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Abstract. It is well known that varieties of rational languages are in one-to-one correspondence 
with varieties of finite monoids. This correspondence ofte- ., extends to operations on languages 
and on monoidc. We investigate the special case of the product of languages with counter, and 
describe the associated operations on monoids and varieties. 

R&emi. On sait que les varietes de IangagEs rationnels sont en correspondance bijective avec les 
varietes de monoi’des finis. Cette correspondance s’etend a de nombreuses operations sur les 
langages d’une part, sur ies mono’id es d’zutre part. Nous Ctudions le cas particu!ier du produit 
de langages avec compteur, et nous decrivons I’operation associee, sur les monoi’des et sur les 
varietes. 

The theory of form al languages is one of the bases of theoretical computer science. 

A central problem of this theory has been, since the origins in the 19X?s, the 

classificpfior? of rational languages. A very important tool for this task is the use of 

the syntactk monoid M(L) of a rational language L on an alphabet A. Indeed, 

many combinatorial properties of L correspond to a!gebraic properties of M(L). 
Eilenberg systematized this correspondence, and showed in 1975 that there is a 

one-to-one relation between certain families of finite monoids, called -varieties, 

and certak families of rational languages, called *-varieties. 

Numercus instances of this correspondence have been studied in detail since, 

such as the algebraic characterization of piecewise testable languages [14], locally 

testable languages [3,7] or, conversely, the co 

languages whose syntactic monoid is ,%-trivial [4, 
tains only solvable groups [ 151. 

hese ideas, the correspondent 

certain operations on monoids or 

in particular the relationship between concatenatio 
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This paper is a contribution to this study. We investigate the following ope;sa’cion 

of product of languages with counter: 

L I,.“‘, L,, -+ (LlalL2.. . a,-,Li,,h 

where L’, , . . . ) L, are languages, a,, . . . , a,_, are letters, r, p, k are integers and 

(&a&. . . klLLpk is the set of words w su.ch that the number of f;;ctorizations 

of w as ulalu2.. e a,‘+, with Ui in Lj (1 4 id n) is congruent to r mod k threshold 

p. We describe the associated monoid operation, and prove that these twu o 

are in correspondence (in Eilenberg’s sense) at the variety level. 

reliminaries 

All monoids and semigroups considered here are either free or finite. In this 
section we recall briefly basic concepts and classical results of rational language 

theory. For general surveys of the theory, including proofs for those stated here, 

see [4,6, $1. 

1.1. Recognizable and rutional languages 

Let A be a finite alphabet. A* and A’ denote respectively the free hmonoid and 

the free semigroup over A. A language is a subset t of A*. A language k in A* 
(resp. A’) is said to be recognizable iff there exists a finite monoid (resp. semigroup) 

T and a morphism 7 : A* + T (resp. A” + T) such that L = iq$. In that case, we 

say that T (or 77) recognizes L. L is recognizable iff it is a *:Gon of classes UC some 

finite-index congruence of A* (resp. A’). The syntactic congruence hL is the coarsest 

congruence that saturates L and the syntactic monoid M(L) (resp. syntactic semi- 

group S(L)) is the quotient A*/- L (resp. A+/- L). In particular, M(L) (resp. S(L)) 

is the smallest monoid (resp. semigroup) recognizing L. 
The class of rational languages of A* (resp. A+) is the smallest class containing 

the languages {a} (a E A) and closed under union, concatenation product and star 

(resp. plus). Recall that if L is a language, then L* (resp. L+) is the submonoid of 

A* (resp. subsemigroup of A’) generated by L. Kleene [5] showed that a language 

is recognizable iff it is rational. A corollary of this fact is that the class of rational 

* (resp. A’) is c!osed under boolean operations. 

1.2. Varieties 

The fact that certain subclasses of rational languages correspond to certain classes 

of monoids or semigroups was first illustrated by Schtitzenberger [13]. 

that star-free languages (those languages that can be obtained from finite 
using only boolean operations a concatenation products) are exactly the languages 
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-uaried~l) is a class of finite monoids (resp. semigroups) that 

omorphic image and finite direct product. 
A *-variety (resp. -t s variety) ‘If is a family * ‘ilr (resp. A+ 2’) of classes of languages 

of A* (resp. A’) defined for all1 finite alphabets A, and such that 

(1) A* ?V (resp. A’V) is a boolean algebra; 

(2) if q : A* + B* (resp. A+ + B’) is a morphism and if L E B* w” (resp. B+ Y), 

then Lrp-’ E A* V (resp. A?); 
(3) if LEA*T (resp. A’W’) and aEA, then both a-‘L and La-’ are in A*“V 

(resp. pL+ 7’). 

-variety (resp. S-variety) and ‘TV be a *-variety ( resp. 

+-varieiy). 

(1) IfA*T (resp. A+“Ir) is the class of all languages that are recognized by some 

*-variety (resp. i--variety). 
is the class of all syntactic monoids of languages of A* W (for all A), 

-variety ( resp. an S-variety). 

correspondence V + v is one-to-one and onto between the class of all 

-varieties (resp. S-varieties) and the class of all *-varieties (resp. i--varieties). 

1.3. Operations on languages and varieties 

A large field of investigation of Eilenberg’s variety correspondence is provided 
by the study of operations on languages (see in particular [ 1 I]). For a given operation 

(L..., Ll)+Op(L...,L,) 

one tries to describe a monoid operation Op, such that Op( El,. . . , L,) be recog- 

nized by Op,,(M(L,), . . . , M( L,,)), and such that all languages recognized by 

OPMW,...., AI,,) can be described using only Op and languages recognized 

separately by M, , . . . 3 Ad,,. 

Among the main results of this kind, we may cite the following. To the operation 
[ 161 L+ L<B where 50 is a literal morphism, is associated the monoid operation 

M + P(M). To the operation [18] 

(L,..., L,)+ L,a,L,...a,,_,L, 

where a,, . . . , a, are letters, is associated the Schutzenberger product 

UK..., M,,)-+%,UK.. .y 

We shall not explicitly define this product in this section, as it is a s 

of the operation that we investigate. 

n operation on languages 
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Recall that, if p > 0 and Ic 2 1 are integers, pk denotes the semiring of integers 

mod k threshold p. Ilf r, s are non-negative integers, we write r = s (mod p, k) if r 
is congruent to s mod k threshold p. 

Let &..., E, be languages over A (n 2 2), and CE~, . . . , a,,_, be letters in A. Let 
also r,pO, ka 1. We define (Qz&. . . Q~-&~),.~,~ to be the set of all words M in 
A* such that the number of factorizations of u in the form 

t4 = u,a,u2 _ . . a,_lu, 

with Mi E Li for all 1 G i s $1, is congruent to r mod k threshold p. 
If the Lis are all in A+ and we are considering recognition by semigroups, we 

shall implicitly consider, in the definition of (L,a, L2 . . . a,_1 Ln)r,p,k, the word u to 
be in A+. X special case of this operation is the (counter-free) product 
L,alL2.. . a,_,L,, which is equal to (L,a,L2...a,_,L,),,,,,. 

The idea of considering products with counter is not new. In particular, Eilenberg 
considered such products with all the Lis equal to A* and proved [4] that the 
boolean algebra generated by the languages of the form (A*a,A* . . . Q~A*)~,~,~ (p 

prime, r 2 0 and k > 0) is a *-variety that corresponds to the -variety of all nil potent 

groups. In 1211, Therien considered similar ideas; from the point of view of a 
congruential nition of varieties and in [22], he refined Eilenberg’s result to 
describe the ariety of nilpotent groups of class m. More recently, Pin [9, lo] 
considered products of languages with counters to study the closure of the family 
of open sets of A* under various operations. It was also considered in the work of 
Straubing et al. 1191. 

2.2. An operation on semigroups 

Let now 2 be a semiring with unit and S,, . . . , Sn be semigroups. For all 15 i =C ~2, 
we denote by Si the monoid equal to Si if Si is a monoid, to Si u { 1) where 1 is an 
identity, otherwise. Also we denote by K the semiring Z[S: x l l l x $1 of all 
polynomials over S,’ x l l l x S), with coefficients in 2. (For the recognizing power 
of K when 2 is some P,k, see [II=) 

Finally, we define ZO,( S1, . . . , S,) to be the subset of the semiring of (n, n)- 
matrices over K consisting of all matrices m = (m,i), sii,j< n satisfying 

if i >j, then mi,j ~0; 
if i=j, then m,j=(l,..., l,si, l,.,., 1) from some si in Si; 
ifi<~,thenm~,j~Z~1X~~~~1~S~~S,‘+,~~*~S,~~1~*~~~1]. 
Note that these matrices are exactly the upper-triangular matrices whose itk 

iag:+nal entry is an element of Si (not S)) and whose (i,j)-entry (if f <j) is a 
polynomial with support in S: x l l . XS,!. ItiseasytocheckthatZ’O,(S,,...,S,) 

t is a monoid if S, , . . . , S,, are monoids. 

have been studie 
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the classical Schtitzenberger product O,$?, , . . . , S,,). The second occurs when 

k for some k and was considered in [9, I;b]. 

In [2lj, Therien presented an 11 operation on congruences rather similar to the 
monoid operation proposed here. The n arguments of the operation w 

it was used to give generating congruences for certain hierarchies w 
varieties of group-free monoids, solvable groups, $-trivial monoids and nilpotent 

groups. Note also that Eilenberg used the semiring of polynomia ,,[ S] in relation 
to products of languages with counter in his study of p-groups 

If v l,*=*, -) varieties, ZQ,( . , V,,) denotes the S-(resp. 
WI-) ;lariety generated by all products of the form ZO,,(S, 5 . . . , S,) with S, E 

all 1 s i s n. 

2.3. MWain results 

The main theorems of this paper are the following. 

Let n 2 2, p 2 0, k 2 1 be integers, and let M,, . . . , M,, be monoids. Let 

it+, c n, and !et a,, . . . , al be letters in A. Let jnally Lj, , . . . , Li,+, be 

languages in A* recognized respectively by M;, , . . . , Milt, . Thm, *for all r 2 0, 

UG,aA,. . . ark,, , ) r,p,k is recognized by p.kWM19 l - - 9 M,). 

heorem 2.2. Lel n S 2, p 2 0, k 3 1 be integers, and let M, , . . . T M, be monotds. The 

languages ii? A* that are recognized by Z&Ok( MI, . . . , M,,) are in the boolean algebra 

generated by the languages of the form Lh or ( Li,aI L;, . . . arLi,J ,)r.P,lr where r 3 ‘1, 

1 S iI < l 9 - < i,+, S n, a,, _ . . , al are !et:~rs iti _A and L, is a language of A* recognized 

by M,fc;-ccl Hqsn. 

Section 3 i; devoted to the proof of these theorems. Note that in the case p = k = 1, 
both results are well known [ 13,l A weaker version of Theorem 

[lo] in the case where p = 0, i.e. 

Theorems 2.1 and 2.2 can be reformulated in terms of varieties as follows. 

p 2 0, k b 1 be integers and let -varieties. 

V,). FinallyJet Vi (I s i s n ) denote the *-variety associ- 

4; be the boolean az’gebra generated by the languages of the 

form Lh or (Li,al L,, . . . aILi,+,)r7p,k with r 2 0, I S i, i l l * < ii +, s n, 

L, E A”“I/i for all Then W is a *-variety a e corresponding 

Note that these three 

Analogous statements relati 

fs are identica 
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3.1. f+oqf of newem 2.1 

Let Ad,, . . . , Se monoids and vi : A* * ( 1s c‘ s n) be morphisms recognizin 

languages Li. each Mi<n, Bet Pi= vi. Let also II d i, < l l = < irG n an 

a1 9 . . . , aI_ 1 be ietters of A. 
a of A, let us defi 3 by 
, i2Q, I,..., I), if 

@L,j=(1,..., l),iFi=i,,j=i,,+, 

a/li,l = 0, otiaerwise. 

for some 1 s u < I; 

We extend p naturally to a morphism from A* into &,,(M,, . . -, M”). 

L.e: w E A'. If 1 ~j < is PI, then Wp;,j = 0. lf 1 G is n, then &o?c1L,i = w~i. 

If 1 d i <j 6 n and eiaher i or j is riot in {i, , . . . , iI), then W/Li,j = 0. I=inally, if i = i,, 
astd j = i,.for some 1 c u < v s l7 then wt’pt[ , ._ is equal to 1 h,,,m, u*lraere the sum B’s extended 

otvr a!1 e!emeHs of the form 

Ml =(1,. . l , 1, fn:,,, 1,. . . , 1, mi,,+,, 1,. . . , 1, Wli,., 1,. . . , I j 

(m, E ntf,, for all II), and h,, is the number (calculated in p.k ) of factorkathns of the 

f OP??! 

n9 = w,,a,, w,,, , . . . a, _ , n’, 

With WI~qII,, = m,!, , . - a , n’,.qi, = mi( . 

roof. Let w = b,. -. b,,, rnal, b ,,.. . , b,,, E A. Then wp = (b,p) . . . (b,,p ). Since 

the matrices ap (a E A) are upper-triangular, the statements relative to w~~,.~ with 
j<iorj=f are immediate. 

If lai<jsin, we have 

tvPi..j = c uw,,,tJ l - * uwt*,,, ,,h,,,)* i = /I,,-2 . -. - /I,,, = j 

y definition of p, all the terms of this sum are zero if either i or j is not 31 {i, , . . . , i,}. 

Let us now assume that i = iii and j = i, for some 1~ u c v 5 1. Then 

where the sum is extended over all sequences 1 s qU < qU+l < l l l < qr s m such that 

bq, = ai for all u s i c v. Thus the lemma is pI Jved. 0 

‘e can now prove Tneorem 2.1. Let 1 s h s n and 
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Let now lsi<jSn and r 2 0, Let us denote by B the set 

P==gx-*-xlx ,x1x** -xlxM,.xlx*~*xlxM,,xlx~-xl. 

Finally, let Q be the set of alll the elements m of P,lO,,( M,, . . . ) Mt,) splcj~ that 

G&h C,, Pq = Y (mod p, k). Then Qp-’ = (Li,alLi, . . . al_ I L,,)rqp,k. Indeed, for w E 4*, 
wp is in Q iff the: number of factorizations 

w = wIali w2 . . . aI__I wI 

with M’/aqi,, E P,,, ior all 1 s la s I is congruent to Y mod k threshold p. We conclude 

immediately by recalling that Pi,i,rl,’ = L,,,. 

This proof is inspired by the techniques used to describe the finite free object 

over A of the variety ZO,,( , , . . . , V,,), when . , V, are locally finite varieties. 

This description will be the object of a later paper. 

Let L be a language in A* that is recognized by a morphism p from A* into 

qkkOAM 9 l - l 9 MA 

For each 1 c i c ra, let F;- be the subsemigroup of MI h’Y generated by the elements 
q, (a E A), where aqi = (_f( a))f, hf ;. We denote by q, : A* 2 F, the induced 

morphism. 

emna 3.2. Let p : A* + Mi be a mor,nhfsm. There exists a morphism CY : F, -+ M, SUCK 

that b_c = Tide 

roof. Let f~ MA be the restriction of p to A. Then p = Tin/., where q is the 

projectiolt of M 1 ‘hi ‘: ’ onto its f-component. 0 

Note that Fi is in fact the free object of the -vaTi ety 

We shall use Lemma 3.2 as follows. All elements of 

upper-triangular matrices, and hence the mapping pi,i from 

al entry of wp ) is a morphism. SO pi,i = VlLyi for some morphism ~2~ from 

For l<kn--l 9 let RI = A’ = ((a, ?. . . , ii,)lq, _ . . , al c and s,= 

{( 
. 
‘1,*--t il+l)) 1 = i, S i,S i,+, = n}. 

Fora+, !‘!szY~,. r=(ar,...,al d s = (i, , . . e $ iltll ) E S,, let ~1s define 

/)ciO*(Fs,. 0. ‘) S n, then a@:;; = aq,; if 

j.= i,,+, , a = a,, e’ I S iv S I; aOz,’ = 
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emna 3.3. Le? w E A+. If 1 S i S n, then wezf = Wqi. If 1 S i <j 4 n, &en wfl:J = 0 

ifiorjisnotins. Otherwise, i=iU,j=iuforsome 1<u<v~H-~ and 

we;; = c \ ‘- s,, ,...* WL, 
l Wm..., WL, ) E F,,, x * * * x F, 

X(1 , l l l $1, w,, i, l . l ,I, w,+1,1,. . . , 1, WL;) 1,. . . ,I) 

wherp A ‘ri ,,,..., wL, is the number (calculated in p,k) ofjhctorizations w = x,a,x,+, . . . n,_,x, 

with Xqqi,, = 3~~ for a41 u s q s V. 

roof. The result concerning we:;: is immediate. Let then 1 s i <j s n and let 

W= b , . . . b, (b ,,..., b, in A). 

&q; = c 
II nr.S 1 
\“lvho.h,! l - - &n@,f,_ ,,h,,,)* 

i = ho< h, s * . s h,,, = j 

By definition of Vs, all the terms in this sum are zero if i or j is not in s. Let us 

then assume that i = i,,, j = i, for some 1 s u < v s Z+ 1. Then, by definition of P, 

we have 

we:; =C (1,. . . , 1, (b, . . . bq,-h,,, 1,. . . 7 1, (bq,+l . . . bq2-hi,,+,, 

1 9 l l l 9 1, &“_,,+I l l l b,h”, 1, l l l 9 1) 

where the sum 

b 41 =a,, bqz=au 

is 

417 

extended 

b ‘0.7 qr-(, 

over all sequences 1 S q1 < l l l c: qv_u s m such that 
= a,. This proves the lemma. II 

We shall now make precise the relationship between p and the Or*’ ((i; s) E RI x 

S,, 1 6 k n - 1). 

Let w, W’ f .4+. 77~~9, wp = w'p if wer-" = wler*s for all (r, s) e 

lSlSn-1. 

If 1 s i G n, then Wpi,; = wei;fai. SO, we”” = ~‘0“~~ implies wp,i = W’pi,i. 

Letnowlsi<jsn.Ifw=b ,... b,(mH,b,, . . . . b,,inA),wehave 

wpij=C((bl... bYI-I)Eli,,.i,,)(bq,~i,,,,~,+,)((bqlfl l - l bq2-*)Pi,,+,,i,,+z) l l 

(bqr-,,~i,,-,.i,)((bq~,_,,+! l l l bn*)Pit,.i,) 

ere the sum is extended over all sequences i = i, < i,,, < l l l < i, = j and 1 s q, < 

i)‘z -c l l l < qL7--u d m. This can be rewritten as 

W/LiJ = C (Wu(Yi,,)(a,,t_Li,,,i,,+,)(w”+,a,,,+l) a . * (ao-liCLi,_,,i,.)(W,(Yi,) 

where the sum is over all sequences i = i, < l - l < i, = j, I s u < v s n, and all factoriz- 

ations w = x,a,,x,+, . . . a,_ IX, such that u,,, . . . 7 c -I E A, x,,, . . . , X, E A*, and Xuqi,, = 
W 143 l l l 7 Xuqi,. = w,* 

ut the condition we:.; = w’e: r all (r, s) implies that the number of factoriz- 

ations w = xuauxu+, . . . a,_,x,, wi = w, on one hand, and the 

orizations w’ = xi, 
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uage L recognized by p. L is a finite u 

-’ in its turn is a finite intersection of 
elements of the form &UK l l l 9 m- 

If PSiGpT, then m rn;,;qi,/ and hence is a language recognized by Fi. 
Since Fi divides a fini roduct of copies of Mi, pn( ezf)-’ is in the boolean 

algebra generated by ges recognized by Mi. 

Let now lsi<jGn, l=~kpl-1, ~=(a,,...,a,)~!?, and ~=(i~,...,i~+~)~§,. 

Let us assume that 

where the sum is extended over all i = i, c iU+, l l l ==c i, = j and all elements 

(WU, l l l 9 WV) Of Fi,, Y Fit,+, X l l s x Fi,; After Lemma 3.3, w E m( e?J)-” iff the number 

of factorizations of the form 

w=x,a,x,+,...a,_,x, 

Wit!: Xu77j 
1‘ 
= W,, l l l 3 X,Tj- = ‘v w, is congruent to q+.,,,...,,., mod k threshold p, for all 

we E Fi,,9 wu+f E Fi,,+l 9***9 W, E Fi,; SO m(e;;;)-’ is Li finite intersection of languages 
of the form 

with L,, . . . , L, respectively recognized by Mill, . . . ) Adit,. 

4. Conclusio 

The operation on monoids introduced in this paper, although somewhat complex 

to msnipuG.:, corresponds to a simple and natural language operation. In a later 

paper, we will revkw the applications of this operation to the ciassification of 

rational languages. 

However, we can mention briefly here that this uniform way of dealing with 

products of l.onguages allows us to reformulate certain classical results on group 

languages (languages whose syntactic monoids are groups), and gives a new proof 

of some of their corollaries. Let m Z- 1 and let p be a prime. We let p (resp. 
G nil,m 9 nil 9 d) be the -variety of p-groups (resp. nilpotent groups of class m, 

nilpotent groups, solvable groups) and we let -variety, consisting 

only of { 1). 

Straubing’s characterization of the languages of solvable groups [17] can be 
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is result [22] is equivalent to: ni1.m is the least -variety 

This presentation o& Thkrien’s result make its corollary (in [22]) both natural and 

diate. Let Gn,k be the set of (k, k)-upper triangular matrices ‘th coefficients 

equal to 1. It is immediate tli&t Gn,k = 

ni1.m) is generated by the Gp,k, k 2 1 (resp. by the G+ 

k> 1 and 4 prime, by the 6,,,, n 22). 

EHerences 

[ l] P. Blanchard, Morphismes et comptages sur les Iangages rationnels, J. Infirm. Process. Cybernef. 

23 (1987) 3-11. 
[2] J. Brzozowski and F. I-ich, Languages of s-trivial monoids, J. Cornput. Sysrem Sci. 20 (1980) 32-49. 

[3] J. Btzozowski and 1. Simon, Characterization of locally testable events. Discrete Marh. 4 (1973) 

243-271. 

[4] S. Eilenb,r,, p 0 Aultomata, Languages and Machines, VoC. B (Academic Press, New York, 1976). 
[5] S. Kleene, Representation of events in nerve nets and tit&e automata, in: Shannon and McCarthy, 

eds., Automata Studies (Princeton University Press, Princeton 1954) 3-51. 
[6] G. Lallement, Semigroups and Combinatorial Applications (Wiley, New York, 1979). 
[7] R. McNaughton, Algebraic decision procedures for local testability, Math. Syslems 7’7reory 8 (1974) 

60-76. 
[8] J.-E. Pin, Vat%?& de Langages Forrnels (Masson, Paris, 1984); Varieties of Formal Languages (North 

Oxford Academic, London, 1986) and (Plenum Press, New York, 1986). 
[9] J.-E. Pin, Finite group topology and p-adic topology for free monoidc, in: 22th KALP, Lecture 

Notes in Computer Science 194 (Springer, Berlin, 1985) 445-455. 
[IO] J.-E. Pin, Topologies for the free monoid, J. Algebra, to appear. 
[l l] J.-E. Pin and .I. Sakarovitch, Une application de la representation matricielle des transductions, 

Theorer. Comput. Sci. 35 (1985) 271-293. 
[ 121 J.-E. Pin, H. Straubing and D. Therien, Locally trivial categories and unambiguous concatenation, 

J. Pure Appl. Algebra 52 ( 1988) 297-3 11. 

[ 131 M.-P. Schiitzenberger, On finite monoids having only trivial subgroups, Infoi m. and Control 3 ( 1965) 
190-194. 

[ 141 I. Simon, Piecewise testable events, in: Proc. 2nd G.I. ConjI, Lecture Notes in Computer Science 
33 (Springer, Berlin, 1975) 214-222. 

151 H. Straubing, Varieties of recognizable sets whose syntactic monoids contain solvable groups, Ph.D. 
thesis, University of California-Berkeley, 1978. 

[ 161 H. Straubing, Recognizable sets and power sets of finite semigroups, Semigroup Forum 18 (1979) 
331-340. 

[17] H. Straubing, Families of recognizable sets corresponding to certain varieties of finite monoids, J. 
Pure Appl. Algebra 15 (1979) 305-318. 

[18] H. Straubing, A generalization of the Schiitzenberger product of finite monoids, Theoret. Comput. 
sci. 13 (1981) 137-150. 

[19] H. Straubing, D. Therien and W. Thomas, Regular languages defined with generalized quantifiers, 
in: T. Lepistii and A. Salomaa, eds , 15th SCALP, Lectl--e Notes in Computer Science 317 (Springer, 
Berlin, 1988). 

1201 D. Therien, Languages of nilpotent and solvable groups, in: PFOC. 6rh SCALP, Lecture Notes in 
Computer Science 71 (Springer, Berlin, 1979) 616-632. 

[21] D. ThCrien, Classification of finite monoids: the language approach, Theortr. Compu:. Sci. 64 (1981) 
135-208. 

[ 221 D. Therien, Subword counting and nilpotent groups, in: . Cummings, ed., C‘ornhimPorrc.~ on 

ogress and Perspectives (Academic Press, 


