ∈ FZ : tξx ξx+1 = 1 for all x},
where t = (tuv) is a matrix with elements 0 or 1. We assume also that there
exists an integer N > 0 such that all the matrix elements of t N are > 0.

Theorem 5 If the above conditions are satisfied, P : C
α →R is real analytic.

Furthermore for every A ∈ C
α there is only one Gibbs state (which is also the

only equilibrium state).

All these properties are false for ν > 1.

0.3 Summary of contents

Chapters 1 to 5 of this monograph are devoted to the general theory of equi-
librium statistical mechanics of classical lattice systems; complete proofs are
generally given. Chapters 6 and 7 extend the thermodynamic formalism outside
of the traditional domain of statistical mechanics: here the proofs are largely
omitted or only sketched.* We give now some more details.

Chapters 1 and 2 give the theory of Gibbs states, without assuming invariance
under lattice translations (the lattice Zν is thus replaced by a general infinite
countable set L). Chapter 3 assumes translation invariance and develops the the-
ory of equilibrium states and of the pressure for classical lattice systems; general
results on phase transitions are also obtained. Chapter 4 is central, and estab-
lishes the connexion between Gibbs states and equilibrium states. Chapter 5
deals with one-dimensional systems and prepares Chapter 7. Chapter 6 extends
the theory of equilibrium states to the situation where the configuration space 	

is replaced by a general compact metrizable space on which Zν acts by home-
omorphisms. Chapter 7 extends the theory of Gibbs states (and related topics)
to a certain class of compact metric spaces, which we call Smale spaces, on
which Z acts by homeomorphisms. Smale spaces include Axiom A basic sets
and in particular manifolds with an Anosov diffeomorphism.

Some extra material is given in the form of exercises at the end of the chapters.
Bibliographic references are given either in the text or in notes at the end

of the chapters. For purposes of orientation, it may be good to read these notes

* Of course references to the literature are indicated as needed.
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before the corresponding chapter. The reader is particularly advised to con-
sult the following original papers: Ruelle [1], Dobrushin [2], [3], Lanford and
Ruelle [1], Israel [1], and Sinai [4].

Some background material has been collected in Appendices A.1 to A.5.
These appendices recall some well-known facts to establish terminology, and
also provide access to less standard results. In general the reader is assumed to
be familiar with basic facts of functional analysis, but no knowledge of physics
is presupposed.

A few open problems are collected in Appendix B. Appendix C contains a
brief introduction to flows.

Concerning notation and terminology we note the following points. We shall
often write |X | for the cardinality of a finite set X . We shall use in Chapters
5–7 the notation Z>, Z�, Z<, Z� for the sets of integers which are respec-
tively >0, � 0, <0, � 0. A measure ρ will (unless otherwise indicated) be a
Radon measure on a compact set 	. If f : 	 → 	′ is a continuous map, the
image of ρ by f (see Appendix A.4) is denoted by fρ (not f ∗ρ).

We refer the reader to Ruelle [3] for a wider study of equilibrium statisti-
cal mechanics, and to the excellent monograph by Bowen [6] for applications
to differentiable dynamical systems.* Let us also mention the monograph by
Israel [2] and the notes by Lanford [2], Georgii [1], and Preston [1], [2]. Mono-
graphs are planned by various authors on aspects of statistical mechanics not
covered here, but at this time, much interesting material is not available in book
form.

Before proceeding with Chapter 1, the reader is invited to go rapidly through
the Appendices A.1–A.5.

* For modern introductions to ergodic theory and topological dynamics, see Walters [2]: Denker,
Grillenberger, and Sigmund [1].



1

Theory of Gibbs states

This chapter is devoted to the general theory of Gibbs states. No invariance
under translations is assumed.

1.1 Configuration space

The following are supposed to be given:

L : an infinite countable set;
	x : a finite set for each x ∈ L;

F: a set of finite subsets of L , which is locally finite (i.e. each x ∈ L is an
element of only a finite number of the � ∈ F);

(	̄�)�∈F: a family where 	̄� ⊂
∏

x∈� 	x .
We can then define a configuration space

	 =
{

ξ ∈
∏
x∈L

	x : (∀� ∈ F) ξ |� ∈ 	̄�

}
. (1.1)

We shall always assume that 	 = Ø.
An important example is when F is empty. In this case 	 =∏x∈L 	x .
It will be convenient to think of L as describing a crystal lattice. At each

site x ∈ L the system may be in a finite number of different states ξx ∈ 	x . For
instance, in the description of an alloy, 	x is the list of atom species which may
occur at x . For a spin system 	x is the list of possible spin orientations of the
atom at x . One frequently considers a lattice gas with 	x = {1, 0} (the site x
is occupied by an atom, or empty) and a spin system with 	x = {1,−1} (spin
up and spin down). A configuration of our system is given by an element ξ =
(ξx )x∈L of

∏
x∈L 	x . We impose a certain number of conditions (ξx )x∈� ∈ 	̄�.

For a lattice gas an example of such conditions would be that two “neighboring”

11
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lattice sites cannot be occupied simultaneously (the particles on the lattice have
hard cores).

For any set S ⊂ L , let

	S =
{

ξ ∈
∏
x∈S

	x : (∀� ∈ F : � ⊂ S)ξ |� ∈ 	̄�

}
. (1.2)

Since 	 = Ø, no 	S is empty. We put on 	x the discrete topology and on∏
x∈S 	x the product topology, which is compact. The spaces 	S , in particular

	, are then also compact. We have continuous maps αS : 	 �→ 	S defined by
αSξ = ξ |S or αS(ξx )x∈L = (ξx )x∈S . More generally we can define αT S : 	S �→
	T if S ⊃ T . Let C = C (	) be the algebra of real continuous functions on 	. C is
a Banach space with respect to the uniform norm, and the probability measures
on 	 form a convex compact subset E of the weak dual C

∗ of C (C
∗ is the space

of real measures on 	; the topology of weak dual is the vague topology). E is
metrizable. For finite � ⊂ L , let C� be the algebra of functions A ◦ α� where
A ∈ C (	�). By the Stone–Weierstrass theorem the union of the C� is dense
in C .

We may consider the elements of C as observables of our classical lattice sys-
tem. The elements of C� are then the physical quantities which can be observed
in the finite region �. A probability measure μ ∈ E is a state. We interpret
it as an expectation value functional on the observables, i.e. a positive linear
functional on C such that μ(1) = 1.

1.2 Interactions

An interaction is a real function � on⋃
� finite⊂ L

	�

such that �|	Ø = 0 and for each x ∈ L

|�|x =
∑
X�x

1

|X | sup
ξ∈	x

|�(ξ )| < +∞, (1.3)

where |X | = card X . Given �, an energy function U�
� : 	� �→ R is defined

for each finite � ⊂ L by

U�
� (ξ ) =

∑
X⊂�

�(ξ |X ). (1.4)
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We write U� instead of U�
� when there is no confusion. We have

U�(ξ ) =
∑
x∈�

∑
X :x∈X⊂�

1

|X |�(ξ |X ). (1.5)

Therefore

|U�| �
∑
x∈�

|�|x . (1.6)

For the rest of this chapter we shall impose instead of (1.3) the stronger require-
ment

‖�‖x =
∑
X�x

sup
ξ∈	x

|�(ξ )| < +∞. (1.7)

If �, M are disjoint subsets of L such that � is finite and ξ ∈ 	�∪M , we can
define

W�M (ξ ) =
∑

X

∗�(ξ |X ), (1.8)

where
∑∗ extends over the finite sets X ⊂ � ∪ M such that X ∩� = Ø and

X ∪ M = Ø. We have thus

|W�M | �
∑
x∈�

‖�‖x . (1.9)

If �, M are finite, we have also

U�∪M = U� +UM +W�M . (1.10)

1.3 Gibbs ensembles and thermodynamic limit

The Gibbs ensemble for the region � (� finite ⊂ L) and the interaction � is
the probability measure μ(�) on 	� defined by

μ(�){ξ} = Z−1
� exp

[−U�
� (ξ )

]
,

Z� =
∑
ξ∈	�

exp
[−U�

� (ξ )
]
. (1.11)

The general name of thermodynamic limit is given to a limit when � “tends
to infinity.” In particular we write � → L if eventually � ⊃ � for every fi-
nite � ⊂ L (limit on the increasing net of finite subsets of L ordered by
inclusion).

We shall now prove the existence of thermodynamic limits for the Gibbs
ensembles by a compactness argument.
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1.4 Proposition

Let (Mn) be a sequence of finite subsets of L such that Mn → L, and for each
n let μ(Mn ) be a probability measure on 	Mn . One can choose a subsequence
(M ′

n) such that the following limit exists for all finite � ⊂ L:

lim
n→∞α�M ′

n
μ(M ′

n ) = ρ�. (1.12)

Furthermore there exists a unique probability measure ρ on 	 such that

ρ� = α�ρ (1.13)

for all �.

Notice that α�Mn μ(Mn ) is defined only for Mn ⊃ �, i.e. for n sufficiently
large. Since the finite subsets � of L form a countable family, and the 	� are
finite, the existence of a subsequence (M ′

n) such that (1.12) holds follows from a
diagonal argument. As a consequence of (1.12) we have α�MρM = ρ� if � ⊂
M . Therefore we can define consistently ρ(A ◦ α�) = ρ�(A) for A ∈ C(	�)
and extend ρ by continuity to C .∗ The uniqueness of ρ follows from the density
of ∪�C� in C . We shall say that ρ is a thermodynamic limit of the probability
measures μ(�).

No use has been made of the fact that the probability measures μ(�) were
Gibbs ensembles. If this is the case, the thermodynamic limit ρ has however
special properties, as we shall see in Section 1.6.

1.5 Gibbs states

We say that σ ∈ E is a Gibbs state (for the interaction �) if, for all finite � ⊂ L ,
there exists a probability measure σL\� on 	L\� such that for all ξ� ∈ 	�

(α�σ ){ξ�} =
∫

	L\�
σL\�(dη)μ(�)η{ξ�}, (1.14)

where

μ(�)η{ξ�} = e−U�(ξ�)−W�,L\�(ξ�∨η)∑
η�∈	�

e−U�(η�)−W�,L\�(η�∨η) . (1.15)

In this formula ξ� ∨ η is the element ζ of 	 such that ζ |� = ξ�, ζ |(L\�) = η,
and it is understood that terms with ξ� ∨ η or η� ∨ η not defined are omitted.

∗ Given � one can choose M finite such that α�M	M = α�	. Then |ρ(A ◦ α�)| = |ρ�(A)| =
|ρM (A ◦ α�M )| � 1‖A ◦ α�M‖ = ‖A ◦ α�‖.
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This means that if ξ� ∨ η is not defined we put exp[−W�,L\�(ξ� ∨ η)] = 0. We
also put the fraction (1.15) equal to zero if its numerator vanishes. Notice that,
since F has been assumed locally finite, the sets {η ∈ 	L\� : ξ� ∨ η ∈ 	} and
{η ∈ 	L\� : ξ� ∨ η not defined} are both open. On the other hand W�,L\� is on
{η ∈ 	L\� : ξ� ∨ η ∈ 	} a uniformly convergent sum of continuous functions
(see (1.7), (1.8)). Therefore the functions η �→ exp[−W�,L\�(ξ� ∨ η)], η �→
μ(�)η{ξ�} are continuous on 	L\�.

1.6 Thermodynamic limit of Gibbs ensembles

We prove now that if ρ is a thermodynamic limit of Gibbs ensembles μ(�) for
the interaction �, then ρ is a Gibbs state for the interaction �.

Using the definition (1.11) we have, for � ⊂ M ,

(α�Mμ(M)){ξ�} =
∑

η∈	M\�

μ(M){ξ� ∨ η}

=
∑

η∈	M\�

[
Z−1

M e−UM\�(η)
]

exp[−U�(ξ�)−W�,M\�(ξ� ∨ η)]

=
∑

η∈	M\�

[(αM\�,Mμ(M)){η}]μ(�,M)η{ξ�}, (1.16)

where

μ(�,M)η{ξ�} = e−U�(ξ�)−W�,M\�(ξ�∨η)∑
η�∈	�

e−U�(η�)−W�,M\�(η�∨η) . (1.17)

We adopt conventions similar to those of Section 1.5 concerning the meaning
of ξ� ∨ η. In particular we put the expression (1.17) equal to zero when the
numerator vanishes. We now investigate what happens when we replace M in
(1.16) by the sequence (M ′

n) of Proposition 1.4, and let n →∞.

(a) We notice that the function on 	L\� defined by

η �→ μ(�,M ′
n )(η|M ′

n\�){ξ�}

converges uniformly to η �→ μ(�)η{ξ�} because of the convergence of the
sum defining W�,L\�(ξ� ∨ η).

(b) Using Proposition 1.4 for the sequence αM ′
n\�,Mn μ(M ′

n ), we see that it has a
thermodynamic limit ρL\�, which is a probability measure on 	L\�.
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From (a), (b), and (1.16) we obtain

lim
n→∞(α�M ′

n
μ(M ′

n )){ξ�} =
∫

	L\�
ρL\�(dη)μ(�)η{ξ�}.

In view of Proposition 1.4 this expresses that ρ is a Gibbs state.

1.7 Boundary terms

Let a probability measure μ′(�) on 	� be defined for each finite � ⊂ L , or for
a sequence (�n) such that �n →∞, or for a suitable net. Suppose that μ′(�) is
of the form

μ′(�){ξ�} = Z ′−1
� e−U�(ξ�)−B�(ξ�),

Z ′� =
∑

η�∈	�

e−U�(η�)−B�(η�).

If the boundary term B� has a suitable behavior in the thermodynamic limit,
the results of Section 1.6 can be extended to (μ′(�)).

Instead of (1.16) we have here

(α�Mμ′(M)){ξ�} =
∑

η∈	M\�

μ′(M){ξ� ∨ η}

=
∑

η∈	M\�

[
Z ′−1

M e−UM\�(η)−B ′(η)
]

× exp [−U�(ξ�)−W�,M\�(ξ� ∨ η)− B ′′(ξ�, η)]

(1.18)

provided BM (ξ� ∨ η) = B ′(η)+ B ′′(ξ�, η). Corresponding to (a) of Sect-
ion 1.6, suppose that the function on 	L\� defined by

η �→ exp [−U�(ξ�)−W�,M\�(ξ� ∨ (αM\�,L\�η))− B ′′(ξ�, αM\�,L\�η)]

(1.19)

tends uniformly to η �→ exp[−U�(ξ�)−W�,L\�(ξ� ∨ η)]; then the argument
in Section 1.6 carries over to the present case, and a thermodynamic limit of
(μ′(�)) is a Gibbs state.

We now consider an example. For each finite � ⊂ L , let ηL\� be the restric-
tion to L\� of some η∗(�) ∈ 	. Using (1.15) we define μ′(�) = μ(�)ηL\� . We
thus have

B�(ξ�) = W�,L\�(ξ� ∨ ηL\�).
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If � ⊂ M, ξ� ⊂ 	�, η ∈ 	M\�, we can write by (1.8)

BM (ξ� ∨ η) = WM,L\M (ξ� ∨ η ∨ ηL\M )

= B ′(η)+ B ′′(ξ�, η),

where

B ′(η) =
∑

X

∗�(η ∨ ηL\M |X ) = WM\�,L\M (η ∨ ηL\M ),

B ′′(ξ�, η) =
∑

X

∗∗�(ξ� ∨ η ∨ ηL\M |X ).

The sum
∑∗ extends over the finite sets X ⊂ L\� such that X ∩ (M\�) = Ø

and X ∩ (L\M) = Ø. The sum
∑∗∗ extends over the finite sets X ⊂ L such

that X ∩� = Ø and X ∩ (L\M) = Ø. We now have to worry about the fact
that ξ� ∨ η ∨ ηL\� need not be defined, i.e. that there need be no ζ ∈ 	 with
restrictions ξ�, η, ηL\M to 	�, 	M\�, 	L\M . Given �, if M is sufficiently
large this means that either ξ� ∨ η or η ∨ ηL\M is not defined (we use the
fact that F is locally finite). Our conventions are thus respected in (1.18) by
putting e−W�,M\�(ξ�∨η) = 0 if ξ� ∨ η is not defined, e−B ′(η) = 0 if η ∨ ηL\M

is not defined, and �(ξ� ∨ η ∨ ηL\M |X ) = 0 in B ′′ if ξ� ∨ η ∨ ηL\M is not
defined. The uniform convergence of (1.19) to the limit η �→ exp[−U�(ξ�)−
W�,L\�(ξ� ∨ η)] is then easily checked. In conclusion a thermodynamic limit
of (μ(�)ηL\� ) is necessarily a Gibbs state.

We now derive an important result from the above estimates. We have

μ(M)ηL\M {ξ� ∨ η} = [Z ′−1
M e−UM\�(η)−B ′(η)

]
× exp [−U�(ξ�)−W�,M\�(ξ� ∨ η)− B ′′(ξ�, η)],

(1.20)

where B ′′ is uniformly small for large M . We remark that by the definition
(1.14), a Gibbs state σ is such that αMσ is an average over ηL\M of the measures
μ(M)ηL\M . We can thus estimate the conditional probability with respect to σ (dξ )
that ξ |� = ξ� when it is known that ξ |(M\�) = η. According to (1.20), this
is given by

(αMσ ){ξ� ∨ η}∑
η�∈	�

(αMσ ){η� ∨ η} ≈
e−U�(ξ�)−W�,M\�(ξ�∨η)∑

η�∈	�

e−U�(η�)−W�,M\�(η�∨η) ,

where the error is uniformly as small as one likes for large M . From this
follows that for a Gibbs state σ the conditional probability that ξ |� = ξ�,
when it is known that ξ |(L\�) = η, is μ(�)η{ξ�}. Conversely, if the conditional
probability has this form, (1.14) clearly holds.
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1.8 Theorem

A probability measure σ on 	 is a Gibbs state if and only if, for each finite
� ⊂ L, the conditional probability that ξ |� = ξ�, knowing that ξ |(L\�) = η,
is μ(�)η{ξ�} as given by (1.15).

Notice that we may thus take σL\� = αL\�σ in (1.14). In particular a vague
limit of Gibbs states is a Gibbs state. The set of Gibbs states is thus compact;
it is clearly also convex.

1.9 Theorem

Let � be an interaction. The probability measures μ(�) and μ(�)η on 	� (Gibbs
ensemble and Gibbs ensemble with boundary term) are defined by (1.11) and
(1.15) where η ∈ 	L\� is the restriction to L\� of some element η∗ of 	 (which
may depend on �). Thermodynamic limits are defined by Proposition 1.4.

(a) Any thermodynamic limit of (μ(�)) is a Gibbs state.
(b) Any thermodynamic limit of (μ(�)ηL\�

) is a Gibbs state.
(c) The closed convex hull of the Gibbs states obtained in (b) is the set K� of

all Gibbs states.
(d) K� = Ø; K� is convex and compact; K� is a Choquet simplex.

(a) and (b) have been proved in Sections 1.6 and 1.7 respectively.
Because of (a) the set K� of Gibbs states is not empty, and we have seen

after Theorem 1.8 that K� is convex and compact. Therefore the closed convex
hull K of the Gibbs states obtained in (b) is contained in K�. Suppose K = K�.
There is then A ∈ C and σ ∈ K� such that

σ (A) > max
ρ∈K

ρ(A), (1.21)

and we may assume that A = B ◦ α�, B ∈ C (	�) for some finite �. By (1.14)
we have μ(M)η (B ◦ α�M ) � σ (A) for some η ∈ 	L\M and all M ⊃ �. If ρ is
a thermodynamic limit of (μ(M)η ), ρ(A) � σ (A) in contradiction with (1.21).
We have thus proved (c) and the first two parts of (d).

Let ξ� ∈ 	� for a finite � ⊂ L . If σ (dξ ) is any measure on 	, let σ(L\�)ξ�

be the measure on 	L\� obtained by “setting ξ |� = ξ�” (restrict σ to {ξ ∈ 	 :
ξ |� = ξ�}, then take the image of the restriction by αL\�). If σ is a Gibbs state,
then by Theorem 1.8,

σ(L\�)ξ�
(dη) = μ(�)η{ξ�}σL\�(dη); (1.22)
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hence

e−U�(ξ�)−W�,L\�(ξ�∨η)σ(L\�)η�
(dη) = e−U�(η�)−W�,L\�(η�∨η)σ(L\�)ξ�

(dη)

(1.23)

for all ξ�, η� ∈ 	�. Conversely if σ is a probability measure and (1.23) holds
for all �, ξ�, η�, then (1.22) holds and σ is a Gibbs state. Consider now the
closed linear subspace G of C

∗ consisting of the real measures σ such that (1.23)
holds for all �, ξ�, η�. It is clear that if σ ∈ G, also |σ | ∈ G. From this it follows
that K� is a simplex (see Appendix A.5.5).

1.10 Algebra at infinity

Let σ be a probability measure on 	. We let π (A) be the class of A in L∞(	, σ ).
Define

Bσ =
⋂

�finite⊂L

closure

[ ⋃
Mfinite⊂L\�

π (CM )

]
, (1.24)

where the closure is taken with respect to the topology of L∞(	, σ ) as weak
dual of L1(	, σ ). Then Bσ will be called the algebra at infinity associated with
σ . We shall now characterize the σ which have trivial algebra at infinity (i.e. Bσ

consists of the almost everywhere constant functions) by the following cluster
property.

(C) For all A ∈ C there exists � finite ⊂ L such that

(B ∈ CM , M ∩� = Ø) ⇒ |σ (AB)− σ (A)σ (B)| � ‖B‖.
Suppose first that (C) holds. Then for all A ∈ C and B∞ ∈ Bσ ,

|σ (AB∞)− σ (A)σ (B∞)| � ‖B∞‖.
Replacing A by λA and letting λ →∞, we obtain

σ (AB∞) = σ (A)σ (B∞);

hence B∞ is constant and Bσ is trivial.
Suppose now that (C) does not hold. There exist then A ∈ C , and BL\� for

each finite � ⊂ L , such that

BL\� ⊂
⋃

M⊂L\�
CM , ‖BL\�‖ = 1,

|σ (ABL\�)− σ (A)σ (BL\�)| > 1.
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Let B∞ be a weak limit of the net (π (BL\�)) in L∞(	, σ ); then B∞ ∈ Bσ and
we have

|σ (AB∞)− σ (A)σ (B∞)| � 1.

Therefore B∞ cannot be constant: Bσ is not trivial.
We can now characterize the extremal points of the set K� of Gibbs states

(pure Gibbs states).

1.11 Theorem (characterization of pure Gibbs states)

Let σ ∈ K�; then the following conditions are equivalent;

(A) σ is an extremal point of K�.
(B) The algebra at infinity Bσ associated with σ is trivial.
(C) For all A ∈ C there exists � finite ⊂ L such that

(B ∈ CM , M ∩� = Ø) ⇒ |σ (AB)− σ (A)σ (B)| � ‖B‖.
We showed the equivalence of (B) and (C) in Section 1.10. We now prove

(A) ⇔ (B).
The non-extremality of σ in K� is equivalent to the existence of B∞ ∈

L∞(	, σ ), B∞ � 0, such that B∞ is not a constant and B∞σ is proportional to
a Gibbs state. By (1.23) this is equivalent to

e−U�(ξ�)−W�,L\�(ξ�∨η) B∞
(
η� ∨ η

)
σ(L\�)η�

(dη)

= e−U�(η�)−W�,L\�(η�∨η) B∞(ξ� ∨ η)σ(L\�)ξ�
(dη)

for all � finite and ξ�, η� ∈ 	�. But this means

B∞(ξ� ∨ η) = B∞(η� ∨ η)

(almost everywhere with respect to (αL\�σ )(dη)) when ξ� ∨ η, η� ∨ η are
defined. Equivalently B∞ is in the closure of ∪M⊂L\�π (CM ) for all �, and thus
B∞ ∈ Bσ . The non-extremality of σ is thus equivalent to the existence of a
non-trivial B∞ ∈ Bσ .

1.12 The operators M�

Given a finite � ⊂ L we define a linear map M� : C �→ C by

(M� A)(ξ� ∨ η) =
∑

η�∈	�

μ(�)η{η�}A(η� ∨ η) (1.25)

for all ξ� ∨ η ∈ 	, with ξ� ∈ 	�, η ∈ 	L\�.
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Clearly ‖M� A‖ � ‖A‖ and there is a function B on 	L\� such that
(M� A)(ξ� ∨ η) = B(η). Therefore, if σ is a Gibbs state, (1.22) yields

σ (M�(A)) = (αL\�σ )(B) =
∫

(αL\�σ )(dη)
∑

η�∈	�

μ(�)η{η�}A(η� ∨ η)

=
∑

η�∈	�

∫
σ(L\�)η�

(dη)A(η� ∨ η) = σ (A). (1.26)

(Conversely if the state σ is such that σ (M� A) = σ (A) for all � and A, then σ

is a Gibbs state.)
Suppose that, for each A, M� A tends in C to a constant c when � → L (i.e.

given ε > 0 there exists � finite such that ‖M�(A)− c‖ < ε if � ⊃ �). Let
then σ, σ ′ ∈ K�′ ; we have

σ (A) = lim
�→L

σ (M�(A)) = lim
�→L

σ ′(M�(A)) = σ ′(A)

and therefore K� consists of a single point.
Suppose now that M� A does not tend to a constant limit. We assume, as

we may, that A = B ◦ α� ∈ C� for some �. We can find sequences (Mn), (M ′
n)

and ξn, ξ
′
n ∈ 	 such that Mn → L , M ′

n → L and

lim
n→∞(MMn

(A))(ξn) = lim
n→∞(MM ′

n
(A))(ξ ′n).

But this means

lim
n→∞μ(Mn )ηn (B ◦ α�Mn ) = lim

n→∞μ(M ′
n )η′n (B ◦ α�Mn ),

where ηn = ξn|(L\Mn), η′n = ξ ′n|(L\M ′
n). Therefore K� consists of more than

one point.

1.13 Theorem (characterization of unique Gibbs states)

Let σ ∈ K�; then we have the implications (A′) ⇔ (B′) ⇒ (C′).

(A′) K� = {ρ}.
(B′) For all A ∈ C , M� A tends in C to a constant when � → L.
(C′) For all A ∈ C there exists � finite ⊂ L such that

(0 � B ∈ CM , M ∩� = Ø) ⇒ |σ (AB)− σ (A)σ (B)| � σ (B).

Furthermore (C′) ⇒ (B′) if supp σ = 	.

Notice that (C′) is a cluster property stronger than (C) of Section 1.10.
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We have shown in Section 1.12 that (A′)⇔ (B′). If (B′) holds and A is given
we can choose � such that

|M� A − σ (A)| � 1;

hence if B ∈ CM , M ∩� = Ø, then

σ (AB) = σ (M�(AB)) = σ ((M� A) · B);

and if B � 0,

|σ (AB)− σ (A)σ (B)| = |σ ((M� A − σ (A))B)| � σ (B).

Thus (B′)⇒ (C′).
We prove now that (C′) ⇒ (B′) if supp σ = 	. Suppose that (B′) does

not hold. Then there exist A and sequences (�n), (ξn) such that �n → L and
(M�n

A)(ξn) → c = σ (A). By changing A we can assume that c − σ (A) = 4.
By continuity of M�n

A we can find Mn such that Mn ∩�n = Ø and
|(M�n

A)(η)− (M�n
A)(ξn)| < 1 if η|Mn = ξn|Mn . Let Bn be the characteristic

function of {η ∈ 	 : η|Mn = ξn|Mn}; then for sufficiently large n

(M�n
A)(η) > σ (A)+ 2 if Bn(η) = 0.

Therefore

σ (ABn) = σ (M�n
(ABn)) = σ ((M�n

A) · Bn) � (σ (A)+ 2)σ (Bn);

hence

|σ (ABn)− σ (A)σ (Bn)| � 2σ (Bn).

This contradicts (C′) because σ (Bn) > 0 by our assumption supp σ = 	.

1.14 Remark

Suppose that 	 has the following property.

(D∗) For all ξ, η ∈ 	 and � finite⊂ L, there exists a finite M ⊂ L, and ζ ∈ 	

such that

ζ |� = ξ |�, ζ |(L\M) = η|(L\M)

(in other words, for all η ∈ 	, the set
∑

η = {ζ ∈ 	 : ∃M finite and ζ |(L\M) =
η|(L\M)} is dense in 	).

Then, for every Gibbs state σ , supp σ = 	 (this follows readily from the
definition (1.14) of Gibbs states). The conditions (A′), (B′), (C′) of Theorem 1.13
are then all equivalent.
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Notes

The important notion of Gibbs state was introduced by Dobrushin [1], [2], [3]
(and rediscovered by Lanford and Ruelle [1]). Gibbs states are probability mea-
sures for which certain conditional probabilities are prescribed (Theorem 1.8).
Equivalently they are probability measures satisfying a certain set of equations
(14) sometimes called the DLR equations. In this chapter, we largely follow
Dobrushin, with a slightly more general framework and some additions: the
simplex property and the notion of algebra at infinity (Lanford and Ruelle [1]),
the M� operators (Ledrappier [1]).

Exercises

1. If 	 =∏x∈L 	x (F empty) and �|	� = 0 for |�| > 1, there is only one
Gibbs state: σ =∏x∈L σ({x}).

2. Show that the set of thermodynamic limits of (μ(�)ηL\� ) – see Theorem 1.9(b)
– is closed, and contains all the extremal points of K�. [The second point,
first noted by Georgii [2], follows easily from Milman’s theorem: see Ap-
pendix A.3.5.]

3. Two distinct pure Gibbs states are disjoint [i.e. mutually singular] measures
on 	. (See Appendix A.5.5.)

4. Let �, � be interactions and σ ∈ K�.

(a) For finite � ⊂ L , and ξ ∈ 	�, define

μ∗(�){ξ} = Z∗−1 exp
[−U�

� (ξ )
] · (α�σ ){ξ},

Z∗ = (α�σ )
(

exp
[−U�

�

])
.

Prove that any thermodynamic limit of (μ∗(�)) belongs to K�+� .
(b) Using (a), show that when � → L , any limit of

Z∗−1 exp
[−U�

� (ζ |�)
] · σ (dζ )

belongs to K�+� .
(c) Find analogues of (a) and (b) where U� is replaced by U� +W�,L\�.

[Caution: the denominator Z∗ must be different from zero.]
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Gibbs states: complements

In this chapter we study how interactions and Gibbs states transform under
maps.

2.1 Morphisms of lattice systems

We shall call the object (L , (	x )x∈L , (	̄�)�∈F) introduced in Chapter 1 a lat-
tice system. To this lattice system we have associated a configuration space 	

defined in Section 1.1. Let 	′ be similarly the configuration space of the lattice
system (L ′, (	′

x ′ )x ′∈L ′ , (	̄′
�′ )�′∈′F ′ ). Suppose now that the family (Fx )x∈L has

the following properties.

(M1) Fx is a map 	′
M(x) �→ 	x where M(x) is a finite subset of L ′.

(M2) The family (M(x))x∈L is locally finite (i.e., {x : x ′ ∈ M(x)} is finite for
each x ′ ∈ L ′).

(M3) If ξ ′ ∈ 	′∪{M(x):x∈X} then (Fx (ξ ′|M(x)))x∈X is an element F Xξ ′

of 	X whenever X ⊂ L .

It suffices to check (M3) for X ∈ F.
A continuous map F : 	′ �→ 	 is defined by

(Fξ ′)x = Fx (ξ ′|M(x)).

Let
∑

ξ ⊂ 	 consist of those η such that ηx = ξx except for finitely many
x ∈ L , and similarly for

∑′
ξ ′ ⊂ 	′. Then F maps

∑′
ξ into

∑
Fξ ′ . We say that

F is a morphism, from (L ′, (	′
x ′ )x ′∈L ′ , (	̄′

�′ )�′∈F ′ ) to (L , (	x )x∈L , (	̄�)�∈F), if
it satisfies

(M4) F restricted to
∑′

ξ ′ is a bijection to
∑

Fξ ′ for each ξ ′ ∈ 	′.
Notice that distinct families (Fx )x∈L may define the same map F , and

therefore the same morphism. It is readily verified that the identity map of

24



The interaction F∗Φ 25

	 is a morphism (identity morphism) and that composition of two mor-
phisms yields another morphism (Exercise 1). Suppose that F ′ is a morphism
from (L , (	x )x∈L , (	̄�)�∈F) to (L ′, (	′

x ′ )x ′∈L ′ , (	̄′
�′ )�′∈F ′ ), and that FF ′ and

F ′F are the identity maps on 	 and 	′ respectively; then F is called an
isomorphism.

2.2 Example

Suppose that the lattice system (L ′, (	′
x ′ )x ′∈L ′ , (	̄�′ )�′∈F′ ) is given. Let

(M(x))x∈L be a partition of L ′ into finite subsets. Define 	x = 	′
M(x) and

Fx : 	′
M(x) �→ 	x be the identity. We take � ∈ F if there exists �′ ∈ F

′ such
that �′ ∩ M(x) = Ø for all x ∈ �, we may then define 	̄� = {(ξ ′|M(x))x∈� :
ξ ′ ∈ 	′

∪{M(x):x∈�}}. It is easily seen that (Fx )x∈L defines a morphism F from
(L ′, (	′

x ′ )x ′∈L ′ , (	̄′
�′ )�′∈F ′ ) to (L , (	x )x∈L , (	̄�)�∈F), and in fact an isomor-

phism.

2.3 The interaction F∗Φ

Let F be a morphism defined by a family (Fx )x∈L as in Section 2.1. Given an
interaction � for (L , (	x )x∈L , (	̄�)�∈F), we introduce an interaction F∗� for
(L ′, (	′

x ′ )x ′∈L ′ , (	̄′
�′ )�′∈F ′ ) by

(F∗�)(ξ ′) =
∑

X :∪{M(x):x∈X}=X ′
�(Fxξ

′) if ξ ′ ∈ 	X ′ .

The sum is finite because of (M2). Furthermore, using (M3),

‖F∗�‖x ′ =
∑
X ′�x ′

sup
ξ ′∈	′

x ′
|(F∗�)(ξ ′)|

�
∑

X ′ � x ′
X : ∪{M(x) : x ∈ X} = X ′

sup
ξ ′∈	′

X ′
|�(FXξ ′)|

=
∑

X :∪{M(x):x∈X}�x ′
sup

ξ ′∈	′
X ′
|�(FXξ ′)|

�
∑

X :X∩{x :x ′∈M(x)}=Ø

sup
ξ∈	X

|�(ξ )|

�
∑

x :x ′∈M(x)

‖�‖x .

Notice that F∗� depends on (Fx )x∈L and not only on the morphism F .
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2.4 Lemma

The conditional probabilities μF∗�
(�′)ξ ′

L\�′
{ξ ′�′ } depend only on the morphism F,

and not otherwise on (Fx )x∈L .

We have

μF∗�(�′)ξ ′
L′\�′
{ξ ′�′ } =

exp[−U�′ (ξ ′�′ )−W�′,L ′\�′ (ξ ′�′ ∨ ξ ′L ′\�′ )]∑
η′

�′ ∈	′
�′

exp[−U�′ (η′�′ )−W�′,L ′\�′ (η′�′ ∨ ξ ′L ′\�′ )]
,

(2.1)
where U, W are computed from the interaction F∗�. Thus

exp [−U�′ (η′�′ )−W�′,L ′\�′ (η′�′ ∨ ξ ′L ′\�′ )]

= exp

[
−

∑
X ′:X ′∩�′ =Ø

∑
X :∪{M(x):x∈X}=X ′

�(FX ((η′�′ ∨ ξ ′L ′\�′ )|X ′))
]

= exp

[
−

∑
X :∪{M(x):x∈X}∩�′ =Ø

�(F(η′�′ ∨ ξ ′L ′\�′ )|X ))

]

= ∏
X :∪{M(x):x∈X}∩�′ =Ø

exp
[
−�(F(η′�′ ∨ ξ ′L ′\�′ )|X )

]
. (2.2)

Another choice of (Fx )x∈L would give the same expression apart from a change
in the sets M(x); (2.1) would however remain the same due to cancellations
between numerator and denominator.

2.5 Proposition

If σ ′ is a Gibbs state on 	′ for the interaction F∗�, then Fσ ′ is a Gibbs state
on 	 for the interaction �.

Let ξ ′ ∈ 	′, ξ = Fξ ′ ∈ 	, and let �, �′ be finite subsets of L , L ′ respec-
tively. We write

ξ� = ξ |�, ξL\� = ξ |(L\�), ξ ′L ′\�′ = ξ ′|(L ′ \�′).

In view of (M4) there is, for given � and sufficiently large �′, a bijection f
from

A = {η� ∈ 	� : η� ∨ ξL\� is defined}
to

{η′�′ ∈ 	′
�′ : η′�′ ∨ ξ ′L ′\�′ is defined and F(η′�′ ∨ ξ ′L ′\�′ )|(L \�) = ξL\�}
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such that

F(( f η�) ∨ ξ ′L ′\�′ ) = η� ∨ ξL\�. (2.3)

Let now P be the conditional probability with respect to σ ′(dη′) that
(Fη′)|� = ξ�, knowing that η′|(L ′ \�′) = ξ ′L ′\�′ and that (Fη′)|(L\�) =
ξL\�′ . We have, since σ ′ is a Gibbs state,

P =
μF∗�

(�′)ξ ′
L′\�′

{ f ξ�}∑
η�∈A

μF∗�
(�′)ξ ′

L′\�′
{ f η�}

=
exp

[
−U�′ ( f ξ�)−W�′,L ′\�′ (( f ξ�) ∨ ξ ′L ′\�′ )

]
∑

η�∈A
exp

[
−U�′ ( f η�)−W�′,L ′\�′ (( f η�) ∨ ξ ′L ′\�′ )

] .
Using (2.2) and (2.3), this is

P =

∏
X :∪{M(x):x∈X}∩�′ =Ø

exp[−�(ξ� ∨ ξL\�|X )]

∑
η�∈A

∏
X :∪{M(x):x∈X}∩�′ =Ø

exp[−�(η� ∨ ξL\�|X )]
;

the factors with X ∩� = Ø are the same in the numerator and denominator.
Therefore

P =
exp[− ∑

X :X∩� =Ø
�(ξ� ∨ ξL\�|X )]

∑
η�∈	�

exp[− ∑
X :X∩�=Ø

�(η� ∨ ξL\�|X )]
= μ�

(�)ξL\�{ξ�}.

This does not depend on ξ ′L ′\�′ , and therefore the conditional probability with
respect to σ ′(dη′) that (Fη′)|� = ξ�, knowing that (Fη′)|(L\�) = ξL\�, is
again μ�

(�)ξL\�{ξ�}. This is then also the conditional probability with respect to
(Fσ ′)(dη) that η|� = ξ�, knowing that η|(L\�) = ξL\�. Therefore Fσ ′ is a
Gibbs state for the interaction �.

2.6 Remarks

If F ◦ F ′ is the morphism obtained by composing two morphisms F, F ′, it is
easily seen (Exercise 1) that

(F ◦ F ′)∗ = F ′∗F∗ (2.4)

when F ◦ F ′ is defined by a suitable family (F̃ x )x∈L .
If I is the identity morphism of (L , (	x )x∈L , (	̄�)�∈F) and � is an in-

teraction, Lemma 2.4 shows that � and I ∗� define the same conditional



28 Gibbs states: complements

probabilities:

μI ∗�
(�)ξL\�{ξ�} = μ�

(�)ξL\�{ξ�} (2.5)

and have therefore the same Gibbs states.
If F : 	′ �→ 	 is an isomorphism, F is a bijection of the set of Gibbs states

for F∗� on 	′ to the set of Gibbs states for � on 	. This follows from Propo-
sition 2.5 and from (2.4), (2.5).

2.7 Systems of conditional probabilities

For every finite � ⊂ L , we write

	∗
L\� = {ξ : (∃ξ ∗ ∈ 	)ξ = ξ ∗|(L\�)}.

This set is closed in 	L\� (see Section 1.5). The conditional probabilities
μ(�)ξL\�{ξ�} for all allowed interactions � (i.e. ‖�‖x < +∞ for all x – see
Section 1.2) satisfy the following conditions.

(a) If ξL\� ∈ 	∗
L\� and ξ� ∈ 	�, then μ(�)ξL\�{ξ�} � 0 and

∑
η�∈	�

μ(�)ξL\�{η�} = 1. Furthermore μ(�)ξL\�{ξ�} > 0 if and only if ξ� ∨ ξL\� ∈
	.

(b) If ξ� ∈ 	�, the real function ξL\� �→ μ(�)ξL\�{ξ�} on 	∗
L\� is continuous.

(c) Let � ⊂ M, ξ� ∈ 	�, ξM\� ∈ 	L\�, ξL\M ∈ 	L\M , and ξ� ∨ ξM\� ∨
ξL\M ∈ 	; then

μ(�)ξM\�∨ξL\M {ξ�} ×
∑
η∈	�

μ(M)ξL\M {η ∨ ξM\�}

= μ(M)ξL\M {ξ� ∨ ξM\�}.

(a) and (b) follow from Section 1.5; (c) agrees with the interpretation of the
μ(�)ξL\�{ξ�} as conditional probabilities and can be checked by direct compu-
tation.

A family (μ(�)ξL\� ) satisfying (a), (b), (c) will be called a system of
conditional probabilities. The main part of the theory developed till now
with interactions applies with trivial modifications to systems of conditional
probabilities.

The definition of Gibbs states (Section 1.5) is unchanged. We now want
to show that any thermodynamic limit of the μ(�)ξL\� (with ξL\� ∈ 	∗

L\�) is a
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Gibbs state. Let � ⊂ M ⊂ N ⊂ L . The conditional probability with respect to
αMN μ(N )ξL\N that η|� = ξ�, knowing that η|(M\�) = ξM\�, is

P = αMN μ(N )ξL\N {ξ� ∨ ξM\�}∑
η�∈	�

αMN μ(N )ξL\N {η� ∨ ξM\�}

=

∑
ηN\M

μ(N )ξL\N {ξ� ∨ ξM\� ∨ ηN\M}∑
η�

∑
ηN\M

μ(N )ξL\N {η� ∨ ξM\� ∨ ηN\M} .

If this expression is ambiguous we can define it in an arbitrary manner. Using
(c) we get

P =
∑
ηN\M

μ((N\M)∪�)ξM\�∨ξL\N {ξ� ∨ ηN\M}

=
∑
ηN\M

μ(�)ξM\�∨ηN\M∨ξL\N {ξ�}

×
∑
η�

μ((N\M)∪�)ξM\�∨ξL\N {η� ∨ ηN\M}.

Therefore, using (a), P is the average over ηN\M , with respect to some weight,
of

μ(�)ξM\�∨ηN\M∨ξL\N {ξ�}.
In view of the continuity property (b), the oscillation of this quantity with respect
to ηN\M ∨ ξL\N tends to zero uniformly when M →∞.

From this it follows that a thermodynamic limit of (μ(�)ηL\� ) is a Gibbs state.

2.8 Properties of Gibbs states

The proofs of the results of Chapter 1, from Theorem 1.8 on, remain applicable
with obvious changes in the present situation. More explicitly, Theorem 1.8 and
parts (b), (c), (d) of Theorem 1.9 hold for systems of conditional probabilities.
The characterization of pure Gibbs states (Theorem 1.11) and of unique Gibbs
states (Theorem 1.13, Remark 1.14) remain valid.

Let a morphism F be defined as in Section 2.1, and (μ(�)ξL\� ) be a system of
conditional probabilities for (L , (	x )x∈L , (	̄�)�∈F). We now introduce a system
(F∗μ(�′)ξ ′

L′\�′
) on (L ′, (	′

x ′ )x ′∈L ′ , (	̄′
�′ )�′∈F ′ ).

For finite �′ ⊂ L ′ and ξ ′L ′\�′ ∈ 	∗
L ′\�′ , let � = {x ∈ L : M(x) ∩�′ = Ø}.

Then, by the properties of a morphism,

F(η′�′ ∨ ξ ′L ′\�′ ) = F�(η′�′ ∨ ξ ′L ′\�′ ) ∨ ξL\�
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for some fixed ξL\� ∈ 	∗
L\�, whenever η′�′ ∨ ξ ′L ′\�′ ∈ 	′. We define

F∗μ(�′)ξ ′
L′\�′
{ξ ′�′ } =

μ(�)ξL\�{F�(ξ ′�′ ∨ ξ ′L ′\�′ )}∑
η′

�′ ∈	′
�′

μ(�)ξL\�{F�(η′�′ ∨ ξ ′L ′\�′)} .

The family (F∗μ(�′)ξ ′
L′\�′

) is a system of conditional probabilities on

(L ′, (	′
x ′ )x ′∈L ′ , (	̄′

�′ )�′∈F ′ ). Notice that, by (2.1) and (2.2), if � is an interaction,

F∗μ�
(�′)ξ ′

L′\�′
= μF∗�

(�′)ξ ′
L′\�′

.

It is not hard to see that Proposition 2.5 and Remarks 2.6 apply to systems of
conditional probabilities (consider (F∗μ(�′)ξ ′

L′\�′
) instead of F∗�).

2.9 Remark

The interest in considering systems of conditional probabilities rather than in-
teractions is on the one hand that they are a priori more general, and on the
other that they behave better under morphisms. Indeed, if F is a morphism, F∗

is uniquely defined on systems of conditional probabilities, but not on inter-
actions. Furthermore, on systems of conditional probabilities, morphisms act
functorially in the sense that (F ◦ F ′)∗ = F ′∗F∗, and that I ∗ is the identity if I
is the identity morphism.

Systems of conditional probabilities are however not always the natural
objects to consider∗, and it is always convenient to have interactions at one’s
disposal.

Notes

This chapter is of a somewhat formal nature; it is an attempt at removing the ar-
bitrariness present in the choice of L , (	x )x∈L , (	̄�)�∈F and the interactions �

of Chapter 1. This is done by introducing an isomorphism notion between “lat-
tice systems”

(
L , (	x )x∈L , (	̄�)�∈F

)
, and by associating with each interaction

a “system of conditional probabilities.” One can define not only isomorphisms
of lattice systems but – more interestingly – morphisms. These morphisms
transport systems of conditional probabilities contravariantly, and Gibbs states

∗ This is because they do not permit the definition of the pressure P when there is invariance
under translations (see Chapters 3, 4).
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covariantly. Morphisms can be used to formalize some procedures commonly
used in statistical mechanics.∗

For the notion of system of conditional probabilities, see Sullivan [1]; the
rest of this chapter is largely original.

Exercises

1. Let F, F ′ be morphisms

F : (L ′, (	′
x ′ )x ′∈L ′ , (	̄′

�′ )�′∈F ′ ) �→ (L , (	x )x∈L , (	̄�)�∈F),

F ′ : (L ′′, (	′′
x ′′ )x ′′∈L ′′ , (	̄′′

�′′ )�′′∈F ′′ ) �→ (L ′, (	′
x ′ )x ′∈L ′ , (	̄′

�′ )�′∈F ′ )

defined by families (Fx )x∈L , (F ′x ′ )x ′∈L ′ with Fx : 	′
M(x) �→ 	x and F ′x ′ :

	′′
M ′(x ′) �→ 	′

x ′ . Let M̃(x) = ∪{M ′(x ′) : x ′ ∈ M(x)} and F̃ x : 	′′
M̃(x)

�→ 	x

be such that F̃(ξ ′′) = Fx (F ′M(x)ξ
′′).

Check that the map F̃ = F ◦ F ′ is a morphism defined by the family
(F̃ x )x∈L . Check that F̃∗� = F ′∗F∗� where F∗, F ′∗, F̃∗ are defined by the
families (Fx ), (F ′x ′ ), (F̃ x ) respectively.

2. If we suppress the condition that μ(�)ξL\�{ξ�} > 0 when ξ� ∨ ξL\� ∈ 	 in
Section 2.7(a), we obtain a more general notion of systems of conditional
probabilities. Check that the properties listed in the first paragraph of Sec-
tion 2.8 (except Remark 1.14) remain valid.

3. Let a system of conditional probabilities (μ(�)ξL\� ) be given. Whenever ξ, η ∈
	 and there exists � finite such that ξ |(L\�) = η|(L\�), define

V (ξ, η) = log μ(�)ξ |(L\�){ξ |�} − log μ(�)ξ |(L\�){η|�}. (*)

Check that this definition does not depend on the choice of �, and that the
following properties hold:

(a) V is a real function on {(ξ, η) ∈ 	×	 : ξ |(L\�) = η|(L\�) for some
finite �}.

(b) If ξ�, η� ∈ 	�, the function ξL\� �→ V (ξ� ∨ ξL\�, η� ∨ ξL\� is con-
tinuous on {ξL\� ∈ 	L\� : ξ� ∨ ξL\� ∈ 	 and η� ∨ ξL\� ∈ 	}.

(c) V (ξ, η)+ V (η, ζ )+ V (ζ, ξ ) = 0 whenever the left-hand side is defined.

Check that (∗) establishes a one-to-one correspondence between sys-
tems of conditional probabilities and objects V satisfying (a), (b), (c). These

∗ See the reduction to transitive and mixing systems in Theorems 5.2, 5.3. Another example is the
use of “contours” to study the Ising model in zero magnetic field.
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objects form a linear space. Check that the natural action of F∗ on the V ’s
is linear (F : a morphism).

4. Consider two lattice systems, with configuration spaces 	 and 	′; let �, �′

be interactions for them. Give natural definitions of sum and product of the
two lattice systems: these are lattice systems with configuration spaces 	∗ =
	 ∪	′ (disjoint union) and 	∗∗ = 	×	′ (product) respectively. Define
also sum and product of � and �′.

(a) Show that the injection 	 �→ 	∗ is a morphism.
(b) Show that if σ, σ ′ are Gibbs states for � and �′, then σ ⊗ σ ′ is a Gibbs

state for �×�′.

[To define the sum (L∗, (	∗
x )x∈L∗ , (	̄∗

�)�∈F∗ ), use an arbitrary identification
of the countable infinite sets L and L ′, and take L∗ = L = L ′, 	∗

x = 	x ∪	′
x .

Choose (	̄∗
�)�∈F∗ so that ξ ∈ 	∗ only if ξ ∈ 	 or ξ ∈ 	′. To define the product,

let L∗∗ = L ∪ L ′ (disjoint union).]



3

Translation invariance. Theory of
equilibrium states

In this chapter we assume invariance under translations, and we develop the
theory of equilibrium states and of the pressure. General results on phase tran-
sitions are also obtained.

3.1 Translation invariance

The theory of Gibbs states has very interesting developments when invariance
under a “sufficiently large” symmetry group G is assumed. We shall take G =
Zν, ν � 1, but remark that other groups may be of interest.* In the present
chapter we shall not consider Gibbs states, but develop instead the theory of
equilibrium states. The relation between Gibbs states and equilibrium states
will be discussed in Chapter 4.

We take L = Zν and let G = Zν act on L by translations

(a, x) �→ a + x .

Furthermore we take 	x = 	o for all x ∈ Zν , so that �x∈Zν 	x = (	o)Zν

. For
all S ⊂ L , define maps τ a : �x∈S	x �→ �x∈S−a	x by

(τ aξ )x = ξx+a .

In this chapter we do not introduce the family (	̄�)�∈F of Chapter 1, and
simply assume that 	 ⊂ �x∈Zν 	x and 	� ⊂ �x∈�	x (for � finite ⊂ Zν) are
defined such that

(a) 	�−a = τ a	�.
(b) 	� ⊃ 	M |� if � ⊂ M .
(c) 	 = Ø, and ξ ∈ 	 if and only if ξ |� ⊂ 	� for all �.

* Cf. the hierarchial model of Dyson [1].

33
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As far as 	 is concerned these conditions amount to assuming that 	 is an
arbitrary non-empty closed τ -invariant subset of �x∈Zν 	x .

We let α�, α�M , C, C� be as in Chapter 1. Notice that the τ a are homeomor-
phisms of the compact set 	. For each a, an automorphism of the algebra C is
defined by A �→ A ◦ τ a . This automorphism is an isometry and maps C� onto
C�+a .

An interaction � is (translation) invariant if it satisfies

�(τ aξ ) = �(ξ ) (3.1)

for all a ∈ Zν, ξ ∈ 	�, � finite ⊂Zν . These interactions form a Banach space
A with respect to the norm

|�| =
∑
X�O

1

|X | sup
ξ∈	x

|�(ξ )|. (3.2)

We shall use the dense linear space Ao ⊂ A consisting of finite range interac-
tions; � is a finite range interaction if there exists � finite such that �(ξ |X ) = 0
unless X − x ⊂ � whenever x ∈ X .

In the present setup we may give L = Zν the physical interpretation of a ν-
dimensional crystal lattice. The assumed group invariance is that under lattice
translations.

3.2 The function A�

For each interaction � ∈ A we now introduce a continuous function A� on 	.
We want A� ∈ C to be so defined that −A�(ξ ) can be physically interpreted as
the contribution of one lattice site (say 0) to the energy in the configuration ξ .
This is achieved by writing

A�(ξ ) = −
∑
X�0

1

|X |�(ξ |X ).

Other definitions are possible, however, with the same physical interpretation
and giving the same value to σ (A�) when σ is an invariant state (see Section 3.5
below). We could thus take

A�(ξ ) = −
∑

X

∗
�(ξ |X ) (3.3)

where
∑∗ extends over those X such that, if X is lexicographically ordered,

0 is its first element (or 0 is its last element). Lexicographic order is here any
total order on Zν which is compatible with the translations of Zν . We could
also define A� by (3.3) where

∑∗ extends over those X such that 0 is the
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[(|X | + 1)/2]th element* (“middle element”) of X in lexicographic order. We
shall use this last definition in what follows. It has the virtue that

{A� : � ∈ Ao} =
⋃

� finite

C� and {A� : � ∈ A} = C.

To see that each A ∈ C� is of the form A�, choose X such that X ⊃ � and 0 is the
[(|X | + 1)/2]th element of X (in lexicographic order). Define �(ξ |X ) = −A(ξ )
and �(ξ |Y ) = 0 if Y is not a translate of X . Then |�| = ‖A‖ and A = A�. For
general A ∈ C, we can write A =∑n An where An ∈ C�n

and
∑

n ‖An‖ < +∞.
Therefore if �n is chosen as above, we have A = A� with � =∑n �n .

Notice that the map � → A� is linear, and that

‖A�‖ �
∑
X�0

1

|X | sup
ξ∈	X

|�(ξ )| = |�|.

More precisely

‖A‖ = inf{|�| : A = A�}. (3.4)

Thus we have a continuous linear map � �→ A� from A onto C.

3.3 Partition functions

Given S ⊂ Zν , we let

	∗
S = {ξ : (∃ξ ∗ ∈ 	)ξ = ξ ∗|S}.

If � is finite and � ∈ A, we define the partition functions

Z�
� =

∑
ξ∈	�

exp
[−U�

� (ξ )
]
,

Z∗�� =
∑
ξ∈	∗

�

exp
[−U�

� (ξ )
]
.

If A ∈ C we define also

Z∗�(A) =
∑
ξ∈	∗

�

exp
∑
x∈�

A(τ xξ ∗),

where, for each ξ ∈ 	∗
�, an arbitrary choice of ξ ∗ ∈ 	 has been made so that

ξ ∗|� = ξ .

* [(|X | + 1)/2] is the integer part of (|X | + 1)/2.
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Let P�
� = |�|−1 log Z�

� , then

d

dt
P�+t�

� = (Z�+t�
�

)−1 ∑
ξ∈	�

−U�
� (ξ )

|�| exp
[−U�+t�

� (ξ )
]
,

and therefore

|�| d2

dt2
P(�+ t�)

∣∣∣∣
t=0

= (Z�
�

)−2 ∑
ξ∈	�

∑
η∈	�

1
2

[
U�

� (ξ )−U�
� (η)

]2
exp

[−U�
� (ξ )−U�

� (η)
]

� 0. (3.5)

This proves that � �→ P�
� is convex. On the other hand

d

dt
P�+t�

� � |�|;
hence ∣∣P�

� − P�
�

∣∣ � sup
o�t�1

∣∣∣∣ d

dt
P�+t(�−�)

∣∣∣∣ � |�−�|. (3.6)

Notice also that

−|�| � P�
� � |�| + log |	o|. (3.7)

Properties similar to (3.5), (3.6), and (3.7) hold if Z�
� is replaced by Z∗�� or

Z∗�(A). In particular let P∗�(A) = |�|−1 log Z∗�(A); then A �→ P∗�(A) is convex
and

|P∗�(A)− P∗�(B)| � ‖A − B‖, (3.8)

where some fixed choice of the ξ ∗ ∈ 	 has been made in the definition of Z∗�.

3.4 Theorem

Given a1, . . . , aν > 0, define

�(a) = {x ∈ Zν : 0 � xi < ai }
and write a →∞ for a1, . . . , aν →+∞. If � ∈ A, A ∈ C, the following limits
exist:

P� = lim
a→∞ |�(a)|−1 log Z�

�(a) = lim
a→∞ |�(a)|−1 log Z∗��(a), (3.9)

P(A) = lim
a→∞ |�(a)|−1 log Z∗�(a)(A). (3.10)
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Furthermore P� = P(A�). The function P, called the pressure, is convex and
continuous on C; in fact

|P(A)− P(B)| � ‖A − B‖. (3.11)

If t ∈ R we have also

P(A + B ◦ τ x − B + t) = P(A)+ t. (3.12)

We shall see later that the thermodynamic limit a →∞ in (9), (10) can be
replaced by a more general limit � ↑ ∞ (Section 3.9 and Corollary 3.13). For
further properties of P see Section 6.8.

Let first � ∈ Ao: if ξ ∈ 	X and X − X ⊂ �, then �(ξ ) = 0. If � ⊂ M we
have

Z M � Z�(|	o|e‖�‖)|M |−|�|, (3.13)

where

‖�‖ =
∑
X�0

sup
ξ∈	x

|�(ξ )|.

If �1 ∩�2 = Ø we have also

Z�1∪�2 � Z�1 Z�2 eN (�2)‖�‖, (3.14)

where N (�2) is the number of points x ∈ �2 such that x +� ⊂ �2.
Let

P� = lim inf
a→∞ |�(a)|−1 log Z�

�(a). (3.15)

Given ε > 0, we can choose b such that

N (�(b))

|�(b)| ‖�‖ <
ε

2
,

|�(b)|−1 log Z�
�(b) < P� + ε

2
.

Therefore if a1, . . . , aν are integral multiples of b1, . . . , bν , use of (3.14) yields

|�(a)|−1 log Z�
�(a) < P� + ε.

It is then easy to conclude, using (3.13), that

lim sup
a→∞

|�(a)|−1 log Z�
�(a) � P�. (3.16)

Therefore, by (3.15),

lim
a→∞ |�(a)|−1 log Z�

�(a) = P�. (3.17)

The case of general � ∈ A follows from the equicontinuity property (3.6).
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Notice now that (3.14) may be replaced by

Z�1∪�2 � Z̃�1 Z̃�2 eN (�2)‖�‖, (3.18)

where

Z̃�1 =
∑

ξ∈	̃�1

exp[−U�(ξ )],

	̃�1 = {ξ̃ |�1 : ξ̃ ∈ 	�1∪�2};
and similarly for Z̃�2 . A generalization of (3.18) where �1 ∪�2 is replaced by
�1 ∪ · · · ∪�n is easily obtained. Taking �1, . . . , �n to be translates of �(b)
and �1 ∪ · · · ∪�n = �(a), we find

lim
a→∞ |�(a)|−1 log Z�(a) � |�(b)|−1 log Z̃�(b) + N (�(b))

|�(b)| ‖�‖, (3.19)

where Z̃�(b) is now computed with

	̃�(b) = {ξ̃ |�(b) : ξ̃ ∈ 	�(b)+�},
and � is any finite set containing 0. [To see this notice that � j +� ⊂ �(a) for
most j between 1 and n, when a →∞.] Since (3.19) holds for all �, we also
have

P� � |�(b)|−1 log Z∗��(b) +
N (�(b))

|�(b)| ‖�‖;

and since Z∗�(b) � Z�(b), we obtain

lim
a→∞ |�(a)|−1 log Z∗��(a) = P�,

concluding the proof of (3.9).
If ξ ∗ ∈ 	, (3.3) gives

U�
� (ξ ∗|�)+

∑
x∈�

A�(τ xξ ∗) =
∑
X⊂�

�(ξ ∗|X )−
∑
x∈�

∑
X

∗
�(ξ ∗|X + x).

Therefore, if � ∈ A0,∣∣∣∣∣U�
� (ξ ∗|�)+

∑
x∈�

A�(τ xξ ∗)

∣∣∣∣∣ � N (�)|�|

and

lim
a→∞ |�(a)|−1

[
log Z∗��(a) − log Z∗�(a)(A�)

] = 0.

By the equicontinuity property (3.8) and the density of the A�, � ∈ A0, in
C we obtain (3.10) and P� = P(A�) for all � ∈ A. The convexity of P and
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(3.11) follow from the corresponding properties of P∗�. One checks readily the
properties

lim
a→∞[P∗�(a)(A� + A� ◦ τ x − A�)− P∗�(a)(A�)] = 0, �, � ∈ A0,

Z∗�(a)(A + t) = et |�|Z∗�(a)(A),

from which (3.12) follows.

3.5 Invariant states

For each a ∈ Zν a linear map τ a in the space C
∗ of real measures on 	 is defined

by

(τ aσ )(A) = σ (A ◦ τ a), σ ∈ C
∗, A ∈ C .

τ a : C
∗ �→ C

∗ is continuous for the topology of C
∗ as weak dual of C (vague

topology) and maps the set E of probability measures (states) onto itself. We
let I be the set of τ -invariant states:

I = {σ ∈ E : τ aσ = σ for all a ∈ Zν}.

We also say that these states are translation invariant states, or simply invariant
states.

3.6 Proposition

The set I of invariant states is convex and compact; it is a Choquet
simplex.

This is a general property of the set of probability measures invariant under
a group of homeomorphisms of a compact set. It is readily seen that I is convex
and compact. If σ is a τ -invariant measure, then |σ | is also τ -invariant. From
this it follows that I is a simplex (see Appendix A.5.5).

The extremal points of I are called ergodic states. The unique decomposition
of an invariant state ρ into ergodic states is called the ergodic decomposition;
it is given by a probability measure mρ on I such that

mρ( Â
2
) = lim

�↗∞
ρ

⎡
⎣(|�|−1

∑
x∈�

A ◦ τ x

)2
⎤
⎦ ,
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where Â is the function on I defined by Â(σ ) = σ (A) (see Appendix A.5.6).
An invariant state ρ is thus ergodic if and only if, for all A ∈ C ,

lim
�↗∞

ρ

⎡
⎣
(
|�|−1

∑
x∈�

A ◦ τ x

)2
⎤
⎦ = [ρ(A)]2.

This is a weak cluster property. Its physical interpretation is discussed in Sec-
tion 3.15 below.

3.7 Theorem

Given A ∈ C, let IA ⊂ C
∗ be the set of measures σ on 	 such that

P(A + B) � P(A)+ σ (B) for all B ∈ C .

(a) Ø = IA ⊂ I ; IA is convex and compact. We shall see later that IA is a
Choquet simplex and a face of I (Corollary 3.14).

(b) The set

D = {A ∈ C : IA consists of a single point}
is residual in C .

Let now X be a separable Banach space and ϕ : X �→ C a continuous linear
map such that ϕX is dense in C .

(c) For � ∈ X, define

I ′� = {F ∈ X
∗ : P ◦ ϕ(�+�) � P ◦ ϕ(�)+ F(�) for all � ∈ X},

D′ = {� ∈ X : I ′� consists of a single point}.
Then I ′� = {σ ◦ ϕ : σ ∈ Iϕ�}, and D′ = ϕ−1 D is residual in X .

(d) Iϕ� is the closed convex hull of the set of ρ such that

ρ = lim
n→∞ ρn, ρn ∈ Iϕ�n ,

lim
n→∞‖�n −�‖ = 0, �n ∈ ϕ−1 D.

The elements of IA are called equilibrium states for A; the elements of IA�

are the equilibrium states for the interaction �.
IA = Ø and (b) hold for any convex continuous function P on a separable

Banach space (see Appendix A.3.6 and A.3.7). Therefore also the set D′ is
residual in X .

If F ∈ I ′� we have, using (3.11),

F(�) � P ◦ ϕ(�+�)− P ◦ ϕ(�) � ‖ϕ�‖;
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hence, replacing � by −�, we obtain |F(�)| � ‖ϕ�‖, or

sup
‖ϕ�‖�1

|F(�)| � 1; (3.20)

and there exists σ ∈ C
∗ such that F = σ ◦ ϕ. By the density of ϕX in C, σ is

unique, and σ ∈ Iϕ�. Thus I ′� ⊂ {σ ◦ ϕ : σ ∈ Iϕ�} and therefore I ′� = {σ ◦ ϕ :
σ ∈ Iϕ�}. In particular I ′� consists of a single point if and only if Iϕ� does (use
the density of ϕX in C) : D′ = ϕ−1 D. Since we know that D′ is residual, (c) is
proved.

To prove (a), we already know that IA = Ø and, taking X = C in (3.20), that
‖σ‖ � 1 if σ ∈ IA. We also have, by (3.12),

σ (1) = −σ (−1) � −[P(A − 1)− P(A)] = 1.

But ‖σ‖ � 1 and σ (1) � 1 imply σ � 0 and ‖σ‖ = 1, i.e., σ ∈ E . Furthermore,
by (3.12) again,

0 = P(A + B ◦ τ x − B)− P(A) � σ (B ◦ τ x − B)

� −[P(A − B ◦ τ x + B)− P(A)] = 0,

so that σ ∈ I . Thus IA ⊂ I . Clearly IA is convex and compact, concluding the
proof of (a).

Let ρ, ρn, �, �n be as in (d). We have

P(ϕ�n + B) � P(ϕ�n)+ ρn(B)

for all B ∈ C; hence

P(ϕ�+ B) � P(ϕ�)+ ρ(B),

showing that ρ ∈ Iϕ�.
Suppose now that σ ∈ Iϕ� were not in the closed convex hull of those ρ. By

the separation theorem for compact sets (see Appendix A.3.3(c)) there would
then exist � ∈ X such that

sup
σ∈Iϕ�

σ (ϕ�) > sup
ρ

ρ(ϕ�).

Let �n = �+ (1/n)� + Xn , where ‖Xn‖ < 1/n2 and �n ∈ ϕ−1 D. Write
Iϕ�n = {ρn}. By the convexity of P we have, if σ ∈ Iϕ�,

σ

(
ϕ

(
1

n
� + Xn

))
� ρn

(
ϕ

(
1

n
� + Xn

))
;

hence

σ (ϕ�)− ‖ϕ‖
n

� ρn(ϕ�)+ ‖ϕ‖
n

;
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and if ρ is a limit point of ρn ,

σ (ϕ�) � ρ(ϕ�),

contradicting our assumption on �. This concludes the proof of (d), which
could also be obtained from a general property of convex functions (see Ap-
pendix A.3.7).

3.8 Entropy

Given a probability measure σ� on 	� (for finite � ⊂ Zν) the corresponding
entropy is defined by

S(σ�) = −
∑
ξ∈	�

σ�{ξ} log σ�{ξ}.

One checks readily that

0 � S(σ�) � |�| log |	0|.
When � = Ø, the entropy vanishes.

If σ ′� is another probability measure, and 0 < α < 1, the following inequal-
ities hold:

αS(σ�)+ (1− α)S(σ ′�) � S(ασ� + (1− α)σ ′�)

� αS(σ�)+ (1− α)S(σ ′�)+ log 2. (3.21)

Writing σξ = σ�{ξ}, σ ′ξ = σ ′�{ξ}, we have indeed, using the convexity of t �→
t log t and the monotonicity of the logarithm,

−
∑

ξ

[ασξ log σξ + (1− α)σ ′ξ log σ ′ξ ]

� −
∑

ξ

[ασξ + (1− α)σ ′ξ ] log[ασξ + (1− α)σ ′ξ ]

� −
∑

ξ

[ασξ log ασξ + (1− α)σ ′ξ log(1− α)σ ′ξ ]

= −
∑

ξ

[ασξ log σξ + (1− α)σ ′ξ log σ ′ξ ]− α log α − (1− α) log(1− α)

� −
∑

ξ

[ασξ log σξ + (1− α)σ ′ξ log σ ′ξ ]+ log 2.

Let now σ ∈ E , then S(α�σ ) is an increasing function of �, and satisfies
the strong subadditivity property

S(α�1∪�2σ )+ S(α�1∩�2σ ) � S(α�1σ )+ S(α�2σ ). (3.22)
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The increase follows directly from the monotonicity of the logarithm. To prove
(3.22) we shall use the inequality − log(1/t) � t − 1. We have

S(α�1∪�2σ )+ S(α�1∩�2σ )− S(α�1σ )− S(α�2σ )

= −
∑

ξ∈	�1∩�2

∑
ξ ′∈	�1/�2

∑
ξ ′′∈	�2/�1

σξ∨ξ ′∨ξ ′′ log
σξ∨ξ ′∨ξ ′′σξ

σξ∨ξ ′σξ∨ξ ′′

�
∑
ξξ ′ξ ′′

σξ∨ξ ′∨ξ ′′

[
σξ∨ξ ′σξ∨ξ ′′

σξ∨ξ ′∨ξ ′′σξ

− 1

]

=
∑
ξξ ′

σξ∨ξ ′

σξ

∑
ξ ′′

σξ∨ξ ′′ −
∑
ξξ ′ξ ′′

σξ∨ξ ′∨ξ ′′ =
∑
ξξ ′

σξ∨ξ ′ − 1 = 0.

(To avoid undefined expressions one may, in the above calculation, first assume
σξ∨ξ ′∨ξ ′′ > 0 for all ξ, ξ ′, ξ ′′, and then take a limit.)

3.9 Infinite limit in the sense of van Hove

We say that the finite sets � ⊂ Zν tend to infinity in the sense of van Hove (and
we write � ↗∞) if |�| → ∞ and, for each a ∈ Zν ,

|(�+ a)/�|
|�| → 0.

Roughly speaking this means that the “boundary of �” becomes negligible in
the limit as compared to �.

3.10 Theorem

If σ ∈ I , the following limit exists:

s(σ ) = lim
�↗∞

|�|−1S(α�σ ) = inf
�
|�|−1S(α�σ ).

The function s, called the (mean) entropy, is � 0, affine, and upper semicontin-
uous on I.

If we take �1 and �2 disjoint, (3.22) becomes subadditivity:

S(α�1∪�2σ ) � S(α�1σ )+ S(α�2σ ). (3.23)

Assuming σ ∈ I , we have also

S(α(�+x)σ ) = S(α�σ ). (3.24)
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Defining �(a) as in Theorem 3.4, we let

s = inf
a
|�(a)|−1S(α�(a)σ ) (3.25)

and, given ε > 0, choose b such that

|�(b)|−1S(α�(b)σ ) � s + ε.

If we translate �(b) by elements of

Zν(b) = {x ∈ Zν : xi = ni bi , ni ∈ Zν, i = 1, . . . , ν},
we obtain a partition of Zν . Let �+ be the union of those translates which
have non-empty intersection with �. Then �+ ⊃ � and |�+|/|�| → 1 when
� ↗∞. Since S(α�σ ) is an increasing function of �, and (3.23), (3.24) hold,

S(α�σ ) � S(α�+σ ) � |�+|
|�(b)| S(α�(b)σ ) � |�+|(s + ε);

therefore

lim sup
�↗∞

|�|−1S(α�σ ) � s + ε. (3.26)

From (3.25) and (3.26) we obtain in particular

lim
a→∞ |�(a)|−1S(α�(a)σ ) = s.

Strong subadditivity (3.22) shows that

S(α�∪{x}σ )− S(α�σ ) � S(α�′∪{x}σ )− S(α�′σ ) (3.27)

when x ∈ �′ ⊃ �. This permits an estimate of the increase in the entropy
for a set � to which points are added successively in lexicographic order.
In particular, if � is fixed (up to translations) and one takes for �′ the sets
successively obtained in the lexicographic construction of a large �(a), (3.27)
holds for most �′. Therefore

S(α�∪{x}σ )− S(α�σ ) � lim
a→∞ |�(a)|−1S(α�(a)σ ) = s.

Hence

S(α�σ ) � |�|s
for all �. From this and (3.26) we get

lim
�↗∞

|�|−1S(α�σ ) = inf
�
|�|−1S(α�σ ) = s,

proving the first part of the theorem.
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Since S � 0, we also have s � 0. That s is affine follows from (3.21).
Finally s is upper semicontinuous as the inf of the continuous functions
σ �→ |�|−1S(α�σ ).

3.11 Lemma

If E� is the set of all probability measures on 	�, then

log Z�
� = max

σ�∈E�

[
S(σ�)− σ�

(
U�

�

)]
.

We have indeed, by the concavity of the logarithm,

S(σ�)− σ�

(
U�

�

) = ∑
ξ∈	�

σ�{ξ} log
e−UA(ξ )

σ�{ξ} � log
∑
ξ∈	�

e−U�(ξ );

and equality holds if σ�{ξ} = (Z�
�)−1e−U�(ξ ) = μ(�){ξ}.

The following theorem gives a version of this variational principle in the
thermodynamic limit � ↗∞.

3.12 Theorem

For all A ∈ C,

P(A) = max
σ∈I

[s(σ )+ σ (A)]; (3.28)

and the maximum is reached precisely on IA. For all σ ∈ I ,

s(σ ) = inf
A∈C

[P(A)− σ (A)]. (3.29)

We first prove that

P(A) = sup
σ∈I

[s(σ )+ σ (A)] (3.30)

when A = A�, � ∈ A0. By Lemma 3.11 we have

P(A�) � s(σ )+ σ (A�) for all σ ∈ I, (3.31)

where we have used

σ (A�) = − lim
a→∞ |�(a)|−1(α�(a)σ )

(
U�

�(a)

)
. (3.32)

Using the Gibbs ensembles μ(�) for the interaction �, we now define

ρ�,n{ξ} = |�(an)|−1
∑

x :�+x⊂�(an )

(α�+xμ(�(an ))){τ−xξ}.
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It is readily seen that the sequence (an) can be chosen such that an →∞ and
the following limit exists for each finite � ⊂ Zν :

ρ� = lim
n→∞ ρ�,n. (3.33)

The unique state ρ such that ρ� = α�ρ for all � then belongs to I , and we
have

s(ρ) = lim
b→∞

|�(b)|−1S(ρ�(b))

= − lim
b→∞

lim
n→∞ |�(b)|−1

∑
ξ∈	�(b)

ρ�(b),n{ξ} log ρ�(b),n{ξ}

� lim sup
b→∞

lim sup
n→∞

|�(b)|−1|�(an)|−1
∑

x :�(b)+x⊂�(an )

S(α�(b)+xμ(�(an )))

� lim sup
n→∞

|�(an)|−1S(μ(�(an ))). (3.34)

[In the last step we used (3.23) and the fact that �(an) can be written in |�(b)|
ways as a union of translates of �(b) plus kn points where kn/|�(an)| → 0
when n →∞.] From (3.34) we obtain

s(ρ)+ ρ(A�) � lim
n→∞ |�(an)|−1

∑
ξ∈	�(an )

μ(�(an )){ξ} log
exp

[−U�
�(an )(ξ )

]
μ(�(an )){ξ}

= lim
n→∞ |�(an)|−1 log Z�

�(an ) = P(A�). (3.35)

Equations (3.31) and (3.35) prove (3.30) when A = A�, � ∈ A0. But since
both sides of (3.30) are continuous in A, this relation holds, by density, for all
A ∈ C . Furthermore, since σ is upper semicontinuous, the sup is reached and
(3.28) holds.

We want now to prove (3.29). We already know by (3.28) that

s(σ ) � P(A)− σ (A),

and it remains to show that by proper choice of A the right-hand side becomes
as close as desired to s(σ ). Let

C = {(σ, t) ∈ C
∗ × R : σ ∈ I and 0 � t � s(σ )}.

Since s is affine upper semi-continuous, C is convex and compact. Given ρ ∈ I
and u > s(ρ), there exist (see Appendix A.3.3) A ∈ C and c ∈ R such that

−ρ(A)+ c = u

and

−σ (A)+ c > s(σ ) for all σ ∈ I ;
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hence

−σ (A)+ u + ρ(A) > s(σ ).

If σ is chosen such that P(A) = s(σ )+ σ (A), we obtain

0 � P(A)− s(ρ)− ρ(A)

= s(σ )+ σ (A)− s(ρ)− ρ(A)

< u − s(ρ).

The right-hand side is arbitrarily small, and (3.29) follows.
The condition ρ ∈ IA, i.e.

P(A + B) � P(A)+ ρ(B) for all B ∈ C

is equivalent to

P(A + B)− ρ(A + B) � P(A)− ρ(A) for all B ∈ C ,

or to

inf
C∈C

[P(C)− ρ(C)] � P(A)− ρ(A),

or by (3.29) to

s(ρ) � P(A)− ρ(A);

hence the max of (3.28) is reached precisely on IA, concluding the proof of the
theorem.

3.13 Corollary

The formulas

P� = lim
�↗∞

|�|−1 log Z�
� = lim

�↗∞
|�|−1 log Z∗�� , (3.36)

P(A) = lim
�↗∞

|�|−1 log Z ∗�(A) (3.37)

hold, generalizing (3.9) and (3.10).

We notice first that, if � ∈ A0, the argument leading to (3.16) yields

lim sup
�↗∞

|�|−1 log Z�
� � P�.

On the other hand Lemma 3.11 shows that, for all σ ∈ I ,

lim inf
�↗∞

|�|−1 log Z�
� � s(σ )+ σ (A�),
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so that

lim
�↗∞

|�|−1 log Z�
� = P�

when � ∈ A0. The general case � ∈ A follows as usual by the density of A0 in
A and equicontinuity. Replacing 	� by 	∗

� we find that

lim
�↗∞

|�|−1 log Z∗��

exists. By Theorem 3.4 this limit is equal to P�. This proves (3.36). The proof
of (3.37) follows that of (3.10) in Theorem 3.4.

3.14 Corollary

For each A ∈ C, IA is a Choquet simplex, and a face of I.

We know that I is a simplex (Proposition 3.6). If ρ ∈ IA, let mρ be the unique
probability measure on I , carried by the extremal points of I , and with resultant
ρ. Writing Â(σ ) = σ (A), we have (see Appendix A.5.1)

mρ(s + Â) = s(ρ)+ ρ(A) = P(A).

Hence the support of mρ is contained in {σ ∈ I : s(σ )+ σ (A) = P(A)} = IA.
This implies that IA is a simplex, and a face of I .

3.15 Physical interpretation

We have indicated in Section 1.1 that an element A of C may be considered as
an observable. If ρ ∈ E , the probability measure μA = Aρ on R is defined by

μA(ϕ) = ρ(ϕ ◦ A) (all continuous ϕ : R �→ R).

μA describes the distribution of values of the observable A in the state ρ. In
general A fluctuates, i.e., the support of μA consists of more than one point.

Consider now the average of A over translations in � defined by

〈A〉� = |�|−1
∑
x∈�

A ◦ τ x .

Let ρ ∈ I . The condition

lim
�↗∞

ρ([〈A〉� − ρ(A)]2) = 0 for all A ∈ C
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holds if and only if ρ is ergodic (see Section 3.6). This condition means that 〈A〉�
fluctuates little for large �: we express this by saying that ρ is a (pure thermody-
namic) phase. A phase is indeed characterized by the fact that “coarse-grained”
quantities (i.e. the averages 〈A〉�) do not fluctuate (in the limit � ↗∞). On
the other hand, for a mixture some coarse-grained quantities fluctuate. Notice
that, on physical grounds, every mixture should have a unique decomposition
into pure phases.

Let now ρ be an equilibrium state for A. Since IA is a simplex, ρ has a unique
decomposition into extremal points of IA. Since IA is a face of I , this decom-
position is the same as the ergodic decomposition of ρ (see Section 3.6). This
decomposition is physically interpreted as the decomposition of an equilibrium
state into pure thermodynamic phases.

The residual set D ⊂ C (or ϕ−1 D ⊂ X, where X, ϕ are as in Theorem 3.7)
may be considered as a “large” set. Therefore “in general” there exists only one
pure thermodynamic phase associated with A ∈ C (or with � ∈ X). This is a
weak form of the Gibbs phase rule.

3.16 Theorem

Given A ∈ C (respectively � ∈ A), σ ∈ I , and ε > 0, there exist A′ ∈ C (respec-
tively �′ ∈ A) and σ ′ ∈ IA′ such that

‖σ ′ − σ‖ � ε

and

‖A′ − A‖ � 1

ε
[P(A)− σ (A)− s(σ )](
respectively ‖�′ −�‖ � 1

ε
[P� − σ (A�)− s(σ )]

)
.

This is precisely the theorem of Bishop and Phelps given in Appendix A.3.6,
with V = C (respectively V = A: in this case notice that the tangent functionals
are given by Theorem 3.7(c), and use (3.4) to get ‖σ ′ − σ‖ � ε).

3.17 Corollary

(a) The union of the IA, for A ∈ C , i.e. the set of all equilibrium states, is dense
in I for the norm topology.

(b) If ρ1, . . . , ρn are ergodic states there is an interaction � ∈ A for which these
are all equilibrium states.
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(a) is clear. In particular, givenρ1, . . . , ρn ergodic there is an equilibrium state
ρ for some interaction � ∈ A such that ‖ρ − (1/n)(ρ1 + . . .+ ρn)‖ < 1/n. Let
mρ give the ergodic decomposition of ρ; then we have∥∥∥∥mρ − 1

n
(δρ1 + · · · + δρn )

∥∥∥∥ <
1

n

(see Appendix A.5.5), and therefore mρ({ρ1}) > 0, . . . , mρ({ρn}) > 0. Thus
ρ1, . . . , ρn are equilibrium states for � by Corollary 3.14.

3.18 Approximation of invariant states by
equilibrium states

We have just seen that every invariant state σ can be approximated in norm by
an equilibrium state σ ′ for some interaction in A. This interesting result should
however be viewed as a pathology from the physical point of view, because
the interactions in A are not all physically acceptable. In fact, to be able to
define Gibbs states we shall in the next chapter introduce a smaller space B of
interactions. It will then be seen (Proposition 4.7(b)) that if �, �′ ∈ B have an
equilibrium state ρ in common, they are in some sense equivalent, and all their
equilibrium states are the same. [This is quite different from the situation of
Corollary 3.17(b).]

Physically meaningful results can be obtained by approximating invariant
states by equilibrium states, using a general theorem on convex functions due
to Israel (see Appendix A.3.6). With this theorem one shows that an interaction
in a certain subspace or cone of A can be found, which has an equilibrium state
satisfying certain inequalities. If these inequalities express that a certain cluster
property does not hold, physical consequences can be derived. Theorem 3.20
below gives an example where it is shown that there are several distinct equi-
librium states for the same interaction. (For another example see Exercise 1 of
Chapter 4.)

3.19 Lemma

Let A1, A2 ∈ C and S ⊂ Zν . We define a convex cone

QS =
{

a1 A1 + a2 A2 + 1

2

∑
x∈Zν

(bx A1 · (A2 ◦ τ x )+ b−x (A1 ◦ τ x ) · A2)

: a1, a2, bx ∈ R, bx � 0, bx = 0 if x /∈ S,
∑
x∈S

bx < +∞
}
.
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We assume that A1, A2 ∈ C� for some finite � ⊂ Zν . Given σ0 ∈ I , B0 ∈ C, and
ε > 0, there exist B ∈ B0 + QS and σ ∈ IB such that

‖B − B0‖ � 1

ε
[P(B0)− σ (B0)− s(σ0)] (3.38)

and

σ (A1 · (A2 ◦ τ x ))− σ (A1)σ (A2)

� σ0(A1 · (A2 ◦ τ x ))− σ0(A1)σ0(A2)− 3ε‖A1‖‖A2‖ (3.39)

for all x ∈ S.

We may assume that 0 is the “middle” element of � in lexicographic order.
Given a1, a2, bx ∈ R such that bx � 0, bx = 0 if x ∈ S, and

∑
bx < +∞, let

� ∈ A be defined by

−�(ξ |�) = a1 A1(ξ )+ a2 A2(ξ )+ b0 A1(ξ ) · A2(ξ ),

−�(ξ |� ∪ (�+ x))

= bx A1(ξ ) · A2(τ xξ )+ b−x A1(τ xξ ) · A2(ξ ) if x = 0,

�(ξ |X ) = 0 if X is not a translated of � or � ∪ (�+ x).

Using the expression (3.2) for the norm, we see that the set of these � is a
closed convex cone R ⊂ A.

Let �0 ∈ A be such that A�0 = B0. We now use Israel’s theorem (Appendix
A.3.6) and the characterization of tangent planes to � → P� given in
Theorem 3.7(c). We find thus � ∈ �0 + R, and σ ∈ IA�

, such that

|� −�0| � 1

ε
[P�0 − σ0(A�0 )− s(σ0)] (3.40)

and, for all � ∈ R,

σ (A�) � σ0(A�)− ε|�|. (3.41)

From (3.41) one gets in particular

σ (A1)− σ0(A1)| � ε‖A1‖, |σ (A2)− σ0(A2)| � ε‖A2‖, (3.42)

and (for all x ∈ S)

σ (A1 · (A2 ◦ τ x )) � σ0(A1 · (A2 ◦ τ x ))− ε‖A1‖ · ‖A2‖. (3.43)

(3.42) implies

|σ (A1)σ (A2)− σ0(A1)σ0(A2)| � 2ε‖A1‖ · ‖A2‖
which, together with (3.43), proves (3.39).
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Let C be the element of QS formed with the same a1, a2, bx which define
� −�0 in R. If we let B = B0 + C , we have B ∈ B0 + QS and, using (3.40),

‖B − B0‖ = ‖C‖ � |� −�0| � 1

ε
[P(B0)− σ0(B0)− s(σ0)] ,

which proves (3.38). Furthermore ρ(C) = ρ(A�−�0 ) for all ρ ∈ I , so that IB =
IA�

� σ , which concludes the proof.

3.20 Theorem

Let A ∈ C� for some finite � ⊂ Zν , and define a convex cone

Q =
{

a A +
∑
x∈Zν

bx A · (A ◦ τ x ) : a, bx ∈ R, bx � 0,
∑

bx < +∞
}

.

(a) Let σ ′0, σ
′′
0 ∈ I be such that σ ′0(A) = σ ′′0 (A). Given C ∈ C, there exist B ∈

C + Q and two equilibrium states σ ′, σ ′′ ∈ IB such that σ ′(A) = σ ′′(A).
(b) Let σ ′0, σ

′′
0 be equilibrium states for C ∈ C , such that σ ′0(A) = σ ′′0 (A). Given

ε > 0, one can choose δ > 0 such that, if C ′ ∈ C and ‖C ′ − C‖ < δ, there
exist B ∈ C ′ + Q with ‖B − C ′‖ < ε, and two equilibrium states σ ′, σ ′′ ∈
IB with σ ′(A) = σ ′′(A).

Write σ0 = 1
2 (σ ′0 + σ ′′0 ). The assumption σ ′0(A) = σ ′′0 (A) implies that

mσ0 ( Â
2
) = lim

�↗∞
σ0

⎡
⎣(|�|−1

∑
x∈�

A ◦ τ x

)2
⎤
⎦ > σ0(A)2

(see Section 3.6). Choose ε > 0 such that

lim
�↗∞

σ0

⎡
⎣(|�|−1

∑
x∈�

A ◦ τ x

)2
⎤
⎦ � σ0(A)2 + 4ε‖A‖2.

We apply Lemma 3.19 with A1 = A2 = A and S = Zν (we shall choose B0

later), obtaining B ∈ B0 + Q and σ ∈ IB such that

‖B − B0‖ � 1

ε
[P(B0)− σ0(B0)− s(σ0)]

and

σ

⎡
⎣(|�|−1

∑
x∈�

A ◦ τ x

)2
⎤
⎦− σ (A)2 � σ0

×
⎡
⎣(|�|−1

∑
x∈�

A ◦ τ x

)2
⎤
⎦− σ0(A)2 − 3ε‖A‖2.
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Therefore

mσ ( Â
2
) = lim

�↗∞
σ

⎡
⎣
(
|�|−1

∑
x∈�

A ◦ τ x

)2
⎤
⎦ � σ (A)2 + ε‖A‖2.

From this it follows that there exist σ ′, σ ′′ in the support of mσ with σ ′(A) =
σ ′′(A). Taking B0 = C we obtain (a).

Suppose now that σ ′0, σ
′′
0 ∈ IC . Choose δ > 0 such that if C ′ ∈ C and ‖C ′ −

C‖ < δ, we have

P(C ′)− σ0(C ′)− s(σ0) < ε2.

Taking B0 = C ′, we have B ∈ C ′ + Q, and (3.38) gives ‖B − C ′‖ < ε,
proving (b).

3.21 Coexistence of phases

In the above lemma and theorem we could restrict our attention to interactions �

such that �(ξ |X ) = 0 when |X | > 2|�|. Such interactions belong to the space
B to be introduced in Chapter 4, and are “physically acceptable.” Theorem 3.20
deals with the situation where there are at least two different equilibrium states.
This corresponds physically to the coexistence of at least two phases. Part (b)
of Theorem 3.20 shows that an interaction �0 (or a function C) for which
several phases coexist cannot be isolated: it lies in an “infinite-dimensional
manifold” of such interactions. One should check that these interactions are not
all “physically equivalent” (see Section 4.7). For this see Exercise 2.

The coexistence of at least n + 1 phases can be treated in a similar manner.
Let A1, . . . , An ∈ C�, and let

A =
∑

ai Ai , with
∑

a2
i = 1.

We assume that σ
(0)
0 , σ

(1)
0 , . . . , σ

(n)
0 ∈ I are such that

σ
(0)
0 (A) = σ

(1)
0 (A) = · · · = σ

(n)
0 (A)

does not hold for any choice of a1, . . . , an . Defining

σ0 = 1

n + 1

n∑
i=0

σ
(i)
0 ,

we have

mσ0 ( Â
2
)− σ0(A)2 � 4ε‖A‖2

with some ε > 0 independent of a1, . . . , an . Let Q be the linear space generated
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by the Ai and Ai · (A j ◦ τ x ), and let B0 ∈ C . There exists B ∈ B0 + Q such that

‖B − B0‖ � 1

ε
[P(B0)− σ0(B0)− s(σ0)],

and σ ∈ IB such that

|σ (A · (A ◦ τ x ))− σ (A)2 − [σ0(A · (A ◦ τ x ))− σ0(A)2]| � 3ε‖A‖2

for all a1, . . . , an and all x ∈ Zν . Therefore

mσ ( Â
2
)− σ (A)2 � ε‖A‖2,

proving that the dimension of IB is at least n: at least n + 1 phases coexist.
Again an interaction for which at least n + 1 phases coexist cannot be isolated.

Notes

The statistical mechanics with translation invariance described in this chapter
has been developed by physicists, mostly earlier than the theory of Gibbs states
in Chapters 1 and 2. The thermodynamic limit for the pressure has been proved in
various forms by various people, and the notion of equilibrium state has emerged
progressively. Gallavotti and Miracle [1] noted the important fact (Theorem
3.7(b)) that for a residual set of interactions there is only one equilibrium state.
For the discussion of the entropy (Sections 3.8 to 3.10) see Robinson and Ruelle
[1]; for the variational principle (Theorem 3.12) see Ruelle [1]).* Sections 3.16
to 3.21 are based on the work of Israel [1], which has recently shed some light
on the general nature of phase transitions.

Exercises

1. We write |x | = maxi |xi | when x ∈ Zν . Let 0 < λ < 1. If ξ, η ∈ 	, define

d(ξ, η) = λk where k = inf{|x | : ξx = ηx }.

(a) Check that d is a metric compatible with the topology of 	.
(b) Let 0 < α < 1. A function A : 	 �→ R such that |A(ξ )− A(η)| �

cd(ξ, η)α for some c � 0 is said to be Hölder continuous of exponent α.

* In general, see Ruelle [3] for further details and references.
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Such functions form a Banach space C
α(	) with the norm

‖A‖α = max

(
max

ξ
|A(ξ )|, sup

ξ =η

|A(ξ )− A(η)|
d(ξ, η)α

)
.

Write diamX = max{|y − x | : x,y ∈ X}, and let θ = λα/2. Show that if
A ∈ C

α(	), then A = A�, with

sup
X

θ−diamX sup
ξ∈	

|�(ξ |X )| < +∞.

[For (b), let �n = {x ∈ Zν : |x | � n} and write A =∑∞
n=0 An , where

An ∈ C�n
and ‖An‖ � ‖A‖α(λn)α . Proceed then as in Section 3.2.]

2. We consider a system (“lattice gas”) with 	0 = {0, 1} and 	 = {0, 1}Zν

. We
define A ∈ C{0} by A(ξ ) = ξ0 (A takes therefore the values 0 and 1). We shall
use “pair” interactions �, such that �(ξ |X ) = 0 if |X | > 2 and

�(ξ |{0}) = −μA(ξ ),

�(ξ |{0, x}) = ϕ(x)A(ξ )A(τ xξ ) for x = 0.

Here μ ∈ R, and ϕ(x) = ϕ(−x) ∈ R is defined for x = 0. Notice that

|�| = |μ| + 1

2

∑
x =0

|ϕ(x)|.

(a) Let 0 ∈ M ⊂ Zν, M finite, M = −M . Suppose that a function ϕ̃ : M \
{0} �→ R is given such that ϕ̃(x) = ϕ̃(−x). One can then extend ϕ̃ to
ϕ : Zν \ {0} → R such that∑

x =0

|ϕ(x)| < +∞

and find μ such that there are two equilibrium states σ ′, σ ′′ for � satis-
fying σ ′(A) = σ ′′(A).

(b) Let μ0, ϕ0 correspond to a pair interaction �0. We assume that σ ′0, σ
′′
0 are

equilibrium states for �0, and that σ ′0(A) = σ ′′0 (A). Given ε > 0, there
exists δ such that the following holds.

Let 0 ∈ M ⊂ Zν , M finite, M = −M . Suppose that ϕ̃ : M\{0} �→ R
satisfies ϕ̃(x) = ϕ̃(−x) and

1

2

∑
x∈M\{0}

|ϕ̃(x)− ϕ0(x)| < δ.

One can then extend ϕ̃ to ϕ : Zν \ {0} �→ R and find μ such that
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ϕ(x) = ϕ(−x), ϕ(x) � ϕ0(x) if x /∈ M ,

|μ− μ0| + 1

2

∑
x /∈M

|ϕ(x)− ϕ0(x)| < ε,

and there are two equilibrium states σ ′, σ ′′ for the interaction � corre-
sponding to μ, ϕ, satisfying σ ′(A) = σ ′′(A). [Imitate the proof of The-
orem 3.20, using Lemma 3.19 with S = Zν \ M . Notice that

mρ( Â
2
) = lim

�↗∞
ρ

[
|�|−2

∑
x,y∈�

x−y /∈M

(A ◦ τ x ) · (A ◦ τ y)

]
.

Remark: It will be seen (Exercise 2 of Chapter 4) that � and �0 are physically
equivalent only if μ = μ0 and ϕ = ϕ0.]



4

Connection between Gibbs states
and Equilibrium states

This chapter establishes the connection between the Gibbs states and the equi-
librium states introduced earlier.

4.1 Generalities

In the present chapter we use the general assumptions of both Chapter 1 and
Chapter 3. Thus a family (	̄�)�∈F is given, it is translation invariant, and if
S ⊂ Zν we write

	S =
{

ξ ∈
∏
x∈S

	x : (∀� ∈ F : � ⊂ S) ξ |� ∈ 	̄�

}
.

We introduce also the Banach space B of translation invariant interactions
with the norm

� �→ ‖�‖ =
∑
X�0

sup
ξ∈	X

|�(ξ )| < +∞;

clearly A0 ⊂ B ⊂ A. If we define ϕ : B �→ C by ϕ� = A�,ϕB is dense in C and
ϕ is continuous:

‖�‖ � |�| � ‖A�‖.
Therefore Theorem 3.7(c) and (d) apply with X = B.

If � ∈ B, then the set K� of Gibbs states for � and the set Iϕ� of equilibrium
states for � are defined. We shall see that Iϕ� ⊂ K� ∩ I . The reverse inclu-
sion Iϕ� ⊃ K� ∩ I is not generally true, but holds if 	 satisfies the following
condition.

(D) There exist sequences (�n), (Mn) with �n ↗∞, �n ⊂ Mn, |�n|/|Mn| →
1, and for each ξ, η ∈ 	 and n there exists ζn ∈ 	 such that

ζn|�n = ξ |�n, ζn|(Zν \ Mn) = η|(Zν \ Mn).

57
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Notice that this condition is stronger than (D∗) of Remark 1.14. (D) and (D∗)
reduce to “mixing” when ν = 1 (see Chapter 5).

4.2 Theorem

If � ∈ B, then IA�
⊂ K� ∩ I . If furthermore 	 satisfies the above condition

(D), then IA�
= K� ∩ I , i.e., an invariant state is an equilibrium state if and

only if it is a Gibbs state.

If � ∈ A0, the Gibbs ensemble with boundary μ(�)η depends only on η|(M \
�) for some finite set M = �+� (the set � depends on �, and also on F).
Using the definition (3.33) in the proof of Theorem 3.12, one checks easily
that

ρ�{ξ} =
∑

η∈	M\�

μ(�)η{ξ}ρM\�{η}.

The state ρ� defined by ρ� = α�ρ� is thus a Gibbs state. On the other hand
the proof of Theorem 3.12 shows that ρ� ∈ Iϕ�. We have thus established the
existence of ρ� ∈ Iϕ� ∩ K� when � ∈ A0.

Let now � ∈ ϕ−1 D, � = limn→∞ �n, �n ∈ A0. Any limit of ρ�n when n →
∞ is in Iϕ� = {ρ�} and also in K�, as one sees immediately. Therefore there
exists ρ� ∈ Iϕ� ∩ K� if � ∈ ϕ−1 D.

For an arbitrary � ∈ B we see, applying Theorem 3.7(d), that Iϕ� is in the
closed convex hull of states ρ ∈ K� ∩ I . Therefore Iϕ� ⊂ K� ∩ I .

We assume now that 	 satisfies (D) and have to show that if σ ∈ K� ∩ I ,
then σ ∈ Iϕ�. Somewhat more generally we shall prove that if σ ∈ K�, then

lim inf
n→∞ |Mn|−1

[
S(αMn σ )− (αMn σ )

(
U�

Mn

)]
� P�.

By the definition of a Gibbs state,

(αMn σ ){ξ} =
∫

	zν \Mn

σzν\Mn
(dη)μ(Mn )η{ξ},

and by the concavity of the entropy,

S(αMn σ )− (αMn σ )
(
U�

Mn

)
�
∫

	zν \Mn

σzν\Mn
(dη)

[
S(μ(Mn )η)− μ(Mn )η

(
U�

Mn

)]

=
∫

	zν \Mn

σzν\Mn
(dη)

∑
ξ∈	Mn

μ(Mn )η{ξ}
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×
[

WMn ,zν\Mn
(ξ ∨ η)+ log

∑
ζ∈	Mn

exp[−UMn (ζ )−WMn ,zν\Mn
(ζ ∨ η)]

]
.

Thus

lim inf
n→∞ |Mn|−1

[
S(αMn σ )− (αMn σ )

(
U�

Mn

)]
� lim inf

n→∞ |Mn|−1
∫

	zν \Mn

σzν\Mn
(dη)

× log
∑

ζ∈	Mn

exp[−UMn (ζ )−WMn ,zν\Mn
(ζ ∨ η)].

In view of (D) we have (when η = η∗|(Zν\Mn) for some η∗ ∈ 	)∑
ζ∈	Mn

exp[−UMn (ζ )−WMn ,zν\Mn
(ζ ∨ η)] �

∑
ξ∈	∗

�n

exp[−U�n (ξ )+ Rn],

where limn→∞ |Rn|/|Mn| = 0; hence

lim inf
n→∞ |Mn|−1

[
S(αMn σ )− (αMn σ )

(
U�

Mn

)]
� lim

n→∞ |Mn|−1 log
∑

ξ∈	∗
�n

exp[−U�n (ξ )+ Rn] = P�.

4.3 Physical interpretation

When a pure thermodynamic phase for the interaction � ∈ B has a non-trivial
decomposition into pure Gibbs states, we say that there is symmetry breakdown,
or more precisely that the translation invariance of the theory is broken.

4.4 Proposition

Let condition (D) hold. If σ ∈ K�, � ∈ B, and C ∈ C, then

lim
n→∞

1

|�n| log σ

(
exp

∑
x ∈�n

C ◦ τ x

)
= P(A� + C)− P(A�).

By density and equicontinuity it suffices to consider the case C = A�,

� ∈ A0 . We then have

lim
n→∞

1

|�n| log σ

(
exp

∑
x ∈�n

C ◦ τ x

)
= lim

n→∞
1

|�n| log(α�n σ )
(

exp
(−U�

�n

))
.
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If ξ, η ∈ 	, it follows from (D) that

[(α�n σ ){ξ |�n}] exp U�
�n

(ξ |�n)

[(α�n σ ){η|�n}] exp U�
�n

(η|�n)
� eRn ,

where Rn/|�n| → 0 when n →∞. Therefore

e−Rn μ(�n ){ξ�n } � (α�n σ )(ξ�n ) � eRn μ(�n ){ξ�n };
hence

e−Rn Z�+�
�n

/Z�
�n

� (α�n σ )
(

exp
(−U�

�n

))
� eRn Z�+�

�n
/Z�

�n

and the proposition follows.

4.5 Remark

Let τ be an action of Zν by homeomorphisms of a metrizable compact space
	, σ0 a τ -invariant probability measure, and A a continuous real function on
	. For finite � ⊂ Zν , define

Z∗� = σ0

(
exp

∑
a ∈�

A ◦ τ a

)
.

Sinai [4] has proposed (for ν = 1) to call a Gibbs state any limit as � → Zν of

Z∗−1
�

[
exp

∑
a∈�

A(τ aξ )

]
σ0(dξ ).

A result relevant to this definition is as follows.

Let �,� ∈ B and σ ∈ K�. For finite � ⊂ Zν , and ξ ∈ 	�, define

Z∗� = σ

(
exp

∑
a ∈�

A� ◦ τ a

)
.

Then any limit as � → Zν of

Z∗−1
�

[
exp

∑
a ∈�

A� ◦ τ a

]
σ

belongs to K�+� .

[This can be proved easily by the methods of Chapter 1; see Exercise 4 of
that chapter.]
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4.6 Strict convexity of the pressure

We know by Theorem 3.4 that the function � → P� = P(A�) is convex and
continuous on B. Suppose that the graph of this function contains a straight-line
interval, i.e. there exist �, � ∈ B, � = 0, such that

P�+t� = P� + ct for t ∈ [−1,+1].

By Theorem 3.7, if ρ is an equilibrium state for �, it is also an equilibrium
state for �+ t� when |t | � 1. Therefore ρ is a Gibbs state for �+ t� when
|t | � 1. Since the expression∫

	L\�
ρL\�(dη)μ�+t�

(�)η {ξ�}

is real analytic in t and constant for |t | � 1, it is constant for all real t . Hence
ρ is a Gibbs state for �+ t�, all real t . If condition (D) is satisfied, Theorem
4.2 shows that ρ is also an equilibrium state and thus

max
σ∈I

[s(σ )+ σ (A�)+ tσ (A�)] = s(ρ)+ ρ(A�+t�) = P� + ct

for all t ∈ R. This implies σ (A�) = c for all σ ∈ I , or σ (A� − c) = 0 for all
translation invariant measures σ on 	. Therefore A� − c belongs to the closed
subspace I of C generated by the elements A ◦ τ a − A with A ∈ C, a ∈ Zν .
Summarizing, we have proved the following result.

4.7 Proposition

Let ϕ : B �→ C be defined by ϕ� = A�, and let I be the closed subspace of C
generated by the elements A ◦ τ a − A, with A ∈ C, a ∈ Zν . We denote by [�]
the image of � ∈ B in the quotient ϕB/(ϕB ∩ I).

(a) The function [�] �→ P(A�) is well defined onϕB/(ϕB ∩ I), and if condition
(D) holds, this function is strictly convex on the subset {[�] ∈ ϕB/(ϕB ∩ I) :
σ (A�) = 0}, where σ is some arbitrarily chosen element of I.

(b) If (D) holds and if ρ is an equilibrium state for both �, �′ ∈ B, then A�′ −
A� ∈ I+ R.

Let us say that �, �′ ∈ B are physically equivalent if there are c ∈ R and
B ∈ I such that A�′−� = B + c (or in other notation [�′] = [�]+ c with c ∈
R). Two physically equivalent interactions in B then have the same equilibrium
states. Conversely, if two interactions in B have an equilibrium state in common,
they are physically equivalent. The restriction of P to an equivalence class
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{�′ ∈ B : A�′−� ∈ I+ R} is affine, and the equivalence classes are maximal
affine sets on which P is affine.

4.8 Zν-lattice systems and Zν-morphisms

In Section 2.1 we have introduced objects (L , (	x )x∈L , (	̄�)�∈F) called lattice
systems. In the present chapter we have assumed that L = Zν, 	x = 	0, and
(	̄�)�∈F is invariant under translations of Zν . Such a lattice system with the
added structure provided by the translations will be called a Zν-lattice system,
and will be denoted by

(
Zν, 	0, (	̄�)�∈F

)
. We say that

F :
(
Zν, 	′

0, (	̄′
�′ )�′∈F′

) �→ (
Zν, 	0, (	̄�)�∈F

)
is a Zν-morphism if a family (Fx )x∈zν exists with the properties (M1)–(M4) of
Section 2.1 and furthermore

(M5) Fx−aτ
a = Fx .

In particular, F is a morphism. If it is an isomorphism we say that F is a
Zν-isomorphism.

4.9 Proposition

A map F : 	′ �→ 	 is a Zν-morphism if and only if it has the following prop-
erties:

(a) F is continuous;
(b) F is equivariant, i.e. τ a F = Fτ a;
(c) F restricted to

∑′
ξ ′ = {η′ ∈ 	′ : limx→∞d ′(τ xη′, τ xξ ′) = 0} is a bijection

to
∑

Fξ ′ = {η ∈ 	 : limx→∞d(τ xη, τ x Fξ ′) = 0}. [Here d, d ′ are distance
compatible with the topologies of 	, 	′ respectively.]

(M1)–(M5) clearly imply (a)–(c). Suppose now that (a), (b), and (c) hold.
Since F is continuous, there is a finite M ⊂ Zν such that (Fξ ′)0 depends
only on ξ ′|M . Define M ′ = M

⋃∪{M +� : 0 ∈ � ∈ F}. By compactness one
can choose a finite M ′′ ⊃ M ′ such that for all η′ ∈ 	′

M ′′ there exists η∗ ∈ 	′

satisfying

η∗|M ′ = η′|M ′.

Define M(x) = M ′′ + x , and Fx : 	′
M(x) �→ 	x by

Fx (τ−xη′) = (Fη∗)0.
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(M1), (M2), (M4), and (M5) are clearly satisfied. If � ∈ F, � ⊂ X , and ξ ′ ∈
	′
∪{M(x):x∈X}, take x0 ∈ � and let η′ = τ x0ξ ′|M ′′. There exists η∗ ∈ 	′ such that

η∗|M ′ = η′|M ′ = τ x0ξ ′|M ′; therefore, if x ∈ �, we have η∗|M + (x − x0) =
τ x0ξ ′|M + (x − x0) by definition of M ′. Notice that

Fx (ξ ′|M(x)) = Fx (τ−xτ x−x0 (τ x0ξ ′|M ′′ + (x − x0)))

= Fx (τ−xτ x−x0 (η∗|M ′′ + (x − x0)))

= (Fτ x−x0η∗)0 = (Fη∗)x−x0 ,

and therefore (M3) holds.

4.10 Corollary

(a) If F : 	′ �→ 	 is an equivariant homeomorphism, then F is a Zν-
isomorphism.

(b) For each Zν-lattice system (Zν, 	0, (	̄�)�∈F) there is a Zν-isomorphism

F : (Zν, 	′
0, (	̄′

�′ )�′∈F ′ ) �→ (Zν, 	0, (	̄�)�∈F),

where F
′ consists of the two-point sets {x, y} such that x and y are nearest

neighbors, i.e.
∑ν

i=1 |xi − yi | = 1.

The proof of (a) is immediate.
To prove (b) let M(x) = {y ∈ Zν : maxi |xi − yi | � l}, where l � 0 is such

that if x ∈ � ∈ F, then � ⊂ M(x). Let also 	′
x = 	M(x). As announced, we

take

F
′ = {{x, y}:x and y are nearest neighbors}.

If {x, y} ∈ F
′ we let

	̄′{x,y} = {(ξ, η) ∈ 	M(x) ×	M(y) : ξ |M(x) ∩ M(y) = η|M(x) ∩ M(y)}.
The map F : 	′ �→ 	 such that (Fξ ′)x = (ξ ′x )x is an equivariant homeomor-
phism; hence, by (a), it is a Zν-isomorphism.

4.11 Remark

The results of Chapter 2 apply immediately to Zν-morphisms and translation-
ally invariant interactions. In particular if � ∈ B(Zν, 	0, (	̄�)�∈F), and F is
a Zν-morphism, then F∗� ∈ B(Zν, 	′

0, (	̄′
�′ )�′∈F′ ), as follows from the norm

estimate in Section 2.3.
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4.12 Proposition

Let F : (Zν, 	′
0, (	̄′

�′ )�′∈F′ ) �→ (Zν, 	0, (	̄�)�∈F) be a Zν-morphism.

(a) If σ ′ is any τ -invariant state on 	′, then s(σ ′) � s(Fσ ′), and

σ ′(AF∗�) = (Fσ ′)(A�).

(b) If F is a Zν-isomorphism, then P F∗� = P�.

We have S(σ ′∪{M(x):x∈�}) � S((Fσ ′)�); hence s(σ ′) � s(Fσ ′). Furthermore

σ ′(AF∗�) = −
∑
X ′�0

1

|X ′|σ
′((F∗�) ◦ αX ′ )

= −
∑
X ′�0

∑
X :∪{M(x):x∈X}=X ′

1

|X ′|σ
′(� ◦ αX ◦ F)

= −
∑

X :∪{M(x):x∈X}�0

1

| ∪ {M(x) : x ∈ X}| (Fσ ′)(� ◦ αx )

= −
∑
X�0

1

|X | (Fσ ′)(� ◦ αX )

= (Fσ ′)(A�).

This proves (a); (b) follows from (a) and the variational principle for P (Theo-
rem 3.12).

4.13 Restriction of Zν to a subgroup G

Let G be a subgroup of finite index of Zν (hence G is isomorphic to Zν) and let
(Zν, 	′

0, (	̄′
�′ )�′∈F′ ) be a Zν-lattice system. Choose M(0) ⊂ Zν to contain ex-

actly one element of each residue class of Zν mod G, and let M(x) = M(0)+ x
for each x ∈ G. The family (M(x))x∈G is a partition of Zν , and the con-
struction of Example 2.2 yields an isomorphism F : (Zν, 	′

0, (	̄′
�′ )�′∈F′ ) �→

(G, 	′
M(0), (	̄�)�∈F). (Note that this isomorphism is not a Zν-morphism if

G = Zν .) We shall say that the G-lattice system (G, 	′
M(0), (	̄�)�∈F) is ob-

tained from (Zν, 	′
0, (	̄′

�′ )�′∈F′ ) by restriction of Zν to the subgroup G. This
definition is unique only up to G-isomorphism, because of the arbitrariness of
the choice of M(0).
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4.14 Proposition

With the above notation, let �′ ∈ B (Zν, 	′
0, (	̄′

�′ )�′∈F′ ) and �′∗ = (F−1)∗�′

(we define (F−1)x to be the restriction map 	′
M(a) �→ 	′

x when x ∈ M(a)). Then
�′∗ ∈ B(G, 	′

M(0), (	̄�)�∈F).

(a) If σ is any τG-invariant state on 	, then

σ (A�′∗ ◦ F) =
∑

x∈M(0)

τ xσ (A�′ ).

(b) The pressure for the interaction �′∗ and the group G is

P�′∗ = |M(0)|P�′
.

Similarly, if A is real continuous on 	′

P

( ∑
x∈M(0)

A ◦ τ x ◦ F−1

)
= |M(0)|P(A).

That �′∗ ∈ B follows from the norm estimate in Section 2.3 and the fact that
�′∗ is clearly G-invariant.

We have

A�′∗ (Fξ ) = −
∑
x⊂G

∗((F−1)∗�′)(Fξ |X )

= −
∑
x⊂G

∗ ∑
X ′:{a∈G:X ′∩M(a)=Ø}=X

�′(ξ |X ′).

For each finite Y ′ ⊂ Zν and x ∈ M(0), exactly one translate X ′ of Y ′ + x by an
element of G occurs in the sum on the right-hand side. This proves (a).

To prove (b) we apply the variational principle for P (Theorem 3.12), making
use of (a) and of the following easily verified facts:

(i) the entropy of σ with respect to G is equal to the entropy of τ xσ , and
therefore to the entropy of σ ′ = |M(0)|−1�x∈M(0)τ

xσ with respect to G,
(ii) the entropy of σ ′ with respect to G is |M(0)| times its entropy with respect

to Zν .

4.15 Undecidability and non-periodicity

The following curious facts are known about Z2-lattice systems (for a readable
account of (a)–(c), see Robinson [1]).

(a) Let F
′ denote the set of nearest-neighbor two-point subsets of Z2 (see Corol-

lary 4.10(b)). Consider the following data: a finite set 	0, and a translation



66 Connection between Gibbs states and Equilibrium states

invariant family (	̄�)�∈F ′ such that 	̄� ⊂ (	0)�. The problem of finding
when these data determine a non-empty configuration space

	 = {ξ ∈ (	0)Z2

: (∀� ∈ F
′) ξ |� ∈ 	̄�}

is undecidable (Berger [1]).
(b) There is a Z2-lattice system as in (a) with no periodic configuration, i.e., if

ξ ∈ 	 and τ aξ = ξ , then a = 0. An example with |	0| = 56 and zero topo-
logical entropy (see Section 6.20) has been constructed by Robinson [1].
The existence of a Z2-lattice system with no periodic configuration is an
ingredient in the proof of the undecidability property of (a), and is in turn
implied by this property.

(c) Robinson [1] has constructed a system as in (a), with |	0| = 36, for which
the following completion problem is undecidable: for an arbitrary finite
� ⊂ Z2 and ξ ∈ 	�, find if there exists ξ ∗ ∈ 	 with ξ ∗|� = ξ .

(d) Let K (l) = {x ∈ Z2 : |x1| � l, |x2| � l}. Using the Z2-lattice system of
(c), we define F to be the smallest function from the positive integers to
the positive integers with the following property. An element ξ ∈ 	k(l)

can be extended to some ξ ∗ ∈ 	 if and only if it can be extended to some
ξ ∗∗ ∈ 	K (F(l)). Since the completion problem in (c) is undecidable, F is not
a computable function. In particular it grows extremely fast. This shows
that, while the conditions ξ |� ∈ 	̄� extend only over nearest-neighbor
pairs � ∈ F

′, the effect of these conditions propagates over extremely large
distances.

Notes

Dobrushin [2] showed that translation invariant Gibbs states are equilibrium
states. The converse is due to Lanford and Ruelle [1]. The equivalence of the
two notions is the main result of this chapter, and is of central importance in
statistical mechanics. As an application, a theorem of “strict convexity of the
pressure” is proved, following Griffiths and Ruelle [1]. The rest of the chapter
is devoted to general results on morphisms compatible with the action of Zν .

Exercises

1. Let A1, A2 ∈ C�, � finite, and suppose that, for some σ0 ∈ I, σ0[A1 ·
(A2 ◦ τ x )] does not have a limit when x →∞. There is then an ergodic
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equilibrium state σ for some interaction � ∈ B, such that σ [A1 · (A2 ◦ τ x )]
does not have a limit when x →∞. In particular σ is not a pure Gibbs state
for �. [See Israel [1], Theorem 5. Define

Q =
{

1

2

∑
x∈zν

(bx A1 · (A2 ◦ τ x )+ b−x (A1 ◦ τ x ) · A2)

: bx ∈ R,
∑
x∈S

|bx | < +∞
}

and proceed as in the proof of Lemma 3.19. This gives σ ′ (not necessarily
ergodic) with the desired property. There is also a state σ in the ergodic
decomposition of σ ′ with the property, and Theorem 1.11 implies that σ is
not a pure Gibbs state.]

2. We assume that F = Ø, i.e. 	 = (	0)z
ν

. Let S0 ⊂ B be the subspace of
interactions � such that ∑

ξ∈	�

�(ξ ∨ η) = 0

for all pairs of disjoint finite sets �, M , and all η ∈ 	M . If 	0 = {0, 1},
let S1 ⊂ B be the subspace of interactions � such that �(ξ |X ) = 0 unless
ξx = 1 for all x ∈ �. Prove the following statements for S = S0 and for
S = S1.
(a) If σ is a Gibbs state for both � and �′, where, �′, � ∈ S, then � = �′.
(b) If � and �′ are physically equivalent, and �, �′ ∈ S, then � = �′.
(c) The restriction of P to S is strictly convex.
[See Griffiths and Ruelle [1]. To prove (a) observe that, by Remark 1.14,
supp σ = 	. Since σ is a Gibbs state, the ratios

exp[−U�(ξ�)−W�,zν\�(ξ� ∨ η)]

exp[−U�(ξ ′�)−W�,zν\�(ξ ′� ∨ η)]

(with ξ, ξ ′ ∈ 	�, η ∈ 	zν\�) are the same for � and �′. In the case of S0,
define “partial traces” Tx : C → Cx for X finite by

(Tx A)(ξ ) = lim
M→zν

|	M\X |−1
∑

η∈	M\X

A((ξ |X ) ∨ η).

Using T�, one see that U�(ξ�)−U�(ξ ′�) is the same for �, �′. One obtains
�|	X = �′|	X by induction on |X |. In the case of S1, take η such that
ηx = 0 for all x ∈ Zν\�. This gives that U�(ξ�)−U�(ξ ′�) is the same for
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�, �′, and one obtains again �|	X = �′|	X by induction on |X |. For (b)
and (c), see Section 4.7.]

3. Let 	0 = {0, 1} and assume that if, for some finite � ⊂ Zν, ξ ∈ (	0)Zν

satisfies ξ |� ∈ 	� and ξx = 0 for x ∈ �, then ξ ∈ 	. Show that the re-
sults of Exercise 2, with S = S1, extend to such a Zν-lattice system (called
“lattice gas with hard cores”).
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One-dimensional systems

The theory of Gibbs states on a “lattice” Zν is best understood in the one-
dimensional case, ν = 1, which we shall now study. A Z-lattice system
(Z, 	0, (	̄�)�∈F) is also called a subshift of finite type. Notice that here τ a

may be interpreted as the ath power of the “shift” τ = τ 1.
Going over to a Z-isomorphic system (see Corollary 4.10(b)), we may

assume that F consists of the two-point sets {x, x + 1}. Let t be the square matrix
indexed by 	0 ×	0, with elements

ti j =
{

1 if (i, j) ∈ 	̄{x,x+1},
0 if (i, j) /∈ 	̄{x,x+1}.

Then ξ ∈ (	0)Z is an element of 	 if and only if

tξx ,ξx+1 = 1 for all x ∈ Z.

In what follows it will be convenient to use the notation (	0, t) for this Z-lattice
system. We shall also assume, as we may, that for each i ∈ 	0 there exists
ξ ∈ 	 such that ξ0 = i .

We say that a Z-lattice system is transitive if the action of τ on 	 is topo-
logically + transitive∗ – i.e., given two non-empty open sets U, V ⊂ 	, and
N � 0, there exists n > N such that U ∩ τ n V = Ø. For (	0, t) to be transitive
it is necessary and sufficient that, for all i, j ∈ 	0, one can choose an integer
a > 0 such that (ta)i j > 0.

We say that a Z-lattice system is mixing if the action of τ on 	 is topologically
mixing† – i.e., given two non-empty open sets U, V ⊂ 	 there exists N � 0
such that U ∩ τ n V = Ø for all n > N . For (	0, t) to be mixing it is necessary

∗ See Appendix A.2.
† See Appendix A.2.

69



70 One-dimensional systems

and sufficient that one can choose an integer a > 0 such that (ta)i j > 0 for all
i, j ∈ 	0.

Let B1 = B1(Z, 	0, (	̄�)�∈F) be the Banach space of translation invariant
interactions with the norm

‖�‖1 = |�| + |�|1, (5.1)

where

|�|1 =
∑
X�0

diamX

|X | sup
ξ∈	X

|�(ξ )| < +∞ (5.2)

and diam {x1, . . . , xl} = xl − x1 if x1 < · · · < xl . Notice that B1 ⊂ B and
‖ ‖1 � ‖ ‖ (see also Remark 5.17 below).

Let R ⊂ {x ∈ Z : x < a}, S ⊂ {x ∈ Z : x � a}. If � ∈ B1,WRS is well de-
fined even for infinite R, S, and we have

|WR,S(ξ )| �
∑

X :X ∩ R =Ø,

X ∩ S =Ø

|�(ξ |X )| � |�|1. (5.3)

5.1 Lemma

If F : (Z, 	′
0, (	̄′

�′ )�′∈F′ )| → (Z, 	0, (	̄�)�∈F) is a Z-morphism, and � ∈
B1(Z, 	0, (	̄�)�∈F), then F∗� ∈ B1(Z, 	′

0, (	̄′
�′ )�′∈F′ ) and the map F∗ is con-

tinuous.

From section 2.3 we find indeed

|F∗�| � |M (0)| · |�|,
and similarly

|F∗�|1 � |M(0)| · [(diam M(0)) · |�| + |�|1].

Theorems 5.2 and 5.3 below show that the study of Gibbs states on a Z-
lattice system, with an interaction � ∈ B1, reduces to the study of Gibbs states
on mixing Z-lattice systems.

5.2 Theorem

Given a Z-lattice system (Z, 	0, (	̄�)�∈F), there exist finitely many transitive
(	(α)

0 , t (α)), and injective Z-morphisms

F (α) : (	(α)
0 , t (α)) �→ (Z, 	0, (	̄�)�∈F),
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such that

(a) the images F (α)	(α) are disjoint;
(b) every Gibbs state for an interaction � ∈ B1 is a convex combination of

Gibbs states F (α)σ (α) where σ (α) is a Gibbs state for F (α)∗� on (	(α)
0 , t (α)).

(c) If ξ ∈ 	 is periodic (i.e., τ pξ = ξ with p > 0), then ξ is in one of the
F (α)	(α).

5.3 Theorem

Given a transitive Z-lattice system (Z, 	0, (	̄�)�∈F), there exists an integer

N > 0, N mixing NZ-lattice systems∗ (	(β)
0 , t (β)), and injective NZ morphisms

F (β) :
(
	

(β)
0 , t (β)

)→ (
NZ, 	M(0), (	̄′

�′ )�′∈F′
)
,

where (NZ, 	M(0), (	̄′
�′ )�′∈F′ ) is obtained from (Z, 	0, (	̄�)�∈F) by restriction

of Z to the subgroup NZ, with the following properties.

(a) The images F (β)	(β) form a partition of 	 and are cyclically permuted by τ .
(b) Let � ∈ B1(Z, 	0, (	̄�)�∈F) and �∗ be the corresponding interaction for

(NZ, 	M(0), (	̄′
�′ )�′∈F′ ) defined in Proposition 4.14. Then every Gibbs state

for � is a convex combination of Gibbs states F (β)σ (β) where σ (β) is the
unique Gibbs state for F (β)∗�∗ on (	(β)

0 , t (β)).
(c) If ξ ∈ 	 is periodic and τ pξ = ξ , then p is a multiple of N.

To prove the above theorems we shall assume, as we may, that
(Z, 	0, (	̄�)�∈F) = (	0, t). There exists an integer J > 0 such that (t2J )i j > 0
if and only if (t J )i j > 0. [Clearly one can find integers k, l > 0 such that
l � 2k and (t k)i j > 0 if and only if (t l)i j > 0. Take J = l2 − kl and notice
that J = lk + (l − 2k)l, 2J = ll + (l − 2k)l.]

Define

(i ≺ j) ⇔ (t J )i j > 0.

The relation ≺ is independent of the choice of J [because i ≺ j is equivalent
to (t JJ′ )i j > 0 for every integer J ′ > 0]. Furthermore i ≺ j and j ≺ k imply
i ≺ k. On the set {i ∈ 	0 : i ≺ i} we define the equivalence relation ∼ by

(i ∼ j) ⇔ (i ≺ j and j ≺ i).

∗ Using the isomorphism Z �→ NZ, we consider the Z-lattice system (	(β)
0 , t (β)) as a NZ-lattice

system.
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Let [i] be the equivalence class of i for this relation. An order ≺ among equiv-
alence classes is defined by∗

([i] ≺ [ j]) ⇔ (i ≺ j).

5.4 Lemma

Let a, b ∈ Z, a < b, and

� = {x ∈ Z : a J < x < bJ }, M = {x ∈ Z : (a − 1)J < x < (b + 1)J }.
There exists K > 0, independent of a, b, such that if η, η′ ∈ 	Z \M and

[η(a−1)J ] = [η′(a−1)J ] ≺ [η(b+1)J ] = [η′(b+1)J ],

then

(α�Mμ(M)η){ξ} � K (α�Mμ(M)η′ ){ξ}. (5.4)

First we notice that if ζ, ζ ′ ∈ 	 and ζ |� = ζ ′|�, then

exp[−U (ζ |M)−WM,Z\M (ζ )] � K1 exp[−U (ζ ′|M)−WM,Z\M (ζ ′)],

where K1 = exp[2× 2× (2|�|1 + J |�|)]. Therefore∑
ζ ∗:ζ ∗|�=ζ,

ζ ∗|(Z\M)=η

exp[−U (ζ ∗|M)−WM,Z\M (ζ ∗)]

� K2

∑
ζ ∗:ζ ∗|�=ζ,

ζ ∗|(Z\M)=η′

exp[−U (ζ ∗|M)−WM,Z\M (ζ ∗)], (5.5)

where K2 = |	0|2J K1. Summing over ζ and interchanging η, η′ yields∑
ζ ∗:ζ ∗|(Z\M)=η

exp[−U (ζ ∗|M)−WM,Z\M (ζ ∗)]

� (K2)−1
∑

ζ ∗:ζ ∗|(Z\M)=η′
exp[−U (ζ ∗|M)−WM,Z\M (ζ ∗)]. (5.6)

Dividing (5.5) by (5.6) yields (5.4) with K = (K2)2.

∗ The definition of equivalence classes and order in this context is standard in the theory of
Markov chains. See for instance Chung [1], I, Section 3.
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5.5 Proof of theorems 5.2 and 5.3

Given classes [i], [ j], define a function C on 	 by

C(ξ ) =
{

1 if lim
n→−∞[ξn J ] = [i] and lim

n→+∞[ξn J ] = [ j],

0 otherwise.

For any probability measure σ on 	, C belongs to the algebra at infinity (see
Section 1.10), and therefore if σ is a pure (= extremal) Gibbs state, C is almost
everywhere 0 or 1. Therefore, given a pure Gibbs state σ for an interaction
� ∈ B, there are (uniquely defined) classes [i], [ j] such that

lim
n→−∞[ξn J ] = [i], lim

n→+∞[ξn J ] = [ j]

σ -almost everywhere.
Suppose first that [i] = [ j]. Given ε > 0, there exists N such that

σ ({ξ : [ξn J ] = [i] for n � −N and [ξn J ] = [ j] for n � N }) > 1− ε.

Since σ is a Gibbs state, we can estimate the probability p− that [ξ−N J ] = [i]
in terms of μ(M)η{ξ}, where M is a large interval centered at –NJ and

[ηn J ] =
{

[i] for n < 0,

[ j] for n > 0.

Similarly for the probability p+ that [ξn J ] = [i]. By translation invariance of
� and Lemma 5.4 we have

p− � K p+.

This is incompatible with p− > 1− ε, p+ < ε if ε has been chosen sufficiently
small. Therefore we cannot have [i] = [ j].

Suppose now that [i] = [ j]. We show that there is only one pure Gibbs state
in this situation. Let �, M be as in Lemma 5.4, and [ηn J ] = [η′n J ] = [i] for all
n. Fixing η′, we define

μ̃(�)η{ξ} = (α�Mμ(M)η){ξ} − 1

K
(α�Mμ(M)η′ ){ξ} � 0.

Then

‖μ̃(�)η‖ =
∑
ξ∈	�

μ̃(�)η{ξ} = 1− K−1.

If σ, σ ′ are two Gibbs states, we have

α�(σ − σ ′){ξ} =
∫

[σZ\M (dη)− σ ′Z\M (dη)]μ̃(�)η{ξ};



74 One-dimensional systems

hence

‖σ − σ ′‖ = lim
−a,b→∞

‖α�(σ − σ ′)‖ � ‖σ − σ ′‖(1− K−1),

so that ‖σ − σ ′‖ = 0.
We have thus shown that for each pure Gibbs state σ on (	0, t) there is a

different class [i] such that σ is carried by

	[i] = {ξ ∈ 	 : [ξn J ] = [i] for all n ∈ Z}.
Let ξ, ξ ′ ∈ 	[i] and 0 < a < J ; then (ta)iξa > 0 and (t J−a)ξ ′a i ′ > 0 for some

i, i ′ ∈ [i]. Since (t J )i,i ′ > 0, we have (t2J )ξ ′aξa > 0; hence ξ ′a ≺ ξa . Therefore
ξa and ξ ′a are in the same class [ j]. This shows that τ a	[i] ⊂ 	[ j]. Therefore
similarly τ J−a	[ j] ⊂ 	[i], so that τ a	[i] = 	[ j].

Let α be the set of classes [ j] such that 	[ j] = τ a	[i] for some a ∈ Z
(or equivalently 0 � a < J ). If [ j], [k] ∈ α and [ j] ≺ [k], we show that
[ j] = [k]. We have τ a	[k] = 	[ j] for some a, 0 � a < J ; hence (ta)k j > 0 for
some j ∈ [ j], k ∈ [k]. On the other hand [ j] ≺ [k] means (t J ) jk > 0; there-
fore (t (l+1)a+l J )k j > 0 for all integers l � 0. Taking l + 1 = J gives k ≺ j , so
that [ j] = [k]. We have thus proved that distinct classes [ j], [k] ∈ α are not
comparable.

Let 	
(α)
0 ⊂ 	0 be the union of the classes [ j] ∈ α, let t (α) be the restriction

of t to 	
(α)
0 ×	

(α)
0 , and let

	(α) =
{
ξ ∈ (	(α)

0

)Z
: t (α)

ξx ξx+1
= 1 for all x ∈ Z

}
.

We define F (α) : 	(α) �→ 	 to be the inclusion map. If ξ ∈ F (α)	(α), let
limn→−∞[ξn J ] = [ j] and limn→+∞[ξn J ] = [k]. Then [ j] ≺ [k]; hence [ j] = [k]
and ξ ∈ 	[ j]. Therefore

F (α)	(α) =
⋃

[ j]∈α

	[ j]. (5.7)

We can now prove Theorem 5.2. First it is clear that for all j, k ∈ 	
(α)
0 there

is a > 0 such that (ta) jk > 0, and therefore (	(α)
0 , t (α)) is transitive. It is easy to

see that F (α) is a Z-morphism; the main point is to check that if ξ ∈ 	(α) then∑
F (α)ξ ⊂ F (α)	(α). Since we may (by (5.7)) suppose F (α)ξ ∈ 	[ j], we have

indeed
∑

F (α)ξ ⊂ 	[i] ⊂ F (α)	(α). The distinct sets α of classes [i] which can
be defined are disjoint, proving part (a) of Theorem 5.2. Remember now that
every pure Gibbs state of � ∈ B1 on 	 has its support in one of the 	[i] and
therefore in one of the F (α)	(α). Such a state, restricted to 	(α), is then also a
Gibbs state for the restriction of � to ∪ {	(α)

X : X finite}, i.e. for F (α)∗�. This
proves (b). The proof of (c) is immediate.
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To prove Theorem 5.3, we assume that (	0, t) is transitive, i.e., there is only
one α and 	 = 	(α). Let N be the number of distinct classes [ j] in α, then the
	[ j] are cyclically permuted by τ with period N , and (5.7) becomes

	 =
N−1⋃
β=0

τ−β	[i]. (5.8)

The map x �→ N x is an isomorphism of Z on its subgroup NZ. Restriction of Z
to NZ in (	0, t) yields a NZ-lattice system which (in view of the isomorphism
Z �→ NZ) may be considered as a Z-lattice system (	∗

0, t∗). Here we take 	∗
0 =

	[0,N ), and if ξ, ξ ′ ∈ 	∗
0, ξ = (ξ0, ξ1, . . . , ξN−1), ξ ′ = (ξ ′0, ξ

′
1, . . . , ξ

′
N−1), we

write t∗ξξ ′ = tξN−1ξ
′
0
. For β = 0, 1, . . . , N − 1, let 	

(β)
0 = {(ξ0, ξ1, . . . , ξN−1) ∈

	∗
0 : ξβ ∈ [i]}. If ξ, ξ ′ belong to different 	

(β)
0 , then t∗ξξ ′ = 0. We let t (β) be the

restriction of t∗ to 	
(β)
0 ×	

(β)
0 . Define

	(β) =
{
ξ ∈ (	(β)

0

)Z
: t (β)

ξx ξx+1
= 1 for all x ∈ Z

}
,

and F (β) : 	(β) �→ 	 be the inclusion; then

F (β)	(β) = τ−β	[i] = 	[ j]

for some [ j]. Since N is a divisor of J, (	(β)
0 , t (β)) is mixing by definition of

the equivalence classes [ j]. Part (a) of Theorem 5.3 follows then from (5.8). To
prove (b) we notice that if � ∈ B1(	0, t), then the corresponding interaction
�∗ on (	∗, t∗) is in B1(	∗

0, t∗). It suffices then to apply Theorem 5.2(b) and the
fact proved above that the pure Gibbs states are carried by the 	[ j]. The proof
of (c) is immediate.

5.6 Corollaries to theorems 5.2 and 5.3

Let (Z, 	0, (	̄�)�∈F) be a Z-lattice system and � an interaction in B1.

(a) If (Z, 	0, (	̄�)�∈F) is transitive, there is a unique equilibrium state,∗ which
coincides with the unique translation invariant Gibbs state; its support
is 	.

(b) If (Z, 	0, (	̄�)�∈F) is mixing, there is a unique Gibbs state.
(c) In the situation of Theorem 5.2, we have (wi th A ∈ C)

P� = max
α

P F (α)∗�, P(A) = max
α

P(A ◦ F (α)).

∗ One can prove that there is a unique equilibrium state for A under slightly less restrictive
conditions than A = A� with � ∈ B1. See section 7.14.
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(d) In the situation of Theorem 5.3, we have for all β

P� = N−1 P F (β)∗�∗
, P(A) = N−1 P

((
A + A ◦ τ + · · · + A ◦ τ N−1

)
◦ F (β)

)
.

In the transitive case, an invariant Gibbs state is necessarily of the form

1

N

N−1∑
β=0

τ−βσ,

where σ is a Gibbs state with support in 	[i] and therefore unique. By remark
1.14, supp σ = 	[i]. There is thus at most one invariant Gibbs state, and its
support is 	. Since there is at least one equilibrium state, Theorem 4.2 proves
(a); (b) is immediate.

(c) follows from the variational principle for P (Theorem 3.12) and Propo-
sition 4.12(a).

(d) follows from (c) and Proposition 4.14(b).

5.7 Theorem

Let �, �′ ∈ B1 for a transitive Z-lattice system, and let ρ, ρ ′ be the corre-
sponding equilibrium states. Then ρ = ρ ′ if and only if there exist c ∈ R and
C ∈ C such that

A�′ − A� = c + C ◦ τ − C. (5.9)

In this formula c is uniquely determined by �′ −�, and C is determined up to
an additive constant.

If (5.9) holds, then P(A�′ + B) = P(A� + B)+ c for all B ∈ C (Theorem
3.4), and it follows that ρ = ρ ′ (Theorem 3.7).

Conversely, let ρ = ρ ′. By convexity of P, ρ is an equilibrium state for
(1− t)�+ t�′ whenever t ∈ [0, 1]. We are thus in the situation discussed in
Section 4.6: ρ is a Gibbs state for (1− t)�+ t�′ when t ∈ [0, 1] and, by ana-
lytic continuation, for all real t . Since ρ is a translation invariant Gibbs state,
and the Z-lattice system is transitive, Corollary 5.6(a) shows that ρ is an equi-
librium state for (1− t)�+ t�′ (all real t). Let � = �′ −� and c = ρ(A�);
then

max
σ∈I

[s(σ )+ σ (A�)+ tσ (A�)] = s(ρ)+ ρ(A�+t�) = P� + ct

for all t ∈ R. This implies σ (A�) = c for all σ ∈ I , or

A�′ − A� = c + B, (5.10)
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where σ (B) = 0 for all σ ∈ I . In particular, if ξ ∈ 	 has period n,

n−1∑
j=0

B(τ jξ ) = 0. (5.11)

Since the Z-lattice system is transitive, there is η ∈ 	 with dense orbit � =
{τ kη : k ∈ Z}. Define C on � by

C(τ kη) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k−1∑
j=0

B(τ jη) if k � 0,

−
−1∑
j=k

B(τ jη) if k < 0.

Let η′, η′′ ∈ � and η′x = η′′x for |x | � m. If η′ = τ kη, η′′ = τ lη, and k < l, then

C(η′′)− C(η′) =
l−1∑
j=k

B(τ jη)

and ηk+x = ηl+x for |x | � m. If m is large enough, then there exists ξ ∈ 	 such
that τ l−kξ = ξ and ξx = ηx when k − m � x � l + m. Using (5.11),

C(η′′)− C(η′) =
l−1∑
j=k

[B(τ jη)− B(τ jξ )].

If (τ jη)x = (τ jξ )x for |x | � r , we have

|B(τ jη)− B(τ jξ )| = |A�(τ jη)− A�(τ jξ )|
� 2

∑
X �0 : diamX>r

1

|X | sup
ξ∈	X

|�(ξ )|. (5.12)

Therefore

|C(η′′)− C(η′)| � 4
∞∑

r=m

∑
X�0 : diamX>r

1

|X | sup
ξ∈	X

|�(ξ )|

� 4
∑

X�0 : diamX>m

diamX

|X | sup
ξ∈	X

|�(ξ )|.

Since � ∈ B1, this is small when m is large, showing that C extends to a
continuous function on 	. Clearly

C ◦ τ − C = B

and therefore (5.9) follows from (5.10).
It is clear from the construction that c is unique, and C unique up to an

additive constant.



78 One-dimensional systems

5.8 Mixing Z-lattice systems

In view of Theorems 5.2 and 5.3 we shall now concentrate our attention
on mixing Z-lattice systems. Thus let (	0, t) be mixing. We use the nota-
tion Z�, Z�, Z>, Z< for the sets of integers which are respectively � 0, � 0,

> 0, < 0. We define then

	� = {ξ ∈ (	0)Z� : tξx ξx+1 = 1 for all x ∈ Z�},
and similarly for 	�, 	>, 	<. Given an interaction � ∈ B1(	0, t), we
can restrict it to the subsets of Z�, Z�, Z>, Z<, obtaining interactions
��, ��, �>, �<.

5.9 Lemma

(a) There is a unique Gibbs state σ� (respectively σ�, σ>, σ<) on 	� (respec-
tively 	�, 	>, 	<) for the interaction �� (respectively ��, �>, ��).

(b) There is K > 0 such that

σ�(dξ�)× σ>(dξ>) exp[−WZ�,Z>
(ξ� ∨ ξ>)] = Kσ (d(ξ� ∨ ξ>)),

where σ is the unique Gibbs state for � on 	.
(c) Given ε > 0 there exists n(ε) such that if B ∈ C (	� ×	>), ‖B‖ � 1, and

B(ξ�, ξ>) does not depend on ξx for |x | < n(ε), then∣∣∣∣
∫

σ (d(ξ� ∨ ξ<))B(σ�, ξ>)

−
∫ ∫

σ (d(ξ ′� ∨ ξ ′>))σ (d(ξ ′′� ∨ ξ ′′>))B(ξ ′�, ξ ′′>)

∣∣∣∣ < ε.

To establish (a) it suffices to follow the proof (Section 5.5 and Lemma 5.4)
that there is a unique Gibbs state with support in 	[i], replacing Z by Z�
(respectively Z�, Z>, Z<) and [i] by 	0.

The fact that � ∈ B1 ensures that exp[−WZ�,Z>
] is continuous on 	� ×	>.

Using the definition of Gibbs states then yields (b).
Consider the lattice system (L , (	x )x∈L , (	̄�)�∈F) where L = Z = Z� ∪

Z>, 	x = 	0,

F = {{x, x + 1} : x ∈ Z and x = 0},
	̄(x,x+1) = {(ξx , ξx+1) : tξx ξx+1 = 1}.

The configuration space of this lattice system is 	� ×	>. An interaction �∗ is
defined such that �∗(ξ |X ) = �(ξ |X ) if X ⊂ Z� or X ⊂ Z>, and �∗(ξ |X ) = 0
otherwise. Using the definition of Gibbs states and (a), it is clear that there
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is only one Gibbs state for �∗, namely σ� ⊗ σ>. [For a generalization, see
Exercise 4 of Chapter 2.]

We may thus apply Theorem 1.11(C) with

A(ξ�, ξ>) = 2

K ε
exp[−W (ξ� ∨ ξ>)],

where we have written W = WZ�,Z>
. Using (b) we find that if B ∈ C (	� ×

	>), ‖B‖ � 1, and B(ξ ) does not depend on ξx for |x | < n, then∣∣∣∣
∫

σ (d (ξ� ∨ ξ>))B(ξ�, ξ>)

−
∫ ∫

σ�(dξ�)σ>(dξ>)B(ξ�, ξ>)

∣∣∣∣ <
ε

2
(5.13)

for sufficiently large n. Similarly, taking

A(ξ ′�, ξ ′′>) = 2

K 2ε

[∫
σ>(dξ ′>) exp[−W (ξ ′� ∨ ξ ′>)]

]

×
[∫

σ�(dξ ′′�) exp[−W (ξ ′′� ∨ ξ ′′>)]

]
,

we find ∣∣∣∣
∫ ∫

σ�(dξ�)σ>(dξ>)B(ξ�, ξ>)

−
∫ ∫

σ (d (ξ ′� ∨ ξ ′>))σ (d (ξ ′′� ∨ ξ ′′>))B(ξ ′�, ξ ′′>)

∣∣∣∣ <
ε

2
(5.14)

for sufficiently large n. Comparison of (5.13) and (5.14) yields (c).

5.10 Theorem∗

Let � ∈ B1 be an interaction for the mixing Z-lattice system (	0, t), and σ the
unique Gibbs state. If 	 consists of more than one point, the dynamical system
(	, σ, τ ) is equivalent to a Bernoulli shift.

The sets Ai = {ξ ∈ 	 : ξ0 = i} form a partition A of 	. According to the
Friedman-Ornstein theorem (see Appendix A.4.6) it suffices to show that A is
weak Bernoulli for the system (	, σ, τ ). This means that, given ε > 0, there
exists n(ε) such that for n � n(ε), and all k, l � 0,∑

η,ζ

|(α[−n−k,−n]∪[n,n+l]σ ){η ∨ ζ }

−(α[−n−k,−n]σ ){η} · (α[n,n+l]σ ){ζ }| < ε. (5.15)

∗ See Gallavotti [1], Ledrappier [1].
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Let B̂(η ∨ ζ ) be ±1 depending on the sign of the quantity between the modu-
lus bars. If ξ�|[−n − k,−n] = η and ξ>|[n, n + l] = ζ , we put B(ξ�, ξ>) =
B̂(η ∨ ζ ). With this choice of B, (5.15) results from Lemma 5.9(c).

5.11 The transfer matrix and the operator L

If ξ� ∈ 	� we write ξ� = ξ0 ∨ ξ> with ξ0 ∈ 	0, ξ> ∈ 	>. Given a measure
μ on 	>, let M

∗μ be the measure on 	� such that

(M
∗μ)(A) =

∑
ξ0

∫
μ(dξ>)A(ξ0 ∨ ξ>)

exp[−U{0}(ξ0)−W{0},Z>
(ξ0 ∨ ξ>)].

From the definition of Gibbs states, we find that M
∗σ> is proportional to a Gibbs

state for �� on 	�. Therefore, by Lemma 5.9(a),

M
∗σ> = λσ�

with some λ > 0. The map τ−1 : 	� �→ 	> is defined according to Section
3.1, and it is clear that τ−1σ� = σ>. Therefore

L∗σ> = λσ>, (5.16)

where we have written

L∗ = τ−1
M
∗.

The operator L∗ on measures is called the transfer matrix. It is the adjoint of
an operator L on C (	>) defined by

(LA)(ξ>) =
∑
ξ0

A(τ−1(ξ0 ∨ ξ>)) exp[−U{0}(ξ0)−W{0},Z>
(ξ0 ∨ ξ>)].

Notice that

L[A · (B ◦ αZ>Z� ◦ τ )] = (LA) · B (5.17)

when A, B ∈ C (	>).
As we shall see, the study of the operator L yields important results on

Gibbs states and the pressure function in the case of exponentially decreasing
interactions.
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5.12 The function ψ>

A continuous function ψ> is defined on 	> by

ψ>(ξ>) = 1

K

∫
σ�(dξ�) exp[−WZ�,Z>

(ξ� ∨ ξ>)],

where K is given by Lemma 5.9(b). In view of this lemma

σ>(ψ> · A) = σ (A ◦ αZ>
) (5.18)

when A ∈ C (	>); in particular σ>(ψ>) = 1.
Since (	0, t) is mixing and σ� is a Gibbs state for �� (respectively, σ> is

a Gibbs state for �>), we know that

supp σ� = 	�, supp σ> = 	> (5.19)

(see Remark 1.14). From the definition we also obtain

d−1 � ψ>(ξ>) � d (5.20)

for some d > 0.
Using (5.17), (5.18) we have

σ>((Lψ>) · B) = σ>(L[ψ> · (B ◦ αZ>Z� ◦ τ )])

= λσ>(ψ> · (B ◦ αZ>Z� ◦ τ )) = λσ (B ◦ αZ>
) = σ>((λψ>) · B)

and therefore, using (5.19),

Lψ> = λψ>. (5.21)

5.13 Proposition

The eigenvalue λ of L and L∗ defined by (5.21) and (5.16) satisfies

log λ = P�.

Using (5.20) we have indeed

log λ = lim
n→∞

1

n
log Lnψ>(ξ>)

= lim
n→∞

1

n
log(Ln1)(ξ>)

= lim
n→∞

1

n
log

∑
ξ−n+1...ξ0

exp[−U{−n+1,...,0}(ξ−n+1 ∨ · · · ∨ ξ0)

−W{−n+1,...,0}Z>
(ξ−n+1 ∨ · · · ∨ ξ0 ∨ ξ>)]

= P�

by Theorem 3.4.
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5.14 The operator S

In view of (5.20) a bounded operator S on C (	>) is defined by

SA = (ψ>)−1 · λ−1L(ψ> · A).

It satisfies

S1 = 1,

(A � 0) ⇒ (SA � 0);

and therefore

‖S‖ = 1.

Notice also that, by (5.17),

S
n[A · (B ◦ (αZ>Z� ◦ τ )n)] = (S

n A) · B (5.22)

if B ∈ C (	>).

5.15 Lemma

The functions

ξ> �→ 1

K · ψ>(ξ>)

∫
σ�(dξ�)A(ξ�) exp[−WZ�,Z>

(ξ� ∨ ξ>)]

with A ∈ C (	�) and ‖A‖ � 1, are uniformly bounded and equicontinuous on
	>.

Let � be the set of these functions. We have S
n B ∈ � whenever B ∈

C (	>), ‖B‖ � 1, and B(ξ>) depends only on ξ1, . . . , ξn .

The map 	> �→ C (	�) defined by

ξ> �→ exp[−WZ�,Z>
(· ∨ ξ>)]

is continuous. From this the boundedness and equicontinuity follow. That S
nB ∈

� is readily checked by calculation.

5.16 Proposition

If B ∈ C (	>), then

lim
n→∞ S

n B = σ (B ◦ αZ>
), (5.23)

lim
n→∞ λ−nLn B = σ>(B) · ψ>. (5.24)

The convergence is uniform on compact subsets of C(	>), in particular on �.
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Since ‖S‖ = 1, it suffices to prove (5.23) under the assumption that B(ξ>)
depends only on ξ1, . . . , ξN for some integer N . By Lemma 5.15, the sequence
(S

n B) has then a uniformly convergent subsequence; let B̄ be its limit. For any
C ∈ C (	>) we have, using (5.22) and (5.18),

σ>(ψ> · B̄ · C) = lim σ>(ψ> · S
n B · C)

= lim σ>(ψ> · S
n[B · (C ◦ (αZ>Z� ◦ τ )n)])

= lim σ>(ψ> · B · (C ◦ (αZ>Z� ◦ τ )n))

= lim σ ((B ◦ αZ>
) · (C ◦ αZ>

◦ τ n))

= σ (B ◦ αZ>
) · σ (C ◦ αZ>

)

= σ (B ◦ αZ>
) · σ>(ψ> · C)

because σ is a pure Gibbs state (Theorem 1.11(C)). From (5.19), (5.20) it
follows then that B̄ is a constant: B̄ = σ (B ◦ αZ>

), proving (5.23). We obtain
(5.24) immediately from (5.23).

Since ‖S
n‖ = 1 for all n > 0, the convergence in (5.23) and (5.24) is uniform

on compact sets.

5.17 Remark

A set X ⊂ Z is a (finite) interval if it is of the form X = [k, l] = {x : k � x � l}.
If � ∈ B1, there is an interaction �∗ ∈ B1 such that

(a) �∗(ξ |X ) = 0 unless X is an interval,
(b) U�

� = U�∗
� whenever � is an interval,

(c) W �
�,M = W �∗

�,M whenever �, M are intervals,
(d) ‖�∗‖ = ‖�∗‖1 � ‖�‖1.

To see this, let �∗ satisfy (a), and �∗(ξ |[k, l]) be the sum of the quantities
�(ξ |X ) over all X which have k as smallest element and l as largest element;
(b) and (c) are clear, and (d) follows from (5.1), (5.2).

In view of (b), (c), (d), it would have been sufficient for the purposes of this
chapter to use instead of B1 the subspace B∗ of B consisting of the interactions
satisfying (a).

5.18 Exponentially decreasing interactions

If 0 < θ < 1, let B
θ = B

θ (Z, 	0, (	̄�)�∈F) be the Banach space of translation
invariant interactions � such that �(ξ |X ) = 0 unless X is an interval, with the
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norm

‖�‖θ = sup
X

θ−diamX sup
ξ∈	X

|�(ξ )| < +∞. (5.25)

We shall say that such interactions are exponentially decreasing. If � is allowed
to be complex-valued we obtain, instead of B

θ , a complex Banach space B
θ
C

with norm (5.25).
Notice that B

θ ⊂ B1 and that

‖ · ‖1 � (1− θ )−2‖ · ‖θ .

If θ � θ ′, then B
θ ⊂ B

θ ′ and ‖ · ‖θ � ‖ · ‖θ ′ .
If the set M(0) in the definition of a Z-morphism F : (Z, 	′

0, (	̄′
�′ )�′∈F′ ) �→

(Z, 	0, (	̄�)�∈F) is chosen to be an interval (which is always possible) and
� ∈ B

θ , then F∗� ∈ B
θ (Z, 	′

0, (	̄)�′∈F′ ). Restriction of Z to a subgroup NZ
replaces � ∈ B

θ by �∗ ∈ B
θ ′ where θ ′ = θ N , as one readily checks. Therefore

one can apply Theorems 5.2 and 5.3 without leaving the realm of exponentially
decreasing interactions. In view of this we shall often restrict our attention to
mixing Z-lattice systems.

We note for later use that the map � �→ F (β)∗�∗ of Theorem 5.3 is linear
continuous B

θ (	0, t) �→ B
θ N

(	(β)
0 , t (β)) and extends to a C-linear continuous

map B
θ
C(	0, t) �→ B

θ N

C (	(β)
0 , t (β)).

5.19 The space F
θ and related spaces

If A ∈ C [respectively A ∈ C (	>)], define

varn A = sup{|A(ξ )− A(ξ ′)| : ξx = ξ ′x for |x | � n}
[respectively

varn A = sup{|A(ξ>)− A(ξ ′>)| : ξx = ξ ′x for 1 � x � n}].
We denote by F

θ [respectively F
θ
>] the subspace of C [respectively C (	>)]

consisting of those A such that

‖A‖θ = sup
n�−1

(θ−2n−1varn A) < +∞

[respectively

‖A‖θ = sup
n�0

(θ−nvarn A) < +∞].
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These quantities define norms on the quotients Fθ , Fθ
> of F

θ and F
θ
> by the

subspaces of constant functions. Fθ and Fθ
> are Banach spaces with respect to

these norms. F
θ and F

θ
> are Banach spaces for the norms

‖|A|‖θ = max(‖A‖, ‖A‖θ ).

Using complex rather than real functions, one defines similarly complex Banach
spaces F

θ
C, F

θ
C>

, F θ
C , F θ

C>
.

5.20 Proposition

The image of B
θ by the map � �→ A� is F

θ .

If ξ = ξ ′x for |x | � n, then

A�(ξ )− A�(ξ ′) =
∑

X

∗[�(ξ ′|X )−�(ξ |X )],

where the sum extends over those X such that 0 is the “middle” element of X
in lexicographic order (Section 3.2), and diam X > 2n. Therefore

varn A� �
∞∑

k=2n+1

2‖�‖θ θ
k = 2‖�‖θ

1− θ
· θ2n+1,

so that A� ∈ F
θ .

Conversely, if A ∈ F
θ , we can write A =∑∞

n=0 An , where An ∈ C [−n,n],
and ‖An‖ � varn−1 A for n > 0. We have then A = A� if � ∈ B

θ is chosen
such that �(ξ |[−n, n]) = −An(ξ ) and �(ξ |X ) = 0 if X is not a translate of an
interval [−n, n]. We note for later use that the map A �→ � can be chosen to
be linear, and thus to have a C-linear continuous extension F

θ
C �→ B

θ
C.

5.21 Theorem

Assume that (	0, t) is transitive. Let A, A′ ∈ F
θ and ρ, ρ ′ be the corresponding

equilibrium states. Then ρ = ρ ′ if and only if there exist c ∈ R and C ∈ F
θ

such that

A′ − A = c + C ◦ τ − C. (5.26)

We have A = A�, A′ = A�′ with �, �′ ∈ B
θ (Proposition 5.20). Therefore

we are in the situation of Theorem 5.7 and we only have to prove that if �, �′ ∈
B

θ and ρ = ρ ′, then (5.26) holds with C ∈ F
θ . For this we use the construction

of C in the proof of Theorem 5.7.
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If (τ jη)x = (τ jξ )x for |x | � r, r � 0, then (5.12) can now be replaced by

|B(τ jη)− B(τ jξ )| = |A�(τ jη)− A�(τ jξ )|

� 2
∞∑

s=2r+1

sup
ξ∈	[0,s]

|�(ξ )| � 2‖�‖θ

∞∑
s=2r+1

θ s

= 2‖�‖θ

1− θ
θ2r+1;

and therefore

|C(η′′)− C(η′)| � 4‖�‖θ

1− θ

∞∑
r=m

θ2r+1

= 4‖�‖θ

(1− θ )(1− θ2)
θ2m+1,

so that C ∈ F
θ .

5.22 Remarks

(a) If (	0, t) is mixing, a condition equivalent to (5.26) is∑
x∈Z

[ρ((A′ − A) · τ x (A′ − A))− (ρ(A′ − A))2] = 0.

See Exercise 5(c).
(b) The map δ : C �→ C ◦ τ − C is continuous from F θ to a closed subspace

of F θ . The proof of Theorem 5.21 shows that it has a continuous inverse
δ−1 : δF θ �→ F θ .

5.23 Lemma

Let � ∈ B
θ (	0, t), where (	0, t) is mixing.

(a) ψ> and (ψ>)−1 belong to F
θ
>.

(b) If A ∈ F
θ
>, then

vark S
n A � c1varn+k A + c2θ

k‖A‖,
where c1, c2 are constants (depending on �, θ ).

First notice that, if A and A′ belong to F
θ
>, so does their product, and

‖A · A′‖θ � ‖A‖ · ‖A′‖θ + ‖A‖θ · ‖A′‖. (5.27)

If A ∈ F
θ
> and inf |A(ξ>)| > 0, then A−i ∈ F

θ
>, and

‖A−1‖θ � ‖A−1‖2 · ‖A‖θ . (5.28)
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We have

vark WZ�,Z>
(ξ� ∨ ·) � 2‖�‖θ

∞∑
m=0

∞∑
n=k+1

θm+n

= 2‖�‖θ

(1− θ)2
θ k+1. (5.29)

Therefore the definition of ψ> in Section 5.12 gives ψ> ∈ F
θ
>. From (5.20) and

(5.28) we obtain also (ψ>)−1 ∈ F
θ
>, proving (a).

From Sections 5.11, 5.12 we have

λ−nLn(ψ> · A) = 1

K

∫
σ�(dξ�) exp[−WZ�,Z>

(ξ� ∨ ·)]·
× [A ◦ αZ ◦ τ−n(ξ� ∨ ·)]

hence, using (5.29),

varkλ
−nLn(ψ> · A) � ‖ψ>‖varn+k A + cθ k‖A‖,

where c is a constant (depending on � and θ ). From this and (5.27), we ob-
tain (b).

5.24 Proposition

Let � ∈ B
θ (	0, t), where (	0, t) is mixing. The operator S maps F

θ
> into itself

and, passing to the quotient by constant functions, defines a bounded operator
S on the Banach space Fθ

> introduced in Section 5.19. The spectral radius of S
is strictly less than 1.

From Lemma 5.23 it follows that S maps F
θ
> into itself. Since S1 = 1 (Section

5.14), we may pass to the quotient by constant functions, obtaining a map
S : Fθ

> �→ Fθ
>. Part (b) of the lemma gives

vark Sn A � c1varn+k A + c2θ
kvar0 A. (5.30)

On the other hand, since

{A ∈ C (	>) : ‖|A|‖θ � 1}
is compact in C (	>), Proposition 5.16 shows that, given δ > 0, one may choose
n such that

var0Sn A � δ‖A‖θ . (5.31)
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From (5.30) and (5.31) we obtain

vark S2n A = c1varn+k Sn A + c2θ
kvar0Sn A

� c1(c1var2n+k A + c2θ
n+kvar0 A)+ c2θ

kδ‖A‖θ

� (c2
1θ

2n + c1c2θ
n + c2δ)‖A‖θ θ

k ;

hence

‖S2n A‖θ �
(
c2

1θ
2n + c1c2θ

n + c2δ
)‖A‖θ .

If δ has been chosen sufficiently small and n sufficiently large, the operator
norm of S2n : Fθ

> �→ Fθ
> is strictly less than 1. Therefore the spectral radius of

S is strictly less than 1.

5.25 Remark

That the spectral radius of S is strictly less than 1 implies “exponential decrease
of correlations”; see Exercise 4(c).

5.26 Theorem

Assume that (	0, t) is transitive. The function � �→ P� on B
θ is real analytic.

We first assume that (	0, t) is mixing. If � ∈ B
θ
C, the formula∗

(LA)(ξ>) =
∑
ξ0

A(τ−1(ξ0 ∨ ξ>)) exp[−U{0}(ξ0)−W{0},Z>
(ξ0 ∨ ξ>)]

defines a bounded operator L on F
θ
C>

, and � �→ L is an entire analytic func-
tion from B

θ
C to the bounded operators on F

θ
C>

. To see this notice that, for
each ξ0,

� �→ {ξ> �→ U{0}(ξ0)+W{0},Z>
(ξ0 ∨ ξ>)}

is C-linear and continuous, and hence analytic, B
θ
C �→ F

θ
C>

. Since exp : F
θ
C>
�→

F
θ
C>

is analytic, also

� �→ {ξ> �→ exp[−U{0}(ξ0)−W{0},Z>
(ξ0 ∨ ξ>)]}

is analytic B
θ
C �→ F

θ
C>

. From this and (5.27) the analyticity of � �→ L

follows.

∗ Cf. Section 5.11. The various Banach spaces used here are defined in Sections 5.18 and 5.19.
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If � is real, i.e. � ∈ B
θ , we have

LA = λ · ψ> · S(ψ−1
> · A),

and Proposition 5.24 shows that the spectrum of L consists of {λ} and a set
contained in the disk {z : |z| � λ1}with λ1 < λ. From this it follows by standard
arguments that � �→ λ, and therefore � �→ P�, extends to a function analytic
in a neighborhood of B

θ in B
θ
C.

The general case of transitive (	0, t) reduces to the mixing case by use of
Theorem 5.3. We have indeed

P� = N−1 P F (β)∗�∗

by Corollary 5.6 (d), and the map � �→ F (β)∗�∗ extends to a C-linear con-
tinuous, and therefore analytic, map B

θ
C(	0, t) �→ B

θ N

C (	(β)
0 , t (β)) (see Section

5.18).

5.27 Corollary

Assume that (	0, t) is transitive. The function P on F
θ is real analytic.

We can indeed write A �→ P(A) as

A �→ � �→ P� = P(A�) = P(A),

where A �→ � extends to an analytic map F
θ
C �→ B

θ
C as noted at the end of the

proof of Proposition 5.20.

5.28 Zeta functions

Given a Z-lattice system (	0, t) and A ∈ C, we write

Fixτm = {ξ ∈ 	 : τmξ = ξ},

Zm(A, τ ) =
∑

x∈Fixτm

exp
m−1∑
k=0

A(τ k x),

and define a power series

ζτ (zeA) = exp
∞∑

m=1

Zm(A, τ )
zm

m
. (5.32)

Every τ -periodic point is in one of the sets F (α)	(α) of Theorem 5.2. There-
fore ζτ (zeA) is a product of factors corresponding to transitive Z-lattice systems.
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If (	0, t) is transitive, then Theorem 5.3 shows that Zm(A) = 0 unless m is a
multiple of N and

ZnN (A, τ ) = N Zn(A + A ◦ τ + · · · + A ◦ τ N−1|	(β), τ N |	(β)),

ζτ (zeA) = ζτ N |	(β) (zN exp(A + A ◦ τ + · · · + A ◦ τ N−1)|	(β)).

The quantity Zn(A) is a partition function with periodic boundary conditions,
and the methods of Chapter 3 show that, if (	0, t) is mixing,

lim
m→∞

1

m
logZm(A, τ ) = P(A).

Therefore the power series (5.32) converges for |z| < exp[−P(A)] to a holo-
morphic function of z. In view of Corollary 5.6(c) and (d), this remains true
when (	0, t) is not mixing or transitive. It is in fact easily seen that the se-
ries (5.32) diverges at z = exp[−P(A)]. Therefore the radius of convergence
of the series (5.32) is exp[−P(A)]; this series defines for |z| < exp[−P(A)]
a holomorphic function of z, which we call the zeta function (associated
with A).

We shall now show that the domain of analyticity of this function can be
extended when A is in a space F

θ .

5.29 Theorem∗

Let (	0, t) be mixing and A ∈ F
θ . There exists R(A) > exp[−P(A)] such that

dA(z) = ζ (zeA)−1 = exp

[
−

∞∑
m=1

zm

m

∑
ξ∈Fixτm

exp
m−1∑
k=0

A(τ kξ )

]

extends to an analytic function in {z : |z| < R(A)} with only one zero; this zero
is simple and located at exp [−P(A)].

By Proposition 5.20 we have A = A� with � ∈ B
θ . Define �(n) by

�(n)(X ) =
{

�(X ) if diamX � n,

0 if diamX > n.

Then

‖A� − A�(n)‖ �
∑
l>n

‖�‖θ θ
l = ‖�‖θ

θn+1

1− θ
.

∗ This theorem was announced in Ruelle [6]; see also Exercise 7.
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For integers m � 1, n � 0, we write

a(m) =
∑

ξ∈Fixτm

exp
m−1∑
k=0

A(τ kξ ),

b(m, n) =
∑

ξ∈Fixτm

exp
m−1∑
k=0

A�(n) (τ kξ )

=
∑

ξ∈Fixτm

exp

[
−

m−1∑
k=0

n∑
l=0

�(ξ |[k, k + l])

]
.

Then ∣∣∣∣ a(m)

b(m, n)
− 1

∣∣∣∣ � exp

(‖�‖θ

1− θ
mθn+1

)
− 1.

Let α ∈ (0, 1). If n = [αm] (integer part of αm) we find∣∣∣∣ a(m)

b(m, [αm])
− 1

∣∣∣∣ �
(‖�‖θ

1− θ
mθαm

)
exp

(‖�‖θ

1− θ
mθαm

)
. (5.33)

We have

dA(z) = exp

[
−

∞∑
m=1

b(m, [αm])
zm

m

]

× exp
∞∑

m=1

[−a(m)+ b(m, [αm])]
zm

m
.

If r is the radius of convergence of the first series in the right-hand side, (5.33)
shows that the second series converges for |z| < r/θα . Therefore it suffices to
prove the theorem for

d ′(z) = exp

[
−

∞∑
m=1

b(m, [αm])
zm

m

]

instead of dA(z).
An operator L (n) is defined on C (	[1,n]) by

(L (n) B)(ξ1, . . . , ξn)

=
∑
ξ0

B(ξ0, . . . , ξn−1) exp[−U{0}(ξ0)−W{0},{1,...,n}(ξ0 ∨ ξ1 ∨ · · · ∨ ξn)].

The trace of an operator on the finite-dimensional space C (	[1,m]) is defined
in the usual way, and one checks readily that trLm

(n) = b(m, n). This quantity
can thus be estimated in terms of the eigenvalues of L (n). Notice that every
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eigenvalue of L (n) is an eigenvalue of the operator L(n) : F
θ
C>
�→ F

θ
C>

defined
to be the operator L for the interaction �(n). But we know from the proof of
Theorem 5.26 that � �→ L is entire analytic (on B

θ ′
C , where we choose θ ′ > θ ).

In particular there exists r ′ > 0 such that, for sufficiently large n, the spectrum
of L(n) has only one eigenvalue larger than r ′−1 in absolute value. This eigen-
value λ(n) is positive and simple, and tends to λ = exp P� when n →∞. For
sufficiently large n we have

|b(m, n)− λm
(n)| < |	[1,n]| · r ′−m,

and we can write

d ′(z) = exp

[
−

∞∑
m=1

1

m
(λ([αm])z)m

]

× exp
∞∑

m=1

[−b(m, [αm])+ λm
([αm])]

zm

m
.

The radius of convergence of the first series is λ−1, and that of the second
series is �r ′/|	0|α . Taking α such that r ′/|	0|α > λ−1, it suffices to prove the
theorem for

d ′′(z) = exp

[
−

∞∑
m=1

(λz)m

m

]
× exp

∞∑
m=1

[− λm
([αm]) + λm

] zm

m
.

The first factor is exp log(1− λz) = 1− λz. To study the second factor we
estimate ∣∣λm

([αm]) − λm
∣∣ � m · [max

(
λ, λ([αm])

)]m−1 · ∣∣λ([αm]) − λ
∣∣.

By Theorem 5.26, the function � �→ λ is analytic on B
θ . Replacing θ by θ ′,

where θ < θ ′ < 1, we find that

|λn − λ| � Cθ ′ ‖�−�(n)‖θ ′ ,

‖�−�(n)‖θ ′ � (θ/θ ′)n+1‖�‖θ .

Therefore the radius of convergence of the series

∞∑
m=1

[
λm

([αm]) − λm
] zm

m

is at least [λ · (θ/θ ′)α]−1, or since we can let θ ′ tend to 1, 1/λθα . This concludes
the proof of the theorem.
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5.30 Remark

The function z �→ ζ (zeA) does not in general extend to a meromorphic function
in C. Gallovotti [2] has constructed counterexamples of the type discussed in
Exercise 8.

Notes

The main fact of the statistical mechanics of one-dimensional systems is the
“absence of phase transitions.” In particular there is only one Gibbs state: this is
true for mixing systems, and interactions in a suitable space B1 (see Corollary
5.6(b)). The uniqueness of the Gibbs state was proven independently by Ruelle
[2] using the transfer matrix and Dobrushin [3] using different methods. Here
we generalize Dobrushin’s idea, and establish the structure of Gibbs states
without the mixing assumption in Theorems 5.2, 5.3. Notice that the case of
interactions with finite range reduces to the theory of Markov processes, and
had been understood by physicists for a long time. Notice also that mixing
systems with “long-range” interactions (� ∈ B\B1) may have several Gibbs
states, as seen in Section 3.21∗.

The curious Theorem 5.7, and its specialized forms Theorem 5.21, Corollary
7.10(c), Remark 7.11, come from Livšic [1], [2], and Sinai [4]; see also Bowen
[6].

The transfer matrix associated with an interaction � ∈ B1 is the adjoint of an
operator L which satisfies a Perron–Frobenius-type theorem† : L has a positive
eigenvalue equal to the spectral radius. This positive eigenvalue is exp P�;
furthermore the spectral properties of L are related to cluster properties of the
Gibbs state and to analyticity properties of the zeta function. These facts justify
the study of L, which is done here by a new method.

The uniqueness of the Gibbs state is one aspect of the “absence of phase
transitions” in one-dimensional systems. Another aspect is constituted by real
analyticity properties of the pressure P restricted to suitable subspaces of in-
teractions. Here we consider exponentially decreasing interactions, and prove
analyticity of P by showing that exp P� is an isolated eigenvalue of L (we
use an idea already present in a paper by Araki [1] on one-dimensional quan-
tum spin systems; see Sinai [4], and Ruelle [5], Appendix B). A zeta function

∗ In Section 3.21 we followed Israel [1], who proves the existence of interactions with several
Gibbs states without explicitly constructing them. Simple examples were known earlier from
Dyson [1]. Other examples are obtained in a model due to Fisher [1] and sketched in Exercise 8.

† See for instance Gantmaher [1].
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is introduced in Section 5.28: it counts the τ -periodic points of 	 with the
weights usual in statistical mechanics. This function has a pole at exp[−P�]
corresponding to the eigenvalue exp P� of L. A number of other properties of
systems with exponentially decreasing interactions are given in the exercises
(in particular the exponential decrease of correlations); these properties will be
useful in the study of Smale spaces in Chapter 7.

While a strong condition on the interaction, like exponential decrease, seems
necessary to obtain that exp P� is an isolated eigenvalue of L, analyticity prop-
erties of P can be obtained under less restrictive assumptions. This is a beautiful
and somewhat unexpected result of Dobrushin [4]; unfortunately the proof is
difficult, and the conditions imposed on the lattice system are probably too
stringent. We therefore refer the reader to the original paper for the statement
and proof of Dobrushin’s theorem.

Exercises

1. Let 	0 be a finite set, and t = 0 a square matrix indexed by 	0 ×	0 such that
ti j is an integer � 0 for all i, j . Define 	∗

0 = {(i, j, m) ∈ 	0 ×	0 × Z> :
m � ti j } and t∗(i, j,m)(k,l,n) = 1 if j = k and = 0 otherwise. Then (	∗

0, t∗) is a
Z-lattice system, which we also denote by (	0, t)∗ (we assume that t is such
that 	∗ = Ø).
(a) Suppose that ti j takes only the values 0 and 1, so that (	0, t) is a Z-

lattice system. If ξ ∗ ∈ 	∗ and ξ ∗x = (i, j, 1), define (Fξ ∗)x = i . Show
that F : (	∗

0, t∗) �→ (	0, t) is a Z-isomorphism.
(b) Show that the Z-lattice system obtained by restriction of Z to NZ, and

use of the group isomorphism Z �→ NZ, is Z-isomorphic to (	0, t N )∗.
(Cf. Williams [1].)

2. Let (	0, t) be a mixing Z-lattice system and σ ∈ I. If η0 ∨ η> ∈ 	�, let
pσ (η0 ∨ η>) be the conditional probability that ξ |{0} = η0 knowing that
ξ |Z> = η>. Let also gσ (ξ ) = − log pσ (ξo ∨ ξ>). Then gσ is defined σ -
almost everywhere, gσ � 0, and it is known that∫

gσ dσ = s(σ )

[see Billingsley [1], Section 13].
If � ∈ B1 and σ is the corresponding Gibbs state, show that gσ extends

to a continuous function on 	, again denoted by gσ , such that

gσ (ξ ) = −log
ψ>(τ−1(ξ0 ∨ ξ>)) exp[−U{0}(ξ0)−W{0},Z>

(ξ0 ∨ ξ>)]

λ · ψ>(ξ>)
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Show that
∫

gσ ′dσ ′ �
∫

gσ dσ ′ for all σ ′ ∈ I , with equality only if σ = σ ′.
[See Parry [2], and also Keane [1], Ledrappier [2].]

3. Let �, �′ ∈ B1(	0, t), where (	0, t) is mixing, and σ, σ ′ be the correspond-
ing Gibbs states. Prove the following.
(a) If A ∈ C (	>) and n � 0 then

σ (A ◦ αZ>
) = σ ((S

n A) ◦ αZ>
).

If A, B ∈ C (	>), then

σ ((A ◦ αZ>
) · (B ◦ αZ>

◦ τ n)) = σ (((S
n A) ◦ αZ>

) · (B ◦ αZ>
)).

(b) Write

Z−n+1 = σ ′
(

exp
0∑

x=−n

A�−�′ ◦ τ x

)
,

Z+n = σ

(
exp

n∑
x=1

A�′−� ◦ τ x

)
,

and define

σ̃ = vaguelim
n→+∞(Z−n+1)−1

(
exp

0∑
x=−n

A�−�′ ◦ τ x

)
· σ ′

= vaguelim
n→+∞(Z+n )−1

(
exp

n∑
x=1

A�′−� ◦ τ x

)
· σ.

Show that

τ σ̃ = σ̃ · exp[A�′ − A� − P�′ + P�].

[Part (b) is due to Sinai: see Gurevič and Oseledec [1]. To prove
the existence and equality of the limits use Lemma 5.9(a). Clearly
τ σ̃ = C exp A�′−� · σ̃ , where C = limn→∞ Z−n+1/Z−n = lim(Z−n )1/n =
exp(P� − P�′

) by Proposition 4.4.]
4. Let � ∈ B

θ (	0, t) where (	0, t) is mixing, and σ be the corresponding
Gibbs state. Prove the following.
(a) If 0 � A ∈ C (	[1,m]), then‖S

m(A ◦ α[1,m],Z>
‖θ � cσ (A ◦ α[1,m]) for some

c independent of A, m.
(b) If 0 � A ∈ C (	[1,m]) and σ (A ◦ α[1,m]) > 0, then∥∥∥∥S

m+n(A ◦ α[l,m],Z>
)

σ (A ◦ α[1,m])
− 1

∥∥∥∥ < ea−bn,

with real a, b independent of A, m, and b > 0.
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(c) (Exponential decrease of correlations.) If 0 � A ∈ C [−m+1,0] and 0 �
B ∈ C [n+1,n+m], then

|σ (AB)− σ (A)σ (B)| � ea−bnσ (A)σ (B).

(d) If A ∈ C(−∞,0] and B ∈ C [n+1,+∞), then

|σ (AB)− σ (A)σ (B)| � ea−bnσ (|A|)σ (|B|).
(e) If b′ < min(b, 2| log γ |), there exists a′ real such that, if A, B ∈ F

γ ,

|σ (A · (B ◦ τ x ))− σ (A)σ (B)| � ea′−b′|x |‖A‖γ ‖B‖γ .

For fixed θ and M > 0 one can choose a′, b′ such that this formula holds for
all � with ‖�‖θ � M .

[(a) follows from the proof of Lemma 5.23, and one can choose c to be a
continuous function of ‖�‖θ for fixed θ . From (a) and Proposition 5.24 one
obtains (b), and one can choose a, b, to be continuous functions of ‖�‖θ (to
see this use analyticity with respect to � ∈ Bθ ′ where θ < θ ′ < 1, and the
fact that {� : ‖�‖θ � M} is compact in Bθ ′ ). From (b) and exercise 3(a),
one obtains (c) and (d). To prove (e) write A = � An, B = �Bn as in the
proof of Proposition 5.20.]

5. Let (	0, t) be mixing and σ = σA be the unique equilibrium state for A ∈ F
θ .

If B1, . . . , Bl ∈ F
θ , write

Dl(B1, . . . , Bl) = ∂ l

∂s1 · · · ∂sl
P

(
A +

∑
i

si Bi

) ∣∣∣∣∣
s1=···=sl=0

.

(a) D1(B1) = σ (B1).
(b) D2(B1, B2) = �x∈Z[σ (B1 · (B2 ◦ τ x ))− σ (B1)σ (B2)].
(c) B1 �→ D2(B1, B1) is a positive semi-definite quadratic form on F

θ . Its
kernel is {c + C ◦ τ − C : c ∈ R, C ∈ F

θ } and is thus independent of A.
There is R > 0 such that [D2(B1, B1)]1/2 � R‖B1‖θ .

(d) For all p ∈ R (mod 2π ),∑
x∈Z

e−i px [σ (B1 · (B1 ◦ τ x ))− σ (B1)σ (B1)] � 0.

[Using Exercise 4(e), it suffices to prove (b) when A, B1, B2 ∈ C� for finite �. Going
over to a Z-isomorphic system (see the proof of Corollary 4.10(b)), one can assume
that

A = Ã ◦ α{0}, B1 = B̃1 ◦ α{0}, B2 = B̃2 ◦ α{0},
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where Ã, B̃1, B̃2 ∈ C (	0). Let U (ξ0) = exp[ Ã(ξ0)+ s B̃2(ξ0)] and define the proba-
bility measure σn,s on 	[−n,n] such that σn,s{(ξ−n, . . . , ξn)} is proportional to

U (ξ−n)tξ−nξ−n+1U (ξ−n+1) · · · tξn−1ξn U (ξn).

Then the thermodynamic limit of σn,s is σA+s B2 by uniqueness of the Gibbs state.
One finds

d

ds
σn,s(B̃1 ◦ α{0},[−n,n]) =

n∑
x=−n

[σn,s((B̃1 ◦ α{0},[−n,n])(B̃2 ◦ α{x},[−n,n]))

− σn,s(B̃1 ◦ α{0},[−n,n])σn,s(B̃2 ◦ α{x},[−n,n])].

The expression in square brackets decreases exponentially with |x |, uniformly in n
(and in s for small s). Therefore

lim
n→∞

d

ds
σn,s(B̃1 ◦ α{0},[−n,n]) =

∑
x∈Z

[σA+s B2 (B1 · (B2 ◦ τ x ))

−σA+s B2 (B1)σA+s B2 (B2)];

hence

d

ds
σA+s B2 (B1) =

∑
x∈Z

[σA+s B2 (B1 · (B2 ◦ τ x ))− σA+s B2 (B1)σA+s B2 (B2)], (*)

and (b) follows. That D2(B1, B1) � 0 follows from the convexity of P . In partic-
ular D2(B1, B1) = 0 implies D2(B1, B2) = 0. By induction on l, (∗) permits the
calculation of Dl , and one checks that D2(B1, B1) = 0 implies Dl (B1, . . . , Bl ) = 0
for l � 2. Therefore dlσA+s B1 (B2)/dsl vanishes for s = 0, l � 1, and the function
s �→ σA+s B1 (B2), being real analytic, is constant. The determination of the kernel
of B1 �→ D2(B1, B1) follows then from Theorem 5.21. The estimate D2(B1, B2) �
R2(‖B1‖θ )2 follows for instance from Exercise 4(e). To prove (d) notice that there is
V unitary in L2(	, σ ) such that V1 = 1 and VB = B ◦ τ . The expression considered
is then ∑

x∈Z

e−i px 〈(B1 − 〈1, B1〉), V x (B1 − 〈1, B1〉)〉].

6. Let (	0, t) be a Z-lattice system.
(a) If A is complex continuous on 	, the radius of convergence of

ζτ (zeA) = exp
∞∑

m=1

zm

m

∑
ξ∈Fixτm

exp
m−1∑
k=0

A(τ kξ )

(or its inverse) is at least exp[−P(ReA)].
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(b) The functions A �→ ζτ (eA), A �→ ζτ (eA)−1 are holomorphic in the “con-
vex tube” {A : P(ReA) < 0} of the Banach space of complex continuous
functions on 	.

7. Let (	0, t) be mixing. There is a real continuous function R on F
θ
C such that

(a) R(A) � exp [−P(ReA)].
(b) If dA(z) = exp [−∑∞

m=1
zm

m

∑
ξ∈Fixτm exp

∑m−1
k=0 A(τ kξ )], then the func-

tion (z, A) �→ dA(z) is analytic on

{(z, A) ∈ C× F
θ
C : |z| < R(A)}.

(c) If A is real, then R(A) > e−P(A) and dA(·) has only one zero in {z : |z| <
R(A), }. This zero is simple and located at exp[−P(A)].

[(c) follows from Theorem 5.29, with R continuous on F
θ and R > e−P : let

β = log r ′ + P(A)

log |	0| − log θ
;

according to the proof one can take

R(A) =
{

e−P(A)/θβ = r ′/|	0|β if β � 1,

e−P(A)/θ if β � 1.

From Exercise 6, the function (z, A) �→ dA(z) is holomorphic on {(z, A) ∈
C× F

θ
C : |z| < exp[−P(ReA)]}. If A ∈ F

θ
C, write A = B + iC , where B,

C ∈ F
θ . We have bounds on the derivatives

dn

dzn
dB+tC (0) (*)

when t is real (corresponding to Theorem 5.29), and when t is not real
(corresponding to Exercise 6) as seen above. Using conformal mapping and
the formula

1

2π

∫ 2π

0
log | f (reiθ )|dθ � log | f (0)|

(Jensen’s theorem), we obtain new bounds on (∗). Using these one can extend
R continuously from F

θ to F
θ
C so that (a) and (b) hold.]

8. Let 	0 = {0, 1}, define an interaction � by

�(ξ |X |) =
{

ϕ|X | if X is an interval and ξx = 1 for all x ∈ X,

0 otherwise;

and write

Wn =
n∑

k=1

(n − k + 1)ϕk, C =
∞∑

k=1

ϕk .
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Verify that

∞∑
m=1

zm
∑

ξ∈Fixτm

exp
m−1∑
k=0

A�(τ kξ ) = −z
d

dz

[
log(1− z)+ log(1− ze−C )

+ log

(
1− z

1− z

∞∑
k=1

zke−Wk

)]
;

and therefore

ζ (zeA)−1 = (1− ze−C )

[
1− z

(
1+

∞∑
k=1

zke−Wk

)]
.

[The potential introduced here corresponds to the model of Fisher [1]; see
Gallavotti [2].]

9. Let � ∈ B
θ (	0, t), where (	0, t) is mixing, and σ be the corresponding

Gibbs state. Given A ∈ F
θ and a finite interval � ⊂ Z, let

A�(ξ ) = |�|−1/2
∑
x∈�

[A(τ xξ )− σ (A)],

D =
∑
x∈Z

[σ (A · τ x A)− σ (A)2] = D2(A, A) � 0.

Let γ be the gaussian probability measure (1/
√

2π D)e−t2/2Ddt on R if
D > 0, the unit mass δ0 at 0 if D = 0.
(a) For any integer n � 0

lim
|�|→∞

σ
(

A2n
�

) = (2n)!

n!

Dn

2n
, lim

|�|→∞
σ
(

A2n+1
�

) = 0.

(b) (Central limit theorem.) When |�| → ∞, the measure A�σ tends
vaguely to γ . In fact, if ϕ : R → R is continuous with at most poly-
nomial growth, (A�σ )(ϕ) → γ (ϕ).

(c) More generally, let A = (A1, . . . , Am) : 	 → Rm with A1, . . . , Am ∈
F

θ , and write

A�(ξ ) = |�|−1/2
∑
x∈�

[A(τ xξ )− σ (A)],

Di j =
∑
x∈Z

[σ (Ai · τ x A j )− σ (Ai )σ (A j )] = D2(Ai , A j ).

The matrix (Di j ) is � 0. Suppose (for simplicity) that it has an inverse
(�i j ), and let γ be the gaussian probability measure

(2π )−m/2(det(Di j ))
−1/2 exp

(
−1

2

∑
i, j

�i j ti j

)
dt1 · · · dtm .
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Then, when |�| → ∞, we have (A�σ )(ϕ) → γ (ϕ) for all continuous ϕ :
Rm �→ R with at most polynomial growth.

[Notice first that D = D2(A, A) � 0 by Exercise 5, and D = 0 only if A =
c + C ◦ τ − C with c ∈ R, C ∈ F

θ . (a) follows from Exercise 4. Notice that

γ (t2n) = (2n)!

n!

Dn

2n
, γ (t2n+1 = 0;

hence (A�σ ), (ϕ) → γ (ϕ) when ϕ is a polynomial; (b) results then from the
fact that γ is uniquely determined by its moments. (c) can be easily obtained
using Wick’s theorem (see for instance Simon [1], Proposition 1.2).]



6

Extension of the thermodynamic formalism

In this chapter we present extensions of some of the results of previous chap-
ters to a more general situation. Proofs will only be sketched, but references
to the literature will be given (in the text or in the bibliographic note at the
end of the chapter). The extensions consist in replacing the configuration
space 	 by a more general compact metrizable space Ω on which Zν acts by
homeomorphisms.

6.1 Generalities

Let Ω be a non-empty compact metrizable space, and x → τ x a representation
of Zν by homeomorphisms of Ω (τ 0 is the identity and τ x+y = τ xτ y). We
denote by C the Banach algebra C (Ω) of real continuous functions on Ω with
the uniform norm. The probability measures on Ω (also called states) form a
convex compact metrizable subset of the weak dual C

∗ of C (C
∗ is the space

of real measures on Ω; the topology of weak dual is the vague topology). The
set I of τ -invariant states is convex compact; it is a Choquet simplex (see
Appendix A.5.5). The extremal points of I are the ergodic states and, since I
is a metrizable simplex, every σ ∈ I has a unique decomposition into ergodic
states: the ergodic decomposition (see Appendix A.5.6).

We shall make use of a metric d compatible with the topology of Ω, but our
results will not depend on the special choice of d .

6.2 Expansiveness

The Zν-action τ on Ω is called expansive if there exists ε > 0 such that

(d(τ xξ, τ xη) � ε for all x ∈ Zν) ⇒ (ξ = η).

101
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The number ε is then called an expansive constant (with respect to the metric
d). It is easily seen that the action τ on 	 considered in Chapter 3 is expansive.

Suppose that τ is expansive with expansive constant ε. Given δ > 0 there
exists L > 0 such that

(d(τ xξ, τ xη) � ε whenever |x | � L)

⇒ (d(ξ,η) < δ). (6.1)

[Proof: by compactness.]

6.3 Covers

A family A = (Ai ) of subsets of Ω is a cover of Ω if ∪iAi = Ω; it is a finite
cover if the index set is finite, an open (respectively Borel, measurable) cover
if the Ai are open (respectively Borel, measurable). A partition is a cover (Ai )
such that i = j implies Ai ∩ A j = Ø.

Let A = (Ai ), B = (B j ) be covers of Ω. The cover A ∨B consists of the
sets Ai ∩B j . This notation extends to any finite family of covers. The cover
τ−xA consists of the sets τ−xAi , and we write

A� =
∨
x∈�

τ−xA.

We also write

|A| = number of indices i such that Ai = Ø;
diam A = sup

i
diam Ai ,

where diam Ai is the diameter of Ai with respect to the metric d.
If A = (Ai ) is an open cover of the compact metrizable set Ω, there is a

number δ > 0 (Lebesgue number) such that, if diam X < δ, then X ⊂ Ai for
some i . [Proof: by compactness.]

Suppose that τ is expansive with expansive constant ε, and that diam A � ε.
Then, given δ > 0, there exists a finite � ⊂ Zν such that

diam A� < δ. (6.2)

[This follows from (6.1).]
If A is a cover of Ω and B a subfamily of A which is again a cover of Ω,

we say that B is a subcover; obviously |B| � |A|.
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6.4 Entropy

If σ∈ I and A is a finite Borel partition of Ω, let

H (σ, A) = −
∑

i

σ(Ai ) logσ(Ai )

(where 0log0 = 0 as usual). Then the following exist:

hτ (σ, A) = lim
�↗∞

1

|�|H (σ, A�)

= inf
�

1

|�|H (σ, A�). (6.3)

[Proof: Define 	 = (	0)z
ν

as in Chapter 3, with 	0 = {Ai }; there is then σ ∈ I
such that H (σ, A�) = S(α�σ ) for all finite �⊂ Zν ; one then applies Theo-
rem 3.10.] One checks readily that for any nonempty finite �⊂ Zν ,

hτ (σ, A) = hτ (σ, A�). (6.4)

The (mean) entropy of σ is

h(σ) = hτ (σ) = sup
A

hτ (σ, A).

This is a real number � 0, or +∞. The entropy is an invariant of the abstract
dynamical system (Ω,σ, τ ) (the Kolmogorov-Sinai invariant for ν = 1).

6.5 Proposition

Let σ ∈ I, and A be a Borel partition of 	.

(a) hτ (σ, A) tends to h(σ) when diam A → 0. Therefore hτ is affine on I.
(b) If τ is expansive with expansive constant ε, then hτ (σ, A) = h(σ) when

diam A � ε. In particular, if τ is expansive, h is upper semi-continuous
on I.

[The proof given by Bowen [6], Section 2A, for ν = 1, extends readily. One
shows (see Exercise 1) first that

hτ (σ, A)− hτ (σ, B) � H (σ, A ∨B)− H (σ, B), (6.5)

and then that, given A, the (positive) right-hand side is arbitrarily small for
small diam B. This proves (a). When τ is expansive, (6.2) and (6.4) show that
hτ (σ, A) = hτ (σ) when diam A � ε. Given ρ ∈ I, one can choose A such that
diam A < ε, and the boundaries of the elements Ai of the partition A have
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ρ-measure 0; then the function σ → H (σ, A�) is continuous at ρ for each �,
and therefore hτ (·) = hτ (·, A) is upper semi-continuous at ρ by (6.3).]

6.6 Pressure

Let A be any finite cover of Ω. Given A ∈ C and a finite � ⊂ Zν , we define a
partition function

Z�(A, A) = min

{∑
j

exp

[
sup
ξ∈Bj

∑
x∈�

A(τ xξ)

]

: (B j ) is a subcover of A�

}
.

We have

Z�+x (A, A) = Z�(A, A), (6.6)

and if �1 ∩�2 = Ø, it is readily checked that

Z�1∪�2 (A, A) � Z�1 (A, A) · Z�2 (A, A). (6.7)

We define

P(A, A) = lim
a→∞ |�(a)|−1logZ�(a)(A, A)

= inf
a
|�(a)|−1logZ�(a)(A, A). (6.8)

That the limit exists and is equal to the inf follows from the subadditivity of
a �→ logZ�(a)(A, A) implied by (6.6), (6.7) (see Appendix A.1.4). We have

exp(−|�| · ‖A‖) � Z�(A, A) � (|A| exp ‖A‖)|�|. (6.9)

From the first inequality (6.9) we see that P(A, A) is finite. Using (6.7) and the
second inequality (6.9), we can compare Z�(A, A) with the partition function
for a union of disjoint translates of �(a) contained in �. We find thus

lim sup
�↗∞

1

|�| logZ�(A, A) = P(A, A). (6.10)

For finite open covers A = (Ai ) of Ω the limit

P(A) = Pτ (A) = lim
diam A→0

P(A, A) (6.11)

exists, finite or+∞. [Bowen [6], Proposition 2.8. The idea is that if B = (B j )
is an open cover such that each B j is contained in some Ai , then P(A, A) �
P(A, B)+ δ, where δ is the maximum of the oscillation of A on a set Ai
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(i.e. δ = maxi sup{|A(ξ)− A(η)| : ξ,η ∈ Ai }). This holds in particular if diam
B is a Lebesgue number for A.] The limit P(A) defined by (6.11) is called the
(topological) pressure of A ∈ C.

If we have a sequence (or net) of open covers A and, for each A, a non-empty
finite set � ⊂ Zν , so that diam A� → 0, then P(A, A) → P(A). [The proof is
similar to that of (6.11): if diam B� is a Lebesgue number for A, then

Z�(a)(A, A) � Z�(a)+�(A, B) exp[|�(a)|δ + (|�(a)+�| − |�(a)|)‖A‖]
and therefore P(A, A) � P(A, B)+ δ.] In particular, if τ is expansive and
diam A an expansive constant, then P(A, A) = P(A).

6.7 Other definitions of the pressure

Let again A ∈ C and A be a finite open cover of Ω. We define a new partition
function

Z (1)
� (A, A) = min

{∑
j

exp

[
inf

ξ∈Bj

∑
x∈�

A(τ xξ)

]

:(B j ) is a subcover of A�

}
.

Then

1 � Z�(A, A)

Z (1)
� (A, A)

� e|�|δ,

where δ is the maximum of the oscillation of A on a set of A�, and one checks
that

P(A) = lim
diam A→0

lim sup
�↗∞

1

|�| logZ (1)
� (A, A)

= sup
A

lim sup
�↗∞

1

|�| logZ (1)
� (A, A).

One can in this formula replace � by �(a) and �↗∞ by a →∞. One also
has

P(A) = lim
diamA→∞

lim inf
a→∞

1

|�(a)| logZ (1)
�(a)(A, A).

Let S be a finite subset of Ω. We say that S is (�, ε)-separated if ξ,η ∈ S
and ξ = η imply

d(τ xξ, τ xη) > ε for some x ∈ �.
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We say that S is (�, ε)-spanning if for all η ∈ Ω there exists ξ ∈ S such that

d(τ xξ, τ xη) � ε for all x ∈ �.

One can then define partition functions

Z (2)
� (A, ε) = sup

{∑
ξ∈S

exp
∑
x∈�

A(τ xξ) : S is (�, ε)-separated

}
,

Z (3)
� (A, ε) = inf

{∑
ξ∈S

exp
∑
x∈�

A(τ xξ) : S is (�, ε)-spanning

}
;

and, for i = 2, 3,

lim
�↗∞

sup
1

|�| logZ (i)
� (A, ε)

increases as ε decreases. One shows [Walters [1], Section 1] that

P(A) = lim
ε→0

lim
�↗∞

sup
1

|�| logZ (i)
� (A, ε)

= lim
ε→0

lim
a→∞sup

1

|�(a)| logZ (i)
�(a)(A, ε)

(see Exercise 2). One also has

P(A) = lim
ε→0

lim
a→∞inf

1

|�(a)| logZ (i)
�(a)(A, ε).

If τ is expansive, it is not necessary to let diam A → 0 or ε → 0 in the
formulae for the pressure (of this section and the preceding one). It suffices to
take for diam A or ε an expansive constant. In particular

P(A) = lim
a→∞

1

|�(a)| logZ�(a)(A, A)

= lim
a→∞

1

|�(a)| logZ (1)
�(a)(A, A)

= lim
a→∞

1

|�(a)| logZ (i)
�(a)(A, ε), i = 2, 3.

Therefore the definition of the pressure given in Theorem 3.4 is a special case
of that given here.

6.8 Properties of the pressure

Either P(A) = +∞ for all A ∈ C, or P(A) is finite for all A ∈ C. In the latter
case P is convex, and increasing [i.e. A � B implies P(A) � P(B)] on C; P is
also continuous:

|P(A)− P(B)| � ||A − B||,
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and, if t ∈ R,

P(A + B ◦ τ x − B + t) = P(A)+ t (t ∈ R),

P(A + B) � P(A)+ P(B),

|P(A)| � P(|A|).
[For the easy proofs, see Walters [1], Theorem 2.1.]

6.9 The action τ a

Given integers a1, . . . , aν > 0, write ax = (a1x1, . . . , aνxν). A Zν-action τ a is
defined by (τ a)x = τ ax , and one checks easily that

hτ (σ, A) = 1

|�(a)|hτ a

(
σ, A�(a)

)
, (6.12)

Pτ (A, A) = 1

|�(a)| Pτ a

( ∑
x∈�(a)

A ◦ τ x , A�(a)

)
. (6.13)

[Bowen [6], Lemma 2.9.]

6.10 Lemma

Let B be a finite open cover of 	, and � a finite subset of Zν . There exists a
Borel partition B� of 	 such that

(a) each set of B� is contained in some set of B�;
(b) each ξ∈Ω is in the closure of at most |�| · |B| sets of B�.

[Bowen [6], Lemma 2.12. The idea is as follows. A partition of unity sub-
ordinate to B gives a map α : Ω �→ � where � is a (|B| − 1)-dimensional
simplex. Let β = (α ◦ τ x )x∈� : Ω �→ ��; one takes for B� the inverse image
by β of a suitable partition of the (|B| · |�| − |�|)-dimensional set ��.]

6.11 Lemma

If A is a Borel partition of Ω such that each ξ ∈ Ω is in the closure of at most
M members of A, then

h(σ, A)+ σ(A) � P(A)+ logM. (6.14)
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[Bowen [6], Lemma 2.11. Denote by A�
i (i = 1, 2, . . .) the non-empty sets

in A�, and for each i choose ξi ∈ A�
i such that∫

A�
i

σ(dξ)
∑
x∈�

A(τ xξ ) � σ
(
A�

i

)∑
x∈�

A(τ xξi ).

Then

hτ (σ, A)+ σ(A) � |�|−1

[
H (σ, A�)+ σ

(∑
x∈�

A ◦ τ x

)]

� |�|−1
∑

i

σ
(
A�

i

) (−logσ
(
A�

i

)+∑
x∈�

A(τ xξi )

)

� |�|−1 log
∑

i

exp
∑
x∈�

A(τ xξi ).

Let B be a finite open cover of Ω such that each member of B intersects
at most M members of A, and let B′ = (B′

j ) be a subcover of B�. For
each A�

i choose B′
j � ξi ; this map A�

i → B′
j is at most M |�| to one; there-

fore

hτ (σ, A)+ σ(A) � |�|−1 log
∑

j

M |�| sup
ξ∈B′

j

∑
x∈�

A(τ xξ).

Taking the minimum over the subcovers (B′
j ) we have

hτ (σ, A)+ σ(A) � logM + |�|−1logZ�(A, B).

Taking �↗∞, then diam B → 0, we obtain (6.14).]

6.12 Theorem (variational principle)

For all A ∈ C,

P(A) = sup
σ∈I

[h(σ)+ σ(A)].

This is the main general theorem on pressure. We give the outline of a proof
(assuming for simplicity P(A) finite). In part (a) we follow Bowen ([6], Section
2.B), in part (b) we follow Denker ([1], Theorem 2).

(a) Given A ∈ C, we have for all σ ∈ I

h(σ)+ σ(A) � P(A). (6.15)
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The idea is to eliminate the term logM in (6.14) by replacing the Zν-
action τ by τ a . Let A be a Borel partition of Ω. By (6.12) we have

hτ (σ, A)+ σ(A) = 1

|�(a)|

[
hτ a

(
σ, A�(a)

)+ σ

( ∑
x∈�(a)

A ◦ τ x

)]
.

Choose now B�(a) according to Lemma 6.10 with any finite open covering
B with small diam B. According to (6.5), and Lemma 6.11 applied to
B�(a), the above expression is

� 1

|�(a)|

[
hτ a (σ, B�(a))+ σ

( ∑
x∈�(a)

A ◦ τ x

)

+ H
(
σ, A�(a) ∨B�(a)

)− H
(
σ, B�(a)

)]

� 1

|�(a)|

[
Pτ a

( ∑
x∈�(a)

A ◦ τ x

)
+ log(|�(a)| · |B|)

+ H
(
σ, A�(a) ∨B�(a)

)− H
(
σ, B�(a)

)]
.

This first term is P(A) by (6.13); |�(a)|−1 log(|�(a)| · |B|) tends to zero
when a →∞; finally one has [see Exercise 1(a)]

1

|�(a)|
[
H
(
σ, A�(a) ∨B�(a)

)− H (σ, B�(a))
]

� 1

|�(a)|
∑

x∈�(a)

[
H
(
σ, (τ−xA) ∨B�(a)

)− H (σ, B�(a))
]

= 1

|�(a)|
∑

x∈�(a)

[
H
(
σ, A ∨ τ xB�(a)

)− H
(
σ, τ xB�(a)

)]

and, since diam τ xB�(a) � diam B, this is arbitrarily small [see Exercise
1(b)].

(b) Given A ∈ C and ε > 0, there exists σ ∈ I such that

h(σ)+ σ(A) � P(A)− 3ε. (6.16)

Choose a finite open cover B such that

P(A, B) � P(A)− ε

and diam B is so small that |A(ξ)− A(η)| < ε if ξ,η ∈ B j . Now choose a
such that |�(a)|−1 log(|�(a)| · |B|) < ε, and choose A = B�(a) according to
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Lemma 6.10. Writing 	0 = {Ai }, construct the spaces

	 =
{

(Aix ) ∈ (	0)Zν

:
⋂
x∈zν

closure τ axAix = Ø

}
,

	∗ =
{

(ξ, (Aix )) ∈ 	×	 : ξ ∈
⋂
x∈zν

closure τ axAix

}
.

Let p : 	∗ �→ Ω, q : 	∗ �→ 	 be the projections, and define B ∈ C(	) by

B(Aix ) = max
j :Aio⊂Bj

sup
ξ∈Bj

∑
x∈�(a)

A(τ xξ).

Then

P(A)− ε � P(A, B) = 1

|�(a)| Pτ a

( ∑
x∈�(a)

A ◦ τ x , B�(a)

)

� 1

|�(a)| P(B) = 1

|�(a)| [s(σ )+ σ (B)],

where we have used Theorem 3.12 and σ is a translation invariant probabil-
ity measure on 	. There exists (by the Hahn–Banach and Markov–Kakutani
theorems – see Appendix A.3.2 and A.3.4) a translation invariant probability
measure σ ∗ on 	∗ such that qσ ∗ = σ . Let σ̃ = pσ ∗; then σ̃ is τ a-invariant and

σ (B) � σ̃

( ∑
x∈�(a)

A ◦ τ x

)
+ |�(a)|ε,

s(σ ) � hτ a (σ̃ )+ log(|�(a)| · |B|);
[estimate hτ a (σ̃ ) with the partition formed by the intersections of the closures
of the Ai ]. Therefore

P(A)− ε � 1

|�(a)|

[
hτ a (σ̃ )+ σ̃

( ∑
x∈�(a)

A ◦ τ x

)]
+ 2ε,

or writing σ = |�(a)|−1�x∈�(a)τ
x σ̃ ∈ I,

P(A)− 3ε � 1

|�(a)|hτ a (σ)+ σ(A) = hτ (σ)+ σ(A).

6.13 Equilibrium states

Suppose that P is not+∞. The set of equilibrium states for A ∈ C is by definition

I A = {σ ∈ I : h(σ)+ σ(A) = P(A)}.
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This set can be empty (see for instance Gurevič [1]. In particular, it need not
coincide with

I ′A = {σ ∈ C
∗ : P(A + B) � P(A)+ σ(B) for all B ∈ C}. (6.17)

The interesting case (next theorem) is when hτ is upper semi-continuous on I.
This happens if τ is expansive (Proposition 6.5(b)).

6.14 Theorem

Let hτ be finite upper semi-continuous on I.

(a) I A = I ′A = Ø; I A is convex, compact, a Choquet simplex, and a face of I.
(b) The set

D = {A ∈ C : I A consists of a single point}
is residual in C .

(c) For all σ ∈ I,

h(σ) = inf
A∈C

[P(A)− σ(A)].

As in the proof of Theorem 3.7, one sees that I ′A is convex, compact, and
contained in I , and that

D′ = {A ∈ C : I ′A consists of a single point}
is residual in C .

Since hτ is upper semi-continuous, we have I A = Ø, and the proof of (c)
is the same as that of the corresponding statement of Theorem 3.12. The proof
of Theorem 3.12 also shows that I A = I ′A. Therefore D = D′ is residual in C ,
proving (b).

Finally the proof that I A is a Choquet simplex and a face of I is the same as
that of Corollary 3.14.

6.15 Remark

Suppose that P(0) < +∞ and that, for all σ ∈ I,

h(σ) = inf
A∈C

[P(A)− σ(A)]. (6.18)

Then h is upper semi-continuous, as the inf of continuous functions. By Theo-
rem 6.14(c), (6.18) is thus equivalent to the upper semi-continuity of h.
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Israel’s theorem (Appendix A.3.6) applies to the present situation, permitting
the approximation of invariant states by equilibrium states. In particular the
following analogs of Theorem 3.16 and Corollary 3.17 hold.

Let hτ be finite and upper semi-continuous. Given A ∈ C , σ ∈ I, and ε > 0,
there exist A′ ∈ C and σ′ ∈ I A′ such that

‖σ′ − σ‖ � ε

and

‖A′ − A‖ � 1

ε
[P(A)− σ(A)− hτ (σ)].

The union of the IA for A ∈ C, i.e., the set of all equilibrium states, is dense in
I for the norm topology.

If ρ1, . . . , ρn are ergodic states, there is A ∈ C such that ρ1, . . . , ρn ∈ I A.

6.16 Commuting continuous maps

If, instead of a Zν-action τ on Ω, generated by ν commuting homeomorphisms,
we are given ν commuting continuous maps, we can extend most of the previous
results of this chapter. This is indicated in Section 6.18. We omit (for simplicity)
considerations of expansiveness.

τ x is now defined only when x ∈ Zν
� = {x ∈ Zν : x1, . . . , xν � 0}; it is thus

a Zν
�-action. We indicate how to associate with it a Zν-action.

6.17 Extension to a Zν-action

First, let

Ω′ =
⋂

x∈zν
�

τ xΩ. (6.19)

The Zν
�-action τ restricts to Ω′, and τ x : Ω′ �→ Ω′ is onto for all x ∈ Zν

�. We
construct now a compact metrizable space Ω with Zν-action τ and a continuous
map π : Ω �→ Ω, such that

πΩ = Ω′

and πτ a = τ aπ when a ∈ Zν
�.

We let

Ω = {(ξx ) ∈ (Ω′)Zν
� : τ aξx−a = ξx if a ∈ Zν

� and x ∈ Zν
�}.
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This is compact metrizable as a closed subset of a countable product of compact
metrizable sets. We also let

τ a−b(ξx ) = (ηx ) with ηx = τ aξx−b

if a, b ∈ Zν
�. The consistency of this definition is easily checked, and yields a

Zν-action by homeomorphisms τ x of Ω. Finally we write

π(ξx ) = ξ0.

It is then clear that πτ a = τ aπ when a ∈ Zν
�. One also verifies easily

that

πΩ = Ω′.

If σ is a τ -invariant probability measure on Ω, then supp σ ⊂ Ω′. By the
Hahn-Banach and Markov-Kakutani theorems∗ there is a probability measure
σ on Ω such that πσ = σ, and τ xσ = σ for all x ∈ Zν

�. Then τ xσ = σ for all
x ∈ Zν (because the τ x are homeomorphisms of Ω). In fact σ is unique because
the functions A ◦π ◦ τ x , with A ∈ C and x ∈ Zν , are dense in C (Ω). Therefore
π : σ �→ σ is a bijection of the τ -invariant states on Ω to the τ -invariant states
on Ω (it is an affine homeomorphism).

6.18 Results for Zν
�-actions

As already mentioned, we omit all considerations of expansiveness. Apart from
that the definitions and results of Sections 6.1, 6.3, 6.4, 6.5 carry over to the
present case, with the following remarks.

(a) We define and consider A� only when � ⊂ Zν
�.

(b) If σ ∈ I, let σ be obtained by the construction of Section 6.17. Then

H (σ, A�) = H (σ,π−1A�) = H (σ, (π−1A)�),

and the existence of the limit (6.3) follows:

h(σ, A) = h(σ,π−1A).

For any finite � ⊂ Zν , (6.4) gives

h(σ,π−1A) = h(σ, (π−1A)�).

∗ See Appendix A.3.2 and A.3.4.
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Since diam(π−1A)� is arbitrarily small when diam A is sufficiently small and
� sufficiently large, Proposition 6.5(a) holds, and

h(σ) = h(σ). (6.20)

Concerning the definition of the pressure in Section 6.6, we note that (6.6)
need not hold for a Zν

�-action, but that we have

Z�+x (A, A) � Z�(A, A) for � ⊂ Zν
�, x ∈ Zν

�

because τ xΩ ⊂ Ω. Therefore a �→ log Z�(a)(A, A) remains subadditive,
and (6.8), (6.10) hold. Furthermore

P(A, A) = lim
a→∞ |�(a)|−1logZ∗�(a)(A, A),

where

Z∗�(A, A) = lim
x→∞ Z�+x (A, A).

Let Z ′�(A, A) denote the partition function computed from the restriction of A
and A to Ω′ (defined by (6.19)). We have

Z ′�(A, A) = Z�(A ◦π,π−1A)

and

Z ′�(A, A) � Z∗�(A, A) � Z ′�(A, A)e|�|δ,

where δ is the maximum of the oscillation of A on a set Ai . Also

lim
diamA→0

P(A ◦π,π−1A) = P(A ◦π),

because diam (π−1A)� is arbitrarily small when diam A is sufficiently small and
� sufficiently large (see end of Section 6.6). Therefore finally (6.11) holds with

P(A) = P(A ◦π). (6.21)

Sections 6.7, 6.8, 6.9 carry over to Zν
�-actions without any problem. Lem-

mas 6.10 and 6.11 will not be needed (but carry over). Theorem 6.12 remains
correct because the case of a Zν

�-action reduces to that of a Zν-action by (6.20)
and (6.21). Finally, with the definitions of I A, I ′A given in Section 6.13, Theorem
6.14 and Remark 6.15 remain correct.
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6.19 Remark

If τ ∗ is a Zν-action on Ω, and τ the Zν
�-action obtained by restriction of τ ∗

to Zν
�, the τ -invariant states coincide with the τ ∗-invariant states, hτ = hτ ∗ ,

and Pτ = Pτ ∗ . In fact the map π : Ω �→ Ω introduced in Section 6.17 is a
homeomorphism.

6.20 Topological entropy

Pτ (0) is called the topological entropy of the Zν
�-action τ . From the various

definitions of Sections 6.6 and 6.7 one sees that the topological entropy gives a
measure of how mixing τ is. We have for instance

P(0) = sup
A

inf
a
|�(a)|−1 log (least cardinal of a subcover of A�(a)).

The variational principle becomes here

P(0) = sup
σ∈I

h(σ).

If ν > 1 and Pτ (0) > 0, it is easily seen that the topological entropy of the
Z�-action associated with each generator of τ is +∞.

6.21 Relative pressure

Let Ω and Ω′ be metrizable compact sets with Zν
� actions τ and τ ′ each gen-

erated by ν continuous maps. We assume that the diagram

τ ′
Ω′−−−−−→Ω′⏐⏐⏐⏐+π

⏐⏐⏐⏐+π
τ

Ω−−−−−→Ω

is commutative, where π is continuous and ontoΩ. We denote by I (respectively
I ′) the set of τ -invariant probability measures on Ω (respectively of τ ′-invariant
probability measures on Ω′).

Let A′ ∈ C (Ω′), ξ ∈ Ω, and � be a finite subset of Zν
�.
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If A is a finite open cover of Ω′, we write

Z�(A′, ξ, A) = min

{∑
j

exp

[
sup

ξ′∈Bj∩π−1ξ

∑
x∈�

A′(τ ′xξ′)

]

: (B j ) is a subfamily of A� which covers π−1ξ

}
,

and define Z (1)
� similarly with infξ′ replacing supξ′ .

If ε > 0 we write*

Z (2)
� (A′, ξ, ε) = sup

{∑
ξ∈S

exp
∑
x∈�

A′(τ ′xξ′)

: S ⊂ π−1ξ and S is (�, ε)-separated

}
,

Z (3)
� (A′, ξ, ε) = inf

{∑
ξ∈S

exp
∑
x∈�

A′(τ ′xξ′)

: S ⊂ Ω and S is (�, ε)-spanning for π−1ξ

}
.

With this notation the following results hold.

6.22 Theorem†

(a) If σ ∈ I, for σ-almost all ξ the following limit exists:

P(A′, ξ) = lim
diam A→0

lim sup
a→∞

1

|�(a)| logZ�(a)(A′, ξ, A)

= lim
diam A→0

lim sup
a→∞

1

|�(a)| logZ (1)
�(a)(A′, ξ, A)

= lim
ε→0

lim sup
a→∞

1

|�(a)| logZ (2)
�(a)(A′, ξ, ε)

= lim
ε→0

lim sup
a→∞

1

|�(a)| logZ (3)
�(a)(A′, ξ, ε),

and it defines a measurable τ -invariant function P(A′, ·) on Ω.

* Other possible definitions would be to take S ⊂ π−1ξ maximal (�, ε)-separated in Z (2)

(instead of sup) and S ⊂ π−1ξ in Z (3) (instead of S ⊂Ω).
† Ledrappier and Walters [1].
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(b) The following variational principle holds:∫
P(A′, ξ)σ(dξ) = sup

σ′∈I ′:πσ′=σ

[
hτ ′ (σ

′|π)+ σ′(A′)
]
, (6.22)

where the relative entropy hτ ′ (σ′|π) reduces to hτ ′ (σ′)− hτ (πσ′) when
hτ (πσ′) < +∞.

If σ is ergodic one can of course assume that P(A′, ξ) is independent of
ξ, and write P(A′,σ) instead.

6.23 Corollary

Let ν = 1, F be a finite set, and M : Ω �→ RF2
be a continuous function with

value in the F × F matrices with entries M jk > 0. The limit

Pξ = lim
n→∞

1

n
log ‖M(ξ)M(τξ) · · ·M(τ n−1ξ)‖ (6.23)

exists for σ-almost all ξ. If we take Ω′ = Ω× FZ and let π : Ω′ �→ Ω be the
canonical projection, we have Pξ = P(A′, ξ), where

A′(ξ, (ξx )x∈Z) = logM(ξ)ξ0ξ1 ,

and the formula (6.22) holds.

[For the existence of the limit (6.23) see Furstenberg and Kesten [1],
Oseledec [1].]

Notes

The notion of entropy is due to Kolmogorov and Sinai. It is now classical for
ν = 1 (see Billingsley [1]). For ν > 1, see Conze [1].

Much of the rest of the theory of this chapter is due to Walters [1]. He defined
topological pressure and proved the variational principle (Theorem 6.12) for
ν = 1 (actually for a continuous map); the extension to ν > 1 was done by
Elsanousi [1].

Walters’s variational principle is a generalization of the variational principle
for lattice systems (Theorem 3.12). Walters was inspired in part by an inter-
mediate generalization (Ruelle [4], where the “pressure” is introduced), and in
part by the earlier work on topological entropy (see Section 6.20). Topological
entropy was first defined by Adler, Konheim, and McAndrew [1]; equivalent def-
initions were later given by Bowen [3]. Goodwyn [1] proved that P(0) � h(σ)
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for all σ ∈ I. That P(0) is the supremum of the h(σ) was shown by Dinaburg
[1] for finite-dimensional Ω, and then by Goodman [1] in general. Technically
the idea contained in Lemma 6.10, and due to Goodwyn, played an essential
role.

In the presentation given here we have largely followed Bowen [6], except
for the simple proof of one half of Theorem 6.12, due to Denker [1]. Another
very simple proof of the whole theorem is due to Misiurewicz [1]. Theorem 6.14
in this setting appears to be new. In general, the reader is urged to consult Bowen
[6] for further details.

Exercises

1. [See Bowen [6], Lemma 2.2 and Lemma 2.3.]
(a) Let A′, A′′, B be Borel partitions of Ω. Show that

H (σ, A′ ∨ A′′ ∨B)− H (σ, A′ ∨B)− H (σ, A′′ ∨B)+ H (σ, B) � 0.

[This is, in a new guise, the strong subadditivity of the entropy; see
Equation (3.22).] This can be rewritten

H (σ, A′ ∨ A′′ ∨B)− H (σ, B)

� H (σ, A′ ∨B)− H (σ, B)+ H (σ, A′′ ∨B)− H (σ, B).

Therefore if A, B are Borel partitions we have

H (σ, A�)− H (σ, B�) � H (σ, A� ∨B�)− H (σ, B�)

�
∑
x∈�

[H (σ, (τ−xA) ∨B�)− H (σ, B�)]

�
∑
x∈�

[H (σ, (τ−xA) ∨ (τ−xB))− H (σ, τ−xB)]

= |�|[H (σ, A ∨B)− H (σ, B)].

From this (6.5) follows.
(b) Given A,σ, and ε > 0, show that one can choose δ > 0 such that

H (σ, A ∨B)− H (σ, B) < ε

if diam B < δ.
[Denote by � the symmetric difference: A�B = (A ∪ B) \ (A ∩ B).

One can choose α > 0 such that if the partition A′ has the same index
set as A and

σ(Ai�A′i ) < α for all i, (*)
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then

H (σ, A ∨ A′)− H (σ, A′) = −
∑
i,k

σ(Ai ∩ A′k) log
σ(Ai ∩ A′k)

σ(A′k)
< ε.

For diam B < δ sufficiently small there exists a partition A′ coarser than
B (i.e. its sets are unions of sets of B) such that (∗) holds; then

H (σ, A ∨B)− H (σ, B) = H (σ, A ∨ A′ ∨B)− H (σ, A′ ∨B)

� H (σ, A ∨ A′)− H (σ, A′) < ε
]
.

2. We have defined Z� (Section 6.6), and Z (i)
� for i = 1, 2, 3 (Section 6.7). Let

also

Z (2)′
� (A, ε) =

∑
ξ∈S

exp
∑
x∈�

A(τ xξ),

where S is an arbitrarily chosen maximal (�, ε)-separated set.
(a) Z (3)

� � Z (2)′
� � Z (2)

� [a maximal (�, ε)-separated set is (�, ε)-spanning].
(b) Z (2)

� (A, diam A) � Z�(A, A).
(c) Z (1)

� (A, A) � Z (3)
� (A, δ/2) if δ is a Lebesgue number for A.

(d) Prove the assertions of Section 6.7.
(e) Define P in terms of Z (2)′

� .
3. Let Ω,Ω∗ be compact metrizable with Zν

�-actions τ and τ ∗. Let f : Ω∗ →
Ω be continuous and such that f ◦ τ ∗x = τ x ◦ f .
(a) If σ∗ is a τ ∗-invariant probability measure on Ω∗, then hτ ∗ (σ∗) �

hτ ( f σ∗). If f is injective we have equality.
(b) If A is a real continuous function on Ω and f is surjective, then

Pτ (A) � Pτ ∗ (A ◦ f ).

(c) If A is a real continuous function on Ω and f is injective, then

Pτ (A) � Pτ ∗ (A ◦ f )

(P∗τ (A ◦ f ) is the pressure of A restricted to f Ω∗). If the support of every
τ -invariant measure is contained in f Ω∗, we have equality.

4. Suppose that Ω = ∪αΩ(α), where the Ω(α) are closed and τ -stable (i.e.
τ xΩ(α) ⊂ Ω(α) for all x ∈ Zν

�). Then Pτ (A) is the sup over α of the pressure
of A restricted to Ω(α). [Choose σ ∈ I such that P(A) < h(σ)+ σ(A)+ ε,
and decompose σ into measures with appropriate supports; cf. Walters [1],
Corollary 4.12(i).]

5. Let Ω1,Ω2 be compact metrizable with Zν
� actions τ1, τ2, and let τ x =

τ x
1 × τ x

2 on Ω1 ×Ω2. If A1 ∈ C (Ω1), A2 ∈ C (Ω2), and A(ξ1, ξ2) = A(ξ1)+
A(ξ2), then Pτ (A) = Pτ1 (A1)+ Pτ2 (A2). [Cf. Walters [1], Theorem 2.2(viii).
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Use the definition of P in terms of Z (3) to prove that Pτ (A) � Pτ1 (A1)+
Pτ2 (A2), and the variational principle to prove the reverse inequality.]

6. If P(0) < +∞, then

{σ ∈ C
∗ : σ(A) � P(A) for all A ∈ C} = I.

7. If P(0) < +∞, let I ′A be defined by (6.17). Show that I A ⊂ I ′A, and that the
set D′ = {A ∈ C : I ′A is reduced to a point} is residual.

Show that I ′A is equal to the set I ′′A of limits σ of sequences σn such that
limn→∞[h(σn)+ σn(A)] = P(A).

[Let σ = limσn where h(σn)+ σn(A) � P(A)− 1/n. Since P(A + B) �
h(σn)+ σn(A + B) � P(A)+ σn(B)− 1/n for all B ∈ C , we have σ ∈ I ′A,
and hence I ′′A ⊂ I ′A. Therefore if A ∈ D′, then I ′′A = I ′A. To show that I ′A ⊂ I ′′A,
use the fact that I ′A is contained in the closed convex hull of limits of σn , where
{σn} = I ′An

, An ∈ D, and An → A (Appendix A.3.7).]
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Statistical mechanics on Smale spaces

Part of the thermodynamic formalism can be extended to the case of a gen-
eral Zν-action by homeomorphisms of a compact metrizable space Ω, as we
have seen in Chapter 6. We shall here extend the richer formalism of one-
dimensional systems, described in Chapter 5, to a certain class of Z-actions by
homeomorphisms of compact metric spaces. Such Z-actions have been met and
studied in the theory of axiom A diffeomorphisms by Smale [1]. We present
here an abstract version of the relevant part of this theory. For the proofs we
shall mostly refer to the publications on axiom A diffeomorphisms. These pub-
lications should also be consulted for motivation, particularly Smale [1] and
Bowen [6]. The main new assumption here is that of a local product structure.
The space Ω is “foliated” by “stable manifolds” V+

x which contract exponen-
tially under iterates of f , and “unstable manifolds” V−

x which contract under
iterates of f −1. If x and y are sufficiently close, V+

x and V−
y determine a

point [x, y] ∈ V+
x ∩ V−

y and the local product structure is defined by the map
x, y → [x, y].

7.1 Smale spaces

Let Ω be a non-empty compact metric space with metric d . We assume that we
are given ε > 0 and [·, ·] with the following property:
(SS1)

[·, ·] : {(x, y) ∈ Ω×Ω : d(x, y) < ε} → Ω

is a continuous map such that [x,x] = x and

[[x, y], z] = [x, z], [x, [y, z]] = [x, z]

when the two sides of these relations are defined.

121
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Note that there exists εn > 0 such that any expression with nested square
brackets of points x1, . . . , xn (in this order) is defined and equal to [x1, xn] when
diam {x1, . . . , xn} < εn .

Let in particular d(x, y) < ε4. If we write u = [y, x], v = [x, y], then

d(u, x) < ε, d(v, x) < ε, d(u, v) < ε,

u = [u, x], v = [x, v], [u, v] = y.
(7.1)

Conversely, if u, v satisfy these conditions, then u = [u, x] = [[u, v], x] =
[y, x] and similarly v = [x, y]. This implies that [·, ·] : V−

x (δ)× V+
x (δ) �→ Ω

is a homeomorphism onto an open subset of Ω, where we have defined

V−
x (δ) = {u : u = [u, x] and d(x, u) < δ}, (7.2)

V+
x (δ) = {v : v = [x, v] and d(x, v) < δ}, (7.3)

and chosen δ such that d(x, u) < δ and d(x, v) < δ imply d(x, [u, v]) < ε4.
If d(x, y) < ε4, we obtain from (7.1), (7.2), (7.3)

{[x, y]} = V+
x (ε) ∩ V−

y (ε). (7.4)

Assume now given λ ∈ (0, 1) and f with the following property:

(SS2) f is a homeomorphism of Ω such that f [x, y] = [ f x, f y] when both
sides are defined and

d ( f n y, f nz) � λnd (y, z) if y, z ∈ V+
x (δ), n > 0,

d ( f −n y, f −nz) � λnd (y, z) if y, z ∈ V−
x (δ), n > 0.

Replacing possibly δ by a smaller number, we have

V+
x (δ) = {y : d( f n x, f n y) < δ for all n � 0}, (7.5)

V−
x (δ) = {y : d( f −n x, f −n y) < δ for all n � 0}. (7.6)

[Choose δ′ such that d(x, y) < δ′ implies

d(x, [x, y]) < δ, d(x, [y, x]) < δ.

We have the following implications of properties each valid for all n � 0:

d( f n x, f n y) < δ′ ⇒ d( f n x, f n[y, x]) < δ

⇒ f n[y, x] ∈ V−
f n x (δ)

⇒ d(x, [y, x]) � λnd( f n x, f n[x, y]) � λnδ

⇒ d(x, [y, x]) = 0 ⇒ y = [[y, x], [x, y]] = [x, [x, y]] = [x, y].

Therefore

V+
x (δ′) ⊃ {y : d( f n x, f n y) < δ′ for all n � 0}.

The converse inclusion follows from (SS2). We have thus proved (7.5) with δ

replaced by the smaller number δ′. The proof of (7.6) is analogous].
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We define a Smale space to be a compact metric space Ω with a map [·, ·]
and a homeomorphism f satisfying (SS1) and (SS2) for suitable ε, λ.

Notice that there is a natural duality which replaces f by f −1, [x, y] by
[y, x], V+ by V−, etc.

7.2 Example

Let 	 be the configuration space of a Z-lattice system (	0, t), and τ the cor-
responding shift (see Chapter 5). Given λ ∈ (0, 1), we define a distance d on
	 by

d(ξ, η) = λk (7.7)

if ξ = (ξn)n∈z ∈ 	, η = (ηn)n∈z ∈ 	, and k = inf{|n| : ξn = ηn}.
If d(ξ, η) < 1, then ξ0 = η0 and we can define

[ξ, η] = (. . . , η−l , . . . , η−1, ξ0, ξ1, . . . , ξl , . . .) ∈ 	.

It is then easy to check that the conditions of Section 7.1 are satisfied with
Ω = 	, f = τ, ε = δ = 1.

It is also readily seen that the Banach space C
α(Ω) of real Hölder continuous

functions of exponent α is identical with the space F
θ introduced in Section 5.19,

with θ = λα/2.

7.3 Properties of Smale spaces

f is expansive (see Section 6.2) with expansive constant δ if δ is sufficiently
small [obvious from (7.5), (7.6), (7.4)]. More precisely, there is C > 0 such that
if d( f k x, f k y) < δ for |k| < n, then d(x, y) < Cλn . [We can take C = max
(diam Ω, 2ε/λ). Using (SS2) we have indeed for n = 0

d(x, [x, y]) � λn−1d( f −n+1x, f −n+1[x, y]),

d([x, y], y) � λn−1d( f n−1[x, y], f n−1 y).]

Let S be a finite or infinite interval∗ of Z, x = (xk)k∈S ∈ ΩS , and α > 0. We
say that x is an α-pseudo-orbit if

d( f xk, xk+1) < α whenever k, k + 1 ∈ S.

We say that x ∈ Ωα-shadows x if

d( f k x, xk) < α for all k ∈ S.

Given β > 0 there is α > 0 so that

∗ S is a finite interval [k, l] (see Section 5.17) or [k,+∞), or (−∞, l], or Z.
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(a) every α-pseudo-orbit x is β-shadowed by a point x ∈ 	,
(b) if x ∈ Ω and d( f n x, x) < α, then there is y ∈ Ω with f n y = y and

d( f k x, f k y) < β for all k � [0, n].

[See Bowen [6], Proposition 3.6 and Corollary 3.7.]

The non-wandering set of (Ω, f ),{
x ∈ Ω : U ∩

⋃
n>0

f nU = Ø for every open U � x

}
,

is the closure of the set

{x ∈ Ω : f n x = x for some n > 0}
of periodic points.

This is Anosov’s closing lemma [see Bowen [6], 3.8.] Notice that the non-
wandering set is not empty (see Appendix A.2).

7.4 Smale’s “spectral decomposition”

The non-wandering set of (Ω, f ) is the union of finitely many disjoint compact
sets Ωα , with f Ωα = Ωα , and f |Ωαtopologically + transitive.∗

Each Ωα is the union of nα disjoint compact sets Ωαβ which are cyclically
permuted by f and such that f nα |Ωαβ is topologically mixing.

These properties determine uniquely the Ωα, nα , and Ωαβ .

[See Bowen [6], Theorem 3.5.] This extends part of Theorems 5.2 and 5.3
on Z-lattice systems. Notice that the non-wandering set of (Ω, f ) and the sets
Ωα are again Smale spaces; Ωαβ is a Smale space with respect to f nα |Ωαβ .

The Ωα are called basic sets. Any f -invariant measure on Ω has its support
in the non-wandering set. In particular, every f -ergodic probability measure
has its support in one of the basic sets.

7.5 Markov partitions and symbolic dynamics

Let δ > 0 be sufficiently small and x ∈ Ω. Suppose that C ⊂ V−
x (δ) is the

closure of its interior in V−
x (2δ), and D ⊂ V+

x (δ) the closure of its interior in

∗ See Appendix A.2 for the definition of topological + transitivity, transitivity, and mixing.
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V+
x (2δ). Then R = [C, D] is the closure of its interior in Ω, and is called a

rectangle. Its boundary is

∂ R = ∂+R ∪ ∂−R,

where

∂+R = [∂C, D], ∂−R = [C, ∂ D],

and ∂C, ∂ D are the boundaries of C, D in V−
x (2δ), V+

x (2δ) respectively.
A Markov partition is a finite cover (Ri ) of Ω by rectangles such that

(a) int Ri ∩ intR j = Ø if i = j ;
(b) if x ∈ int Ri ∩ f −1 int R j , then

f [Ci , x] ⊃ [C j , f x],

f [x, Di ] ⊂ [ f x, D j ],

where we have written Ri = [Ci , Di ], R j = [C j , D j ].

A Smale space Ω has Markov partitions of arbitrarily small diameter.

[See Bowen [1]; or [6], Theorem 3.12.]
If (Ri ) is a Markov partition, we write

∂+ =
⋃

i

∂+Ri , ∂− =
⋃

i

∂−Ri .

One can then show that

f ∂+ ⊂ ∂+, f −1∂− ⊂ ∂−.

Let 	0 be the set of rectangles Ri in a Markov partition, and define

tRi R j =
{

1 if intRi ∩ f −1intR j = Ø,

0 otherwise.

The set 	0 (symbol set) and the matrix t (transition matrix) define a Z-lattice
system (	0, t) (see Chapter 5), with configuration space 	 and shift τ . The
dynamical system (	, τ ) constitutes the symbolic dynamics of the dynamical
system (Ω, f ). This terminology is justified by the following results, valid for
a Markov partition of sufficiently small diameter.

7.6 Theorem

If ξ = (ξn)n∈z ∈ 	, then ∩n∈z f −nξn consists of a single point π (ξ ). Further-
more
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(a) The map π : 	 �→ Ω is continuous onto.
(b) π ◦ τ = f ◦π .
(c) π−1 is uniquely defined on the residual set Ω \ ∪n∈z f n(∂+ ∪ ∂−).
(d) There is an integer d such that, for all x, π−1x has at most d elements.
(e) If f is topologically + transitive (respectively mixing), then (	0, t) is tran-

sitive (respectively mixing).

For (a), (b), (c), (e) see Bowen [1], Section 4; or [6], Theorem 3.18 and
Proposition 3.19. For (d) see Bowen [2], Proposition 10; one can in fact take
d = |	0|2 (R. Bowen, private communication).

7.7 Hölder continuous functions

Part (a) of the above theorem can be made more precise. If the number λ used
in (7.7) to define the metric on 	 is the same as appears in (SS2) for Ω, then
π is Lipshitz, i.e., there exists C > 0 such that

d(πξ, πη) � Cd(ξ, η). (7.8)

If ξ = η we have d(ξ, η) = λn for some n � 0, and ξk = ηk for |k| < n.
Assuming that the diameter of the Markov partition is < δ, we have

d( f kπξ, f kπη) < δ for |k| < n,

and therefore

d(πξ, πη) < Cλn,

as noted in Section 7.3. From this (7.8) follows.
Since π is Lipshitz, if A ∈ C

α(Ω), i.e., if A is a Hölder continuous function
of exponent α on Ω, then A ◦π ∈ C

α(	) = F
θ with θ = λα/2 (see Section 7.2).

This defines a bounded linear map C
α(Ω) �→ F

θ .

7.8 Pressure and equilibrium states

The study of pressure and equilibrium states can be reduced to the same problem
for basic sets (see Section 7.4 and Exercises 3(c) and 4 of Chapter 6). We may
thus suppose that (Ω, f ) is topologically + transitive. Notice that

Pf (A ) � Pτ (A ◦π) (7.9)

(see Exercise 3(b) of Chapter 6).
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Suppose now that A ∈ C
α(Ω), with (Ω, f ) topologically + transitive. Since

A ◦π ∈ F
θ with θ = λα/2, there is a unique τ -invariant probability measure ρ

on 	 such that

hτ (ρ)+ ρ(A ◦π ) = Pτ (A ◦π);

furthermore supp ρ = 	 (see Corollary 5.6(a)). The sets π−1 ∩n�0

f n∂+, π−1 ∩n�0 f −n∂− are closed the τ -invariant. Their complements are not
empty, and thus have ρ-measure different from zero. Using ergodicity gives

ρ

(
π−1

⋂
n�0

f n∂+
)
= ρ

(
π−1

⋂
n�0

f −n∂−
)
= 0;

hence

ρ(π−1∂+) = ρ(π−1∂−) = 0;

hence

ρ

(
π−1

⋃
n∈Z

f n(∂+ ∪ ∂−)

)
= 0.

In view of Theorem 7.6(c), π : (	, ρ) �→ (Ω, πρ) is an isomorphism of abstract
dynamical systems. In particular

h f (πρ) = hτ (ρ),

and therefore

Pf (A) � h f (πρ)+ (πρ)(A) = Pτ (A ◦π ).

Comparing with (7.9) shows that

Pf (A) = Pτ (A ◦π ) (7.10)

and that πρ is an equilibrium state for A.
If σ is any equilibrium state for A, there exists a τ -invariant state σ such

that πσ = σ [use the Hahn–Banach and Markov–Kakutani theorems, Ap-
pendix A.3.2 and A.3.4]. Then

Pτ (A ◦π ) � hτ (σ )+ σ (A ◦π )

� h f (σ)+ σ(A) = Pf (A)

[use Exercise 3(a) of Chapter 6]. Thus σ is an equilibrium state for A ◦π ; hence
σ = ρ.

Notice that (7.10) remains true for A ∈ C (Ω), because of the density of C
α(Ω)

in C (Ω). We have thus proved the following result.
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7.9 Theorem

If (Ω, f ) is topologically + transitive and A ∈ C (Ω), then

Pf (A) = Pτ (A ◦π ).

If A ∈ C
α(Ω), there is a unique equilibrium state ρA = πρ where ρ is the unique

equilibrium state for A ◦π . The map π : (	, ρ) → (Ω,ρA) is an isomorphism
of abstract dynamical systems.

Here are a few consequences.

7.10 Corollary

Assume that (Ω, f ) is topologically + transitive.

(a) The function Pf is real analytic on C
α(Ω).

(b) If A ∈ C
α(Ω), then supp ρA = Ω.

(c) Let A, A′ ∈ C
α(Ω). Then ρA = ρA′ if and only if there exist c ∈ R and C

continuous such that

A′ − A = c + C ◦ f − C.

c is unique, and C is unique up to an additive constant.
(d) If A ∈ C

α(Ω) and (Ω, f ) is topologically mixing, then (ρA, f ) is isomorphic
to a Bernoulli shift.

(a) follows from Corollary 5.27; (b) follows from Corollary 5.6(a); (c)
is proved like Theorem 5.7 (use (a) and see Exercise 2); (d) follows from
Theorem 5.10.

7.11 Remark

The function C in Corollary 7.10(c) is Hölder continuous: C ∈ C
α(Ω) when the

following condition is satisfied (see Exercises 2, 3).

(SS3) There is a constant L > 0 such that

d(x, [x, y]) � Ld(x, y).

This condition will be used only when explicitly stated. It is satisfied in the
example of Section 7.2.

Here are other consequences of Theorem 7.9.
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7.12 Corollary

We assume that (Ω, f ) is topologically mixing. Let α ∈ (0, 1) be fixed, and
define

Dl(B1, . . . , Bl) = ∂ l

∂s1 · · · ∂sl
P

(
A +

∑
i

si Bi

)∣∣∣∣∣
s1=···=sl=0

for A, B1, . . . , Bl ∈ C
α(Ω). In particular D1(B1) = ρA(B1).

(a) Given M > 0 there exist a, b > 0 such that∣∣ρA(B1 · (B2 ◦ f k))− ρA(B1)ρA(B2)
∣∣ � ea−b|k|‖B1‖α‖B2‖α

whenever ‖A‖α � M(‖ ‖α denotes the norm in C
α(	)).

(b) D2(B1, B2) = ∑
k∈Z

[ρA(B1 · (B2 ◦ f k))− ρA(B1)ρA(B2)].

(c) B1 �→ D2(B1, B1) is a positive semi-definite quadratic form on C
α(Ω).

If (SS3) holds, its kernel is {c + C ◦ f − C : c ∈ R, C ∈ C
α(Ω)}. There is

R > 0 such that

[D2(B1, B1)]1/2 � R‖B1‖α.

(d) For all p ∈ R (mod 2π),∑
k∈Z

e−i pk[ρA(B1 · (B1 ◦ f k))− ρA(B1)ρA(B1)] � 0.

(e) (Central limit theorem.∗) Define

B� = |�|−1/2
∑
k∈�

[B1 ◦ f k − σ (B1)],

where � is a finite interval of Z. Let γ be the gaussian probability measure
(1/
√

2π D)e−t2/2D dt on R if D = D2(B1, B1) > 0, the unit mass δ0 at 0 if
D2(B1, B1) = 0. When |�| → ∞, the measure B�σ tends vaguely to γ .

All this is a translation of Exercises 4(e), 5, and 9 of Chapter 5.

7.13 Corollary

Let (Ω, f ) be topologically + transitive and A, B ∈ C
α(Ω). Write

Z[a,b] = ρA

(
exp

b−1∑
k=a

B ◦ f k

)
.

∗ See Ratner [1]; this result can be improved and generalized following Exercise 9 of Chapter 5.
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Then

(a) lim
b−a→∞

1

b − a
log Z[a,b] = P(A + B)− P(A).

(b) Z−1
[a,b](exp

b−1∑
k=a

B ◦ f k) · ρA tends to ρA+B in the vague topology when a →
−∞, b →+∞.

See Proposition 4.4 and Remark 4.5 for the mixing situation. The+ transitive
case follows readily.

7.14 Equilibrium states for A not Hölder continuous

In this section we describe a result valid for dynamical systems somewhat more
general than Smale spaces.

Let Ω again be a general compact metrizable space, and f : Ω �→ Ω a
homeomorphism. Choose a metric d on Ω. We say that f satisfies specification
if, for each δ > 0, there is p(δ) > 0 such that the following holds:

if �1, . . . , �n are finite intervals of Z contained in [a, b], with d(�i , � j ) �
p(δ) when i = j , and x1, . . . , xn ∈ Ω, then there is x ∈ 	 such that

f b−a+p(δ)x = x,

and

d( f k x, f k xi ) < δ f or k ∈ �i .

Let A be a real continuous function on Ω. We introduce the condition
(S) There exist δ > 0 and K � 0 such that if d( f k x, f k y) < δ for k =
0, 1, . . . , n, then ∣∣∣∣∣

n∑
k=0

A( f k x)−
n∑

k=0

A( f k y)

∣∣∣∣∣ � K .

With this terminology, Bowen [5] has obtained the following uniqueness
criterion:

If the homeomorphism f : Ω �→ Ω is expansive and satisfies specification, and
if A ∈ C (Ω) satisfies condition (S), then A has a unique equilibrium state.

In the case of Smale spaces, mixing implies specification, as can be seen using
symbolic dynamics (Theorem 7.6(e)). We have thus the following corollary:

If (	, f ) is a topologically+ transitive Smale space, and if A ∈ C (Ω) satisfies
condition (S), then A has a unique equilibrium state.
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[The topologically + transitive case reduces to the mixing case.]
For any A ∈ C (Ω), define

varn,δ A = sup{|A(y)− A(x)| : d( f k x, f k y) < δ for |k| � n}.
Suppose that

∑∞
n=0 varn,δ A < +∞; then A satisfies condition (S) with k =

2
∑∞

n=0 varn,δ A. For Smale spaces this holds in particular if A is Hölder con-
tinuous [because d(x, y) < Cλn when d( f k x, f k y) < δ for |k| < n; see Sec-
tion 7.3].

In the special case of a Z-lattice system (see Example 7.2), A� satisfies (S)
when � ∈ B1.

7.15 Conjugate points and conjugating homeomorphisms

Let again Ω be a general Smale space. We say that x, y ∈ Ω are conjugate if

lim
|k|→∞

d( f k x, f k y) = 0.

One can thus find n > 0 such that

f n y ∈ V+
f n x (δ), f −n y ∈ V−

f −n x (δ);

and for z in some neighborhood O of x one can define

ϕz = [ f −n[ f n[z, x], f n y], f n[ f −n y, f −n[x, z]]].

ϕ is such that ϕx = y and

(a) ϕ is continuous in O,
(b) lim|k|→∞ d( f k z, f kϕz) = 0 uniformly in z.

We express (a), (b) by saying that (O, ϕ) is a conjugating map. Let (O ′, ϕ′)
be another conjugating map such that y ∈ O ′, ϕ′y = x . Then (O ∩ ϕ−1 O ′, ϕ′ϕ)
is a conjugating map, and it follows from (a), (b) that ϕ′ϕ is the identity in some
neighborhood of x . One can thus replace O by a smaller open neighborhood of
x such that ϕ is a homeomorphism. We say then that (O, ϕ) is a conjugating
homeomorphism.

The following facts are now clear.

If x, y are conjugate, there is a conjugating homeomorphism (O, ϕ) such that
x ∈ O, ϕx = y. Let (O, ϕ), (O ′, ϕ′) be conjugating homeomorphisms. If O ∩
ϕ−1 O ′ = Ø, then (O ∩ ϕ−1 O ′, ϕ′ϕ) is a conjugating homeomorphism. If x ∈
O ∩ O ′ and ϕx = ϕ′x, then ϕ = ϕ′ on a neighborhood of x.



132 Statistical mechanics on Smale spaces

7.16 Proposition

(a) If x is non-wandering and y is conjugate to x, then y is non-wandering.
(b) If x ∈ Ωαβ , then Ωαβ is the closure of the set of points conjugate to x.

To prove (a) we may assume that x is periodic [because of the existence
of conjugating homeomorphisms (Section 7.15) and Anosov’s closing lemma
(Section 7.3)]. Let x have period p, and O be a neighborhood of y. By (7.4)
one can choose δ4 so small that

V+
u (δ) ∩ V−

v (δ) = Ø

if d(u, v) < δ4. We take an arbitrary large m > 0 such that

d( f mp y, x) < δ4/2, d( f −mp y, x) < δ4/2,

and, using (SS2),

f −mpV−
f mp y(δ) ⊂ O, f mpV+

f −mp y(δ) ⊂ O.

Then

f mp O ∩ f −mp O ⊃ V−
f mp y(δ) ∩ V+

f −mp(y)(δ) = Ø,

proving (a).
The sets Ωαβ have mutual distances > 0, and are invariant under f N for

suitable N > 0. Therefore if y is conjugate to x ∈ Ωαβ , then y ∈ Ωαβ because
lim|k|→∞ d( f k N x, f k N y) = 0. To prove (b) it suffices to show that the set of
points conjugate to x is dense in Ωαβ . The points x, y ∈ Ωαβ are conjugate if
and only if lim|k|→∞ d( f knα x, f knα y) = 0, i.e., if and only if they are conjugate
for (Ωαβ, f nα ). All we have to prove is thus that the points conjugate to x are
dense in Ω when f is topologically mixing. It suffices to show that if πξ = x ,
the points conjugate to ξ are dense in Ω: this is the property (D∗) of Remark 1.14
and it holds because (Ω0, t) is mixing (Theorem 7.6(e)).

7.17 Theorem

Let (Ω, f ) be topologically + transitive, and ρ0 be the f-invariant probability
measure which realizes the maximum of the entropy (Bowen measure).

(a) For each x ∈ Ω there are positive measures σ− on V−
x (δ) and σ+ on V+

x (δ)
such that the image of σ− × σ+ by [·, ·] : V−

x (δ)× V+
x (δ) → Ω is the re-

striction of ρ0 to [V−
x (δ), V+

x (δ)].
(b) If (O, ϕ) is a conjugating homeomorphism, the image by ϕ of ρ0 restricted

to O is ρ0 restricted to ϕO:

ϕ(ρ0|O) = ρ0|ϕO.
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(a) is proved by Sinai [1], and by Ruelle and Sullivan [1], Theorem 1. It
corresponds to the fact thatρ0 = πρ0, where (ρ0, τ ) is a mixing Markov process
when (Ω, f ) is topologically mixing (Parry’s theorem: Parry [1]).

In proving (b) we may assume that O is a small neighborhood of x , use (a),
and check that the factorizations of ρ0 near x and ϕx correspond by the natural
maps V±

x → V±
ϕx .

7.18 Gibbs states

Let A ∈ C
α(Ω). If (O, ϕ) is a conjugating homeomorphism define g : O → R

by

g(z) = exp
∞∑

k=−∞
[A( f kϕz)− A( f k z)].

Since d( f k z, f kϕz) tends to zero in a uniform exponential way, the function g
is continuous. One can say that a probability measure σ on Ω is a Gibbs state
for A if

ϕ [g · (σ|O)] = σ|ϕO

for all conjugating homeomorphisms (O, ϕ). This formula expresses that the
image by ϕ of the restriction of σ to O multiplied by g is σ restricted to ϕO .

If σ is an equilibrium state for A, then it is a Gibbs state for A. [Since σ

is f -invariant, its support is in the non-wandering set (Section 7.4). We also
know that a point conjugate to a point in a basic set is in the same basic set
(Proposition 7.16(b)). Therefore it suffices to prove the statement when (Ω, f )
is topologically+ transitive. The statement holds for A = 0 (Theorem 7.17(b))
and therefore for all A ∈ C

α(Ω) by Corollary 7.13(b).]

7.19 Periodic points

Let FixF denote the set of fixed points under a map F . If A is a continuous real
function on Ω, and n an integer > 0, we define a partition function

Zn(A) =
∑

x∈Fix f n

exp
n−1∑
k=0

A( f k x).

Since f is expansive with expansive constant δ (Section 7.3), Fix f n is
([1, n], δ)-separated.

Let (Ω, f ) be topologically mixing. Given α > 0 one can find m such that
if x, y ∈ Ω, there is z such that

d(y, z) < α, d(x, f m z) < α.
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[Let Ω be covered by finitely many balls of radius α/2 centered at periodic
points yi . All yi are in Fix f N for some N > 0. Since ∪n�0 f nN V−

yi
(α/2) is

dense in Ω (Proposition 7.16(b)), there exists n such that every x ∈ Ω is at
distance < α from f nN V−

xi
(α/2) for each i .] In view of the statements (a) and

(b) of Section 7.3, one can thus choose m such that if n > m and x ∈ Ω there is
x ′ ∈ Fix f n such that d( f k x, f k x ′) < δ for all k ∈ [1, n − m]. In other words
Fix f n is ([1, n − m], δ)-spanning.

Since Fix f n is ([1, n], δ])-separated and ([1, n − m], δ)-spanning when f
is mixing, it follows from Section 6.7 that

P(A) = lim
n→∞

1

n
log

∑
x∈Fix f n

exp
n−1∑
k=0

A( f k x)

if A ∈ C . Without the mixing assumption it follows from Smale’s spectral de-
composition that

P(A) = lim sup
n→∞

1

n
log

∑
x∈Fix f n

exp
n−1∑
k=0

A( f k x). (7.11)

7.20 Theorem

Let (Ω, f ) be topologically mixing.

(a) The functions Pn on C = C (Ω) defined by

Pn(A) = 1

n
log

∑
x∈Fix f n

exp
n−1∑
k=0

A( f k x)

tend pointwise to P when n →∞.
(b) Define an f-invariant probability measure σn with support in Fix f n by

σn{y} =
exp

n−1∑
k=0

A( f k y)

∑
x∈Fix f n

exp
n−1∑
k=0

A( f k x)

when y∈Fix f n . If there is a unique equilibrium state ρA for A, then σn

tends to ρA in the vague topology when n →∞. This is in particular the
case if A is Hölder continuous, or satifies conditions (S) of Section 7.14.

(a) was proven above. Since we have

d

ds
Pn(A + s B)

∣∣∣∣
s=0

= σ0(B),
d

ds
P(A + s B) = ρA(B),

(b) follows from (a) and the convexity of the Pn .
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7.21 Study of periodic points by symbolic dynamics

Periodic points for f can be studied by symbolic dynamics. In fact ξ ∈ 	 is
periodic if and only if πξ is periodic (not necessarily of the same period): this
is an immediate corollary of Theorem 7.6(d). It is also known that if πξ = πη

is periodic and ξ0 = η0, then ξ = η [Bowen [2], Proposition 12].

7.22 Proposition

There are finitely many Z-lattice systems (	i , ti ) corresponding to shifts τi

acting on spaces 	i , and there are continuous maps πi : 	i → Ω and numbers
si = ±1 such that the following hold.

(a) πi is Lipshitz, and πiτi = fπi .
(b) There is one value, say 1, of the index i, such that s1 = +1, and τ1, 	1, π1

are the shift, space, and map τ, 	, π associated with a Markov partition.
(c) If i = 1, then πi	i = Ω.
(d) For each x ∈ Ω,

card[{x} ∩ Fix f n] =
∑

i

si card
[
π−1

i {x} ∩ Fix τ n
i

]
.

The shifts τi are explicitly constructed by Manning [1] so that (d) holds; (a),
(b), (c) follow from the construction (see Section 7.7 for (a)).

7.23 Zeta functions

Consider the formal power series

ζ (z) = ζ f (z) = exp
∞∑

n=1

|Fix f n| z
n

n
.

Because of the above proposition

ζ (z) =
∏

i

[
exp

∞∑
n=1

∣∣Fix τ n
i

∣∣ zn

n

]si

.

One checks readily that ∣∣Fix τ n
i

∣∣ = tr tn
i ;

and therefore

ζ (z) =
∏

i

[exp tr(− log(1− zti ))]
si

=
∏

i

[det(1− zti )]
−si ,
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proving that ζ has non-vanishing convergence radius, and that it extends to a
rational function of z.

More generally, if A ∈ C , define

ζ f (zeA) = exp
∞∑

n=1

zn

n

∑
x∈Fix f n

exp
n−1∑
k=0

A( f k x)

= exp
∞∑

n=1

Zn(A)
zn

n
.

If A = 0 this reduces to the previous ζ -function. In general the series

∞∑
n=1

Zn(A)
zn

n

converges for |z| < e−P(A) because of (7.11). Therefore z �→ ζ f (zeA) is analytic
and does not vanish when |z| < e−P(A).

Notice that ζ f (zeA) is the product, over the basic sets Ωα of Smale’s spectral
decomposition, of the functions

ζ f |Ωα (zeA|Ωα

) = ζ f nα|Ωαβ

(
znα exp

nα−1∑
m=0

A ◦ f m |Ωαβ

)
,

so that it is possible to restrict attention to the case where (Ω, f ) is topologically
mixing.

By Proposition 7.22 we have then

ζ f (zeA) = exp
∞∑

n=1

zn

n

∑
i

si

∑
ξ∈Fixτ n

i

exp
n−1∑
k=0

A( f kπiξ )

=
∏

i

⎡
⎣exp

∞∑
n=1

zn

n

∑
ξ∈Fixτ n

i

exp
n−1∑
k=0

A ◦πi
(
τ k

i ξ
)⎤⎦

si

=
∏

i

[ζτi (zeA ◦ πi )]si .

As noticed above, the factor

[ζτi (zeA ◦ πi )]si

is analytic and non-zero when |z| < e−P(A ◦ πi ).
By Theorem 7.9, P(A ◦π1) = P(A). If i = 1, we have (using Theorem

7.6(d))

Zn(A ◦πi ) � d · Zn(A|πi	i ),
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and P(A ◦πi ) � P(A|πi	i ). Since πi	i is a closed f -invariant subset of Ω and
πi	i = Ω (Proposition 7.22(c)), it follows that P(A|πiΩ) < P(A) (Corollary
7.10(b)).

7.24 Theorem

Let (Ω, f ) be topologically mixing and A ∈ C
α(Ω). There is R(A) >

exp[−P(A)] such that z �→ ζ (zeA) is meromorphic, without zero, and with
only one pole in the disk {z : |z| < R(A)}. The pole is simple and located at
exp[−P(A)].

It remains to prove this for ζτ (zeA ◦ π ) instead of ζ f (zeA), and this has been
done in Theorem 5.29.

Notice that for a general Smale space Ω, and A ∈ C
α(Ω), there is R(A) >

exp[−P(A)] such that z �→ ζ (zeA) is meromorphic in the disk {z : |z| < R(a)},
without zero, with poles located at e−P(A) times a root of unity.

Notice also that z �→ ζ (zeA) does not in general extend to a meromorphic
function in C (see Remark 5.30).

7.25 Corollary

Let (	, f ) be topologically mixing.

(a) If A ∈ C
α(Ω), the series

∞∑
n=1

Zn(A)zn −
∞∑

n=1

en P(A)zn

converges for |z| < R(A); therefore

Zn(A)e−n P(A) − 1

tends to zero exponentially fast when n →∞.

(This improves part (a) of Theorem 7.20 when A ∈ C
α(Ω).)

(b) The rational function extending z �→ ζ (z) to C has a simple pole at e−P(0),
where P(0) is the topological entropy, and every other pole or zero has an
absolute value strictly larger than e−P(0).
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7.26 Expanding maps

Let Ω be a compact metric space, with metric d , and f a continuous map of Ω
onto itself∗. We say that f is expanding if there exist ε > 0 and λ ∈ (0, 1) such
that the following property holds:

(E) If d( f x, y′) < 2ε, there exists a unique y such that f y = y′ and d(x, y) <

2ε. Furthermore

d(x, y) � λd( f x, f y).

(E) implies that

d( f x, f y) � λ−1d(x, y)

whenever d(x, y) < 2λε.
We define a map

γ : {(x, y′) ∈ Ω×Ω : d( f x, y′) < ε} �→ Ω

by the conditions

f γ (x, y′) = y′, d(x, γ (x, y′)) < 2ε.

In view of (E) this defines γ uniquely and we have

d(x, γ (x, y′)) � λd( f x, y′).

Furthermore γ is continuous. [Let(x, y′) �→ (x0, y′0) and γ (x, y′) =
y, γ (x0, y′0) = y0. We have

d(y0, y) � d(y0, x0)+ d(x0, x)+ d(x, y) < 2λε

because d(y0, x0)+ d(x, y) < λd( f x0, y′0)+ λd( f x, y′) < 2λε and d(x0, x)
is arbitrarily small. Therefore (E) gives d(y0, y) � λd(y′0, y′) �→ 0.] In partic-
ular, f is a local homeomorphism (and therefore an open map).

We let

Ω = {(xn)n∈Z� : xn ∈ Ω and f xn−1 = xn for all n},
f(xn) = ( f xn), f −1(xn) = (xn−1),

π(xn) = x0.

This agrees with the definitions of Ω, τ,π in Section 6.17. Ω is a compact

∗ If f is not onto, replace Ω by ∩n�0 f nΩ.



Remarks 139

metric space with respect to the metric

d((xn), (yn)) = sup
n�0

λ|n|d(xn, yn).

f is a homeomorphism of Ω such that f π = πf, and π is a continuous and open
map of Ω onto Ω.

If d((xn), (yn)) < ε, define (zn) = [(xn), (yn)] by z0 = x0 and d(zn, yn) < ε

for all n. Equivalently,

z0 = x0, zn−1 = γ (yn−1, zn).

The map [·, ·] is continuous because γ is, and it is readily seen that (SS1)
holds; (SS2) holds also (with δ = ε). Finally condition (SS3) of Section 7.11
is satisfied:

d((yn), [(xn), (yn)]) = d(x0, y0) � d((xn), (yn));

and we have also

d(f−1(xn), f−1(yn)) � λ−1d((xn), (yn)). (7.12)

The space Ω (with map [·, ·] and homeomorphism f ) is thus a Smale space
canonically associated with the expanding map f .

7.27 Remarks

(a) Since the construction of Ω, f,π is the same as that performed in Section
6.17, π induces a bijection σ �→ σ of the f-invariant states on Ω to the
f -invariant states on Ω such that h(σ) = h(σ). If A ∈ C(Ω) we also have
P(A ◦π ) = P(A) (Section 6.18).

(b) π is a bijection of Fix fn to Fix f n [the proof is immediate].
(c) π is a contraction. Therefore if A is Hölder continuous on Ω, then A ◦π is

Hölder continuous on Ω.
(d) f is topologically + transitive (respectively, mixing) if and only if f is.

[f is topologically + transitive if and only if, given non-empty open sets
U, V ⊂ Ω, p, q � 0, and N � 0, there exists n > N such that

fn(fpπ−1U ) ∩ (fqπ−1V ) = Ø,

or if there exists n > N + p − q such that

(π−1U ) ∩ (f−nπ−1V ) = Ø;

but f−nπ−1V = (πf n)−1V = ( f nπ )−1V = π−1( f n)−1v, so that the
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condition becomes

(π−1U ) ∩ (π−1( f n)−1V ) = Ø,

or

U ∩ ( f n)−1V = Ø or f nU ∩ V = Ø.

The mixing case is analogous.]

7.28 Results for expanding maps

In view of the above remarks, the theory of the pressure and of equilibrium
states for a Smale space extends to the situation where an expanding map is
given. In particular, if f is topologically+ transitive and A ∈ C

α(Ω), there is a
unique equilibrium state ρA, i.e. a unique f -invariant state which makes

h(ρ)+ ρ(A)

equal to its maximum P(A). Similarly, the reader may check that most results
mentioned in Corollaries 7.10, 7.12, 7.13 apply here directly or with simple
modifications.

Using Remark 7.27(b) on periodic points, it is seen that Theorems 7.20, 7.24,
and Corollary 7.25 remain true in the present case.

Further results are obtained by using a Markov partition of Ω.

7.29 Markov partitions

Let (Ri ) be a Markov partition of Ω. Each Ri is of the form [Ci , Di ] where
Ci is the closure of its interior in V−

xi
(δ) for some xi . Each set πCi ⊂ Ω has

thus dense interior. We define sets Sj ⊂ Ω to be the closures of the minimal
non-empty intersections of the sets π int Ci . Therefore the Sj are closed and
non-empty, they have dense interior, and they cover Ω. Furthermore

(a) int Si ∩ int Sj = Ø if i = j ;
(b) each f Si is a union of sets Sj .

We call such a family (Si ) a Markov partition∗ for the expanding map f .

∗ Markov partitions for expanding maps can also be obtained directly by a simplification of the
construction of Markov partitions for Smale spaces; cf. Bowen [1].
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(π−1Si ) is formally a Markov partition ofΩ (the setsπ−1Si do not have small
diameter, but we may assume that for some N > 0, (fNπ−1Si ) is a true Markov
partition of Ω). Therefore there is a symbolic dynamics. More precisely, let 	0

be the set of Si , and write

tSi S j =
{

1 if intSi ∩ f −1intSj = Ø,

0 otherwise.

We define 	� as in Section 5.8, and the one-sided shift τ̃ : 	� �→ 	� by
τ̃ (ξn)n�0 = (ξn+1)n�0. This one-sided shift is related in obvious manner to the
shift τ on 	.

7.30 Theorem

If ξ = (ξn)n�0 ∈ 	�, then ∩n�0 f −nξn consists of a single point π(ξ ). Further-
more

(a) The map π : 	� �→ Ω is continuous onto.
(b) π ◦ τ̃ = f ◦π .
(c) π−1 is uniquely defined on the residual set Ω \ ∪n�0 f −n∂ , where ∂ =

∪i (Si\int Si ).
(d) There is an integer d such that, for all x, π−1x has at most d elements.
(e) If f is topologically + transitive (respectively mixing), then the shift τ is

transitive (respectively, mixing).

Everything follows readily from Theorem 7.6, using Remark 7.27(d) for (e).

7.31 Applications

Let f be an expanding map of Ω, and A a real continuous function. A map
LA : C (Ω) �→ C(Ω) is defined by

(LA B)(x) =
∑

y: f y=x

eA(y) B(y),

Let D ⊂ Ω be the residual set of points for which π−1 is uniquely defined. If
πξ ∈ D, we have

(LA B)(πξ ) =
∑

η:τ̃ η=ξ

eA ◦ π (η) B ◦π (η)

= (L( ◦π ))(ξ ),

where L is an operator on C(	�) of the type defined in Section 5.11. One can
apply or adapt the arguments of Chapter 5 to the present situation.
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We consider an example. If f is topologically mixing and A ∈ C
α(Ω), there

exist Ã ∈ C
α(Ω) and a probability measure σ such that

suppσ = Ω

and

lim
n→∞ e−n P(A)Ln

A B = σ (B) · eÃ

uniformly on 	 for each B ∈ C(Ω).
[The limit is uniform on D by Proposition 5.16, and hence on Ω by the

density of D. Suppose that |C(x ′)− C(x)| � cd(x, x ′)α for d(x, x ′) < 2ε; then

(LAeC )(x ′)
(LAeC )(x)

=

∑
y′: f y′=x ′

exp[A(y′)+ C(y′)]
∑

y: f y=x
exp[A(y)+ C(y)]

� exp[a(λd(x, x ′))α + c(λd(x, x ′))α],

so that | Ã(x)− Ã(x ′)| � ãd(x, x ′)α , where ã = aλα(1− λα)−1.]
As another example suppose that the map f has a jacobian eA with respect

to a probability measure ρ on Ω. This means that when B ∈ C(Ω),

[ f (B · ρ)](dx) =
[ ∑

y: f y=x

eA(y) B(y)

]
· ρ(dx).

Then

f n(B · ρ) = (Ln
A B) · ρ.

In particular if f is topologically mixing and A ∈ C
α(Ω) as above, then P(A) =

0 and f nρ �→ eÃρ, the convergence being in norm and exponentially fast [see
Exercise 4(b) of Chapter 5]. In particular, eÃρ is f -invariant and equivalent
to ρ.

The above argument often permits us to show that gnσ has a limit when σ

is a measure on a compact set � but g : � �→ � does not satisfy our condition
(E). It suffices to find a surjective map ω : Ω �→ � and f expanding such that
ω ◦ f = g ◦ω and ω−1 is uniquely defined σ -almost everywhere.

Suppose for instance that � = ∪n
i=1�i and that for each i there is a set I (i)

and a continuous map gi : �i �→ ∪ j∈I (i)� j with the following properties:

(a) ∪i I (i) = {1, . . . , n}.
(b) The �i are closed and σ (�i ∩� j ) = 0 if i = j .
(c) The maps gi are bijective and

d(x, y) � λd( f x, f y).
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(d) There is Ai ∈ C
α(�i ) such that

gi (σ |�i )(dx) = exp[Ai ◦ g−1
i x] · (σ | ∪ j∈I (i) � j )(dx).

Let g : � �→ � have restriction gi to �i (g need not be well defined on �i ∩
� j for i = j). Then gnσ has a limit equivalent to σ when n →∞. To see this let
Ω be the set of sequences (xn, in) with n � 0 such that xn ∈ �in , in+1 ∈ I (in),
and xn+1 = gin xn . Let f (xn, in) = (xn+1, in+1), ω(xn, in) = x0. Then ω ◦ f =
g ◦ω, and if we define

d((xn, in), (yn, jn)) = sup
n

λn[d(xn, yn)+ 2ε(1− δin jn )]

the condition (E) is satisfied. Let ρ = ω−1σ and A(xn, in) = Ai0 (xi0 ). Then
A ∈ C

α(Ω) and the map f has jacobian eA with respect to ρ.

Notes

Axiom A diffeomorphisms have been introduced by Smale [1], and his paper is
still the best introduction to the subject. Smale’s definition extends the earlier
notion of Anosov diffeomorphism (see Anosov [1]). The idea of an “abstract”
study of axiom A diffeomorphisms restricted to the non-wandering set (or to
a hyperbolic set) is present in Bowen [1] (cf. the “Fact 1” used in that paper).
Our study is based on axioms (SS1), (SS2), and we use the term Smale space
for a dynamical system with these properties. The results obtained here apply
to axiom A, and in particular to Anosov diffeomorphisms.

A basic tool is the existence of Markov partitions, and of symbolic dynam-
ics, first proved by Sinai [1], [2] for Anosov diffeomorphisms. This proof was
improved and extended to axiom A diffeomorphisms by Bowen [1]. Sinai [4]
realized that, using symbolic dynamics, the methods of statistical mechanics
permit the study of invariant measures on a manifold with an Anosov dif-
feomorphism. This idea extends again to axiom A diffeomorphisms (Ruelle
[5], Bowen and Ruelle [1]). The present exposition follows Sinai’s ideas, and
Bowen’s monograph [6], with addition of some new facts.

The theory of Gibbs state presented in Sections 7.15 to 7.18 corresponds to
a general definition of Gibbs states given by Capocaccia [1].

The study of periodic points in Sections 7.19 to 7.25 follows Bowen [2] and
Manning [1]. Theorem 7.24 was announced in Ruelle [6].

The theory of expanding maps developed in Sections 7.26 to 7.31 is
an application of the theory of Smale spaces. It is more general (and thus
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less rich) than the theory of expanding diffeomorphisms given by Shub
[1] and Hirsch [1]. The study of the iterates of LA in Section 7.31 is an
extension of the Perron–Frobenius theorem, as was Proposition 5.16. For
other developments see Walters [3], [4], and in another direction Lasota and
Yorke [1].

Exercises

1. Prove that a Smale space has finite Hausdorff dimension.∗

[Let δ be as in Section 7.3, and cover Ω with a finite number N of sets
with diameters < δ. For any n > 0,Ω is covered by at most N 2n−1 sets Si

of diameter < Cλn . Therefore, if α > (2 log N )/| log λ|, then

lim
n→∞Cλn = 0,

lim
n→∞

∑
i

(diam Si )
α � lim

n→∞ N 2n−1(Cλn)α = Cα

N
lim

n→∞(N 2λα)n = 0,

and this implies that dim Ω � (2 log N )/| log λ|; see for instance Billingsley
[1], Section 14.]

2. Let (Ω, f ) be a topologically + transitive Smale space. The following con-
ditions on B ∈ C

α(Ω) are equivalent:
(a) σ(B) = 0 for all σ ∈ I.
(b)

∑n−1
k=0 B( f k x) = 0 for all n and all x ∈Fix f n .

(c) B = C ◦ f − C with C ∈ C(Ω).
In (c), C is determined up to an additive constant, and C ∈ C

α(Ω) if
condition (SS3) of Section 7.11 holds.

[(c) ⇒ (a) ⇒ (b) are trivial. To prove (b) ⇒ (c) one chooses y such that
� = { f k y : k ∈ Z} is dense in Ω, and constructs C |� as in the proof of
Theorem 5.7. Let now u, v ∈ Ω, f k y → u, f l y → v, l − k →+∞. There
is z with f l−k z = z and d( f m z, f k+m y) < δ for m ∈ [0, l − k] (if d(u, v) is
sufficiently small; see Section 7.3). Thus

C(v)− C(u) = lim[C( f l y)− C( f k y)]

= lim
l−k−1∑

j=0

B( f k+ j y) = lim
l−k−1∑

j=0

[B( f k+ j y)− B( f j z)].

∗ This result, due to Rosenberg, was communicated to me by R. Bowen.
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This can be majorized term by term using

d( f k+ j y, f j z) < constant×max(λ j , λ(l−k)− j ).

One can thus take the limit l − k →∞, z → [u, v]:

C(v)− C(u) =
∞∑
j=0

[B( f j u)− B( f j [u, v])]

+
∞∑
j=1

[B( f − jv)− B( f − j [u, v])].

Hence

|C(v)− C(u)| � constant× [d(u, [u, v])α + d(v, [u, v])α].

This implies C ∈ C (Ω), and C ∈ C
α(Ω) if (SS3) is satisfied.]

3. Using Exercise 2, show that the function C of Corollary 7.10(c) is Hölder
continuous if condition (SS3) of Section 7.11 holds.

4. Let f be an expanding map.
(a) If f is topologically mixing, the periodic points are dense in Ω.
(b) f is topologically mixing if and only if for every non-empty open set

O ⊂ Ω there is an N > 0 such that f N O = Ω.
(c) If the periodic points are dense in Ω and Ω is connected, then f is

topologically mixing.
[(a): By Remark 7.27(d), f is topologically mixing; hence Ω is non-

wandering, hence the periodic points are dense in Ω, and therefore in Ω by
Remark 7.27(b). (b): Let f be topologically mixing, O open non-empty con-
tained inΩ. Using (a), let x ∈ O∩Fix f p. Replacing O by a sufficiently small
ball around x , and using (E), we have f p O ⊃ O , so that f np O increases with
n. If y ∈ ∪n>0 f np O , then (E) implies that {z : d(z, y) < 2ε} ⊂ ∪n>0 f np O ,
and since ∪n>0 f np O is dense in Ω by mixing, this set is equal to Ω. Since
the f np O are open and Ω is compact, there is some n such that f np O = Ω.
The converse is immediate. (c): The proof is like that of (b).]
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Miscellaneous definitions and results

A.1.1 Order

Let � be an order relation on a set E , and S ⊂ E . There is at most one a ∈ S
such that a � x for all x ∈ S (a is the greatest element of S); there is also at
most one b ∈ S such that b � x for all x ∈ S (b is the least element of S).

If a ∈ E and a � x for all x ∈ S, a is an upper bound of S, and if the set
of upper bounds of S has a least element, this is called the least upper bound
or sup of S, and denoted by ∨S. If b ∈ E and b � x for all x ∈ S, b is a lower
bound of S, and if the set of lower bounds of S has a greatest element, this is
called the greatest lower bound or inf of S, and denoted by ∧S.∗

An ordered set E is called a lattice if every finite S ⊂ E has a least upper
bound and a greatest lower bound. For this it suffices to require that every two-
element subset {x, y} has a least upper bound x ∨ y and a greatest lower bound
x ∧ y.

A.1.2 Residual sets

Let E be a topological space. A subset S of E is called residual if it contains
a countable intersection of dense open sets. If E is metrizable and complete,
then every residual subset is dense in E (Baire’s theorem). We say that a prop-
erty (of points x of E) is generic if it holds for all x ∈ S, S a residual subset
of E .

∗ Note that our use of the symbols ∨, ∧ for covers (Section 6.3) does not quite conform to these
definitions.

146
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A.1.3 Upper semi-continuity

A function f with values in R ∪ {−∞} on the topological space E is upper
semi-continuous if for every x ∈ E and a > f (x) there is a neighborhood Nx

of x such that

y ∈ Nx ⇒ f (y) < a.

It is equivalent to require that, for every real a, {x ∈ E : f (x) < a} is open or
{x ∈ E : f (x) � a} closed.

The greatest lower bound of a family of real continuous functions on E is
upper semi-continuous. If E is compact, and f is upper semi-continuous, there
exists x ∈ E such that

f (x) = sup
y∈E

f (y).

Thus, on a compact set, an upper semi-continuous function reaches its maxi-
mum.

A.1.4 Subadditivity

Let F(a1, . . . , av) be real and defined when a1, . . . , av are integers > 0. We say
that F is subadditive if

F(a1, . . . , a′k + a′′k , . . . , av) � F(a1, . . . , a′k, . . . , av)+ F(a1, . . . , a′′k , . . . , av)

for all k. We have then

lim
a1,...,av→∞

F(a1, . . . , av)
v∏

k=1
ak

= inf
a1,...,av

F(a1, . . . , av)
v∏

k=1
ak

.

The limit is a real number or −∞. [This is implicit in the proof of (3.17).]
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Topological dynamics

Let 	 be a non-empty Hausdorff topological space, and f : 	 �→ 	 a contin-
uous map. The pair (	, f ) is a topological dynamical system. A point x ∈ 	

is wandering if it has a neighborhood U such that U ∩ ∪∞n=1 f nU = Ø. A point
x is non-wandering if, given a neighborhood U of x , and N � 0, there ex-
ists n > N such that f nU ∩U = Ø. The non-wandering points constitute the
non-wandering set �; � is closed and f � ⊂ �. If f is a homeomorphism,
the non-wandering set for f −1 is the same as that for f . If 	 is compact, the
non-wandering set is not empty.

We say that (	, f ), or f, is topologically + transitive if it satisfies the fol-
lowing condition.

(+T) If U, V ⊂ 	 are non-empty open sets, and N � 0, there exists n > N
such that f nU ∩ V = Ø.

If f is topologically+ transitive, then 	 is the non-wandering set. A homeo-
morphism f is topologically+ transitive if and only if f −1 is. If 	 is a compact
metrizable space, (+T) is also equivalent to the following conditions.

(+T′) There is x ∈ 	 such that the set of limit points of the sequence ( f n x)n>0

is 	.
(+T′′) Those x ∈ 	 such that the set of limit points of ( f n x)n>0 is 	 form a
residual subset of 	.

[Let (Vk)k>0 be a countable basis of the topology of 	. The set of limit points
of ( f n x) is 	 if { f m+n x : n > 0} is dense in 	 for all m > 0. The set of x for
which this is true is a countable intersection of open sets:⋂

k>0

⋂
m>0

⋃
n

f −m−n Vk .

If (+T) holds, this set has a non-empty intersection with each open U = Ø,
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and hence is dense; hence (+T) ⇒ (+T′′). Clearly (+T′′) ⇒ (+T′). If U, V
are non-empty open sets and (+T′) holds, then f m x ∈ U and f m+n x ∈ V for
some m, n > N ; hence (+T) holds.]

Notice that if the set of limit points of ( f n x) is 	, then { f n x : n > 0} is
dense in 	; the converse is true if 	 contains no isolated point.

We say that (	, f ), or f, is topologically mixing if it satisfies the condition

(M) If U, V ⊂ 	 are non-empty open sets, there exists N � 0 such that

f nU ∩ V = Ø for all n > N .

If f is topologically mixing, then f is topologically + transitive. A home-
omorphism f is topologically mixing if and only if f −1 is.

We say that a homeomorphism f is topologically transitive if it satisfies the
condition

(T) If U,V are non-empty open sets, there exists n ∈ Z such that f nU ∩ V = Ø.

A homeomorphism f is topologically + transitive if and only if f is topo-
logically transitive, and 	 is the nonwandering set:

(+T) ⇔ (T) and 	 is the non-wandering set.

[It is trivial that (+T) ⇒ (T) and 	 is the non-wandering set. Assume now (T)
and that 	 is the non-wandering set. Let U,V be non-empty open subsets of 	,
and N � 0. We want to prove that

f mU ∩ V = Ø with m > N .

By (T) we have f nU ∩ V = Ø with n ∈ Z. Since any point x of W = f nU ∩ V
is non-wandering, there exists m > N such that W ∩ f m−n W = Ø; hence
f mU ∩ V ⊃ W ∩ f m−n W = Ø.]

If 	 is a compact metrizable space, and f a homeomorphism, (T) is equiv-
alent to the following conditions (see Walters [2], Chapter 5, Section 2):

(T′) There is x ∈ 	 such that { f n x : n ∈ Z} is dense in 	.
(T′′) Those x ∈ 	 such that { f n x : n ∈ Z} is dense in 	 form a residual subset
of 	.



Appendix A.3

Convexity

A.3.1 Generalities

Let V be a real vector space. A set S ⊂ V is convex if αx + (1− α)y ∈ S
whenever x, y ∈ S and 0 � α � 1. The convex hull of a set S ⊂ V is the smallest
convex set containing S.

Let S be convex. A function f : S �→ R is convex if {(x, t) ∈ V × R : x ∈ S
and t � f (x)} is convex; f is concave if − f is convex; f is affine if f is convex
and concave. More generally if W is a real vector space, we say that f : S �→
W is affine if it satisfies f (αx + (1− α)y) = α f (x)+ (1− α) f (y) whenever
x, y ∈ S and 0 � α � 1. In particular a linear map V → W is affine.

If S is a convex open subset of Rn , then every convex function on S is contin-
uous. If f is a real function on the open interval (a, b) ⊂ R and d2 f (x)/dx2 � 0
for x ∈ (a, b), then f is convex.

Convexity is central in the theory of topological vector spaces (see Köthe
[1]). Here we indicate only some results used in the text.

A.3.2 Hahn–Banach theorem

Let P : V �→ R be convex, and let W be a linear subspace of V. Suppose that
w : W �→ R is linear and satisfies w � P|W . Then there exists v : V �→ R
linear and such that

v � P, v|W = w.

If V is a topological vector space and P is continuous, then v is continuous.
(Standard application: V is normed and P is the norm.)
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A.3.3 Separation theorems

We say that two subsets S, S′ of the topological vector space V are separated
by a (closed) hyperplane if there is a continuous linear function f : V �→ R
and c ∈ R such that f (x) � c for x ∈ S and f (x) � c for x ∈ S′. If f (x) < c
for x ∈ S and f (x) > c for x ∈ S′, we say that S, S′ are strictly separated.

Let S and S′ be disjoint convex sets.

(a) If S is open, then S and S′ are separated by a hyperplane.
(b) If S and S′ are open, then S and S′ are strictly separated by a hyperplane.
(c) If V is locally convex, S compact, and S′ closed, then S and S′ are strictly

separated by a hyperplane.

[Note that (a) and (b) are forms of the Hahn–Banach theorem].

A.3.4 Convex compact sets

Let V be a normed space. Its dual V ∗ (space of continuous linear functionals
on V) is a Banach space with the norm

σ �→ ‖σ‖ = sup
x∈V :‖x‖�1

|σ (x)|.

The weak topology on V ∗ is the topology of pointwise convergence of linear
functionals on V ; V ∗ with the weak topology is locally convex, and its dual is
V . The closed unit ball {σ ∈ V ∗ : ‖σ‖ � 1} is compact for the weak topology
of V ∗ (this is a special case of the Alaoglu–Bourbaki theorem).

Let K be a convex compact subset of the locally convex topological vector
space V, and let ( fα) be a commuting family of continuous affine maps K �→ K .

Then the fα have a common fixed point (Markov–Kakutani theorem).

A.3.5 Extremal points

Let V be a real vector space and S ⊂ V . A point z ∈ S is extremal if

z = αx + (1− α)y with x, y ∈ S, 0 < α < 1

imply x = y = z.
Let K be a convex compact subset of the locally convex topological vector

space V, and let E be the set of its extremal points. Then the closure of the
convex hull of E is K (Krein–Milman theorem).
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Let S be a subset of the locally convex topological vector space V, such that
the closure K of its convex hull is compact. Then the extremal points of K are
in the closure of S (theorem of Milman).

A.3.6 Tangent functionals to convex functions

Let V be a topological vector space and P : V �→ R be convex continuous. A
linear functional σ : V �→ R is called tangent to P at x if

P(x + y) � P(x)+ σ (y) for all y ∈ V .

More generally, σ is called P-bounded if there exists c ∈ R such that

σ − c � P.

By the Hahn–Banach theorem, σ is then continuous, i.e. σ is in the dual V ∗ of
V . Furthermore at each x ∈ V the set of tangent functionals is nonempty.

Let V be a Banach space, P : V �→ R be convex continuous, and C be a
closed convex cone with apex O in V . If σ0 ∈ V ∗ is P-bounded, x0 ∈ V , and
ε > 0, there is σ ∈ V ∗ tangent to P at x with x ∈ x0 + C ,

||x − x0|| � 1

ε
[P(x0)− σ0(x0)− s(σ0)].

and

σ (y) � σ0(y)− ε||y|| (∀y ∈ C), (∗)

where we have written s(σ0) = inf{P(y)− σ0(y) : y ∈ V }. (Theorem of Israel
[1]. If C is a linear subspace, the condition (∗) becomes ||(σ − σ0)|C || � ε; if
C = V one recovers a theorem by Bishop and Phelps.)

A.3.7 Multiplicity of tangent functionals

If V is a separable Banach space and P : V �→ R is convex continuous, the
set of points x ∈ V at which there is only one tangent functional is residual
(theorem of Mazur [1]).

If V is a separable Banach space and P : V �→ R is convex continuous, the
set

{σ ∈ V ∗ : σ is tangent to P at x}
is the closed convex hull (for the weak topology) of the set of limits

σ = lim
n→∞ σn,

where σn is the only tangent functional to P at xn and limn→∞xn = x (theorem
of Lanford and Robinson [1]).
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Measures and abstract dynamical systems

A.4.1 Measures on compact sets

Let 	 be a compact space, and C (	) the Banach space of continuous real
functions on 	 with the norm

A �→ ‖A‖ = sup
x∈	

|A(x)|

(uniform norm). The dual C (	)∗ of C (	) consists of the real measures on 	.
We call vague topology the weak topology on C (	)∗ (see Appendix A.3.4).
C (	)∗ is also a Banach space with the norm

ρ �→‖ρ ‖= sup
A:‖A‖�|

|ρ(A)|.

If 	′ is another compact space and f : 	 �→ 	′ a continuous map, we define
f : C (	)∗ �→ C (	′)∗ by

( fρ)(A) = ρ(A ◦ f ) for ρ ∈ C (	)∗, A ∈ C (	′),

and call fρ the image of the measure ρ by the continuous map f .
If A ∈ C (	) and ρ ∈ C (	)∗, we define the product A · ρ ∈ C (	)∗ by

(A · ρ)(B) = ρ(AB) for all B ∈ C (	).
If ρ1, ρ2 ∈ C (	)∗ and ρ1(A) � ρ2(A) whenever 0 � A ∈ C (	), we write

ρ1 � ρ2. This is an order relation, with respect to which C (	)∗ is a lattice
(see Appendix A.1.1). A measure ρ on 	 is called a probability measure if it.
satisfies two (and thus all) of the following conditions:

(a) ρ � 0,
(b) ρ(1) = 1,
(c) ‖ρ‖ = 1.
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If ρ ∈ C (	)∗ and A ∈ C (	), we use the notation

ρ(A) =
∫

A dρ =
∫

A(x)ρ(dx).

This integration with respect to ρ can be extended from C (	) to a large class
of functions, in particular to the characteristic functions of many subsets of 	,
defining the measure of these sets (measurable sets). Among the measurable
subsets of a metrizable compact space are the Borel sets: they are the elements
of the σ -ring generated by the compact sets. [A non-empty class of sets is a
σ -ring if it is closed under symmetric differences and countable unions.] The
measurable sets are precisely the sets X ∪ N where N ⊂ Y, X, Y, are Borel,
and Y has measure zero.

The theory just sketched is that of Radon measures on compact spaces (see
for instance Bourbaki [1], [2]). Radon measures on locally compact spaces are
defined analogously (an example is that of Lebesgue measure on Rn). Except
when stated otherwise, measures which occur in this monograph are Radon
measures.

A.4.2 Abstract measure theory

It is possible to develop an “abstract” measure theory without assuming a topol-
ogy on 	 (see for instance Halmos [1]). The fundamental object is then a mea-
sure space (	, A, ρ) where A is a family of subsets of 	 (measurable sets) and
the measure ρ is a countable additive function A �→ R. We assume ρ � 0 and
ρ(	) < +∞. Isomorphisms of measure spaces are measure preserving maps
defined and one-to-one up to sets of measure zero. One can show that the mea-
sure space defined by a positive Radon measure on a metrizable compact space
is a Lebesgue space, i.e. isomorphic to the union of an interval of R with the
Lebesgue measure, and a countable set (finite or infinite) such that each point
has a measure or “mass” > 0 (see Rohlin [1]). In particular if a probability
measure ρ on a compact metrizable space is non-atomic (i.e. ρ{x} = 0 for each
point x), it defines a measure space isomorphic to the unit interval (0, 1) ⊂ R
with the Lebesgue measure.

A.4.3 Abstract dynamical systems

We call a quadruple (	, A, ρ, τ ) an abstract dynamical system when (	, A, ρ)
is a measure space and τ : 	 �→ 	 is an invertible map which preserves A

and ρ. We assume furthermore that (	, A, ρ) is isomorphic to the unit interval
(0,1)⊂ R with the Lebesgue measure.
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An isomorphism of two abstract dynamical systems (	, A, ρ, τ ) and
(	′, A

′, ρ ′, τ ′) is an isomorphism f : (	, A, ρ) �→ (	′, A
′, ρ ′) of measure

spaces, such that f ◦ τ = τ ′ ◦ f .
The entropy, or Kolmogorov–Sinai invariant, of an abstract dynamical sys-

tem is defined as in Section 6.4, replacing Borel partitions by measurable par-
titions. In particular this definition coincides with that of Section 6.4 for the
abstract dynamical system defined by a homeomorphism of a metrizable com-
pact space and an invariant probability measure. The entropy is a number h � 0
or +∞; it depends only on the isomorphism class of the abstract dynamical
system.

A.4.4 Bernoulli shifts

Let μ be a probability measure on the finite set 	0. The product measure
ρ = μ⊗Z on 	 = (	0)Z is invariant under the shift τ (see Chapter 5). We
call the resulting abstract dynamical system (or any abstract dynamical system
isomorphic to it) a Bernoulli shift. Notice that the entropy is

h = −
∑
ξ∈	0

μ{ξ} log μ{ξ}.

We assume that h > 0.

A.4.5 Partitions

For the definition of partitions and related definitions, see Section 6.3.
Let (	, A, ρ) be a measure space and ε > 0. Let A = (Ai )i∈I and B =

(B j ) j∈J be finite measurable partitions. We say that A is ε-independent of B

if there is J ′ ⊂ J such that
∑′

j∈J ′ ρ(B j ) � ε and∑
i∈I

|ρ(Ai ∩B j )/ρ(B j )− ρ(Ai )| < ε

if j ∈ J ′. This relation is not symmetric, but it implies the symmetric relation∑
i∈I

∑
j∈J

|ρ(Ai ∩B j )− ρ(Ai )ρ(B j )| < 3ε,

and is implied by∑
i∈I

∑
j∈J

|ρ(Ai ∩B j )− ρ(Ai )ρ(B j )| < ε2.

The partition A = (Ai ) is called generating for the abstract dynamical system
(	, A, ρ, τ ) if the sets τ kAi (k ∈ Z) generate A (by countable intersections and
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unions, and up to sets of measure zero). We say that A is a weak Bernoulli par-
tition if, for each ε > 0 there exists n such that ∨x∈[n,n+k]τ

xA is ε-independent
of ∨x∈[−k,−1]τ

xA for all k > 0.

A.4.6 Isomorphism theorems

Two Bernoulli shifts with the same entropy are isomorphic (theorem of Orn-
stein).

If an abstract dynamical system (with non-atomic Lebesgue measure space)
has a weak Bernoulli partition which is generating, then this system is isomor-
phic to a Bernoulli shift (theorem of Friedman and Ornstein).

For more details on the isomorphism theorems, see Ornstein [1], Shields [1],
Smorodinsky [1].
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Integral representations on convex compact sets

This summary follows Appendix A.5 of Ruelle [3]. Proofs of the results will
be found in Bourbaki [1] and a paper by Choquet and Meyer [1], referred to in
what follows as [B] and [C-M]. See also Phelps [1], Lanford [1].

A.5.1 Resultant of a measure

Let V be a locally convex topological vector space and K a convex compact
subset of V . The dual C (K )∗ of C (K ) consists of the real measures on K ;
we denote by M+ the convex cone of positive measures and by M1 the set of
positive measures of norm 1 on K (M1 is the set of probability measures on K ).
If ρ ∈ K , we denote by δρ ∈ M1 the unit mass (=Dirac measure) at ρ.

If m ∈ M1, there exists ρ ∈ K such that, for all f ∈ V ∗ (=dual of V ),

f (ρ) =
∫

f (σ )m(dσ ).

ρ is called the resultant of m ([B], p. 216, Corollaire). If m ∈ M1 has resul-
tant ρ, then m can be approximated vaguely (see Appendix A.4.1) by mea-
sures m ′ ∈ M1 with resultant ρ and finite support (i.e., m ′ =∑n

i=1 λiδρi , λi �
0,
∑n

i=1 λi = 1, ρi ∈ K ,
∑n

i=1 λiρi = ρ; see [B], p. 217, Proposition 3). If
m ∈ M1 has resultant ρ and the function f is affine upper semi-continuous
on K , then m( f ) = f (ρ) ([C-M], Lemme 10).

A compact subset S of K is called a face of K if supp m ⊂ S whenever the
resultant of the probability measure m is in S.
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A.5.2 Maximal measures

Let S ⊂ C (K ) be the convex cone of convex continuous functions on K . We
introduce an order relation ≺ on M+ by

(m1 ≺ m2) ⇔ (for all f ∈ S : m1( f ) � m2( f )).

If m1 ≺ m2 and f is an affine continuous function, then m1( f ) = m2( f ); in
particular ‖m1‖ = ‖m2‖ and (if m1 ∈ M1) m1, m2 have the same resultant. If
m ∈ M1 and ρ ∈ K ,

(m has resultant ρ) ⇔ (m  δρ).

We say that m ∈ M+ is maximal if it is maximal for the order≺. If m ∈ M+,
there is a maximal measure  m ([C-M], Théorème 3). In particular, if ρ ∈ K ,
there exists a maximal measure with resultant ρ.

A.5.3 Uniqueness problem

Let us assume that K is a basis of a convex cone C with apex O in V . This means
that K is the intersection of C with a closed hyperplane H � O of V which
meets all generating half-lines of C . This situation can always be arranged,
replacing V by R× V and imbedding K in R× V as {1} × K . The cone C
defines an order in V (where ξ1 � ξ2 means ξ2 − ξ1 ∈ C); if C is a lattice for
this order (see Appendix A.1.1), we say that K is a simplex (Choquet). This
definition does not depend on the choice of C .

The following conditions are equivalent ([C-M], Théorème 11):

(a) K is a simplex.
(b) If ρ ∈ K , there is a unique maximal measure mρ  δρ

(i.e., every ρ ∈ K is the resultant of a unique maximal measure mρ).
If K is a simplex, the mapping ρ �→ mρ is affine ([C-M], proof of

Théorème 11).

A.5.4 Maximal measures and extremal points

Let E(K ) be the set of extremal points of K . If m ∈ M+ is carried by E(K )
(i.e. if E(K ) is m-measurable and m(K\E(K )) = 0), then m is maximal ([C-M],
Proposition 15). Conversely, if K is metrizable and m ∈ M+ is maximal, then
m is carried by E(K ) ([C-M], Lemme 13).

Therefore if K is metrizable and m ∈ M+,

(m maximal) ⇔ (m carried by E(K )).
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In particular every ρ ∈ K is the resultant of a measure mρ carried by E(K ), and
if K is a simplex, ρ �→ mρ is one-to-one from K onto the probability measures
on K carried by E(K ). In this case we may say that every ρ ∈ K has a unique
integral representation on E(K ) by a measure mρ such that f (ρ) = mρ( f ) for
any affine continuous function f on K .

A.5.5 Simplexes of measures

Let 	 be a compact space. We put on the space C (	)∗ of real measures on 	

the vague topology (see Appendix A.4.1). The set E = M1(	) of probability
measures on 	 is then compact; E is metrizable if 	 is.

Let G be a closed linear subspace of C (	)∗. If σ ∈ G implies |σ | ∈ G, then
K = E ∩ G is a simplex. If ρ, ρ ′ ∈ E ∩ G, then ‖ρ ′ − ρ‖ = ‖mρ ′ − mρ‖. In
particular if ρ, ρ ′ are distinct extremal points of E ∩ G, then ‖ρ ′ − ρ‖ = 2, i.e.
ρ and ρ ′ are disjoint measures. [Let H = {σ ∈ G : σ (1) = 1} and G+ be the
convex cone of positive measures in G. Since E ∩ G = H ∩ G+, this set is a
basis of G+. Let σ1, σ2 ∈ G+; then σ± = 1

2 (σ1 + σ2 ± |σ1 − σ2|), which are the
sup and inf of σ1 and σ2 in C(	)∗, are in G by assumption, and hence in G+.
Therefore σ± are the sup and inf of σ1, σ2 for the order defined by G+ : G+ is
a simplicial cone and E ∩ G is a simplex. Let now ρ, ρ ′ ∈ E ∩ G. Define ρ± =
1
2 [|ρ ′ − ρ| ± (ρ ′ − ρ)] � 0 and let m± = ‖ρ±‖mρ±/‖ρ±‖ or 0 if ‖ρ±‖ = 0. Then
m+, m− are disjoint (because ρ+, ρ− are disjoint), and mρ ′ − mρ = m+ − m−
(because ρ ′ − ρ = ρ+ − ρ− and σ �→ mσ is affine). Thus

‖ρ ′ − ρ‖ = ‖ρ+ − ρ−‖ = ‖ρ+‖ + ‖ρ−‖ = ‖m+‖ + ‖m−‖
= ‖m+ − m−‖ = ‖mρ ′ − mρ‖.]

A.5.6 Zν-invariant measures

Let 	 be a compact space, τ a Zν-action by homeomorphisms on 	, and
I ⊂ C (	)∗ the simplex of τ -invariant probability measures on 	. The unique
maximal measure mρ on I with resultant ρ ∈ I is determined by

mρ

(
l∏

i=1

Âi

)
= lim

�1,...,�l↗∞
ρ

(
l∏

i=1

(
|�i |−1

∑
x∈�i

Ai ◦ τ x

))
,

where Â : I �→ R is defined by Â(σ ) = σ (A).
We say that ρ ∈ I is ergodic if it is an extremal point of I ; this is the case if

and only if mρ( Â2) = ρ(A)2 for all A ∈ C . The integral representation ρ �→ mρ

is called the ergodic decomposition. (See Ruelle [3], Chapter 6.)
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Open problems

In this appendix some open problems – of rather different levels of difficulty
and interest – have been collected.

B.1 Systems of conditional probabilities (Chapter 2)

How general is a system of conditional probabilities (μ(�)ξL\� ) of the form
(μ�

(�)ξL\� ), where � is an interaction? (On this problem see in particular Sulli-
van [1].)

B.2 Theory of phase transitions (Chapter 3)

Show that in a suitable space of interactions the set of points of coexistence of
n + 1 phases is a manifold of codimension n. What are the incidence relations
of the manifolds thus obtained? How do critical points arise? (For a “heuristic
theory” see Ruelle [8].)

B.3 Abstract measure-theory viewpoint (Chapter 4)

In Remark 4.5 a Gibbs state is obtained from another one by multiplication
by a continuous function and taking a certain vague limit. Is there an abstract
measure-theory version of this? In particular, can one make use of the Bernoulli
property of Theorem 5.10?

B.4 A theorem of Dobrushin (Chapter 5)

Can the theorem of Dobrushin [4] on the analyticity of the pressure for one-
dimensional systems be extended to mixing systems?
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B.5 Definition of the pressure (Chapter 6)

If τ is expansive, the pressure can be defined by a limit for a →∞ (see end of
Section 6.7). Could one use a limit for � ↗∞? Notice that this was possible
in the situation of Chapter 3 (Corollary 3.13).

B.6 Shub’s entropy conjecture (Chapter 6)

Let f be a diffeomorphism of a compact manifold and f∗ the corresponding
linear operator on homology (with real coefficients). Is it true that the logarithm
of the spectral norm of f∗ is � the topological entropy of f ? (On this well-
known conjecture see in particular Manning [2].)

B.7 The condition (SS3) (Chapter 7)

If (SS1) and (SS2) hold, can one find a metric such that (SS3) holds, and also

d( f x, f y) � Ld(x, y), d( f −1x, f −1 y) � Ld(x, y)

for some constant L > 0 (see Equation (12))?

B.8 Gibbs states on Smale spaces (Chapter 7)

Are Gibbs states on a Smale space (see Section 7.18) necessarily equilibrium
states?

B.9 Cohomological interpretation (Chapter 7)

Can one give a cohomological interpretation of Manning’s formula (Proposition
7.22) and of the rational zeta function ζ (z)? (On this problem see in particular
Franks [1].)

B.10 Smale flows (Chapter 7 and Appendix C)

Can one give a version of the theory of Smale spaces for flows? (On this problem
see in particular Bowen [4].) See also the questions in Appendix C.4.
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Flows

A flow on a set Ω is a family (τ t )t∈R of maps τ t : Ω �→ Ω such that τ t+t ′ =
τ t ◦ τ t ′ and τ 0 is the identity. The replacement of Z by R in the thermodynamic
formalism can be done in several inequivalent ways. Here we shall not consider
the usual statistical mechanics of continuous one-dimensional classical systems
(see Ruelle [3]), but describe the formalism appropriate to the study of flows
on differentiable manifolds.

C.1 Thermodynamic formalism on a metrizable
compact set

Let Ω be compact metrizable and (τ t ) a continuous flow, i.e., (x, t) �→ τ t x is
continuous. The set I of τ -invariant probability measures on Ω is convex and
compact for the vague topology. If σ ∈ I, then

hτ t (σ) = |t |hτ (σ),

where hτ (σ) is called the (mean) entropy of σ with respect to the flow (τ t ) (see
Abramov [1]).

Let d be a metric on Ω compatible with the topology. Given ε > 0, T > 0,
we say that a subset S of Ω is (T, ε)-separated if x, y ∈ S and x = y imply

d(τ t x, τ t y) > ε for some t ∈ [0, T ].

Then, if A ∈ C (Ω), we define

ZT (A, ε) = sup

{∑
x∈S

exp
∫ T

0
A(τ t x)dt : S is (T, ε)-separated

}
,

P(A) = Pτ (A) = lim
ε→0

lim sup
T→∞

1

T
log ZT (A, ε).
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The definition of P(A) is independent of the choice of the metric on Ω. If
A1(x) = ∫ 1

0 A(τ t x)dt , one has P(A) = Pτ 1 (A1). The pressure P satisfies the
variational principle

Pτ (A) = sup
σ∈I

[hτ (σ)+ σ(A)]

(see Bowen and Ruelle [1]). The measures σ making hτ (σ)+ σ(A) maximum
are called equilibrium states for A.

C.2 Special flows

Let 	 be a compact metrizable space, τ : 	 �→ 	 a homeomorphism, and
ψ : 	 �→ R a strictly positive continuous function. In the set

U = {(ξ, u) ∈ 	× R : 0 � u � ψ(ξ )}
we identify (ξ, ψ(ξ )) and (τ ξ, 0), obtaining a compact metrizable space Ω. A
continuous flow (τ t ) on Ω exists such that

τ t (ξ, u) = (ξ, u + t) if 0 � u + t � ψ(ξ ).

Let σ belong to the set I of τ -invariant probability measures on 	. If m denotes
the Lebesgue on R, then σ × m/(σ × m)(U ) defines a measure σ ∈ I on Ω.
The map σ → σ is a bijection I → I, and

hτ (σ) = hτ (σ )

σ (ψ)

by a theorem of Abramov [1].

C.3 Special flow over a Smale space

With the above notation, let 	 be a Smale space, τ topologically mixing,
and ψ ∈ C

α(	). Given A ∈ C(Ω), let ϕ(ξ ) = ∫ ψ(ξ )
0 A(ξ, u)du and assume that

ϕ ∈ C
α(	). There is a unique equilibrium state σ on Ω for A;σ corresponds

to σ ∈ I , where σ is the unique equilibrium state for ϕ-P(A) · ψ on 	 (Bowen
and Ruelle [1]). If (τ t ) is topologically mixing, then (σ, (τ t )) is a Bernoulli
flow (Bunimovič [1], Ratner [2]).

Define

ζA(s) =
∏
γ

[
1− exp

∫ λ(γ )

0

(
A
(
τ t xγ

)− s
)

dt

]−1

,
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where the product extends over the periodic orbits γ of the flow, λ(γ ) is the
prime period of γ , and xγ is a point of γ . This zeta function can be rewritten

ζA(s) = exp
∞∑

m=1

1

m

∑
ξ∈Fixτm

exp
m−1∑
k=0

[ϕ(τ kξ )− sψ(τ kξ )].

ζA is an analytic function of s for Res > P(A), with a simple pole at P(A)
(Ruelle [6]).

C.4 Problems

Assume that (τ t ) is topologically mixing.

(a) Let B1, B2 ∈ C
α(U ) and supp B1, B2 ⊂ {(ξ, u) : 0 < u < ψ(ξ )}. Does

σ(B1 · (B2 ◦ τ t ))− σ(B1)σ(B2) tend to 0 exponentially fast when |t | →
∞?

(b) Is there r > 0 such that ζA is meromorphic for Res > P(A)− r with only
one pole at P(A)?
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Update of open problems

Since the present monograph was first published, certain topics discussed in it
have received a lot of attention. A good source of information on this recent
work is provided by:
W. Parry and M. Pollicott. Zeta functions and the Periodic Orbit Structure

of Hyperbolic Dynamics. Astérisque 187–188, Soc. Math. de France, Paris,
1990, pp. 1–268.

Here we only indicate some references relevant to the list of open problems of
Appendix B.

B.2 There are partially negative results:
H. A. M. Daniëls and A. C. D. van Enter. “Differentiability properties of the

pressure in lattice systems,” Commun. Math. Phys. 71, 65–76 (1980).
A. C. D. van Enter. “Stability properties of phase diagrams in lattice systems.”

Thesis, Groningen, 1981.

B.6 Shub’s conjecture has been proved for C∞ diffeomorphisms:
Y. Yomdin. “Volume growth and entropy,” Israel J. Math. 57, 301–317 (1987).

B.7 This problem has a positive answer; Fried has shown that there is a metric
d such that (SS 3) holds and f, f−1 are Lipschitz. In particular the function C of
Corollary 7.10 (c) is Hölder continuous.
D. Fried. “Métriques naturelles sur les espaces de Smale.” C. R. Acad. Sc. Paris

297, Sér. I, 77–79 (1983).

Incidentally, let us mention the following reference on the theory of expanding
maps:

E. M. Coven and W. L. Reddy. “Positively expansive maps of compact mani-
folds,” in Global Theory of Dynamical Systems. Lecture Notes in Math. no.
819, pp. 96–110. Springer, Berlin, 1980.
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B.8 This problem has a positive answer:
N. T. A. Haydn. “On Gibbs and equilibrium states,” Ergod. Th. and Dynam.

Syst. 7, 119–132 (1987).

B10 For this problem see:
M. Pollicott. “Symbolic dynamics for Smale flows,” Amer. J. Math. 109, 183–

200 (1987).

Problems C.4 (a) and (b) have a negative answer:
D. Ruelle. “Flots qui ne mélangent pas exponentiellement,” C. R. Acad. Sc.

Paris 296, Sér. I, 191–193 (1983).

It has, however, been shown by Parry and Pollicott that ζ0 is holomorphic in a
neighborhood of the line Re s = P(0), except for the pole at P(0). This implies
an analogue of the prime number theorem for periodic orbits of an Axiom A
flow:
W. Parry and M. Pollicott. “An analogue of the prime number theorem for the

closed orbits of Axiom A flows,” Ann. Math. 118, 573–591 (1983).
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(1973).
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S. Mazur, “Über konvexe Mengen in linearen normierten Räumen,” Studia Math. 4,
70–84 (1933).

M. Misiurewicz, “A short proof of the variational Principle for a Z N
+ action on a compact
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translation, Trans. Moscow Math. Soc. 19, 197–231 (1968).

W. Parry, “Intrinsic Markov chains,” Trans. Amer. Math. Soc. 112, 55–66 (1964).
“Topological Markov chains and suspensions,” Warwick preprint, 1974.

R. Phelps, Lectures on Choquet’s Theorem. Van Nostrand Mathematical Studies No. 7.
D. Van Nostrand, Princeton, 1966.

C. J. Preston, Gibbs States on Countable Sets. Cambridge Tracts in Mathematics No.
68. Cambridge University Press, Cambridge, 1974.

Random Fields. Lecture Notes in Mathematics No. 534. Springer, Berlin, 1976.
M. Ratner, “The central limit theorem for geodesic flows on n-dimensional manifolds

of negative curvature,” Israel J. Math. 16, 181–197 (1973).
“Anosov flows with Gibbs measures are also Bernoullian,” Israel J. Math. 17, 380–391

(1974).
R. M. Robinson, “Undecidability and nonperiodicity for tilings of the plane,” Inventiones

Math. 12, 177–209 (1971).
D. W. Robinson and D. Ruelle, “Mean entropy of states in classical statistical mechanics.”

Commun. Math. Phys. 5, 288–300 (1967).
V. A. Rohlin, “On the fundamental ideas of measure theory,” Mat. Sbornik (N. S.) 25,

107–150 (1949). English translation, Amer. Math. Soc. Transl., Ser. 1, 10, 1–54
(1952).

D. Ruelle, “A variational formulation of equilibrium statistical mechanics and the Gibbs
phase rule,” Commun. Math. Phys. 5, 324–329 (1967).

“Statistical mechanics of a one-dimensional lattice gas,” Commun. Math. Phys. 9,
267–278 (1968).

Statistical Mechanics. Rigorous Results. Benjamin, New York, 1969.
“Statistical mechanics on a compact set with Z ν-action satisfying expansiveness and

specification,” Bull. Amer. Math. Soc. 78, 988–991 (1972); Trans. Amer. Math. Soc.
185, 237–251 (1973).

“A measure associated with axiom A attractors,” Amer. J. Math. 98, 619–654 (1976).
“Generalized zeta-functions for axiom A basic sets,” Bull. Amer. Math. Soc. 82, 153–

156 (1976).
“Zeta-functions for expanding maps and Anosov flows,” Inventiones Math. 34, 231–

242 (1976).
“A heuristic theory of phase transitions,” Commun. Math. Phys., 53, 195–208 (1977).

D. Ruelle and D. Sullivan, “Currents, flows and diffeomorphisms,” Topology 14, 319–
327 (1975).

P. Shields, The Theory of Bernoulli Shifts. University of Chicago Press, Chicago, 1973.



References 171

M. Shub, “Endomorphisms of compact differentiable manifolds,” Amer. J. Math. 91,
175–199 (1969).

B. Simon, The P(ϕ)2 Euclidean (Quantum) Field Theory. Princeton University Press,
Princeton, 1974.

Ia. G. Sinai, “Markov partitions and C-diffeomorphisms,” Funkts. Analiz i Ego Pril. 2,
No. 1, 64–89 (1968). English translation, Functional Anal. Appl. 2, 61–82 (1968).

“Construction of Markov partition,” Funkts. Analiz i Ego Pril. 2, No. 3, 70–80 (1968).
English translation, Functional Anal. Appl. 2, 245–253 (1968).
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