
Formalizing testing for asynchronous

communication ⋆

Puneet Bhateja1, Paul Gastin2, and Madhavan Mukund1

1 Chennai Mathematical Institute, Chennai, India
{puneet,madhavan}@cmi.ac.in

2 LSV, ENS de Cachan & CNRS, France
Paul.Gastin@lsv.ens-cachan.fr

Abstract. Testing is used to verify whether a computing system con-
forms to its specification. Developing an efficient and exhaustive test
suite is a challenging problem, especially in the setting of distributed
systems. Formal theories of testing have been proposed and studied
for systems that communicate synchronously. However, in the setting
of asynchronous systems, little progress has been made since the work of
Tretmans, in which asynchrony is modelled using synchronous commu-
nication by augmenting the state space of the system with queues.

We develop a theory of testing for asynchronous communication
based on a natural notion of input-output observability. We propose two
notions of test equivalence. The first corresponds to presenting all test in-
puts up front while the other corresponds to interactively feeding inputs
to the system under test. We show that the first equivalence is strictly
weaker than Tretmans’ equivalence, whereas the second notion is incom-
parable. We also establish (un)decidability results for these equivalences.

1 Introduction

Testing is a fundamental activity in verifying the correctness of systems. Though
formal verification techniques based on model-checking and theorem-proving can
provide more precise assertions about correctness, these approaches must nec-
essarily work at the level of formal models of the system to be verified. Formal
verification typically cannot detect bugs that are introduced when translating a
correct design into an actual implementation.

Testing as a validation process cannot guarantee the absence of bugs, but it
can increase confidence. For software, testing may focus on different aspects such
as functionality, performance, timing constraints etc. It is typically deployed at
different levels, ranging from unit testing to integration of modules to overall
system level testing. Though testing has always played a dominant role in soft-
ware development, much remains to be done to formalize the testing process,
including strategies for choosing the nature and extent of test data.

⋆ Partially supported by Timed-DISCOVERI, a project under the Indo-French Net-
working Programme

In this paper, we focus on testing in the restricted context of reactive systems.
A theoretical foundation for testing labelled transition systems was laid in the
framework of process algebra, where an operational notion of testing was defined
and shown to have an abstract semantic characterization in terms of failures [1,
2]. These ideas were expanded and elaborated in the work of Tretmans [9], in
the form of an extensive theory of conformance testing: testing when an imple-
mentation conforms to its specification. This theory has been used to develop
automated tools for testing, such as the TGV system [7].

The initial focus on formalizing testing for labelled transition systems was on
synchronous communication, where the send and receive actions for each com-
munication occur simultaneously. It turns out that the nature of testing changes
quite drastically when we model systems with asynchronous communication, in
which the receipt of a message occurs separately from and later than the sending
of the message. In particular, testing equivalence for systems with synchronous
communication is a branching-time equivalence, whereas for systems with asyn-
chronous communication it is a linear-time equivalence.

Most communication protocols are based on asynchronous communication.
Notations such as TTCN [4] are common for specifying tests for such systems.
However, as in the more general setting of software, many questions remain
unanswered about the testing process for such systems. In addition to the usual
problem of optimizing the size of test suites without sacrificing coverage, there
are also additional issues such as the possibility of distributing tests [6].

Our aim is to develop an effective theory of testing for systems with asyn-
chronous communication. The only major work in this direction so far is from
the work of Tretmans [9], in which asynchronous communication is reduced to
synchronous communication in a model augmented with infinite queues. This
treatment is both unwieldy and, in some senses, not intuitive.

In contrast, we consider a natural notion of observability for systems based
on input-output pairs. Using this notion, we propose two notions of test equiva-
lence. The first corresponds to presenting all test inputs up front while the other
corresponds to interactively feeding inputs to the system under test. We show
that the first equivalence is strictly weaker than Tretmans’ equivalence, whereas
the second notion is incomparable.

We also establish decidability results for these equivalences. We show that
the weaker equivalence that we define is undecidable for finite-state systems, as
is the equivalence proposed by Tretmans. However, the stronger equivalence we
propose is decidable for “well-structured” transition systems. We also show that
our weaker notion of equivalence is decidable in the interesting case where we
consider the input-output behaviour of a system to be an unlabelled message
sequence chart [5].

The paper is organized as follows. In the next section, we introduce our formal
model of asynchronously communicating systems. Three notions of asynchronous
testing are introduced in Section 3. We describe the interrelationships between
these notions in Section 4 and prove decidability and undecidability results in
Section 5. We conclude with a brief discussion on directions for future work.

2

2 The Model

We work in the setting of labelled transition systems. A labelled transition system

is a structure TS = (S, I, Σ,→) where S is a set of states with a subset I of
initial states, Σ is an alphabet of actions and → ⊆ S × Σ × S is a labelled
transition relation. We will always write s

a
−→ s′ to denote that (s, a, s′) ∈ →.

We are interested in asynchronous systems that interact with their environ-
ment by sending and receiving messages. We represent this interaction abstractly
by partitioning Σ into two sets: Σi, the set of input actions, and Σo, the set of
output actions. We normally use a, b, c to denote input actions, x, y, z to denote
output actions and Greek letters α, β to denote generic actions from Σ.

An action α is said to be enabled at a state s ∈ S if there is some transition
s

α
−→ s′. We write s

α
−→ to denote that α is enabled at s and s

α
9 to denote that

α is not enabled at s. We can extend this to sets of actions: for X ⊆ Σ, s
X
−→ if

s
α
−→ for some α ∈ X and s

X
9 if s

α
9 for every α ∈ X . A state s is said to refuse

a set X ⊆ Σ of actions if s
X
9. A state s is deadlocked if it refuses Σo.

A run of the transition system TS is a sequence of transitions of the form
s0

α1−→ s1
α2−→ · · ·

αm−−→ sm where s0 ∈ I. We call this a run of TS over the word
α1α2 . . . αm. Let L(TS) = {w ∈ Σ∗ | TS admits a run over w}. It is easy to see
that L(TS) is a prefix-closed language.

Without loss of generality, we assume that in the transition systems we con-
sider, there is no loop s0

x1−→ s1
x2−→ · · ·

xm−−→ sm = s0 labelled by a sequence
of output labels x1x2 . . . xm ∈ Σ∗

o . Such a loop would generate an unbounded
behaviour of the system that does not require any input from the environment.
This kind of spontaneous infinite behaviour is not normally expected from the
class of systems we are interested in. In particular, this restriction implies that
every transition system we consider has at least one deadlocked state. Though
we implicitly assume these restrictions when presenting our testing framework,
our theory can easily be extended to handle the general case.

Asynchronous systems are normally assumed to be receptive—at each state
s, every input action a should be possible. In practice, a system description will
limit itself to providing moves for “useful” input actions at each state. We can
deal with missing inputs in two ways. The first is to assume that there is a dead
state sd that refuses Σo and has a self loop sd

a
−→ sd for every input action a.

Whenever a state s refuses an input action a, we have a move s
a
−→ sd. This

corresponds to an interpretation of receptiveness in which unexpected inputs
cause the system to hang. Our semantics will implicitly capture this notion of
receptiveness, without requiring the explicit addition of such a dead state. An
alternative approach, which we do not consider, is to allow the system to swallow
unexpected inputs and continue with normal execution. This can be modelled
by adding a self-loop labelled a at any state that refuses an input action a.

3

Queue semantics

In [9], a queue semantics is defined for transition systems with asynchronous
communication. This queue semantics is used to transfer notions from the theory
of testing for synchronous systems to the asynchronous framework.

Let TS = (S, I, Σ,→) be a transition system, where Σ = Σi ⊎ Σo. A con-

figuration of TS is a triple (s, σi, σo) where s is a state in S and σi ∈ Σ∗
i and

σo ∈ Σ∗
o are the input and output queues associated with the system.

Initially, the system is in a configuration (i, ε, ε), where the control state i
belongs to the set of initial states I and both input and output queues are empty.
Each input and output move of the original system is broken up into two moves:
a visible move that involves input/output between the input/output queue and
the environment without changing the internal state and an invisible move in
which the input/output action updates the internal state as per the transition
relation of the original system. This is captured by the following rules.

Input (s, σi, σo)
a
−→ (s, σia, σo)

s
a
−→ s′

(s, aσi, σo)
τ
−→ (s′, σi, σo)

Output s
x
−→ s′

(s, σi, σo)
τ
−→ (s′, σi, σox)

(s, σi, xσo)
x
−→ (s, σi, σo)

The first two rules describe how the queue based system reads inputs. Exter-
nal inputs are always accepted and appended to input queue, leaving the internal
state unchanged. The system can then silently consume the action at the head
of the input and update its state using a transition of the original system.

The last two rules deal with outputs. Any output action of the original system
results in a silent internal move that changes the state of the system and appends
the action to the output queue. The system can then spontaneously emit the
action at the head of output queue, leaving the internal state unchanged.

We denote by Q(TS) the transition system corresponding to the configura-
tions of TS using the queue semantics.

This semantics implies, for instance, that at the visible level, output actions
can always be postponed. Thus, if the original system has a path of the form

s
a
−→ s1

x
−→ s2

b
−→ s′, this may be observed asynchronously as a sequence abx by

delaying the output x.

3 Asynchronous testing equivalence

Our main aim is to formalize what we can observe about the behaviour of an
asynchronous system through testing. We define two natural notions of testing
for asynchronous systems based on input-output pairs.

3.1 IO Behaviours

If w ∈ Σ∗ and X ⊆ Σ, we denote by w↓X the subword obtained by erasing all
letters not in X . We also write � for the prefix relation on words.

4

As usual, let TS = (S, I, Σ,→) be a transition system, where Σ = Σi ⊎ Σo.

A maximal run of TS is an execution sequence i
a1−→ s1

a2
−→ · · ·

an−−→ sn such that
i ∈ I and sn is deadlocked. If TS has a maximal run over a word w, we call w a
δ-trace of TS, written δTS(w). Let δtraces(TS) denote the δ-traces of TS.

The IO-behaviour of TS corresponds to an operational model of testing
where, for each test case, the tester generates a sequence of inputs, supplies
them up front, and observes the effect. Formally, IOBeh(TS) is the set of pairs

(u, v) ∈ Σ∗
i ×Σ∗

o such that, in TS, there is a maximal run i
w
−→ s labelled w with

w↓Σo
= v, and either w↓Σi

= u or w↓Σi
a � u and s refuses a.

The condition that s refuses a for the case w↓Σi
a � u implicitly captures the

first notion of receptiveness, where unexpected inputs lead the system to hang.
Formally, this means that if we add a dead state sd to TS as described earlier,
the resulting system will have the same IO-behaviours as the original system.

We can provide additional discriminating power to the tester by assuming
that inputs are supplied incrementally, instead of being provided up front.

A block observation of TS is a sequence (u0, v0)(u1, v1) · · · (un, vn) where
u0 ∈ Σ∗

i , uj ∈ Σ+
i for 1 ≤ j ≤ n, vk ∈ Σ∗

o for 0 ≤ k ≤ n and there is a maximal

run i
w0−−→ s0

w1−−→ · · ·
wn−−→ sn with i ∈ I such that:

– The states s0, s1, s2, . . . , sn are the only deadlocked states along this run.
– ∀0 ≤ j ≤ n, wj↓Σo

= vj .
– ∀0 ≤ j < n, wj↓Σi

= uj .
– Either wn↓Σi

= un or wn↓Σi
a � un and sn refuses a.

A block observation consists of supplying inputs in blocks u0u1 . . . un and
observing the incremental output associated with each block. The first input
block is permitted to be empty, to account for a spontaneous initial output
v0. Once again, the conditions on wn↓Σi

implicitly capture receptiveness. Let
IOBlocks(TS) denote the set of block observations of TS.

Definition 1. We define two testing equivalences on asynchronous systems, cor-

responding to IO-behaviours and block observations.

TS ∼io TS′ def
= IOBeh(TS) = IOBeh(TS′)

TS ∼ioblock TS′ def
= IOBlocks(TS) = IOBlocks(TS′)

3.2 Synchronous testing on queues

In contrast to our direct definition of testing based on the observed input-output
behaviour of asynchronous systems, the approach taken in [9] is to reduce asyn-
chronous testing to synchronous testing via the queue semantics. Two systems
are said to be testing equivalent in an asynchronous sense if the corresponding
interpretations with queues are testing equivalent in a synchronous sense.

Let ∼Q denote asynchronous testing equivalence under the queue semantics
and ∼syn denote the normal synchronous testing equivalence, which coincides
with failures semantics [1, 2]. Then,

5

TS ∼Q TS′ def
= Q(TS) ∼syn Q(TS′).

We do not recall the formal definition of synchronous testing equivalence,
because we do not require this branching-time formulation of the equivalance
∼Q . Instead, it turns out that ∼Q admits a linear-time characterization (see
Corollary 5.15 in [9]).

Theorem 2. TS ∼Q TS′ iff L(Q(TS)) = L(Q(TS′)) and δtraces(Q(TS)) =
δtraces(Q(TS′)).

In the rest of this section, we define some notions related to L(Q(TS)) and
δtraces(Q(TS)) that will prove useful in later analysis.

Tracks We begin by defining an ordering on words, denoted @. Intuitively,
u @ v if u can be observed as v by postponing some outputs. In the process, v
could accept additional inputs.3 Formally, u @ v if the following conditions hold.

– u↓Σi
� v↓Σi

.
– u↓Σo

= v↓Σo
.

– For every pair of prefixes uj, vj of u, v of length j, vj↓Σo
� uj↓Σo

.

By the first condition, the input actions of v can extend those of u. However,
by the second condition both u and v must have the same sequence of outputs.
Finally, the third condition asserts that each output letter in v appears no earlier
than the corresponding output letter in u.

The relation @ is a partial order on Σ∗. It is not difficult to see that L(Q(TS)),
the prefix closed language of TS under the queue semantics, is upward-closed
with respect to @: if w ∈ L(Q(TS)) and w @ w′ then w′ ∈ L(Q(TS)).

A track is an @-minimal word in L(Q(TS)). It is shown in [9] that every
track is actually a word in L(TS), the original transition system interpreted
without the queue semantics. Moreover, since L(Q(TS)) is upward-closed with
respect to @, the set of tracks completely determines the set of traces. Note
that not every word in L(TS) is a track: for instance, TS could explicitly have
execution sequences axby and abxy. Since axby @ abxy, abxy is not a track. Let
Tracks(TS) denote the set of tracks of TS.

Empty and blocked deadlocks We can classify deadlocked traces into two
groups. Recall that we have assumed a receptive model of asynchronous commu-
nication in which input actions are always enabled but unexpected inputs cause
the system to hang. This gives rise to two possible scenarios when a system
deadlocks. In the first scenario, the system is waiting for input with an empty
input queue and can potentially make progress if a suitable input arrives. In
the second scenario, the system has received an unexpected input and can never

3 The symbol @ should be pronounced “ape”, in the sense “copy” or “mimic”. Thus
w @ w

′ is to be read as w is aped by w
′.

6

recover. The first kind of deadlock is called an empty deadlock while the second
kind of deadlock is called a blocked deadlock.

To define empty and blocked deadlocks formally, we need a new relation. We
say that w ∈ Σ∗ is strictly aped by w′ ∈ Σ∗, denoted w |@| w′, if w @ w′ and
|w| = |w′|. We can then define the empty and blocked deadlocks of Q(TS).

δempty(Q(TS)) = {w ∈ Σ∗ | ∃ i
w′

−→ s in TS with i ∈ I,

s deadlocked and w′ |@| w}.

δblock(Q(TS)) = {w ∈ Σ∗ | ∃ i
w′

−→ s in TS with i ∈ I, ∃ a ∈ Σi such that

s refuses Σo ∪ {a} and w′a @ w}.

Observe that δempty(Q(TS)) is |@|-upward closed and δblock(Q(TS)) is @-upward
closed. It is not difficult to see that

δtraces(Q(TS)) = δempty(Q(TS)) ∪ δblock(Q(TS)).

However, note that the sets δempty(Q(TS)) and δblock(Q(TS)) may overlap. In
fact, it is even possible TS1 ∼Q TS2 but δempty(Q(TS1)) 6= δempty(Q(TS2)) or
δblock(Q(TS1)) 6= δblock(Q(TS2)) [9]. Despite these shortcomings, we will find
these notions very useful.

4 Comparing the three equivalences

Our first set of results compare the three testing equivalences we have introduced
earlier. We show that ∼io is strictly weaker than ∼Q and ∼ioblock , but ∼Q and
∼ioblock are incomparable.

Proposition 3. If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof. For any transition system TS, we have IOBeh(TS) =
{(u0u1 . . . un, v0v1 . . . vn) | (u0, v0)(u1, v1) . . . (un, vn) ∈ IOBlocks(TS)}. From
this, it follows that if IOBlocks(TS1) = IOBlocks(TS2), then IOBeh(TS1) =
IOBeh(TS2). ⊓⊔

Proposition 4. If TS1 ∼Q TS2, then TS1 ∼io TS2.

Proof. Let TS1 and TS2 be two transition systems such that TS1 ∼Q TS2. We

show that TS1 ∼io TS2. Let (u, v) ∈ IOBeh(TS1) and let i
w
−→ s be a maximal

run in TS1 labelled w, with w↓Σo
= v, and either w↓Σi

= u or w↓Σi
a � u and

s refuses a.

Case 1: Suppose w↓Σi
= u. By definition of the empty deadlocks, we obtain

w ∈ δempty(Q(TS1)). Since TS1 ∼Q TS2, we have w ∈ δtraces(Q(TS2)).

If w ∈ δempty(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′ with
w′ |@| w. Since w′↓Σi

= w↓Σi
= u and w′↓Σo

= w↓Σo
= v, we have (u, v) ∈

IOBeh(TS2).

7

If w ∈ δblock(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′ where s′

refuses Σo ∪ {b} and w′b @ w for some b ∈ Σi. Since (w′b)↓Σi
� w↓Σi

= u and
w′↓Σo

= w↓Σo
= v, we have (u, v) ∈ IOBeh(TS2).

Case 2: Suppose w↓Σi
a � u and s refuses a. As above, by definition of the

blocked deadlocks we get wa ∈ δblock(Q(TS1)). Let u′ be such that u = w↓Σi
au′.

We have wa @ wau′ and we obtain wau′ ∈ δblock(Q(TS1)) since this set is @-
upward closed. Since TS1 ∼Q TS2 we deduce wau′ ∈ δtraces(Q(TS2)).

If wau′ ∈ δempty(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′

with w′ |@| wau′. Since w′↓Σi
= w↓Σi

au′ = u and w′↓Σo
= w↓Σo

= v, we have
(u, v) ∈ IOBeh(TS2).

If wau′ ∈ δblock(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′ where
s′ refuses Σo∪{b} and w′b @ wau′ for some b ∈ Σi. Since w′↓Σi

b � w↓Σi
au′ = u

and w′↓Σo
= w↓Σo

= v, we have (u, v) ∈ IOBeh(TS2). ⊓⊔

The implication we have proved is strict. Below, we give two transition
systems that are related by ∼io but not by ∼Q . Here Σi = {a} and Σo =
{x}. For both systems, the IO-behaviours are given by {(ε, ε), (a, x), (a, xx)} ∪
{(an, x), (an, x2), (an, x3) | n > 1}, so TS1 ∼io TS2. However, notice that
axaxx ∈ Tracks(TS1) \ Tracks(TS2) because axxax ∈ L(TS2) and axxax @
axaxx. Hence, TS1 6∼Q TS2.

TS1

a

x

a

x

x

a

x

a

x

x

TS2

a

x

a

x

x

a

x

x

a

x

The equivalences ∼Q and ∼ioblock are incomparable. Below, we give two tran-
sition systems that are related by ∼Q but not by ∼ioblock . Here, Σi = {a} and
Σo = {w, x, y, z}. Now, Tracks(TS1) = Tracks(TS2) = {ε, ax, axy, axyaz, axaw}.
Also, the set of empty deadlocks for both systems is the |@|-upper closure of
{ε, ax, axy, axyaz, axaw}. Finally, the set of blocked deadlocks for both systems
is the @-upper closure of {ε, axyaza, axawa}. Hence TS1 ∼Q TS2. However,
the incremental behaviour (a, x)(a, yz) is in IOBlocks(TS1) \ IOBlocks(TS2), so
TS1 6∼ioblock TS2. This example also establishes that ∼io is strictly weaker than
∼ioblock because the IO-behaviours of TS1 and TS2 are {(ε, ε), (a, x), (a, xy)} ∪
{(an, xyz), (an, xw) | n > 1}.

8

TS1

a

x

y

a

z

a

x

a

y

z

w

TS2

a

x

y

a

z

a

x

a

w

Similarly, we give below two systems that are related by ∼ioblock but not by
∼Q . We have axax ∈ δtraces(Q(TS1)) \ δtraces(Q(TS2)), so TS1 6∼Q TS2. On
the other hand, IOBlocks(TS1) = IOBlocks(TS2) = {(ε, ε)} ∪ {(an, xx) | n ≥
2} ∪ {(an, x), (an, xy) | n ≥ 1}, so TS1 ∼ioblock TS2.

TS1
a

x

a

x

x

y

TS2
a

a

x

x

x
x

y

5 Decidability of asynchronous test equivalence

We now examine the decidability of asynchronous test equivalence for finite-
state systems. We show that ∼io and ∼Q are both undecidable. For ∼ioblock , we
can establish decidability for the case where states are split as input and output
states. Finally, we show that ∼io is decidable for test specifications corresponding
to unlabelled message-sequence charts.

5.1 Undecidability of ∼io

We prove this result using a reduction from the equivalence problem for rational
relations. We start by recalling some definitions. Let A, B be two finite alphabets.
With componentwise concatenation, the set A∗ × B∗ is a monoid. A rational
relation over A and B is a rational subset R of A∗ × B∗. Equivalently, we can
view R as a mapping from A∗ to P(B∗) defined for u ∈ A∗ by R(u) = {v ∈ B∗ |
(u, v) ∈ R}.

In the following, we let K = Rat(B∗). A K-automaton over A is a tuple
A = (S, λ, µ, γ) with S a finite set of states, λ, γ ∈ KS and µ(a) ∈ KS×S

for each a ∈ A. Intuitively, the automaton outputs λi when it is entered in
state i, then it outputs µ(a)i,j whenever a transition labelled a from i to j is

9

taken and finally, it outputs γj when we are done reading the input word and
we exit the automaton in state j. The relation R(A) realized by A is defined
for u = a1 · · ·ak ∈ A∗ by (u, v) ∈ R(A) iff there exists i0, . . . , ik ∈ S, with
v ∈ λi0µ(a1)i0,i1 · · ·µ(ak)ik−1,ik

γik
. With union as addition and concatenation

as multiplication, the set K is a semiring with ∅ as zero element and {ε} as
unit. Hence the set of matrices KS×S equipped with matrix multiplication is a
monoid and we can extend µ to a monoid morphism µ : A∗ → Kn×n. Viewing λ
as a row vector and γ as a column vector, we have R(A)(u) = λµ(u)γ for each
u ∈ A∗.

A relation R ⊆ A∗ × B∗ is rational if and only if it can be realized by some
K-automaton. Without loss of generality, we may assume that λi 6= ∅ implies
λi = {ε} for each state i ∈ S.

The equivalence problem for rational relations given by finite K-automata
is undecidable [8]. This undecidability holds even for rational relation for which
|B| = 1 and given by a K-automaton where K is the set Pfin(B

∗) of finite

subsets of B∗. So in the following we assume that B = {b} is a singleton and
that K = Pfin(B

∗).
In the construction below, we prefer to avoid ε-transitions. We call a K-

automaton A = (S, λ, µ, γ) strict if none of the sets µ(a)p,q and γq contain the
empty word ε. We show that the undecidability still holds for rational relations
given by strict K-automata. The reduction is easy. Let A = (S, λ, µ, γ) be a K-
automaton and define As = (S, λ, µs, γs) by µs(a)p,q = bµ(a)p,q) and γs

q = bγq.

Then, As is strict and for each u ∈ A∗ we have λµs(u)γs = b|u|+1λµ(u)γ (recall
that B = {b} so the semiring K is commutative). Then, R(A) = R(B) if and only
if R(As) = R(Bs). Therefore, equivalence is undecidable for rational relations
given by strict K-automata.

We now associate to a strict K-automaton A = (S, λ, µ, γ) a transition sys-
tem A′ over Σ with Σi = A and Σo = B ⊎ {#} where # is a new output
letter. For each (p, a, q) ∈ S × A× S we consider an automaton Ap,a,q recogniz-
ing µ(a)p,q and such that Ap,a,q has a unique initial state ip,a,q with no ingoing
transition, a unique final state fp,a,q with no outgoing transition and all other
states have outgoing transitions. To construct A′, we first take the disjoint union
of the automata Ap,a,q for (p, a, q) ∈ S×A×S. Then, for each q ∈ S, we identify
all states (p, a, q) with (p, a) ∈ S × A into a single state denoted simply by q.

Finally, for each (p, a, q) ∈ S × A × S, we add the transition p
a
−→ ip,a,q. Thus

we obtain the transition system A′ = (S′, I, Σ,→) with I = {i ∈ S | λi 6= ∅}.
Note that in A′, all transitions leaving the states in S are labelled with input
letters and all transitions leaving states in S′ \S are labelled with output letters.
Hence, the deadlocked states in A′ are exactly those in S.

For each pair of states p, q ∈ S we consider the relation

Tp,q = {(w↓A, w↓B) ∈ A∗ × B∗ | p
w
−→ q in A′}.

The following lemma should be clear for those familiar with rational relations
and K-automata. Its proof is included in the Appendix, for completeness.

10

Lemma 5. For each p, q ∈ S, we have

Tp,q = {(u, v) ∈ A∗ × B∗ | v ∈ µ(u)p,q}.

For each q ∈ S we consider an automaton Aq recognizing γq# and such that
Aq has a unique initial state iq with no ingoing transition, a unique final state
fq with no outgoing transition and all other states have outgoing transitions. We

let A+
q be Aq with the additional transitions fq

a
−→ f ′

q for a ∈ A and f ′
q

#
−→ fq so

that fq does not refuse any input letter. Finally, we let A′′ be the disjoint union
of A′ together with the automata A+

q for q ∈ S and the additional transitions

x
b
−→ iq for each transition x

b
−→ q of A′. Note that the deadlocked states of A′′

are S ∪ {fq | q ∈ S}.

Lemma 6. IOBeh(A′′) = IOBeh(A′) ∪R(A){(x, #1+|x|) | x ∈ A∗}.

Proof. First, the maximal paths in A′ are of the form p
w
−→ q for p ∈ I and q ∈ S.

They are also maximal paths in A′′. Moreover, a state q ∈ S refuses exactly the
same input letters in A′ and in A′′. Hence, IOBeh(A′) ⊆ IOBeh(A′′). Conversely,
the maximal paths in A′′ which do not use the letter # cannot enter one of the
automata Aq. Hence, they are also maximal paths in A′ and we deduce that
IOBeh(A′′) ∩ A∗ × B∗ = IOBeh(A′).

Second, let (u, v) ∈ R(A). We have v ∈ λµ(u)γ hence we find p, q ∈ S with
v ∈ λpµ(u)p,qγq. It follows that λp 6= ∅ (i.e., p ∈ I), which implies λp = {ε} by
our assumption on K-automata. Hence we can write v = v′v′′ with v′ ∈ µ(u)

and v′′ ∈ γq. By Lemma 5 we find a path p
w
−→ q in A′ with u = w↓A and

v′ = w↓B. Replacing the last transition x
b
−→ q of this path by x

b
−→ iq we

find a path p
wv′′#
−−−−→ fq in A′′. For x = a1 · · ·ak, this path can be extended

with fq
w′

−→ fq where w′ = a1# · · · ak#. We have ux = (wv′′#w′)↓Σi
and

v#1+|x| = v′v′′#1+k = (wv′′#w′)↓Σo
. Since fq is a deadlocked state we deduce

that (ux, v#1+|x|) ∈ IOBeh(A′′).

Conversely, let (u′, v′) ∈ IOBeh(A′′) \ A∗ × B∗. Let p
w′

−→ s be a run in A′′

with p ∈ I, s deadlocked, w′↓Σo
= v′ and either w′↓Σi

= u′ or w′↓Σi
a � u′

and s refuses a. Since v′ /∈ B∗, we must have s = fq for some q ∈ S and
w′ = w#a1# · · · ak# with w ∈ (A ∪ B)∗ and x = a1 · · · ak ∈ A∗. Since s =
fq does not refuse any input letter, we get w′↓Σi

= u′. With u = w↓Σi
and

v = w↓Σo
we have v′ = v#1+k and u′ = ux. The path p

w′

−→ fq can be split in

p
w1−−→ iq

w2#
−−−→ fq

a1#···ak#
−−−−−−−→ fq so that p

w1−−→ q is a path in A′ and iq
w2#
−−−→ fq

is a path in Aq and w = w1w2. We deduce that w2 ∈ γq, u = w1↓A and
v = (w1↓B)w2. By Lemma 5 we have w1↓B ∈ µ(u)p,q. Therefore, v ∈ µ(u)p,qγq.
Since p ∈ I we have λp = {ε} and we obtain v ∈ λµ(u)γ = R(A)(u). ⊓⊔

If we have another rational relation defined by a strict K-automaton B then
we define similarly B′ and B′′.

11

Theorem 7. A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B). Therefore, the

∼io equivalence is undecidable.

Proof. By Lemma 6, we have

IOBeh(A′ ⊎ B′′) = IOBeh(A′) ∪ IOBeh(B′) ∪R(B){(x, #1+|x|) | x ∈ A∗}

IOBeh(A′′ ⊎ B′) = IOBeh(A′) ∪ IOBeh(B′) ∪R(A){(x, #1+|x|) | x ∈ A∗}

The result follows. ⊓⊔

5.2 Undecidability of ∼Q

Let A and B be two finite alphabets and let f : A+ → B+ and g : A∗ → B∗

be two morphisms corresponding to an instance of the PCP. The PCP has a
solution if and only if we have f(u) = g(u) for some u ∈ A+.

We consider a new symbol $ we define the input and output alphabets as
Σi = A ∪ {$} and Σo = B. We then construct two transition systems from the
ingredients shown below:

S0

I

∆0

A

A

B

B

$

A, $

B

B

Sf

I · · ·

X Y

Z ′

Z

∆f

F

a b1 b2 bk−1

bk

A
b1 b2

bk−1¬b1 ¬b2 ¬bk−1 ¬bk bk

B

A

A, B

B$ $ $

A, $

B

B

As usual, the transition system Sf corresponds to the morphism f and has
one loop ab1b2 . . . bk for each a ∈ A such that f(a) = b1b2 . . . bk. Formally the
set of states of Sf is Qf = {I, F, X, Y, Z, Z ′, ∆f}∪{(a, i) | a ∈ A, 0 < i < |f(a)|}
and its initial state in I. The transitions between states in {I, F, X, Y, Z, Z ′, ∆f}
are precisely given in the picture above, which also contains the intuition for the
other transitions defined, for each a ∈ A with f(a) = b1b2 · · · bk, by:

– I
a
−→ (a, 1)

b1−→ (a, 2)
b2−→ (a, 3) · · · (a, k − 1)

bk−1

−−−→ (a, k)
bk−→ I,

– (a, i)
b
−→ Y if 1 ≤ i ≤ k and b ∈ B \ {bi},

12

– (a, i)
bi−→ X if 1 ≤ i < k, and (a, k)

bk−→ Z ′.

For the morphism g, we construct an analogous system Sg. We want to compare
the following two systems:

– M1 = S0 + Sf + Sg

– M2 = Sf + Sg

Here, Si + Sj denotes the disjoint union of the two systems with multiple initial
states.

The broad idea is that the deadlocks of Q(S0) will be contained in those of
M2 if and only if the PCP has no solution.

The only deadlocked state in S0 is ∆0 and this state does not refuse any
input letter. Therefore, δblock(S0) = ∅. Similarly, the only deadlocked states in
Sf are X and ∆f and none of them refuses some input letter so that we also get
δblock(Sf) = ∅. Therefore,

δtraces(M1) = δempty(S0) ∪ δempty(M2) and δtraces(M2) = δempty(M2)

and M1 ∼Q M2 if and only if

Tracks(M1) = Tracks(M2) and δempty(S0) ⊆ δempty(M2).

Lemma 8. Tracks(M1) = Tracks(M2) = Tracks(Sf) = B∗.

Proof. First, let v ∈ B+. Then v is @-minimal and I
v
−→ F in Sf . Therefore,

B∗ ⊆ Tracks(Sf). Since any word w ∈ Σ∗ apes its projection on the output
alphabet B, we deduce that Tracks(Sf) = B∗. ⊓⊔

Lemma 9. δempty(S0) is the |@|-upper closure of A+B+$.

Proof. Follows from the definition of δempty and the fact that the set of words

w′ ∈ Σ∗ having a run I
w′

−→ ∆0 in S0 is B+A+$. ⊓⊔

Lemma 10. Let u ∈ A+ and v ∈ B+. Then, uv$ ∈ δempty(Sf) if and only if

v 6= f(u).

Proof. If v 6= f(u), the construction of Sf guarantees that there is some witness-
ing interleaving w of u and v that leads to one of the states X , Y or Z. Formally,
assuming that v 6= f(u) with u = a1 · · · ap, we distinghish three cases:

1. If v ≺ f(u), let j be such that f(a1 · · · aj−1) � v ≺ f(a1 · · · aj). Consider
w = a1f(a1) · · · aj−1f(aj−1)aj(f(a1 · · · aj−1)

−1v)aj+1 · · · ap. Then w |@| uv

and I
w
−→ X in Sf .

2. If v = f(a1 · · · aj−1)v
′bv′′ with v′ ≺ f(aj), b ∈ B and v′b 6� f(aj). Consider

w = a1f(a1) · · · aj−1f(aj−1)ajv
′bv′′aj+1 · · · ap. Then w |@| uv and I

w
−→ Y

in Sf .
3. If f(u) ≺ v. Consider w = a1f(a1) · · ·apf(ap)(f(u)−1v). Then w |@| uv and

I
w
−→ Z in Sf .

13

Hence, there is a run I
w$
−−→ ∆f in Sf and since w$ |@| uv$ we obtain uv$ ∈

δempty(Sf).

Conversely, let I
w′

−→ s be a run in Sf with s deadlocked and w′ |@| uv$.
Since $ must occur in w′ we deduce that s = ∆f and w′ = w$ with w |@| uv.
Moreover, there is a run in Sf labelled w going from I to one of the states X ,
Y or Z. Let u = a1 · · · ap.

1. If I
w
−→ X then we have

w = a1f(a1) · · · aj−1f(aj−1)aj(f(a1 · · ·aj−1)
−1v)aj+1 · · · ap for some j such

that f(a1 · · · aj−1) � v ≺ f(a1 · · · aj) and we deduce that v 6= f(u).

2. If I
w
−→ Y then we have w = a1f(a1) · · · aj−1f(aj−1)ajv

′bw′′ for some j such
that v′ ≺ f(aj), b ∈ B and v′b 6� f(aj). We deduce that v 6= f(u).

3. If I
w
−→ Z then we have w = a1f(a1) · · · apf(ap)v

′ with v′ ∈ B+ and we
deduce that v 6= f(u). ⊓⊔

Theorem 11. M1 ∼Q M2 iff the PCP instance (f, g) has no solution.

Proof. First, assume that the PCP instance (f, g) has a solution and let u ∈ A+

be such that v = f(u) = g(u). Then, uv$ ∈ δempty(S0)\δempty(M2) by Lemmas 9
and 10. Therefore, M1 6∼Q M2.

Conversely, if the PCP instance (f, g) has no solution, then for every u ∈ A+

and v ∈ B+ we have either v 6= f(u) or v 6= g(u). Hence, uv$ ∈ δempty(M2) by
Lemma 10. Using Lemma 9 we deduce that δempty(S0) ⊆ δempty(M2) since these
sets are |@|-upward closed. Therefore, M1 ∼Q M2. ⊓⊔

5.3 Decidability of ∼ioblock for well structured systems

We will show that ∼ioblock is decidable when the states are partitioned as input
and output states. An input state is a state that refuses Σo and an output state
is one that refuses Σi. A well structured transition system is one in which every
state is either an input state or an output state.

In a well-structured transition system TS, it is not difficult to establish that
every member of IOBlocks(TS) is of the form (ε, v0)(a1, v1) . . . (an, vn), with
each aj ∈ Σi and each vj ∈ Σ∗

o , corresponding to a maximal run of the form

i
v0−→ s0

a1v1−−−→ s1 · · · sn−1
anvn−−−→ sn.

From this, it follows that TS1 ∼ioblock TS2 iff Lδ(TS1) = Lδ(TS2), where
Lδ(TS) is the language obtained by regarding TS as a finite-state automaton
with all deadlocked states as final states. Thus, we have the following result.

Theorem 12. The relation ∼ioblock is decidable for well structured transition

systems.

5.4 Decidability of ∼io for unlabelled MSC tests

A message sequence chart, or MSC, is a diagram that visually represents a
sequence of communications between a set of agents [5]. In an MSC, processes

14

are represented by vertical lines, with time flowing downward, and messages
are drawn as arrows connecting the vertical lines. One way of characterizing
patterns of communications is in terms of the MSCs they generate. For these
characterizations, message labels are often omitted, as in the treatment of regular
MSC languages in [3]. When restricted to the communications between the tester
and the system under test, this corresponds to a setting in which the input and
output alphabets are both singletons, since all messages to and from the system
under test are unlabelled. The reduction used to prove Theorem 7 allows us to
model ∼io using rational relations. It is known that equality is decidable for
rational relations over a pair of unary alphabets. Hence, we have the following
result.

Theorem 13. The relation ∼io is decidable for tests described using unlabelled

MSCs.

6 Future work

We have presented two intuitive notions of asynchronous testing and compared
their expressive power with the definition due to Tretmans. For one of these,
∼ioblock , we have a positive decidability result for a large class of interesting sys-
tems. Much work remains to be done to apply these new notions to make testing
more effective. As mentioned in the introduction, the key problem remains that
of identifying efficient yet exhaustive test sets for a given problem. Another
interesting issue is to see how testing can be done in a distributed manner.

References

1. R. de Nicola and M. Hennessy: Testing equivalences for processes, Theoretical
Computer Science, 34 (1984) 83–133.

2. R.J. van Glabbeek: The linear time-branching time spectrum I: The semantics
of concrete, sequential processes, in Handbook of Process Algebra, J.A. Bergstra,
A. Ponse and S.A. Smolka, eds., Elsevier (2001) 3–99.

3. J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagara-
jan: A Theory of Regular MSC Languages. Information and Computation, 202(1)
(2005) 1–38.

4. ISO (1992) Information Technology — Open Systems Interconnection Confor-
mance Testing Methodology and Framework. ISO/IEC 9646-1/2/3. Part 1: General
concept – Part 2: Abstract test Suite Specification — Part 3: The Tree and Tabular
Combined Notation (TTCN).

5. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva
(1997).

6. C. Jard: Synthesis of distributed testers from true-concurrency models of reactive
systems, Information & Software Technology, 45(12) (2003) 805–814.

7. C. Jard and T. Jéron: TGV: theory, principles and algorithms. Software Tools for
Technology Transfer, 7(4)(2005) 297–315.

8. J. Sakarovitch: Eléments de théorie des automates, Vuibert (2003).
9. J. Tretmans: A formal approach to conformance testing, PhD Thesis, University

of Twente, The Netherlands (1992).

15

A Appendix

Here we supply the proof of

Lemma 5 For each p, q ∈ S, we have

Tp,q = {(u, v) ∈ A∗ × B∗ | v ∈ µ(u)p,q}.

Proof. Let v ∈ µ(u)p,q with u = a1 · · · ak ∈ Ak. Since µ(u) = µ(a1) · · ·µ(ak)
we find a sequence of states p = p0, p1, · · · , pk−1, pk = q such that we have
v ∈ µ(a1)p0,p1

· · ·µ(ak)pk−1,pk
. Hence, v = v1 · · · vk with vj ∈ µ(aj)pj−1,pj

for
each 0 < j ≤ k. By definition of Apj−1,aj,pj

we find in this automaton a path

ipj−1,aj ,pj

vj

−→ fpj−1,aj ,pj
. Therefore, we have in A′ the path

p0
a1−→ ip0,a1,p1

v1−→ p1 · · · pk−1
ak−→ ipk−1,ak,pk

vk−→ pk,

that is, a path p
w
−→ q with w = a1v1 · · · akvk. Since u = w↓A and v = w↓B we

deduce that (u, v) ∈ Tp,q.
The converse can be shown similarly. ⊓⊔

16

