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Abstract. It is well known that varieties of rational languages are in one-to-one correspondence
with varieties of finite monoids. This correspondence often exicnds to operations on languages
and on monoids. We investigate the special case of the product of languages with counter, and
describe the associated operations on monoids and varieties.

Résumé. On sait que les variétés de langag:s rationnels sont en correspondance bijective avec les
variétés dz monoides finis. Cette correspondance s’étend 2 de nombreuses opérations sur les
langages d’une part, sur ies monoides d’2utre part. Nous étudions le cas particulier du produit
de langages avec compteur, et nous décrivons I"opération associée, sur les monoides et sur les
variétés.

Introduction

The theory of formal languages is one of the bases of theoretical computer science.
A central problem of this theory has been, since the origins in the 1950s, the
classification of rational languages. A very important tool for this task is the use of
the syntactic monoid M(L) of a rational language L on an alphabet A. Indeed,
many combinatorial properties of L correspond to algebraic properties of M(L).
Eilenberg systematized this correspondence, and showed in 1975 that there is a
one-to-on¢ relation between certain families of finite monoids, called M-varieties,
and certair: families of rational languages, called *-varieties.

Numercus instances of this correspondence have been studied in detail since,
such as the algebraic characterization of piecewise testable languages [14], locally
testable languages [3,7] or, conversely, the combinatorial characterization of
languages whose syntactic monoid is R-trivial [4, 2], whosc syntactic monoid con-
tains only solvable groups [15].

Following these ideas, the correspondence between certain operations on
languages and certain operations on monoids or M-varieties has been studied, and
in particular the relationship between concatenation products and Schiitzenberger
products [18], unambiguous products and locally trivial morphisms [12] or inverse
literal morphisms and power monoids [16].

* This work was supported by the P.R.C. Mathématique et Informatique.
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This paper is a contribution to this study. We investigate the following opei2iion
of product of languages with counter:

L,,....,L,»(Lia,L,...a,,L,),

where L,,..., L, are languages, a,,...,a,_, are letters, r, p, k are integers and
(Lia,L,...a,-,L,),,x is the set of words w such that the number of fi.ctorizations
of was u,a,u,...a,_u, with 4; in L; (1<i<n) is congruent to r mod k threshold
p. We describe the associated monoid operation, and prove that these two operations
are in correspondence (in Eilenberg’s sense) at the variety level.

1. Preliminaries

All monoids and semigroups considered here are ecither free or finite. In this
section we recall briefly basic concepts and classical results of rational language
theory. For general surveys of the theory, including proofs for those stated here,
see 4, 6, 8].

1.1. Recognizable and rational languages

Let A be a finite alphabet. A* and A™ denote respectively the frez monoid and
the free semigroup over A. A language is a subset L of A*. A language L in A*
(resp. A") is said to be recognizable iff therc exists a finite monoid (resp. semigroup)
T and a morphism 7: A*> T (resp. A" > T) such that L= Lnn~". In that case, we
say that T (or n) recognizes L. L is recognizable iff it is a =:vion ¢f classes of some
finite-index congruence of A* (resp. A"). The syntactic congruence ~, is the coarsest
congruence that saturates L and the syntactic monoid M (L) (resp. syntactic semi-
group S(L)) is the quotient A*/~, (resp. A*/~,). In particular, M(L) (resp. S(L))
is the smallest monoid (resp. semigroup) recognizing L.

The class of rational languages of A* (resp. A") is the smallest class containing
the languages {a} (a € A) and closed under union, concatenation product and star
(resp. plus). Recall that if L is a language, then L* (resp. L") is the submonoid of
A* (resp. subsemigroup of A") generated by L. Kleene [5] showed that a language
is recognizable iff it is rational. A corollary of this fact is that the cliass of rational
languages of A™ (resp. A") is closed under boolean operations.

1.2. Varieties

The fact that certain subclasses of rational languages correspond to certain classes
of monoids or semigroups was first illustrated by Schiitzenberger [13]. He proved
that star-free languages (those languages that can be obtained from finite languages
using only boolean operations and concatenation products) are exactly the languages
whose syntactic monoids (resp. semigreups) are aperiodic, i.e. group-free.

Eilenberg [4] showed that this fact is a particular case of a general phenomenon
by introducing the concept of varieties.
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An M-variety (resp. S-variety) is a class of finite monoids (resp. semigroups) that
is closed under sub, homomorphic image and finite direct product.
A *-pariety (resp. +-variety) V' is a family A*¥" (resp. A*¥") of classes of languages
of A* (resp. A") defined for all finite alphabets A, and such that
(1) A*7 (resp. A" V") is a boolean algebra;
(2) if ¢:A*> B* (resp. A*> B") is a morphism and if Le B*V (resp. B* V),
then Lo '€ A*V (resp. A" V),
(3) if Le A*V (resp. A*7') and a€ A, then both a 'L and La™' are in A*7
(resp. ATY).

Theosem i.i. Let V be an M-variety (resp. S-variety) and W be a *-variety (resp.
+-variety).

(1) If A*V (resp. A* V') is the class of all languages that are recognized by some
element of V, then V' is a *-variety (resp. +-variety).

(2) If W is the class of all syntactic monoids of languages of A*W (for all A),
then W is an M-variety (resp. an S-variety).

(3) The correspondence V- V' is one-to-one and onto between the class of all
M-varicties (resp. S-varieties) and the class of all =-varieties (resp. +-varieties).

1.3. Operations on languages and varieties

A large field of investigation of Eilenberg’s variety correspondence is provided

by the study of operations on languages (see in particular [11]). For a given operation
(Lla seey Ln)—)op([‘ls' LI Ln)

one tries to describe a monoid operation Opy, such that Op(L,, ..., L,) be recog-

nized by Opy(M(L,),..., M(L,)), and such that all languages recognized by

Opum(M,...., M,) can be described using only Op and languages recognized

separately by M,, ..., M,.

Among the main results of this kind, we may cite the following. To the operation
[16] L- Lo where ¢ is a literal morphism, is associated the monoid operation
M - P(M). To the operation [18]

(L,,...,L,)»LyaL,...a,,L,
where a,, ..., a, are letters, is associated the Schiitzenberger product
M,,.... M)->C (M, ..., M,).

We shall not explicitly define this product in this section, as it is a special case

of the operation that we investigate.

2. Products with counters

2.1. An operation on languages

The operation on languages presented here generalizes Straubing’s product -[18]
and extends slightly an operation introduced in [9, 10]. It was also considered in [19].
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Recall that, if p=0 and k=1 are integers, Z,, denotes the semiring of integers
mod k threshold p. If r, s are non-negative integers, we write r=s (mod p, k) if r
is congruent to s mod k threshold p.

LetL,,..., L, be languages over A (n=2), and q,,...,a,-, be letters in A. Let
also r,p=0, k=1. We define (L,a,L,...a,_,L,),, to be the set of all words u in
A¥ such that the number of factorizations of u in the form

u=uaq,yu... a,u,

with u; € L; for all 1<<i=<n, is congruent to r mod k threshold p.

If the L;s are all in A" and we are considering recognition by semigroups, we
shall implicitly consider, in the definition of (L,a,L,...a,_,L,),,x, the word u to
be in A". A special case of this operation is the (counter-free) product
LaL,...a, L, whichis equal to (L,a,L,...a,_,L,); ;-

The idea of considering products with counter is not new. In particular, Eilenberg
considered such products with all the L;s equal to A* and proved [4] that the
boolean algebra generated by the languages of the form (A*a,A*... ;,A%),,, (p
prime, r =0 and k > 0) is a *-variety that corresponds to the M-variety of all nilpotent
groups. In [21], Thérien considered similar ideas; from the point of view of a
congruential definition of varieties and in [22], he refined Eilenberg’s result to
describe the M-variety of nilpotent groups of class m. More receniiy, Pin [9, 10]
considered products of languages with counters to study the closure of the family
of open sets of A* under various operations. It was also considered in the work of
Straubing et al. [19].

2.2. An operation on semigroups

Let now Z be a semiring with unitand S, ..., S, be semigroups. Forall i<i=n,
we denote by S| the monoid equal to S; if S; is a monoid, to S; U {1} where 1 is an
identity, otherwise. Also we denoie by K the semiring Z[S)x---xS)] of all
polynomials over S} X - - - x S}, with coefficients in Z. (For the recognizing power
of K when Z is some Z,,, see [1].)

Finally, we define Z<$,(S,,..., S,) to be the subset of the semiring of (n, n)-
matrices over K consisting of all matrices m = (m; ;),<; j<. satisfying
® if i> j, then m;; =0;
® if i=j,then m;;=(1,...,1,s,1,...,1) from some s; in S;;
® if i<j, then m;€ Z[1x- - x1X 8! xS}, X+ -Six1x-+-x1].

Note that these matrices are exactly the upper-triangular matrices whose ith
diagural entry is an element of S; (not S}) und whose (i, j)-entry (if i <j) is a
polynemial with support in S} x - - -xS]. It is easy to check that 2 ,(S,,..., S,)
is a semigroup. It is 2 monoid if S,,..., S, are monoids.

Note also that two particular cases of this operation have been studied previously.
The first is relative to the case where Z = Z, , = B, the boolean semiring. Polynomials
in B[S} X - -xS§)] correspond to subsets of S}x---xS! and BC,(S,....,S,) is
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the classical Schiitzenberger product <,.{S,,...,S,). The second occurs when
Z=12Z,,=12Z, for some k and was considered in [9, 10].

In [21], Thérien presented an operaticn on congruences rather similar to the
monoid operation proposed here. The n arguments of the operation were equal and
it was used to give generating congruences for certain hierarchies within the M-
varieties of group-free monoids, solvable groups, #-irivial monoids anc nilpotent
groups. Note also that Eilenberg used the semiring of polynomials Z,[ S] in relation
to products of languages with counter in his study of p-groups [4].

IfV,,...,V, are S-(resp. M-) varieties, Z$,(V,,...,V,) denotes the S-(resp.
M-) variety generated by all products of the form Z<$ (S, ..., S,) with S, eV, for
all 1sisn

2.3. Main results

The main theorems of this paper are the following.

Theorem 2.1. Let n=2, p=0, k=1 be integers, and let M,, ..., M, be monoids. Let
1<si,<---<i<n, and let a,,...,aq be letters in A. Let finally L, ,...,L,,  be
languages in A* recognized respectively by M, ,..., M, . Then, for all r=0,
(Lia,L;,...aL,, ), px is recognized by Z,;<,(M,,..., M,).

Theorem 2.2. Letn=2, p=0, k=1 be integers, and let M, . .., M,, be monoids. The
languages i A* that are recognized by Z,, > ,(M,, . .., M,) are in the boolean algebra
generated by the languages of the form L, or (L,a,L,,...aL,.),,x where i =0,
1<i;<-:-<i,<n,a,,...,aqareletersin A and L, is a language of A* recognized
by M, fe- ali 1<sqg<n.

Section 3 is devoted to the proof of these theorems. Note that inthecase p=k=1,
i.e.Z,, =Z,,=B,both results are well known [13, 18]. A weaker version of Theorem
2.1 was proved in [10] in the case where p=0,i.e. Z,, =Z,, = Z,.

Theorems 2.1 and 2.2 can be reformulated in terms of varieties as follows.

Corollary 2.3. Let n=2, p=0, k=1 be integers and let V,, ...V, be M-varieties.
LetalsoW=12,,0,(V,,...,V,). Finally,let V; (1< i< r:) denote the *-variety associ-
ated to V;, and let AW be the boolean algebra generated by the languages of the
form Lyer (Lia,L,,...aL;,, ). ,x Withr=0,1<i,< - <i,<n,a,...,4¢€ A and
L,e A*V, for all g. Then W is a *-variety and the corresponding M-variety is W.

Note that these three results are stated in terms of monoids and languages in A*.
Analogous statements relative to languages in A™ and semigroups also hold. Their
proofs are identical to the ones we give below, up to the obvious changes.
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3. Procfs of the theorernis

3.1. Proof of Thecrem 2.1

Let M,, ..., M, be monoids and 5;: A* » M, (1 < i < n) be morphisms recognizing
languages L,. For each i=<i=<n, let P,=L;y. Let also 1<i;<:--<i<n and
a,...,a_, be ietters of A.

For each letier a of A, et us define au € Z,,$,(M,...., M,) by

a].L,»,,'=(l,...,l,a1],. 5 l),lf1< $n

au;=(1,...,1),ir i=i,, j=i,., and a=a, for some 1su<l;

~ — N ~slencesrion
u,u.,»J — U, UUHICIiWIdC.

We extend u naturally to a morphism from A into Z,, O, (M,, ..., M,).

Lemma 3.1. Letwe A™. If 1<j<i<n, then wu,; =0. If 1<i<n, ihen wu;; = wy,.
If 1<z<1< n and either i or j is not in {i,,..., i}, then wu,;=0. Finally, if i=i,

andi j= i forsomelsu<on<s l then wu. . is eqgual to V m, where the sum is extended
1, jorsom = Vi, ;IS equal At sum 1s extended

over all elements of the far.;z

m=(0,...,0,m 1,....0m 1. ....1,m,1,... 1)

'u+l’

(my, € M, for all k), and A,, is the number (calculated in Z,,) of factorizations of the
Jorm

W= W, Wy .- Ay Wy
withw,m, =m; ,...,wn, =m,.
Proof. Let w=b,...b,, m=1, b,,..., b, €A Then wu =(bu)...(b,u). Since
the matrices au (a € A) are upper-triangular, the statements relative to wp,; with

Jj<iorj=iare immediate.
If 1=si<j=<sn, we have

w""i.j = Z (blﬂ-'h(.,h,) LR (bmlJ'h,,, ,|.h,,,)-

i=hy---=h,=j

By definition of u, all the terms of this sum are zero if either i or jis not *n {i,, ..., i;}.
Let us now assume that i =i, and j=i, for some 1<su<v=<I Then

w"‘l‘i_j ZZ (l, ey l, (bl e bq“_‘)'ﬂ,‘", 1, sy 1, (bq"+| o b‘l~+| 1)7],'““,
11 fe 11 (bql+l e bm)’h,,, 1, LR 1‘

where the sum is extended over ail sequences 1 < ¢, < ¢, <" ‘' <gq.<m such that
b,, = a; for all u<i<uv. Thus the lemma is pioved. O
We can now prove Tneorem 2.1. Let 1sh<n and
Q = {m € Zp,k<>n(Ml 3¢ty Mn)l'nh,h € ‘Dll}
Then Qu ' =L,. Indeed, for we A*, wu isin Q iff wu,, =wy, izin P, ie.iffwe L,.
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Let now 1=<i<j=n and r=0. Let us denote by P the set
P=1X:XIXM;XIX: - XIXM_XIX"+XIXM;x1%x---x1.
Finally, let Q be the set of all the elements m of 2,0, My, ..., M,) such that

ml‘n = Z yxs
s Mx--x M,
withY v, =r(modp, k). Then Qu™'=(L,a,L,...a_,L,), .. Indeed, for we A*,
wpu is in Q iff the number of factcrizations

W=waiws>...aq; /W

with w,n; € P, ior all 1<h=<1is congruent to r mod k threshold p. We conclude
immediately by recalling that P, n;'=L, .

3.2. Proof of Theorem 2.2

This proof is inspired by the techniques used to describe the finite free object
over A of the variety Z$,(V,, ..., V,), when V,, ...V, are locally finite varieties.
This description will be the object of a later paper.

Let L be a language in A* that is recognized by a morphism u from A* into
Z,0,.,(M,,..., M,).

For each 1 =i < n, let F, be the subsemigroup of MMD generated by the elements
an;, (acA), where an,=(f(a));.nm?. We denote by n,:A*-=F the induced
morphism.

Lemma 3.2. Let u: A* > M, be a morphismi. There exists a morphism o : F, > M, such
that p = n,c..

Proof. Let f< M{ be the restriction of u to A. Then wu =y, where 7, is the
projection of M’ onto its f~component. [J

Note that F; is in fact the free object of the M-variety generated by M,.

We shall use Lemma 3.2 as follows. All clements of Z,,$,(M,,..., M,) are
upper-triangular matrices, and hence the mapping u,; from A* into M, (wp,; is the
ith diagonal entry of wu) is a morphism. So u;; = n,«; for some morphism «, from
F, into M,.

For 1<lI<n-1, let R=A'={(a,,...,a)la,,...,qyc A} and §/=
iy, in)ll =i <iy<in, =n).

Forac A, 1<l<a—1.r=(a,,...,a)e R and s=(i\,..., i) €S, let us definc
a6™ in Z,,O,(F,,..., F,) as follows. If 1<i=<n, then afjj =an; if Isi<j=sn,
then adf=(1...., 1) if i=1i,,j=i,+, a = a, for some 1 <u</; ab;; =0 otherwise.
Then, we have the following.
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Foamma 22 Totwe AV IF1<i<sn then wA™  =uwmn. If1<i<i<n then w8 =0
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£ neide not in ¢ (Mhorwico i=i i=1 forsome l<u<v<I+1 and
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rs il
wo 2_‘ MWy
£ o v B ow.eox F
(Wyoawy JEFy X Fy

7 a - - - - - 2\
X(1, ..., L,w, b, .o, Lweey, 1,0, 1, w,,1,0..,1)

where A, isthe number (calculatedin Z,,) of factorizations w = X,a, X+, . - . @y_1%,
with x,m;, = wy for all u<q<w.

Proof. The result concerning w7 is immediate. Let then 1<i<j<n and let
w=b,...b, (b,,..., b, in A).
WG::— > (b6 ;;:hll . (bn07 S

i=hy<hy<--<h,=j

By definition of 6"°, all the terms in this sum are zero if i or j is not in s. Let us
then assume that i =i,, j =i, for some 1<u<v=<I+1. Then, by definition of 6™,
we have

la"'aiy( q,,_,,+l""Dm)ni,,ais-",l)

where the sum is extended over all sequences 1=<g¢q,<---<q,_, <m such that
b, =a,, b,=a,.,,..., b, ,=a,. This proves the lemma. [

We shall now make precise the relationship between u and the 6™ ({7, s)€ R, X
S,i<isn-1).

Famamnen 2A T o4 o Ve AT ThLow o =yl e iF NS = T ANS Lo Al (e N By ©
LEeMma .2 L€l W, WEA Inen, Wi =wu iy wo o =Wu T jJor du \I,S5j& X5,
Ve e a1
1L=t=n 1.

Proof. If 1<i<n

n, then wu,; = wl7 a;. So, wd"™ = w'8"™ implies wu,; = w'y,,
Let now I1=<i<j=sn Ilfw=b,...b, (m=1,b,,...,b,, in A), we have

- — 12 2 by N/ L A\ Y S A 2 A \
w#"d _z-‘ \\Ul et D‘ll_|}Miu-iu}\D‘Jluimlu#»l}kkvql+l b DqZ—l)lLiu+|‘iu+2} -

(bqv_l.“‘il,,.‘,iv)((b S I D “ib,iv)

where th is extended over all sequences i=i, <i, ;<:-:-<i,=

'FD

sum

g,<-:-<g,_,<m. This can be rewritten as

WL =Z (Wuai,,)(auﬂfi,,.i.,,,)(Wuﬂa.,,,,.) .. (au—1#,'[_.,.'1,\)(Wuaiv\)
where the sum i5 over all sequences i =i, <:--<i,=j, 1< u <wv=<n,and all factoriz-
ations w = xua,‘x,m ...a,_yx,suchthata,,...,c ;e A, x,,...,x, € A%, and x,m; =
Wiy oo oy XpTi, = W,

But the condmon woi; =w'0}; for all (r, s) implies that the number of factoriz-
ations w =x,a,X,+, ... a,_,X, with x,m, =w,, ..., x,m;, =w, on one hand, and the
number of factorizations w'= x,a,X,,,,... a, ., x, with x,m, =w,,.. .,x.n, =w,on
the other hand are congruent to one another mod k threshold p. So wy, ;= w'n, ;. O
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Let us now return to the language L recognized by pu. L is a finite union of mp !
where meZ,,$,(M,, ..., M,). Each mu™" in its turn is a finite intersection of
elements of the form m(6;;)”', with m in Z,, O, (F,, ..., F,).

If 1<i<n, then m(6}7)"'=m; ;! and hence is a language recognized by F;.
Since F; divides a finite direct product of copies of M,, m(07;)" is in the boolean
algebra generated by the languages recognized by M,.

Let now 1<i<jsn, 1slsn-1,r=(a,,...,q)eR and s=(i,,..., i) €S,
Let us assume that

mi,j-:ZaW“,..,,W‘,(]:‘ T°s 19 Wy, !9= °c 5 15 wu+la 1,. Tt 15 wv’ 19' A ] 1)

where the sum is extended over all i=i, <i,,, --<i,=j and all elements
(Wys ..., w,) of F, X F,  x---xF,. After Lemma 3.3, we m(87;)™" iff the number
of factorizations of the form

W=X,a,X041 ... Ay_1 X,

with X7, = Wy, ..., X1, =W, is congruent to a, _, mod k threshold p, for all

w,eF,, w,.,€F, ..,w,€F,. So m(67;)7" is a finite intersection of languages
of the form

u+1? *

(LuauLu+l o au—lLv)r,p,k

with L,,..., L, respectively recognized by M, ,..., M, .

4. Conclusion

The operativn on monoids introduced in this paper, although somewhat complex
to manipwia:z, corresponds to a simple and natural language operation. In a later
paper, we will revicw the applications of this operation to the ciassification of
rational languages.

However, we can mention briefly here that this uniform way of dealing with
products of l.:nguages allows us to reformulate certain classical results on group
languages (languages whose syntactic monoids are groups), and gives a new proof
of some of their corollaries. Let m=1 and let p be a prime. We let G, (resp.
Git.m > Gnil, Gso)) be the M-variety of p-groups (resp. nilpotent groups of class m,
nilpotent groups, solvable groups) and we let 1 be the trivial M-variety, consisting
only of {1}.

Straubing’s characterization of the ianguages of solvable groups [17] can be
restated as: G, is the least M-variety V such that Z,0.(V,I)=V for ail n. The
semidirect product G, *V is the least M-variety W containing V such that
Z,0,(W, I)=W,

Also, Eilenberg’s result on p-groups and nilpotent groups [4] can be restated as:
G, is the least M-variety containing Z,O (L, ..., ) for all k=1. G,; is the least
M-variety containing Z,$(,..., ) for all k=1, q prime.
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Thérien’s refinement of this result [22] is equivalent to: G,; , is the least M-variety
containing Z,$ (L, ..., 1) for ali n=2.

This presentation of Thérien’s result make its corollary (in [22]) both natural and
immediate. Let G, be the set of (k, k)-upper triangular matrices with coefficients
in Z, and diagonal coefficients equal to 1. It is immediate that G, , =Z,0,{1,...,1).
So we have: G, (resp. Guir, Gnii,m) is generated by the G, i, k=1 (resp. by the G,
k=1 and q prime, by the G, ., n=2}.
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