
Counter-free input-determined timed automata∗

Fabrice Chevalier† Deepak D’Souza‡ Pavithra Prabhakar§

Abstract

We identify a class of timed automata, which we call counter-free input-determined
automata, which characterize the class of timed languages definable by several
timed temporal logics in the literature, includingMTL. We make use of this charac-
terization to show thatMTL+Past satisfies an “ultimate stability” property with re-
spect to periodic sequences of timed words. Our results holdfor both the pointwise
and continuous semantics. Along the way we generalize the result of McNaughton-
Papert to show a counter-free automata characterization ofFO-definable finitely
varying functions.

1 Introduction

A number of classes of timed automata based on “input-determined” distance operators
have been proposed in the literature. These include the event-recording automata of
[AFH94, HRS98], which make use of the operators⊳a and⊲a (which measure the dis-
tance to the last and nexta’s respectively), state-clock automata [RS99], and eventual
timed automata [DM05, CDP06], which make use of the “eventual operator”3a in-
spired by Metric Temporal Logic (MTL) [Koy90, AFH96, OW05]. In [DT04, CDP06]
these operators were abstracted into a general notion of an input-determined operator,
and the corresponding classes of timed automata called input-determined automata or
IDA’s (parameterized by a set of input-determined operators) were shown to have ro-
bust logical properties, including a monadic second-orderlogic characterization, and
expressively complete (with respect to the first-order fragment of the corresponding
MSO logics) timed temporal logics based on these operators. However, an important
link that remained unexplored was a characterization of theclass of automata which
correspond to these temporal logics, along the lines of the classical characterization
via counter-free automata for discrete temporal logic, which follows from the work of
Kamp and McNaughton-Papert [Kam68, MP71].

In this paper our aim is to fill this gap. We identify a class of counter-free IDA’s
(again parameterized by a set of input-determined operators) that precisely characterize
the class of timed languages definable by the timed temporal logics based on these
operators. Our class of counter-free IDA’s comprise “proper” IDA’s (which are in a
sense a determinized form of IDA’s) whose underlying graphshave no counters in the
classical sense. Our results hold for both the “pointwise” and “continuous” semantics
for timed formalisms.

∗This work was partly supported by P2R Timed-DISCOVERI.
†LSV, ENS de Cachan, Francefabrice.chevalier@lsv.ens-cachan.fr
‡CSA, IISc, Bangalore, Indiadeepakd@csa.iisc.ernet.in
§Dept. of Comp. Sci., UIUC, USApprabha2@uiuc.edu

1

For the pointwise semantics, we can simply factor through the classical results of
Kamp and McNaughton-Papert, and the translations set up in [DT04]. For the continu-
ous case we first prove an analogue of the McNaughton-Papert result for finitely vary-
ing functions, by characterizing the first-order definable languages of finitely-varying
functions in terms of a counter-free fragment of a class of automata we callST-NFA’s.
Once we have this result, we can essentially factor through the translations for contin-
uous time set up in [CDP06].

We emphasize that this general result gives us automata characterizations for sev-
eral of the timed logics proposed in the literature, including EventClockTL [HRS98],
Metric Interval Temporal Logic (MITL) [AFH96], andMTL [AFH96, OW05], for both
the pointwise and continuous semantics. Among other applications, such characteriza-
tions can be useful in arguing expressiveness results for these logics.

In the final part of this paper we make use of this characterization to prove a prop-
erty of timed languages definable byMTLc+Past, namely that they must satisfy an
“ultimate stability” property with respect to a periodic sequence of timed words. Thus,
given a periodic sequence of finite timed words of the formuviw, the truth of an
MTLc+Past formula at any real time point, must eventually stabilize (i.e. become al-
ways true, or always false) along the models in the sequence.This is a stronger result
than a property forMTL proved in [PD06], in that it holds forMTL with past operators,
and furthermore does not depend on the “duration” of the timed wordv in the periodic
sequence.

In the sequel we concentrate on the continuous semantics. The details for the point-
wise semantics and other arguments not included here for space reasons, can be found
in the technical report [CDP07].

2 Preliminaries

For an alphabetA, we useA∗ to denote the set of finite words overA. For a wordw
in A∗, we use|w| to denote its length. The set of non-negative reals and rationals will
be denoted byR≥0 andQ≥0 respectively. We will deal with intervals of non-negative
reals, i.e. convex subsets ofR≥0, and denote byIR≥0

andIQ≥0
the set of such intervals

with end-points inR≥0 ∪ {∞} andQ≥0 ∪ {∞} respectively. Two intervalsI andJ
will be calledadjacentif I ∩ J = ∅ andI ∪ J is an interval.

Let A be an alphabet and letf : [0, r] → A be a function, wherer ∈ R≥0. We
usedur(f) to denote the duration off , which in this case isr. A point t ∈ (0, r) is
a point ofcontinuityof f if there existsǫ > 0 such thatf is constant in the interval
(t − ǫ, t + ǫ). All other points in[0, r] are points ofdiscontinuityof f . We sayf is
finitely varyingif it has only a finite number of discontinuities. We denote byFVF (A)
the set of all finitely varying functions overA.

An interval representationfor a finitely varying functionf : [0, r] → A is a se-
quence of the form(a0, I0) · · · (an, In), with ai ∈ A andIi ∈ IR≥0

, satisfying the
conditions that the union of the intervals is[0, r], eachIi andIi+1 are adjacent, and
for eachi, f is constant and equal toai in the intervalIi. We can obtain acanonical
interval representation forf by putting each point of discontinuity in a singular interval
by itself. Thus the above interval representation forf is canonical ifn is even, for each
eveni Ii is singular (i.e. of the form[t, t]), and for no eveni such that0 < i < n is
ai−1 = ai = ai+1.

A canonical interval representation for a function gives usa canonical way of “un-
timing” the function: thus if(a0, I0) · · · (a2n, I2n) is the canonical interval representa-

2

tion for a functionf , then we defineuntiming(f) to be the stringa0 · · · a2n inA∗. The
untiming thus captures explicitly the value of the functionat its points of discontinuity
and the open intervals between them. Note that strings whichrepresent the untiming of
a function will always be of odd length and for no even position i will the letters at po-
sitionsi−1, i, andi+1 be the same. We call such wordscanonical. A canonical word
w can be “timed” to get a function in a natural way: thus a functionf is in timing(w)
if untiming(f) = w. We extend the definition oftiming anduntiming to languages
of functions and words in the expected way.

We now turn to some notions regarding classical automata anda variant we intro-
duce. Recall that a non-deterministic finite state automaton (NFA) over an alphabetA
is a structureA = (Q, s, δ, F), whereQ is a finite set of states,s is the initial state,
δ ⊆ Q×A×Q is the transition relation, andF ⊆ Q is the set of final states. A run of
A on a wordw = a0 · · · an ∈ A∗ is a sequence of statesq0, . . . , qn+1 such thatq0 = s,
and(qi, ai, qi+1) ∈ δ for eachi ≤ n. The run is accepting ifqn+1 ∈ F . The symbolic
language accepted byA, denotedLsym(A), is the set of words inA∗ over whichA has
an accepting run. Languages accepted byNFA’s are calledregular languages. We say
theNFA A is deterministic(and call it aDFA) if the transition relationδ is a function
fromQ×A toQ. A well-known fact is that every regular languageL has a unique (up
to isomorphism) minimal stateDFA accepting it, which we refer to asAL.

A counter in an NFA A is a sequence of distinct statesq0, . . . , qn with n ≥ 1,
along with a wordu ∈ A∗, such that there is a path labeledu in A from qi to qi+1 (for
eachi ∈ {0, . . . , n − 1}) and fromqn to q0. An NFA is said to becounter-freeif it
does not contain a counter. A regular language is said to becounter-freeif there exists
a counter-freeNFA for it. We will call a sequence of words inA∗ 〈wi〉 = w0, w1, · · ·
periodic if there exist stringsu, v, w in A∗ such thatwi = uviw for eachi. We say a
languageL ⊆ A∗ is ultimately stable(with respect to periodic sequences of words) if
for each periodic sequence〈wi〉 there exists ak ≥ 0, such that for alli ≥ k, wi ∈ L or
for all i ≥ k, wi 6∈ L.

Proposition 2.1 LetL be a regular language over an alphabetA. Then the following
are equivalent: (1)L is counter-free, (2)AL is counter-free, (3)L is ultimately stable
with respect to periodic sequences of words. 2

Using the above proposition, it follows that counter-free regular languages are
closed under the boolean operations of union, intersectionand complement.

We now define a variant ofNFA’s calledstate-transition-labeledNFA’s orST-NFA′s
for short, which are convenient for generating finitely varying functions. AnST-NFA
overA is a structureA = (Q, s, δ, F, l) similar to anNFA overA, except thatl :
Q −→ A labels states with letters fromA. The ST-NFA A accepts strings of the
form A(AA)∗. A run of A on a stringw = a0a1 · · · a2n in A(AA)∗, is a sequence
of statesq0, . . . , qn+1 satisfyingq0 = s, (qi, a2i, qi+1) ∈ δ for i ∈ {0, · · · , n} and
l(qi) = a2i−1 for eachi ∈ {1, . . . , n}; it is accepting ifqn+1 ∈ F . We defineLsym(A)
to be the set of stringsw ∈ A∗ on whichA has an accepting run.

An ST-NFA A also generates functions in a natural way: we begin by takinga
transition emanating from the start state, emitting its label, and then spend time at the
resulting state emitting its label all the while, before taking a transition again; and so
on. The language of finitely-varying functions defined by anST-NFA A is defined
to betiming(Lsym(A)), and notedF (A). For convenience we will stick tocanoni-
cal ST-NFA’s which areST-NFA′s in which we never have ana-labelled transition

3

between ana-labelled source and target state, for anya ∈ A. It is not difficult to see
that anyST-NFA can be converted to a canonical one whose function language is the
same. We note that for a canonicalST-NFA A, untiming(F (A)) = Lsym(A).

We now define the counter-free version ofST-NFA’s. A counter in anST-NFA is
similar to one in anNFA, except that by the “label” of a path in the automaton we mean
the sequence of alternating state and transition labels along the path. Thus the label of
the pathq0

a0→ q1
a1→ · · · qn

an→ qn+1 is l(q0)a0l(q1)a1 · · · l(qn)an. We note that
a counter-freeST-NFA can define a language (e.g. the single state, single transition
ST-NFA over {a} which defines the languagea(aa)∗) which is not counter-free in
the classical sense. However, if we considerST-NFA’s over apartitionedalphabet,
where the alphabetA is partitioned intoA1 andA2 which label transitions and states
respectively, then we can show that:

Proposition 2.2 Let(A1, A2) be a partitioned alphabet. A regular subset ofA1(A2A1)
∗

is counter-free iff there exists a counter-freeST-NFA over(A1, A2) accepting it. 2

Finally, by going over to an alternating alphabet (say by renaming transition labels)
using the closure properties of classical and counter-freelanguages, and then coming
back, we can verify that:

Proposition 2.3 Each of the classes of function languages definable byST-NFA’s and
counter-freeST-NFA’s over an alphabetA are closed under boolean operations.2

3 Counter-free continuous input-determined automata

We begin with some notation. We define a timed wordσ over an alphabetΣ to be
an element of(Σ × R≥0)

∗, such thatσ = (a0, t0)(a1, t1) · · · (an, tn) andt0 < t1 <
· · · < tn. We writedur(σ) to denote the duration ofσ, i.e. tn above. We denote the
set of timed words overΣ to beTΣ∗. Given timed wordsσ = (a0, t0) · · · (an, tn)
andσ′ = (a′0, t

′
0) · · · (a

′
k, t

′
k) with t′0 > 0, we define their concatenationσ · σ′ in the

standard way to be(a0, t0) · · · (an, tn)(a
′
0, tn + t′0) · · · (a

′
k, tn + t′k).

We define aninput-determined operator∆ over an alphabetΣ as a partial function
from (TΣ∗×R≥0) to 2R≥0 , which is defined for all pairs(σ, t), wheret ∈ [0, dur(σ)].
Thus an input-determined operator identifies a set of “distances” for a given timed word
and a time point in it. Given a set of input-determined operatorsOp, we define the set
of guards overOp, denoted byG(Op), inductively asg ::= ⊤ |∆I | ¬g | g ∨ g | g ∧ g,
where∆ ∈ Op andI ∈ IQ≥0

. Given a timed wordσ, we define the satisfiability
of a guardg at time t ∈ [0, dur(σ)], denotedσ, t |= g, as follows: σ, t |= ∆I iff
∆(σ, t) ∩ I 6= ∅, with boolean operators treated in the expected way.

For example, the operator∆Q which maps(σ, t) to {1} if t is rational and to{0}
otherwise, is an input-determined operator. Other examples include the eventual oper-
ator3a, inspired byMTL, which maps(σ, t) to the set of distancesd such that ana
occurs at timet+ d in σ; and the event-recording operator⊳a which maps(σ, t) to the
(empty or singleton) set of distances to the last occurrenceof the eventa before timet.

We call an input-determined operator∆ over Σ finitely varying if for each I ∈
IQ≥0

, and eachσ ∈ TΣ∗, the characteristic functionfσ∆I : [0, dur(σ)] → {0, 1} of
∆I , defined asfσ∆I (t) is 1 if σ, t |= ∆I , and0 otherwise, is finitely varying. Of the
example operators above,3a and⊳a are finitely varying, while∆Q is not.

4

Let Σ be an alphabet andOp be a set of input determined operators overΣ. We call
(Γ1,Γ2) asymbolic alphabetover(Σ,Op), if Γ1 is a finite subset of(Σ∪{ǫ})×G(Op)
andΓ2 is a finite subset ofG(Op). We define the set of timed words overΣ associated
with a functionf in FVF (Γ1 ∪ Γ2), denotedtw(f), as follows. Ifuntiming(f) 6∈
Γ1(Γ2Γ1)

∗, thentw(f) = ∅. Otherwise, a timed wordσ = (a0, t0) · · · (an, tn) is in
tw(f), provided for allt ∈ [0, dur(f)],

• If f(t) = (a, g), for somea ∈ Σ andg ∈ G(Op), thenσ, t |= g, and there exists
i in {0, · · · , n}, with ti = t andai = a.

• If f(t) = (ǫ, g) or g, for someg ∈ G(Op), thenσ, t |= g, and there does not
existi in {0, · · · , n} with ti = t.

Note that for anyf , tw(f) is either empty or a singleton set. We extend the definition of
tw to sets of functions, as the union of the timed words corresponding to each function
in the set.

Let Σ be an alphabet andOp be a set of input-determined operators based on
Σ. A Continuous Input Determined Automaton(CIDA) A over (Σ,Op) is simply
anST-NFA over a symbolic alphabet(Γ1,Γ2) based on(Σ,Op). As anST-NFA A
defines a language of functionsF (A). We are however more interested in the timed
language it accepts, denotedL(A), and defined to betw(F (A)).

Here is a concrete example of a
CIDA over the set of “eventual op-
erators” Op = {3a | a ∈ Σ}.
The diagram shows aCIDA over
({a, b},Op) which recognizes the
languageLni (for “no insertions”),
which consists of timed words in
which between any two consecu-
tive a’s, there is no time point from
which there is ana or a b at a dis-
tance of one time unit in the future.

(a
,⊤

)
¬(3a ∈ [1, 1] ∨ 3b ∈ [1, 1])

(a, ⊤)
⊤

⊤

(ǫ, ⊤), (b,⊤) (a, ⊤)

(b,⊤
)

(a
,⊤

)

We now defineproperCIDA’s which are a time-deterministic form ofCIDA’s, and
which we will use to define our counter-freeCIDA’s. LetG be a finite set of atomic
guards overOp. We call (Γ1,Γ2) the proper symbolic alphabet over(Σ,Op) based
onG, if Γ1 = (Σ ∪ {ǫ}) × 2G andΓ2 = 2G. We interpreth ⊆ G as a guard which
specifies precisely the guards inG that are true. Thush is interpreted as the guard∧
g∈h g ∧

∧
g∈G−h ¬g.

We define aproperCIDA over(Σ,Op) to be anST-NFA over a proper symbolic
alphabet based on(Σ,Op). The symbolic, function, and timed languages defined by
a properCIDA are defined similarly toCIDA’s. We call a wordγ over a symbolic
alphabet(Γ1,Γ2) fully canonical, if γ ∈ Γ1(Γ2Γ1)

∗ and no subword ofγ is of the
form g · (ǫ, g) · g. We call a properCIDA fully canonical if its symbolic language
consists of fully canonical proper words. The class of languages defined byCIDA’s
and fully canonical properCIDA’s coincide:

Lemma 3.1 ([CDP06]) CIDA’s over(Σ,Op) and fully canonical properCIDA’s over
(Σ,Op) define the same class of timed languages. 2

The class of counter-freeCIDA’s we are interested in this paper is the class of
counter-freeCIDA’s over (Σ,Op), is the class of fully canonical properCIDA’s

5

over (Σ,Op) whose underlyingST-NFA is counter-free. We denote this class by
CFCIDA(Σ,Op).
As an example, letΣ = {a}, Op =

{3a} and G = {3
[1,1]
a }. The

CFCIDA over (Σ,Op) alongside rec-
ognizes timed words comprising ex-
actly onea, which occurs in the inter-
val [1, 2]. In the diagram,g1 = {3

[1,2]
a }

andg2 = ∅.

g2g1

g1

g2

(ǫ, g1)

(ǫ, g1)

(a, g2)

(ǫ, g1)

4 Counter-freeST-NFA’s and FO-definable functions

In this section we show that over a partitioned alphabet(A1, A2), the class of first-
order definable languages of finitely-varying functions (for a natural FO logic we will
introduce soon) is precisely the class of function languages defined by counter-free
ST-NFA’s over(A1, A2).

For an alphabetA, the syntax of the first order logicFOc(A), is given by:

ϕ ::= Qa(x) |x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ,

wherea ∈ A, andx andy are variables.
We interpret a formulaϕ of the logic over a finitely varying functionf in FVF (A),

along with an interpretationI with respect tof , which assigns to each variable a value
in [0, dur(f)]. For an interpretationI, we use the notationI[t/x] to denote the inter-
pretation which sendsx to t and agrees withI on all other variables. Given a formula
ϕ ∈ FOc(A), f ∈ FVF (A), and an interpretationI with respect tof to the variables
in ϕ, the satisfaction relationf, I |= ϕ, is defined inductively (with boolean operators
handled in the usual way) as:

f, I |= Qa(x) iff f(I(x)) = a, where a ∈ A.
f, I |= x < y iff I(x) < I(y).
f, I |= ∃xϕ iff ∃t ∈ [0, dur(f)] : f, I[t/x] |= ϕ.

For a sentenceϕ (a formula without free variables) inFOc(A), the interpretation
does not play any role, and we set the language of functions defined byϕ to beF (ϕ) =
{f ∈ FVF (A) | f |= ϕ}.

As an example, the formulaϕcont = ∃y∃z(y < x∧x < z∧
∨
a∈A ∀u(y < u∧u <

z ⇒ Qa(u) ∧ Qa(x))) asserts that the pointx is a point of continuity. As another
example, for the partitioned symbolic alphabet(Γ1,Γ2) based on some(Σ,Op), the
FOc(Γ1 ∪ Γ2) formula ϕfc = ∀x(ϕdisc(x) ⇒ ¬(

∨
(ǫ,g)∈Γ1

Q(ǫ,g)(x) ∧ ∃y∃z(y <

x∧x < z∧∀u(u 6= x∧y < u∧u < z ⇒ Qg(u))))), (whereϕdisc = ¬ϕcont) asserts
that the untiming of the function is fully canonical.

For a partitioned alphabet(A1, A2) we call a finitely varying functionf in FVF (A1∪
A2) alternatingif untiming(f) ∈ A1(A2A1)

∗ (thus the discontinuities are labelled by
symbols inA1 and continuities by labels inA2). Let alt-FVF (A1, A2) denote the
class of alternating finitely varying functions over(A1, A2).

Theorem 4.1 Let(A1, A2) be a partitioned alphabet withA = A1∪A2. Then the class
of FOc(A)-definable languages of alternating finitely-varying functions over(A1, A2)
is precisely the class of function languages definable by counter-freeST-NFA’s over
(A1, A2).

6

The rest of this section is devoted to a proof of this theorem.We recall briefly
the logicLTL and its two interpretations, one over discrete words and theother over
functions. The syntax ofLTL(A) is given by:

θ ::= a | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),

wherea ∈ A. The logic is interpreted over words inA∗, with the following semantics.
Given a wordw = a0 · · · an in A∗ and a positioni ∈ {0, . . . , n}, we sayw, i |= a iff
ai = a; andw, i |= θUη iff there existsj such thati < j ≤ n, w, j |= η and for allk
such thati < k < j, w, k |= θ. The “since” operatorS is defined in a symmetric way
to U in the past, and the boolean operators in the usual way. We denote byLsym(θ)
the set{w ∈ A∗ | w, 0 |= θ}.

The logicLTL can also be interpreted over functions as done in [Kam68]. Here we
restrict the models to finitely-varying functions inFVF (A), and we denote this logic
by LTLc(A). Given a functionf ∈ FVF (A), t ∈ [0, dur(f)] andθ ∈ LTLc(A), the
satisfaction relationf, t |= θ is defined as follows:

f, t |= a iff f(t) = a.
f, t |= θUη iff ∃t′ : t < t′ ≤ dur(f), f, t′ |= η, and ∀t′′ : t < t′′ < t′, f, t′′ |= θ.
f, t |= θSη iff ∃t′ : 0 ≤ t′ < t, f, t′ |= η, ∀t′′ : t′ < t′′ < t, f, t′′ |= θ.

The boolean operators are interpreted in the expected way. We setF (θ) = {f ∈
FVF (A) | f, 0 |= θ}. As an example, theLTLc(A) formulasθcont =

∨
a∈A(a ∧

(aSa) ∧ (aUa)) andθdisc = ¬θcont characterize the points of continuity and discon-
tinuity respectively in a function overA.

Returning now to the
proof of Theorem 4.1, the
route we follow is given
schematically in the figure
below.

Kamp (e)

(a)

(b)

McN−P+Kamp (c) (d)

FOc(A)CF-ST-NFA(A1, A2)

CF-NFA(A) LTLc(A)

LTL(A)

ϕAϕ

A

B

θ

ϕA

bθ

Step (a): Let ϕ be a sentence inFOc(A). We show how to construct a counter-free
ST-NFA Aϕ overA, such thatF (Aϕ) = F (ϕ).

The proof proceeds in a similar manner to the one in [CDP06]. We will repre-
sent models of formulas with free variables in them, as functions with the interpre-
tations built into them. We assume an ordering on the countable set of first-order
variables given byx1, x2, · · · . For a formulaϕ with free variables amongX =
{xi1 , · · · , xim} (in order), we represent a functionf and an interpretationI as a func-
tion fXI : [0, dur(f)] → A × {0, 1}m given byfXI (t) = (f(t), b1, · · · , bm), where
bk = 1 iff I(xik) = t. Thus for a formulaϕ with free variables inX we have a notion
of X-models ofϕ.

Proposition 4.1 Let ϕ be anFOc(A) formula with free variablesX and letA be a
counter-freeST-NFA accepting theX-models ofϕ. Then for any set of variablesX ′

which containsX, we can construct a counter-freeST-NFA A′ accepting precisely
theX ′-models ofϕ. 2

7

Lemma 4.1 Let ϕ be anFOc(A) formula and letX be the set of free variables in
it. Then we can construct a counter-freeST-NFA AX

ϕ which accepts precisely the
X-models ofϕ.

Proof The idea of the proof is similar to the one in [CDP06], except that now we
need to also ensure that the automaton we obtain is counter-free. For a set of variables
Y , let AY

valid denote theST-NFA which accepts all “valid”Y -models. It is easy to
construct thisST-NFA and to check that it is counter-free. We construct the counter-
freeST-NFA AX

ϕ by induction on the structure ofϕ.

1. ϕ = Qa(x): The automatonA{x}
ϕ

is: (−, 0) (−, 0)

(−, 0) (−, 0)

(a, 1)

2. ϕ = x < y: The automa-
tonA{x,y}

ϕ (assumingx oc-
curs beforey in the vari-
able ordering) is:

(−, 0, 0) (−, 0, 0) (−, 0, 0)

(−, 0, 0) (−, 0, 0) (−, 0, 0)

(−, 1, 0) (−, 0, 1)

3. ϕ = ¬ψ: Let AX
ψ be the automaton forψ, whereX is the set of free variables

in ψ. ThenAX
ϕ is the intersection ofAX

valid with the counter-freeST-NFA that
recognizes the complement of the function language ofAX

ψ (cf. Prop 2.3).

4. ϕ = ψ ∨ ν: Let AX′

ψ be the counter-freeST-NFA for ψ, whereX ′ is the set of

free variables inψ, and letAX′′

ν be the counter-freeST-NFA for ν, whereX ′′

is the set of free variables inν. Let X = X ′ ∪ X ′′. By Prop. 4.1 we obtain
ST-NFA’s AX

ψ andAX
ν . ThenAX

ϕ is the union ofAX
ψ andAX

ν .

5. ϕ = ∃xψ: LetX ′ be the set of free variables inψ so thatX = X ′ − {x}. Let
AX′

ψ be a counter-freeST-NFA for ψ. Without loss of generality we can assume

AX′

ψ has no “useless” states (i.e. those which cannot be reached from the start
state or cannot reach a final state). Now we simply project away the component
corresponding tox in the symbols on the transitions ofAX′

ψ to obtain the re-
quired counter-freeST-NFA AX

ϕ . It is easy to see thatAX
ϕ must be counter-free,

since if it had a counter, the counter must contain a transition with a 1 in the
x-component in the originalST-NFA AX′

ψ . But then by our assumption on the

structure ofAX′

ψ , it would accept non-validX ′ models having multiple 1’s in the
x-component.

2

From the above lemma it now follows that for a sentenceϕ ∈ FOc(A) we have a
counter-freeST-NFA Aϕ such thatF (ϕ) = F (Aϕ). In particular, if we are interested
in the alternating function language ofϕ, we can conjunctϕ with theFOc(A) formula
ϕalt = ∀x((ϕdisc ⇒

∨
a∈A1

Qa(x))∧(ϕcont ⇒
∨
a∈A2

Qa(x))) which forces models
to be alternating. The resultingST-NFA will also be alternating.

Steps (b) to (d) prove that we can go from an arbitrary counter-free ST-NFA A
over the partitioned alphabet(A1, A2) to an equivalentFOc(A)-sentenceϕA.

8

Step (b): By Prop. 2.2, for a counter-freeST-NFA A over (A1, A2) we can give a
classical counter-freeNFA B such thatLsym(A) = Lsym(B).

Step (c): For a counter-freeNFA B, by the McNaughton-Papert result [MP71] we can
give anFO(A) formulaψ, where the logicFO(A) is the discrete version ofFOc(A)
defined in a similar manner toLTL(A), such thatLsym(ψ) = Lsym(B). From Kamp’s
result for discreteLTL [Kam68], we have an equivalentLTL(A) formula θ such that
Lsym(ψ) = Lsym(θ).

Step (d): For a formulaθ in LTL(A) we construct a formulaltl -ltlc(θ) in LTLc(A)
which is such thatF (ltl -ltlc(θ)) = timing(Lsym(θ)).

We will use the abbreviationθ1Ud θ2 to mean that at a point of discontinuity “θ1Uθ2”
is true in an untimed sense, and define it to be(θ2Uθ2) ∨ (θ1U(θdisc ∧ (θ2 ∨ (θ1 ∧
(θ2Uθ2))))). Symmetrically we useθ1Sd θ2 for (θ2Sθ2) ∨ (θ1S(θdisc ∧ (θ2 ∨ (θ1 ∧
(θ2Sθ2))))).

The translationltl -ltlc is defined as follows (we usêη for ltl -ltlc(η) for brevity):

ltl -ltlc(a) = a.

ltl -ltlc(¬θ1) = ¬θ̂1.

ltl -ltlc(θ1 ∨ θ2) = θ̂1 ∨ θ̂2.

ltl -ltlc(θ1Uθ2) = (θdisc ⇒ (θ̂1Ud θ̂2)) ∧

(θcont ⇒ (θcont U(θdisc ∧ (θ̂2 ∨ (θ̂1 ∧ (θ̂1Ud θ̂2)))))).

ltl -ltlc(θ1Sθ2) = (θdisc ⇒ (θ̂1Sd θ̂2)) ∧

(θcont ⇒ (θcont S(θdisc ∧ (θ̂2 ∨ (θ̂1 ∧ (θ̂1Sd θ̂2)))))).

Lemma 4.2 Let θ be anLTL(A) formula. Letw be a canonical word inA∗. Let
f ∈ timing(w) with a canonical interval representation(a0, I0) · · · (a2n, I2n). Then
for all i ∈ {0, · · · , 2n} and for all t ∈ Ii, we havew, i |= θ ⇐⇒ f, t |= ltl -ltlc(θ). 2

From the above lemma it follows thatF (ltl -ltlc(θ)) = timing(Lsym(θ)).

Step (e):Using Kamp’s theorem [Kam68] for a givenLTLc(A) formula θ̂ we can give
an equivalentFOc(A) formulaϕ such thatF (θ̂) = F (ϕ).

To summarize this direction of the proof: given a counter-freeST-NFA A over
(A1, A2) by steps (b) and (c) we have anLTL(A) formula θ such thatLsym(A) =
Lsym(θ). By steps (c) and (d) we have anFOc(A) formulaϕA such thattiming(Lsym(θ)) =
F (ϕA). It follows thatF (A) = F (ϕA). Further, by the alternating nature of the sym-
bolic language ofA it follows that the function models and alternating function models
of ϕA are the same.

This completes the proof of Theorem 4.1. 2

5 Counter-freeCIDA’s and TFOc

We can now prove the main result of this paper which is a general characterization
of timed first-order definable languages (again, for a natural first-order logic based on
input-determined operators) via counter-freeCIDA’s.

We recall the definition of thecontinuous timed first-order logic(TFOc) based on
(Σ,Op) from [CDP06]. The syntax of the logicTFOc(Σ,Op) is given by:

ϕ ::= Qa(x) |∆
I(x) |x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ,

9

wherea ∈ Σ, ∆ ∈ Op, I ∈ IQ≥0
, andx andy are first-order variables.

The logic is interpreted over timed words inTΣ∗, in a way similar to the logic
FOc. Given a formulaϕ ∈ TFOc(Σ,Op), a timed wordσ = (a1, t1) · · · (an, tn) in
TΣ∗, and an interpretationI with respect toσ, which maps a first order variablex to
t ∈ [0, dur(σ)], we sayσ, I |= Qa(x) iff ∃i : ai = a, andti = I(x); σ, I |= ∆I(x)
iff ∆(σ, I(x)) ∩ I 6= ∅; and the rest of the cases are similar to that of the logicFOc

defined in the previous section. For a sentenceϕ in TFOc(Σ,Op), the timed language
defined byϕ, denotedL(ϕ), is defined to be{σ ∈ TΣ∗ |σ |= ϕ}.

Theorem 5.1 Let Σ be an alphabet andOp a set of finitely varying input-determined
operators overΣ. A timed languageL ⊆ TΣ∗ is definable by aTFOc(Σ,Op) sentence
iff it is definable by aCFCIDA over(Σ,Op).

Proof We first show how to go
from TFOc to CFCIDA.
The route we take is shown
in the figure alongside:

FOc(Γ)

TFOc(Σ,Op)

CFCIDA(Σ,Op)
A bϕ bϕ

ϕ

tfo-fo [CDP06]

Thm. 4.1

Let ϕ be aTFOc(Σ,Op) sentence. Then there is a proper symbolic alphabet
(Γ1,Γ2) over (Σ,Op) and aFOc(Γ1 ∪ Γ2) sentencêϕ such thatL(ϕ) = tw(F (ϕ̂)).
The symbolic alphabet(Γ1,Γ2) is based on the set of guards{∆I |∆I(x) is a sub-
formula of ϕ}. The formulaϕ̂ is then obtained fromϕ by replacing eachQa(x)
by

∨
(a,h)∈ΓQ(a,h)(x) and∆I(x) by

∨
(c,h)∈Γ,∆I∈hQ(c,h)(x) ∨

∨
h∈Γ,∆I∈hQh(x),

whereΓ = Γ1 ∪ Γ2, and taking its conjunction withϕfcp , which is satisfied by func-
tions whose untimings are fully canonical proper words.

From Theorem 4.1, we have a counter-freeST-NFA Abϕ over (Γ1,Γ2) such that
F (Abϕ) = F (ϕ̂). By construction ofϕ̂ it follows thatAbϕ is a fully canonical proper
CIDA over(Σ,Op), and hence aCFCIDA over(Σ,Op). SinceL(Abϕ) = tw(F (Abϕ)) =
tw(F (ϕ̂)) = L(ϕ), we are done.

In the converse direction,
the route we follow is:

FOc(Γ)

TFOc(Σ,Op)

CFCIDA(Σ,Op)
A ϕA

bϕA

fo-tfo [CDP06]

Thm. 4.1

Let A be aCFCIDA over (Σ,Op). ThusA is a counter-freeST-NFA over a
proper alphabet(Γ1,Γ2) based on(Σ,Op), which accepts a fully canonical function
language. By Theorem 4.1 we have aFOc(Γ) sentenceϕA (whereΓ = Γ1 ∪ Γ2),
such thatF (ϕA) = F (A). We now use the translationfo-tfo from [CDP06] which
simply “unpacks” a formulaϕ in FOc(Γ) to a formulaϕ̂ in TFOc(Σ,Op) such that
L(ϕ̂) = tw(F (ϕ)). Thus we takêϕA to be fo-tfo(ϕA), and we have thatL(A) =
tw(F (A)) = tw(F (ϕA)) = L(ϕ̂A). 2

6 Counter-free RecursiveCIDA’s

Our aim is now to extend the counter-free characterization of first-order definable timed
languages to “recursive” (or “hierarchical”) first-order logic andCIDA’s. This will

10

give us a counter-freeCIDA characterization for many of the timed temporal logics
defined in the literature, includingMTLc+Past andMITL.

We begin with a few preliminaries, mostly from [CDP06]. Afloating timed word
over Σ is a pair(σ, t), whereσ in TΣ∗ and t ∈ [0, dur(σ)]. We denote the set of
floating timed words overΣ by FTΣ∗. We will represent a floating word overΣ as
timed word over the alphabetΣ′ = (Σ ∪ {ǫ}) × {0, 1}. For a timed wordσ′ overΣ′,
letσ denote the timed word obtained fromσ′ by projecting away the{0, 1} component
from each pair and then dropping anyǫ’s in the resulting word. Then a timed word
σ′ overΣ′ which contains exactly one symbol from(Σ ∪ {ǫ}) × {1}, and whose last
symbol is fromΣ×{0, 1}, represents the floating timed word(σ, t), wheret is the time
of the unique action which has a1-extension. We usefw to denote the (partial) map
which given a timed wordσ′ overΣ′ returns the floating word(σ, t) represented by it,
and extend it to apply to timed languages overΣ′ in the natural way.

LetΣ be an alphabet andOp be a set of input determined operators. Given∆ ∈ Op,
we use the notation∆′ for the operator overΣ′ with the semantics∆′(σ′, t) = ∆(σ, t).
We use the notationOp′ to denote the set{∆′ |∆ ∈ Op}. We now define afloating
CIDA over(Σ,Op) to be aCIDA over(Σ′,Op′). We define the floating language of
a floatingCIDA B, denotedLfl (B), asfw(L(B)).

A recursiveinput-determined operator∆ over an alphabetΣ is a partial function
from (2FTΣ∗

× TΣ∗ × R≥0) to 2R≥0 , which is defined for tuples(M,σ, t) whereM
is a floating language overΣ, σ ∈ TΣ∗, andt ∈ [0, dur(σ)]. Thus, given a floating
languageM , we obtain an input-determined operator∆M whose semantics is given by
∆M (σ, t) = ∆(M,σ, t). For a floatingCIDA B, we write∆B for the operator∆Lfl (B).

We call a floating languageM overΣ finitely varying, if for each timed wordσ,
the characteristic function of the setpos(M,σ) = {t | (σ, t) ∈ M} is finitely varying
in [0, dur(σ)]. We say a recursive operator∆ is finitely varyingif for every finitely
varying floating languageM , the operator∆M is finitely varying.

We are now ready to define the recursive version of ourCIDA’s. We define the
class ofrecursiveCIDA’s (rec-CIDA’s), and the class ofrecursive floatingCIDA’s
(frec-CIDA’s) over an alphabetΣ and a set of recursive operatorsRop based onΣ, as
the union overi ∈ N, of level-i rec-CIDA’s over (Σ,Rop) and leveli frec-CIDA’s
over(Σ,Rop), which are defined inductively below:

• A level-0 rec-CIDA over(Σ,Rop) is aCIDA A overΣ that uses only the guard
⊤. It accepts the timed language accepted byA viewed as aCIDA – i.e.L(A).
A level-0 frec-CIDA over (Σ,Rop) is a floatingCIDA B over Σ which uses
only the guard⊤. It accepts the floating languageLfl (B) (i.e by viewing it as a
floatingCIDA overΣ).

• A level-i+ 1 rec-CIDA over(Σ,Rop) is aCIDA A overΣ and finite set of op-
eratorsOp of the form∆B, where∆ ∈ Rop andB is a level-i or lessfrec-CIDA

over(Σ,Rop). We require thatA uses at least one operator of the form∆B wit
B a level-i frec-CIDA. The timed languageL(A) accepted byA is defined to
be the timed language accepted byA viewed as aCIDA over(Σ,Op).

A level-i+ 1 frec-CIDA over(Σ,Rop) is a floatingCIDA B overΣ and finite
set of operatorsOp of the form∆C , where∆ ∈ Rop andC is a level-i or less
frec-CIDA over (Σ,Rop). We require thatB uses at least one operator of the
form ∆C wit C a level-i frec-CIDA. The floating languageLfl(B) accepted byB
is defined to be the floating language accepted byB viewed as a floatingCIDA

over(Σ,Op).

11

We now define the counter-free versions of these automata, byinduction on the
level in which they occur. A level-0 rec-CIDA (respectivelyfrec-CIDA) is counter-
free if the underlyingST-NFA is counter-free. A level-i+1 rec-CIDA (resp.frec-CIDA)
is counter-free if it only uses operators of the form∆B whereB is a counter-free
frec-CIDA of level-i or less, and the underlyingST-NFA is counter-free.

We extend these definitions to properrec-CIDA’s andfrec-CIDA’s in the obvious
way. We define the class of counter-freerec-CIDA languages over(Σ,Rop), denoted
rec-CFIDA(Σ,Rop), to be the class of timed languages definable by counter-freefully
canonical properrec-CIDA’s over(Σ,Rop).

We now introduce the recursive version ofTFOc. Given an alphabetΣ and a
set of recursive operatorsRop, the set of formulas ofrec-TFOc(Σ,Rop) are de-
fined inductively as:ϕ ::= Qa(x) |∆

I
ψ(x) |x < y | ¬ϕ |ϕ ∨ ϕ | ∃xϕ, wherea ∈ Σ,

∆ ∈ Rop, I ∈ IQ≥0
andψ is a rec-TFOc formula with a single free variablez. The

rec-TFOc formulas are interpreted similar toTFOc formulas where the operator∆ψ

is defined by∆ψ(σ, t) = ∆(Lfl(ψ), σ, t) andLfl (ψ) = {(σ, t) |σ, [t/z] |= ψ}. A
rec-TMSOc(Σ,Rop) sentenceϕ defines the languageL(ϕ) = {σ ∈ TΣ∗ |σ |= ϕ}.

Using a similar technique to the proof of Theorem 5.1 we can show thatrec-TFOc-
definable andrec-CFIDA-definable languages are the same:

Theorem 6.1 LetΣ be an alphabet andRop be a set of finitely-varying recursive oper-
ators based onΣ. Then a timed languageL ⊆ TΣ∗ is definable by arec-TFOc(Σ,Rop)
sentence iff it is definable by arec-CFIDA over(Σ,Rop). 2

We recall the definition of the recursive timed temporal logic based on(Σ,Rop)
from [CDP06], denotedrec-TLTLc(Σ,Rop). The syntax of the logic is given by

θ ::= a |∆I
θ | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),

wherea ∈ Σ, ∆ ∈ Rop andI ∈ IQ≥0
. The logic is interpreted over timed words

in a manner similar toTLTLc+Past, where the operator∆θ is defined by∆θ(σ, t) =
∆(Lfl(θ), σ, t), andLfl (θ) = {(σ, t) |σ, t |= θ}. From [CDP06] we know that:

Theorem 6.2 ([CDP06]) Let Σ be an alphabet andRop be a set of finitely-varying
recursive operators based onΣ. Then a timed languageL ⊆ TΣ∗ is definable by a
rec-TFOc(Σ,Rop) sentence iff it is definable by arec-TLTLc(Σ,Rop) formula. 2

Putting Theorems 6.1 and 6.2 together we obtain counter-freeCIDA characteriza-
tions for many timed temporal logics based on input-determined operators, proposed in
the literature. In particular we obtain a counter-freeCIDA characterization for the logic
MTLc+Past (with past operators). Recall that the syntax of the logicMTLc+Past(Σ)
is:

θ ::= a | (θUIθ) | (θSIθ) | ¬θ | (θ ∨ θ),

wherea ∈ Σ andI ∈ IQ≥0
. The logic is interpreted over timed words inTΣ∗, and the

modalitiesUI (and symmetricallySI) is as follows:

σ, t |= θUIη iff ∃t′ ≥ t : t′ − t ∈ I, σ, t′ |= η, and∀t′′ : t < t′′ < t′, σ, t′′ |= θ.

We recall thatMTLc+Past was shown to be expressively equivalent to the logic
rec-TLTLc(Σ, {3,3-}) in [CDP06], where the recursive operators3 and3- are defined
as3(M,σ, t) = {t′ − t | t′ ≥ t, t ∈ pos(M,σ)} and3-(M,σ, t) = {t− t′ | t′ ≤ t, t ∈
pos(M,σ)}. Thus we have:

12

Theorem 6.3 The class of timed languages definable byrec-CFIDA(Σ, {3,3-}) and
MTLc+Past(Σ) are the same.

Restricting to non-singular intervals we obtain a similar result for the logicMITLc+Past
[AFH96].

7 Ultimate stability of MTLc+Past

In section 6 we showed that everyMTLc+Past language is recognized by a recursive
counter-freeCIDA. We will now use this characterization to show theultimate stability
of MTLc+Past with respect to periodic sequences of timed words. In this section we
assume thatΣ is an alphabet andRop a set of finitely-varying recursive operators.

A periodic sequenceof timed words〈σi〉 is of the formuw, uvw, uv2w, · · · for
some timed wordsu, v andw in TΣ∗. We represent〈σi〉 above via the triple(u, v, w).
A language of timed wordsL ⊆ TΣ∗ is said to beultimately stablew.r.t. a periodic
sequence〈σi〉 if there existsi0 ∈ N such that either∀i ≥ i0, σi ∈ L or ∀i ≥ i0, σi /∈
L. The languageL is said to beultimately stableif it is ultimately stable w.r.t. all
periodic sequences of timed words.

Theorem 7.1 Letϕ be anMTLc+Past formula. ThenL(ϕ) is ultimately stable.

The rest of this section is devoted to the proof of the above theorem. By theorem
6.3 we just need to show that all languages recognized byrec-CFIDA are ultimately
stable.

We first introduce the concept of middle zone: it represents the set of time points
“in the middle” of a timed word. Amiddle zoneis a coupleZ = (l, r) with l, r ∈ R.
Given a timed wordw we defineZ(w) = (l, dur(w) − r).

l Z(σ) r

Figure 1: A middle zone

A floating languageL ⊆ TΣ∗ × R is said to bewell-behavedw.r.t. a periodic
sequence〈σi〉 = (u, v, w) if there exist a middle zoneZ and an indexi0 such that the
following conditions hold:

∀i ∀i′ ≥ i ∀t ∈ Z(σi), (σi, t) ∈ L⇔ (σi, t+ dur(v)) ∈ L and

(σi, t) ∈ L⇔ (σi′ , t) ∈ L.
(1)

∀i ≥ i0 ∀i′ ≥ i ∀t < l, (σi, t) ∈ L⇔ (σi′ , t) ∈ L. (2)

∀i ≥ i0 ∀i′ ≥ i ∀t < r, (σi, dur(σi) − t) ∈ L⇔ (σi′ , dur(σi′) − t) ∈ L. (3)

A floating languageL is said to bewell-behavedif it is well-behavedw.r.t. all pe-
riodic sequences. Note that a guard∆I defines a floating language given by{(σ, t) |
σ, t |= ∆I}. We say that a floatingCFCIDA (resp. a guard) iswell-behavedw.r.t. a pe-
riodic sequence if its associated language is. Similarly wesay that a floatingCFCIDA

(resp. a guard) iswell-behavedif its associated language is.
Given a proper symbolic alphabetΓ and a timed wordσ we noteγΓ

σ the unique
symbolic wordγ ∈ Γ∗ such thatσ ∈ tw(γ).

13

Lemma 7.1 LetG be a finite set of guards andΓ be a proper symbolic alphabet over
(Σ,Rop) based onG. Let 〈σi〉 be a periodic sequence. If for allg ∈ G, g is well-
behaved w.r.t.〈σi〉 then there exists an integeri0 andγ1, γ2, γ3 ∈ Γ∗ such that for all
i ≥ i0, γΓ

σi
= γ1γ

i−i0
2 γ3. 2

Note that this lemma shows that if for allg ∈ G, g is well-behaved w.r.t.〈σi〉 then
any floating automaton based onG is well-behaved w.r.t.〈σi〉.

Lemma 7.2 LetB be a proper canonical fCFIDA over(Σ,Rop) andI an interval. If
B is well-behaved, then the guards3

I
B and3-IB are also well-behaved.

Proof Let 〈σi〉 = (u, v, w) a periodic sequence, we show that3
I
B is well-behaved

w.r.t. 〈σi〉, the case of3-IB is similar. We have to show that there exists a middle zone
Z = (l, r) and an indexi0 such that:

∀i ∀i′ ≥ i ∀t ∈ Z(σi) σi, t |= 3
I
B ⇔ σi, t+ dur(v) |= 3

I
B and

σi, t |= 3
I
B ⇔ σi′ , t |= 3

I
B.

(1)

∀i ≥ i0 ∀i′ ≥ i ∀t < l σi, t |= 3
I
B ⇔ σi′ , t |= 3

I
B. (2)

∀i ≥ i0 ∀i′ ≥ i ∀t < r σi, dur(σi) − t |= 3
I
B ⇔ σi′ , dur(σi′) − t |= 3

I
B. (3)

B is well-behaved by hypothesis. LetZB = (lB, rB) be the middle zone forB. Let
M be a real greater than the bounds ofI. We defineZ = (lB, rB +M + dur(v)).

lB Z > M + dur(v) rB

Figure 2: Choice ofZ

Let i, t be such thatt ∈ Z(σi) and supposeσi, t |= 3
I
B. We show thatσi, t +

dur(v) |= 3
I
B (other direction is similar).

We have that∃t1 ≥ t with (σi, t1) ∈ Lfl(B) andt1 − t ∈ I. We distinguish two
cases:

• t1 ∈ ZB(σi)
AsB is well-behaved(σi, t1+dur(v)) ∈ Lfl (B) and we have thatt1+dur(v)−
(t+ dur(v)) = t1 − t ∈ I. Thusσi, t+ dur(v) |= 3

I
B

b b b b

3
I
B

3
I
B

? L
fl (B) L

fl (B)

∈ I

∈ I

• t1 /∈ ZB(σi)
Thent1 − t > M , so necessarilyI = (c,+∞) or I = [c,+∞). As t1 − (t +
dur(v)) > M , σi, t+ dur(v) |= 3

I
B.

b b b

3
I
B

3
I
B

? L
fl (B)

> M

> M

14

A similar reasoning shows thatσi′ , t |= 3
I
B.

We now show how to choosei0 and prove property(2) (showing property(3) is
similar). We takei0 ∈ N such thati0 ≥ iB anddur(Z(yi0)) ≥ M (so that the time of
the middle zone is greater thanM for i ≥ i0). Let i ≥ i0, i

′ ≥ i, t < l and suppose
σi, t |= 3

I
B. Then∃t1 ≥ t with (σi, t1) ∈ Lfl(B) andt1 − t ∈ I. We distinguish two

cases:

• t1 ≤ dur(σi) − r
AsB is well-behaved(σi′ , t1) ∈ Lfl(B) and soσi′ , t |= 3

I
B

• t1 > dur(σi) − r
Thent1 − t > M and necessarilyI = (c,+∞) or I = [c,+∞).

Sett′1 = dur(σi) − t1. (σi, dur(σi) − t′1) ∈ Lfl (B) so asB is well-behaved
(σi′ , dur(σi′)− t

′
1) ∈ Lfl(B). Moreover(dur(σi′)− t

′
1)− t ≥ (dur(σi)− t

′
1)−

t = t1 − t > M thusσi′ , t |= 3
I
B. 2

Returning to the proof of theorem 7.1: letL be recognized by somerec-CFIDA

A and〈σi〉 be a periodic sequence. LetΓ be the proper symbolic alphabet ofA; by
lemma 7.1 and 7.2 there exists an integeri0 andγ1, γ2, γ3 ∈ Γ∗ such that for alli ≥ i0,
γΓ
σi

= γ1γ
i−i0
2 γ3. Letn be the number of states ofA. γ2 cannot be a counter forA so

for i greater thani0 +n, the run ofA onσi ends in the same state. ThusL is ultimately
stable w.r.t.〈σi〉. 2

We justify here whyCFCIDA’s were defined to
include only fully canonical proper words. Had
we allowed words which are not fully canonical,
CFCIDA’s would not have been equivalent toTFOc.
Alongside is a properCIDA which is not fully canon-
ical but the underlyingST-NFA is counter-free. It ac-
cepts the timed languageL1 consisting of timed words
with even number ofa’s. This language is not ul-
timately stable with respect to the periodic sequence
(ǫ, (a, 1), ǫ), and hence is not definable inMTLc+Past
and therefore not definable inTFOc({a}, {3a}).

⊤ ⊤

⊤

(a, ⊤)

(a, ⊤) (ǫ, ⊤)

We also note that, unlike classicalLTL, ultimate stabil-
ity of a rec-CIDA(3,3-) language is not a sufficient
condition for MTLc+Past recognizability. Consider
the timed languageL2 consisting of timed words end-
ing with ana at time1 and having even number ofb’s
in the interval(0, 1). This language is recognized by a
rec-CIDA over{3}. However it can be shown to be
inexpressible inMTLc+Past and hence not recognized
by arec-CFIDA over{3}. Nevertheless it is trivially
ultimately stable.

Ultimately
Stable

rec-CIDA(3,3-)

L1

L2

MTL=rec-CFIDA(3,3-)

The Venn diagram alongside shows the different classes of timed languages.

15

References

[AFH94] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A Determinizable Class
of Timed Automata. In David L. Dill, editor,CAV, volume 818 ofLecture
Notes in Computer Science, pages 1–13. Springer, 1994.

[AFH96] Rajeev Alur, Toḿas Feder, and Thomas A. Henzinger. The Benefits of Re-
laxing Punctuality.Journal of the ACM, 43(1):116–146, 1996.

[CDP06] Fabrice Chevalier, Deepak D’Souza, and Pavithra Prabakhar. On contin-
uous timed automata with input-determined guards. In Naveen Garg and
S. Arun-Kumar, editors,FSTTCS, volume 4337 ofLecture Notes in Com-
puter Science, pages 369–380, Kolkata, India, December 2006. Springer.

[CDP07] Fabrice Chevalier, Deepak D’Souza, and Pavithra Prabhakar. Counter-free
input-determined timed automata. Technical Report IISc-CSA-TR-2007-1,
Indian Institute of Science, Bangalore 560012, India, January 2007. URL:
http://archive.csa.iisc.ernet.in/TR/2007/1/.

[DM05] Deepak D’Souza and M. Raj Mohan. Eventual Timed Automata. In R. Ra-
manujam and Sandeep Sen, editors,FSTTCS, volume 3821 ofLecture Notes
in Computer Science, pages 322–334. Springer, 2005.

[DT04] Deepak D’Souza and Nicolas Tabareau. On timed automata with input-
determined guards. In Yassine Lakhnech and Sergio Yovine, editors,FOR-
MATS/FTRTFT, volume 3253 ofLecture Notes in Computer Science, pages
68–83. Springer, 2004.

[HRS98] Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens.
The Regular Real-Time Languages. In Kim Guldstrand Larsen,Sven
Skyum, and Glynn Winskel, editors,ICALP, volume 1443 ofLecture Notes
in Computer Science, pages 580–591. Springer, 1998.

[Kam68] Johan Anthony Willem Kamp.Tense Logic and the Theory of Linear Order.
PhD thesis, University of California, Los Angeles, California, 1968.

[Koy90] Ron Koymans. Specifying Real-Time Properties withMetric Temporal
Logic. Real-Time Systems, 2(4):255–299, 1990.

[MP71] Robert McNaughton and Seymour Papert.Counter-Free Automata. MIT
Press, Cambridge, MA, 1971.

[OW05] Jöel Ouaknine and James Worrell. On the Decidability of MetricTemporal
Logic. In LICS, pages 188–197. IEEE Computer Society, 2005.

[PD06] Pavithra Prabhakar and Deepak D’Souza. On the Expressiveness of MTL
with Past Operators. In Eugene Asarin and Patricia Bouyer, editors,FOR-
MATS, volume 4202 ofLecture Notes in Computer Science, pages 322–336.
Springer, 2006.

[RS99] Jean-François Raskin and Pierre-Yves Schobbens. The logic of event clocks:
decidability, complexity and expressiveness.Automatica, 4(3):247–282,
1999.

16

