Flat surfaces: computational problems

Summer school on Teichmiiller dynamics, mapping class groups and applications
Grenoble, 11-22 June 2018, https://if-summer2018.sciencesconf.org/

Investigate these problems in small groups. Some are delicate and involve a mix of thinking and com-
puting. They are roughly ordered by increasing difficulty. Suggested softwares and libraries: SageMat}ﬂ
flippelﬂ snappyﬂ surface_dynamicsﬂ :Elatsurf[ﬂ

Most articles in the reference are available for download at http://www.labri.fr/perso/vdelecro/
grenoble_school/refs/

1 Where are my commutators?

Recall from Carlos Matheus’s lectures that an origami is given by a pair of permutations (r,u) € S,, x Sy,
that together generate a transitive group, and tell, for each square on the surface, which square you find
moving right (r) and moving up (u), see figure [I} The stratum H(u) of the origami given by (r,u) can

be deduced from the cycle lengths of the commutator [r,u] = rur—tu=!.
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Figure 1: Gluing pattern of the origami given by permutations r and u.

Picking (r,w) uniformly at random in S,, X S,,, and discarding pairs that generate a non transitive
group, how is the genus g of the associated origami distributed? For given n and g, how do these origamis
distribute among the different strata?

2 Lyapunov exponents of a periodic windtree model

The periodic windtree model W, is the billiard in the plane R? with size a x b rectangular obstacles
at all Z? lattice points. The associated flat surface is a Z2-cover of a genus 5 translation surface called
X (a,b) (see [DHLI4L §3] and Figure [2))).

Prove that X(1/2,1/2) is a 12-square origami. Construct it with the package surface_dynamics.
Compute approximations of its Lyapunov exponents. Do they match [DHLI14, Theorem 7, page 1099]?

3 Arnoux-Yoccoz pseudo-Anosov example

The Arnoux-Yoccoz pseudo-Anosov homeomorphism f of a genus 3 surface is defined in [AY81] Bo13].
1. Show that f fixes each singularity but does permute the separatrices.
2. Can f be obtained from Rauzy induction?
3. Can you decompose f as a product of Dehn twist?
Hint: you might want to use flipper to build the map f from a sequence of triangle flips.

4 World cup special (W. Veech)

A soccer ball is usually sowed from twenty regular hexagons and twelve regular pentagons. The corre-
sponding polyhedron is a buckyball or truncated icosahedron, one of the 13 archimedean solids.

Any polytope in R? gives rise to a flat conical metric on the sphere (ie the metric is flat except at
the vertices). When the angles of the polytope are rational multiples of 7 then there is an appropriate

IMore information on SageMath at https://www.sagemath.org

2More information on flipper at http://flipper.readthedocs.io

3More information on snappy at https://www.math.uic.edu/t3m/SnapPy/

4More information on surface_dynamics at http://www.labri.fr/perso/vdelecro/flatsurf_sage.html
5More information on flatsurf at https://github.com/videlec/sage-flatsurf
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Figure 2: Left: a piece of trajectory in a periodic windtree model of Hardy-Weber. Right: same piece
of trajectory, lifted to the associated translation surface, and projected to the surface X (a,b).

ramified cover that is a translation surface. In the case of the buckyball, what are the properties of the
translation surface S obtained in this way? In particular...

1. What is its genus? its stratum?

2. What is its group of translation automorphisms?

3. Is it a Veech surface?

4. What can be said about its affine group?

Hint: you might want to use flatsurf, which allows dealing with conical metrics and taking covers.

5 Lost in triangles

There are several famous conjectures about billiards in triangles. Namely
1. Does every triangular billiard admit a periodic trajectory? (in the rational case, it is known that
there are infinitely many of them [Ma86] and the answer is positive for all triangles for which all
angles are smaller than 100 degrees [Sc09])
2. How does behave the complexity of a billiard sequence? (in the rational case, this is known to be
linear [Hu95| while for irrational ones some polynomial upper bounds are kown [GT95])
3. Can you find open sets of triangles that admit a periodic orbit? ([HS| for examples)
Investigate these two open problems using a computer program. For example
e Given a triangular billiard, find all possible codings of length n. What is the triangle that gives the
largest complexity?
e Given a coding such as ABACCABA find the set of angles for which this can be realized as a
coding of a piece of trajectory.
e What about periodic trajectories?
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