
A Decidable Temporal Logic of Repeating

Values?

Stéphane Demri1, Deepak D’Souza2, and Régis Gascon1

1 LSV, ENS Cachan, CNRS, INRIA
{demri,gascon}@lsv.ens-cachan.fr

2 Dept. of Computer Science & Automation,
Indian Institute of Science, Bangalore, India

deepakd@csa.iisc.ernet.in

Abstract. Various logical formalisms with the freeze quantifier have
been recently considered to model computer systems even though this is
a powerful mechanism that often leads to undecidability. In this paper, we
study a linear-time temporal logic with past-time operators such that the
freeze operator is only used to express that some value from an infinite
set is repeated in the future or in the past. Such a restriction has been
inspired by a recent work on spatio-temporal logics. We show decidability
of finitary and infinitary satisfiability by reduction into the verification
of temporal properties in Petri nets. This is a surprising result since
the logic is closed under negation, contains future-time and past-time
temporal operators and can express the nonce property and its negation.
These ingredients are known to lead to undecidability with a more liberal
use of the freeze quantifier.

1 Introduction

Temporal logic with freeze. In logical languages, the freeze mechanism al-
lows to store a value in a register and to test later the value in the register
with a current value. This operator is useful to compare values at distinct states
of Kripke-like structures. The freeze quantifier has found applications in real-
time logics [Hen90], in hybrid logics [Gor96,ABM01], in modal logics with pred-
icate λ-abstraction [Fit02] and for the specification of computations of systems
with unboundedly many locations as resources [LP05]. Although it is known
that the freeze operator can lead to undecidability (even with only equality on
data [LP05,DLN07]), many decidable temporal logics have a freeze mechanism,
sometimes implicitly, see e.g. [AH94,LMS02,KV06]. Recent developments have
shown the ubiquity of the freeze operator [LP05,tCF05,DLN07,Laz06,Seg06] and
its high expressive power as witnessed by the Σ1

1 -completeness results shown
in [DLN07].

? Work supported by the Indo-French project “Timed-DISCOVERI” (P2R/RNP
scheme).

The need to design decidable fragments of simple linear-time temporal logic
LTL with the freeze quantifier stems from [DLN07,Laz06] and most known de-
cidable fragments in [DLN07,Laz06] does not allow unrestricted use of negation.
Still, finitary and infinitary satisfiability for Boolean combinations of safety for-
mulae (with a unique register) is decidable [Laz06]. Potential applications range
from the verification of infinite-state systems [Hen90,DLN07] to querying XML
documents or more modestly data strings [BMS+06,Seg06]. In the paper, we
are interested in studying fragments of LTL with the freeze operator that are
decidable in the finitary and infinitary cases, that allow unrestricted use of nega-
tion (by contrast to the flat fragments in [DLN07]) and that allow all standard
past-time operators (by constrast to what is done in [BMS+06,DL06]). Even in
terms of expressive power, the fragment newly shown decidable in the paper can
express the “nonce property” and its negation (all the values of a variable are
different at every position). Moreover, in [WZ00, Sect. 7], the authors advocate
the need to consider infinitary disjunction of the form

∨
i>0 x = X

iy where Xiy

refers to the value of y at the ith next position. This states that a future value
of y is equal to the current value of x. Our fragment can express this property,
with the formula x = ♦y, as well as the dual one:

∧
i>0 x = Xiy can be ex-

pressed by the formula ¬(x 6= ♦y). In the paper we introduce the constraint
logic CLTL(N,=) with atomic formulae x = ♦y and past-time operators X−1

and S. This logic is denoted by CLTL♦. Hence, in CLTL♦, the freeze quanti-
fier is only used to specify that some values are repeated. Even though CLTL♦

does not enjoy first-order completeness, see e.g. [Rab06], it satisfies interesting
computational properties as shown below.

Our contribution. We show that finitary and infinitary satisfiability for CLTL♦

with temporal operators {X,X−1, S,U} is decidable. We provide a uniform proof
for the finite and infinite cases based on some substantial extension of the
automaton-based approach for (constraint) LTL from [VW94,DD07]. The pos-
sibility to compare two values at unbounded distance requires a special class
of counter automata for which finitary and infinitary nonemptiness is shown
decidable. To do so, we take advantage of a deep result from [Jan90] estab-
lishing that verifying fairness properties based on the temporal operator GF

(“always eventually”) in Petri nets is decidable. By contrast model-checking for
full LTL over Petri nets is undecidable [HR89] (see also [Esp94] with linear-
time mu-calculi). Observe that infinitary CLTL♦ is the first decidable fragment

of CLTL↓
1(N,=) [DLN07] with an unrestricted use of negation and that con-

tains all the temporal operators from {X,X−1, S,U}. A nice by-product of our
technique is that the extensions with temporal operators definable in Monadic
Second Order Logic (MSOL) or with x = ♦−1y (“a value of y in the past is equal
to the current value of x”) are also decidable. Finally, we show that finitary and
infinitary satisfiability for CLTL♦ restricted to one variable is pspace-complete.

Because of lack of space, omitted proofs can be found in [DDG07].

2 Preliminaries

2.1 Temporal Logic with Repeating Values

Let VAR = {x1, x2, . . .} be a countably infinite set of variables. The formulae of
the logic CLTL♦ are defined as follows:

φ ::= x = X
iy | x = ♦y | φ ∧ φ | ¬φ | Xφ | φUφ | X

−1φ | φSφ

where x, y ∈ VAR and i ∈ N. Formulae of the form either x = Xiy or x = ♦y are
said to be atomic and an expression of the form Xix (i next symbols followed
by a variable) is called a term. Given a set of temporal operators definable from
those in {X,X−1, S,U} and k ≥ 0, we write CLTL♦

k (O) to denote the fragment

of CLTL♦ restricted to formulae with temporal operators from O and with at
most k variables.

A valuation is a map VAR → N and a model σ is a non-empty sequence of
valuations either finite or infinite. All the subsequent developments can be equiv-
alently done with the domain N replaced by an infinite set D since only equality
tests are performed. We write |σ| to denote the length of σ. The satisfaction
relation is defined inductively as follows where σ is a model and 0 ≤ i ≤ |σ| − 1:

– σ, i |= x = Xjy iff i+ j ≤ |σ| − 1 and σ(i)(x) = σ(i+ j)(y),
– σ, i |= x = ♦y iff there exists j > 0 s.t. i+j ≤ |σ|−1 and σ(i)(x) = σ(i+j)(y),
– σ, i |= φ ∧ φ′ iff σ, i |= φ and σ, i |= φ′, σ, i |= ¬φ iff σ, i 6|= φ,
– σ, i |= Xφ iff i+ 1 ≤ |σ| − 1 and σ, i+ 1 |= φ,
– σ, i |= X−1φ iff i > 0 and σ, i− 1 |= φ,
– σ, i |= φUφ′ iff there is i ≤ j ≤ |σ| − 1 s.t. σ, j |= φ′ and for every i ≤ l <

j, σ, l |= φ.
– σ, i |= φSφ′ iff there is 0 ≤ j ≤ i s.t. σ, j |= φ′ and for j ≤ l < i, σ, l |= φ.

We write σ |= φ if σ, 0 |= φ. We shall use the standard abbreviations about
the temporal operators (G, F, F−1, . . .) and Boolean operators (∨, ⇒, . . .). We
use the notation Xix = Xjy as an abbreviation for Xi(x = Xj−iy) (when i ≤ j).

The finitary [resp. infinitary] satisfiability problem consists in checking whe-
ther given a formula φ, there is a finite [resp. infinite] model such that σ |= φ.
It is known that finitary satisfiability for LTL can be easily reduced in logspace
to infinitary satisfiability by introducing for instance an additional propositional
variable p and by requiring that pUG¬p holds true. In that way, p holds true at
every state of a prefix and p does not hold on the complement suffix. The same
principle does not apply to reduce finitary satisfiability for CLTL♦ to infini-
tary satisfiability even by introducing additional variables in order to simulate a
propositional variable. This is due to the additional atomic formulae of the form
x = ♦y. That is why we distinguish the two problems in this paper.

We note that a constraint of the form x diff ♦y (“the value of x differs from
some future value of y”) can be expressed in CLTL♦:

x diff ♦y ⇔ (¬(x = Xy)∧X>)∨((x = Xy)∧X(y = Xy)U((y 6= Xy)∧X>))) (1)

With infinite models, the conjunct X> can be deleted. We could also introduce
constraints of the form x = X−iy but this can be expressed in the language
using the equivalence x = X−iy ⇔ X−i> ∧ X−i(y = Xix). Similarly, CLTL♦ can
express whether a variable is a nonce by the formula G¬(x = ♦x). The formula
below states a valid property when x and y are nonces:

(G¬(x = ♦x) ∧ G¬(y = ♦y)) ⇒ G(x = y ⇒ ¬(x = ♦y)).

Other properties witnessing the high expressive power of CLTL♦ can be found
in [LP05, Sect.3] about systems of pebbles evolving in time.

Apart from the above-mentioned problems, we could also consider standard
model-checking problems that can be reduced to the satisfiability problem. In-
deed, we can define a suitable class of automata such that the execution of any
automaton of this class can be encoded into a CLTL♦ formula.

2.2 Known extensions of CLTL♦

In this section, we recall the definition of a few known extensions of CLTL♦

which is useful for future comparisons. The logic CLTL♦ is clearly a fragment
of the logic CLTL↓(N,=) introduced in [DLN07] and restricted to one register.
An equivalent logic of CLTL↓(N,=) is denoted by CLTL↓ in this paper and it is
defined as follows. We consider an additional set of registers REG = {r1, r2, . . .}
and the formulae of CLTL↓ are defined as those of CLTL♦ except that we allow
only atomic formulae of the form r = x where r ∈ REG and x ∈ VAR, and we
add the inductive clause ↓r=x φ. The satisfaction relation is parameterized by a
register assignment ρ : REG → N with σ, i |=ρ↓r=x φ iff σ, i |=ρ[r 7→σ(i)(x)] φ and
σ, i |=ρ r = x iff ρ(r) = σ(i)(x). Consequently, the atomic formula x = ♦y in

CLTL♦ can be naturally encoded in CLTL↓ by ↓r=x XF(r = y) and x = Xiy by
↓r=x Xi(r = y).

We write CLTL↓
(k,k′)(O) to denote the fragment of CLTL↓ restricted to the

temporal operators from O with at most k variables and k′ registers. Following
the notation from [DL06], for α ≥ 0 we write LTL↓

α(∼,O) to denote the fragment

CLTL↓
(1,α)(O) restricted to atomic formulae of the form r = x.

2.3 A decidable fragment of finitary satisfiability

It is shown in [DLN07] that CLTL↓ is strictly more expressive than its freeze-
free fragment. The same argument applies to show that CLTL♦ is strictly more
expressive than its fragment without atomic formulae of the form x = ♦y. Ob-
serve also that CLTL♦ is neither a fragment of the pure-future safety fragment
in [Laz06] (where occurrences of U formulae are never in the scope of an even
number of negations) nor a fragment of the flat fragment of CLTL↓. Unlike
these fragments, CLTL♦ contains past-time operators and negation can be used
without any restriction. Infinitary satisfiability for safety LTL↓

1(∼,X,U) is ex-

pspace-complete [Laz06], for full LTL↓
1(∼,X,U) is Π0

1 -complete and, finitary

and infinitary satisfiability for flat CLTL↓ are pspace-complete. By contrast, in
this paper we show that finitary and infinitary satisfiability for CLTL♦ (with
full past-time temporal operators) are decidable problems. By taking advan-
tage of [DLN07,DL06], it is already possible to establish decidability of finitary
satisfiability for strict fragments of CLTL♦.

Theorem 1. (I) Finitary satisfiability for CLTL♦(X,U) is decidable.
(II) Finitary satisfiability for CLTL♦(X,X−1,F,F−1) is decidable.

In the paper we shall show much stronger results: finitary and infinitary
satisfiability for full CLTL♦ even augmented with MSOL definable temporal op-
erators are decidable. In the rest of the paper, we systematically treat the finitary
and infinitary cases simultaneously. However, we provide the full technical de-
tails for the infinitary case only and we sketch the main ideas for the finitary
case. This latter case cannot be reduced in the obvious way to the infinitary case
but its solution is close to the one for the infinitary case.

3 Automata-based Approach with Symbolic Models

In this section we explain how satisfiability can be solved using symbolic models
which are abtractions of concrete CLTL♦ models. We provide the outline of our
automata-based approach, and consider the technical details in Sects. 4 and 5.

3.1 Symbolic Models

Let φ be a CLTL♦ formula with k variables {x1, . . . xk} and we write l (the “X-
length” of φ) to denote the maximal i such that a term of the form Xix occurs
in φ. In order to define the set of atomic formulae that are helpful to determine
the satisfiability status of φ, we introduce the set of constraints Ωl

k that contains
constraints of the form either Xix = Xjy or Xi(x = ♦y) and their negation with
x, y ∈ {x1, . . . xk} and i, j ∈ {0, . . . , l}. Models are abstracted as sequences of
frames that are defined as maximally consistent subsets of Ωl

k.
An l-frame is a set fr ⊆ Ωl

k that is maximally consistent in that it satisfies
the conditions below:

(F1) For every constraint ϕ ∈ Ωl
k, either ϕ or ¬ϕ belongs to fr but not both.

(F2) For all i ∈ {0, . . . , l} and x ∈ {x1, . . . xk}, Xix = Xix ∈ fr .
(F3) For all i, j ∈ {0, . . . , l} and x, y ∈ {x1, . . . xk}, Xix = Xjy ∈ fr iff Xjy =

Xix ∈ fr .
(F4) For all i, j, j′ ∈ {0, . . . , l} and x, y, z ∈ {x1, . . . , xk}, {X

ix = Xjy,Xjy =
Xj′

z} ⊆ fr implies Xix = Xj′

z ∈ fr .
(F5) For all i, j ∈ {0, . . . , l} and x, y ∈ {x1, . . . xk} such that Xix = Xjy ∈ fr :

– if i = j, then for every z ∈ {x1, . . . , xk} we have Xi(x = ♦z) ∈ fr iff
Xj(y = ♦z) ∈ fr ;

– if i < j then Xi(x = ♦y) ∈ fr , and for z ∈ {x1, . . . , xk}, Xi(x = ♦z) ∈ fr
iff either Xj(y = ♦z) ∈ fr or there exists i < j′ ≤ j such that Xix =
Xj′

z ∈ fr .

Conditions (F2)–(F4) simply encode that equality is an equivalence relation.

For an l-frame fr , x ∈ {x1, . . . , xk} and i ∈ {0, . . . , l}, we define

– the set of future obligations for x at level i in fr as ♦fr (x, i)
def

= {y | Xi(x =
♦y) ∈ fr},

– the equivalence class of x at level-i in fr as [(x, i)]fr
def

= {y | Xix = Xiy ∈ fr}.

An l-frame fr can be represented as an annotated undirected graph Gfr which
has vertices (x, i) for x ∈ {x1, . . . , xk} and i ∈ {0, . . . , l}, and an edge between
(x, i) and (y, j) iff the constraint Xix = Xjy belongs to fr . A vertex (x, i) in the
graph is annoted with an “open” arc labelled by the set of future obligations
♦fr (x, i) for that vertex. Fig. 1 shows an example of a 3-frame over the variables
{x, y, z}. For convenience we avoid showing transitively inferable edges.

1

5

5

1 1

56

6 6

58

8

9 9

2

3

0

6

0

7

0

y, z

y, z

x

y

z

z z

x

y

x

x

y

z
y, z x z

x y

x

y

z
y, z x z

x y

z z

Gfr

σ

Gρ

Fig. 1. Example 3-frame graph, concrete model σ, and its induced 3-frame graph Gρ.

We denote by Frame
l
k the set of such frames built w.r.t. k and l. We say that

a model σ satisfies a frame fr at position i (denoted σ, i |= fr) iff σ, i |= ϕ for
every constraint ϕ in fr .

Since a frame can be viewed as a set of constraints about l + 1 consecutive
positions, for finitary satisfiability we need to add an information about the
possibility to end the model before the end of the current window of length l+1.
This can be done with O(l) bits and then the conditions (F1)–(F5) need to be
updated accordingly in order to take into account this possibility. Note that this
method allows to handle the particular case where there exists a model whose
size is smaller than the X-length of the formula.

Lemma 1. For all models σ with k variables and 0 ≤ i ≤ |σ| − 1, there exists a
unique frame fr ∈ Frame

l
k such that σ, i |= fr .

A pair of l-frames 〈fr , fr ′〉 is said to be one-step consistent
def

⇔

– for all 0 < i, j ≤ l, Xix = Xjy ∈ fr iff Xi−1x = Xj−1y ∈ fr ′,

– for all 0 < i ≤ l, Xi(x = ♦y) ∈ fr iff Xi−1(x = ♦y) ∈ fr ′.

A symbolic model of X-length l is a (finite or infinite) sequence of l-frames ρ
such that for 0 ≤ i < |ρ| − 1, 〈ρ(i), ρ(i + 1)〉 is one-step consistent. We define
the symbolic satisfaction relation ρ, i |=symb φ, for a formula φ of X-length l and

a symbolic model ρ of X-length l, as done for CLTL♦ except that for atomic

formulas ϕ we have: ρ, i |=symb ϕ
def

⇔ ϕ ∈ ρ(i). We say a model σ realizes

a symbolic model ρ (or equivalently that ρ admits a model σ)
def

⇔ for every
0 ≤ i ≤ |σ| − 1, we have σ, i |= ρ(i).

A symbolic model ρ of X-length l can also be represented as an annotated
graph Gρ in a similar manner to l-frames. Thus the vertices of Gρ are of the
form (x, i) with an edge between (x, i) and (y, j) with 0 ≤ j− i ≤ l iff there was
an edge between (x, 0) and (y, j − i) in the frame graph Gρ(i). The annotations
for future obligations are added similarly. Fig. 1 shows the graph representation
of a symbolic model ρ of X-length 3, and a model it admits. By a path p in Gρ

we will mean as usual a (finite or infinite) sequence of vertices v0, v1 . . . in Gρ

such that each vi, vi+1 is connected by an edge in Gρ. We call p a forward path
if each vi+1 is at a level strictly greater than vi.

3.2 Automata for Symbolic Models

In order to check whether a CLTL♦ formula is satisfiable we use Lemma 2 below
based on the approach developed in [DD07].

Lemma 2. A CLTL♦ formula φ of X-length l is satisfiable iff there exists a
symbolic model ρ of X-length l such that ρ |=symb φ and ρ admits a model.

In order to take advantage of Lemma 2, we use the automaton-based approach
from [VW94]. We build an automaton Aφ as the intersection of two automata
Asymb and Asat such that the language recognized by Asymb is the set of symbolic
models satisfying φ and the language recognized by Asat is the set of symbolic
models that are realized by some models.

We define the automaton Asymb by adapting the construction from [VW94]
for LTL. We define cl(φ) the closure of φ as usual, and an atom of φ is a maxi-
mally consistent subset of cl(φ). For the infinitary case, Asymb is the generalized
Büchi automaton (Q,Q0,→, F) such that:

– Q is the set of atoms of φ and Q0 = {At ∈ Q | φ ∈ At , X−1> 6∈ At},

– At
fr
−→ At ′ iff

(atomic constraints) for every atomic formula ϕ in At , ϕ ∈ fr ,
(one step) for every Xψ ∈ cl(φ), Xψ ∈ At iff ψ ∈ At ′, and for every

X−1ψ ∈ cl(φ), ψ ∈ At iff X−1ψ ∈ At ′

– let {ψ1Uφ1, . . . , ψrUφr} be the set of until formulae in cl(φ). We pose F =
{F1, . . . , Fr} where for every i ∈ {1, . . . , r}, Fi = {At ∈ Q : ψiUφi 6∈
At or φi ∈ At}.

For the finitary case, the finite-state automaton Asymb accepting finite words is
defined as above except that F is a set of states At such that no atomic formula

of the form x = ♦y occurs in At and no formula of the form either Xφ or x = Xiy

with i > 0 occurs in At . Moreover, such final states can only be reached when
the frame labelling the last transition contains proper information about the end
of the model.

In the next section, we explain how one can build the automaton Asat that
recognizes the set of satisfiable symbolic models. Since Aφ is the automaton
recognizing the intersection of the languages accepted by Asymb and Asat, the
following result is a direct consequence of Lemma 2.

Theorem 2. A CLTL♦ formula φ is satisfiable iff the language recognized by
Aφ is nonempty.

Note that we separate the temporal logic part and the constraint part by
defining two different automata. This allows to extend the decidability results to
any extension of LTL that induces an ω-regular class of models. We only need
to change the definition of Asymb.

4 Characterization of Satisfiable Symbolic Models

In order to determine whether a symbolic model ρ is “satisfiable” (i.e. it admits a
model), we introduce counters that remember the satisfaction of constraints x =
♦y. If x = ♦y1 ∧ · · · ∧x = ♦yn needs to be satisfied at the current position, then
we shall increment a counter indexed by {y1, . . . , yn} that remembers this set of
obligations. In a finite model, all the obligations need to be fulfilled before the
last position whereas in an infinite model either no more unsatisfied obligations
arise after a point, or they are essentially fulfilled infinitely often. The exact
conditions will be spelt out soon.

4.1 Counting Sequence

For each X ∈ P+({x1, . . . , xk}) (set of non-empty subsets of {x1, . . . , xk}), we
introduce a counter that keeps track of the number of obligations that need to
be satisfied by X. We identify the counters with elements of P+({x1, . . . , xk}).
A counter valuation c is a map c : P+({x1, . . . , xk}) → N. For instance, we
write c({x, y}) to denote the value of the counter {x, y}, which will stand for
the number of obligations to repeat a distinct value in x and y.

We will define a canonical sequence of counter valuations along a sym-
bolic model. We introduce some definitions first. For an l-frame fr and X ∈
P+({x1, . . . , xk}), we define a point of increment for X in fr to be an equiv-
alence class of the form [(x, 0)]fr such that ♦fr (x, 0) = X and (x, 0) is not
connected by a forward edge to a node in fr (i.e. there is no edge between (x, 0)
and (y, j) for any j ∈ {1, . . . l}). A point of decrement for X in fr is defined to be
an equivalence class of the form [(x, l)]fr such that ♦fr (x, l)∪ [(x, l)]fr = X, and
(x, l) is not connected by a backward edge to another node in fr (i.e. there is no
edge between (x, l) and (y, j) for any j ∈ {0, . . . l− 1}). Let u+

fr denote a counter
valuation which records the number of points of increment for each counter X,

in fr . Similarly let u−fr denote the counter valuation which records the number
of points of decrement for each counter X in fr .

Now let ρ be a symbolic model of X-length l. We carry over the notations for
the set of future obligations and the equivalence class for x at level i to symbolic
models as well. Thus ♦ρ(x, i) is equal to ♦ρ(i)(x, 0) and [(x, i)]ρ is [(x, 0)]ρ(i). For
X ∈ P+({x1, . . . , xk}), a point of increment for X in ρ is an equivalence class of
the form [(x, i)]ρ such that [(x, 0)]ρ(i) is a point of increment for X in the frame
ρ(i). Similarly, a point of decrement for X in ρ is an equivalence class of the
form [(x, i)]ρ such that i ≥ l+ 1 and [(x, l)] is a point of decrement for X in the
frame ρ(i− l).

We can now define a canonical counter valuation sequence α along ρ, called
the counting sequence along ρ, which counts the number of “unsatisfied” points
of increments for each counter X. Let +̇ denote the “proper addition” of in-
tegers, defined by n +̇m = max(0, n + m). We define α inductively for each
X ∈ P+({x1, . . . , xk}) and 0 ≤ i < |ρ| as: α(0)(X) = 0; and α(i + 1)(X) =
α(i)(X) +̇ (u+

ρ(i)(X) − u−
ρ(i+1)(X)).

4.2 Sequences for Satisfiable Symbolic Models

We characterize satisfiable symbolic models using their counting sequences.

Lemma 3. A finite symbolic model ρ is satisfiable (i.e. admits a model) iff the
final value of the counting sequence α along ρ has value 0 for each counter X
(i.e. α(|ρ| − 1)(X) = 0) and in the last frame fr of ρ, there are no “unsatis-
fied”obligations – i.e. no node (x, i) in Gfr and variable y ∈ ♦fr(x, i), with no
edge between (x, i) and (y, j) for j > i.

An infinite symbolic model ρ is satisfiable iff the following conditions are
satisfied:

(C1) There does not exist an infinite forward path p in ρ and a counter X, such
that every node in the path has future obligation X, and there is a variable
y in X which is never connected by a forward edge from a node in p (i.e. no
node in p is connected by a forward edge to a node of the form (y, i)).

(C2) In the counting sequence along ρ, each counter X satisfies one of the cond-
tions:

(a) there is a point after which the value of counter X is always zero and
after which we never see a point of increment for X,

(b) infinitely often we see a point of decrement for X of the form [(x, i)] with
♦ρ(x, i) ⊂ X, or,

(c) for each x ∈ X, we infinitely often see a point of decrement for X, which
is connected by a forward path to an x node (i.e a node of the form (x, i)).

In Sect. 5 we show that we can check these conditions on counting sequences
using counter automata with a decidable nonemptiness problem.

5 Decidability

We introduce a class of counter automata with a disjunctive variant of general-
ized Büchi acceptance condition in which, along any run, a zero test is performed
at most once for each counter.

5.1 Simple Counter Automata

A simple counter automaton A is a tuple 〈Σ,C,Q,F , I,→〉 such that

– Σ is a finite alphabet, C is a finite set of counters,
– Q is a finite set of locations, I ⊆ Q is the set of initial locations,
– F = {F0, F1, . . . , FK} for some K ≥ 0 where Fi ⊆ P(Q) for each i = 1 . . .K,
– → is a finite subset of Q× P(C) × Z

C ×Σ ×Q.

Elements of → are also denoted by q
Y,up,a
−−−→ q′ where Y is interpreted as zero

tests on all counters in Y . A configuration 〈q, c〉 is an element of Q × N
C and,

〈q, c〉 → 〈q′, c′〉 iff there is a transition q
Y,up,a
−−−→ q′ in A s.t. for c ∈ Y , c(c) = 0 and

for c ∈ C, c
′(c) = c(c) + up(c). As usual, a run is a sequence of configurations

ruled by the transitions of A. An infinite run is accepting iff there exists a set
F ∈ F such that every set Y ∈ F is visited infinitely often. Elements of Σω

labeling accepting runs define the language accepted by A. In order to accept
finite words, we suppose that F defines a single set of final states and a finite
run is accepting iff it ends at a final state with all the counters equal to zero.

However, we require additional conditions on the control graph of A to be
declared as simple. We require that there is a partition {Q0, . . . , QK} of Q and
corresponding sets of counters C0, C1, . . . , CK with C0 = ∅ such that I ⊆ Q0

and for i ∈ {1, . . . ,K}, a transition from a location in Q0 to a location in Qi

can be fired only if the counters of Ci are equal to zero and all the transitions
from a location in Qi go to another location of Qi. Moreover every transition
from a location of Qi does not modify the value of the counters in Ci. As a
consequence, when we enter in the component made of the locations of Qi the
counters in Ci are equal to zero forever. Finally, for i ∈ {0, . . . ,K}, Fi ⊆ P(Qi).
Let us summarize the conditions:

1. Q = Q0] · · ·]QK and I ⊆ Q0,
2. F = {F0, F1, . . . , FK} where each Fi ⊆ P(Qi),
3. there exist K + 1 sets of counters C0, . . . , CK ⊆ C with C0 = ∅ such that

the transition relation →⊆ Q× P(C) × Z
C ×Σ ×Q verifies the conditions

below: for all i, i′ ∈ {0, . . . ,K}, q ∈ Qi and q′ ∈ Qi′ , the transitions from q

to q′ are of the form q
Y,up,a
−−−→ q′ where

(a) i 6= i′ implies i = 0 and Y = Ci′ , (b) i = i′ implies Y = ∅,
(c) for c ∈ Ci′ , up(c) = 0.

In the sequel we consider simple counter automata with C = P+({x1, . . . , xk}),
K = 2k − 1 and each set Fi contains sets of states reached by decrementing the
counters in Ci. Lemma 4 below states that simplicity implies decidability of the
nonemptiness problem thanks to [Jan90].

Lemma 4. The nonemptiness problem for simple counter automata is decidable.

5.2 Automata recognizing satisfiable counting sequences

Now, we can build a simple counter automaton Al
k recognizing the set of satisfi-

able symbolic models of X-length l. We describe the construction for the infinite
case and the automaton that recognizes finite satisfiable symbolic models can be
defined similarly.

The simple counter automaton Al
k is defined to be the intersection of the

automata A1 and A2 which check conditions (C1) and (C2) respectively. Au-
tomaton A1 is a Büchi automaton and is easy to define. We focus on defining the
counter automaton A2. We define A2 = 〈Σ,C,Q, F, s,→〉, where Σ = Frame

l
k,

C = P+({x1, . . . , xk}), Q = {s}∪ Frame
l
k ∪

⋃
Z⊆C QAZ

, where QAZ
is the set of

states of the automaton AZ which we define below, → is given by

– s
∅,up

0
,fr

−−−−→ fr

– fr
∅,up,fr ′

−−−−→ fr ′

– fr
Z,up,fr ′

−−−−→ sAZ

where up0 is the zero update (i.e. up0(X) = 0 for each X ∈ C), u+
fr (X) ≤

up(X) ≤ u+
fr (X) − u−

fr ′(X) for each X ∈ C, and sAZ
is the start state of au-

tomaton AZ . Moreover, we require in the last rule that for every counter X ∈ Z

(i.e. every counter that is tested to zero) we have up(X) = 0.
The Büchi automaton AZ is given by:

AZ = A2a
Z ∩

⋃

X∈C\Z

(A2b
X ∪ A2c

X) A2c
X =

⋃

x∈X

AX,x

where the automaton A2a
Z accepts symbolic models in which there are no points

of increment for any X in Z; the automaton A2b
X checks that infinitely often

there is a point of decrement for X of the form [(x, i)] such that the set of
future obligations of (x, i) is a strict subset of X; and the automaton AX,x

checks condition C2(c) for X and a variable x ∈ X. The automaton AX,x is
the complement of the Büchi automaton BX,x which accepts symbolic models in
which there is a point after which we never see an x-node reachable by a forward
path from a point of decrement for X. The automaton BX,x has states of the
form (fr , S) where fr is a frame and S is a subset of nodes in fr . We have a
transition from (fr , S) to (fr ′, S′) iff S′ is the set of nodes in fr ′ which are either
a point of decrement for X in fr ′ or are connected by a forward edge to a node
in S in fr ′. The automaton non-deterministically moves to a second copy where
it allows the above transitions only if S′ does not contain a node of the form
(x, i). All states in the second copy are final.

We can easily check that all the properties of simple counter automata are
verified by this construction. For the finite case, Al

k is similar to A2 above, except
that a word is accepted when the run ends with all the counters equal to zero.

Lemma 5. Let ρ be a symbolic model of X-length l. Then ρ is accepted by Al
k

iff ρ is satisfiable.

We are now in position to state the main result of the paper.

Theorem 3. Finitary and infinitary satisfiability for CLTL♦ is decidable.

Proof. Let φ be a CLTL♦ formula over k variables with X-length l. Let Aφ be
the simple counter automaton built as the intersection of Asymb, Al

k and Alc

that accepts sequences in which consecutive frames are one-step consistent. We
can check whether the language accepted by Aφ is non-empty (Lemma 4). Thus,
by Theorem 2, checking the satisfiability of φ is decidable.

According to the acceptance condition of Al
k in the finite case, finitary sat-

isfiability reduces to the reachability problem in Petri nets. ut

Theorems 2 and 3 entail that this decidability result can be extended to any
extension of LTL as soon as the temporal operators as definable in MSOL, see
for instance [GK03].

Corollary 1. Finitary and infinitary satisfiability for CLTL♦ augmented with
MSOL definable temporal operators is decidable.

5.3 A PSPACE fragment of CLTL♦

In this section, we consider the fragment CLTL♦
1 with a unique variable x. The

models are sequences of natural numbers and the only counter in counting se-
quences α is {x} (we identify α(i)({x}) with α(i)). Given a symbolic model ρ over
the alphabet Framel

1 and the counting sequence α along ρ, for every 0 ≤ i < |ρ|,
α(i + 1) = α(i) +̇u+

i − u−i+1 with u+
i , u

−
i+1 ∈ {0, 1}. By Lemma 3, when ρ is

satisfiable, in the counting sequence along ρ either the unique counter remains
equal to zero after a finite number of steps or it is decremented infinitely often.
Moreover, the value of the unique counter in the counting sequence is nicely
bounded unlike in general with strictly more than one variable.

Lemma 6. Let ρ be a symbolic model and α be the counting sequence along ρ.
For 0 ≤ i < |ρ|, α(i) ≤ l.

Boundedness entails the possibility to use automata without counters.

Lemma 7. The set of satisfiable symbolic models over the alphabet Framel
1 can

be recognized by a standard Büchi automaton Al
1 for the infinite case, or by a

finite-state automaton for the finite case.

The automaton Al
1 has an exponential size and can be built in polynomial

space in l. Checking nonemptiness for this automaton can be done in non deter-
ministic logarithmic space which allows to establish Theorem 4 below.

Theorem 4. Finitary and infinitary satisfiability for CLTL♦
1 is pspace-complete.

The models for CLTL♦
1 corresponds to models of LTL↓(∼,X,U). Therefore,

finitary and infinitary satisfiability for LTL↓
1(∼,X,X

−1,U, S) restricted to for-
mulae such that the freeze operator is restricted to subformulae of the form
↓r=x XF(r = x) and ↓r=x Xi(r = x) is decidable in polynomial space (r is the
unique register and x the unique variable).

5.4 Repeating values in the past is still decidable

In this section we explain why we can allow the constraints of the language to
state properties about past repetitions of a value without loosing decidability.

Let CLTL♦,♦−1

be the extension of CLTL♦ with atomic formulae of the form
x = ♦−1y. The satisfaction relation is extended as follows: σ, i |= x = ♦−1y iff
there is j > 0 s.t. x = σ(i − j)(y) and 0 ≤ i − j. Similarly to what is done in
Section 2.1, x diff ♦−1y can be omitted since it can be defined from x = ♦−1y

(a variant of the equivalence (1)).

In order to deal with satisfiability for CLTL♦,♦−1

we need to extend the sym-
bolic representation of models. In addition of the conditions(F1)–(F5) defined
in Sect. 3.1, a frame fr has to verify the following property (the finitary case
admits a similar update):

(F6) for all i, j ∈ {0, . . . , l} and x, y ∈ {x1, . . . xk}, if Xix = Xjy is in fr then
– if i = j, then for every z ∈ {x1, . . . , xk} we have Xi(x = ♦−1z) ∈ fr iff

Xj(y = ♦−1z) ∈ fr (we extend the notion of frames);
– if i > j then Xi(x = ♦−1y) ∈ fr , and for every z ∈ {x1, . . . , xk}, Xi(x =

♦−1z) ∈ fr iff either Xj(y = ♦−1z) ∈ fr or there exists i > j′ ≥ j such
that Xix = Xj′

z is in fr .

We pose ♦
−
fr (X

ix)
def

= {y | Xi(x = ♦−y) ∈ fr}. Since we need to deal with past

obligations, a counter is a pair 〈Xp, Xf 〉 in P+({x1, . . . , xk})×P+({x1, . . . , xk})
where Xp is for past obligations and Xf for future obligations. We update the
notion of counter valuations accordingly. A value n for 〈Xp, Xf 〉 is the number
of values that occurred in a past state of every variable of Xp and that have to
be repeated in a future state of every variable in Xf .

We extend some earlier definitions. For an l-frame fr and counter 〈Xp, Xf 〉,
we define a point of increment for 〈Xp, Xf 〉 in fr to be an equivalence class of
the form [(x, 0)]fr such that ♦fr (x, 0) = Xf , (x, 0) is not connected by a forward
edge to a node in fr and [(x, 0)]fr ∪ ♦

−1
fr (x, 0) = Xp. A point of decrement for

〈Xp, Xf 〉 in fr is defined to be an equivalence class of the form [(x, l)]fr such that
♦fr (x, l) ∪ [(x, l)]fr = Xf , (x, l) is not connected by a backward edge to another
node in fr and ♦−1(x, l) = Xp. Let u+

fr denote a counter valuation which records
the number of points of increment for each counter 〈Xp, Xf 〉, in fr . Similarly let
u−fr denote the counter valuation which records the number of points of decrement
for each counter 〈Xp, Xf 〉 in fr . We can now define a canonical counter valuation
sequence α along ρ, called the counting sequence along ρ, which counts the
number of “unsatisfied” points of increments for each counter 〈Xp, Xf 〉 with
Xp 6= ∅. We define α inductively: α(0)(〈Xp, Xf 〉) = 0 and for 0 ≤ i < |ρ|,

α(i+1)(〈Xp, Xf 〉) = α(i)(〈Xp, Xf 〉)+(u+
ρ(i)(〈Xp, Xf 〉)−u

−
ρ(i+1)(〈Xp, Xf 〉)). Note

that decrementations are this time compulsory and we allow α(i)(〈Xp, Xf 〉) to be
negative (but not in the acceptance condition). Though we need more counters,
dealing with past repeating values, does not introduce real complications. This
is analogous to the passage from LTL to LTL with past-time operators since
past is finite and information about past can be accumulated smoothly.

Lemma 8. A symbolic model ρ for the logic CLTL♦,♦−1

is satisfiable iff the
counting sequence along ρ satisfies the conditions from Lemma 3 for the future
part of the counters and for 0 ≤ i < |ρ|, α(i)(〈Xp, Xf 〉) ≥ 0.

The proof is similar to the proof of Lemma 3. We just need more registers to
store the different values that have to be repeated.

As a consequence, we can easily update the construction of Aφ in order to
deal with past repeating values. The definition of the automata Asymb and Al

k are
just extended by considering the new definition for frames. It is also important to
observe that the automaton Aφ obtained by synchronization of these automata
still belongs to the class of simple counter automata and the decidability result

also holds for CLTL♦,♦−1

satisfiability problem.

Theorem 5. Finitary and infinitary satisfiability for CLTL♦,♦−1

[resp. CLTL♦,♦−1

1] is decidable [resp. pspace-complete].

6 Concluding Remarks

We have shown that satisfiability for CLTL♦ with operators in {X,X−1, S,U}
is decidable by reduction into the verification of fairness properties in Petri
nets [Jan90]. The proof is uniform for the finitary and infinitary cases and it
can be extended to atomic constraints of the form x = ♦−1y and to any set
of MSOL definable temporal operators. Moreover, satisfiability for CLTL♦ re-
stricted to one variable is shown pspace-complete. Hence, we have defined and
studied a well-designed decidable fragment of LTL with the freeze quantifier
answering some question from [WZ00] and circumventing some undecidability
results from [DL06]. Finally, as done also in [DL06,Laz06,BMS+06], we show
relationships between fragments of LTL with freeze and counter automata.

The main question left open by our work is the complexity of satisfiability
for CLTL♦ and more precisely we do not know whether CLTL♦ satisfiability has
elementary complexity. Similarly, are there natural fragments of CLTL♦ that
are of lower complexity, for instance the one involved in Theorem 1? Another
promising extension consists in considering other concrete domains as 〈R, <,=〉
and to allow atomic formulae of the form x < ♦y. The decidability status of
such a variant is still open.

Acknowledgements: We are grateful to Petr Jančar (TU Ostrava) for
pointing us to [Jan90] in order to solve the nonemptiness problem for simple
counter automata and for suggesting the proof of Lemma 4 and Ranko Lazić (U.
of Warwick) for remarks about a preliminary version.

References

[ABM01] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characterization,
interpolation and complexity. JSL, 66(3):977–1010, 2001.

[AH94] R. Alur and Th. Henzinger. A really temporal logic. JACM, 41(1):181–204,
1994.

[BMS+06] M. Bojańczyk, A. Muscholl, Th. Schwentick, L. Segoufin, and C. David.
Two-variable logic on words with data. In LICS’06, pages 7–16. IEEE,
2006.

[DD07] S. Demri and D. D’Souza. An automata-theoretic approach to constraint
LTL. I & C, 205(3):380–415, 2007.

[DDG07] S. Demri, D. D’Souza, and R. Gascon. A decidable temporal logic of repeat-
ing values. Technical report, LSV, 2007.

[DL06] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata.
In LICS, pages 17–26. IEEE, 2006.

[DLN07] S. Demri, R. Lazić, and D. Nowak. On the freeze quantifier in constraint
LTL: decidability and complexity. I & C, 205(1):2–24, 2007.

[Esp94] J. Esparza. On the decidability of model checking for several µ-calculi and
Petri nets. In CAAP’94, volume 787 of LNCS, pages 115–129. Springer,
1994.

[Fit02] M. Fitting. Modal logic between propositional and first-order. JLC,
12(6):1017–1026, 2002.

[GK03] P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable
temporal logics are in PSPACE. In CONCUR’03, volume 2761 of LNCS,
pages 222–236. Springer, 2003.

[Gor96] V. Goranko. Hierarchies of modal and temporal logics with references point-
ers. Journal of Logic, Language, and Information, 5:1–24, 1996.

[Hen90] Th. Henzinger. Half-order modal logic: how to prove real-time properties.
In PODC’90, pages 281–296. ACM, 1990.

[HR89] R.R. Howell and L.E. Rosier. Problems concerning fairness and temporal
logic for conflict-free Petri nets. TCS, 64:305–329, 1989.

[Jan90] P. Jančar. Decidability of a temporal logic problem for Petri nets. TCS,
74(1):71–93, 1990.

[KV06] O. Kupferman and M. Vardi. Memoryful Branching-Time Logic. In LICS’06,
pages 265–274. IEEE, 2006.

[Laz06] R. Lazić. Safely freezing LTL. In FST&TCS’06, volume 4337, pages 381–
392. LNCS, 2006.

[LMS02] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with for-
gettable past. In LICS’02, pages 383–392. IEEE, 2002.

[LP05] A. Lisitsa and I. Potapov. Temporal logic with predicate λ-abstraction. In
TIME’05, pages 147–155. IEEE, 2005.

[Rab06] A. Rabinovich. Decidability and expressive power of real time logics. In
FORMATS’06, volume 4202 of LNCS, page 32. Springer, 2006. Invited talk.

[Seg06] L. Segoufin. Automata and logics for words and trees over an infinite alpha-
bet. In CSL’06, volume 4207 of LNCS, pages 41–57. Springer, 2006.

[tCF05] B. ten Cate and M. Franceschet. On the complexity of hybrid logics with
binders. In CSL’05, volume 3634 of LNCS, pages 339–354. Springer, 2005.

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations. I & C,
115:1–37, 1994.

[WZ00] F. Wolter and M. Zakharyaschev. Spatio-temporal representation and rea-
soning based on RCC-8. In KR’00, pages 3–14. Morgan Kaufmann, 2000.

