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Abstract

We identify a class of timed automata, which we call couffitee-input-determined
automata, which characterize the class of timed languagfisathle by several
timed temporal logics in the literature, includiMir'L. We make use of this charac-
terization to show tha¥ITL+Past satisfies an “ultimate stability” property with re-
spect to periodic sequences of timed words. Our resultsfbolibth the pointwise
and continuous semantics. Along the way we generalize sudtref McNaughton-
Papert to show a counter-free automata characterizatiéiOedefinable finitely
varying functions.

1 Introduction

A number of classes of timed automata based on “input-détedhdistance operators
have been proposed in the literature. These include the-eseording automata of
[AFH94, HRS98], which make use of the operatoysand>, (which measure the dis-
tance to the last and nexis respectively), state-clock automata [RS99], and ewantu
timed automata [DM05, CDPO06], which make use of the “evdntparator” <, in-
spired by Metric Temporal Logid(TL) [Koy90, AFH96, OWO05]. In [DT04, CDPO06]
these operators were abstracted into a general notion ofpart-determined operator,
and the corresponding classes of timed automata called-dgiarmined automata or
IDA's (parameterized by a set of input-determined opesgtarere shown to have ro-
bust logical properties, including a monadic second-ologic characterization, and
expressively complete (with respect to the first-order fragt of the corresponding
MSO logics) timed temporal logics based on these operators.ederyan important
link that remained unexplored was a characterization ofcthss of automata which
correspond to these temporal logics, along the lines of kiEsical characterization
via counter-free automata for discrete temporal logic clvtiollows from the work of
Kamp and McNaughton-Papert [Kam68, MP71].

In this paper our aim is to fill this gap. We identify a class otinter-free IDA's
(again parameterized by a set of input-determined opejtuat precisely characterize
the class of timed languages definable by the timed tempog&td based on these
operators. Our class of counter-free IDA's comprise “propPA’s (which are in a
sense a determinized form of IDA'S) whose underlying gradpdage no counters in the
classical sense. Our results hold for both the “pointwise! ‘&ontinuous” semantics
for timed formalisms.
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For the pointwise semantics, we can simply factor throughctassical results of
Kamp and McNaughton-Papert, and the translations set uplia4]. For the continu-
ous case we first prove an analogue of the McNaughton-Pagseit for finitely vary-
ing functions, by characterizing the first-order definableguages of finitely-varying
functions in terms of a counter-free fragment of a class tdmata we calsT-NFA'’s.
Once we have this result, we can essentially factor throbghranslations for contin-
uous time set up in [CDPO06].

We emphasize that this general result gives us automataatk&rations for sev-
eral of the timed logics proposed in the literature, inahgdiventClockTL [HRS98],
Metric Interval Temporal LogicNIITL) [AFH96], andMTL [AFH96, OWO05], for both
the pointwise and continuous semantics. Among other agtjpits, such characteriza-
tions can be useful in arguing expressiveness results ésetlogics.

In the final part of this paper we make use of this charactéoiz&o prove a prop-
erty of timed languages definable BMTL +Past, namely that they must satisfy an
“ultimate stability” property with respect to a periodicgence of timed words. Thus,
given a periodic sequence of finite timed words of the farniw, the truth of an
MTLC+Past formula at any real time point, must eventually stabilize.(become al-
ways true, or always false) along the models in the sequértts.is a stronger result
than a property foMTL proved in [PDO06], in that it holds favITL with past operators,
and furthermore does not depend on the “duration” of thedimerdv in the periodic
sequence.

In the sequel we concentrate on the continuous semantied&thils for the point-
wise semantics and other arguments not included here foespasons, can be found
in the technical report [CDPQ7].

2 Preliminaries

For an alphabe#i, we useA* to denote the set of finite words ovdr For a wordw

in A*, we us€w| to denote its length. The set of non-negative reals andnaigowill

be denoted bR >, andQx( respectively. We will deal with intervals of non-negative
reals, i.e. convex subsetsRf.(, and denote b¥r. , andZy. , the set of such intervals
with end-points iR~ U {co} andQso U {oo} respectively. Two intervalg and.J
will be calledadjacentif 7N J = andl U J is an interval.

Let A be an alphabet and I¢t: [0,7] — A be a function, where € R>,. We
usedur(f) to denote the duration of, which in this case is. A pointt € (0,7) is
a point ofcontinuityof f if there existse > 0 such thatf is constant in the interval
(t — e, t + €). All other points in[0, r] are points ofdiscontinuityof f. We sayf is
finitely varyingif it has only a finite number of discontinuities. We denotelyF (A)
the set of all finitely varying functions ovet.

An interval representatiorfior a finitely varying functionf : [0,7] — A is a se-
quence of the formag, Iy) - - - (an, I,,), with a; € A andI; € Iy, satisfying the
conditions that the union of the intervals[is r], eachl; and I, are adjacent, and
for eachi, f is constant and equal tg in the intervall,. We can obtain @anonical
interval representation fgf by putting each point of discontinuity in a singular intdrva
by itself. Thus the above interval representationffas canonical ifn is even, for each
eveni I; is singular (i.e. of the fornft, t]), and for no evern such tha) < i < n is
Aj—1 = Qi = Gj41-

A canonical interval representation for a function givesuesinonical way of “un-
timing” the function: thus iflag, Iy) - - - (ag2n, I2,) is the canonical interval representa-



tion for a functionf, then we definentiming(f) to be the stringy - - - a2y, in A*. The
untiming thus captures explicitly the value of the functatdrits points of discontinuity
and the open intervals between them. Note that strings whmesent the untiming of
a function will always be of odd length and for no even positiavill the letters at po-
sitionsi — 1, 4, andi + 1 be the same. We call such wordsnonical A canonical word
w can be “timed” to get a function in a natural way: thus a fumetf is in timing(w)

if untiming(f) = w. We extend the definition afiming anduntiming to languages
of functions and words in the expected way.

We now turn to some notions regarding classical automataaradiant we intro-
duce. Recall that a non-deterministic finite state autom@td'A) over an alphabet
is a structured = (Q, s,0, F'), whereQ is a finite set of states; is the initial state,
0 C Q x A x Qis the transition relation, an8l C @ is the set of final states. A run of
Aonawordw =ag---a, € A* isasequence of statgg . . . , g,+1 such thay, = s,
and(g;, a;,qi+1) € ¢ for eachi < n. The run is accepting if,,1 € F. The symbolic
language accepted by, denoted’,,,,,(A), is the set of words inl* over which A4 has
an accepting run. Languages accepte®b’s are calledegularlanguages. We say
theNFA A is deterministiqand call it aDFA) if the transition relatiord is a function
from @ x Ato Q. A well-known fact is that every regular languafidnas a unique (up
to isomorphism) minimal statBFA accepting it, which we refer to a4, .

A counterin anNFA A is a sequence of distinct states . .., g, with n > 1,
along with a word: € A*, such that there is a path labeledh A from ¢; to ¢;41 (for
each: € {0,...,n — 1}) and fromg, to ¢o. An NFA is said to becounter-freeif it
does not contain a counter. A regular language is said twbaeter-fredf there exists
a counter-fre&NFA for it. We will call a sequence of words IA* (w;) = wp, w1, - -
periodicif there exist strings:, v, w in A* such thatw; = uvw for eachi. We say a
languagel. C A* is ultimately stablgwith respect to periodic sequences of words) if
for each periodic sequen¢e;) there exists & > 0, such that for al > &, w; € L or
foralli > k, w; ¢ L.

Proposition 2.1 Let L be a regular language over an alphahét Then the following
are equivalent: (1)L is counter-free, (2)4, is counter-free, (3). is ultimately stable
with respect to periodic sequences of words. O

Using the above proposition, it follows that counter-fregular languages are
closed under the boolean operations of union, interseatioihcomplement.

We now define a variant 8 FA’s calledstate-transition-labeletFA's or ST-NFA's
for short, which are convenient for generating finitely wagyfunctions. AnST-NFA
over A is a structured = (Q, s, d, F, 1) similar to anNFA over A, except that :

@Q — A labels states with letters from. The ST-NFA A accepts strings of the
form A(AA)*. Arun of A on a stringw = aga; - - - as, in A(AA)*, is a sequence
of statesqo, . . ., ¢,41 satisfyingqo = s, (¢i, a2, qi+1) € 6 fori € {0,---,n} and
l(¢;) = az;—1 foreachi € {1,...,n};itis accepting ifg,+1 € F. We defineL,,, (A)
to be the set of stringe € A* on which.4 has an accepting run.

An ST-NFA A also generates functions in a natural way: we begin by taking
transition emanating from the start state, emitting it®lahnd then spend time at the
resulting state emitting its label all the while, beforeitaka transition again; and so
on. The language of finitely-varying functions defined bySanNFA A is defined
to be timing(Lsym(A)), and notedF'(.A). For convenience we will stick toanoni-
cal ST-NFA'’s which areST-NFA's in which we never have am-labelled transition



between am-labelled source and target state, for ang A. It is not difficult to see
that anyST-NFA can be converted to a canonical one whose function langsafe i
same. We note that for a canoni€al-NFA A, untiming(F (A)) = Lsym (A).

We now define the counter-free versionSaf-NFA'’s. A counter in arST-NFA is
similar to one in alNFA, except that by the “label” of a path in the automaton we mean
the sequence of alternating state and transition labetgdle path. Thus the label of
the pathgy % ¢ = - gn 2 qus1 is 1(qo)aol(q1)ar - (gn)an. We note that
a counter-freesT-NFA can define a language (e.g. the single state, single tramsiti
ST-NFA over {a} which defines the languagegaa)*) which is not counter-free in
the classical sense. However, if we consif&-NFA's over apartitioned alphabet,
where the alphabet is partitioned into4; and A, which label transitions and states
respectively, then we can show that:

Proposition 2.2 Let(A;, A;) be a partitioned alphabet. A regular subsethf( A5 A;)*
is counter-free iff there exists a counter-fi€E€-NFA over(A;, A) acceptingit. O

Finally, by going over to an alternating alphabet (say byamimg transition labels)
using the closure properties of classical and counterfneguages, and then coming
back, we can verify that:

Proposition 2.3 Each of the classes of function languages definabKEIBWNFA'’s and
counter-freeST-NFA’s over an alphabetd are closed under boolean operationstd

3 Counter-free continuous input-determined automata

We begin with some notation. We define a timed werdver an alphabekt to be
an element of X x Rx¢)*, such that = (ag,to)(a1,t1) - - (an,tn) andty < ¢ <

- < t,,. We write dur (o) to denote the duration of, i.e. t,, above. We denote the
set of timed words oveE to be TY*. Given timed wordsr = (ag, tg) - - - (an, tn)
ando’ = (ag,t;) - - (a, t;,) with t; > 0, we define their concatenation- ¢’ in the
standard way to béug, to) - - - (an, tn)(ah, tn + 1) - -+ (afs tr + t}.).

We define aninput-determined operatoh over an alphabet as a partial function
from (TX* x Rx¢) to 2820, which is defined for all pairés, t), wheret € [0, dur(o)].
Thus an input-determined operator identifies a set of “dista” for a given timed word
and a time point in it. Given a set of input-determined opEsa®p, we define the set
of guards ovelOp, denoted byG(Op), inductively asg ::= T |Al |~g|gV g|gAg,
whereA € Op andI € Zg.,. Given a timed words, we define the satisfiability
of a guardg at timet € [0, dur(c)], denotedo,t = g, as follows: o,t = Al iff
A(e,t) NI # (), with boolean operators treated in the expected way.

For example, the operatdxg which maps(o, t) to {1} if ¢ is rational and td{0}
otherwise, is an input-determined operator. Other exasripldude the eventual oper-
ator &, inspired byMTL, which maps(o, t) to the set of distances such that am
occurs at time + d in o; and the event-recording operatgrwhich mapgo, t) to the
(empty or singleton) set of distances to the last occurrehtiee event before timet.

We call an input-determined operatdr over X finitely varyingif for each I <
Ig.,, and eaclr € TX*, the characteristic functiofif; : [0, dur(o)] — {0,1} of
Al, defined asfg, (t) is 1 if o,¢t = A, and0 otherwise, is finitely varying. Of the
example operators above,, and<, are finitely varying, whileAg is not.

4



Let X be an alphabet an@p be a set of input determined operators cxeiVe call
(T'1,T'2) asymbolic alphabebver(3, Op), if 'y is afinite subset ofU{e}) x G( Op)
andI'; is a finite subset off (Op). We define the set of timed words ov@rassociated
with a function f in FVF(I'; UT'2), denotedtw(f), as follows. Ifuntiming(f) &
I'1(ToI'1)*, thentw(f) = 0. Otherwise, a timed word = (ag,to) - - - (an, tn) IS in
tw(f), provided for allt € [0, dur(f)],

o If f(t) = (a,g), for somea € ¥ andg € G(Op), theno, t |= g, and there exists
iin {0,--- ,n}, witht; = t anda; = a.

o If f(t) = (¢,g) or g, for someg € G(Op), theno,t = g, and there does not
existi in {0,--- ,n} with ¢t; = ¢.

Note that for anyf, tw( f) is either empty or a singleton set. We extend the definition of
tw to sets of functions, as the union of the timed words cornedjpg to each function
in the set.

Let ¥ be an alphabet an@p be a set of input-determined operators based on
Y. A Continuous Input Determined Automat6é6IDA) A over (X, Op) is simply
anST-NFA over a symbolic alphabgl’;,I';) based onX, Op). As anST-NFA A
defines a language of functiod¥.4). We are however more interested in the timed
language it accepts, denotédA), and defined to béw(F'(A)).

Here is a concrete example of a

CIDA over the set of “eventual op-

erators” Op = {Cqla € X}

The diagram shows &IDA over O“T)’(b’ﬂ O“’T)
({a,b}, Op) which recognizes the -
languageL,,; (for “no insertions”),
which consists of timed words in @K
which between any two consecu-
tive a’s, there is no time point from
which there is aru or ab at a dis-
tance of one time unit in the future.

We now defingaroper CIDA’s which are a time-deterministic form af/DA’s, and
which we will use to define our counter-frée&fDA’s. Let G be a finite set of atomic
guards overOp. We call (T';,T';) the proper symbolic alphabet ovefX, Op) based
onG,if Ty = (S U {e}) x 2¢ andT', = 2¢. We interpreth C G as a guard which
specifies precisely the guards @hthat are true. Thu# is interpreted as the guard
/\gGh gAn /\gerh 9.

We define groper CIDA over (%, Op) to be anST-NFA over a proper symbolic
alphabet based oft, Op). The symbolic, function, and timed languages defined by
a properCIDA are defined similarly ta”’IDA’s. We call a wordy over a symbolic
alphabet(T';, I'2) fully canonical if v € T';(I'2I'1)* and no subword ofy is of the
form g - (¢,9) - g. We call a properCIDA fully canonicalif its symbolic language
consists of fully canonical proper words. The class of laggs defined by'IDA’s
and fully canonical prope€IDA'’s coincide:

Lemma 3.1 ([CDP06]) CIDA's over(X, Op) and fully canonical propeCIDA’s over
(%, Op) define the same class of timed languages. O

The class of counter-fre€IDA’s we are interested in this paper is the class of
counter-freeCIDA’s over (X, Op), is the class of fully canonical propefIDA’s



over (3, Op) whose underlyingST-NFA is counter-free. We denote this class by
CFCIDA(X, Op).
As an example, le = {a}, Op =

{0} and G = {0y The

CFCIDA over (3, Op) alongside rec- (e91)
ognizes timed words comprising ex——»@/ L(’gl)(a .
actly onea, which occurs in the inter- \ -

val [1,2]. In the diagramg, = {05?} (:91)

andg, = 0.

4 Counter-free ST-NFA’s and FO-definable functions

In this section we show that over a partitioned alphgbkt, A-), the class of first-
order definable languages of finitely-varying functiong @aatural FO logic we will
introduce soon) is precisely the class of function langaadgfined by counter-free
ST-NFA’s over(A4;, As).

For an alphabe#, the syntax of the first order logleO®(A), is given by:

o= Qalr) |z <yl-p|(pV )| 3w,

wherea € A, andx andy are variables.

We interpret a formula of the logic over a finitely varying functiofiin FVF(A),
along with an interpretatiohwith respect tof, which assigns to each variable a value
in [0, dur(f)]. For an interpretatiofi, we use the notatiof{t/x] to denote the inter-
pretation which sends to ¢t and agrees witfi on all other variables. Given a formula
v € FO°(A), f € FVF(A), and an interpretatiohwith respect tof to the variables
in ¢, the satisfaction relatiof, I = ¢, is defined inductively (with boolean operators
handled in the usual way) as:

[ IEQux) iff f(I(z)) = a, wherea € A.
LlEz<y if I(z) <I(y).
£ IETze it Fte0,dur(f)]: f,1t/x] E .

For a sentence (a formula without free variables) IRO®(A), the interpretation
does not play any role, and we set the language of functiditsediby to be F'(¢) =
{f € FVF(A)| [ E o).

As an example, the formula.,n.: = JyFz(y < A2 < 2AV o4 Yuly < uhu <
z = Qq(u) A Qu(x))) asserts that the point is a point of continuity. As another
example, for the partitioned symbolic alphalfEy, ') based on somé&:, Op), the
FOS(I'y U Ty) formula e = Va(@aise(z) = ~(V( g)er, Qe (@) A FyTFz(y <
zAx <zAVu(u # Ay <uAu<z= Qq4(u))))), (Wherep e = —pcont) asserts
that the untiming of the function is fully canonical.

For a partitioned alphabéti;, As) we call a finitely varying functiorf in FVF (AU
A,) alternatingif untiming(f) € A1(A2A1)* (thus the discontinuities are labelled by
symbols inA4; and continuities by labels idy). Let alt-FVF(A;, A3) denote the
class of alternating finitely varying functions ovet,, As).

Theorem 4.1 Let(A,, A>) be a partitioned alphabet with = A;UA,. Then the class
of FO°(A)-definable languages of alternating finitely-varying fuoos over(A;, A,)
is precisely the class of function languages definable byteotfreeST-NFA's over
(A1, Ay).



The rest of this section is devoted to a proof of this theoraife recall briefly
the logicLTL and its two interpretations, one over discrete words andther over
functions. The syntax dfTL(A) is given by:

0 = a| (0U9)| (050)]|-0| (6 V 6),

wherea € A. The logic is interpreted over words 4, with the following semantics.
Given a wordw = ay - - - a,, in A* and a position € {0,...,n}, we sayw, i = a iff
a; = a; andw, i = U iff there existsj such that < j < n, w,j = n and for allk
such that < k < j, w, k = 0. The “since” operatof is defined in a symmetric way
to U in the past, and the boolean operators in the usual way. Weteldy L., (0)
the sef{w € A* | w,0 = 6}.

The logicLTL can also be interpreted over functions as done in [Kam68ie e
restrict the models to finitely-varying functions V' (A), and we denote this logic
by LTL®(A). Given a functionf € FVF(A), t € [0, dur(f)] andd € LTL°(A), the
satisfaction relatiorf, ¢ |= 6 is defined as follows:

fitEa iff  f(t) = a.
fitEOUn ff F:t<t <dur(f), f,t' En, andVt": t <t <t f,t" = 0.
fE0Sy iff 3 0<t <t ft =gV <t <t ft" =0

The boolean operators are interpreted in the expected way.seMF(0) = {f €
FVF(A) | f,0 = 0}. As an example, th&€TL®(A) formulasf.on,; = \/,ca(a A
(aSa) A (aUa)) andf 4;5. = —0..,: Characterize the points of continuity and discon-
tinuity respectively in a function ovet.

Ay @ @
CF-ST-NFA(A;, A) FO°(A)
. A PA
Returning now to the © Kamp (&)
proof of Theorem 4.1, the P
route we follow is given CF-NFA(A) LTLE(A)

schematically in the figure B 0
below. McN—P+Kamr& ; /ﬁ)
(4)

LTL

Step (a): Let ¢ be a sentence iIRO®(A). We show how to construct a counter-free
ST-NFA A, over A, such thatt'(A,) = F(¢).

The proof proceeds in a similar manner to the one in [CDP0O6¢ WM repre-
sent models of formulas with free variables in them, as fionstwith the interpre-
tations built into them. We assume an ordering on the colmtsdt of first-order
variables given byr,,zo,---. For a formulay with free variables amond =
{zi,, - ,z; } (in order), we represent a functighand an interpretatiohas a func-
tion £ : [0, dur(f)] — A x {0,1}™ given by i (t) = (f(t),b1,- - ,bm), Where
by, = 1iff I(x;, ) = ¢. Thus for a formulap with free variables inX we have a notion
of X-models of,.

Proposition 4.1 Let ¢ be anFO°¢(A) formula with free variablesX and let.A be a
counter-freeST-NFA accepting theX-models ofp. Then for any set of variables’
which containsX, we can construct a counter-fré&l'-NFA A’ accepting precisely
the X’-models ofp. O



Lemma 4.1 Let ¢ be anFO°¢(A) formula and letX be the set of free variables in
it. Then we can construct a counter-fr8&-NFA Afj which accepts precisely the
X-models ofp.

Proof The idea of the proof is similar to the one in [CDP06], excdyattthow we
need to also ensure that the automaton we obtain is cousterfor a set of variables
Y, let AY ., denote theST-NFA which accepts all “valid”y'-models. It is easy to

construct thiSST-NFA and to check that it is counter-free. We construct the counte

free ST-NFA AX by induction on the structure of.
(%)
(—=,0) (—,0)

1 ¢ = Qu(z): The automatond’"!
is:

2. ¢ = x < y: The automa-
tonAff’y} (assuminge oc-
curs beforey in the vari-
able ordering) is:

3. p = —: Let Af be the automaton fap, whereX is the set of free variables
in 4. ThenA is the intersection of4;,;;, with the counter-fre€T-NFA that

vali

recognizes the complement of the function Ianguaggfg)f(cf. Prop 2.3).

4. p =y Vv Let Af be the counter-freBT-NFA for v, whereX' is the set of

free variables in, and letAX" be the counter-fre8T-NFA for v, where X"
is the set of free variables in. Let X = X’ U X”. By Prop. 4.1 we obtain
ST-NFA's A; and.A;. ThenAY is the union of4f and A

5. ¢ = Jaep: Let X’ be the set of free variables i so thatX = X’ — {z}. Let
Af/f " be a counter-fre8T-NFA for 1. Without loss of generality we can assume
Aﬁ " has no “useless” states (i.e. those which cannot be reachedthe start
state or cannot reach a final state). Now we simply projecyath@component
corresponding ta: in the symbols on the transitions atfj' to obtain the re-
quired counter-fre8T-NFA Afj. Itis easy to see thaé(if must be counter-free,
since if it had a counter, the counter must contain a tramsiith a 1 in the
x-component in the originddT-NFA Afzf'. But then by our assumption on the

structure of4X", it would accept non-valick” models having multiple 1's in the
x-component.

From the above lemma it now follows that for a sentepce FO°(A) we have a
counter-freéST-NFA A, such thatF'(¢) = F(A,). In particular, if we are interested
in the alternating function language @f we can conjuncp with the FO¢(A) formula

PLalt = Vw(((pdisc = \/GGAl Qa (l’)) A(‘pcont = \/G,GAQ Qa (l’))) which forces models
to be alternating. The resultir®Jl-NFA will also be alternating.

Steps (b) to (d) prove that we can go from an arbitrary cotinéerST-NFA A
over the partitioned alphabgtl;, A,) to an equivalenFQO°(A)-sentence 4.



Step (b): By Prop. 2.2, for a counter-fre&T-NFA A over (4, A;) we can give a
classical counter-freNFA B such thatl,,, (A) = Lgym (B).

Step (c): For a counter-fre®&FA B, by the McNaughton-Papert result [MP71] we can
give anFO(A) formula, where the logidO(A) is the discrete version dfO°(A)
defined in a similar manner ta'L(A), such thatl ., (¢) = Lgy,m (B). From Kamp’s
result for discretd TL [Kam68], we have an equivalehTL(A) formulad such that
Lsym () = Lsym (0).
Step (d): For a formulad in LTL(A) we construct a formuldti-itic(6) in LTL(A)
which is such thaf’(ltl-itlc(0)) = timing(Lsym (8)).

We will use the abbreviatiofy U, 65 to mean that at a point of discontinuit§; U 65"
is true in an untimed sense, and define it to(Bg/05) V (01U (0 gisc N (02 V (61 A
(02U62))))). Symmetrically we usé;.S, 6, for (602502) V (01.5(0gisc N (02 V (61 A
(02502))))).

The translatioriti-itic is defined as follows (we usgfor [tl-1tlc(n) for brevity):
ltl-ltle(a) = a.

W-ltle(—0;) = —0.
ltl—ltlc(91 \ 92) = 61V,
lﬂ-ltlc(eerg) = (Gdisc = (91Ud 92)) AN

(ocont/\:> (Q\cont U(edisc A (52 \ (é\l A (é\lUd §2))))))
W-1t1c(01565) = (Bgise = (61S4602)) A
(Gcom‘, = (econt S(edisc A (92 V (01 A (elsd 92))))))

Lemma 4.2 Let § be anLTL(A) formula. Letw be a canonical word inA*. Let
f € timing(w) with a canonical interval representatidag, Io) - - - (a2n, I2,). Then
foralli € {0,---,2n} andforallt € I;, we haveaw,i E 0 < f,t = ltl-ltle(h). O

From the above lemma it follows that(itl-tic(0)) = timing(Lsym (0)).

Step (e):Using Kamp’s theorem [Kam68] for a giveTLc( A) formulad we can give
an equivalenfFQO°(A) formulay such thatF(@) = F(p).

To summarize this direction of the proof: given a countee8T-NFA A over
(A1, As) by steps (b) and (c) we have &fiL(A) formula# such thatL,,,(A) =
Ly (9). By steps (c) and (d) we have B®°(A) formulay 4 such thatiming(L sy, (0)) =
F(pa). Itfollows thatF'(A) = F(p.4). Further, by the alternating nature of the sym-
bolic language o#4 it follows that the function models and alternating funotinodels
of ¢ 4 are the same.

This completes the proof of Theorem 4.1. O

5 Counter-free CIDA’s and TFO¢

We can now prove the main result of this paper which is a gémbi@acterization
of timed first-order definable languages (again, for a nafirst-order logic based on
input-determined operators) via counter-fl@EDA’s.

We recall the definition of theontinuous timed first-order logi€TFO€) based on
(X, Op) from [CDPO06]. The syntax of the logitFO® (X, Op) is given by:

p 1= Qa(a) | Al (2) |z <yl-w|(pV )| Tzp,



wherea € £, A € Op, I € Iy, ,, andz andy are first-order variables.

The logic is interpreted over timed words AX*, in a way similar to the logic
FO°. Given a formulap € TFO¢(X, Op), a timed worde = (a1,t1) -+« (ap, t,) in
T>*, and an interpretatiohwith respect tar, which maps a first order variableto
t € [0, dur(o)], we sayo,1 = Qu(z) iff 3i : a; = a, andt; = I(z); 0,1 E Al(z)
iff A(o,I(xz)) NI # 0; and the rest of the cases are similar to that of the 16@¥¢
defined in the previous section. For a sentepée TFO®(X, Op), the timed language
defined by, denotedL(y), is defined to bdo € TX* |0 = ¢}.

Theorem 5.1 Let Y be an alphabet andp a set of finitely varying input-determined
operators ovedl. Atimed languagé. C TX* is definable by JFO°(X, Op) sentence
iff it is definable by aCFCIDA over (X, Op).

Proof We first show how to go
from TFO® to CFCIDA. CPOIDAS Thm. 4.1
The route we take is shown > p)A¢ @

in the figure alongside:

FO°(T")
tfo-fo [CDP06]

7 TFO®(X, Op)

Let ¢ be aTFO®(X, Op) sentence. Then there is a proper symbolic alphabet
(T'1,T2) over (X, Op) and aFO®(I'; U T'5) sentencep such thatL(¢) = tw(F(p)).
The symbolic alphabetl';, ;) is based on the set of guarda’|A!(z) is a sub-
formula of p}. The formulag is then obtained fromp by replacing eactQ, (x)
bY V (a.pyer Qa.n (z) and Al (z) by Viemer.aren Qe (@) V Vier aren Qn(@),
wherel’ = I'; UT'y, and taking its conjunction withy.,,, which is satisfied by func-
tions whose untimings are fully canonical proper words.

From Theorem 4.1, we have a counter-f8&B-NFA A5 over (I';,I'y) such that
F(Ag) = F(9). By construction ofp it follows that. A is a fully canonical proper
CIDA over(X, Op), and hence & FCIDA over(X, Op). SinceL(Aj) = tw(F(Ag)) =

tw(F(p)) = L(y), we are done.
Thm. 4.1

CFCIDA(S, Op)

FOC(F)
. . A pA
In the converse direction,

the route we follow is: fo-tfo [CDPOE]

o TFO®(X, Op)

Let A be aCFCIDA over (X, Op). ThusA is a counter-freesT-NFA over a
proper alphabefl’;,T'2) based on%, Op), which accepts a fully canonical function
language. By Theorem 4.1 we havd-@°(T") sentencep 4 (wherel' = T'; UT),
such thatF'(p4) = F(A). We now use the translatigfa-tfo from [CDP06] which
simply “unpacks” a formulap in FO®(T") to a formulagp in TFO®(X, Op) such that
L(p) = tw(F(p)). Thus we takep 4 to be fo-tfo(p 4), and we have thak(A) =

tw(F(A)) = tw(F(pa)) = L(®a) o

6 Counter-free RecursiveCIDA’s

Our aim is now to extend the counter-free characterizatidinsd-order definable timed
languages to “recursive” (or “hierarchical”) first-ordegic and CIDA’s. This will
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give us a counter-fre€' IDA characterization for many of the timed temporal logics
defined in the literature, including TL°+Past andMITL.

We begin with a few preliminaries, mostly from [CDPO0G]. flbating timed word
overX is a pair(o,t), whereo in T%* andt € [0, dur(c)]. We denote the set of
floating timed words oveE by FTY*. We will represent a floating word oveér as
timed word over the alphab&’ = (X U {e}) x {0,1}. For a timed word:’ overY’,
let o denote the timed word obtained framby projecting away th€0, 1} component
from each pair and then dropping a#dg in the resulting word. Then a timed word
o’ overX’ which contains exactly one symbol frof U {¢}) x {1}, and whose last
symbol is fromX x {0, 1}, represents the floating timed waal ¢), wheret is the time
of the unique action which haslaextension. We usgw to denote the (partial) map
which given a timed word”’ overY’ returns the floating wordo, ¢) represented by it,
and extend it to apply to timed languages oXéin the natural way.

LetX be an alphabet andp be a set of input determined operators. Gi¥er Op,
we use the notatio’ for the operator oveXr’ with the semantica’(¢’,t) = A(o, t).
We use the notatio®p’ to denote the setA’ | A € Op}. We now define dloating
CIDA over (X, Op) to be aCIDA over (X', Op'). We define the floating language of
a floating CIDA B, denoted.”*(B), asfw(L(B)).

A recursiveinput-determined operatak over an alphabeX is a partial function
from (277" x TE* x Rp) to 28>0, which is defined for tupleg)M, o, t) where M
is a floating language ovet, o € TX¥*, andt € [0, dur(o)]. Thus, given a floating
languagel/, we obtain an input-determined operatog; whose semantics is given by
A (o,t) = A(M, o,t). For afloatingCIDA B, we write A for the operato\ ;3.

We call a floating languag®/ over ¥ finitely varying, if for each timed word,
the characteristic function of the seis(M, o) = {t | (o,t) € M} is finitely varying
in [0, dur(c)]. We say a recursive operatd is finitely varyingif for every finitely
varying floating languagé/, the operator\ 5, is finitely varying.

We are now ready to define the recursive version of GliDA’'s. We define the
class ofrecursive CIDA’s (rec- CIDA'’s), and the class afecursive floatingCIDA’s
(frec- CIDA’s) over an alphabeX and a set of recursive operatdisp based ork, as
the union overi € N, of level< rec-CIDA'’s over (X, Rop) and leveli frec-CIDA’s
over (X, Rop), which are defined inductively below:

o Alevel-0 rec-CIDA over (X, Rop) is a CIDA A overX that uses only the guard
T. It accepts the timed language accepteddoyiewed as aCIDA —i.e. L(A).
A level-0 frec-CIDA over (X, Rop) is a floating CIDA B over ¥ which uses
only the guardT. It accepts the floating languadé (B) (i.e by viewing it as a
floating CIDA overy).

e Alevel-i + 1 rec- CIDA over (X, Rop) is a CIDA A overX. and finite set of op-
eratorsOp of the formAg, whereA € Rop andB is a levels or lessfrec-CIDA
over (X, Rop). We require thatd uses at least one operator of the fafxg wit
B alevels frec-CIDA. The timed languagé(.A) accepted by4 is defined to
be the timed language accepted.byiewed as aCIDA over (3, Op).

Alevel-i 4+ 1 frec-CIDA over (X, Rop) is a floatingCIDA B overX and finite
set of operator®)p of the formA¢, whereA € Rop andC is a leveli or less
frec-CIDA over (3, Rop). We require thaf3 uses at least one operator of the
form A¢ wit C alevels frec- CIDA. The floating languagé’ (B) accepted bys

is defined to be the floating language acceptedlwewed as a floating’IDA
over (X, Op).

11



We now define the counter-free versions of these automatidugction on the
level in which they occur. A level-rec- CIDA (respectivelyfrec- CIDA) is counter-
free if the underlyinggT-NFA is counter-free. Alevel-+1 rec- CIDA (resp.frec- CIDA)
is counter-free if it only uses operators of the forki where B is a counter-free
frec-CIDA of level- or less, and the underlyir§il’-NFA is counter-free.

We extend these definitions to propet- CIDA’s andfrec- CIDA'’s in the obvious
way. We define the class of counter-free- CIDA languages oveX, Rop), denoted
rec-CFIDA(X, Rop), to be the class of timed languages definable by countefiftige
canonical properec- CIDA’s over (X, Rop).

We now introduce the recursive version BFO°. Given an alphabelt and a
set of recursive operatorBop, the set of formulas ofec-TFO®(X, Rop) are de-
fined inductively asip == Q. (z)| Al (z) |z < y|-¢|¢ V¢ |3xp, wherea € 3,
A € Rop, I € Iy, , andy is arec-TFOC formula with a single free variable. The
rec-TFO® formulas are interpreted similar ©=O° formulas where the operatdy,,
is defined byA, (o,t) = A(L(¥),0,t) and L1 (y) = {(o,t) |0, [t/2] E ¥} A
rec-TMSOS(X, Rop) sentencey defines the language(y) = {0 € TE* |0 = o).

Using a similar technique to the proof of Theorem 5.1 we camvghatrec-TFO°®-
definable andec- CFIDA-definable languages are the same:

Theorem 6.1 LetX be an alphabet an®&op be a set of finitely-varying recursive oper-
ators based oX.. Then atimed language C T'X* is definable by aec-TFO® (X, Rop)
sentence iff it is definable byrac- CFIDA over (3, Rop). O

We recall the definition of the recursive timed temporal tolgased or(3, Rop)
from [CDPO6], denotedec-TLTL®(3, Rop). The syntax of the logic is given by

0 ::=a|AL|(OUB) | (056)|-0](0V6),

wherea € X, A € Rop andI € Ig.,. The logic is interpreted over timed words
in a manner similar td LTL®+Past, where the operatal, is defined byAy(o,t) =
AL (0),0,t), and L (0) = {(o,t) | 0, t |= 6}. From [CDP06] we know that:

Theorem 6.2 ([CDPO06]) Let X be an alphabet and?op be a set of finitely-varying
recursive operators based ai. Then a timed languagé C TY* is definable by a
rec-TFO®(X, Rop) sentence iff it is definable byrac-TLTL® (X, Rop) formula. O

Putting Theorems 6.1 and 6.2 together we obtain counterdi/®A characteriza-
tions for many timed temporal logics based on input-deteethioperators, proposed in
the literature. In particular we obtain a counter-fré) A characterization for the logic
MTLC+Past (with past operators). Recall that the syntax of the I0dTL +Past(3)
is:

0 :=al|(0U0)|(0510)]|-0](6V0),
wherea € ¥ and! € Zg.,. The logic is interpreted over timed words 72", and the
modalitiesU; (and symmetricallys;) is as follows:

ot EOUMm ff W >t:t'—tel ot En andVt’ t <t/ <t ot EH.

We recall thatMTL®+Past was shown to be expressively equivalent to the logic
rec-TLTLS(X, {<, ©}) in [CDPO06], where the recursive operatd@rsand< are defined
asO(M,o,t) = {t' —t|t' > t,t € pos(M,0)} and&(M,o,t) = {t —t' |t/ < t,t €
pos(M,o)}. Thus we have:
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Theorem 6.3 The class of timed languages definablerby CFIDA(X, {<¢, ¢}) and
MTLC¢+Past(X) are the same.

Restricting to non-singular intervals we obtain a simi&sult for the logicMITL +Past
[AFH96].

7 Ultimate stability of MTL +Past

In section 6 we showed that evel§TL +Past language is recognized by a recursive
counter-freeCIDA. We will now use this characterization to show tligmate stability
of MTLC+Past with respect to periodic sequences of timed words. In thiice we
assume thaX is an alphabet an&op a set of finitely-varying recursive operators.

A periodic sequencef timed words(s;) is of the formuw, uvw, uv?w, - - - for
some timed words, v andw in TX*. We represenfo;) above via the tripléu, v, w).
A language of timed wordé C T'>* is said to beultimately stablew.r.t. a periodic
sequencéo;) if there existsy € N such that eithe¥i > iy, o; € LorVi > ig, o; ¢
L. The languagd. is said to beultimately stablef it is ultimately stable w.r.t. all
periodic sequences of timed words.

Theorem 7.1 Letp be anMTL®+Past formula. ThenL(y) is ultimately stable.

The rest of this section is devoted to the proof of the abogerdm. By theorem
6.3 we just need to show that all languages recognizecttC'FIDA are ultimately
stable.

We first introduce the concept of middle zone: it represemsset of time points
“in the middle” of a timed word. Amiddle zones a coupleZ = (I,r) with [,r € R.
Given a timed wordv we defineZ (w) = (I, dur(w) — r).

l Z(o) r

D ——
1 [va 11
F Tt T

Figure 1: A middle zone

A floating languagel. C T3* x R is said to bewell-behavedw.r.t. a periodic
sequencéo;) = (u,v,w) if there exist a middle zong and an index, such that the
following conditions hold:

ViVi' > iVt € Z(0;), (04,t) € L < (04,t+ dur(v)) € L and 1)
(04,t) € L& (04,t) € L.

Vi >ig Vi’ > iVt <1, (04,t) € L & (op,t) € L. @)

Vi > ig Vi’ > iVt <r, (0, dur(o;) —t) € L < (04, dur(oy) —t) € L. (3)

A floating languagéd. is said to bewell-behavedf it is well-behavedv.r.t. all pe-
riodic sequences. Note that a guaxd defines a floating language given b, ¢) |
o,t = A}, We say that a floating FCIDA (resp. a guard) isell-behavedv.r.t. a pe-
riodic sequence if its associated language is. Similarlgayethat a floating’FCIDA
(resp. a guard) isell-behavedf its associated language is.

Given a proper symbolic alphabEtand a timed wordr we notey. the unique
symbolic wordy € I'* such that € tw(7).

13



Lemma 7.1 Let G be a finite set of guards arid be a proper symbolic alphabet over
(3, Rop) based onG. Let {(c;) be a periodic sequence. If for gl € G, g is well-
behaved w.r.t{c;) then there exists an integéy and~1, v2,v3 € I'* such that for all

i—1ig

i >0, Y, = NV2 s O

Note that this lemma shows that if for allc G, g is well-behaved w.r.t{c;) then
any floating automaton based 6his well-behaved w.r.t{c;).

Lemma 7.2 Let B be a proper canonical fCFIDA ovei:, Rop) and I an interval. If
B is well-behaved, then the guards; and &% are also well-behaved.

Proof Let (0;) = (u,v,w) a periodic sequence, we show tia;, is well-behaved
w.r.t. (o;), the case of>% is similar. We have to show that there exists a middle zone
Z = (I,r) and an inde, such that:

ViVi' > iVt € Z(0;) o4t = Ok & 04, t + dur(v) = O and
ot = Ok & ou,t = OL.

Vi>igVi' > iVt <logt = Ok & op,t = Ok. 2)

Vi > ig Vi’ > iVt < 1oy, dur(o;) —t | Ok & o, dur(oy) —t = Ok (3)

)

B is well-behaved by hypothesis. L&k = (I3, 75) be the middle zone foB. Let
M be areal greater than the boundd oWe defineZ = (Ig,r5 + M + dur(v)).

s Z > M + dur(v) B

14
T

K

Figure 2: Choice of/

Let4,t be such that € Z(o;) and suppose;,t = L. We show thaw;,t +
dur(v) | O (other direction is similar).

We have thafit, > t with (0;,t1) € LF/(B) andt, — t € I. We distinguish two
cases:

o i1 € Zp(o;)
As Bis well-behavedo;, t; + dur(v)) € LF(B) and we have that + dur(v) —
(t+ dur(v)) =t; —t € I. Thuso;, t + dur(v) | O%

eI
o t1 & Zp(o;)
Thent; —t > M, so necessarily = (¢, +o00) or I = [¢,+00). Asty — (t +
dur(v)) > M, 0;,t + dur(v) E L.




A similar reasoning shows thaf, t = O%.
We now show how to choosg and prove property2) (showing property(3) is

similar). We take, € N such thaty > ig anddur(Z(y;,)) > M (so that the time of
the middle zone is greater thad for i > ig). Leti > ig,7’ > i,t < [ and suppose
o;,t = OL. Then3t; > t with (0y,t1) € Lf'(B) andt; — t € I. We distinguish two

cases:

oty < dur(o;)—r
As B is well-behavedo;/, t1) € L'(B) and sooy/, t |= Of

o t1 > dur(o;) —r
Thent; —t > M and necessarily = (¢, +o00) or I = [¢, +00).

Sett] = dur(o;) — t1. (04, dur(o;) — t}) € L'(B) so asB is well-behaved

(o4, dur(oy) —t,) € LY(B). Moreover(dur(a; ) —th) —t > (dur(o;) —t;) —
t=t; —t> M thuso,,t | OL. O

Returning to the proof of theorem 7.1: |Btbe recognized by somec- CFIDA
A and(o;) be a periodic sequence. LEtbe the proper symbolic alphabet 4f by
lemma 7.1 and 7.2 there exists an integeand~, 2, vs € I'* such that for alf > i,
ﬁi = 174" ~3. Letn be the number of states gf. ~, cannot be a counter fod so
for i greater thari, + n, the run of4 ono; ends in the same state. Thlgs ultimately
stable w.r.t.(o;). O

We justify here why CFCIDA’s were defined to
include only fully canonical proper words. Had
we allowed words which are not fully canonical,

CFCIDA’s would not have been equivalent¢0°. (a,T)
Alongside is a prope€IDA which is not fully canon- @
ical but the underlyingT-NFA is counter-free. It ac- Nﬂ (e, T

cepts the timed languadg consisting of timed words

with even number ofi’s. This language is not ul- @

timately stable with respect to the periodic sequence
(¢, (a,1),€), and hence is not definable MTL®+Past
and therefore not definable TFO°¢({a}, {4 }).

We also note that, unlike classiddIL, ultimate stabil-
ity of a rec- CIDA(<, ©) language is not a sufficient

condition for MTL®+Past recognizability. Consider
the timed languagé- consisting of timed words end-!t
ing with ana at time1 and having even number 6%

in the interval(0, 1). This language is recognized by a
rec-CIDA over {<}. However it can be shown to be
inexpressible iMTL+Past and hence not recognized

A(C, )

+9)

by arec-CFIDA over{<}. Nevertheless it is trivially
ultimately stable.

The Venn diagram alongside shows the different classemeftianguages.
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