
Chapter 1

Introduction

1.1 What is a translation surface?

1.1.1 Three examples

A translation surface is a flat object constructed by gluing polygons along parallel sides of the same
size using translations. Before introducing formal definitions let us discuss three illustrative examples of
these:

A flat torus. Consider the unit square in C given by 0 ≤ Re(z), Im(z) ≤ 1 and identify parallel sides
using translations. That is, if z = x + iy, we identify each real point x in the lower side of the square
with x + i and each purely imaginary point iy in the left side of the square with 1 + iy. The result is a
surface M homeomorphic to a torus and which has the special property that every point z ∈ M has a
small neighbourhood isometric to a neighbourhood of the origin in C.
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Figure 1.1: A genus 2 translation surface and a neigh-
bourhood of the conical point.

A genus 2 surface. Consider three copies of the
unit square, glue them and label their sides as de-
picted in Figure 1.1. If we identify edges with the
same labels using translations, the result is a genus
2 surface1. In this surface all points except one
have a small neighbourhood isometric to a neigh-
bourhood of the origin in C. The “problematic”
point, which we denote by p0, appears because all
vertices are merged by the identifications into a
single point. In the lower part of Figure 1.1 we il-
lustrate a small neighbourhood Up0 of p0. Remark
that Up0 is not isometric to a neighbourhood of the
origin in C. It is however isometric to the space
obtained by gluing cyclically 3 copies of a neigh-
bourhood of the origin in C, which is an example
of ramified covering of degree 3. For this reason,
p0 is called a conical point of total angle 6π.

Both the flat torus and the genus 2 surface are
examples of finite type translation surfaces.

1This can be shown easily by calculating the Euler characteristic the surface: 2 − 2g = V −E + F where g is the genus,
V = 1 is the number of vertices, E = 6 is the number of edges and F = 3 the number of faces.

7



8 CHAPTER 1. INTRODUCTION

The infinite staircase. Consider a countable family of squares and identify their parallel sides as
depicted in figure 1.2, where pairs of opposite (parallel) sides are identified using translations. Every
point which is not a vertex has a neighbourhood that is isometric to a neighbourhood of the origin in C.
On the other hand, it is relatively easy to see that after identifications all vertices involved merge into four
points. In figure 1.2 below we depict with a dashed line the boundary of a small neighbourhood of one on
these four points, which we denote by Uz0 and z0 respectively. Remark that Uz0 can be constructed by
gluing cyclically infinitely many copies of a neighbourhood of the origin in C. However, z0 is worst than
the problematic point from the preceding example because z0 does not have compact neighbourhoods. In
other words, because of “very problematic” points like z0 the topological space that we have constructed
is not locally compact, and hence not a surface. For this reason we remove all the vertices of the squares
involved in the construction. The result is an infinite type translation surface called the infinite staircase.
The nomenclature in this case is justified because, as we will see later, this surface has infinite genus.

Figure 1.2: The infinite staircase. Opposite sides are
identified. There are four infinite degree vertices in
the surface.

These three examples will appear all along this
text. Flat tori have been studied since the 19th
and early 20th centuries, by L. Kronecker and H.
Weyl, among others. The surface of genus 2 in the
second example is a particular case of a compact
translation surface. These kind of translation sur-
faces have been studied since the 1970’s and their
theory is well-developed. This book assumes some
basic knowledge of the theory of compact transla-
tion surfaces and we refer the reader to the follow-
ing four references when needed: A. Zorich [Zor06],
J.-C. Yoccoz [Yoc10], G. Forni, C. Mathéus [FM14]
or A. Wright [Wri15].

1.1.2 Three definitions

In this section we define what a translation surface
is in three different ways. Each definition has its
own pros and cons depending on the context in
which translation surfaces are studied.

We start with the constructive definition,
which generalizes the three examples we presented

before. This is the definition that will be used to present most examples in Section 1.2. First let us
define an Euclidean polygon as a simply connected and bounded closed set in the Euclidean plane whose
boundary is a curve formed by finitely many segments. Let P be an at most countable family of Euclidean
polygons and E(P) be the set of all the edges in P. For each edge e ∈ E(P) we consider ne the (unit)
vector normal to e which points toward the interior of the polygon having e as a side. Suppose that there
exists f ∶ E(P)→ E(P) a pairing (that is an involution without fixed point) such that for every e ∈ E(P)
the edges e and e′ = f(e) differ by a translation τe and ne′ = −ne.

Let ⊔P ∈P P be the disjoint union of the polygons in P. For every e ∈ E(P) seen as a subset of ⊔P ∈P P ,
we identify the points in e with the points in f(e) using τe. Note that each point in the interior of an
edge e is identified with exactly one point in f(e). This operation produces a topological space where
the quotient map π ∶ ⊔P ∈P P → (⊔P ∈P P )/ ∼ is 1-to-1 in the interior of each polygon, 2-to-1 on the edges
and n-to-1 on vertices, where n can be a natural number or ∞ that depends on the vertex. For example,
in the L shaped surface of Figure 1.1 we have n = 12 while the infinite staircase in Figure 1.2 has n =∞.
We say that a vertex v ∈ P ∈ P is of finite degree if π−1(π(v)) is finite and of infinite degree otherwise.
This notion takes care of vertices which merge into “very problematic” points like the ones we created
when constructing the infinite staircase (see Lemma 1.1.3).

Definition 1.1.1 (Constructive). Let P be an at most countable set of Euclidean polygons and f ∶
E(P) → E(P) a pairing as above. Let M be ⊔P ∈P P / ∼ deprived of all vertices of infinite degree. If M
is connected we call it the translation surface obtained from the family of polygons P.
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Exercise 1.1.2

In this simple exercise we discuss the connectedness of M (in Definition 1.1.1) in terms of the
combinatorics of the edge pairing. Let (P, f ∶ E(P)→ E(P)) be a family of polygons and a pairing,
and let M be the translation surface obtained from the family of polygons P. For each edge e we
denote Pe the polygon in P to which e belongs.

1. Prove that M is connected if and only if for each pair P,Q ∈ P there exists a finite sequence
of polygons and edges (Pe0 , e0, Pe1 , e1, . . . , en−1, Pen) where Pe0 = P , Pen = Q and for i ∈
{0,1, . . . , n − 1} we have Pf(ei) = Pei+1 .

2. Show that the above property is equivalent to the connectivity of a graph built from (P, f)
and whose vertex set is the set of polygons P.

The following lemma and exercise describe a translation surface around a vertex of finite degree.

Lemma 1.1.3. Let M be the translation surface generated by a family of polygons P. For each vertex
v ∈ P ∈ P we denote by αv ∈ (0,2π) the interior angle of P at v. Then for each vertex v ∈ P of finite
degree there exists a positive integer kv ∈ {1,2, . . .} so that

∑
w∈π−1(π(v))

αw = 2kvπ. (1.1)

If kv > 1, the point π(v) ∈ M is called a conical singularity of angle 2kvπ while if kv = 1 it is called a
regular point.

Since the Euclidean metric dx2 + dy2 in the plane is invariant under translation, any translation
surface built from polygons inherits an Euclidean metric that is well-defined in the complement of conical
singularities. In particular, there is a well-defined notion of distance and area. The following elementary
exercise describes the behavior of a metric at a vertex of finite degree.

Exercise 1.1.4

This exercise discusses conical singularities of an Euclidean metric. It is very much inspired on the
first section of [Tro86]. We use x, y for the standard coordinates in R2, z = x+ iy the corresponding
number in C and (r, θ) for polar coordinates x = r cos(θ) and y = r sin(θ) (or z = r exp(iθ)).

1. Show that the Euclidean metric dx2 + dy2 can also be written as dzdz̄ or (dr)2 + (rdθ)2.

Let us consider the punctured plane C∗ = C/{0} with the metric gα = (dr)2 + (αrdθ)2 where α > 0
is a parameter. The metric g1 is nothing else than the Euclidean metric.

2. Show that a circle of radius r > 0 around the origin has length 2πrα in the metric gα.

3. Using the change of coordinates θ′ = αθ show that gα is a flat metric, i.e. a metric with zero
curvature.

4. When α = k is a positive integer show that the map z ↦ zk is a local isometry from (C∗, gk)
to (C∗, g1). Deduce that gk = ∣z∣2(k−1)dzdz̄.

5. Show that, for any α > 0 the metric completion of C∗ with respecto to gα is the whole plane
C.

6. Show that the metric gα extends to a metric on C if and only if α = 1.

The origin in C is called a conical point of angle 2πα for the metric gα. More generally, if S is a
surface with a flat metric g defined on the complement of a discrete set Σ, we say that a point p ∈ Σ
is a conical point of angle 2πα for the metric g if there exists an open neighborhood U of p so that
(U, g) is isometric to (D′

r, gα) where D′
r ⊂ C is the punctured disc of radius r centered at the origin.

We now provide another construction of the cone (C∗, gα).

7. Let m be the metric on C defined by m = ∣ exp(z)∣2(dzdz). Show that the exponential map
exp ∶ C→ C∗ is a local isometry between (C,m) and (C∗, g1).
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8. Show that the translations by purely imaginary numbers are isometries in (C,m).

9. Show that the quotient C/(2πiαZ) with the quotient metric m is isometric to (C∗, gα).

10. Show that the metric completion of (C,m) is obtained by adding one point p∞. Hint: p∞ is
the limit of any horizontal ray zt = −t + iy with t→ +∞ and y fixed.

11. Show that the map exp extends to a map exp ∶ C ∪ {p∞}→ C∗ ∪ {0}.

The point p∞ in (C,m) is called an infinite angle singularity.

12. Let M be the translation surface generated by a family of polygons P. Show that for each
vertex of finite degree kv, the point π(v) is a conical point of angle 2kvπ of the Euclidean
metric on M . Hint: take a look at Lemma 1.1.3.

13. Let M be the infinite staircase constructed in Section 1.1.1, show that each vertex give rise a
point which is locally isometric to the infinite angle singularity p∞ defined above.

Remark 1.1.5. The map z ↦ zk considered in question 4 of Exercise 1.1.4 is actually the local model for
ramified covers of surfaces.

We now consider the geometric definition of a translation surface. As we saw, a (constructive) trans-
lation surface carries a natural flat metric with conical singularities. However, as we will see later, not all
surfaces with a flat metric are translation surfaces. The restriction is related to the so-called monodromy
that will be discussed in Section 1.1.5. A translation atlas on a topological surface S is a set of maps
T = {φi ∶ Ui → C} where (Ui)i∈N forms an open covering of S, each φi is a homeomorphism from Ui to
φ(Ui) and for each i, j the transition map φj ○ φ

−1
i ∶ φi(U ∩ V ) → φj(U ∩ V ) is a translation in C. Any

topological surface with a translation atlas is naturally endowed with a flat metric. Indeed, this metric
is obtained by pulling back the (translation invariant) Euclidean metric in C.

Definition 1.1.6 (Geometric). A (geometric) translation surface is a pair (S,T ) made of a connected
topological surface S and a maximal translation atlas T on S ∖Σ, where:

1. Σ is a discrete subset of S and

2. every z ∈ Σ is a conical point.

The maximal translation atlas T is called a translation surface structure on S and its charts are called
the flat charts or flat coordinates.

Exercise 1.1.7

Prove that the angle of a conical point z ∈ Σ in the definition above is of the form 2πk, for some
positive integer k > 1.

Remark 1.1.8. The pair (S ∖ Σ,T ) is a particular case of a (G,X)-structure in the sense of Thurston
(see [Thu97]) where G = C is the group of translation acting on X = C. In general, given an action of a
group G on a topological space X one can consider a (G,X)-structure by considering atlases with values
in X so that transition maps correspond to elements of G. One can think of this as gluing open sets of
X with elements of G.

Finally, we introduce the analytic definition. It provides a tight link between translation surfaces,
complex analysis and algebraic geometry that allows the use of very powerful tools. This third definition
is central in many important results on compact translation surfaces such as the Eskin-Kontsevich-Zorich
formula. The conformal structure already appears in the proof of Theorem 1.1.11 and will be important
when we will study isometries in Section 3.1 or completeness of directional flows in Section 4.5. The
Eskin-Kontsevich-Zorich formula will provide very explicit constants related to the diffusion in infinite
coverings in Section 5.6. The reader not familiar with Riemann surfaces might choose to skip the sections
using this point of view or consult one of the many textbooks available on the subject such as [For91],
[FK92], [Don11] or [Hub06].

Definition 1.1.9 (Analytic). An (analytic) translation surface is a pair (X,ω) formed by a (connected)
Riemann surface X and a holomorphic 1-form (a.k.a. Abelian differential) ω on X which is not identically
zero.
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Exercise 1.1.10

This exercise is a natural counterpart of Exercise 1.1.4.

1. Let (X,ω) be an analytic translation surface. Show that the tensor dzdz is a flat metric on
X ∖Z(ω) where Z(ω) is the set of zeros of ω and z is a local coordinate for X.

2. Show that each p ∈ Z(ω) is a conical point for the flat metric and determine the angle in terms
of the order of p as a zero of ω. Hint: there exists a non-negative integer k and a holomorphic
coordinates z at p so that ω = zkdz.

Notation disclaimer. Unless stated otherwise topological surfaces will be denoted by S, Riemann
surfaces by X and translation surfaces by M .

1.1.3 Relations between the three definitions

Before diving in the geometry and dynamics of translation surfaces we prove in this section that the three
definitions given above are equivalent.

Let M be a constructive translation surface built from a family (P, f ∶ E(P)→ E(P)). Given an edge
e ∈ E(P) belonging to the polygon Pe consider all possible triangles contained in Pe that have e has one
of their edges and so that the third vertex is a vertex of Pe. This set of triangles is not empty and we
denote it Te. Now, let (e, e′) be a pair of identified edges and τ the translation so that τ(e′) = e. Let t
and t′ be respectively triangles in Te and Te′ . Then t ∪ τ(t′) ⊂ C is a planar quadrilateral and we denote
by Vt,t′ its interior. Let also Ut,t′ be the interior of the image of t ⊔ t′ in M . We have a well defined
bijection φt,t′ ∶ Ut,t′ → Vt,t′ .

The following result gathers the natural links between our three definitions.

Theorem 1.1.11

1. (constructive are geometric) Let M be a constructive translation surface. Denote by V and Σ
the image of vertices in M and the conical singularities respectively (we have Σ ⊂ V ). Then
the maps {φt,t′}(t,t′) define a translation atlas on M ∖ V that can be uniquely extended to a
translation atlas on M ∖Σ.

2. (geometric are analytic) Let (M,T ) be a geometric translation surface with conical singular-
ities Σ. Then there is a unique holomorphic structure on M so that translation charts are
holomorphic. Moreover, there is a unique Abelian differential ω so that for each translation
chart φ ∶ U → V we have φ∗dz = ω.

3. (analytic are geometric) Let (X,ω) be an analytic translation surface and Z(ω) the set of
zeros of ω. Then on X ∖Z(ω) the local coordinates z so that ω = dz define a translation atlas
on X/Z(ω).

4. (geometric are constructive) Every geometric translation surface (M,T ) can be obtained from
a family and pairing (P, f ∶ E(P)→ E(P)).

Proof. 1. Constructive are geometric. The domains Ut,t′ of the maps φt,t′ form by definition an
open cover of M ∖ V . It is also clear that the transition maps between the φt,t′ are translations. Now, it
follows from the questions 6 and 12 of Exercise 1.1.4 that each point in V /Σ (i.e. vertex of conical angle
2π) has a neighborhood isometric to a flat disk. This isometry is the unique way of extending the atlas.

2. Geometric are analytic. Let (M,T ) be a geometric translation surface. Since translations are
holomorphic maps, the translation surface structure in M ∖ Σ is also a Riemann surface structure. By
holomorphic continuation, the Riemann structure is unique at each point of Σ (recall that Σ is discrete
by assumption). Now, in each chart we can pull back the Abelian differential dz from the plane. Because
dz is invariant under translation, these pull-backs agree on the intersection of the domains of two flat
charts and merge into a globally well-defined holomorphic 1-form ω on M ∖Σ. Note that this 1-form is
nowhere zero. Exercise 1.1.10 explains why a conical singularity of angle 2kvπ corresponds to a zero of
degree vk − 1 of the differential ω.

3. Analytic are geometric. Given an analytic translation surface (X,ω), the integration of ω on
X ∖Z(ω) endows X ∖Z(ω) with an atlas where transition functions are translations. Indeed, define the
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chart ϕ ∶ U ⊂ X → C by ϕ(p) = ∫
p
p0
ω, where p0 ∈ U and U is a simply connected neighbourhood. Now

consider another chart ψ ∶ V ⊂ X → C defined by ∫
p
q0
ω (V also simply connected), where p ∈ U ∩ V and

the constant C = ∫
q0
p0
ω. The equation ∫

q0
p0
ω = ∫

p
p0
ω + ∫

q0
p ω implies that the defined charts are related

by a translation: ϕ(p) = ψ(p) +C. The relation between the zeros of ω and the conical singularities can
again be deduced from Exercise 1.1.10.

4. Geometric are constructive. We now turn to the delicate point of the proof. In what follows
we show that every geometric translation surface admits a triangulation T whose 1–skeleton in flat
coordinates is made of Euclidean segments and whose 0–skeleton contains the set of conical singularities
Σ. The existence of such a triangulation implies that the geometric translation surface can constructed
using Euclidean polygons and hence it is a constructive surface.

Let (M,T ) be a geometric translation surface with conical singularities Σ. We decompose the proof
in two steps.

1. First we show that M ∖Σ admits a triangulation T′ whose 1-skeleton is formed (in flat coordinates)
by Euclidean segments.

2. Next, we explain how the triangulation T′ can be refined in order to obtain a (flat) triangulation T
of M such that Σ is contained in the vertices of T.

Step 1. We already know that M inherits a Riemann structure from item 3. Hence there exists a
triangulation T′′ of M whose edges are smooth and vertices have finite degree (see [AS60] for a proof
that this triangulation always exists). We can assume that the vertices of T′′ are disjoint from Σ using
an homotopy. Now we modify T′′ to obtain the triangulation T′ as follows:

1. Let Skn(T
′′) denote the n = 0,1,2 skeletons of T′′ (i.e., vertices, edges and faces). Every vertex

p ∈ Sk0(T
′′) is in the domain of a translation chart φp ∶ Up → C whose image is a disk and such that

Up ∩Sk0(T
′′) = p. Since Sk0(T

′′) is a discrete subset of M , we can further assume that Up ∩Uq = ∅
for every p ≠ q in Sk0(T

′′). By compactness φp(Up ∩ Sk1(T
′′)) consists of finitely many smooth

arcs γj from φp(p) to the boundary and smooth arcs ηj from the boundary to the boundary. We
can thus replace each γj by a radius from φp(p) to the boundary of φp(Up) and each ηj by a chord
cj disjoint from all radii. Moreover, given that φp(Up) is a disk, we can choose these chords so that
ci ∩ cj = ∅, for all i ≠ j.

2. Let us denote by U = ∪p∈Sk0(T′)Up, where Up is the disk chosen in the previous step. For every edge
e ∈ Sk1(T

′) the subset e∖U can be covered by finitely many open discs De
1, . . . ,D

e
me , each of which

is the domain of a flat chart and which together form a chain, that is:

(a) Dj ∩U ≠ ∅ if and only if j = 1 or j =me.

(b) For every j = 2, . . . ,me − 1, Dj ∩Dl ≠ ∅ if and only if l = j ± 1,

(c) There are no three discs in {De
1, . . . ,D

e
me} sharing a common point,

(d) For every j = 1, . . . ,me, the intersection e ∩Dj is non-empty smooth-connected arc.

The intersection e ∩ (∪mej=1∂Dj) defines a finite sequence of points p1, . . . , p2me . Since the collection
of disks is finite and disks are convex, we can replace as in the previous step the arc between pi and
pi+1 by a straight line segment.

Step 2. The second step is a consequence of the following lemma.

Lemma 1.1.12. Let M be a simply connected compact translation surface with a boundary that consists
of finitely many Euclidean segments. Then M admits a triangulation whose edges are Euclidean segments
and whose vertices are exactly the vertices on the boundary and the singularities.

The proof we propose, which is elementary, uses concepts that we have not introduced yet. Therefore
we adress it in Section 4.1.1, p. 87.

1.1.4 Half-translation surfaces

Translation surfaces are part of a bigger class of surfaces called half-translation surfaces or quadratic
differentials2. Before giving any formal definition let us consider the example of the surface M depicted

2Some authors use the misleading term flat surface: a flat Riemannian metric on a surface does not necessarily come
from a quadratic differential.
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in Figure 1.3. This surface is obtained by gluing 3 squares along their sides using isometries that respect
the orientations shown in the figure. In particular, the isometry used to glue the sides C1 and C2 is
the composition of z → −z with a translation. Following tradition, we call these kind of isometries half-
translations. On the other hand, the sides A and B are glued by translation. A direct calculation of
the Euler characteristic shows that M is a torus. The vertices of the three squares merge into three
points p1, p2 and p3 in the surface M . The points p1 and p2 are conical points of angle π, in the sense
of Exercise 1.1.4. Indeed, these points have neighbourhoods that can be constructed from a half-disc by
gluing opposite radii using a half-translation. On the other hand, p is a conical singularity of angle 4π.

B C1 C1

A

C2C2B

A

p1

p2

p3

C1 C1
p1

Figure 1.3: A genus 1 translation surface and a neigh-
bourhood of a conical point of angle π (corresponding
to a simple pole of the quadratic differential).

Now let us introduce a more formal definition.
Consider a pairing f ∶ E(P)→ E(P) such that for
every e ∈ E(P) the edges e and e′ = f(e) differ by a
translation. The first difference with the definition
of a translation surface is that now there are two
possible cases to consider: (i) ne′ = −ne and (ii)
ne′ = ne. We identify the points in e with the
points in f(e) in case (i) using τe and in case (ii)
using τe followed by z → −z. Let π ∶ ⊔P ∈P P →
(⊔P ∈P P )/ ∼ the corresponding quotient map.

Definition 1.1.13 (Constructive). Let P be an
at most countable set of Euclidean polygons and
f ∶ E(P) → E(P) a pairing as above. Let M
be ⊔P ∈P P / ∼ deprived of all vertices of infinite
degree and vertices that define a conical singular-
ity of angle π. If M is connected we call it the
half-translation surface generated by the family of
polygons P.

Definition 1.1.14 (Geometric). A (geometric) half-translation surface is a pair (S,T ) made of a con-
nected topological surface S and a maximal half-translation atlas on S ∖Σ, where:

1. Σ is a discrete subset of S and

2. every z ∈ Σ is a conical point whose angle is larger than or equal to 2π.

A half-translation atlas is just as a translation atlas, except that we allow change of coordinates to
be half-translations. Given that the Euclidean metric in C is also invariant by half-translations, every
geometric half-translation surface inherits a natural Riemannian metric from the plane by pull-back via
its flat coordinates.

Finally, we define flat surfaces analytically.

Definition 1.1.15 (Analytic). An (analytic) half-translation surface is a pair (X,q) formed by a (con-
nected) Riemann surface X and a holomorphic non-zero quadratic differential q.

Remark 1.1.16. In this text we consider sometimes pairs (X,q) formed by a (connected) Riemann surface
X and a meromorphic non-zero quadratic differential q whose poles are all simple, if any. Every such pair
defines the half-translation surface (X ∖Poles(q), q). The convention made in this text is not to consider
simple poles (or equivalently conical singularities of angle π) as part of a half-translation surface. The
reasons behind this convention are rather technical, but will be clarified to the reader when the necessary
material has been introduced3.

Let us now explain how quadratic differentials define geometric half-translation surfaces. Let {(Ui, zi)}i∈I
be an atlas for the Riemann surface structure of X and recall that q is just a collection of expressions
{fi(zi)dz

2
i }i∈I , where fi are holomorphic functions and these in Ui ∩Uj satisfy:

fi(zi(zj))(
dzi
dzj

)

2

= fj(zj). (1.2)

3Two examples of these technical reasons are: core curves of cylinders in a sphere with a meromorphic quadratic
differential where poles have not been removed are always null-homotopic; for any finite-type hyperbolic Riemann surface,
the cotangent space of Teichmüller space (at a point) is identified with the space of integrable holomorphic quadratic
differentials, see Proposition 6.6.2 in [Hub06].
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We denote by Z(q) the set of zeroes of q in X. The key point is to look for the local coordinate ξ on
X ∖ Z(q) such that q = dξ2. Indeed, for every p ∈ X ∖ Z(q) there exists a neighbourhood Ui = Ui(p) on
which a square root of fi exists. If we define for every z ∈ Ui

ξi(z) = ∫
z

p

√
fi(w)dw. (1.3)

this coordinate satisfies q = dξ2
i on Ui. Moreover, since we had to make a choice for the square root of f ,

the coordinate ξi(z) is unique up to translation and change of sign. In other words, the coordinates ξi(z)
define an atlas on X ∖ Z(q) where transition functions are of the form z → ±z + a. That is, {(Ui, ξi)}i∈I
is a half-translation atlas.

On the analytic side, an Abelian differential ω is just turned into a quadratic differential by considering
q = ω2. However, not every quadratic differential is globally the square of an Abelian differential (e.g.
dz2/(z(z + 1)(z − 1)) on C ∖ {0,1,−1}).

Exercise 1.1.17

Show that the three definitions of half-translation surface that we have given above are equivalent.
Hint: the proof is mutatis mutandis, the same as the proof of theorem 1.1.11.

Exercise 1.1.18

This exercise discusses conical singularities of half-translation surfaces.

1. Let M be a geometrical half-translation surface. Prove that the angle of a conical point z ∈ Σ
in the definition above is of the form πk for some positive integer k ≥ 2.

2. Let (X,q) be an analytic half-translation surface and z0 ∈ Z(q) a zero of multiplicity k ≥ 1.
Show that z0 in flat coordinares is a conical point of total angle (k + 2)π.

3. Let M be a constructive half-translation surface and v a vertex of a polygon in P. Prove that
there exist a positive integer kv ≥ 2 for which the following analog of equation (1.1) holds:

∑
w∈π−1(π(v))

αw = kvπ. (1.4)

Orientation double covering. Let M = (X,q) be a half-translation surface and suppose that q is
not the square of an Abelian differential. In the next paragraphs we explain how to construct a canonical
(ramified) double covering π ∶M2 →M such that π∗q = ω2, where ω is an Abelian differential on M2.

As before, let {(Ui, ξi)}i∈I be the half-translation atlas defined by the local integration of q on X∖Z(q).
Recall that q is given locally by {fidz

2
i }i∈I satifying (1.2) in Ui∩Uj . Given that for every fi has no zeroes

on Ui (we have restricted the discussion to X ∖ Z(q)), we can consider for each i ∈ I, g+i (zi) and g−i (zi)
two branches of the square root of fi on Ui. Consider also two copies U+

i and U−
i of Ui, which we think

of as the domain of g+i (zi) and g−i (zi) respectively. We define the double covering M2 locally as follows.
Suppose that Ui∩Uj ≠ ∅ and let πi,± ∶ U

±
i → Ui be the natural projections. We identify π−1

i,+(Ui∩Uj) with

π−1
j,+(Ui ∩Uj) and π−1

i,−(Ui ∩Uj) with π−1
j,−(Ui ∩Uj) using the maps π−1

j,+ ○πi,+ and π−1
j,− ○πi,− respectively if

g+i (zi(zj)) ⋅
dzi
dzj

= g+j (zj). (1.5)

On the other hand, if g+i (zi(zj)) ⋅
dzi
dzj

= g−j (zj) we identify π−1
i,+(Ui∩Uj) with π−1

j,−(Ui∩Uj) and π−1
i,−(Ui∩Uj)

with π−1
j,+(Ui ∩ Uj) using the maps π−1

j,− ○ πi,+ and π−1
j,+ ○ πi,− respectively. These gluings define an open

Riemann surface M̊2 which is a (non-ramified) double covering of X ∖Z(q). The collection of expressions
{g±i dzi}i∈I defines a holomorphic 1–form ω on M̊2 that can be holomorphically extended to a (possibly
ramified) covering π ∶M2 →M . Moreover, by construction π∗q = ω2 and Z(q) in the locus on M where
the covering might be ramified.
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Exercise 1.1.19

Let M = (X,q) be half-tranlation surface, π ∶M2 →M its orientation double covering and suppose
that z0 ∈ X is a zero of q of order κ ≥ 1. Prove that if κ is even, then π−1(z0) is formed by two
conical points of total angle π κ

2
. Prove that if κ is odd, then π−1(z0) is just a conical point of total

angle π(κ + 1). Deduce that the ramification points of the orientation double cover are the zeroes
of odd degree of the quadratic differential q.

We finish this section presenting a way to define the double covering M2 that only uses the half-
translation atlas and elementary algebraic topology. Most of the details are left to the reader on exercise
1.1.20. The idea is to use the holonomy of the half-translation structure (defined in the next paragraph):

this is a morphism f̂ ∶ π1(x0,M ∖ Σ) → {+1,−1} whose kernel defines a regular covering of M ∖ Σ and
the completion of this covering to a ramified covering is precisely M2. The concept of holonomy is
more general than the one we present in this section. As we will see later, one can also talk about the
holonomy of a (G,X)-structure or the holonomy of a compact translation surface on moduli space (i.e.
Konsevich-Zorich’s cocycle).

Let γ ∶ [0,1]→M be a closed loop. Then there exists a finite set of charts ξ0 ∶ U0 → C, ξ1 ∶ U1 → C, . . . ,
ξn ∶ Un → C and real numbers t0 = 0 < t1 < . . . < tn = 1 so that {γ(t)}t∈[ti,ti+1] ⊂ Ui. On each intersection
Ui ∩Ui+1 the linear part of the transition map ξi+1 ○ ξ

−1
i ∣Ui∩Ui+1 is either +1 or −1. Let si be this sign. We

set f(γ) = s0s1 . . . sn.

Exercise 1.1.20

Show that the map f defined above defines a map f̂ ∶ π1(x0,M)→ {+1,−1}. This map is called the
holonomy of the flat structure on M .

1. Show that the half-translation atlas of M contains a translation atlas if and only if the image
of f is {+1}.

2. If the half-translation atlas of M contains a translation atlas show that it contains exactly
two.

3. Show that the double (regular) covering M̊2 → M ∖ Σ given by the subgroup ker f̂ can be
endowed with a translation surface structure. Show that this double regular covering can be
extended to a possibly ramified covering π ∶M2 →M and that the ramification locus of π is
contained in Σ.

4. If M comes from a holomorphic quadratic differential (X,q) show that the surface defined by
the equation {ω ∈ T ∗(X) ∶ ω2 = q}, where T ∗(X) is the (complex) cotangent space of X,
carries a canonical translation surface structure.

In Figure 1.4 we depict an example of an orientation double covering.

B C1 C1

A

C2C2B

A
πB′

A′′

C′ B′′

A′′

B′′

A′

C′B′

A′

Figure 1.4: The orientation double covering of the half-translation surface of Figure 1.3.

1.1.5 Structures

In this section we discuss the most important structures and invariants that one can associate to a trans-
lation (or half-translation) surface. The material we present will be illustrated with several examples in
the following sections of this chapter. We stress that this material is standard in the context of compact
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translation surfaces, as discussed in several different surveys on the subject such as A. Zorich [Zor06],
J.-C. Yoccoz [Yoc10], G. Forni, C. Mathéus [FM14] or A. Wright [Wri15].

Metric completion and singularities. Let M be a translation or half-translation surface and Σ ⊂M
its conical singularities. As discussed in the preceding section, M ∖Σ can be naturally endowed with a
flat Riemmanian metric µ which provides a canonical notion of distance (given by the induced intrinsic
metric) and area. We denote by M̂ the metric completion of M ∖Σ w.r.t. the intrinsic metric induced
by µ.

Exercise 1.1.21

Let M be a translation or half-translation surface. Show that:

1. M is canonically embedded in M̂ and the image of this embedding is dense in M̂ .

2. Suppose that M = (X,q) is a half-translation surface and that q can be meromorphically
extended to a point z0 ∈ M̂ . Show that if q is not holomorphic at z0, then this point is a
simple pole and that the Euclidean metric of M can be extended to z0. Show that in the case
where z0 is a simple pole this point is a conical point of angle π.

3. If M is constructed from a family of polygons P, show that there is an inclusion (⊔P ∈P P / ∼)↪
M̂ . In other words: show that all vertices need to be added to obtain the metric completion of
a constructive translation surface. Show also that the total area of M w.r.t to the Riemannian
metric µ is the sum of the areas of the polygons in P.

Given that the translation (or half-translation) surface structure is not defined at conical points, it is
in the metric completion where one finds the singularities of the structure. For the following definition
we refer to exercise 1.1.4.

Definition 1.1.22 (Conical, infinite angle and wild singularities). Let M be a translation or
half-translation surface and M̂ its metric completion with respect to the natural flat metric. A point
p ∈ M̂ ∖M is called:

1. regular if it has a neighbourhood isometric to an open disc in the plane,

2. a conical singularity if p is a conical point which is not regular,

3. an infinite angle singularity if there exists a punctured neighbourhood U∗ of p in M̂ which is
isometric to a punctured neighbourhood of p∞ in (C,m), and

4. a wild singularity if p is none of the above.

The subset of M̂ formed by all conical, infinite angle and wild singularities is called the set of singularities
of M and will be denoted by Sing(M). A translation surface is called tame if Sing(M) is formed
exclusively by conical and infinite angle singularities, and wild in all other cases.

Loosely speaking, conical singularities appear in translation or half-translation surfaces “by default”4.
On the other hand, wild and infinite angle singularities only appear in the metric completion, as in the
case of the infinite staircase. As we see later with the example of baker’s surface (see section 1.2.2) wild
singularities naturally appear in translation surfaces of finite area and infinite genus. We study singular-
ities of translation surfaces in detail in chapter 2.3.

Remark 1.1.23. The set of wild singularities can be disjoint from the set of vertices on a constructive
translation surface. Indeed, it is not difficult to construct an infinite triangulation T of the (open) unit
disc D = {z ∈ C ∣ ∣z∣ < 1}. Every vertex of T is properly contained in D, however Sing(D) = {z ∈ C ∣ ∣z∣ = 1}.

Infinite type. A translation surface is compact if and only if can be built from finitely many polygons.
We introduce a slightly more general notion (finite type) which allows us to define the main objects of
study of this book.

4Except for conical singularities of angle π, see Remark 1.1.16.
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Definition 1.1.24. Let M = (X,ω) be a translation surface. We say that M is of finite type if M has
finite area and X is a finite-type Riemann surface. If M is not of finite type we say it is of infinite type.

Remark 1.1.25. Recall that a Riemann surface X has finite type if it is isomorphic (as Riemann surface)
to a compact Riemann surface to which we have removed a finite set of points. For example, the plane C
is of finite type (as it is the sphere Ĉ minus one point) whereas the unit disk D is not. In particular, we
stress that the fundamental group of X does not play a role in definition 1.1.24. However, a translation
surface M whose fundamental group is not finitely generated is of infinite type.

To define half-translation surface of finite type just change ω by q (a quadratic differential) in the
preceding definition. In Section 1.2.5 we show there are examples of infinite-type half-translation surfaces
of the form (C ∖Λ, q), where Λ is a lattice, with interesting dynamical properties.

Affine maps. Let M and M ′ be translation surfaces with conical singularities Σ and Σ′ respectively. A
map f ∶M →M ′ such that f(Σ) ⊂ Σ′ is called an affine map if f ∶M ∖Σ →M ∖Σ′ in flat charts is an
R-affine map. That is, if z (respectively z′) denotes a flat local coordinate of M ∖Σ (resp. M ′ ∖Σ′) and
we write z = x+ iy (resp. z′ = x′ + iy′) then f in these coordinates is given by an expression of the form:

(
x
y
)↦ (

x′

y′
) = (

a b
c d

)(
x
y
) + (

x0

y0
) . (1.6)

Since two coordinates differ only by a translation, the matrix (
a b
c d

) does not depend on the coordinates

z and z′. However, the translation vector (
x0

y0
) does. We will denote the constant derivative of an affine

map f by Df .

Definition 1.1.26. Let M and M ′ be two translation surfaces. An affine map f ∶ M → M ′ is called a
translation if Df = 1 and an isometry if Df ∈ SO(2,R).

The translation surfaces M and M ′ are called isomorphic if there exists a 1-to-1 translation f ∶M →
M ′.

Note that translation and isometries are special cases of volume preserving affine maps (i.e. with
det(Df) = ±1).

An affine automorphism is a homeomorphism f ∶ M → M which is also an affine map. We de-
note by Aff(M) the group of affine homeomorphisms of M and by Aff+(M) the subgroup of Aff(M)
made of orientation preserving affine automorphisms (i.e. their linear part has positive determinant).
The derivative Df of an affine map lives in GL(2,R) and the derivation provides a group morphism
D ∶ Aff(M) → GL(2,R). We denote by Trans(M) (resp. Isom(M)) the groups formed by all affine
automorphisms of M which are translations (resp. isometries).

Definition 1.1.27. The image of the group morphism D ∶ Aff+(M)→ GL(2,R) is called the Veech group
the translation surface M . We denote it by Γ(M).

We study Veech groups of infinite type translation surfaces in detail in section 3.2. As the next
definition shows, one can classify orientation and volume preserving affine automorphisms using their
derivatives.

Definition 1.1.28. An orientation and volume preserving affine automorphism f ∶M →M (i.e. so that
det(Df) = 1) is called elliptic if ∣ tr(Df)∣ < 2, parabolic if ∣ tr(Df)∣ = 2 and hyperbolic if ∣ tr(Df)∣ > 2.
In the case M is a compact translation or half-translation surface, an affine hyperbolic automorphism is
called an affine pseudo-Anosov homeomorphism.

This nomenclature mimics the one used for matrices in SL(2,R). Remark that an automorphism is
elliptic if and only if it is an isometry. Note that there are several equivalent definitions of what a pseudo-
Anosov homeomorphism is (see e.g. [Thu88], [FLP79] or [FM12]). We discuss affine automorphism groups
in detail in Chapter 3.

GL(2,R)-action. There is a natural action of the group GL(2,R) on the set of all translation surfaces,
which is easily defined as follows: if (S,T ) is a geometric translation surface, T = {φi ∶ Ui → C}i∈I and
A ∈ GL(2,R), then A(S,T ) = (S,AT ), where AT = {A ○ φi ∶ Ui → C}i∈I . Remark that AT is indeed a
translation atlas for:

(A ○ φj) ○ (A ○ φi)
−1 = A ○ (φj ○ φ

−1
i )(A−1(z)) = A(A−1(z) + c) = z +A(c)
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In the context of finite-type translation surfaces, this action is a fundamental ingredient for the study
of the dynamics of the translation flow, which we define in the next paragraphs. For a detailed discussion
of this action in the context of finite-type surfaces see Section 3 in [Wri15].

Translation flow. For each direction θ ∈ R/2πZ we have well-defined translation flow F tC,θ ∶ C→ C given

by F tC,θ(z) = z + te
iθ, which is the one-parameter flow corresponding to the integration of the constant

(real) vector field eiθ on C. Now, let M be a translation surface. The pull-back of this vector field through
flat charts is well-defined on M ∖ Sing(M) and the associated flow is called the translation flow of M in
direction θ. We will abuse notation and denote the vector field and corresponding flow on M by eiθ and
F tM,θ respectively. When there is no need to distinguish translation flows in different translation surfaces

we abbreviate F tM,θ by F tθ .

Remark that eiθ is only defined on the complement in M of conical singularities. In particular F tM,θ

is not quite a flow t ∈ R, for it might hit a conical singularity in finite time. Though, for a large class of
surfaces the translation flow is defined almost everywhere with respect to the area. The term translation
flow (i.e. without specifying the direction) is reserved for F tM,π/2, that is, the translation flow in the

vertical direction and is abbreviated by F tπ/2 or simply by F t when all other variables in the context are

clear. Note that the (vertical) translation flow in the rotated surface M ′ = (X,e−iθω) is the same flow as
the translation flow in direction θ + π

2
in M = (X,ω). In other words, F t

e−iθM,
π
2
= F tM,θ+π2

.

When M has finite type, for all directions θ, the set of points in for which F tM,θ is defined for all times
forms a subset of full Lebesgue measure. Abusing language, we will say that such a flow is complete.
In Chapter 4 we will discuss under which conditions the translation flow in a non-compact translation
surface is complete. The flat disk (D, dz) is an example where the flow is not complete in any direction.

The translation flow in any direction θ alsopreserves the (flat) Riemannian metric µ on M . In
particular, where it is defined, it preserves the area: if A ⊂M and F tM,θ is well defined on A then the area

of A and F tM,θ(A) are identical. For this reason many tools from ergodic theory are available to study
translation flows. Because of the presence of conical singularities, in general the translation flow does not
act by isometries. The dynamical properties of translation flows are studied in chapters 4, 5 and 6.

Remark 1.1.29. Let M be a translation surface and T1(M) the unit tangent bundle of M ∖ Sing(M)
w.r.t. the natural flat metric µ. Given that all coordinate changes are translations this bundle is trivial,
i.e. T1(M) ≃ M ×R/2πZ. Moreover, this isomorphism is canonical: the vector field corresponding to eiθ

considered above gives the slice M × {θ} in this product. Now, the geodesic flow Gt on T1(M) in these
product coordinates is just Gt ∶ (z, θ) ↦ (F tM,θ(z), θ). In other words, the 3-dimensional unit tangent
bundle T1(M) is foliated by copies of M which are invariant by the geodesic flow. On each invariant
surface Gt is canonically identified to a translation flow on M .

Recall that, given a flat surface M = (X,q), the local coordinates z for which the quadratic differential
satifies q = (dz)2 are well defined up to a sign. For this reason the pull back of the vector field eiθ to
M cannot define a global vector field on M . On the other hand, this pull back does define a direction
field (in the sense of V.I. Arnold, see [Arn06]) and the corresponding set of integral curves a foliation on
M ∖ Z(q) by curves which locally look like straight line segments. On the other hand, the pull back of
the vector field eiθ to the canonical double cover M2 does define a global vector field which projects onto
the direction field on M .

Cylinders and strips. There are two kind of subsets that a translation surface might have and whose
mere existence guarantees that the translation flow in certain directions, restricted to these subsets, is
simple. These subsets are cylinders and (infinite) strips.

Definition 1.1.30 (Cylinders and strips). A horizontal cylinder Cc,I is a translation surface of the form
([0, c]×I)/ ∼, where I ⊂ R is open (but not necessarily bounded), connected, and where (0, s) is identified
with (c, s) for all s ∈ I. The numbers c and h = ∣I ∣ are called the circumference and height of the cylinder
respectively. A horizontal strip C∞,I is a translation surface of the form R×I, where I is a bounded open
interval. Analogously, the height of the horizontal strip is h = ∣I ∣.

An open subset of a translation surface M is called a cylinder (respectively a strip) in direction θ if it
is isomorphic to e−iθCc,I (respect. to e−iθC∞,I).

One can think of strips as cylinders of infinite circumference and finite height. For flat surfaces
M = (X,q) the definition of cylinder still makes sense, though its direction is well defined up to change
of sign. Examples of cylinders are illustrated in figure 1.5.
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Exercise 1.1.31

Let M be a translation surface.
1. Show that a cylinder in direction θ of M is made of periodic trajectories of F tM,θ whose lengths

are the circumference of the cylinder.
2. Conversely, show that every periodic trajectory of F tM,θ is contained in a maximal cylinder.

hint: if x ∈M is a point where the translation flow F tM,θ is defined for some time in the past
and in the future, then x is the center of a neighbourhood in M formed by points with this
property.

(a) Infinite strips in the infinite staircase from Fig-
ure 1.2.

(b) Cylinders in the horizontal direction in the in-
finite staircase.

(c) Two vertical cylinders in the genus 1 half-
translation surface from Figure 1.3.

Figure 1.5: Cylinders and strips in translation and flat surfaces.

Strata of finite-type translation surfaces. In this paragraph we review without details the definition
of strata of finite-type translation surfaces. The reader is invited to consult details in [Zor06, Section
3.3], [?, Section 2.3] (analytic version) and [Yoc10, Section 6] (constructive version).

All singularities of a finite-type translation surface are of finite angle. In particular one can define
appropriate moduli spaces for the set of equivalence classes of translation surfaces (or quadratic dif-
ferentials). If κ1, κ2, . . . , κm are non-negative integers then H(κ1, κ2, . . . , κm) denotes the set of tuples
(M,p1, . . . , pm) where M is a translation surface (up to isomorphism) with conical singularities of angles
2(1 + κ1)π, 2(1 + κ2)π, . . . 2(1 + κm)π at the (distinct and enumerated) points (pi)

m
i=1 respectively. This

set is called a stratum of translation surfaces and, from Riemann-Hurwitz theorem, one can deduce that
all surfaces in a stratum have the same genus g given by the equation ∑

m
i=1 κi = 2g − 2. For example, the

translation surface depicted in Figure 1.1 is a point in H(2). When κi = 0 the point pi is a flat point:
H(2,0) is the stratum of translation surfaces with one cone angle singularity of angle 6π and one marked
point (hence genus 2). Strata have a nice complex orbifold structure given by period coordinates. These
coordinates allow to define the Masur-Veech measure on strata, and it is a classical result of Masur and
Veech that the suborbifold formed by area 1 translation surfaces always has finite volume.

Consider now a tuple of integers κi ≥ −1 and denote by
Q(κ1, κ2, . . . , κm) the space of meromorphic quadratic differentials (X,q) (up to isomorphism) for which
X is homeomorphic to a genus g compact surface and all poles of q are simple. This set is also called a
stratum. In this case (X,q) has a conical singularity of angle (2+κi)π at each pi (and are flat elsewhere).
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The genus of these surfaces is given by ∑
m
i=1 κi = 4g − 4. Period coordinates and a finite measure can also

be defined for Q(κ1, κ2, . . . , κm) by considering orientation double coverings.
The orientation double covering of a meromorphic differential (X,q) in Q(κ1, κ2, . . . , κm) is a trans-

lation surface with conical singularities of angles 2(1+κ′i1)π, 2(1+κ′i2)π, . . . 2(1+κ′il)π where the compu-

tation of the values (κ′ij)
l
j=1 are left to the reader (see exercise 1.1.19). Given that there is no canonical

way to enumerate the conical singularities appearing in the orientation double cover, there is no canonical
way to associate to this cover a point in a strata of translation surfaces. However one can overcome this
technical nuissance by considering a finite covering5 Qor(κ1, κ2, . . . , κm) → Q(κ1, κ2, . . . , κm), on which
a well-defined map into a strata of translation surfaces can be defined. It is customary to compose this
map with a forgetful map to get rid off the marked points. The composition of the aforementioned maps
is an immersion (see Lemma 1, Section 2.1 in [?]).

Exercise 1.1.32

Show that the example from Figure 1.3 belongs to Q(2,−1,−1) and hence, its orientation cover
belongs to H(1,1) (when forgetting the marked points). Determine the order of the covering of
Q(2,−1,−1) that can be immersed into H(1,1).

Remark 1.1.33. Following tradition, the stratum of translation surfaces with n conical singularities of
the same angle, say 2(1 + κ)π, is abbreviated by H(. . . , κn, . . .). The same applies to strata of quadratic
differentials. For example H(12) =H(1,1) while Q(2,−12) = Q(2,−1,−1).

Remark 1.1.34. For infinite-type surfaces, there are many sorts of wild singularities. They are discussed
in detail in Section 2.3. One could classify wild singularities according to their local geometry and in
this way extend the definition of strata for infinite-type surfaces. The remaining (big) difficulty is to find
convenient analogs of period coordinates and the Masur-Veech measure.

1.2 Examples

In the rest of this chapter we present a list of examples of infinite-type translation surfaces. These are
revisited later on to illustrate general aspects of the objects defined in the preceeding section.

1.2.1 Polygonal billiards

Polygonal billiards are a recurrent example in this text. Roughly speaking, a polygonal billiard is the
dynamical system defined by the frictionless motion of a point-particle inside an Euclidean polygon P
where all collisions with the boundary are elastic. This means that each time that a point hits a side of
the polygon the angle of incidence of its trajectory will be equal to the angle of reflection. By convention,
the motion of a point ends when reaching a corner. One of the main motivations to study polygonal
billiards is the following old conjecture:

Question 1.2.1

Every polygonal billiard has a closed trajectory.

A trajectory is closed if the point that follows it returns (after finitely many bounces) to its starting
position with the same direction on which it started its motion. According to R. E. Schwartz “it is fair
to say that this 200-year-old problem is widely regarded as impenetrable” [Sch09]. The conjecture is true
for acute and right triangles, every rational triangle [Mas86] and all obtuse triangles whose big angle is at
most 5/9π [Sch09]. Despite all these evidence, one has to be prudent: for any ε > 0 there exists a triangle
whose two small angles are within ε radians of π

6
and π

3
respectively that has no periodic billiard path of

combinatorial length6 less than 1
ε

[Sch06]. We refer the reader to [Sch09] and references therein for more
details on this conjecture.

A common trick to study billiards in polygons is to produce from P a translation surface M(P )
using an unfolding process. We follow the approach of J.C. Yoccoz to explain this process, see [Yoc10],

5Formally speaking one has to consider covering in the class of orbifolds.
6The combinatorial length of a periodic billiard path is defined as the number of times the point bounces on the boundary

of the polygon before returning to its initial position with the same direction it started its motion.
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though this trick appears in different guises in the literature, as early as 1936 in a paper by Fox and
Kershner [FK36] and in a 1975 paper by Katok and Zemlyakov [KZ75].

Let {e1, e2, . . . , en} be the sides of P , r(ej) be the linear part of the element in Isom(R2) given by
the reflection with respect to the line containing ej for j ∈ {1,2, . . . , n} and R < O(2,R) be the subgroup
generated by {r(e1), . . . , r(en)}. We define a topological space M(P ) as the quotient of P × R by the
following equivalence relation. Two points (z, r) and (z, r′) are equivalent if and only if z = z′ and:

1. r−1r′ = 1R if z belongs to the interior of P ,

2. r−1r′ ∈ {1R, r(ej)} if z belongs to the side ej ,

3. r−1r′ ∈ Rz if z is a vertex of P , where Rz is the subgroup of R generated by r(ei) and r(ej) if z is
the vertex given by the intersection of the sides ei and ej .

We denote by Σ the image in M(P ) of the vertices of P . It is always possible to define a translation
surface structure on M(P ) ∖Σ. Indeed, if we denote by P̊ the interior of P then:

• for each r ∈ R the map P̊ × {r}→ R2 given by (z, r)→ r(z) defines a chart and

• if z belongs to the side ej (but is not a vertex) of P and r ∈ R, let U = B(z, ε) ∩P with ε > 0 small
enough so that U is an open half-disc plus its diameter. The map:

U × {r, rr(ej)}→ R2

sending (z, r) to r(z) and (z, rr(ej)) to fr(ej)(r(z)), where fr(ej) is the reflection with respect to
line containing the image of the side ej × {r} ⊂ P × {r} in the plane, defines a chart around z.

Exercise 1.2.2

Let P be an Euclidean polygon.

1. Show that the charts defined above define a translation surface structure on M(P ) ∖Σ.

2. Suppose that all interior angles of P are commensurable with π and let N be the smallest
integer such that any interior angle of P can be written as πm

N
for some m ∈ N. Show that in

this case R is isomorphic to the dihedral group of order 2N :

⟨a, b ∣ a2 = 1, bN = 1, (ab)2 = 1⟩.

3. Let z ∈ P be a vertex defined by the intersection of the sides ei and ej and let as before Rz be
the subgroup of R generated by r(ei) and r(ej). Prove that:

(a) If the interior angle of P at z is of the form π p
q

with p, q ∈ N relatively prime, then Rz
is isomorphic to the dihedral group of order 2q. Deduce that if we add the image of the
vertex z to M(P ) ∖Σ we obtain a cone angle singularity of total angle 2pπ.

(b) If the interior angle of P at z is of the form λπ, with λ ∈ R ∖Q, then Rz (and hence R)
is infinite. Deduce that if we add the image of the vertex z to M(P ) ∖ Σ we obtain an
infinite cone angle singularity.

From the preceding exercise we deduce that Euclidean polygons can be classified into those for which
every interior angle is commensurable with π and those for which this is not the case. The former are
called rational polygons and the later irrational polygons.

Billiard trajectories and translation flows. The main point of introducing the unfolding trick is
to relate billiard trajectories on P to trajectories of the translation flow on M(P )∖Σ. Let γ(t), t ∈ [0, T ]
be a billiard trajectory which bounces on the sides of P at times 0 < t1 < . . . < tN < T . Denote by eti
the side that γ(t) encounters at t = ti. Define rt0 ∶= 1R and rti+1 ∶= rtir(eti+1). Then for every r ∈ R the
image on M(P ) ∖Σ of the path defined by the formulas:

γr(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ(t), rrt0) for 0 ≤ t ≤ t1

(γ(t), rrti) for ti ≤ t ≤ ti+1, i < N

(γ(t), rrtN ) for tN ≤ t ≤ T
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defines a trajectory of the translation flow on M(P )∖Σ. Conversely, the image of every piece of trajectory
of the translation flow on M(P )∖Σ by the natural projection πP ∶M(P )→ P defines a billiard trajectory
on P . Hence, we can reformulate many problems of billiards dynamics in terms of translation flows in
M(P ) ∖ Σ. In figure 1.6 we depict the unfolding process and the relation between billiard trajectories
and the translation flow for the case of the billiard in the unit square.

Figure 1.6: Billiard inside the unit square and the unfolding of a billiard trajectory.

The topology of M(P ). If P is a rational polygon, exercise 1.2.2 above implies that M(P ) is a
compact translation surface tiled by finitely many copies of the polygon P . In figure 1.7 we depict M(P )
for a triangle P with interior angles (π

2
, π

8
, 3π

8
). Remark that M(P ) in this case is obtained by identifying

opposite sides using translations on a regular octagon. By making a straightforward calculation on the
number of copies of P tilling M(P ) and applying the formula that relates the Euler characteristic of
M(P ) to its genus, we deduce that this translation surface has genus 2 and only one conic singularity
of total angle 6π. In the same figure we illustrate how a billiard trajectory on P unfolds in M(P ). In
general, if P has interior angles pi

qi
π, a direct application of the Euler characteristic formula shows that

genus(M(P )) = 1 +
N

2
(n − 2 −

n

∑
i=1

1

qi
) (1.7)

where N = lcm(q1, . . . , qn). For a detailed proof of this formula see [Tab05, Theorem 7.22]. In particular,
the topology M(P ) when P is a rational polygon depends on the interior angles of P .

Figure 1.7: The billiard in the triangle P with interior angles (π
2
, π

8
, 3π

8
) and the associated surface M(P ).

If P is an irrational polygon, exercise 1.2.2 above implies that M(P ) is not a manifold on points
p ∈ Σ coming from vertices where the interior angle is not commensurable with π. Indeed, since any such
point p is an infinite angle singularity, no neighbourhood of p is compact and hence there cannot be a
chart around this point into the plane. To avoid this nuisance we remove first from P all vertices on
which interior angles are not commensurable with π and then we perform the unfolding construction.
The result is a translation surface that we henceforth, abusing notation, denote by M(P ). Remark that
in this case the group R∩SO(2,R) has index 2 in R and is of the form Zρ(P )⋊G where G is finite and the
non-negative integer ρ(P ) is called the rank of P . The following theorem, whose proof will be discussed
in Example 2.2.9 of Section 2.2 describes the topology of this surface.
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Theorem 1.2.3: [Val09b]

Let P be an euclidean polygon with interior angles λjπ, j = 1, . . . ,N . If there exists λj ∈ R∖Q, then
M(P ) is homemorphic to an infinite genus surface with one end.

In other words, all translation surfaces stemming from irrational polygons are homeomorphic and of
infinite type.

It is fair to say that one can play billiards in domains of R2 which are more complicated than an
Euclidean polygon. To fix ideas let us introduce a more general notion of polygon.

Definition 1.2.4. A generalized polygon is a closed subset P of R2 whose boundary is a union of
(Euclidean) segments such that for any compact set K ⊂ R2 the intersection K ∩ ∂P is a finite union of
segments. The segments forming ∂P are called the sides of the generalized polygon.

All Euclidean polygons as well as the complement of their interior are generalized polygons. Two
examples of generalized polygons are depicted in Figure 1.8.

(a) A rational generalized polygon.
(b) An irrational generalized polygon as con-
sidered in Exercise 1.2.6.

Figure 1.8: Two bounded generalized polygons.

Definition 1.2.5. Let P be a generalized polygon with sides {e1, e2, . . .} and R < O(2,R) be the group
generated by the linear parts of the reflections w.r.t. the lines containing ej for each j ∈ {1,2, . . .}. Then
P is called a rational generalized polygon if the group R is finite and irrational otherwise.

Exercise 1.2.6

The purpose of this exercise is to illustrate that there are rather simple generalized polygons whose
interior angles are all commensurable with π but for which the unfolding process leads to an infinite
type translation surface. Consider two concentric and disjoint squares P1 ⊂ P2 such that P1 is
obtained from P2 by an homothety followed by a rotation by an angle λπ with λ ∈ R ∖ Q (see
Figure 1.8b). Let P be the closure in the plane of P2 ∖ P1. Prove that if we apply the unfolding
process described in the preceding paragraph we obtain an infinite area infinite genus translation
surface M(P ). Describe the set of conic singularities.

By definition, a compact generalized polygon P is rational if and only if the translation surface M(P )
obtained by the unfolding process is compact (and hence of finite type). Exercise 1.2.6 shows that there
are irrational compact generalized polygons whose interior angles are commensurable to π. As we will
see later, the so-called wind-tree models are special classes of non-compact rational generalized polygons
such that M(P ) is of infinite topological type and whose billiard dynamic is quite interesting.

Remark 1.2.7. There are even more general spaces on which one can consider billiard dynamics and the
unfolding trick. For example the so-called parking garages introduced by M. Cohen an B. Weiss, see
[CW12].
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1.2.2 Baker’s surfaces.

In this section we construct, for each α ∈ (0,1) a finite-area translation surface of infinite genus Bα.
These examples are called baker’s surfaces for, as explained in [CGL06], they appear when considering
the classical baker self-map on the unit square. They are also examples of Thurston-Veech surfaces that
will be discussed in Sections 1.2.6 and 3.5.

Understanding the construction of baker’s surfaces is easier when considering Figure 1.9. Let abcd
be a square, where ab and bc are the upper and right sides respectively, and suppose that these sides

have length α
1−α

. For each i ∈ N, define ai ∈ ab and bi ∈ bc to be the point such that ∣aib∣ = ∣bib∣ =
αi

1−α
.

Analogously, let ci ∈ cd and di ∈ da be such that ∣cid∣ = ∣did∣ =
αi

1−α
. Let us also denote a0 = c0 = a and

b0 = d0 = c. These points define a partition of the sides and each segment [ai, ai+1], [bi, bi+1], [ci, ci+1]
and[di, di+1] have length αi (see Figure 1.9). Identify using a translation the horizontal sides [ai, ai+1]
with [ci, ci+1] (identified with the label Ai on Figure 1.9) and the vertical sides [bi, bi+1] with [di, di+1]
(identified with the label Bi on Figure 1.9). We denote by B̂α the topological space that results from
these identifications. This notation is justified by the following exercise.

Exercise 1.2.8

Show that if we remove from B̂α the image of the points {ai, bi, ci, di}
∞
i=0, the result is a geometric

translation surface, that is, it has a natural atlas whose change of coordinates area translations. We
denote this surface by Bα. Show that for each α ∈ (0,1) the metric completion of Bα w.r.t. the flat
metric is obtained by adding just one point x∞. Moreover, show that this point is a wild singularity
and that the metric completion of Bα is precisely the quotient B̂α defined above.

All surfaces Bα are homeomorphic to each other and by construction every Bα is a translation surface
formed only by flat points, i.e. it contains no conical singularities. However, as the preceding exercise
shows, a wild singularity appears when considering its metric completion, see Definition 1.1.22. We will
discuss wild singularities with more detail in the next chapter. On the other hand, as we will see in
Section 3.6, for α = 1

q
, q ≥ 2, baker’s surfaces have a lot of affine symmetries. More precisely, we will prove

that the Veech group of B 1
q
, for q ≥ 2, is of the second kind and generated by two transverse parabolic

automorphisms.

Remark 1.2.9. Baker’s surfaces were originally introduced by R. Chamanara in [Cha04], though the
recipe for its construction is attributed to A. de Carvalho. By this reason some authors call these
surfaces Chamanara’s surfaces. It is important to remark that R. Chamanara constructed his surfaces in
[Cha04] from a unit square, ergo if we apply the homothety of factor 1−α

α
to the square abcd introduced

above and proceed with the construction of Bα we retrieve Chamanara’s original construction.

A1 A2 A3 A4
. . .

.

.

.
B4

B3

B2

B1

A1A2A3A4. . .

.

.

.

B4

B3

B2

B1

a b

cd

Figure 1.9: Baker’s surface Bα for α = 1
2

and its wild singularity.



1.2. EXAMPLES 25

Question 1.2.10

In which directions θ does the surface Bα have a cylinder? In which directions θ does the translation
flow F tθ have a dense trajectory?

We will see that in the case of B1/2 the Hooper-Thurston-Veech machinery produces countably many
directions θ with cylinders and uncountably many directions θ with dense trajectories. However, this
is far from being a complete answer for B1/2. Nothing is known for parameters α that are not rational
numbers.

1.2.3 The infinite staircase

Infinite-type translation surfaces appear when considering infinite coverings of finite-type translation
surfaces. This is a framework that we explore with more detail in Section 2.2 and we exploit recurrently
along this text. The infinite staircase, introduced in section 1.1, was the first example of an infinite
covering to be studied systematically, see [HHW13]. To be more precise, the infinite staircase is a covering
(ramified over one point) of the flat torus obtained from the unit square. Translation surfaces which are
coverings of flat torii ramified at most over one point are called origamis or square-tiles surfaces. The
infinite staircase is thus an infinite-type origami and, as it can be seen from figure 1.2, it has four infinite
angle singularities.

The infinite staircase has a lot of symmetries. Indeed, its affine group contains:

1. a group of translations isomorphic to Z,

2. two elements7 ψh and ψv with derivatives Dψh = (
1 2
0 1

) and Dψv = (
1 0
2 1

) and

3. a symmetry with derivative −Id that stabilizes the staircase at level 0, see figure 1.10 (a).

Theorem 1.2.11

The infinite staircase has the following geometric and dynamical properties:
• its affine group is generated by the elements enlisted above. In particular its Veech group is a

lattice in SL(2,R) generated by the matrices (
1 2
0 1

) and (
0 1
−1 0

),

• if θ ∈ R/2πZ is a direction of rational slope, then the translation flow F tθ decomposes the
infinite staircase into infinitely many cylinders or into two infinite strips, and

• if θ ∈ R/2πZ is a direction of irrational slope, then the area measure is conservativea and
ergodicb under the translation flow F tθ for the Lebesgue measure.

a The measure is conservative if orbits of the system are recurrent. See Appendix A for a formal definition.
b The measure is said to be ergodic if it is not possible to split the space into two invariant sets of positive measure.

See Appendix A for a formal definition.

The ergodicity in irrational directions is due to J.-P. Conze [Con76], [CK76] and K. Schmidt [Sch78]. It
was generalized later by I. Oren [Ore83] and strengthened into a mesaure classification by J. Aaronson,
H. Nakada, O. Sarig and R. Solomyak [ANSS02]. The Veech group computation has been done by
P. Hooper, P. Hubert and B. Weiss [HHW13] and the presence of these affine symmetries provides an
alternative way to prove ergodicity of the translation flow. All this will be discussed in Chapter 6. Some
more results about this model include [Kes60], [Ral14b], [ADDS15].

1.2.4 Wind-tree models

In this section we present a special kind of billiards on generalized polygons: wind-tree models. Histor-
ically, it was Paul and Tatiana Ehrenfest [EE12] who defined first the (random) wind-tree model as a
simplified model of Lorenz gas. They were interested in the robustness of Boltzman’s ergodic hypothe-
sis. In this first version, square scatterers with random sizes are randomly placed in the plane, and the

7As we see later, these elements correspond to horizontal and vertical multitwists.
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(a) The infinite staircase. A (ramified) covering of
a torus with 4 singularities of infinite conical type.

(b) In direction (p, q) with p + q ≡ 1 mod 2, the
staircase decomposes into a countable union of
cylinders. Here is the example (p, q) = (5,2).

(c) In direction (p, q) with p + q ≡ 0 mod 2 and
relatively prime, the staircase decomposes into a
union of two strips. Here is the example of (p, q) =
(5,1).

(d) A piece of a trajectory in the direction stabilized
by the affine map ψhψv.

Figure 1.10: The infinite staircase and some trajectories of its translation flows.

billiard ball could only move in a very specific direction (see Figure 1.11a). Much later on, two other
physists J. Hardy and J. Weber studied a periodic version of the Ehrenfests’ wind-tree model [HW80]
(see Figure 1.11b). However, they also considered the billiard flow only in some very specific directions.
It was until the work of P. Hubert, S. Lelièvre and S. Troubetzkoy [HLT11] that the study of the billiard
flow in a generic direction was initiated. Since then a lot of work has been devoted to the study of the pe-
riodic wind-tree models and their generalizations [AH], [DHL14], [Del13], [FU14b], [FU14a], [DZ], [Par].
Despite a huge amount of work in the periodic case, very little is known about the original Ehrenfests’
wind-tree model. We discuss more on these random wind-tree models in Section 1.2.7. For the rest of
this section we focus on Hardy-Weber’s periodic windt-ree models.

Question 1.2.12

Describe the dynamics of the billiard ball on the original (random) Ehrenfests’ wind-tree model for
a generic direction θ ∈ R/2πZ.

Periodic wind-tree models. Let Z2 be the standard lattice in R2 and (a, b) ∈ (0,1)2. For each (m,n) ∈
Z2 let us consider the rectangle Rm,n = [m − a/2,m + a/2] × [n − b/2, n + b/2] of size a × b centered at the
lattice point (m,n). We denote by Ta,b the billiard table obtained by removing from the plane R2 the
union of all rectangles Rm,n. We call the billiard table Ta,b the periodic wind-tree model with parameters
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(a) The Ehrenfests’ wind-tree model (b) The Hardy-Weber periodic wind-tree model. In this
picture the parameters are a = b = 1/2.

Figure 1.11: The original Ehrenfests’ wind-tree model and the periodic version from Hardy-Weber.

(a, b). As discussed at the end of section 1.2.1, Ta,b is a non-compact generalized polygon, and hence we
can perform the unfolding trick on it.

Given that the billiard flow on the table Ta,b is invariant under the action by translations of Z2 and
the interior angles of Ta,b are all equal to 3π

2
, when we perform the unfolding construction on Ta,b the

result is an infinite type surface Wa,b which is a Z2-covering of a genus 5 translation surface L̃a,b (see
Figure 1.12b). It is easy to see that Wa,b is a complete translation surface (for the flat metric) presenting

only finite cone angle singularities. Note that the surface L̃a,b corresponds to the unfolding procedure
applied to a billiard in a torus with a rectangular obstacle (see Figure 1.12a).

As we will see in chapter 2.2, it is possible to use standard arguments in covering space theory to prove
that the infinite translation surface Wa,b always has infinite genus and one end. Moreover, for infinitely
many rational parameters (a, b) one can prove that the Veech group Γ(Wa,b) is infinitely generated (see
Theorem 3.4.21 in Section 3.4).

We summarise below what is known about the dynamics of the billiard flow on Ta,b (or equivalently
the translation flow on Wa,b). We refer the reader to Appendix A for a review of standard notions in
dynamical systems such as recurrence or ergodicity in infinite-measure spaces.

Theorem 1.2.13: Generic and exceptional wind-tree behavior.

For every parameters (a, b) ∈ (0,1)2 the following is true for the translation flow F tθ on the translation
surface Wa,b, obtained from the wind-tree model by unfolding, in a generic direction θ:

• the translation flow F tθ is conservative a,
• for all point x ∈Wa,b with infinite forward orbit we have

lim sup
t→∞

log d(x,F tθ)

log t
=

2

3
.

where the distance is the distance in Wa,b,
• F tθ is not ergodicb.

However, for the parameters a = b = 1/2
• there are uncountably many angles θ for which the flow F tθ is completely dissipative c,
• there are uncountably many angles θ for which the flow F tθ is ergodic.

a See footnote a of Theorem 1.2.11 for the definition.
b See footnote b of Theorem 1.2.11 for the definition.
cA system is dissaptive if orbits are divergent. This is the opposite behavior of conservative from footnote a of

Theorem 1.2.11. We refer to Appendix A for the formal definition.

The recurrence is due to A. Avila and P. Hubert [AH] and will be treated in Section 5.4. The rate
diffusion is a manifestation of the Kontsevich-Zorich phenomenon and in this context, the result is due to
V. Delecroix, P. Hubert and S. Lelièvre [DHL14] and is explained in Section 5.6. The non-ergodicity is a
phenomenon found by K. Fraczek and C. Ulcigrai [FU14b] that we see in Section 6.1.1. The existence of
divergent flow is due to V. Delecroix [Del13]. Finally, the existence of ergodic directions is a consequence
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(a) The quotient billiard obtained by
considering the fundamental domain
from Figure 1.11b.
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(b) The quotient translation surface L̃a,b. This sur-
face has genus 5 and belongs to the stratum H(24).

Figure 1.12: The billiard and compact translation surface obtained as the quotient of the periodic wind-
tree model with parameters a = b = 1/2. The quotient of the orbit shown in Figure 1.11b is shown in blue
in both figures.

of the work of P. Hooper [Hoo15] or a method relative to Zd-coverings. Both topics will be discussed in
Section 6.1.2.

1.2.5 Panov planes

In [Pan09], D. Panov provided one of the first studies of the dynamics of the foliations in an infinite area
quadratic differential. His construction was then revived recently in [JS14], [FS14], [Art] and [FSC].

Definition 1.2.14. A Panov plane is the universal cover of a non-zero meromorphic quadratic differential
on a torus whose poles are all simple, if any. Equivalently, it is a non-zero meromorphic quadratic
differential in the complex plane whose poles are all simple (if any) and that is invariant under translation
by a lattice.

Here we discuss in detail the case of differentials in the stratumQ(2,−12) (that is quadratic differentials
with one singularity of angle 4π and two singularities of angle π) which includes Panov original example.
Let us first start with a simple surgery operation (see Figure 1.13).

Definition 1.2.15. Let M be a non-necessarily connected half-translation surface and γ1 and γ2 be
two open oriented parallel geodesic segments in M with disjoint interiors which are disjoint from the
singularities of M . The slit construction performed in M along (γ1, γ2) is the half-translation surface M ′

obtained by cutting M along γ1 and γ2 and gluing them back by gluing the left side of γ1 to the right of
γ2 and vice-versa.

In this section we only consider slit constructions where γ1 and γ2 are the two oppositely-oriented
halves of a given segment γ as in the right part of Figure 1.13. In this situation the two extremities of
γ become a simple zero of the quadratic differential defining M ′ and the midpoint (corresponding to the
junction of γ1 and γ2) becomes two simple poles8.

Now we arrive at the original Panov construction. Consider the quadratic differential (C, dz2), let
Λ0 = Z(3,0) ⊕ Z(0,1) and v0 = (2,0). We perform a slit construction along each segment [t, t + v0]
for t ∈ Λ and obtain the original Panov plane as drawn in Figure 1.14 (b). We denote by (C, q̃) this
quadratic differential. Since this construction is invariant under the translation by the lattice we obtain
a differential (X,q) in genus one that belongs to the stratum Q(2,−12) (see Section 2.2 for more about
coverings).

8Formally speaking these poles do not belong to M ′ but to the metric completion M̂ ′, see remark 1.1.16
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a

bγ1

b

aγ2

a a

b bγ

Figure 1.13: On the left, slit construction along γ1 and γ2. A geodesic segment in the slit surface is
drawn in blue. On the right, the special case where γ1 and γ2 are two oppositely oriented halves of a
given segment γ.
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(a) A flat picture of (X,q) in Q(2,−12).
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(b) A flat picture of (X̃, q̃).

Figure 1.14: The original example of D. Panov. The torus (on the left) is built from three unit squares
with identifications given by the upper case letters. Its universal cover (on the right) can be seen as the
flat plane with slits displaced periodically. A separatrix starting from x0 and its lift starting from x̃0 are
show in blue. Each segment [xi, xi+1] corresponds to a piece of the orbit. The lift of xi is denoted by x̃i.

Now let us consider an affine pseudo-Anosov element φ ∈ Aff(X,q) of the torus covered by the original
Panov plane. It has an induced action φ∗ on H1(X;Z) ≃ Z2. This action is tightly linked to the behavior
of the lifting of the invariant foliations of φ to the plane.

The following exercise provides some computations of φ∗ (see Figure 1.15 for an application).

Exercise 1.2.16

Let (C, q̃)→ (X,q) be the Panov plane of Figure 1.14.
1. Let a (respectively b) be a closed curve in (X,q) obtained by joining the left side denoted A to

the right one (resp. the bottom side denoted B to the top one). Show that H1(X;Z) = Za⊕Zb.
2. Show that there exists two elements φh and φv in Aff(X,q) so that φh acts as a horizontal

twist, φv as a vertical twist and their derivatives are Dφh = (
1 3
0 1

) and Dφv = (
1 0
1 1

) (note:

this is a special case of the Thurston-Veech construction of Section 1.2.6).
3. Let ρ ∶ Aff(X,q) → SL(2,Z) be defined by ρ(φ) = φ∗ after having identified H1(X;Z) to Z2

using the basis (a, b) from the first question. Show that

ρ(φh) = (
1 1
0 1

) and ρ(φv) = (
1 0
1 1

) .

4. Show that ρ(φhφ
−1
v φh) is elliptic of order 6.
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5. Show that ρ(φhφv) is hyperbolic.
6. Show that ρ(φhφ

−2
v φh) is parabolic.

Theorem 1.2.17: Kontsevich-Zorich phenomenon for pseudo-Anosov homeomorphisms

Let (C, q̃) → (X,q) be a Panov plane. Let φ ∶ X → X be an affine pseudo-Anosov homeomorphism
of (X,q) and let φ∗ ∶H1(X;Z)→H1(X;Z) be its induced action on homology. Then

1. if φ∗ is the identity or elliptic, then the eigenfoliations of φ in (X,q) lift to ergodic foliations
of C.

2. If φ∗ is hyperbolic, there exist directions v+ (respectively v−) in R2 ∖ {0} so that each lift γ̃ of
a leaf of the unstable (resp. stable) eigenfoliation of φ is at bounded distance from Rv+ (resp
Rv−).

Concrete examples of each case of the above result are provided in Figure 1.15. The relevant computations
were proposed in Exercise 1.2.16. This result is actually another manifestation of the so called Kontsevich-
Zorich phenomenon (see Section 5.6).

(a) Elliptic case (original Panov example, φhφ
−1
v φh) in

direction (
√

3,1).

(b) Hyperbolic case (φhφv) in direction (6,−3 +
√

21).

Figure 1.15: Kontsevich-Zorich phenomenon for lifting of invariant foliations of pseudo-Anosov homeo-
morphisms in Panov planes.

We now study a natural generalization of Panov’s example. Let Λ ⊂ C be a lattice and v ∈ C∗ so that
the open segment {tv ∶ t ∈ (0,1)} is disjoint from Λ. We define the quadratic differential q̃Λ,v in the plane
by adding a slit parallel to v based at each point of Λ. Because this construction is invariant under the
action of Λ by translation we can also make this slit construction in the torus C/Λ and obtain a quadratic
differential qΛ,v. This is illustrated in Figure 1.16.

Exercise 1.2.18

1. Show that any differential in Q(2,−12) is hyperelliptica and that the quotient by the hyperel-
liptic involution is a quadratic differential in Q(0,−14).

2. Show that this quotient operation provides an isomorphism b Q(2,−12) ≃ Q(0,−14).
3. By considering a different cover of Q(0,−14), show that there exists an isomorphism between
Q(0,−14) and H(0,0).

4. Express the isomorphisms of questions 2 and 3 in terms of the lattices Λ and non-zero vectors
v ∈ C∗ that we used to build the differential qΛ,v in Q(2,−12).

aRecall that a quadratic differential (X,q) is hyperelliptic if it is a double covering of a quadratic differential on the
sphere (CP1, q). That is to say, there exists an involution of the surface M that preserves the quadratic differential
and such that the quotient is (topologically) a sphere.

bYou can first try to prove that this operation is an SL2(R)-equivariant bijection. If you know about period
coordinates and the linear structure of strata you can prove that it is an isomorphism of linear varieties. To learn
about period coordinates see [Zor06] Chapter 3 “Families of Flat Surfaces and Moduli Spaces of Abelian Differentials,
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Figure 1.16: A Panov plane coming from a quadratic differential in Q(2,−12).

[FM14] Section 2.3 “Period map and local coordinates” or [Yoc10] Section 6 “The Teichmüller space and the Moduli
Space”.

The space Q(2,−12) (or equivalently H(0,0), see Exercise 1.2.18) plays a distinguished role. First of
all because of its relation to 2-dimensional affine lattices 9. Another reason that motivates its study is a
model that shares some analogy with the periodic wind-tree model. A circular Eaton lens is a physical
gadget that has the following property: every light ray that enters the lens is reflected in the same
direction but with opposite orientation (see Figure 1.17b). More precisely the Eaton Lens of radius R is
a ball of radius R such that a trajectory entering at Reiα in direction eiθ will exit from Rei(2θ−α) with
direction e−iθ (see Figure 1.17a). The precise behavior of the trajectory inside the ball is not important
for our purposes. Periodic configurations of Eaton lenses are discussed in the following exercise.

Reiα

Rei(2θ−α)

Reiθ

(a) An Eaton lense is a perfect
retroreflector: a trajectory enter-
ing with direction θ exists with di-
rection −θ.

(b) A Eaton lens with a beam of
vertical light rays.

(c) A quadratic slit (with two
poles and a double zero) with the
same beam of rays.

Figure 1.17: From a Eaton lens to its flat model.

Exercise 1.2.19

Let Λ ⊂ C be a lattice and R > 0 so that R < min
u,v∈Λ,u/=v

∥u− v∥. Let EΛ,R be the plane C on which an

Eaton lens of radius R is disposed at each point of Λ (the condition on R ensures that the lenses do

9The moduli space of 2-dimensional lattices SL(2,R)/SL(2,Z) is naturally identified to the moduli space of volume
one flat tori H1(0). The moduli space of affine lattices SL(2,R) ⋊ R2/(SL(2,Z) ⋊ Z2) can be identified to the union
H1(0,0)⊔H1(0) where H1(0,0) corresponds to affine lattices Λ+v so that v /∈ Λ. This identification is SL(2,R)-equivariant
and allows to see H1(0,0) as a dense SL(2,R)-invariant set in the space of affine lattices.
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not intersect). We have a well defined non-orientable foliation in EΛ,R for each direction θ.
1. Show that the vertical flow in EΛ,R can be identified with vertical flow in a Panov plane q̃Λ,v0

for a unique v0 ∈ C outside of the lenses (in other words each Eaton lens can be replaced by a
slit as depicted in Figure 1.17).

2. Show that by applying a rotation one can naturally identify the foliation in direction θ of EΛ,R

to the vertical foliation of e−iθEΛ,R.
3. Deduce that the one-parameter family of diferentials in Q(2,−12) obtained by rotating the

direction in EΛ,R is different from the family {eiθqΛ,v0}.

Theorem 1.2.20: generic behavior for Q(2,−12)

Let qΛ,v be a quadratic differential in Q(2,−12). Then for almost every direction θ each leaf of the
foliation in direction θ stays at bounded distance from a line.

The above result is another manifestation of the Kontsevich-Zorich phenomenon that, in this form, is
due to K. Fracezk and M. Schmoll [FS14]. A stronger form of this theorem has been recently proved by
K. Fraczek, R. Shi and C. Ulcigrai [FSC] (see Theorem 5.6.5 from Section 5.6.2).

As in the case of the wind-tree (see Theorem 1.2.13), there are some exceptional directions that
contrast dramatically with the generic behavior of Theorem 1.2.20. Both phenomena discussed below are
related to specific directions for which the associated Kontsevich-Zorich cocycle is the identity.

Theorem 1.2.21

Let (C, q̃)→ (X,q) be the Panov plane of Example 1.14. Then there are uncountably many directions
in which the foliation is ergodic. This set of directions contains all eigendirections of pseudo-Anosov
homeomorphisms in Aff(X,q) so that their action on homology φ∗ is elliptic.

The above result is quite similar to the last item in Theorem 1.2.13. It can be obtained from two very
different sources. Either from general ergodic argument about G-coverings using essential values (see
Theorem 6.1.4) or from the Hooper-Thurston-Veech construction for infinite-type surfaces discussed in
Section 1.2.6.

Ergodicity implies that almost every trajectory is dense, but in general it is hard to provide a concrete
example. This is precisely one of the main contributions of D. Panov [Pan09]: the construction of a dense
leaf.

Theorem 1.2.22: [Pan09]

Let (C, q̃)→ (X,q) be the Panov plane of Example 1.14. Let φ be a pseudo-Anosov homeomorphism
in Aff(X,q) so that its action on homology φ∗ is elliptic but not ±1. Then all separatrices in the
eigendirection of φ are dense in (C, q̃).

This result applies in particular to the separatrix drawn in Figure 1.15a.

We now explain a relationship between the wind-tree model and Panov planes from Q(12,−12). Recall
that the wind-tree model can be thought as a Z2-periodic translation surface M̃ whose quotient M has
genus 5. This surface M has many symmetries and in particular two quotients (Xh, qh) and (Xv, qv)
that are quadratic differentials on tori. These surfaces are shown in Figure 1.18.

This point of view on the wind-tree model is the starting point of the article [DZ]. In this work the
authors study generalizations of the wind-tree model with more complicated obstacles than rectangles
but for which a quotient still exists in Q(12n,−12n). Because of this, the diffusion rate of the translation
flow can be computed in these more complicated surfaces.

1.2.6 Hooper-Thurston-Veech construction

On a widely circulated preprint Thurston explained how to construct affine pseudo-Anosov homeomor-
phisms on any finite-type surface. Given α and β two non-homotopic curves filling a topological surface
S, there exists a unique half-translation q structure on S which admit two affine automorphisms φh and
φv which respectively acts as a Dehn twist along α and β and have derivatives Dφh = hλ ∶= ( 1 λ

0 1 ) and
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B

B

A A
C1

C1

C2

C2

D

D

(a) The quotient (Xh, qh).

B

B

A AC C

D1 D1

D2 D2

(b) The quotient (Xv, qv).

Figure 1.18: Two quotients of the surface S from Figure 1.12b obtained as the quotient of the wind-tree
model. Both are hyperelliptic quadratic differentials that belong to Q(12,−12).

Dφv ∶= v−λ = ( 1 0
−λ 1 ), where λ > 0 is some real number. Because φh and φv are affine homeomorphisms

of the same half-translation surface, they generate a subgroup of Aff(S, q) most of its elements being
pseudo-Anosov homeomorphisms. Thurston’s construction was later extended by himself and Veech to
the case of filling multicurves [Thu88], [Vee89]. In this section we first recall in detail Thurston-Veech
construction. Then we illustrate with a family of examples arising from the infinite staircase how this
construction can be extended for infinite-type surfaces. The details of this extension, that we call the
Hooper-Thurston-Veech construction for it was developed by P. Hooper [Hoo15], are explained in full
detail in Chapter 3.

Historical note. Thurson-Veech construction seems to be forgotten by the community during the
1990’s until a Thursday evening in July 2003 when, after the traditional Bouillabaisse10 dinner at CIRM
(France), John H. Hubbard revived the construction by explaining it to a large tipsy audience. For this
reason, sometimes people refer to surfaces obtained by the Thurston-Veech construction as Bouillabaisse
surfaces.

Thuston-Veech construction. Throughout this section we use the following notation for parabolic
matrices in SL2(R)

hλ ∶= (
1 λ
0 1

) and vλ ∶= (
1 0
λ 1

) . (1.8)

Recall that the modulus of a cylinder11 C is the real number µ(C) = height(C)
circumference(C)

. The basis of the

Thurston-Veech construction is the following statement.

Lemma 1.2.23. Let M be a finite-type translation or half-translation surface.
If the horizontal foliation of M decomposes into r cylinders of commensurable moduli µi =

ni
λ

, then
there exists a unique affine automorphism φ of M that stabilizes pointwise the boundaries of the cylinders
and has derivative Dφ = hλ.

Conversly, if φ is a parabolic affine homeomorphism of M with derivative hλ then M decomposes
into a finite family of maximal horizontal cylinders {H1, . . . ,Hr} of commensurable moduli µ(Hi) =

pi
qi

1
λ

.
Moreover, a finite positive power of φ stabilizes pointwise the boundary of each cylinder.

A parabolic automorphism that stabilizes the boundary of cylinders such as in Lemma 1.2.23 acts as
a power of a Dehn twist in each cylinder. For this reason, such element is called a multitwist. The proof
of the first part is left to the reader (the argument is contained in the first part of Exercise 1.2.25). The
second part is a bit more delicate, a proof can be found in [?, Lemma 4, Section 1.4]12.

Note that by applying rotations to M , a similar statement holds in any direction θ. In particular, if
the vertical direction admits a cylinder decomposition with commensurable moduli, then the multitwist
in the vertical direction has derivative

(
0 −1
1 0

)hλ (
0 −1
1 0

)

−1

= v−λ.

10Bouillabaisse is a traditional Provençal fish stew originating from the port city of Marseille.
11see Section 4.5.1 for the relevance of cylinder modulus as a conformal invariant.
12Be careful that in the reference [?] the authors used an opposite definition for modulus of a cylinder, namely

circumference(C)/height(C)
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Note that the derivative of a vertical multitwist has a negative sign!
In the following exercise, we invite the reader to make the converse of the Thurston-Veech construction.

Namely start from a translation surfaces with transverse multitwists and analyze the coordinates of the
translation surface in terms of the topology of the surface.

Exercise 1.2.24

Let M be a finite-type half-translation surface with conical singularities Σ ⊂ M̂ (recall that M is
necessarily punctured at the simple poles, if any). Assume that M admits vertical and horizontal
cylinder decompositions H = {H1, . . . ,Hr} and V = {V1, . . . , Vs}. Let γ = {γ1, . . . , γr} and δ =
{δ1, . . . , δs} be the core curves of the cylinders in the families H and V respectively. Prove that:

1. γ and δ are multicurves in M (that is, their components are simple closed curves, pairwise
non-intersecting and pairwise non-homotopic).

2. The multicurves fill the surface, that is M∖(γ∪δ) is a finite union of discs, possibly punctured.
Now assume furthermore that all the cylinders inH and V have modulus 1/λ and let E = (Eij)1≤i≤r,1≤j≤s

be the matrix whose coefficient Eij is the geometric intersection between γi and δj (i.e. the number
of time they intersect). Let also wh ∈ Rr+ and wv ∈ Rs+ be the vectors of heights of cylinders in H
and V .

3. Show that the circumferences of horizontal (respectively vertical) cylinders are given by the
coordinates of the vector Ewv (resp. Etwh).

4. Deduce that Ewv = λwh and Etwh = λwv.
5. Applying Perron-Frobenius theorem to EEt and EtE show that λ is uniquely determined by

the matrix E and that the pair (wh,wv) is uniquely determined up to scaling.
6. Show that the vector (wh,wv) ∈ Rr+s is an eigenvector with eigenvalue λ of the (r+s)×(r+s)

matrix ( 0 Et

E 0
).

7. Show that there exists a unique affine multitwist φh (respectively φv) with Dφh = hλ (resp.
Dφv = v−λ) that preserves the cylinder decomposition H (resp. V ) and acts in each cylinder
as a Dehn twist.

We now propose the Thurston-Veech construction as another exercise.

Exercise 1.2.25

Let γ = {γ1, . . . , γr} and δ = {δ1, . . . , δs} be two transverse multicurves that fill a finite-type surface
S (possibly with punctures). Let E ∶= (ι(γi, δj))1≤i≤r,1≤j≤s the matrix of geometric intersection
numbers.

1. Show that there is a unique half-translation structure q on S (up to isotopy) and a unique
positive real number λ so that (S, q) admits horizontal and vertical affine multitwists φh and
φv with derivatives Dφh = hλ and Dφv = v−λ that act as the product of the Dehn twists along
the curves γi and δj respectively.

Now, let us consider the general Thurston-Veech construction by fixing multiplicities
m = (m1, . . . ,mr) ∈ Nr, n = (n1, . . . , ns) ∈ Ns. Define the two r × s matrices Fh and Fv by:

(Fh)ij =miEij (Fv)ij = Eijnj .

2. Show that there exists λ,wh,wv so that Fhwh = λwv and F tvwv = λwh.
3. What can be said about uniqueness of λ, wh and wv?
4. Deduce that there is a unique half-translation structure q on S (up to isotopy) that admits

two affine multitwists φh and φv with derivative hλ and v−λ and act as the product of the
mi-th power of the Dehn twist along the curves γi and the product of the nj-th power of the
Dehn twist along the curves δj respectively.

An avid reader can consult the details in the original articles [Thu88], [Vee89] or the more recent [HL06]
or [Lei04].

Exercise 1.2.26

Apply the Thurston-Veech construction of Exercise 1.2.25 to the two multicurves Ch and Cv and
vectors m = (1,1) and n = (1,1) in the following genus 2 surface
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δ1 δ2

γ2

γ1

Make a flat picture of the surface and compute its stratum.

Exercise 1.2.27

Let γ = {γi}i=1,...,r and δ = {δj}j=1,...,s be two transverse multicurves filling a topological surface
S. Let M be the half-translation surface with underlying topological surface S obtained from the
Thurston-Veech construction (see Exercise 1.2.25).

1. Show that the angles of the conical singularities of M can be read from the multicurves: there
is exactly one conical singularity in each component U of the complement of S ∖ (γ ∪ δ) and
its angle is the number of components of γ (or equivalently δ) that bound U .

2. Deduce that the poles come from bigons and hence need to be in components of S ∖ (γ ∪ δ)
containing at least one puncture.

3. Show that M is a translation surface (i.e. the quadratic differential is a square of an Abelian
differential) if and only if there exists a coherent way of orienting the multicurves so that their
geometric intersection coincides with the algebraic intersection.

4. Deduce that the stratum in which the half-translation surface belongs only depends on γ and
δ and is not affected by the possible multiplicity vectors m and n.

5. Construct an example of Thurston-Veech construction in the principal stratum of genus 2
surfaces Q(1,1,1,1).

Example 1.2.28. The horizontal and vertical directions in the infinite staircase S (see Section 1.2.3)
define two transverse cylinder decompositions. The moduli of all these cylinders is equal to 1

2
and there

exist ”generalized multitwists” φh and φv with derivatives h2 and v−2 that act as a single Dehn twist
in each cylinder. This is a particular case of an infinite Thurston-Veech construction that is due to
Hooper [Hoo15] and that we call the Hooper-Thurston-Veech construction. All details regarding this
construction are given in Section 3.5.

Let us recall that for the finite Thurston-Veech construction the translation structure is unique up
to scaling (this is a consequence of Perron-Frobenius theorem as we saw in Exercise 1.2.25). This is not
the case anymore for the Hooper-Thurston-Veech construction! Let us consider λ > 2. The equation

x2 − λx + 1 has two distinct positive real roots r+ ∶=
λ+

√
λ2−4
2

and r− ∶=
1
r+

. Let wn ∶= r
n
+ for n ∈ Z. This

sequence satisfies the equation
wn−1 +wn+1 = λwn. (1.9)

Now we construct an infinite-type surface called the λ-staircase by gluing horizontal cylinders of height
w2n with vertical cylinders of height w2n+1 in the same pattern as the original infinite staircase, see Fig-
ure 1.19. Because of equations (1.9), all horizontal and vertical cylinders in the translation surface Sλ have
modulus 1/λ. For this reason they admit generalized multitwists with derivatives hλ and v−λ. We denote
Gλ the group generated by hλ and vλ. The following result describes the dynamics of the translation
flow on λ-staircases (we refer the reader to Appendix B.2 for a detailed study of Gλ).

Theorem 1.2.29

Let λ > 2 and Sλ be the λ-staircase built from the sequence wn = (λ+
√
λ2−4
2

)
n

. Then the Veech

group of Sλ is the group generated by Gλ and ( r+ 0
0 r−

). The Veech group identifies to the affine
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w2

w0

w−2

w−3 w−1 w1

A B

C

AB

C

Figure 1.19: On the left: the λ-staircase with λ = 27/13 (opposite sides are identified by translation). On
the right, the dilation surface obtained by quotienting the left picture by the affine dilation.

group via the derivative map. Moreover:

1. if θ is a parabolic direction of Gλ (i.e. fixed by a conjugate of φh or φv) then the translation
flow in direction θ decomposes Sλ into an infinite union of cylinders of modulus 1/λ,

2. if the direction θ is in the limit set of Gλ but neither parabolic nor fixed by a conjugate of
φhφv then F tθ is ergodic. Moreover there exists a direction θ′ so that the translation flow in
Sλ in direction θ is conjugate to the translation flow in S in direction θ′ up to a time change.

3. if the direction θ does not belong to the limit set of Gλ or is fixed by a conjugate of φhφv then
the translation flow F tθ in direction θ in Sλ is completely dissipative,

The last item of Theorem 1.2.29 can be thought as an analogue of the two infinite strips in direction
θ = π/4 in the original staircase that were stabilized by the product ( 1 2

0 2 ) (
1 0
−2 1 ) (see Theorem 1.2.11).

In the situation of the λ-staircase, these two strips somehow persist but in the form of an infinite flat
geodesic on which all other geodesic accumulate. This attracting flat geodesic is persistant in a whole
open interval corresponding to a complement of the limit set of Gλ that is delimited by two directions
stabilized by two conjugates of φhφv. In order to study this phenomena it will be convenient to consider
the quotient of Sλ by the unique affine homeomorphism with derivative ( r+ 0

0 r−
), see Figure 1.19. The

quotient is no longer a translation surface but a dilation surface: there is an atlas whose transition maps
are dilations z ↦ az + b with a ∈ R and b ∈ C (see Definition 2.2.14).

Dilation surfaces are discussed in Section 2.2. In Section 3.5 we introduce the Hooper-Thurston-
Veech construction and discuss their geometry. In Chapter 6 we will explore the dynamical properties of
Hooper-Thurston-Veech constructions and dilation surfaces.

1.2.7 Random models

In this section we discuss some random models of infinite-type translation surfaces. They are random in
the sense that they depend on some parameters and we would like to understand the dynamics of the
translation flow for a given random parameter. They might be thought as “translation flows in random
environment”.

There are two distinct ways of considering a random parameter. Either in the topological sense:
we want to understand the dynamics for a Gδ-dense set of parameters (generic parameter), or in the
probabilistic sense: for a full-measure set of parameters (typical parameter). The topological version
and the measurable version lead to different kinds of questions. For example, considering rotations of
the circle, the set of Liouville numbers13 forms a Gδ-dense set in [0,1] but has zero Lebesgue measure.
In more general situation, it is often the case that the parameters that are very well approximated by
rational numbers form Gδ-dense sets. For example, in [KMS86] S. Kerckhoff, H. Masur and J. Smillie

13A real number in α ∈ [0,1] is called Liouville if its continued fraction expansion [0;a1, a2, . . .] is so that liman = +∞.
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prove the existence of a Gδ-dense set of polygons whose billiard flow is ergodic. This result is (easily)
derived from the (hard) fact that ergodicity is prevalent in rational polygons.

Málaga map. We now consider the maps Tα introduced by A. Málaga in her PhD thesis [M1́4]. As
we see later they can be thought as the first-return map of the translation flow on particular class of
infinite-type translation surfaces called generalized staircases.

Let I = [0,1)×Z, and denote In = [0,1)×{n}. Let α = (αn)n∈Z be a sequence of numbers in [0,1) and
f ∶ [0,1) → {1,−1} the piecewise constant map with value 1 on [0,1/2) and −1 on [1/2,1). We define a
map Tα ∶ I → I by

Tα(x,n) = (x + αn mod 1, n + f(x + αn mod 1)). (1.10)

In other words, if we are on an interval In at level n we rotate first by an angle αn and, depending on
which half of In we land on, the point x+αn either climbs to the interval In+1 or descends to In−1. When
the parameter α is a constant sequence then this map encodes the dynamics of the translation flow on
the infinite staircase 1.2.3 in a given direction.

It is easy to check that the Lebesgue measure λ on I is invariant by the transformation Tα. Therefore
there is room for many standard questions from the (infinite) ergodic theory point of view: e.g. conser-
vativity and ergodicity. To go beyond these cases, it is often simpler to state results about the dynamics
of the map Tα that are valid only for a subset of parameters α. In that sense Tα is a random model since
we are interested in picking the sequence α at random and then study the dynamics.

The only known strategy to prove results on the maps Tα is based on the fact that the value αn = 1/2
creates a barrier (see Figure 1.20).

-2

-1

0

1

2

Figure 1.20: A Málaga map with α0 = 1/2. Any trajectory starting at a negative (respectively positive)
level n will remain in non-positive levels (resp. non-negative levels) forever.

Theorem 1.2.30

Let α be a sequence so that 1/2 is both an accumulation point of (αn)n≥0 and (αn)n≤0. Then the
map Tα is conservative, that is, almost every orbit comes back arbitrarily close to its starting point.

This theorem is a consequence of the so-called boxes lemma that will be introduced in Section 5.2. As a
result, one has

Corollary 1.2.31. Let µ be the Lebesgue measure on [0,1). Then for µ⊗Z-almost every α ∈ [0,1)Z, the
map Tα is recurrent.

Proof of Corollary 1.2.31. We claim that if (Xn)n≥0 is a sequence of independent and identically dis-
tributed uniform random variables in [0,1) then for almost every ω and for any s ∈ [0,1) there exists a
divergent sequence of positive integers (nk)k so that

lim
k→∞

Xnk(ω) = s.

Assuming the claim with the value s = 1/2 one can apply Theorem 1.2.30.
The proof of the claim is a standard probability argument. Any non-empty open set U in [0,1) has

positive Lebesgue-measure. Hence almost surely, Xn ∈ U for infinitely many n. One then concludes by
considering the countable collection of open balls Bq,k centered at rational points q with radius 1/k and
the fact that a countable intersection of almost sure events is almost sure.
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Contrarily to recurrence properties, ergodicity needs quantitative estimates. The only result in this
direction for the maps Tα is also due to Málaga.

Theorem 1.2.32

The set of parameters α in [0,1)
Z

for which Tα is minimal and ergodic contains a dense Gδ set.

Recall the infinite staircase that was introduced in example 1.2.3. We now consider staircases where
each step has width 2 but can have any height. Given a bi-infinite sequence of positive real numbers
h = (hn)n∈Z we consider the rectangles Rn ∶= [0,2] × [0, hn]. From them we build the translation surface
Mh by performing for each n ∈ Z the following identifications by translations:

• the left side of Rn is glued to its right side,

• the left half of the top side of Rn, [0,1]×{hn} is glued to the right part of the bottom side of Rn−1,
[1,2] × {0},

• the right part of the top side of Rn, [1,2]×{hn} is glued to the left part of the bottom side of Rn−1,
[0,1] × {0}.

We call the surface Mh the h-infinite staircase or simply a generalized staircase. An example can be seen
in Figure 1.21.

h−2

h−1

h0

h1

h2

Figure 1.21: An orbit in some h-staircase where each height hn is either 1 or 2. This example is an
infinite origami. The first return map of the translation flow can be identified with a map Tα for a certain
sequence α.

The following result makes the link between the generalized staircases and Málaga maps. The defini-
tion of first return map can be found in Chapter 4.

Lemma 1.2.33. Let Mh be a generalized staircase. Then for each direction θ that is not horizontal, the
first return map of the translation flow F tSh,θ to the union of the horizontal sides of the rectangles Rn

canonically identifies with the Málaga map Tα with angles αn = hn tan(θ) + 1/2 mod 1.

It is interesting to notice that a fixed generalized staircase Mh gives rise to a one-parameter family
of Málaga maps. The proof of this Lemma is provided in Exercise 4.2.1. In the exercise below we just
invite the reader to prove elementary properties of the Málaga map Tα and the generalized staircase Mh.
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Exercise 1.2.34

1. Under which condition does the surface Mh have finite area?

2. Show that if µ is a Borel measure on (0,+∞) then for µ⊗Z-almost every sequence h the surface
Mh has infinite area.

3. Show that if α is an infinite sequence whose values are 1/3 and 2/3 (in any order) then in each
interval In at least 2/3 of the points has a divergent orbit. (hint: the partition in intervals of
the form (k/6, (k + 1)/6)× {n} is preserved by Tα. One just needs to study the associated map
on the discrete set {0,1,2,3,4,5} ×Z).

Theorem 1.2.30 implies the following result for Mh.

Corollary 1.2.35. Let µ be a probability measure on (0,+∞) whose support contains a half-line. Then
for µ⊗Z-almost every sequence h the translation flow in Mh is conservative in all directions.

Note that contrarily to the infinite staircase from Example 1.2.3, the randomized version given in
the above corollary is recurrent in all directions! However, the ergodic result of Theorem 1.2.32 hardly
applies to a surface Mh in almost every direction. The following two questions are widely open.

Question 1.2.36

Let µ be the Lebesgue measure on [0,1). Is Tα ergodic for µZ-almost every α?

Question 1.2.37

Let µ be the measure supported on {1,2} with µ({1}) = µ({2}) = 1/2. Is the straightline flow of
Mh ergodic in almost every directions for µZ-almost every h?

Random wind-tree models. We finish this section by introducing random variations of the periodic
wind-tree model introduced in Section 1.2.4.

Given ω ∈ {0,1}Z
2

we define a billiard on a generalized polygon T (ω) as follows. For each position
(m,n) ∈ Z2 so that ωn = 1 we place a square obstacle with side length 1/2 and consider the billiard in
the complement of the obstacles. For the constant sequence ωm,n = 1 the generalized polygon T (ω) is
the usual wind-tree model table T1/2,1/2 with dimensions a = b = 1

2
(see Section 1.2.4 for the geometric

meaning of the parameters a and b). While for ωm,n = 0 we recover the plane (C, dz). As for the windtree,
one can consider the 4-fold cover giving rise to a translation surface W (ω).

The only sensible known result about this model is the existence of configurations in which the
translation flow is conservative.

Theorem 1.2.38: [Tro10]

The set of parameters ω for which the translation flow on the translation surfaceW (ω) is conservative
in almost every direction contains a Gδ-dense set.

The tools used to prove this theorem are the same as the ones used to prove Theorem 1.2.30 and
Corollary 1.2.35. However the conclusion is much weaker because in order to create barriers in this
2-dimensional coverings one needs a 1-dimensional crown of obstacles.

We now describe the Bernoulli wind-tree model (see Figure 1.22). For any given parameter 0 < p < 1

we consider a sequence ω ∈ {0,1}Z
2

where each ωm,n is chosen according to an independent Bernoulli
random variable with parameter p. In other words, for each point (m,n) in the lattice Z2 toss a coin
which lands on your favourite side with probability p. If for (m,n) the coin lands on your favourite side

place an obstacle at position (m,n). We denote this product of Bernoulli measures on {0,1}Z
2

by µp.
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Figure 1.22: A trajectory in a Bernoulli wind-tree model with p = 1/2.

Question 1.2.39

For a given parameter p, what are the dynamical properties of W (ω) where ω is taken accordingly
to the product of Bernoulli measures µp?

Recall that the original Ehrenfests’ wind-tree model concerns obstacles that are not displaced along a
lattice. The natural way to choose at random a countable set of points in the plane is by a Poisson point
process14. It is well known that the Poisson point process with density δ can be obtained as the limit of
the Bernoulli point processes with probability δε2 on the lattice εZ2. Any result relating the dynamics
of the Bernoulli wind-tree model to the Ehrenfests’ wind-tree one would be really interesting.

1.2.8 Holomorphic foliations

Every integral curve of a complex vector field can be endowed with a natural translation surface structure.
We illustrate this principle in the following paragraphs by giving explicit examples of complex differential
equations whose leaves are, as translation surfaces, precisely those we obtained by unfolding a triangular
billiard table in Section 1.2.1. As a consequence, one can reformulate the problem of finding periodic
orbits on a triangular billiard in terms of a real quadratic vector field in R4.

Consider the complex differential equations in C2:

∂z1
∂T

= λ2z
2
1 + (λ3 − λ2)z1z2 = Pλ(z1, z2)

∂z2
∂T

= −λ1z
2
2 + (λ3 + λ1)z1z2 = Qλ(z1, z2)

(1.11)

where λ = (λ1π,λ2π,λ3π) are the interior angles of an Euclidean triangle, in particular ∑λi = 1. These
kind of differential equations arise naturally when studying homogeneous holomorphic foliations on C2,
for more details see [Val09a] and references within. The integral curves of the vector field Vλ = Pλ

∂
∂z1

+

14The Poisson point process with density δ is a way of choosing randomly a countable set of points in the plane. It is
define by a probability measure µδ on countable subsets of R2 that can be defined by the following property. For any open
set U in R2 the expected number of points in U is δArea(U), in other words

∫ #(Γ ∩U)dµδ(Γ) = δArea(U).

The interested reader might want to consult [CI80] or [DVJ03].
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Qλ
∂
∂z2

defined by equation (1.11) define a (singular) holomorphic foliation Fλ on C2. This foliation

has F (z1, z2) = zλ1

1 zλ2

2 (z2 − z1)
λ3 as first integral, i.e. the irreducible components of F −1(w), w ∈ C,

in C2 ∖ {(0,0)} are precisely the leaves of Fλ and the origin is the only singular leaf. Moreover, Fλ is
invariant by the action of the homothety group C∗ and hence every two leaves in C2 ∖ {(0,0) ∪ F −1(0)}
are diffeomorphic. We call any leaf of Fλ in C2 ∖ {(0,0) ∪ F −1(0)} a generic leaf.

Let us now endow a generic leaf L ∈ Fλ with a translation surface structure. Let Vλ∣L be the restriction
of the complex vector field Vλ to its integral curve L. Consider the holomorphic 1–form η on L satisfying
the equation η(Vλ∣L) = 1 (this form is unique because the leaves have complex dimension 1). The
pair (L, η) is a translation surface. The following result relates the foliation Fλ to triangular billiards
introduced in Example 1.2.1.

Theorem 1.2.40: [Val09a]

Let (λ1π,λ2π,λ3π) be the interior angles of an Euclidean triangle P and L ∈ Fλ a generic leaf
endowed with its natural translation surface structure. Then (L, η) is isomorphic, as translation
surface, to the translation surface M(P ) obtained by performing the unfolding construction on P.

We will sketch a proof of this theorem in Section 2.2.
This correspondence between integral curves of Vλ and translation surfaces defined by triangular

billiards can be extended to the level of billiard dynamics. Indeed, let Fλ,0 be the real foliation on C2

defined by the integral curves of the real analytic vector field Re(Vλ). This vector field is quadratic and
homogeneous and the restriction of Fλ,0∣L is a real foliation of dimension 1 on L. For every generic leaf

L ∈ Fλ denote by reiθL the image of the restriction to L of the homothety Treiθ(z1, z2) ∶= re
iθ(z1, z2).

Corollary 1.2.41 ([Val09a]). Let (λ1π,λ2π,λ3π) be the interior angles of an euclidean triangle P . For
every generic leaf L ∈ Lλ there exists a direction θ ∈ S1 such that the real foliation Fλ,0∣L is analytically
conjugated to the foliation on M(P ) defined by the translation flow F tθ . Moreover, for every θ′ ∈ S1,
Fλ,0∣reiθ′L is analytically conjugated to the foliation on M(P ) defined by the translation flow F tθ+θ′ .

This corollary allows us to reformulate the open question about the existence of periodic trajectories
in a polygonal billiard in terms of a homogeneous quadratic vector field (see Question 1.2.1).

Question 1.2.42

Does the homogeneous quadratic vector field in R4:

2 Re(Vλ) = [λ2(x
2
1 − y

2
1) − (λ2 + λ3)(x1x2 − y1y2)]∂/∂x1 +

[2λ2x1y1 − (λ2 + λ3)(x1y2 + x2y1)]∂/∂y1 +

[λ1(x
2
2 − y

2
2) − (λ1 + λ3)(x1x2 − y1y2)]∂/∂x2 +

[2λ1x2y2 − (λ1 + λ3)(x1y2 + x2y1)]∂/∂y2

(1.12)

have a periodic orbit for any choice of parameters (λ1π,λ2π,λ3π) representing the interior angles
of an euclidean triangle P?

Remark 1.2.43. As a careful reader might have noticed, the vector field (1.12) is defined on R4 whereas
the phase space of a triangular billiard has dimension 3. Since this vector field is defined by homogeneous
polynomials of degree 2, it is possible to consider its projectivization to either S3 or RP(3). We refer to
[Val09a] for details.
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