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Overview

Formal languages Timed languages

Finite automata
Timed automata

[AD94]

Rational expressions
Some attempts

[ACM97/02,Asa98,BP99/02]

Logical characterization
MSO(<), LTL

Some ad hoc logics
[Wilke94,HRS98]

Algebraic characterization
(using monoids)

?
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A more general framework

We consider a set of dataD that can be a time domain

We are interested in the languages from (Σ×D)∗

D has an initial data,⊥.

For example, ifD is a time domain, then⊥ is zero. Other-
wise,⊥ can be the empty data.
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Our definition

We are given: a finite monoid M

a finite “memory” consisting in k registers

(
⊥k
1

)
(a1,d1)−−−−−→

(
R1

m1

)
. . .

(an,dn)−−−−−−→
(
Rn

mn

)

Ri value of the registers, mi ∈M

(a1, d1) (an, dn). . .

mn

(a, d)




θ1

...
θk




m

Update of the registers




θ′1
...
θ′k




m

Update of the monoid




θ′1
...
θ′k




m′

θ′i = θi or d depending on m and a

m′ depends on m, on a and finitely on (θ′i)i=1...k
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Update of the registers




θ′1
...
θ′k




m

Update of the monoid




θ′1
...
θ′k




m′

θ′i = θi or d depending on m and a

m′ depends on m, on a and finitely on (θ′i)i=1...k

Indeed,m′ = m.ϕ(a, (θ′i)i=1...k)
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Example

Example: the language {(a, d)(a, d′) | d 6= ⊥, d′ 6= d}

M = {1, 0, y, y2}where y3 = 0

two registers

up1 = {1}, upy = {2} and up0 = upy2 = ∅
(
d

d′

)
7→
{

y if d 6= d′

0 otherwise

(
⊥
⊥

)

1

(a,d)−−−−→

(
d

⊥

)

1.y = y

(a,d′)−−−−→

(
d

d′

)

y.y = y2
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Remarks

Remark: ifD = {⊥}

recognizable formal language≡ recognizable data language

+ same monoid

Property: ifD is finite, L ⊆ (Σ×D)∗ is a regular formal language on
the finite alphabet Σ×D iff it is a recognizable data language.

But different monoids
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New overview

Formal languages Timed languages Data languages

Finite automata Timed automata ?

Rational expressions Some attempts ?

Logic
MSO(<), LTL

Some ad hoc logics ?

Algebraic
characterization

? ✔
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Data automata

Data automaton with k registers:

q q′. . . . . .
g, a, up, g′

r1

...
rk




d1

...
dk







d′1
...
d′k




(a, d)

with (di)i=1...n ∈ g, (d′i)i=1...n ∈ g′ and

{
d′i = di if ri 6∈ up
d′i = d if ri ∈ up

An Algebraic Characterization of Data and Timed Languages – p.8



An example

The data language {(a, τ)(a, 2τ) . . . (a, nτ) | n ∈ N, τ > 0} is accepted by:

q0 q1 q2
tt, a,{r1, r2}, tt

tt, a,{r3}, r3 − r2 = r1

tt, a,{r2}, r2 − r3 = r1

Example of computation:

q0,




0

0

0


 (a,τ)−−−→ q1,



τ

τ

0


 (a,2τ)−−−−→ q2,



τ

τ

2τ


 (a,3τ)−−−−→ q1,



τ

3τ

2τ


 . . .
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Equivalence

Theorem: equivalence between monoid recognizability and data automata
acceptance.

Proof close to the proof for the formal regular languages.

Monoid

Automaton

M

Q = M

M = QQ

Q
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Equivalence

Theorem: equivalence between monoid recognizability and data automata
acceptance.

Proof close to the proof for the formal regular languages.

Monoid

Automaton

M

Q = M

M = (Q×Dk�∼)Q×D
k�∼

Q

The same number of registers and equivalence relation.
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Properties

The monoid plays a fundamental role.

“Two distinct varieties of monoids generate two different
classes of data languages”

Closure properties

Relative hierarchies registers/monoids:

− The hierarchy on the registers is strictly monotonic

Lk = {(a, d1) . . . (a, dn) | i ≡ j mod (k − 1) =⇒ di = dj}

− Fixing a finite monoid, the hierarchy collapses.
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Link with timed languages ?

Given a deterministic timed automaton, there exists a data automaton
that recognizes the same timed/data language.

x > c, a, x := 0

x < d, b

x0 7→ r0, r
′
0

x 7→ rx, r
′
x

r0, rx r′0, r
′
x

r0, r
′
xr′0, rx

tt, a, {r′0, r′x}, r′0 − rx > c
r′0 > r0

tt,

b,

{r0, rx},
r0 − r′x < d
r0 > r′0

tt, a, {r′0, rx}, r′0 − r′x > c
r′0 > r0

tt,

b,

{r0, r′x},
r0 − rx < d
r0 > r′0

Data automata are more expressive than timed automata

L = {(a, τ)(a, 2τ) . . . (a, nτ) | n ∈ N, τ > 0}

➥ data automata = generalization of timed automata
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Some extensions

Erasing and swapping registers: does not increase the expressiveness

Extending the operations on the registers: the monoid is no more
relevant

Adding non-determinism: extends the expressiveness of the model

{(a, d1) . . . (a, dn) | n ∈ N and ∃i 6= j s.t. di = dj}

is “non-deterministically” recognized, but not “determiniscally”
recognized.

− same equivalence property

− closed by concatenation
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Decidability

General model = undecidable

A decidability condition:

∃v ∈ g, ∃d ∈ D, up(v, d) ∈ g′ ⇐⇒ ∀v ∈ g, ∃d ∈ D, up(v, d) ∈ g′

g g′

• •
up

•
up

Remark: a data automaton obtained from a timed automaton satisfies the
decidability condition
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Conclusion and further work

a notion of monoid recognizability for data languages

an equivalent automaton model, more expressive than timed
automata and with a decidability condition

numerous algebraic properties have to be studied like

− aperiodic data languages ? cf Manuel

− and ifD is finite ? What is the exact relation with the formal
languages case ?

− power of the monoid vs power of the updates
− · · ·

logical characterization? cf Manuel
rational expressions?
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