Algebraic recognizability of tree languages

Pascal Weil (joint work with Z. Ésik)

LaBRI, CNRS and Université Bordeaux-1

Aachen, 16 November 2006

・ロト ・回ト ・ヨト ・ヨト

Outline

Recognizable languages Preciones: an algebraic framework Logically defined tree languages

Recognizable languages

Preclones: an algebraic framework

Logically defined tree languages

・ロト ・回ト ・ヨト ・ヨト - ヨ

Recognizable tree languages

► Finite, ranked, ordered trees

・ロト ・回ト ・ヨト ・ヨト

DQC

Recognizable tree languages

- ▶ Finite, ranked, ordered trees
- ► $\Sigma = (\Sigma_n)_n$, a finite ranked alphabet. In a Σ -tree, nodes are labeled by letters in Σ , a node labeled by $\sigma \in \Sigma_n$ has *n* children

・ロト ・回ト ・ヨト ・ヨト

Recognizable tree languages

- ▶ Finite, ranked, ordered trees
- ► $\Sigma = (\Sigma_n)_n$, a finite ranked alphabet. In a Σ -tree, nodes are labeled by letters in Σ , a node labeled by $\sigma \in \Sigma_n$ has *n* children

・ロット 御マ メロマ キャー

Recognizable tree languages

- ▶ Finite, ranked, ordered trees
- ► $\Sigma = (\Sigma_n)_n$, a finite ranked alphabet. In a Σ -tree, nodes are labeled by letters in Σ , a node labeled by $\sigma \in \Sigma_n$ has *n* children

If L is a set of Σ -trees, TFAE (Doner, Thatcher, Wright, 1960s):

Recognizable tree languages

- Finite, ranked, ordered trees
- ► $\Sigma = (\Sigma_n)_n$, a finite ranked alphabet. In a Σ -tree, nodes are labeled by letters in Σ , a node labeled by $\sigma \in \Sigma_n$ has *n* children
- If L is a set of Σ -trees, TFAE (Doner, Thatcher, Wright, 1960s):
 - recognizability by a bottom-up tree automaton

イロト イポト イヨト

Recognizable tree languages

- Finite, ranked, ordered trees
- ► $\Sigma = (\Sigma_n)_n$, a finite ranked alphabet. In a Σ -tree, nodes are labeled by letters in Σ , a node labeled by $\sigma \in \Sigma_n$ has *n* children
- If L is a set of Σ -trees, TFAE (Doner, Thatcher, Wright, 1960s):
 - recognizability by a bottom-up tree automaton
 - recognizability by a deterministic bottom-up tree automaton

イロト イポト イヨト

Recognizable tree languages

- Finite, ranked, ordered trees
- ► $\Sigma = (\Sigma_n)_n$, a finite ranked alphabet. In a Σ -tree, nodes are labeled by letters in Σ , a node labeled by $\sigma \in \Sigma_n$ has *n* children

If L is a set of Σ -trees, TFAE (Doner, Thatcher, Wright, 1960s):

- recognizability by a bottom-up tree automaton
- recognizability by a deterministic bottom-up tree automaton
- ► MSO-definability (atoms: $P_{\sigma}(x)$ ($\sigma \in \Sigma$), x < y, $Succ_i(x, y)$)

イロト 不得下 イヨト イヨト 二日

The algebraic approach for word languages

 Recognizable word languages are also recognized by finite monoids

・ロト ・回ト ・ヨト ・ヨト

The algebraic approach for word languages

- Recognizable word languages are also recognized by finite monoids
- ► **Application**: *L* is FO-definable (resp. LTL-definable) iff *L* is recognized by an aperiodic monoid

・ロト ・回ト ・ヨト ・ヨト

The algebraic approach for word languages

- Recognizable word languages are also recognized by finite monoids
- ► **Application**: *L* is FO-definable (resp. LTL-definable) iff *L* is recognized by an aperiodic monoid
- ► Application: FO- and LTL-definability are decidable

・ロト ・回ト ・ヨト ・ヨト

The algebraic approach for word languages

- Recognizable word languages are also recognized by finite monoids
- ► **Application**: *L* is FO-definable (resp. LTL-definable) iff *L* is recognized by an aperiodic monoid
- ► Application: FO- and LTL-definability are decidable
- Eilenberg's theory of varieties: fine classification of recognizable languages, piecewise or local testability, FO₂- and FO + MOD-definability, levels in the FO-hierarchy, etc

イロト イポト イヨト

The algebraic approach for word languages

- Recognizable word languages are also recognized by finite monoids
- ► **Application**: *L* is FO-definable (resp. LTL-definable) iff *L* is recognized by an aperiodic monoid
- ► Application: FO- and LTL-definability are decidable
- Eilenberg's theory of varieties: fine classification of recognizable languages, piecewise or local testability, FO₂- and FO + MOD-definability, levels in the FO-hierarchy, etc
- In contrast, the decidability of FO[<] is open for trees (see [Benedikt and Ségoufin, 2005] for an algebraic characterization and decidability of FO[Succ])

My objective today

 To present an algebraic framework for the description of recognizable tree languages,

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

My objective today

- To present an algebraic framework for the description of recognizable tree languages,
- to explain how FO-definable tree languages are characterized in this framework.

・ロト ・回ト ・ヨト ・ヨト

My objective today

- To present an algebraic framework for the description of recognizable tree languages,
- to explain how FO-definable tree languages are characterized in this framework.
- ► The problem of deciding FO-definability remains open...

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (1/3)

 L a recognizable language of Σ-trees, A its minimal automaton with state set Q

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (1/3)

- L a recognizable language of Σ-trees, A its minimal automaton with state set Q
- ΣM_0 , the set of Σ -trees is a Σ -algebra

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (1/3)

- L a recognizable language of Σ-trees, A its minimal automaton with state set Q
- ΣM_0 , the set of Σ -trees is a Σ -algebra

 Induces a notion of syntactic algebra: the syntactic Σ-algebra of L is in fact A.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (2/3)

► ΣM₁, the set of Σ-trees with a special, unlabeled leaf. They can be composed (a monoid), and composed with elements of ΣM₀.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (2/3)

► ΣM₁, the set of Σ-trees with a special, unlabeled leaf. They can be composed (a monoid), and composed with elements of ΣM₀.

イロト イポト イヨト イヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (2/3)

► ΣM₁, the set of Σ-trees with a special, unlabeled leaf. They can be composed (a monoid), and composed with elements of ΣM₀.

► Induces a notion of *syntactic monoid* of *L*: If $x, y \in \Sigma M_1$, say $x \sim_L y$ if $\forall u \in \Sigma M_1$, $v \in \Sigma M_0$, $u \cdot x \cdot v \in L$ if and only if $u \cdot y \cdot v \in L$.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (2/3)

- Induces a notion of syntactic monoid of L: If x, y ∈ ΣM₁, say x ~_L y if ∀u ∈ ΣM₁, v ∈ ΣM₀, u · x · v ∈ L if and only if u · y · v ∈ L.
- Each $u \in \Sigma M_1$ induces a map $Q \rightarrow Q$, $p \mapsto q$.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (2/3)

- Induces a notion of syntactic monoid of L: If x, y ∈ ΣM₁, say x ~_L y if ∀u ∈ ΣM₁, v ∈ ΣM₀, u · x · v ∈ L if and only if u · y · v ∈ L.
- Each $u \in \Sigma M_1$ induces a map $Q \to Q$, $p \mapsto q$.
- This is not just in analogy with the word case, it is a generalization: an ordinary alphabet is a ranked alphabet with all letters of rank 1.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (3/3)

Let us continue!

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (3/3)

- Let us continue!
- ► ΣM_k, the set of Σ-trees with k special leaves, labeled 1,..., k from left to right.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (3/3)

- Let us continue!
- ► ΣM_k, the set of Σ-trees with k special leaves, labeled 1,..., k from left to right.

イロト イヨト イヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (3/3)

• Each such *k*-ary Σ -tree defines a map $Q^k \to Q$, $(p_1, \ldots, p_k) \mapsto q$

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Algebraic views of the minimal automaton (3/3)

► Each such *k*-ary Σ -tree defines a map $Q^k \rightarrow Q$, $(p_1, \ldots, p_k) \mapsto q$

イロト イヨト イヨト

 Outline
 Algebraic views of the minimal automaton

 Recognizable languages
 Preclones

 Preclones: an algebraic framework
 Recognizability by a finitary preclone

 Logically defined tree languages
 Varieties and Eilenberg's theorem

 $\Sigma M = (\Sigma M_k)_{k\geq 0}$ is an algebra for composition.

・ロト ・回ト ・ヨト ・ヨト

3

DQC

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Preclones = abstraction of ΣM and $\mathbb{T}(Q)$

• $S = (S_k)_k$ (infinitely many *sorts* of elements)

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton **Preclones** Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Preclones = abstraction of ΣM and $\mathbb{T}(Q)$

- $S = (S_k)_k$ (infinitely many *sorts* of elements)
- ▶ composition: $f \in S_k$, $g_1 \in S_{m_1}$, ..., $g_n \in S_{m_n}$,

$$f \cdot (g_1 \oplus \cdots \oplus g_n) \in S_m$$

with $m = m_1 + \cdots + m_n$

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Preclones = abstraction of ΣM and $\mathbb{T}(Q)$

- $S = (S_k)_k$ (infinitely many *sorts* of elements)
- ▶ composition: $f \in S_k$, $g_1 \in S_{m_1}$, ..., $g_n \in S_{m_n}$,

$$f \cdot (g_1 \oplus \cdots \oplus g_n) \in S_m$$

with
$$m = m_1 + \cdots + m_n$$

▶ unit element $\mathbf{1} \in S_1$

Algebraic views of the minimal automaton **Preclones** Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Preclones = abstraction of ΣM and $\mathbb{T}(Q)$

- $S = (S_k)_k$ (infinitely many *sorts* of elements)
- ▶ composition: $f \in S_k$, $g_1 \in S_{m_1}$, ..., $g_n \in S_{m_n}$,

$$f \cdot (g_1 \oplus \cdots \oplus g_n) \in S_m$$

with $m = m_1 + \cdots + m_n$

- ▶ unit element $\mathbf{1} \in S_1$
- associativity axioms

Algebraic views of the minimal automaton **Preclones** Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Preclones = abstraction of ΣM and $\mathbb{T}(Q)$

- $S = (S_k)_k$ (infinitely many *sorts* of elements)
- ▶ composition: $f \in S_k$, $g_1 \in S_{m_1}$, ..., $g_n \in S_{m_n}$,

$$f \cdot (g_1 \oplus \cdots \oplus g_n) \in S_m$$

with $m = m_1 + \cdots + m_n$

- ▶ unit element $\mathbf{1} \in S_1$
- associativity axioms
- ▶ **Note**: *S*₁ is a monoid
Algebraic views of the minimal automaton **Preclones** Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Preclones = abstraction of ΣM and $\mathbb{T}(Q)$

- $S = (S_k)_k$ (infinitely many *sorts* of elements)
- ▶ composition: $f \in S_k$, $g_1 \in S_{m_1}$, ..., $g_n \in S_{m_n}$,

$$f \cdot (g_1 \oplus \cdots \oplus g_n) \in S_m$$

with $m = m_1 + \cdots + m_n$

- ▶ unit element $\mathbf{1} \in S_1$
- associativity axioms
- ▶ **Note**: *S*₁ is a monoid
- S is finitary if each S_k is finite

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Recognizability by a finitary preclone

φ: ΣM → S, morphism into a finitary preclone (φ respects sorts and products)

・ロト ・回ト ・ヨト ・ヨト

-

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Recognizability by a finitary preclone

- φ: ΣM → S, morphism into a finitary preclone (φ respects sorts and products)
- φ recognizes $L \in \Sigma M_k$ if $L = \varphi^{-1}\varphi(L)$

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Recognizability by a finitary preclone

- φ: ΣM → S, morphism into a finitary preclone (φ respects sorts and products)
- φ recognizes $L \in \Sigma M_k$ if $L = \varphi^{-1}\varphi(L)$
- recognizability of subsets of ΣM₀ (Σ-tree languages) is equivalent to the classical definition

(日) (同) (E) (E) (E) (E)

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Syntactic preclone of $L \subseteq \Sigma M_k$ (1/2)

▶ an *n*-ary context in ΣM_k is a tuple (u, k_1, v, k_2) with $k_1, k_2 \geq 0$, $u \in \Sigma M_{k_1+1+k_2}$, $v = v_1 \oplus \cdots \oplus v_n \in \Sigma_{n,\ell}$ and $k = k_1 + \ell + k_2$: 11 11 k_1 k_1 k2 k2 х v v $k - (k_1 + k_2)$

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Syntactic preclone of $L \subseteq \Sigma M_k$ (1/2)

▶ an *n*-ary context in ΣM_k is a tuple (u, k_1, v, k_2) with $k_1, k_2 \geq 0$, $u \in \Sigma M_{k_1+1+k_2}$, $v = v_1 \oplus \cdots \oplus v_n \in \Sigma_{n,\ell}$ and $k = k_1 + \ell + k_2$: 11 11 k1 k2 k_1 kэ х v v $k - (k_1 + k_2)$

• An *L*-context of $x \in \Sigma M_n$ if $u \cdot (\mathbf{k}_1 \oplus x \cdot v \oplus \mathbf{k}_2) \in L$.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Syntactic preclone of $L \subseteq \Sigma M_k$ (2/2)

Syntactic congruence of L: if x, y ∈ Σ_n, say that x ~_L y if x and y have the same L-contexts

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Syntactic preclone of $L \subseteq \Sigma M_k$ (2/2)

- Syntactic congruence of L: if x, y ∈ Σ_n, say that x ∼_L y if x and y have the same L-contexts
- Syntactic preclone: $Synt(L) = \Sigma M / \sim_L$

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Syntactic preclone of $L \subseteq \Sigma M_k$ (2/2)

- Syntactic congruence of L: if x, y ∈ Σ_n, say that x ∼_L y if x and y have the same L-contexts
- Syntactic preclone: $Synt(L) = \Sigma M / \sim_L$
- In Synt(L), sort 0 is the minimal automaton, sort 1 is the syntactic monoid, the other sorts carry further information

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Varieties and Eilenberg's theorem

 One can define varieties of finitary preclones and varieties of recognizable tree languages, and state an Eilenberg-type theorem.

・ロト ・回ト ・ヨト ・ヨト

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Varieties and Eilenberg's theorem

- One can define varieties of finitary preclones and varieties of recognizable tree languages, and state an Eilenberg-type theorem.
- Varieties of tree languages: closure under Boolean operations, inverse morphisms (between free preclones ΣM) and left and right quotients

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

Varieties and Eilenberg's theorem

- One can define varieties of finitary preclones and varieties of recognizable tree languages, and state an Eilenberg-type theorem.
- Varieties of tree languages: closure under Boolean operations, inverse morphisms (between free preclones ΣM) and left and right quotients
- Varieties of finitary preclones: closure under sub-preclone, morphic image, direct product + finitary inverse limits and finitary unions of ω-chains.

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

An example

▶ Let $T_{\exists} \subseteq \mathbb{T}(\mathbb{B})$ (where $\mathbb{B} = \{\text{true}, \text{false}\}$) be given by $(T_{\exists})_n = \{\text{or}_n, \text{true}_n\}.$

Pascal Weil Algebraic recognizability of tree languages

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

An example

- ▶ Let $T_{\exists} \subseteq \mathbb{T}(\mathbb{B})$ (where $\mathbb{B} = \{\text{true}, \text{false}\}$) be given by $(T_{\exists})_n = \{\text{or}_n, \text{true}_n\}.$
- T_{\exists} is generated by true₀, or₀ = false₀ and or₂.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

An example

- ▶ Let $T_{\exists} \subseteq \mathbb{T}(\mathbb{B})$ (where $\mathbb{B} = \{\text{true}, \text{false}\}$) be given by $(T_{\exists})_n = \{\text{or}_n, \text{true}_n\}.$
- T_{\exists} is generated by true₀, or₀ = false₀ and or₂.
- Let φ: ΣM → T∃. Let Σ⁽¹⁾ be the set of letters that map to some true_n. Then φ⁻¹(true_k) is the language of k-ary trees containing a label in Σ⁽¹⁾.

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

An example

- ▶ Let $T_{\exists} \subseteq \mathbb{T}(\mathbb{B})$ (where $\mathbb{B} = \{\text{true}, \text{false}\}$) be given by $(T_{\exists})_n = \{\text{or}_n, \text{true}_n\}.$
- T_{\exists} is generated by true₀, or₀ = false₀ and or₂.
- Let φ: ΣM → T_∃. Let Σ⁽¹⁾ be the set of letters that map to some true_n. Then φ⁻¹(true_k) is the language of k-ary trees containing a label in Σ⁽¹⁾.
- (This is a simple example of a Σ₁-formula.)

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

An example

- ▶ Let $T_{\exists} \subseteq \mathbb{T}(\mathbb{B})$ (where $\mathbb{B} = \{\text{true}, \text{false}\}$) be given by $(T_{\exists})_n = \{\text{or}_n, \text{true}_n\}.$
- T_{\exists} is generated by true₀, or₀ = false₀ and or₂.
- Let φ: ΣM → T_∃. Let Σ⁽¹⁾ be the set of letters that map to some true_n. Then φ⁻¹(true_k) is the language of k-ary trees containing a label in Σ⁽¹⁾.
- (This is a simple example of a Σ₁-formula.)
- ► The variety of tree languages associated with (T_∃) consists of the Boolean closures of such languages.

・ロト ・ 日 ト ・ 日 ト ・ 日

Algebraic views of the minimal automaton Preclones Recognizability by a finitary preclone Varieties and Eilenberg's theorem

An example

- ▶ Let $T_{\exists} \subseteq \mathbb{T}(\mathbb{B})$ (where $\mathbb{B} = \{\text{true}, \text{false}\}$) be given by $(T_{\exists})_n = \{\text{or}_n, \text{true}_n\}.$
- T_{\exists} is generated by true₀, or₀ = false₀ and or₂.
- Let φ: ΣM → T_∃. Let Σ⁽¹⁾ be the set of letters that map to some true_n. Then φ⁻¹(true_k) is the language of k-ary trees containing a label in Σ⁽¹⁾.
- (This is a simple example of a Σ₁-formula.)
- ► The variety of tree languages associated with (T_∃) consists of the Boolean closures of such languages.
- For specialists: note that (T_∃)₁ = {true₁, or₁} is the monoid U₁ = {0,1} and ⟨T_∃⟩ is a generalization of J₁.

(日) (同) (目) (日) (日) (日)

NQ C

Which logic? Block product of preclones The results Conclusion

Logic on trees in ΣM_k

► Atomic formulas: $P_{\sigma}(x)$ ($\sigma \in \Sigma$), x < y, $Succ_i(x, y)$ ($i \le \max_{\sigma \in \Sigma} rank(\sigma)$), and $left_h(x)$ and $right_j(x)$

・ロト ・回ト ・ヨト ・ヨト

-

Which logic? Block product of preciones The results Conclusion

Logic on trees in ΣM_k

► Atomic formulas: $P_{\sigma}(x)$ ($\sigma \in \Sigma$), x < y, $Succ_i(x, y)$ ($i \le \max_{\sigma \in \Sigma} rank(\sigma)$), and $left_h(x)$ and $right_j(x)$

・ロト ・回ト ・ヨト ・ヨト

_

Which logic? Block product of preclones The results Conclusion

Logic on trees in ΣM_k

- ► Atomic formulas: $P_{\sigma}(x)$ ($\sigma \in \Sigma$), x < y, $Succ_i(x, y)$ ($i \le \max_{\sigma \in \Sigma} rank(\sigma)$), and $left_h(x)$ and $right_j(x)$
- ► Formulas of rank k: atomic formulas with h, j ≤ k, true, false, Boolean connectives, Lindstrom quantifiers

・ロト ・回ト ・ヨト ・ヨト

-

Which logic? Block product of preclones The results Conclusion

Logic on trees in ΣM_k

- ► Atomic formulas: $P_{\sigma}(x)$ ($\sigma \in \Sigma$), x < y, $Succ_i(x, y)$ ($i \le \max_{\sigma \in \Sigma} rank(\sigma)$), and $left_h(x)$ and $right_j(x)$
- ► Formulas of rank k: atomic formulas with h, j ≤ k, true, false, Boolean connectives, Lindstrom quantifiers
- Lindstrom quantifiers include existential or modular quantifiers, but also certain path quantifiers, modular quantifiers, etc

・ロト ・回ト ・ヨト ・ヨト - ヨ

Which logic? Block product of preciones The results Conclusion

Lindstrom quantifiers

► Let Δ be a finite ranked alphabet such that $\Delta_n \neq \emptyset$ whenever $\Sigma_n \neq \emptyset$,

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preclones The results Conclusion

Lindstrom quantifiers

- ► Let Δ be a finite ranked alphabet such that $\Delta_n \neq \emptyset$ whenever $\Sigma_n \neq \emptyset$,
- Let φ_δ be formulas with free variables in X ∪ {x}, such that for each n ≥ 0 and every interpretation mapping x to a rank n vertex, exactly one of the formulas φ_δ (δ ∈ Δ_n) holds,

Which logic? Block product of preclones The results Conclusion

Lindstrom quantifiers

- ► Let Δ be a finite ranked alphabet such that $\Delta_n \neq \emptyset$ whenever $\Sigma_n \neq \emptyset$,
- let φ_δ be formulas with free variables in X ∪ {x}, such that for each n ≥ 0 and every interpretation mapping x to a rank n vertex, exactly one of the formulas φ_δ (δ ∈ Δ_n) holds,

• and let
$$K \subseteq \Delta M_k$$
.

Which logic? Block product of preclones The results Conclusion

Lindstrom quantifiers

- ► Let Δ be a finite ranked alphabet such that $\Delta_n \neq \emptyset$ whenever $\Sigma_n \neq \emptyset$,
- let φ_δ be formulas with free variables in X ∪ {x}, such that for each n ≥ 0 and every interpretation mapping x to a rank n vertex, exactly one of the formulas φ_δ (δ ∈ Δ_n) holds,
- and let $K \subseteq \Delta M_k$.
- Let $t \in \Sigma M_k$ and let $\lambda \colon X \to V(t)$.

Which logic? Block product of preclones The results Conclusion

Lindstrom quantifiers

- ► Let Δ be a finite ranked alphabet such that $\Delta_n \neq \emptyset$ whenever $\Sigma_n \neq \emptyset$,
- let φ_δ be formulas with free variables in X ∪ {x}, such that for each n ≥ 0 and every interpretation mapping x to a rank n vertex, exactly one of the formulas φ_δ (δ ∈ Δ_n) holds,
- and let $K \subseteq \Delta M_k$.
- Let $t \in \Sigma M_k$ and let $\lambda \colon X \to V(t)$.
- ▶ Then $(t, \lambda) \models Q_{K} x \cdot \langle \varphi_{\delta} \rangle_{\delta}$ if the tree \overline{t}_{λ} lies in *K*, where

イロト イポト イヨト

Which logic? Block product of preclones The results Conclusion

Lindstrom quantifiers

- ► Let Δ be a finite ranked alphabet such that $\Delta_n \neq \emptyset$ whenever $\Sigma_n \neq \emptyset$,
- let φ_δ be formulas with free variables in X ∪ {x}, such that for each n ≥ 0 and every interpretation mapping x to a rank n vertex, exactly one of the formulas φ_δ (δ ∈ Δ_n) holds,
- and let $K \subseteq \Delta M_k$.
- Let $t \in \Sigma M_k$ and let $\lambda \colon X \to V(t)$.
- Then $(t, \lambda) \models Q_{K} x \cdot \langle \varphi_{\delta} \rangle_{\delta}$ if the tree \overline{t}_{λ} lies in K, where
- ▶ \overline{t}_{λ} is a relabeling of t by letters from Δ : a rank n vertex v is labeled by **the** letter $\delta \in \Delta_n$ such that $(t, [\lambda; x \mapsto v]) \models \varphi_{\delta}$.

Which logic? Block product of preciones The results Conclusion

The logic $\textbf{Lind}(\mathcal{K})$ and the variety $\mathcal{L}\textit{ind}(\mathcal{K})$ of tree languages

► Allow only Lindstrom quantifiers Q_K with K ∈ K: logic Lind(K)

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preciones The results Conclusion

The logic $Lind(\mathcal{K})$ and the variety $\mathcal{L}ind(\mathcal{K})$ of tree languages

- ► Allow only Lindstrom quantifiers Q_K with K ∈ K: logic Lind(K)
- $\mathcal{L}ind(\mathcal{K}) = Lind(\mathcal{K})$ -definable languages

・ロト ・回ト ・ヨト ・ヨト

-

Which logic? Block product of preciones The results Conclusion

The logic $Lind(\mathcal{K})$ and the variety $\mathcal{L}ind(\mathcal{K})$ of tree languages

- ► Allow only Lindstrom quantifiers Q_K with K ∈ K: logic Lind(K)
- $\mathcal{L}ind(\mathcal{K}) = Lind(\mathcal{K})$ -definable languages
- if K is the variety of languages associated with ⟨T_∃⟩, then
 Lind(K) is FO.

・ロト ・回ト ・ヨト ・ヨト

-

Which logic? Block product of preclones The results Conclusion

A generalization of an operation on monoids

Let S, T be preciones and k ≥ 0. For each n ≥ 0, Let C_{k,n} be the set of n-ary contexts in T_k.

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preclones The results Conclusion

A generalization of an operation on monoids

- Let S, T be preciones and k ≥ 0. For each n ≥ 0, Let C_{k,n} be the set of n-ary contexts in T_k.
- The $S \square_k T$ is the preclone such that

$$(S \Box_k T)_n = S_n^{C_{k,n}} \times T_n$$

Which logic? Block product of preciones The results Conclusion

A generalization of an operation on monoids

- Let S, T be preciones and k ≥ 0. For each n ≥ 0, Let C_{k,n} be the set of n-ary contexts in T_k.
- The $S \square_k T$ is the preclone such that

$$(S \Box_k T)_n = S_n^{C_{k,n}} \times T_n$$

with product as follows.

Which logic? Block product of preciones The results Conclusion

The composition operation in a block product (1/3)

▶ Let $(F, f) \in (S \square_k T)_n$ and for each $1 \le i \le n$, $(G_i, g_i) \in (S \square_k T)_{m_i}$. Let $m = \sum_i m_i$.

Which logic? Block product of preciones The results Conclusion

The composition operation in a block product (1/3)

- ▶ Let $(F, f) \in (S \square_k T)_n$ and for each $1 \le i \le n$, $(G_i, g_i) \in (S \square_k T)_{m_i}$. Let $m = \sum_i m_i$.
- ► Then

 $(F, f) \cdot ((G_1, g_1) \oplus \cdots \oplus (G_n, g_n)) = (H, f \cdot (g_1 \oplus \cdots \oplus g_n))$ is the element of $(S \square_k T)_m$ such that

イロト 不得下 イヨト イヨト
Which logic? Block product of preciones The results Conclusion

The composition operation in a block product (1/3)

- ▶ Let $(F, f) \in (S \square_k T)_n$ and for each $1 \le i \le n$, $(G_i, g_i) \in (S \square_k T)_{m_i}$. Let $m = \sum_i m_i$.
- Then

 $(F, f) \cdot ((G_1, g_1) \oplus \cdots \oplus (G_n, g_n)) = (H, f \cdot (g_1 \oplus \cdots \oplus g_n))$ is the element of $(S \square_k T)_m$ such that

► for $(u, k_1, v, k_2) \in C_{k,m}$, $H(u, k_1, v, k_2) = F(u, k_1, g \cdot v, k_2) \cdot \left(\bigoplus_{i=1}^n G_i(C_i)\right)$

イロト イポト イヨト

Which logic? Block product of preciones The results Conclusion

The composition operation in a block product (2/3)

Which logic? Block product of preciones The results Conclusion

The composition operation in a block product (3/3)

・ロト ・回 ト ・ ヨ ト ・

∃ ⊳

Which logic? Block product of preciones The results Conclusion

The main results (1/2)

► Let *K* be a variety of tree languages with appropriate closure properties (technical: to allow relativization of the logic Lind(*K*), etc).

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preciones The results Conclusion

The main results (1/2)

- ► Let *K* be a variety of tree languages with appropriate closure properties (technical: to allow relativization of the logic Lind(*K*), etc).
- If S and T recognize only languages in Lind(K), then so does S □_k T.

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preciones The results Conclusion

The main results (1/2)

- ► Let *K* be a variety of tree languages with appropriate closure properties (technical: to allow relativization of the logic Lind(*K*), etc).
- If S and T recognize only languages in Lind(K), then so does S □_k T.
- ▶ If S recognizes K and T recognizes the languages defined by the φ_{δ} , then $S \square_k T$ recognizes the language defined by $Q_{K} \times \cdot \langle \varphi_{\delta} \rangle_{\delta}$.

(日) (同) (E) (E) (E) (E)

Which logic? Block product of preciones The results Conclusion

The main results (2/2)

Let V be the least variety of preclones containing Synt(L) for L ∈ K and closed under block product. Then L is Lind(K)-definable if and only if Synt(L) ∈ V.

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preciones The results Conclusion

The main results (2/2)

- Let V be the least variety of preclones containing Synt(L) for L ∈ K and closed under block product. Then L is Lind(K)-definable if and only if Synt(L) ∈ V.
- ► FO-definable languages form a variety, which corresponds to the least closed variety containing T_∃.

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preclones The results Conclusion

Conclusion on the results

The first algebraic characterization of FO-definability.

・ロト ・回ト ・ヨト ・ヨト

DQC

Which logic? Block product of preciones The results Conclusion

Conclusion on the results

- ► The first algebraic characterization of FO-definability.
- FO-definable languages form a variety in a natural sense (not surprising).

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preciones The results Conclusion

Conclusion on the results

- ► The first algebraic characterization of FO-definability.
- FO-definable languages form a variety in a natural sense (not surprising).
- ► The result does not yield a decision procedure.

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preciones The results Conclusion

Conclusion on the results

- ► The first algebraic characterization of FO-definability.
- FO-definable languages form a variety in a natural sense (not surprising).
- ► The result does not yield a decision procedure.
- Neither does the analogous characterization for words, but the model of preclones gives a natural framework to express such a decidable characterization (as I expect there is one).

Which logic? Block product of preciones The results Conclusion

Conclusion on the model (1/2)

 Preclones have advantages: they generalize the word situation, as well as previous attempts such as the tree monoids,

・ロト ・回ト ・ヨト ・ヨト

Which logic? Block product of preciones The results Conclusion

Conclusion on the model (1/2)

- Preclones have advantages: they generalize the word situation, as well as previous attempts such as the tree monoids,
- they are algebraically robust (Eilenberg's theorem, universal algebra)

Which logic? Block product of preciones The results Conclusion

Conclusion on the model (1/2)

- Preclones have advantages: they generalize the word situation, as well as previous attempts such as the tree monoids,
- they are algebraically robust (Eilenberg's theorem, universal algebra)
- they are a natural by-product of the minimal automaton of a tree language,

Which logic? Block product of preciones The results Conclusion

Conclusion on the model (1/2)

- Preclones have advantages: they generalize the word situation, as well as previous attempts such as the tree monoids,
- they are algebraically robust (Eilenberg's theorem, universal algebra)
- they are a natural by-product of the minimal automaton of a tree language,
- ► they allow proving the characterization of FO-definability

Which logic? Block product of preciones The results Conclusion

Conclusion on the model (1/2)

- Preclones have advantages: they generalize the word situation, as well as previous attempts such as the tree monoids,
- they are algebraically robust (Eilenberg's theorem, universal algebra)
- they are a natural by-product of the minimal automaton of a tree language,
- ► they allow proving the characterization of FO-definability
- they allow a natural expression of other recent results (EF and EX-definability, Bojańczyk and Walukiewicz; FO[Succ]-definability, Benedikt and Ségoufin).

Which logic? Block product of preciones The results Conclusion

Conclusion on the model (2/2)

▶ Preclones have a big disadvantage: technically cumbersome.

・ロト ・回 ト ・ヨト ・ヨト

-

Which logic? Block product of preciones The results Conclusion

Conclusion on the model (2/2)

- ► Preclones have a big disadvantage: technically cumbersome.
- Current hope: unification with the model of forest algebras, developed by Bojańczyk and Walukiewicz for unranked trees.

Outline	Which logic?
Recognizable languages	Block product of preciones
Preciones: an algebraic framework	The results
Logically defined tree languages	Conclusion

Thank you for your attention!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●