Exact and float point computations - Stability and unstability in
dynamics

Exact computations and floating point approximations

There are a lot of different numbers in Sage. You will need to choose which kind of numbers you want to use
depending on your computations. In this worksheet we will consider four types of numbers:

e rationals
e floating point numbers
e algebraic numbers

If you are interested in all possible ways of representing a real number in Sage, you can have a look at the tutorial
"Real and complex numbers in Sage".

Floating point and rationals

To create an integer or a rational number, you just write it as you would do on a sheet of paper
sage: 2 + 375 # an integer
sage: 23 / 45 # a rational number
To create a floating point number, you need to add a dot
sage: 1.0
sage: 3.25 + 22.18
Contrarily to integers and rationals, a floating point number has limited precision
sage: 27100 + 2710 - 27100
sage: 2.07100.0 + 2.0710.0 - 2.07100.0

Because floating point numbers have limited precision they are much faster. In the following we will see that the
the bad choice of numbers influence the computational time and the correctness.

Maps of the interval: fixed points and iteration

Let us consider the map f4(x) = 4x(1 — x) from the interval [0, 1] to itself. Prove that f4 is surjective and plot it:
sage: # edit here

Show that f1(3/4) = 3/4 (in other words, the point 3/4 is a fixed point of f4). What do you expect from the
following two commands (you have to guess whether the answer will be True or False and you can then check
your answer by executing the cell):

sage: s = 3.0 / 4.0
sage: 4 x s x (1 - s) == s



Now let f7/5(x) = 7/2x(1 —x). Prove that 5/7 is a fixed point of f;,. Is the following True or False:

sage: s = 5.0 / 7.0
sage: 7.0 / 2.0 x s x (1.0 - s) == s

Perform the same two computations as above with rational numbers instead of floating point.:
sage: # edit here

On a computer a floating point number is a number of the form m 2" where m (the mantissa) and n (the exponent)
have some fixed bounds. In particular, floating point numbers have finite precision. Computations with floating
points numbers are inaccurate but very efficient.

Compare the following computation with rationals:

sage: s = 1
sage: for 1 in range(10):
RPN s = (s + 2/s) / 2

sage: print s
sage: print s.numerical_approx ()

and the same computation with floating point numbers:

sage: s = 1.0

sage: for 1 in range(10):

e s = (s + 2.0/ s) / 2.0
..... print s

What can you say?

Now compare the following computation with rationals:
sage: s =5 / 7
sage: for i1 in range (100):
e s =7/ 2 % s = (1 - s)
sage: print s
sage: print s.numerical_approx()

and the same computation with floating point numbers:

sage: s = 5.0 / 7.0
sage: for i in range(l
e s =7.0/ 2.
sage: print s

00) :

0 s (1.0 — s)

What can you say? What is the difference between the two cases we considered above? What makes the functions
s+ (s+2/s)/2 and s — 7/2s(1 — ) different?



