An Algebraic Characterization of Data and Timed Languages

Patricia Bouyer^{*}, Antoine Petit^{*}, Denis Thérien^{**}

* LSV – CNRS UMR 8643 & ENS de Cachan
** McGill University – Montréal

Overview

Formal languages	Timed languages	
Finite automata	Timed automata	
Finite automata	[AD94]	
Rational expressions	Some attempts	
	[ACM97/02,Asa98,BP99/02]	
Logical characterization	Some ad hoc logics	
MSO(<), LTL	[Wilke94,HRS98]	
Algebraic characterization	2	
(using monoids)	•	

- \bullet We consider a set of data \mathcal{D} that can be a time domain
- 6 We are interested in the languages from $(\Sigma \times D)^*$
- **6** \mathcal{D} has an initial data, \perp .

For example, if ${\cal D}$ is a time domain, then \bot is zero. Otherwise, \bot can be the empty data.

We are given: \bigcirc a finite monoid M

We are given: \bigcirc a finite monoid M

We are given: \bigcirc a finite monoid M

We are given: \bigcirc a finite monoid M

We are given: \bigcirc a finite monoid M

We are given: \bigcirc a finite monoid M

6 a finite "memory" consisting in k registers

6 $\theta'_i = \theta_i$ or d depending on m and a

We are given: \bigcirc a finite monoid M

6 a finite "memory" consisting in k registers

6 $\theta'_i = \theta_i$ or d depending on m and a

6 *m'* depends on *m*, on *a* and finitely on $(\theta'_i)_{i=1...k}$ Indeed, $m' = m.\varphi(a, \overline{(\theta'_i)_{i=1...k}})$

An Algebraic Characterization of Data and Timed Languages - p.4

Example: the language $\{(a, d)(a, d') \mid d \neq \bot, d' \neq d\}$

6 $M = \{1, 0, y, y^2\}$ where $y^3 = 0$

6 two registers

6
$$up_1 = \{1\}, up_y = \{2\} \text{ and } up_0 = up_{y^2} = \emptyset$$

6 $\begin{pmatrix} d \\ d \end{pmatrix} \mapsto \begin{cases} y & \text{if } d \neq d' \end{cases}$

 $\left(d' \right) = \left(\begin{array}{c} 0 & \text{otherwise} \end{array} \right)$

$$\begin{pmatrix} \bot \\ \bot \end{pmatrix} \xrightarrow{(a,d)} \begin{pmatrix} d \\ \bot \end{pmatrix} \xrightarrow{(a,d')} \begin{pmatrix} d \\ d' \end{pmatrix}$$

$$1 \qquad 1.y = y \qquad y.y = y^2$$

An Algebraic Characterization of Data and Timed Languages – p.5

6 **Remark:** if $\mathcal{D} = \{\bot\}$

recognizable formal language \equiv recognizable data language

- + same monoid
- **6** Property: if D is finite, L ⊆ (Σ × D)* is a regular formal language on the finite alphabet Σ × D iff it is a recognizable data language.
 But different monoids

Formal languages	Timed languages	Data languages
Finite automata	Timed automata	?
Rational expressions	Some attempts	?
Logic MSO(<), LTL	Some ad hoc logics	?
Algebraic characterization	?	~

Data automaton with *k* registers:

$$(a, d)$$

$$\dots \qquad q \qquad g, a, up, g' \qquad q' \qquad \dots$$

$$r_1 \qquad \begin{pmatrix} d_1 \\ \vdots \\ d_k \end{pmatrix} \qquad \begin{pmatrix} d'_1 \\ \vdots \\ d'_k \end{pmatrix}$$

with
$$(d_i)_{i=1...n} \in g$$
, $(d'_i)_{i=1...n} \in g'$ and
$$\begin{cases} d'_i = d_i & \text{if } r_i \notin up \\ d'_i = d & \text{if } r_i \in up \end{cases}$$

The data language $\{(a, \tau)(a, 2\tau) \dots (a, n\tau) \mid n \in \mathbb{N}, \tau > 0\}$ is accepted by:

Example of computation:

$$q_0, \begin{pmatrix} 0\\0\\0 \end{pmatrix} \xrightarrow{(a,\tau)} q_1, \begin{pmatrix} \tau\\\tau\\0 \end{pmatrix} \xrightarrow{(a,2\tau)} q_2, \begin{pmatrix} \tau\\\tau\\2\tau \end{pmatrix} \xrightarrow{(a,3\tau)} q_1, \begin{pmatrix} \tau\\3\tau\\2\tau \end{pmatrix} \dots$$

Theorem: equivalence between monoid recognizability and data automata acceptance.

6 Proof close to the proof for the formal regular languages.

Theorem: equivalence between monoid recognizability and data automata acceptance.

6 Proof close to the proof for the formal regular languages.

Theorem: equivalence between monoid recognizability and data automata acceptance.

6 Proof close to the proof for the formal regular languages.

6 The same number of registers and equivalence relation.

• The monoid plays a fundamental role.

"Two distinct varieties of monoids generate two different classes of data languages"

- **6** Closure properties
- **6** Relative hierarchies registers/monoids:
 - The hierarchy on the registers is strictly monotonic

 $L_k = \{(a, d_1) \dots (a, d_n) \mid i \equiv j \mod (k - 1) \implies d_i = d_j\}$

– Fixing a finite monoid, the hierarchy collapses.

Link with timed languages ?

Given a deterministic timed automaton, there exists a data automaton that recognizes the same timed/data language.

Link with timed languages ?

- Given a deterministic timed automaton, there exists a data automaton that recognizes the same timed/data language.
- 6 Data automata are more expressive than timed automata

 $L = \{ (a, \tau)(a, 2\tau) \dots (a, n\tau) \mid n \in \mathbf{N}, \ \tau > 0 \}$

data automata = generalization of timed automata

Some extensions

- **6** Erasing and swapping registers: does not increase the expressiveness
- Extending the operations on the registers: the monoid is no more relevant
- 6 Adding non-determinism: extends the expressiveness of the model

$$\{(a, d_1) \dots (a, d_n) \mid n \in \mathbb{N} \text{ and } \exists i \neq j \text{ s.t. } d_i = d_j\}$$

is "non-deterministically" recognized, but not "determiniscally" recognized.

- same equivalence property
- closed by concatenation

Decidability

- 6 General model = undecidable
- 6 A decidability condition:

 $\exists v \in g, \ \exists d \in \mathcal{D}, \ up(v,d) \in g' \iff \forall v \in g, \ \exists d \in \mathcal{D}, \ up(v,d) \in g'$

Remark: a data automaton obtained from a timed automaton satisfies the decidability condition

Conclusion and further work

- a notion of monoid recognizability for data languages 6
- an equivalent automaton model, more expressive than timed 6 automata and with a decidability condition
- numerous algebraic properties have to be studied like 6
 - aperiodic data languages ?
 - and if \mathcal{D} is finite ? What is the exact relation with the formal languages case?
 - power of the monoid *vs* power of the updates

logical characterization? 0 rational expressions?

cf Manuel

cf Manuel