
Random commutators in symmetric groups

June 22, 2018

1 Commutators

We study the distribution of a commutator c = rur−1u−1 when both r and u are taken at random
in some symmetric group Sn with n large. Note that c ∈ An, the alternating group. We compare
the distribution of c with the uniform distribution in An looking at two statistics:

• the number of fixed points
• the number of cycles

1.1 Empirical distributions of commutators

The first approach to generate random permutations is to use SymmetricGroup(n). However this
is dramatically slow. . .

In [1]: %%time
n = 5
S = SymmetricGroup(5)
for _ in range(1000):

r = S.random_element() # pick r at random
u = S.random_element() # pick u at random
c = r*u*r^-1*u^-1 # commutator
t = c.cycle_tuples() # decomposition in cycles

CPU times: user 2.45 s, sys: 793 ms, total: 3.24 s
Wall time: 3.5 s

Instead we use the functions perm_compose, perm_compose_i, perm_cycle_tuples that be-
longs to the package surface_dynamics. These functions operate on lists of integers in
{0, 1, . . . , n − 1}.

In [2]: from surface_dynamics.misc.permutation import perm_compose, perm_compose_i, perm_cycle_tuples

def sample(n, size):
r"""
Return the distribution of number of fixed points and number of cycles
for a random commutator.

1

INPUT:

- ``n`` - rank of the symmetric group

- ``size`` - size of the sample
"""
r = range(n)
u = range(n)
fps = [0] * (n+1) # number of fixed points
ts = [0] * (n+1) # number of cycles
for _ in range(size):

shuffle(r) # randomly mix r
shuffle(u) # randomly mix u
c = perm_compose(perm_compose(r, u), perm_compose_i(r, u)) # commutator

count fixed points
fp = sum(c[i] == i for i in range(n))
fps[fp] += 1

count number of cycles (~ genus)
t = len(perm_cycle_tuples(c,True))
ts[t] += 1

return (fps, ts)

In [3]: sample(5, 10)

Out[3]: ([3, 2, 5, 0, 0, 0], [0, 3, 0, 7, 0, 0])

In [4]: # Fix the size of the symmetric group and the size of the sample
n = 50
size = 50000

In [5]: %%time
fps, ncycs = sample(n, size)

CPU times: user 3.23 s, sys: 293 ţs, total: 3.23 s
Wall time: 3.23 s

In [6]: # renormalize our samples
for i in range(n+1):

fps[i] /= size
ncycs[i] /= size

In [7]: L = list_plot(fps, plotjoined=True, color='blue')
L.show(xmax=8, figsize=4)

2

In [8]: L = list_plot(ncycs, plotjoined=True, color='blue')
L.show(xmax=15, figsize=4)

One can remark that the number of cycles is always an even number. . . this is because a
commutator belongs to the alternating group. To get a nicer graph, we can plot only the values at
even points.

In [9]: ncycs2 = [(i,ncycs[i]) for i in range(0,n+1,2)]
G = line2d(ncycs2, color='blue') + point2d(ncycs2, color='red', pointsize=20)
G.show(xmax=15, figsize=4)

3

1.2 Exact distributions in An

Now we want to compare our empirical distribution of commutatoris with the exact distribution
in the alternating group An. For that purpose, we list partitions (that correspond to conjugacy
classes of permutations). Note that for n = 50 we already have 204226 partitions and 102162 of
them are even and corresponds to conjugacy classes in An.

In [10]: P = Partitions(n)
print P.cardinality()
P0 = [p for p in P if p.sign() == 1]
print len(P0)

204226
102162

In [11]: %%time
small check: the sum of conjugacy class sizes should be the cardinality of An
sum(p.conjugacy_class_size() for p in P0) == factorial(n) / 2

CPU times: user 1.36 s, sys: 70.9 ms, total: 1.43 s
Wall time: 1.35 s

Out[11]: True

In [12]: %%time
now compute distributions
distrib_fp = [0] * (n+1)
distrib_ncyc = [0] * (n+1)

4

for p in P:
if p.sign() == -1:

continue

distrib_fp[p._list.count(1)] += p.conjugacy_class_size()
distrib_ncyc[len(p._list)] += p.conjugacy_class_size()

for i in range(n+1):
distrib_fp[i] *= 2/factorial(n)
distrib_ncyc[i] *= 2/factorial(n)

CPU times: user 5.56 s, sys: 52.2 ms, total: 5.62 s
Wall time: 5.56 s

In [13]: L1 = list_plot(fps, plotjoined=True, color='blue', legend_label='empirical commutator')
L2 = list_plot(distrib_fp, plotjoined=True, color='red', legend_label='uniform distrib in $A_{%d}$' % n)

In [14]: (L1 + L2).show(title='Number of fixed point', xmax=8, figsize=4)

In [15]: # for number of cycles, we only consider even sizes
ncycs2 = [(i,ncycs[i]) for i in range(0,n+1,2)]
distrib_ncyc2 = [(i,distrib_ncyc[i]) for i in range(0,n+1,2)]
L3 = line2d(ncycs2, color='blue', legend_label='empirical commutator')
L4 = line2d(distrib_ncyc2, color='red', legend_label='uniform distrib in $A_{%d}$' % n)

In [16]: (L3 + L4).show(title='Number of cycles', xmax=15, figsize=4)

5

6

	Commutators
	Empirical distributions of commutators
	Exact distributions in A_n

