
Outline
Recognizable languages

Preclones: an algebraic framework
Logically defined tree languages

Algebraic recognizability of tree languages

Pascal Weil
(joint work with Z. Ésik)
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◮ Finite, ranked, ordered trees

◮ Σ = (Σn)n, a finite ranked alphabet. In a Σ-tree, nodes are
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Recognizable tree languages

◮ Finite, ranked, ordered trees

◮ Σ = (Σn)n, a finite ranked alphabet. In a Σ-tree, nodes are
labeled by letters in Σ, a node labeled by σ ∈ Σn has n

children

If L is a set of Σ-trees, TFAE (Doner, Thatcher, Wright, 1960s):
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Recognizable tree languages

◮ Finite, ranked, ordered trees

◮ Σ = (Σn)n, a finite ranked alphabet. In a Σ-tree, nodes are
labeled by letters in Σ, a node labeled by σ ∈ Σn has n

children

If L is a set of Σ-trees, TFAE (Doner, Thatcher, Wright, 1960s):

◮ recognizability by a bottom-up tree automaton

◮ recognizability by a deterministic bottom-up tree automaton

◮ MSO-definability (atoms: Pσ(x) (σ ∈ Σ), x < y , Succi (x , y))
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◮ Application: L is FO-definable (resp. LTL-definable) iff L is
recognized by an aperiodic monoid

◮ Application: FO- and LTL-definability are decidable

◮ Eilenberg’s theory of varieties: fine classification of
recognizable languages, piecewise or local testability, FO2- and
FO + MOD-definability, levels in the FO-hierarchy, etc
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The algebraic approach for word languages

◮ Recognizable word languages are also recognized by finite
monoids

◮ Application: L is FO-definable (resp. LTL-definable) iff L is
recognized by an aperiodic monoid

◮ Application: FO- and LTL-definability are decidable

◮ Eilenberg’s theory of varieties: fine classification of
recognizable languages, piecewise or local testability, FO2- and
FO + MOD-definability, levels in the FO-hierarchy, etc

◮ In contrast, the decidability of FO[<] is open for trees (see
[Benedikt and Ségoufin, 2005] for an algebraic
characterization and decidability of FO[Succ])
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My objective today

◮ To present an algebraic framework for the description of
recognizable tree languages,

◮ to explain how FO-definable tree languages are characterized
in this framework.

◮ The problem of deciding FO-definability remains open. . .
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Algebraic views of the minimal automaton (1/3)

◮ L a recognizable language of Σ-trees, A its minimal
automaton with state set Q
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Algebraic views of the minimal automaton (1/3)

◮ L a recognizable language of Σ-trees, A its minimal
automaton with state set Q

◮ ΣM0, the set of Σ-trees is a Σ-algebra

σ · (t1, . . . , tn) =

σ

t1 · · · tn
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Algebraic views of the minimal automaton (1/3)

◮ L a recognizable language of Σ-trees, A its minimal
automaton with state set Q

◮ ΣM0, the set of Σ-trees is a Σ-algebra

σ · (t1, . . . , tn) =

σ

t1 · · · tn

◮ Induces a notion of syntactic algebra: the syntactic Σ-algebra
of L is in fact A.
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Algebraic views of the minimal automaton (2/3)

◮ ΣM1, the set of Σ-trees with a special, unlabeled leaf. They
can be composed (a monoid), and composed with elements of
ΣM0.
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Algebraic views of the minimal automaton (2/3)

◮ ΣM1, the set of Σ-trees with a special, unlabeled leaf. They
can be composed (a monoid), and composed with elements of
ΣM0.

u

v
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Algebraic views of the minimal automaton (2/3)

◮ ΣM1, the set of Σ-trees with a special, unlabeled leaf. They
can be composed (a monoid), and composed with elements of
ΣM0.

◮ Induces a notion of syntactic monoid of L: If x , y ∈ ΣM1, say
x ∼L y if ∀u ∈ ΣM1, v ∈ ΣM0, u · x · v ∈ L if and only if
u · y · v ∈ L.
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q

p

u

◮ Induces a notion of syntactic monoid of L: If x , y ∈ ΣM1, say
x ∼L y if ∀u ∈ ΣM1, v ∈ ΣM0, u · x · v ∈ L if and only if
u · y · v ∈ L.

◮ Each u ∈ ΣM1 induces a map Q → Q, p 7→ q.
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Algebraic views of the minimal automaton (2/3)

q

p

u

◮ Induces a notion of syntactic monoid of L: If x , y ∈ ΣM1, say
x ∼L y if ∀u ∈ ΣM1, v ∈ ΣM0, u · x · v ∈ L if and only if
u · y · v ∈ L.

◮ Each u ∈ ΣM1 induces a map Q → Q, p 7→ q.

◮ This is not just in analogy with the word case, it is a
generalization: an ordinary alphabet is a ranked alphabet with
all letters of rank 1.
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Algebraic views of the minimal automaton (3/3)

◮ Let us continue!

Pascal Weil Algebraic recognizability of tree languages



Outline
Recognizable languages

Preclones: an algebraic framework
Logically defined tree languages

Algebraic views of the minimal automaton
Preclones
Recognizability by a finitary preclone
Varieties and Eilenberg’s theorem
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◮ Let us continue!

◮ ΣMk , the set of Σ-trees with k special leaves, labeled 1, . . . , k
from left to right.
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Algebraic views of the minimal automaton (3/3)

◮ Let us continue!

◮ ΣMk , the set of Σ-trees with k special leaves, labeled 1, . . . , k
from left to right.

f

1 . . . k
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Algebraic views of the minimal automaton (3/3)

◮ Each such k-ary Σ-tree defines a map Qk → Q,
(p1, . . . , pk) 7→ q
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Algebraic views of the minimal automaton (3/3)

◮ Each such k-ary Σ-tree defines a map Qk → Q,
(p1, . . . , pk) 7→ q

f

p1
. . . pk

q
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ΣM = (ΣMk)k≥0 is an algebra for composition.

f

1 . . . k

f

k

g1

m1

gk

mk

f

k

g

m

So is T(Q) = (Tk(Q))k , where Tk(Q) is the set of k-ary
transformations of Q.
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Preclones = abstraction of ΣM and T(Q)

◮ S = (Sk)k (infinitely many sorts of elements)

◮ composition: f ∈ Sk , g1 ∈ Sm1, . . . , gn ∈ Smn ,

f · (g1 ⊕ · · · ⊕ gn) ∈ Sm

with m = m1 + · · · + mn
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Preclones = abstraction of ΣM and T(Q)

◮ S = (Sk)k (infinitely many sorts of elements)

◮ composition: f ∈ Sk , g1 ∈ Sm1, . . . , gn ∈ Smn ,

f · (g1 ⊕ · · · ⊕ gn) ∈ Sm

with m = m1 + · · · + mn

◮ unit element 1 ∈ S1
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Preclones = abstraction of ΣM and T(Q)

◮ S = (Sk)k (infinitely many sorts of elements)

◮ composition: f ∈ Sk , g1 ∈ Sm1, . . . , gn ∈ Smn ,

f · (g1 ⊕ · · · ⊕ gn) ∈ Sm

with m = m1 + · · · + mn

◮ unit element 1 ∈ S1

◮ associativity axioms
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Preclones = abstraction of ΣM and T(Q)

◮ S = (Sk)k (infinitely many sorts of elements)

◮ composition: f ∈ Sk , g1 ∈ Sm1, . . . , gn ∈ Smn ,

f · (g1 ⊕ · · · ⊕ gn) ∈ Sm

with m = m1 + · · · + mn

◮ unit element 1 ∈ S1

◮ associativity axioms

◮ Note: S1 is a monoid
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Preclones = abstraction of ΣM and T(Q)

◮ S = (Sk)k (infinitely many sorts of elements)

◮ composition: f ∈ Sk , g1 ∈ Sm1, . . . , gn ∈ Smn ,

f · (g1 ⊕ · · · ⊕ gn) ∈ Sm

with m = m1 + · · · + mn

◮ unit element 1 ∈ S1

◮ associativity axioms

◮ Note: S1 is a monoid

◮ S is finitary if each Sk is finite
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Recognizability by a finitary preclone

◮ ϕ : ΣM → S , morphism into a finitary preclone (ϕ respects
sorts and products)
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Recognizability by a finitary preclone

◮ ϕ : ΣM → S , morphism into a finitary preclone (ϕ respects
sorts and products)

◮ ϕ recognizes L ∈ ΣMk if L = ϕ−1ϕ(L)
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Recognizability by a finitary preclone

◮ ϕ : ΣM → S , morphism into a finitary preclone (ϕ respects
sorts and products)

◮ ϕ recognizes L ∈ ΣMk if L = ϕ−1ϕ(L)

◮ recognizability of subsets of ΣM0 (Σ-tree languages) is
equivalent to the classical definition
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Syntactic preclone of L ⊆ ΣMk (1/2)

◮ an n-ary context in ΣMk is a tuple (u, k1, v , k2) with
k1, k2 ≥ 0, u ∈ ΣMk1+1+k2

, v = v1 ⊕ · · · ⊕ vn ∈ Σn,ℓ and
k = k1 + ℓ + k2;

u

k1 k2

v

n

k − (k1 + k2)

u

k1 k2

x

v
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Syntactic preclone of L ⊆ ΣMk (1/2)

◮ an n-ary context in ΣMk is a tuple (u, k1, v , k2) with
k1, k2 ≥ 0, u ∈ ΣMk1+1+k2

, v = v1 ⊕ · · · ⊕ vn ∈ Σn,ℓ and
k = k1 + ℓ + k2;

u

k1 k2

v

n

k − (k1 + k2)

u

k1 k2

x

v

◮ An L-context of x ∈ ΣMn if u · (k1 ⊕ x · v ⊕ k2) ∈ L.
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Syntactic preclone of L ⊆ ΣMk (2/2)

◮ Syntactic congruence of L: if x , y ∈ Σn, say that x ∼L y if x

and y have the same L-contexts
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Syntactic preclone of L ⊆ ΣMk (2/2)

◮ Syntactic congruence of L: if x , y ∈ Σn, say that x ∼L y if x

and y have the same L-contexts

◮ Syntactic preclone: Synt(L) = ΣM/∼L
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Syntactic preclone of L ⊆ ΣMk (2/2)

◮ Syntactic congruence of L: if x , y ∈ Σn, say that x ∼L y if x

and y have the same L-contexts

◮ Syntactic preclone: Synt(L) = ΣM/∼L

◮ In Synt(L), sort 0 is the minimal automaton, sort 1 is the
syntactic monoid, the other sorts carry further information
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Varieties and Eilenberg’s theorem

◮ One can define varieties of finitary preclones and varieties of
recognizable tree languages, and state an Eilenberg-type
theorem.
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Varieties and Eilenberg’s theorem

◮ One can define varieties of finitary preclones and varieties of
recognizable tree languages, and state an Eilenberg-type
theorem.

◮ Varieties of tree languages: closure under Boolean operations,
inverse morphisms (between free preclones ΣM) and left and
right quotients
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Varieties and Eilenberg’s theorem

◮ One can define varieties of finitary preclones and varieties of
recognizable tree languages, and state an Eilenberg-type
theorem.

◮ Varieties of tree languages: closure under Boolean operations,
inverse morphisms (between free preclones ΣM) and left and
right quotients

◮ Varieties of finitary preclones: closure under sub-preclone,
morphic image, direct product + finitary inverse limits and
finitary unions of ω-chains.
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An example

◮ Let T∃ ⊆ T(B) (where B = {true, false}) be given by
(T∃)n = {orn, truen}.
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An example

◮ Let T∃ ⊆ T(B) (where B = {true, false}) be given by
(T∃)n = {orn, truen}.

◮ T∃ is generated by true0, or0 = false0 and or2.
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An example

◮ Let T∃ ⊆ T(B) (where B = {true, false}) be given by
(T∃)n = {orn, truen}.

◮ T∃ is generated by true0, or0 = false0 and or2.

◮ Let ϕ : ΣM → T∃. Let Σ(1) be the set of letters that map to
some truen. Then ϕ−1(truek) is the language of k-ary trees
containing a label in Σ(1).
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An example

◮ Let T∃ ⊆ T(B) (where B = {true, false}) be given by
(T∃)n = {orn, truen}.

◮ T∃ is generated by true0, or0 = false0 and or2.

◮ Let ϕ : ΣM → T∃. Let Σ(1) be the set of letters that map to
some truen. Then ϕ−1(truek) is the language of k-ary trees
containing a label in Σ(1).

◮ (This is a simple example of a Σ1-formula.)
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An example

◮ Let T∃ ⊆ T(B) (where B = {true, false}) be given by
(T∃)n = {orn, truen}.

◮ T∃ is generated by true0, or0 = false0 and or2.

◮ Let ϕ : ΣM → T∃. Let Σ(1) be the set of letters that map to
some truen. Then ϕ−1(truek) is the language of k-ary trees
containing a label in Σ(1).

◮ (This is a simple example of a Σ1-formula.)

◮ The variety of tree languages associated with 〈T∃〉 consists of
the Boolean closures of such languages.
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An example

◮ Let T∃ ⊆ T(B) (where B = {true, false}) be given by
(T∃)n = {orn, truen}.

◮ T∃ is generated by true0, or0 = false0 and or2.

◮ Let ϕ : ΣM → T∃. Let Σ(1) be the set of letters that map to
some truen. Then ϕ−1(truek) is the language of k-ary trees
containing a label in Σ(1).

◮ (This is a simple example of a Σ1-formula.)

◮ The variety of tree languages associated with 〈T∃〉 consists of
the Boolean closures of such languages.

◮ For specialists: note that (T∃)1 = {true1, or1} is the monoid

U1 = {0, 1} and 〈T∃〉 is a generalization of J1.
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◮ Atomic formulas: Pσ(x) (σ ∈ Σ), x < y , Succi (x , y)
(i ≤ maxσ∈Σ rank(σ)), and lefth(x) and rightj(x)

◮ Formulas of rank k: atomic formulas with h, j ≤ k, true, false,
Boolean connectives, Lindstrom quantifiers
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The results
Conclusion

Logic on trees in ΣMk

◮ Atomic formulas: Pσ(x) (σ ∈ Σ), x < y , Succi (x , y)
(i ≤ maxσ∈Σ rank(σ)), and lefth(x) and rightj(x)

◮ Formulas of rank k: atomic formulas with h, j ≤ k, true, false,
Boolean connectives, Lindstrom quantifiers

◮ Lindstrom quantifiers include existential or modular
quantifiers, but also certain path quantifiers, modular
quantifiers, etc
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Lindstrom quantifiers

◮ Let ∆ be a finite ranked alphabet such that ∆n 6= ∅ whenever
Σn 6= ∅,
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Lindstrom quantifiers

◮ Let ∆ be a finite ranked alphabet such that ∆n 6= ∅ whenever
Σn 6= ∅,

◮ let ϕδ be formulas with free variables in X ∪ {x}, such that
for each n ≥ 0 and every interpretation mapping x to a rank n

vertex, exactly one of the formulas ϕδ (δ ∈ ∆n) holds,
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Lindstrom quantifiers

◮ Let ∆ be a finite ranked alphabet such that ∆n 6= ∅ whenever
Σn 6= ∅,

◮ let ϕδ be formulas with free variables in X ∪ {x}, such that
for each n ≥ 0 and every interpretation mapping x to a rank n

vertex, exactly one of the formulas ϕδ (δ ∈ ∆n) holds,

◮ and let K ⊆ ∆Mk .
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Lindstrom quantifiers

◮ Let ∆ be a finite ranked alphabet such that ∆n 6= ∅ whenever
Σn 6= ∅,

◮ let ϕδ be formulas with free variables in X ∪ {x}, such that
for each n ≥ 0 and every interpretation mapping x to a rank n

vertex, exactly one of the formulas ϕδ (δ ∈ ∆n) holds,

◮ and let K ⊆ ∆Mk .

◮ Let t ∈ ΣMk and let λ : X → V (t).
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Lindstrom quantifiers

◮ Let ∆ be a finite ranked alphabet such that ∆n 6= ∅ whenever
Σn 6= ∅,

◮ let ϕδ be formulas with free variables in X ∪ {x}, such that
for each n ≥ 0 and every interpretation mapping x to a rank n

vertex, exactly one of the formulas ϕδ (δ ∈ ∆n) holds,

◮ and let K ⊆ ∆Mk .

◮ Let t ∈ ΣMk and let λ : X → V (t).

◮ Then (t, λ) |= QKx · 〈ϕδ〉δ if the tree t̄λ lies in K , where
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Lindstrom quantifiers

◮ Let ∆ be a finite ranked alphabet such that ∆n 6= ∅ whenever
Σn 6= ∅,

◮ let ϕδ be formulas with free variables in X ∪ {x}, such that
for each n ≥ 0 and every interpretation mapping x to a rank n

vertex, exactly one of the formulas ϕδ (δ ∈ ∆n) holds,

◮ and let K ⊆ ∆Mk .

◮ Let t ∈ ΣMk and let λ : X → V (t).

◮ Then (t, λ) |= QKx · 〈ϕδ〉δ if the tree t̄λ lies in K , where

◮ t̄λ is a relabeling of t by letters from ∆: a rank n vertex v is
labeled by the letter δ ∈ ∆n such that (t, [λ; x 7→ v ]) |= ϕδ.
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The logic Lind(K) and the variety Lind(K) of tree
languages

◮ Allow only Lindstrom quantifiers QK with K ∈ K: logic
Lind(K)
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The logic Lind(K) and the variety Lind(K) of tree
languages

◮ Allow only Lindstrom quantifiers QK with K ∈ K: logic
Lind(K)

◮ Lind(K) = Lind(K)-definable languages
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Conclusion

The logic Lind(K) and the variety Lind(K) of tree
languages

◮ Allow only Lindstrom quantifiers QK with K ∈ K: logic
Lind(K)

◮ Lind(K) = Lind(K)-definable languages

◮ if K is the variety of languages associated with 〈T∃〉, then
Lind(K) is FO.
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A generalization of an operation on monoids

◮ Let S , T be preclones and k ≥ 0. For each n ≥ 0, Let Ck,n be
the set of n-ary contexts in Tk .
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A generalization of an operation on monoids

◮ Let S , T be preclones and k ≥ 0. For each n ≥ 0, Let Ck,n be
the set of n-ary contexts in Tk .

◮ The S �k T is the preclone such that

(S �k T )n = S
Ck,n
n × Tn
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Block product of preclones
The results
Conclusion

A generalization of an operation on monoids

◮ Let S , T be preclones and k ≥ 0. For each n ≥ 0, Let Ck,n be
the set of n-ary contexts in Tk .

◮ The S �k T is the preclone such that

(S �k T )n = S
Ck,n
n × Tn

◮ with product as follows.
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The composition operation in a block product (1/3)

◮ Let (F , f ) ∈ (S �k T )n and for each 1 ≤ i ≤ n,
(Gi , gi ) ∈ (S �k T )mi

. Let m =
∑

i mi .
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The composition operation in a block product (1/3)

◮ Let (F , f ) ∈ (S �k T )n and for each 1 ≤ i ≤ n,
(Gi , gi ) ∈ (S �k T )mi

. Let m =
∑

i mi .

◮ Then
(F , f ) · ((G1, g1) ⊕ · · · ⊕ (Gn, gn)) = (H, f · (g1 ⊕ · · · ⊕ gn)) is
the element of (S �k T )m such that
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The composition operation in a block product (1/3)

◮ Let (F , f ) ∈ (S �k T )n and for each 1 ≤ i ≤ n,
(Gi , gi ) ∈ (S �k T )mi

. Let m =
∑

i mi .

◮ Then
(F , f ) · ((G1, g1) ⊕ · · · ⊕ (Gn, gn)) = (H, f · (g1 ⊕ · · · ⊕ gn)) is
the element of (S �k T )m such that

◮ for (u, k1, v , k2) ∈ Ck,m,

H(u, k1, v , k2) = F (u, k1, g · v , k2) ·
(

⊕n
i=1 Gi(Ci )

)

Pascal Weil Algebraic recognizability of tree languages



Outline
Recognizable languages

Preclones: an algebraic framework
Logically defined tree languages

Which logic?
Block product of preclones
The results
Conclusion

The composition operation in a block product (2/3)

H(u, k1, v , k2) = F (u, k1, g · v , k2) ·
(

⊕n
i=1 Gi (Ci)

)

u

k1 k2

v

m

ℓ

u

k1 k2

· · ·v̄1

m1

ℓ1

v̄n

mn

ℓn

u

k1 k2

g1

v̄1

gn

v̄n

(u, k1, v , k2) ∈ Ck,m and (u, k1, g · v , k2) ∈ Ck,n
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The composition operation in a block product (3/3)

H(u, k1, v , k2) = F (u, k1, g · v , k2) ·
(

⊕n
i=1 Gi (Ci)

)

u

k1 k2

v

m

ℓ

u

k1 k2

· · ·v̄1

m1

ℓ1

v̄n

mn

ℓn

u

k1 k2

f

g1

v̄1

gn−1

v̄n−1

v̄n(u, k1, v , k2) ∈ Ck,m and Cn ∈ Ck,mn
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The main results (1/2)

◮ Let K be a variety of tree languages with appropriate closure
properties (technical: to allow relativization of the logic
Lind(K), etc).
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The main results (1/2)

◮ Let K be a variety of tree languages with appropriate closure
properties (technical: to allow relativization of the logic
Lind(K), etc).

◮ If S and T recognize only languages in Lind(K), then so does
S �k T .

Pascal Weil Algebraic recognizability of tree languages



Outline
Recognizable languages

Preclones: an algebraic framework
Logically defined tree languages

Which logic?
Block product of preclones
The results
Conclusion

The main results (1/2)

◮ Let K be a variety of tree languages with appropriate closure
properties (technical: to allow relativization of the logic
Lind(K), etc).

◮ If S and T recognize only languages in Lind(K), then so does
S �k T .

◮ If S recognizes K and T recognizes the languages defined by
the ϕδ, then S �k T recognizes the language defined by
QKx · 〈ϕδ〉δ.

Pascal Weil Algebraic recognizability of tree languages



Outline
Recognizable languages

Preclones: an algebraic framework
Logically defined tree languages

Which logic?
Block product of preclones
The results
Conclusion

The main results (2/2)

◮ Let V be the least variety of preclones containing Synt(L) for
L ∈ K and closed under block product. Then L is
Lind(K)-definable if and only if Synt(L) ∈ V.
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The main results (2/2)

◮ Let V be the least variety of preclones containing Synt(L) for
L ∈ K and closed under block product. Then L is
Lind(K)-definable if and only if Synt(L) ∈ V.

◮ FO-definable languages form a variety, which corresponds to
the least closed variety containing T∃.
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Conclusion on the results

◮ The first algebraic characterization of FO-definability.

Pascal Weil Algebraic recognizability of tree languages



Outline
Recognizable languages

Preclones: an algebraic framework
Logically defined tree languages

Which logic?
Block product of preclones
The results
Conclusion

Conclusion on the results

◮ The first algebraic characterization of FO-definability.

◮ FO-definable languages form a variety in a natural sense (not
surprising).
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Conclusion on the results

◮ The first algebraic characterization of FO-definability.

◮ FO-definable languages form a variety in a natural sense (not
surprising).

◮ The result does not yield a decision procedure.
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Conclusion on the results

◮ The first algebraic characterization of FO-definability.

◮ FO-definable languages form a variety in a natural sense (not
surprising).

◮ The result does not yield a decision procedure.

◮ Neither does the analogous characterization for words, but the
model of preclones gives a natural framework to express such
a decidable characterization (as I expect there is one).
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Conclusion on the model (1/2)

◮ Preclones have advantages: they generalize the word situation,
as well as previous attempts such as the tree monoids,
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Conclusion on the model (1/2)

◮ Preclones have advantages: they generalize the word situation,
as well as previous attempts such as the tree monoids,

◮ they are algebraically robust (Eilenberg’s theorem, universal
algebra)
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Conclusion on the model (1/2)

◮ Preclones have advantages: they generalize the word situation,
as well as previous attempts such as the tree monoids,

◮ they are algebraically robust (Eilenberg’s theorem, universal
algebra)

◮ they are a natural by-product of the minimal automaton of a
tree language,
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Conclusion on the model (1/2)

◮ Preclones have advantages: they generalize the word situation,
as well as previous attempts such as the tree monoids,

◮ they are algebraically robust (Eilenberg’s theorem, universal
algebra)

◮ they are a natural by-product of the minimal automaton of a
tree language,

◮ they allow proving the characterization of FO-definability
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Conclusion on the model (1/2)

◮ Preclones have advantages: they generalize the word situation,
as well as previous attempts such as the tree monoids,

◮ they are algebraically robust (Eilenberg’s theorem, universal
algebra)

◮ they are a natural by-product of the minimal automaton of a
tree language,

◮ they allow proving the characterization of FO-definability

◮ they allow a natural expression of other recent results (EF and
EX-definability, Bojańczyk and Walukiewicz;
FO[Succ]-definability, Benedikt and Ségoufin).
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Conclusion on the model (2/2)

◮ Preclones have a big disadvantage: technically cumbersome.
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Conclusion on the model (2/2)

◮ Preclones have a big disadvantage: technically cumbersome.

◮ Current hope: unification with the model of forest algebras,
developed by Bojańczyk and Walukiewicz for unranked trees.
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Thank you for your attention!
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