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Pascal Weil Algebraic Extensions



Outline
Subgroups of free groups

Algebraic extensions of a subgroup
Some applications

Congruent subgroups
Takahasi’s theorem
Representing subgroups of free groups
A 3-line proof

Free groups

A an alphabet; F (A), the free group over A, is the set of reduced
words over A ∪ A−1, without factors aa−1 or a−1a

◮ F (A) has several bases, but all have the same cardinality, the
rank of F (A)

◮ Subgroups of free groups are free, but

◮ F2 contains Fn for every n ≥ 1, and also F∞

◮ an 7→ anbn is injective from F∞ to F2
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How does a (finitely generated) free group sit as a subgroup in
another?
If A is a basis of F and B ⊆ A, 〈B〉 is a free factor of F , 〈B〉 ≤ff F

◮ In F = F (a, b, c), H = 〈a, b〉 ≤ff F
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How does a (finitely generated) free group sit as a subgroup in
another?
If A is a basis of F and B ⊆ A, 〈B〉 is a free factor of F , 〈B〉 ≤ff F

◮ In F = F (a, b, c), H = 〈a, b〉 ≤ff F

◮ but also K = 〈ab2
, bac〉 ≤ff F since {ab2

, bac, b} is a basis of
F

◮ H and K both have rank 2 and if we define ϕ : F → F by
ϕ(a) = ab2, ϕ(b) = bac and ϕ(c) = b, then ϕ ∈ Aut(F ) and
ϕ(H) = K
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A general problem

How does a (finitely generated) free group sit as a subgroup in
another?
If A is a basis of F and B ⊆ A, 〈B〉 is a free factor of F , 〈B〉 ≤ff F

◮ In F = F (a, b, c), H = 〈a, b〉 ≤ff F

◮ but also K = 〈ab2
, bac〉 ≤ff F since {ab2

, bac, b} is a basis of
F

◮ H and K both have rank 2 and if we define ϕ : F → F by
ϕ(a) = ab2, ϕ(b) = bac and ϕ(c) = b, then ϕ ∈ Aut(F ) and
ϕ(H) = K

In that case, say that H and K are congruent
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A general problem

How does a (finitely generated) free group sit as a subgroup in
another?
If A is a basis of F and B ⊆ A, 〈B〉 is a free factor of F , 〈B〉 ≤ff F

◮ In F = F (a, b, c), H = 〈a, b〉 ≤ff F

◮ but also K = 〈ab2
, bac〉 ≤ff F since {ab2

, bac, b} is a basis of
F

◮ H and K both have rank 2 and if we define ϕ : F → F by
ϕ(a) = ab2, ϕ(b) = bac and ϕ(c) = b, then ϕ ∈ Aut(F ) and
ϕ(H) = K

In that case, say that H and K are congruent
Thus: two free factors of F are congruent if and only if they have
the same rank
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but not sufficient

◮ They must have the same index, and all kinds of other
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congruent radical closures

√
H and

√
K , where
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H and
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◮ There exists a nice Whitehead-style algorithm to decide
whether two finitely generated subgroups of F are congruent
(Gersten)
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For more general subgroups of F , the equality of ranks is necessary
but not sufficient

◮ They must have the same index, and all kinds of other
invariants must match

◮ For instance, if H and K are congruent, H and K must have
congruent radical closures

√
H and

√
K , where

√
H = 〈x ∈ F | xn ∈ H for some n ∈ 0〉

◮ There exists a nice Whitehead-style algorithm to decide
whether two finitely generated subgroups of F are congruent
(Gersten)

but this algorithm is not completely satisfactory: if H and K are
not congruent, it does not always tell you why – we would like a
classification of the congruence classes of subgroups; ideally, a
computable list of invariants of a subgroup H, characterizing its
congruence class
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We don’t solve this problem, but discuss one such invariant, the
semilattice of algebraic extensions of H, which

◮ must be preserved by the congruence relation

◮ is computable

◮ describes the way H sits in larger subgroups of F

◮ is related with Takahasi’s theorem (1951)
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Takahasi’s theorem

Theorem
Let H ≤fg F (H is a finitely generated subgroup of F ).
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Theorem
Let H ≤fg F (H is a finitely generated subgroup of F ).
There exist H1, . . . ,Hn, finitely many subgroups such that
If H ≤ K ≤ F , then H ≤ Hi ≤ff K for some 1 ≤ i ≤ n

◮ Many fun applications: as an exercise, show that if (Hi )i≥0 is
a chain of subgroups of F with bounded rank (there exists n
such that rk(Hi ) ≤ n for each i), then (Hi ) is eventually
constant
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Takahasi’s theorem

Theorem
Let H ≤fg F (H is a finitely generated subgroup of F ).
There exist H1, . . . ,Hn, finitely many subgroups such that
If H ≤ K ≤ F , then H ≤ Hi ≤ff K for some 1 ≤ i ≤ n

◮ Many fun applications: as an exercise, show that if (Hi )i≥0 is
a chain of subgroups of F with bounded rank (there exists n
such that rk(Hi ) ≤ n for each i), then (Hi ) is eventually
constant

◮ Such a family H1, . . . ,Hn (a Takahasi family for H), can be
effectively computed
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Takahasi’s theorem

Theorem
Let H ≤fg F (H is a finitely generated subgroup of F ).
There exist H1, . . . ,Hn, finitely many subgroups such that
If H ≤ K ≤ F , then H ≤ Hi ≤ff K for some 1 ≤ i ≤ n

◮ Many fun applications: as an exercise, show that if (Hi )i≥0 is
a chain of subgroups of F with bounded rank (there exists n
such that rk(Hi ) ≤ n for each i), then (Hi ) is eventually
constant

◮ Such a family H1, . . . ,Hn (a Takahasi family for H), can be
effectively computed

◮ so let me digress on the representation of finitely generated
subgroups
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Representing a finitely generated subgroup

H = 〈abab−1
, abab, ab−1ab〉

1

• ∗

a

a
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◮ a deterministic, co-deterministic automaton ΓA(H), with a
distinguished vertex, and every non-distinguished vertex has
valence at least 2, denoted ΓA(H)
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Representing a finitely generated subgroup

H = 〈abab−1
, abab, ab−1ab〉

1

• ∗

a

a

bbb b

◮ a deterministic, co-deterministic automaton ΓA(H), with a
distinguished vertex, and every non-distinguished vertex has
valence at least 2, denoted ΓA(H)

◮ ΓA(H) depends on H, not on the given generators of H – but
depends on A!
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Choose a spanning tree
For each edge of ΓA(H) not in the spanning tree, construct a basis
element for H

Pascal Weil Algebraic Extensions



Outline
Subgroups of free groups

Algebraic extensions of a subgroup
Some applications

Congruent subgroups
Takahasi’s theorem
Representing subgroups of free groups
A 3-line proof

Spanning tree, rank and basis

1 a
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bbb b

Choose a spanning tree
For each edge of ΓA(H) not in the spanning tree, construct a basis
element for H

◮ b2
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Choose a spanning tree
For each edge of ΓA(H) not in the spanning tree, construct a basis
element for H
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Spanning tree, rank and basis

1 a

a

bbb b

Choose a spanning tree
For each edge of ΓA(H) not in the spanning tree, construct a basis
element for H

◮ b2

◮ ab2a−1

◮ ab−1ab−1

A spanning tree has |V | − 1 edges, so rk(H) = |E | − |V | + 1
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Morphisms of automata

Consider H = 〈abab−1
, abab, ab−1ab〉 and K = 〈b, aba, ab−1a, a4〉

Note that H ≤ K
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Morphisms of automata

Consider H = 〈abab−1
, abab, ab−1ab〉 and K = 〈b, aba, ab−1a, a4〉

Note that H ≤ K
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a bb
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a

There is a graph morphism ϕH,K : ΓA(H) → ΓA(K )

◮ 1, 3 7−→ 1, 2 7−→ 2, 4 7−→ 4
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Consider H = 〈abab−1
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Note that H ≤ K
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There is a graph morphism ϕH,K : ΓA(H) → ΓA(K ) if and only if
H ≤ K
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Morphisms of automata

Consider H = 〈abab−1
, abab, ab−1ab〉 and K = 〈b, aba, ab−1a, a4〉

Note that H ≤ K

1

3

2

4

a

a

bbb b

1

5

2

4

a

a bb

b
a

a

There is a graph morphism ϕH,K : ΓA(H) → ΓA(K ) if and only if
H ≤ K

◮ If ϕH,K is one-to-one, then H ≤ff K
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Morphisms of automata

Consider H = 〈abab−1
, abab, ab−1ab〉 and K = 〈b, aba, ab−1a, a4〉

Note that H ≤ K

1

3

2

4

a

a

bbb b

1

5

2

4

a

a bb

b
a

a

There is a graph morphism ϕH,K : ΓA(H) → ΓA(K ) if and only if
H ≤ K

◮ If ϕH,K is one-to-one, then H ≤ff K

◮ If ϕH,K is onto, we say that K is an overgroup of H (a finite
number of them, which depends on A)
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Proof of Takahasi’s theorem

Theorem
Let H ≤fg F . There exist H1, . . . ,Hn, finitely many subgroups such
that: if H ≤ K ≤ F , then H ≤ Hi ≤ff K for some 1 ≤ i ≤ n
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Proof of Takahasi’s theorem

Theorem
Let H ≤fg F . There exist H1, . . . ,Hn, finitely many subgroups such
that: if H ≤ K ≤ F , then H ≤ Hi ≤ff K for some 1 ≤ i ≤ n

If H ≤ K , then there exists ϕH,K : ΓA(H) → ΓA(K ). Let L such
that ΓA(L) = ϕH,K (ΓA(H)). Then L is an overgroup of H, and
L ≤ff K .
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Proof of Takahasi’s theorem

Theorem
Let H ≤fg F . There exist H1, . . . ,Hn, finitely many subgroups such
that: if H ≤ K ≤ F , then H ≤ Hi ≤ff K for some 1 ≤ i ≤ n

If H ≤ K , then there exists ϕH,K : ΓA(H) → ΓA(K ). Let L such
that ΓA(L) = ϕH,K (ΓA(H)). Then L is an overgroup of H, and
L ≤ff K .

◮ That’s it! The set of overgroups of H is a Takahasi family for
H: if H ≤ K , then K is a free extension of an overgroup of H
– besides, H has finitely many overgroups, and they are
computable.
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Proof of Takahasi’s theorem

Theorem
Let H ≤fg F . There exist H1, . . . ,Hn, finitely many subgroups such
that: if H ≤ K ≤ F , then H ≤ Hi ≤ff K for some 1 ≤ i ≤ n

If H ≤ K , then there exists ϕH,K : ΓA(H) → ΓA(K ). Let L such
that ΓA(L) = ϕH,K (ΓA(H)). Then L is an overgroup of H, and
L ≤ff K .

◮ That’s it! The set of overgroups of H is a Takahasi family for
H: if H ≤ K , then K is a free extension of an overgroup of H
– besides, H has finitely many overgroups, and they are
computable.

◮ But it is not a canonical family
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Subgroups of free groups
Congruent subgroups
Takahasi’s theorem
Representing subgroups of free groups
A 3-line proof
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About terminology
Composition of extensions
The semilattice of algebraic extensions
Elementary algebraic extensions

Some applications
Malnormality, purity, etc
Profinite topologies
Equations
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Algebraic extensions

Let H ≤ K ≤ F . Say that K is an algebraic extension of H
(H ≤alg K ) if no proper free factor of K contains H, that is,
H ≤ L ≤ff K =⇒ L = K
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Algebraic extensions

Let H ≤ K ≤ F . Say that K is an algebraic extension of H
(H ≤alg K ) if no proper free factor of K contains H, that is,
H ≤ L ≤ff K =⇒ L = K
Let AE(H) be the set of algebraic extensions of H
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Algebraic extensions

Let H ≤ K ≤ F . Say that K is an algebraic extension of H
(H ≤alg K ) if no proper free factor of K contains H, that is,
H ≤ L ≤ff K =⇒ L = K
Let AE(H) be the set of algebraic extensions of H

Proposition AE(H) is the least Takahasi family for H. In fact, if
L is a Takahasi family for H, then AE(H) is the set of ≤ff-minimal
elements of L.
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Algebraic extensions

Let H ≤ K ≤ F . Say that K is an algebraic extension of H
(H ≤alg K ) if no proper free factor of K contains H, that is,
H ≤ L ≤ff K =⇒ L = K
Let AE(H) be the set of algebraic extensions of H

Proposition AE(H) is the least Takahasi family for H. In fact, if
L is a Takahasi family for H, then AE(H) is the set of ≤ff-minimal
elements of L.

◮ If H ≤alg K , there exists L ∈ L such that H ≤ L ≤ff K , so
L = K , and AE(H) ⊆ L
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Algebraic extensions

Let H ≤ K ≤ F . Say that K is an algebraic extension of H
(H ≤alg K ) if no proper free factor of K contains H, that is,
H ≤ L ≤ff K =⇒ L = K
Let AE(H) be the set of algebraic extensions of H

Proposition AE(H) is the least Takahasi family for H. In fact, if
L is a Takahasi family for H, then AE(H) is the set of ≤ff-minimal
elements of L.

◮ If H ≤alg K , there exists L ∈ L such that H ≤ L ≤ff K , so
L = K , and AE(H) ⊆ L

◮ If K is ≤ff-minimal in L and H ≤ L ≤ff K , then H ≤ M ≤ff L
for some M ∈ L, so M ≤ff K , and by minimality, M = L = K ,
that is, K ∈ AE(H)
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Examples

◮ 〈xn〉 ≤alg 〈x〉
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Examples

◮ 〈xn〉 ≤alg 〈x〉
◮ If H ≤ F2 and H is non-cyclic, then H ≤alg F2
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What they are
About terminology
Composition of extensions
The semilattice of algebraic extensions
Elementary algebraic extensions

Examples

◮ 〈xn〉 ≤alg 〈x〉
◮ If H ≤ F2 and H is non-cyclic, then H ≤alg F2

◮ 〈aba−1b−1〉 ≤alg F2 (more generally, 〈x〉 where x is not a
power of a primitive element)
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Algebraic extensions of a subgroup
Some applications

What they are
About terminology
Composition of extensions
The semilattice of algebraic extensions
Elementary algebraic extensions

Examples

◮ 〈xn〉 ≤alg 〈x〉
◮ If H ≤ F2 and H is non-cyclic, then H ≤alg F2

◮ 〈aba−1b−1〉 ≤alg F2 (more generally, 〈x〉 where x is not a
power of a primitive element)

◮ If H ≤fi F , then every K such that H ≤ K ≤ F is an algebraic
extension
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Algebraic extensions of a subgroup
Some applications

What they are
About terminology
Composition of extensions
The semilattice of algebraic extensions
Elementary algebraic extensions

Examples

◮ 〈xn〉 ≤alg 〈x〉
◮ If H ≤ F2 and H is non-cyclic, then H ≤alg F2

◮ 〈aba−1b−1〉 ≤alg F2 (more generally, 〈x〉 where x is not a
power of a primitive element)

◮ If H ≤fi F , then every K such that H ≤ K ≤ F is an algebraic
extension

◮ If H ≤ff F , then AE(H) = {H}. For instance, no non-trivial
overgroup of 〈ab, aca〉 is an algebraic extension
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Computing the algebraic extensions

◮ Note that AE(H) is finite.
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Computing the algebraic extensions

◮ Note that AE(H) is finite.

◮ To compute AE(H), first compute the overgroups of H
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What they are
About terminology
Composition of extensions
The semilattice of algebraic extensions
Elementary algebraic extensions

Computing the algebraic extensions

◮ Note that AE(H) is finite.

◮ To compute AE(H), first compute the overgroups of H

◮ then decide which are the ≤ff-minimal elements. . .
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Algebraic extensions of a subgroup
Some applications

What they are
About terminology
Composition of extensions
The semilattice of algebraic extensions
Elementary algebraic extensions

Computing the algebraic extensions

◮ Note that AE(H) is finite.

◮ To compute AE(H), first compute the overgroups of H

◮ then decide which are the ≤ff-minimal elements. . .

◮ . . . using the Whitehead algorithm, which determines whether
a subgroup is a free factor in another
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About terminology

◮ Let H ≤ K ≤ F and x ∈ K . Say x is K-algebraic over H if
every free factor of K containing H, also contains x :
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About terminology

◮ Let H ≤ K ≤ F and x ∈ K . Say x is K-algebraic over H if
every free factor of K containing H, also contains x :
H ≤ L ≤ff K =⇒ x ∈ L
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About terminology

◮ Let H ≤ K ≤ F and x ∈ K . Say x is K-algebraic over H if
every free factor of K containing H, also contains x :
H ≤ L ≤ff K =⇒ x ∈ L

◮ Otherwise, x is K -transcendental over H. In fact, this is if and
only if 〈H, x〉 = H ∗ 〈x〉
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About terminology

◮ Let H ≤ K ≤ F and x ∈ K . Say x is K-algebraic over H if
every free factor of K containing H, also contains x :
H ≤ L ≤ff K =⇒ x ∈ L

◮ Otherwise, x is K -transcendental over H. In fact, this is if and
only if 〈H, x〉 = H ∗ 〈x〉

◮ Every element of K \ H is K -transcendental over H iff
H ≤ff K .
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About terminology

◮ Let H ≤ K ≤ F and x ∈ K . Say x is K-algebraic over H if
every free factor of K containing H, also contains x :
H ≤ L ≤ff K =⇒ x ∈ L

◮ Otherwise, x is K -transcendental over H. In fact, this is if and
only if 〈H, x〉 = H ∗ 〈x〉

◮ Every element of K \ H is K -transcendental over H iff
H ≤ff K .

◮ Let H ≤ K . Then H ≤alg K iff every element of K is
K -algebraic over H
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About terminology

◮ Let H ≤ K ≤ F and x ∈ K . Say x is K-algebraic over H if
every free factor of K containing H, also contains x :
H ≤ L ≤ff K =⇒ x ∈ L

◮ Otherwise, x is K -transcendental over H. In fact, this is if and
only if 〈H, x〉 = H ∗ 〈x〉

◮ Every element of K \ H is K -transcendental over H iff
H ≤ff K .

◮ Let H ≤ K . Then H ≤alg K iff every element of K is
K -algebraic over H

Note that the property of being K -algebraic over H, depends on K
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Composition of extensions

Let H ≤ K , and let H ≤ Ki ≤ K , i = 1, 2

(i) If H ≤alg K1 ≤alg K then H ≤alg K .
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Composition of extensions

Let H ≤ K , and let H ≤ Ki ≤ K , i = 1, 2

(i) If H ≤alg K1 ≤alg K then H ≤alg K .

(i’) If H ≤ff K1 ≤ff K then H ≤ff K .
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Composition of extensions

Let H ≤ K , and let H ≤ Ki ≤ K , i = 1, 2

(i) If H ≤alg K1 ≤alg K then H ≤alg K .

(i’) If H ≤ff K1 ≤ff K then H ≤ff K .

(ii) If H ≤alg K then K1 ≤alg K , while H ≤ K1 need not be
algebraic.
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Composition of extensions

Let H ≤ K , and let H ≤ Ki ≤ K , i = 1, 2

(i) If H ≤alg K1 ≤alg K then H ≤alg K .

(i’) If H ≤ff K1 ≤ff K then H ≤ff K .

(ii) If H ≤alg K then K1 ≤alg K , while H ≤ K1 need not be
algebraic.

(ii’) If H ≤ff K then H ≤ff K1, while K1 ≤ K need not be purely
transcendental.
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What they are
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Composition of extensions
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Elementary algebraic extensions

Composition of extensions

Let H ≤ K , and let H ≤ Ki ≤ K , i = 1, 2

(i) If H ≤alg K1 ≤alg K then H ≤alg K .

(i’) If H ≤ff K1 ≤ff K then H ≤ff K .

(ii) If H ≤alg K then K1 ≤alg K , while H ≤ K1 need not be
algebraic.

(ii’) If H ≤ff K then H ≤ff K1, while K1 ≤ K need not be purely
transcendental.

(iii) If H ≤alg K1 and H ≤alg K2 then H ≤alg 〈K1 ∪ K2〉, while
H ≤ K1 ∩ K2 need not be algebraic.
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Composition of extensions

Let H ≤ K , and let H ≤ Ki ≤ K , i = 1, 2

(i) If H ≤alg K1 ≤alg K then H ≤alg K .

(i’) If H ≤ff K1 ≤ff K then H ≤ff K .

(ii) If H ≤alg K then K1 ≤alg K , while H ≤ K1 need not be
algebraic.

(ii’) If H ≤ff K then H ≤ff K1, while K1 ≤ K need not be purely
transcendental.

(iii) If H ≤alg K1 and H ≤alg K2 then H ≤alg 〈K1 ∪ K2〉, while
H ≤ K1 ∩ K2 need not be algebraic.

(iii’) If H ≤ff K1 and H ≤ff K2 then H ≤ff K1 ∩ K2, while
H ≤ 〈K1 ∪ K2〉 need not be purely transcendental.
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The semilattice of algebraic extensions

◮ It follows that AE(H) is a semilattice
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The semilattice of algebraic extensions

◮ It follows that AE(H) is a semilattice

More precisely, if H ≤ K , there exists a unique L such that
H ≤alg L ≤ff K , and L is
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The semilattice of algebraic extensions

◮ It follows that AE(H) is a semilattice

More precisely, if H ≤ K , there exists a unique L such that
H ≤alg L ≤ff K , and L is

◮ the intersection of the free factors of K containing H (and
hence the least free factor of K containing H)
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The semilattice of algebraic extensions

◮ It follows that AE(H) is a semilattice

More precisely, if H ≤ K , there exists a unique L such that
H ≤alg L ≤ff K , and L is

◮ the intersection of the free factors of K containing H (and
hence the least free factor of K containing H)

◮ the greatest algebraic extension of H in K
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The semilattice of algebraic extensions

◮ It follows that AE(H) is a semilattice

More precisely, if H ≤ K , there exists a unique L such that
H ≤alg L ≤ff K , and L is

◮ the intersection of the free factors of K containing H (and
hence the least free factor of K containing H)

◮ the greatest algebraic extension of H in K

◮ the set of elements, that are K -algebraic over H
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The semilattice of algebraic extensions

◮ It follows that AE(H) is a semilattice

More precisely, if H ≤ K , there exists a unique L such that
H ≤alg L ≤ff K , and L is

◮ the intersection of the free factors of K containing H (and
hence the least free factor of K containing H)

◮ the greatest algebraic extension of H in K

◮ the set of elements, that are K -algebraic over H

This extension L is called the algebraic closure of H in K
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Elementary algebraic extensions

elementary extension H ≤ 〈H, x〉
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Elementary algebraic extensions

An elementary extension H ≤ 〈H, x〉 is either algebraic or free,
depending on the rank:
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Elementary algebraic extensions

An elementary extension H ≤ 〈H, x〉 is either algebraic or free,
depending on the rank: H ≤ff 〈H, x〉 iff rk(〈H, x〉) = rk(H) + 1,
and H ≤alg 〈H, x〉 iff rk(〈H, x〉) ≤ rk(H)
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Elementary algebraic extensions

An elementary extension H ≤ 〈H, x〉 is either algebraic or free,
depending on the rank: H ≤ff 〈H, x〉 iff rk(〈H, x〉) = rk(H) + 1,
and H ≤alg 〈H, x〉 iff rk(〈H, x〉) ≤ rk(H)
Say that the extension H ≤ K is elementary-algebraic, H ≤ealg K ,
if it is a composition of algebraic elementary extensions
H ≤alg H1 ≤alg · · · ≤alg Hk = K
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Elementary algebraic extensions

An elementary extension H ≤ 〈H, x〉 is either algebraic or free,
depending on the rank: H ≤ff 〈H, x〉 iff rk(〈H, x〉) = rk(H) + 1,
and H ≤alg 〈H, x〉 iff rk(〈H, x〉) ≤ rk(H)
Say that the extension H ≤ K is elementary-algebraic, H ≤ealg K ,
if it is a composition of algebraic elementary extensions
H ≤alg H1 ≤alg · · · ≤alg Hk = K

◮ H ≤ealg K =⇒ rk(K ) ≤ rk(H)
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Elementary algebraic extensions

An elementary extension H ≤ 〈H, x〉 is either algebraic or free,
depending on the rank: H ≤ff 〈H, x〉 iff rk(〈H, x〉) = rk(H) + 1,
and H ≤alg 〈H, x〉 iff rk(〈H, x〉) ≤ rk(H)
Say that the extension H ≤ K is elementary-algebraic, H ≤ealg K ,
if it is a composition of algebraic elementary extensions
H ≤alg H1 ≤alg · · · ≤alg Hk = K

◮ H ≤ealg K =⇒ rk(K ) ≤ rk(H)

◮ Not every algebraic extension is elementary algebraic; e.g.
〈aba−1b−1〉 ≤alg F2 but rk(〈aba−1b−1

, x〉) = 2 for each
x 6∈ 〈aba−1b−1〉
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Elementary algebraic extensions

An elementary extension H ≤ 〈H, x〉 is either algebraic or free,
depending on the rank: H ≤ff 〈H, x〉 iff rk(〈H, x〉) = rk(H) + 1,
and H ≤alg 〈H, x〉 iff rk(〈H, x〉) ≤ rk(H)
Say that the extension H ≤ K is elementary-algebraic, H ≤ealg K ,
if it is a composition of algebraic elementary extensions
H ≤alg H1 ≤alg · · · ≤alg Hk = K

◮ H ≤ealg K =⇒ rk(K ) ≤ rk(H)

◮ Not every algebraic extension is elementary algebraic; e.g.
〈aba−1b−1〉 ≤alg F2 but rk(〈aba−1b−1

, x〉) = 2 for each
x 6∈ 〈aba−1b−1〉

◮ Every H ≤fg F has an e-algebraic closure, which is computable
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Subgroups of free groups
Congruent subgroups
Takahasi’s theorem
Representing subgroups of free groups
A 3-line proof

Algebraic extensions of a subgroup
What they are
About terminology
Composition of extensions
The semilattice of algebraic extensions
Elementary algebraic extensions

Some applications
Malnormality, purity, etc
Profinite topologies
Equations
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Profinite topologies
Equations

Abstract properties of subgroups

Let P be a property of subgroups of a free group F , which is
satisfied by F
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Abstract properties of subgroups

Let P be a property of subgroups of a free group F , which is
satisfied by F

◮ If P is closed under intersection, then every H ≤ F admits a
P-closure clP(H)
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Abstract properties of subgroups

Let P be a property of subgroups of a free group F , which is
satisfied by F

◮ If P is closed under intersection, then every H ≤ F admits a
P-closure clP(H)

◮ If P is closed under finite intersection and under free factors,
then every H ≤fg F admits a P-closure, and H ≤alg clP(H)
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Abstract properties of subgroups

Let P be a property of subgroups of a free group F , which is
satisfied by F

◮ If P is closed under intersection, then every H ≤ F admits a
P-closure clP(H)

◮ If P is closed under finite intersection and under free factors,
then every H ≤fg F admits a P-closure, and H ≤alg clP(H)

◮ Proof: Suppose H ≤ K and K satisfies P
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Abstract properties of subgroups

Let P be a property of subgroups of a free group F , which is
satisfied by F

◮ If P is closed under intersection, then every H ≤ F admits a
P-closure clP(H)

◮ If P is closed under finite intersection and under free factors,
then every H ≤fg F admits a P-closure, and H ≤alg clP(H)

◮ Proof: Suppose H ≤ K and K satisfies P
◮ Then H ≤ L ≤ff K for some L ∈ AE(H)
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Abstract properties of subgroups

Let P be a property of subgroups of a free group F , which is
satisfied by F

◮ If P is closed under intersection, then every H ≤ F admits a
P-closure clP(H)

◮ If P is closed under finite intersection and under free factors,
then every H ≤fg F admits a P-closure, and H ≤alg clP(H)

◮ Proof: Suppose H ≤ K and K satisfies P
◮ Then H ≤ L ≤ff K for some L ∈ AE(H)

◮ It follows that L satisfies P, and the intersection of the K
containing H and satisfying P is the finite intersection of the
algebraic extensions of H satisfying P
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Abstract properties of subgroups

Let P be a property of subgroups of a free group F , which is
satisfied by F

◮ If P is closed under intersection, then every H ≤ F admits a
P-closure clP(H)

◮ If P is closed under finite intersection and under free factors,
then every H ≤fg F admits a P-closure, and H ≤alg clP(H)

◮ If in addition P is decidable, then clP(H) is computable
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◮ the property of being pure: H is pure if xn ∈ H and n 6= 0
implies x ∈ H
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Say that H is malnormal if Hg ∩ H = 1 for every g ∈ F \ H.
Malnormality is closed under intersections and free products,
decidable, and hence
every H ≤fg F admits a malnormal closure, which is an algebraic
extension, and is computable
The same holds for

◮ the property of being pure: H is pure if xn ∈ H and n 6= 0
implies x ∈ H

◮ the property of being p-pure: H is p-pure if xn ∈ H, n 6= 0
and (n, p) = 1 implies x ∈ H
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Say that H is malnormal if Hg ∩ H = 1 for every g ∈ F \ H.
Malnormality is closed under intersections and free products,
decidable, and hence
every H ≤fg F admits a malnormal closure, which is an algebraic
extension, and is computable
The same holds for

◮ the property of being pure: H is pure if xn ∈ H and n 6= 0
implies x ∈ H

◮ the property of being p-pure: H is p-pure if xn ∈ H, n 6= 0
and (n, p) = 1 implies x ∈ H

◮ the property of being a retract
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If V is a pseudovariety of finite groups which is extension-closed,
the property of being closed in the pro-V topology of the free
group is closed under intersection and free factors
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If V is a pseudovariety of finite groups which is extension-closed,
the property of being closed in the pro-V topology of the free
group is closed under intersection and free factors
It follows that the pro-V closure of a finitely generated subgroup H
is an algebraic extension of H (Margolis, Sapir, W), and in
particular that it has finite rank (Ribes, Zalesskĭı)
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the property of being closed in the pro-V topology of the free
group is closed under intersection and free factors
It follows that the pro-V closure of a finitely generated subgroup H
is an algebraic extension of H (Margolis, Sapir, W), and in
particular that it has finite rank (Ribes, Zalesskĭı)

◮ However, it is not always computable
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Closure of a subgroup in a profinite topology

If V is a pseudovariety of finite groups which is extension-closed,
the property of being closed in the pro-V topology of the free
group is closed under intersection and free factors
It follows that the pro-V closure of a finitely generated subgroup H
is an algebraic extension of H (Margolis, Sapir, W), and in
particular that it has finite rank (Ribes, Zalesskĭı)

◮ However, it is not always computable

◮ Note that rk(clV(H)) ≤ rk(H), but it is not known whether
this is because H ≤ealg clV(H)
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Equations over subgroups

◮ Let H ≤ F . An H-equation is a word e ∈ H ∗ 〈X 〉, where X is
a new symbol (the unknown). A solution of H is an element x
such that e(x) = 1

Pascal Weil Algebraic Extensions



Outline
Subgroups of free groups

Algebraic extensions of a subgroup
Some applications

Malnormality, purity, etc
Profinite topologies
Equations

Equations over subgroups

◮ Let H ≤ F . An H-equation is a word e ∈ H ∗ 〈X 〉, where X is
a new symbol (the unknown). A solution of H is an element x
such that e(x) = 1

◮ Thus x is a solution of some H-equation if and only if the
homomorphism H ∗ 〈X 〉 → 〈H, x〉 is not one-to-one, if and
only 〈H, x〉 has rank at most rk(H), if and only if
H ≤alg 〈H, x〉
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◮ Let H ≤ F . An H-equation is a word e ∈ H ∗ 〈X 〉, where X is
a new symbol (the unknown). A solution of H is an element x
such that e(x) = 1

◮ Thus x is a solution of some H-equation if and only if the
homomorphism H ∗ 〈X 〉 → 〈H, x〉 is not one-to-one, if and
only 〈H, x〉 has rank at most rk(H), if and only if
H ≤alg 〈H, x〉

◮ an equation is an element e of the countably generated free
group F (X ,Y1, . . . ,Yn, . . .)
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Equations over subgroups

◮ Let H ≤ F . An H-equation is a word e ∈ H ∗ 〈X 〉, where X is
a new symbol (the unknown). A solution of H is an element x
such that e(x) = 1

◮ Thus x is a solution of some H-equation if and only if the
homomorphism H ∗ 〈X 〉 → 〈H, x〉 is not one-to-one, if and
only 〈H, x〉 has rank at most rk(H), if and only if
H ≤alg 〈H, x〉

◮ an equation is an element e of the countably generated free
group F (X ,Y1, . . . ,Yn, . . .)

◮ Let E be a set of equations: say that H is E-closed if H
contains every solution of every particularization over H of an
equation in E .
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◮ Let Emal = {X−1Y1XY2}. A solution of a particularization of
this equation over H is an element x such that Hx ∩ H 6= 1,
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◮ Let Emal = {X−1Y1XY2}. A solution of a particularization of
this equation over H is an element x such that Hx ∩ H 6= 1,

◮ so H is Emal -closed if and only if H is malnormal.
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◮ Let Emal = {X−1Y1XY2}. A solution of a particularization of
this equation over H is an element x such that Hx ∩ H 6= 1,

◮ so H is Emal -closed if and only if H is malnormal.

◮ Similarly, let Epure = {X nY1 | n ≥ 2}. Then H is Epure -closed
if and only if H is pure.
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Let E be a set of equations

◮ The property of being E-closed is closed under intersections
and free products,
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Let E be a set of equations

◮ The property of being E-closed is closed under intersections
and free products,

◮ so H admits an E-closure, and H ≤alg clE(H)

◮ In addition, H ≤ealg clE(H), so rk(clE(H)) ≤ rk(H)
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Let E be a set of equations

◮ The property of being E-closed is closed under intersections
and free products,

◮ so H admits an E-closure, and H ≤alg clE(H)

◮ In addition, H ≤ealg clE(H), so rk(clE(H)) ≤ rk(H)

Thus the malnormal closure of H ≤fg F has rank at most rk(H), as
well as the pure closure. . .
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