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Some general definitions

Let X be a set and f be a function from X to X . Since the domain and the codomain of f are equal, we can iterate
the function f i.e. the functions f , f 2 := f ◦ f , f 3 := f ◦ f ◦ f , ... are well defined. For every x0 in X , we can
define the orbit of x0 under f as the sequence x0,x1,x2, . . . where xi+1 := f (xi) = f i+1(x0).

A point p ∈ X is said to be a fixed point if f (p) = p. Such points p have a constant orbit.

A point p in X is said to be periodic if there exists a positive integer n such that f n(p) = p. The smallest such n is
called the period of f .

A family of functions

For every fixed r ∈ [0,4], we define the function gr : [0,1]→ [0,1] by gr(x) := rx(1− x). Such map is called a
logistic map.

Prove that for any parameter r ∈ [0,4], the function gr preserves the interval [0,1] (hence it is well defined, and
we can iterate it).

Draw the graph of the map gr for various values of the parameter r

Hint: Look at the function plot (to draw the graph of a function) and Graphics() (that creates an empty
graphics). To superpose images you need to use +.

Drawing orbits

Write a Python function logistic_orbit(r, x0, itermin, itermax) that returns the list [xitermin, . . . ,xitermax−1]
of the orbit of x0 under the map gr.

Write a Python function plot_logistic_orbit(r, x0, itermin, itermax) that draws this chunk
of orbit as the function {itermin, . . . , itermax−1}→ [0,1], n 7→ f n(x0).

Hint: you can have a look at the point2d and line2d functions.

Write a Python function logistic_cobweb(r, x0, itermin, itermax) that draws this chunk of
orbit directly on the graph of the map gr : [0,1]→ [0,1], as a cobweb plot (see the left part of the picture below).

Hint: you can have a look at this wikipedia article.

The following interact allows to change the values of the four parameters easily and observe the different be-
haviours of the orbits.

Hint: to align images, you can tune the aspect_ratio option of the plotting functions in the previous questions.
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sage: @interact
....: def _(r = slider(0.0, 4, step_size=0.01, label=’r’), x0 = slider(0, 1, step_size=0.01, default=0.5, label=’x0’), itermin = slider(0, 500, step_size=1, default=0, label=’itermin’), itermax = slider(0, 500, step_size=1, default=100, label=’itermax’)):
....: graphics_array(((logistic_cobweb(r, x0, itermin, itermax),plot_logistic_orbit(r, x0, itermin, itermax))),1,2).show()

The interact could look like this:

Here, we can observe the first 100 iterates of the orbit of the point x0 = 0.39 for the map g3.63. It is approaching a
periodic orbit of period 6.

Attractive fixed points

Prove that gr has two fixed points, namely 0 and 1−1/r (if it belongs to [0,1]).

Observe that the graph of gr intersects the line y = x exactly at the fixed points

A fixed point p of gr is said to be attractive if |g′r(p)|< 1 and repulsive if |g′r(p)|> 1.

When a fixed point p is attractive, there exists a neighborhood N of p such that the orbit of every x0 in N converges
to p. The set of points x0 whose orbits converge to p is called the basin of attraction of p.

For which values of r is 0 attractive ? For which values of r is 1−1/r attractive ?

Check this behaviour for r = 0.6, r = 1.8 and r = 2.2 with your interact.

Prove that, when 0 is an attractive fixed point, its basin of attraction is [0,1]\{1−1/r}.
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Prove that, when 1−1/r is an attractive fixed point, its basin of attraction is (0,1).

When 1−1/r is an attractive periodic point, the orbit gn
r (1/2) converges to 1−1/r. Find the speed of convergence

When 1−1/r is repulsive, find the speed at which a point close to 0.5 drifts away from 0.5

A periodic point p is called super-attractive if |g′r(p)| = 0. Find the parameter for which 1− 1/r is a super-
attractive fixed point.

For this parameter, find the convergence speed

Attractive periodic orbits

This definition of attraction and repulsion extend to periodic points. Let p be a periodic point of gr with period n.
That is gn

r (p) = p and gm
r (p) 6= p for m < n. In order to see the behavior of orbits in a neighborhood of a fixed

point one need to study the derivative of gn
r which equals

(gn
r )
′(x) = g′r(x)g

′
r(gr(x)) . . .g′r(g

n−1
r (x)).

Hence, a periodic orbit p,gr(p), . . . ,gn−1
r (p) of gr is is said to be respectively attractive, super-attractive or repul-

sive if |g′r(p)g′r(gr(p)) . . .g′r(g
n−1
r (p))| is < 1, = 0 or > 1.

Check that, for r = 3.3, there is no attractive fixed point, but an attractive periodic orbit of period 2.

Compute an exact expression (with radicals) of the two points of this attractive orbit (you can also give their
minimal polynomial).

Bifurcation diagram

Up to now we worked with a fixed parameter r and studied the behaviour of the iterations of gr. We will now try
to understand how the dynamics evolve with r. We will hence work in the parameter space [0,4].

The bifurcation diagram B of the family {gr} is the subset of [0,4]× [0,1] of points (r,x) such that x is an
accumulation point of the orbit of 1/2 for gr. We will denote by Br the slice at r, that is the set of accumulation
point of the orbit of 1/2 for gr. We hence have

B = ∪r∈[0,4]{r}×Br.

Compute an approximation of the slices Br for various values of r

Check that the set of accumulation point of a random orbit is also Br

Hint: you can have a look at RDF.random_element.

Write a Python function logistic_bifurcation_diagram(rmin, rmax, rstep) that returns an
approximation of the slice B∩ [rmin, rmax]× [0,1] of the bifurcation diagram, where two consecutive values of r
are at distance rstep.

Hint: you can have a look at srange.

Draw the complete bifurcation diagram

Observe, when r increases, the evolution of attractive periodic orbits of period 1,2,4,8, . . . .

Islands of stability

Prove that for all r ∈ [3,4] the map gr has a (unique) periodic point of period 2

Prove that the segment [3,1+
√

6] corresponds to the regime where this orbit of period 2 is attractive
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Prove that for r = 1+
√

5 the critical point 1/2 is part of the periodic orbit. In other words, the orbit of period 2
is super-attractive. We say that 1+

√
5 is the center of the island of stability [3,1+

√
6]

Drw the bifurcation diagram with vertical lines at the parameters 3 and 1+
√

5 and 1+
√

6.

Find the upper bound of the island of stability corresponding to the periodic orbit of period 4 starting from 1+
√

5
as well as its center

Draw the bifurcation diagram together with vertical lines delimiting the islands of stability for period 2 and 4 as
well as their centers

Could you compute the center for the next bifurcations with period 8, 16,, ...

The behavior of the sequence of islands of stability for this sequence of period doubling was intensively studied
on computers in the 70’s by Feigenbaum. Let us denote by cn the center of the island of stability of period 2n. He
observed the existence of a constant δ so that as n→ ∞ we have a convergence

cn+1− cn

cn− cn−1
→ δ

where δ ' 4.6692 . . . is called the Feigenbaum constant. This was later proven by Lanford (1982), Eckmann-
Wittwer (1987) and generalized by Lyubitch (1999).

Could you compute a better approximation of the Feigenbaum constant?

Prove that if for some parameter r there is an attractive orbit, then for an interval around r there is an attractive
orbit with the same period and a center with a super attractive orbit.

Show that there is a unique island of stability with period 3

Hint: solve the equation satisfied by the center

Could you find an explicit rational number r that belongs to this island?

Chaotic parameters

A famous result of Jakobson (1981) claims that in the space of parameters [0,4] if we remove all islands of stability,
there remain a set of positive Lebesgue measure with interesting dynamics. More precisely, there are maps gr with
invariant measures absolutely continuous with respect to Lebesgue.

Plot an histogram of the orbit of a random point for g4

Coud you find an explicit formula for the shape that you see?

Prove that if r3 ' 3.6785 is twice the maximal real root of the polynomial x3−x2−x−1, then g3
r3
(1/2) = 1−1/r.

Plot an histogram of the orbit of a random point, with 300 bins, and 100000 iterates.

We say that a parameter r is post-critically finite if there exists m < n so that gn
r (1/2)= gm

r (1/2) (in other words,
the orbit of the critical point 1/2 terminates into a periodic orbit). We will consider the simple case where
n = m+1 that is when the critical point lands into the fixed point. The example r3 above is a particular case
of this situation with m = 3.

Solve the equation gn
r (1/2) = 1−1/r in r for n = 2,3,4,5,6.

Draw for each of the parameters found in the above question, the histogram of the orbit of 1/2

Observe that the peaks of the density can be seen on the bifurcation diagram.
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Symbolic coding

Given a map gr with r ∈ [0,4] we can give a coding to the orbits. More precisely, given a point x ∈ [0,1], we
associate the sequence π(x) = (w0,w1,w2, . . .) ∈ {L,R,C}N, where wi = L if gi

r(x) ∈ [0,1/2), wi = R if gi
r(x) ∈

(1/2,1], and wi =C if gi
r(x) = 1/2.

Note that π ◦gr = S◦π , where S : {L,R,C}N→{L,R,C}N is the shift map (w0,w1,w2, . . .) 7→ (w1,w2, . . .).

This coding provides a dictionary between dynamical properties of orbits of gr and combinatorial properties of
the produced words. For example, the coding of a periodic orbit is an infinite periodic word.

Write a Python function logistic_coding(r, x0, itermin, itermax) that returns the sequence
(witermin,witermin+1, . . . ,witermax−1).

Recall that on the left of the bifurcation diagram we have a sequence of islands of stability whose associated maps
present an attractive orbit of period 2n. Moreover, each of this island has an associated center.

For n = 1,2,3,4 determine how the coding of the periodic orbit vary as we move inside the islands

Could you find an explicit construction for the coding of all the period doubling sequence?

We now study the parameter r = 4. What is the coding of the orbit of the critical point x = 1/2 under g4?

Prove that any sequence of L and R is the coding of a unique element x ∈ [0,1]

Write a function logistic_coding_to_point(seq) that given a sequence seq of L and R returns the
unique point x so that its associated sequence is the period word seq seq seq . . .
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