Dynamics of a linear maps

In this worksheet we study the dynamics of a very simple linear map

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Action on \mathbb{R}^2

Create a variable A initialized to be the above matrix (check the command matrix):

sage: # edit here

Create a variable v that contains the vector (1,1) (check the command vector):

sage: # edit here

To compute the image of a vector under a matrix you need to use the multiplication \star . Compute the image A \star v:

sage: # edit here

Write a function draw_orbit (A, v0, n) that draw the n-th first iterate of the orbit of v0 under A. That is the sequence of vectors v_0 , Av_0 , A^2v_0 , ..., $A^{n-1}v_0$ (you can use the graphics primitives point2d or line2d):

sage: # edit here

On the same graphics, draw several of these orbits:

sage: # edit here

What is happening to them?

The object AA in Sage stands for "real algebraic numbers". It is one way to consider exact numbers beyond integers and rationals.:

```
sage: AA
```

In the following cell, we create the algebraic number $\sqrt{5}$ and the golden ratio $\phi = \frac{1+\sqrt{5}}{2}$:

sage: a = AA(5).sqrt()
sage: phi = (1 + a) / 2

Check with Sage that the vectors $u_{+} = (1, -\phi)$ and $u_{-} = (1, \phi - 1)$ are eigenvectors of the matrix A:

```
sage: up = vector([1, -phi])
sage: um = vector([1, phi-1])
sage: # edit here
```

Create a graphics with several orbits together with the lines $\mathbb{R}u_+$ and $\mathbb{R}u_-$:

sage: # edit here

Action on $\mathbb{R}^2/\mathbb{Z}^2$

Show that the linear action of A on \mathbb{R}^2 gives a well defined map \overline{A} on the quotient $\mathbb{R}^2/\mathbb{Z}^2$. Show that it is a bijection.

Let us consider the fundamental domain $T = [0,1] \times [0,1]$. Write a function toral_map(v) that applies the map \overline{A} to a vector v in T.:

Let v = (1/2, 0). Show that $\overline{A}^3 v = v$ but $\overline{A}^n v \neq v$ for n = 1, 2.:

sage: # edit here

We say that v = (1/2, 0) is a *periodic point of period 3*.

Show more generally that any vector in *T* with rational entries is a *periodic point*, that is, there exists an integer *n* so that $\overline{A}^n v = v$. Given a periodic point *v* the smallest positive integer *n* so that $\overline{A}^n v = v$ is called the *period*.

Write a function compute_period (v) that given a rational vector in T compute its period.:

```
sage: # edit here
```

Let

$$T_q = \left\{ \left(\frac{a}{q}, \frac{b}{q}\right) : a, b \in \{0, 1, \dots, q-1\} \text{ and } \gcd(a, b, q) = 1 \right\}.$$

Show that T_q is preserved by \overline{A} . What is the cardinality of T_q ?

Write a function classify_periods (q) that given a positive integer q compute all possible periods of points in T_q and their multiplicities:

sage: # edit here

By looking at small values of q, find the number of points of periods 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Can you make a conjecture about the number of periodic points of period n?

Could you write a function periodic_points (n) that return the set of points whose period is *n*?:

sage: # edit here