
On the Use of Graph Transformations
for Model Refactoring

Tom Mens1

Service de Génie Logiciel
Université de Mons-Hainaut, Belgium

tom.mens@umh.ac.be
http://w3.umh.ac.be/genlog

Abstract. Model-driven software engineering promotes the use of models and
transformations as primary artifacts. Several formalisms can be used for the spec-
ification of model transformations. In this tutorial, we introduce and discuss such
a formalism that is based on graphs and graph transformations. In particular, we
focus on the activity of model refactoring, and show how graph transformation
can provide formal support for this activity. We also show how such support can
be implemented in state-of-the-art graph transformation tools such as AGG and
Fujaba.

1 Introduction

Model-driven engineering is a software engineering approach that promotes the usage
of models and transformations as primary artifacts. Its goal is to tackle the problem of
developing, maintaining and evolving complex software systems by raising the level of
abstraction from source code to models. As such, model-driven engineering promises
reuse at the domain level, increasing the overall software quality. Model transformation
is the heart and soul of this approach [1].

Graph transformation seems to be a suitable technology and associated formalism
to specify and apply model transformations for the following reasons:

– Graphs are a natural representation of models that are intrinsically graph-based in
nature (e.g., statecharts, activity diagrams, collaboration diagrams, class diagrams,
Petri nets), as opposed to source code for which a tree-based approach is likely
to be more appropriate. In Bézivin’s tutorial on model-driven engineering [2], this
link between models and graphs is explained as follows: “... we will give a more
limited definition of a model, in the context of MDE only, as a graph-based structure
representing some aspects of a given system and conforming to the definition of
another graph called a metamodel.”

– Graph transformation theory provides a formal foundation for the automatic appli-
cation of model transformations. As such, one can reason about many interesting
formal properties such as confluence, sequential and parallel dependence, and so
on.

– Tool support for model-driven development based on graph transformation engines
is starting to emerge (e.g., GReAT [3], MOLA [4] and VIATRA [5]).

mailto:tom.mens@umh.ac.be
http://www.umh.ac.be/?genlog

2 T. Mens

An important activity within the domain of model transformation is model refac-
toring. The term refactoring was originally introduced by Opdyke in his seminal PhD
dissertation [6] in the context of object-oriented programming. Martin Fowler [7] de-
fines this activity as ”the process of changing a software system in such a way that it
does not alter the external behavior of the code, yet improves its internal structure”.
Recently, research interest has shifted from program refactoring to model refactoring
[8,9,10,11,12], which aims to apply refactoring techniques at model level as opposed to
source code.

The objectives of this tutorial are threefold:

– To introduce the notion of model refactoring as a special kind of model transforma-
tion activity, and to motivate the importance of this activity in the MDE process;

– To introduce graph transformation as a promising technique (covering both theo-
retical foundations and tool support) for software transformation;

– To show how graph transformation can provide formal support to automate the
activity of model refactoring, and to compare graph transformation to related ap-
proaches.

The rest of this tutorial is structured as follows. Section 2 provides a high-level
overview of model transformation and model refactoring, and introduces the neces-
sary terminology. Section 3 introduces some theory on graph transformation. Section
4 discusses and compares AGG [13] and Fujaba [14,15], two general-purpose graph
transformation tools, and shows how these tools can be used to implement support for
model refactoring. Finally, section 7 concludes.

2 Model transformation

The aim of this section is to give a general high-level overview of model transforma-
tion, and to show where model refactoring fits in. In order to do this, it is important to
be aware of the fact that model refactoring represents only a very specific kind of model
transformation. To illustrate this, we briefly discuss a taxonomy of model transforma-
tion in the first subsection.

2.1 Taxonomy

[16] presented a detailed taxonomy of model transformation and showed how it could
be applied to graph transformation. We will summarise some important ideas of the
model transformation taxonomy here. Applying graph transformations to model trans-
formation in general, however, is outside the scope of this paper.

In order to transform models, these models need to be expressed in some modeling
language, the syntax of which is expressed by a metamodel. Based on the metamodels
that are used for expressing the source and target models of a transformation, a distinc-
tion can be made between endogenous and exogenous transformations. Endogenous
transformations are transformations between models expressed in the same metamodel.
Exogenous transformations are transformations between models expressed in different
metamodels. A typical example of an exogenous transformation is migration of a model

Graph transformations for model refactoring 3

a program written in one particular language to another one. A typical example of an
endogenous transformation is refactoring, where the internal structure of a model is
improved (with respect to a certain software quality characteristic) without changing its
observable behaviour [7].

Besides this distinction between endogenous and exogenous model transformations,
we can also distinguish horizontal and vertical model transformations. A horizontal
transformation is a transformation where the source and target models reside at the
same abstraction level. A typical examples is again refactoring (an endogenous trans-
formation). A vertical transformation is a transformation where the source and target
models reside at different abstraction levels. A typical example of a vertical transfor-
mation is synthesis of a higher-level, more abstract, specification (e.g., a UML design
model) into a lower-level, more concrete, one (e.g, a Java program).

Table 1 illustrates that the dimensions horizontal versus vertical and endogenous
versus exogenous are truly orthogonal, by giving a concrete example of all possible
combinations. As a clarification for the Formal refinement mentioned in the table, a
specification in first-order predicate logic or set theory can be gradually refined such
that the end result uses exactly the same language as the original specification (e.g., by
adding more axioms).

Table 1. Orthogonal dimensions of model transformations

horizontal vertical

endogenous Refactoring Formal refinement
exogenous Language migration Synthesis (e.g., code generation)

Exercise 1. Identify some other types of model transformation (besides the four men-
tioned in Table 1) and classify them according to the taxonomy presented above.

2.2 Model refactoring

An emerging research trend is to port the idea of refactoring to the modeling level, for
example by applying refactoring techniques to UML models [8,9,10].

Boger et al. developed a refactoring browser integrated with a UML modeling tool
[9]. It supports refactoring of class diagrams, statechart diagrams, and activity diagrams.
For each of these diagrams, the user can apply refactorings that cannot easily or natu-
rally be expressed in other diagrams or in the source code.

Sunyé et al. formally defined some statechart refactorings using OCL pre- and post-
conditions [8]. Similarly, Van Gorp et al. propose a UML extension to express the pre-
and postconditions of source code refactorings using OCL [10]. The proposed exten-
sion allows an OCL empowered CASE tool to verify nontrivial pre and postconditions,
to compose sequences of refactorings, and to use the OCL query engine to detect bad
code smells. Such an approach is desirable as a way to refactor designs independent of

4 T. Mens

the underlying programming language. Correa and Werner built further on these ideas,
and implemented the refactorings in OCL-script, an extension of OCL [17].

An alternative approach is followed by Porres [18], who implements model refac-
torings as rule-based update transformations in SMW, a scripting language based on
Python.

Zhang et al. developed a model transformation engine that integrates a model refac-
toring browser that automates and customises various refactoring methods for either
generic models or domain-specific models [12].

Exercise 2. For each type of UML diagram you are familar with, try to come up with
one or more examples of a model refactoring, i.e., a transformation that improves the
structure of a UML model yet preserves its behaviour.

In the remainder of this tutorial, we will mainly restrict ourselves to model refactor-
ing of UML class diagrams for various reasons. However, most of the ideas explained
in this tutorial are directly applicable to refactorings of other kinds of models as well.
Even domain-specific models and non-UML-compliant models (e.g. database schemas
in ER notation) can be targeted. The primary restriction is that the models have to be
expressible in a diagrammatic, graph-like notation.

2.3 Model consistency

Another crucial aspect of model transformation, and model refactoring in particular, is
model consistency. It will not be treated in this tutorial, but we briefly mention some
relevant related work here.

Spanoudakis and Zisman [19] provided an excellent survey on inconsistency man-
agement in software engineering. According to them, an inconsistency is “a state in
which two or more overlapping elements of different software models make assertions
about aspects of the system they describe which are not jointly satisfiable". They claim
that the following activities are essential for inconsistency management: detection of
overlaps, detection of inconsistencies, diagnosis of inconsistencies, handling of incon-
sistencies, tracking, specification and application of an inconsistency management pol-
icy.

Since a UML model is typically composed of many different diagrams, the consis-
tency between all these diagrams needs to maintained when any of them evolves. Sunyé
et al. explored how the integrity of class diagrams and statecharts could be maintained
after refactorings [8]. Van Der Straeten et al. explored the use of description logics
as a way to specify and implement consistency rules and behaviour preservation rules
[20,11].

Exercise 3. Give some examples of consistency problems that can occur in a UML
model consisting of different kinds of UML diagrams. Consider only class diagrams,
state transition diagrams (describing the internal behaviour of a class) and sequence
diagrams (describing the message interations between class instances). Inconsistencies
between these diagrams can arise when any of these diagrams is modified.

Graph transformations for model refactoring 5

The problem of consistency maintenance becomes even more problematic when we
acknowledge the obvious fact that models are only an intermediate step in the software
development life-cycle, where the actual executable program is the most important de-
liverable. In this context, consistency should be maintained between the modeling level
and the implementation level. Modifications to the models should be automatically re-
flected in the source code and vice versa. Again, this is a far from trivial problem that
is outside the scope of this paper.

Exercise 4. Give an example of a consistency problem that can arise between UML
design models and their generated source code when a small change is made to either
the design models or the source code.

If you have a CASE tool available that allows you to generate programs from UML
models, or to extract UML models from source code, verify whether this consistency
problem is addressed by the CASE tool.

3 Graph transformation theory

Since the aim of this tutorial is to study the use of graph transformation for the pur-
pose of model refactoring, in this section we will introduce the necessary theory and
terminology about graph transformation. In Section 4 we will try to put this theory into
practice by using two concrete graph transformation tools, AGG and Fujaba.

3.1 Introduction

Graph transformation theory has been developed over the last three decades as a suite
of techniques and tools for formal modeling and very high-level visual programming.
Graph transformations can typically be found in two flavours: graph grammars and
graph rewriting.

Graph grammars are the natural extension of Chomsky’s generative string gram-
mars into the domain of graphs. Production rules for (string-) grammars are generalized
into production rules on graphs, which generatively enumerate all the sentences (i.e., the
“graphs”) of a graph grammar. Similarly, string rewriting can be generalized into graph
rewriting. A string rewriting consists of a pattern and a replacement string. The pattern
is matched against an input string, and the matched substring is replaced with the re-
placement string of the rule. In analogy, a graph rewriting consists of a pattern graph
and a replacement graph. The application of a graph rewriting rule matches the pattern
graph in an input graph, and replaces the matched subgraph with the replacement graph.

Many tools, even full-fledged programming environments (e.g., AGG [13] and Fu-
jaba [15]), have been developed that illustrate the practical applicability of the graph
transformation approach. These environments have demonstrated that (1) complex
transformations can be expressed in the form of rewriting rules, and (2) graph rewriting
rules can be compiled into efficient code. In recent years, a number of model transfor-
mation tools have emerged that use graph transformation as an underlying transforma-
tion engine. Concrete examples are GReAT [3], MOLA [4] and VIATRA [5]).

6 T. Mens

3.2 Graphs

According to Bézivin and many others, a model can naturally be represented as a graph-
based structure. Figure 1 clarifies this idea, and shows the correspondence between
models and their graph representation. In this subsection, we will formally define the
notions of graph and type graph, as well as how they are related.

model

metamodel

graph

type graph

conforms tois typed by

represents

represents

Fig. 1. Relationship between models and their graph representation.

Definition 1. Directed labelled graphs.
A (directed, labelled) graph G = (VG, EG, sG, tG, lG) has a set of vertices VG

and a set of edges EG such that VG ∩ EG = ∅, functions sG : EG → VG and tG :
EG → VG to associate to each edge a source and target vertex, and a labelling function
lG : VG ∪ EG → L to assign a label to each vertex and edge.

Example 1. A concrete example of a graph is shown in Figure 4. This graph can be seen
as the flattened variant of the UML class diagram of Figure 3, representing the design
model of a local area network simulation (LAN). The behaviour of the LAN is visually
represented in Figure 2.

It is worthwhile to note that this example has been used at different universities to
teach object-oriented design and programming concepts, as well as to teach refactoring
principles [21].

Definition 2. Graph morphism.
Let G and H be two graphs. A graph morphism m : G → H consists of a pair

of partial functions mV : VG → VH and mE : EG → EH that preserve sources and
targets of edges, i.e., sH ◦mE = mV ◦ sG and tH ◦mE = mV ◦ tG. It also preserves
vertex labels and edge labels, i.e., lH ◦mV = lG and lH ◦mE = lG.

A graph morphism m : G → H is injective (surjective) if both mV and mE are
injective (surjective). It is isomorphic if m is injective and surjective. In that case, we
write G ∼= H .

Note that the functions mV and mE are partial to allow for vertex deletions and
edge deletions. All vertices in VG \ dom(mV) and all edges in EG \ dom(mE) are
considered to be deleted by m.

Graph transformations for model refactoring 7

Fig. 2. Visualisation of the behaviour of a Local Area Network (LAN).

Fig. 3. UML class diagram of the LAN simulation.

Given a graph, it is often useful to determine its well-formedness, by checking
whether it conforms to a so-called type graph. The formal definition of typed graphs
is taken from [22]. Basically this boils down to the same idea as the one that is taken
in model-driven engineering, where each model (e.g. a UML design model) needs to
conform to a metamodel (e.g., the UML metamodel) [2]. The correspondence between
both ideas is depicted in Figure 1.

Definition 3. Typed graph.
Let TG be a graph (called the type graph). A typed graph (over TG) is a pair (G, t)

such that G is a graph and t : G → TG is a graph morphism. A typed graph morphism
(G, tG) → (H, tH) is a graph morphism m : G → H that also preserves typing, i.e.,
tH ◦m = tG.

8 T. Mens

Fig. 4. Example of a graph representing the UML class diagram of the LAN simulation
modeled in Figure 3.

Given a graph, it is also possible and very useful in practice to attach additional in-
formation to vertices and edges by attributing them. In that case, we talk about attributed
graphs. Each vertex or edge can contain zero or more attributes. Such an attribute is typ-
ically a name-value pair, that allows to attach a specific value to each attribute name.
These values can be very simple (e.g., a number or a string) or more complex (e.g., a
Java expression). Examples of both will be shown later.

Example 2. As an example of an attributed graph, reconsider Figure 4. It is effectively
attributed in the sense that some or all of its vertices contain attributes with names
name, visibility and so on. Even some of the edges are attributed with name
order.

For attributed graphs, the notion of type graph can be extended to constrain the
names and types of attributes that are allowed for certain types of vertices and edges.

Example 3. An example of an attributed type graph, representing a simplified object-
oriented metamodel, is shown in Figure 5. It expresses the following constraints on
concrete graphs:

Constraints between nodes and edges: Classes can be related by generalization (gen-
edges, or their transitive variant tgen). Classes contain Methods and Variables.
Methods send Messages to each other and have a number of Parameters. Methods
access or update Variables. Variables and Parameters are typed by Classes.

Graph transformations for model refactoring 9

Multiplicity constraints on edges: For example, each Variable or Method is con-
tained in exactly one Class. A Class contains zero or more Variables and Methods.

Attribute contraints: For example, the number of Parameters of a Method, as well
as the name and visibility of Methods and Variables, is represented by vertex at-
tributes. The order of a Parameter in a Method declaration is represented by an
edge attribute.

Fig. 5. Example of a type graph representing a simplified object-oriented metamodel.
Observe that the vertices and edges of this type graph are attributed. The graph of Fig-
ure 4 is a concrete instance graph of this type graph.

In the remainder of the paper, when we use the term graph, we will always refer
to an attributed, typed, directed labelled graph, unless indicated otherwise. Obviously,
other variants of graphs exist but they will not be treated here, as they are not used by
the graph refactoring tools we will employ for our experiments in Section 4

Exercise 5. Give several examples of concrete instance graphs that conform to the type
graph of Figure 5. Give some examples of instance graphs that do not conform to the
type graph and explain why.

Exercise 6. Check the multiplicities of each edge in the type graph and explain why
they are there. (E.g., analyze the multiplicities of the generalization edge to determine
whether or not the type graph allows for multiple inheritance.)

Exercise 7. Explain how method overriding, method overloading and late binding (or
dynamic binding) can be modeled in this type graph. Give a concrete example.

Remark. The signature of a method is determined by the method name, the num-
ber of method arguments, the order of these arguments, the type of each argument, and
the return type of the method. With method overloading, the same class can contain or
understand more than one method with the same name, but a different signature. With

10 T. Mens

method overriding, a method with a given signature can be redefined with another im-
plementation in a descendant class. With late binding (or dynamic binding), a message
can be sent to a method whose signature occurs more than once in the inheritance hi-
erarchy (due to method overriding). The actual receiver method of the message will be
bound at execution time, depending on the dynamic type of the object that receives the
message.

Exercise 8. Extend the type graph of Figure 5 so that it is possible to model excep-
tion handling in the Java way. An exception is modelled as a class, and a method can
throw exceptions or catch exceptions. (For more details, please consult a Java reference
manual.)

Exercise 9. Compare the type graph of Figure 5 with the part of the UML metamodel
that is relevant to express class diagrams. Discuss the differences and determine if and
how it is possible to integrate these differences into a more complete type graph.

Exercise 10. Do you know any other object-oriented metamodels? If yes, discuss and
compare them with the one of Figure 5.

3.3 Graph transformations

Definition 4. Graph production (rule).
Let L and R be labelled graphs. A graph production is a graph morphism p : L →

R.

Example 4. An example of a graph production is shown in Figure 6. It moves a method
one level up in the class hierarchy. (We use the edge tgen to denote transitive general-
ization of a class, i.e., any direct or indirect superclass or the class itself.) The left-hand
side L is shown on the left, the right-hand side R is shown on the right of the figure.
Vertices and edges that are preserved have the same number in L and R. In this exam-
ple, only one edge (of type contains) is removed in L, and another edge (of the same
type) is added in R. All other vertices and edges are preserved.

A graph transformation is the result of applying a graph production rule p : L → R
in the context of a concrete graph G. Informally, this is performed by (i) finding a match
of the left-hand side L in the graph G; (ii) creating a context graph by removing the part
of the concrete graph that is mapped to L but not to R; (iii) gluing the context graph
with those vertices and edges of R that do not have a counterpart in L. Formally, we
follow the single pushout approach with injective graph morphisms [23].

Definition 5. Graph transformation.
A graph transformation G ⇒t H is a pair t = (p, m) consisting of a graph pro-

duction p : L → R and an injective graph morphism (called match) m : L → G.
Using a category-theoretical construct called pushout, one can automatically com-

pute the morphisms m′ : R → H and p′ : G → H that make the diagram (p, m)
commute. The graph H obtained through this process is the result of applying the graph
transformation t to G.

Graph transformations for model refactoring 11

Fig. 6. A Pull Up Method graph production, represented in AGG notation. The left pane
represents the production’s left-hand side, the right pane the production’s right-hand
side. Numbers are used to identify the vertices and edges that are preserved by the
graph transformation.

In graph transformation systems with a large number of graph productions it is often
necessary to restrict the application of productions. Therefore, in [24,25] the notion of
negative application conditions (NAC) is introduced. Intuitively, a NAC is a graph that
defines a forbidden graph structure (e.g., the absence of some vertices or edges).

The mechanism of graph transformation can be extended easily to deal with ap-
plication conditions, by checking all NACs associated to the graph production in the
context of the concrete input graph G. Needless to say, the introduction of this notion
of application conditions makes graph transformation considerably more expressive.

Definition 6. Negative application condition.
Let p : L → R be a graph production. A negative application condition for p is

a graph morphism nac : L → L̂. A graph transformation G ⇒(p,m) H satisfies a
negative application condition nac if no graph morphism m̂ : L̂ → G exists such that
m̂ ◦ nac = m.

In practice, several NACs can be attached to a single graph production, i.e., each
production p has an associated set N of NACs.

Definition 7. Applicability of a graph transformation.
Let p̂ = (p,N) be a graph production p : L → R together with a set N of negative

application conditions. A graph transformation G ⇒(p̂,m) H is applicable if G ⇒(p,m)

H satisfies each negative application condition in N .

Example 5. An example of a NAC for the PullUpMethod graph production of Figure 6
is shown in Figure 7. The NAC is shown on the left. It specifies that the method cannot
be pulled up if a method with the same name already exists in the class to which the
method needs to be pulled up.

12 T. Mens

Fig. 7. A Pull Up Method graph production with negative application condition (NAC).
The middle pane specifies the production’s left-hand side, the right pane the produc-
tion’s right-hand side, and the left pane the NAC. It specifies that the method with name
x and visibility vis in class number 3 cannot be pulled up if there is already an ancestor
class containing a method with name x. Note that the figure also shows another NAC
that cannot be expressed graphically because it has to do with the value of one of the
vertex attributes. More specifically, the Java condition !vis.equals("private")
expresses that only methods with a non-private visibility can be pulled up.

Exercise 11. Given the type graph of Figure 5 representing an object-oriented meta-
model, try to specify a graph transformation to move a method from one class to an-
other one. Do not forget to specify the negative application conditions that are needed
for such a graph transformation.

3.4 Programmed graph transformation and graph grammars

To cope with a graph transformation system that contains a large number of graph
productions, we need additional mechanisms to reduce the complexity. In this section
we briefly introduce two alternative approaches: programmed graph transformation and
graph grammars.

With programmed graph transformation, it is possible to specify a control structure
that controls the order in which graph productions can be applied. Basically, this im-
plies that we can use sequencing, branching and loop constructs to control the order
of application of graph productions. Programmed graph transformation is supported by
tools such as Fujaba [15] and PROGRES [26]. In particular, Fujaba uses an intuitive
and compact notation, called story diagrams, to represent both the graph productions
as well as their order of application. We will come back to this specific notation in
Section 4.2.

Graph transformations for model refactoring 13

P1
[success]

[failure] [end]

P2

[as long as possible]

truefalse

Fig. 8. An example of a programmed graph production composed of two graph produc-
tions P1 and P2.

Example 6. An example of a programmed graph production is shown in Figure 8. It
shows the application order of two graph productions P1 and P2. First P1 is applied,
and if it succeeds, P2 is aplied as long as possible.

This programmed graph production can be used to express a more sophisticated
variant of Pull Up Method, that is composed of two graph productions. The first pro-
duction, P1 (shown in Figure 7), takes a method in a class C and moves it to its parent
class. The second production, P2, looks for the same method signature in a sibling of
C (i.e., a class with the same parent as C) and deletes this method. This production is
repeated for each sibling of C where the same method signature can be found.

Exercise 12. Formally specify the graph production P2 explained above in the context
of Pull Up Method.

With graph grammars, no control structure is imposed, and all available graph pro-
ductions are applied non-deterministically or at random. As such, a given initial graph
G can give rise to a whole range of possible result graphs, which is referred to as L(G),
the language generated by the graph grammar. Each word in this language corresponds
to a possible sequence of graph transformations that can be applied to G. Graph gram-
mars are used in the AGG tool.

3.5 Confluence and critical pairs

Definition 8 (Confluence). A relation R ⊆ A×A is called confluent if
∀a, b, c ∈ A: if aRb and aRc then ∃d ∈ A: bRd and cRd

Confluence is well-known in term rewriting, and is used to check whether a term
rewriting systems (i.e., a term grammar) has a functional behaviour. Irrespective of the
order in which the term rewritings are applied the end result should always remain the
same. These confluence results can also be shown for the more general graph grammars
[27].

Given a term grammar (or a graph grammar), it is crucial to know whether this
grammar has the confluence property. To determine this, the notion of critical pair
analysis has been introduced for term rewriting, and has been generalised later for graph

14 T. Mens

rewriting [27]. Critical pairs formalize the idea of a minimal example of a conflicting
situation. From the set of all critical pairs we can extract the vertices and edges which
cause conflicts or dependencies.

To find all conflicting productions in a graph grammar, minimal critical graphs are
computed to which productions can be applied in a conflicting way. Basically, one has
to consider all overlapping graphs of the left-hand sides of two productions with the
obvious matches and analyze these rule applications. All conflicting rule applications
are called critical pairs. If one of the rules contains NACs, the overlapping graphs of
one left-hand side with a part of the NAC have to be considered in addition.

Definition 9 (Conflict). Two graph transformations G1 ⇒(p1,m1) H1 and
G2 ⇒(p2,m2) H2 are in conflict if p1 may disable p2, or, vice versa, p2 may disable
p1.

There is a conflict if at least one of the following three conditions are fulfilled.
The first two are related to the graph structure while the last one concerns the graph
attributes.

1. One rule application deletes a graph object which is in the match of another
rule application. 2. One rule application generates graph objects in a way that a graph
structure would occur which is prohibited by a NAC of another rule application. 3. One
rule application changes attributes being in the match of another rule application.

Definition 10 (Glue graph). Given a pair of graph productions p1 : L1 → R1 and
p2 : L2 → R2. Their glue graph G can be computed by overlapping L1 and L2 in all
possible ways, such that the intersection of L1 and L2 contains at least one item that is
deleted or changed by one of the productions and both productions are applicable to G
at their respective occurences.

Definition 11. [Critical pair] A critical pair is a pair of graph transformations
G ⇒(p1,m1) H1 and G ⇒(p2,m2) H2 which are in conflict, and G is the minimal
glue graph of p1 and p2.

The set of critical pairs represents precisely all potential conflicts between a given
pair of graph productions (p1, p2). Therefore, we can apply critical pair analysis to a
graph grammar (i.e., a set of graph productions), by performing a pairwise comparison
of all graph productions in the grammar. After computation of all critical pairs for every
pair of graph productions, the production set will be divided into conflict-free pairs and
conflicting pairs.

Example 7. The Pull Up Method graph production of Figure 7 and the Move Method
graph production of Figure 9 give rise to a critical pair situation, as depicted in Fig-
ure 10. The same method m is pulled up and moved by different graph productions.
This clearly leads to a conflict, since both productions cannot be applied in sequence.
Once the method m is pulled up, it can no longer be moved from its original location
c, since it is no longer present there. The glue graph that identifies this critical pair is
shown as a gray ellipse in the figure.

Graph transformations for model refactoring 15

Fig. 9. A Move Method graph production with negative application condition. The three
panes indicate, from left to right: a negative application condition, the left-hand side of
the graph production, the right-hand side of the graph production.

Pull Up
Method
(m,c,p)

Move
Method
(m,c,d)

Class
name=p

Class
name=c

Class
name=d

Method
name=m

contains

generalization

Move
Method
(m,c,d)

Pull Up
Method
(m,c,p)

Class
name=p

Class
name=c

Class
name=d

Method
name=m

containsgeneralization

Class
name=p

Class
name=c

Class
name=d

Method
name=m

contains
generalization

Fig. 10. Concrete example of a critical pair situation between the graph productions
Move Method and PullUpMethod.

4 Specifying model refactorings as graph transformations

In the previous section we introduced the basic notions of graph transformation. In
this section, we will show how these can be used to specify model refactorings. A
comparison is given in Table 2.

To concretise the results mentioned in Table 2, we will start by introducing two
general-purpose graph transformation tools, AGG and Fujaba. Then, we continue show-
ing some experiments we have performed with these tools in the context of model refac-
toring.

16 T. Mens

Graph transformation Refactoring
type graph and global graph constraints well-formedness constraints
negative application conditions refactoring preconditions
parameterised graph productions with NACs and con-
text conditions

refactoring transformation

programmed graph transformations, story diagrams composite refactorings
critical pair analysis detecting refactoring conflicts
confluence analysis detecting sequential dependencies

Table 2. Comparison of graph transformation and refactoring concepts

4.1 The AGG graph transformation tool

AGG [13] is a rule-based visual programming environment supporting a graph transfor-
mation language based on the so-called algebraic single-pushout approach [23]. AGG
aims at the specification and prototypical implementation of applications with complex
graph-structured data. It contains a general-purpose graph transformation engine that is
implemented in Java.

AGG supports the specification of type graphs with multiplicities and attributes,
such as the one shown in Figure 5. In AGG, vertex and edge attributes act like ordinary
Java variables to which a value can be assigned. By specifying Java expressions, the
graph production rules can specify how attribute values need to be updated by the trans-
formation. The graph productions can also contain NACs and extra constraints (context
conditions) that need to be satisfied when the production rule is applied in the context
of an input graph. This is quite useful in practice, since the type graph and NACs are
not always sufficiently expressive. An example of this was shown in Figure 7, where
an extra context condition was needed to express a constraint on the visibility of the
method to be pulled up.

In AGG, graph productions are stored as part of an attributed graph grammar. Given
a start graph, the graph grammar can be applied by selecting rules that are applicable.
A very useful feature of AGG, that is absent in other graph transformation tools, is that
graph grammars may be validated using the techniques of critical pair analysis and
consistency checking that were introduced in section 3.5.

Example 8. As a concrete example of a graph transformation in AGG, consider the
specification of the refactoring Encapsulate Variable in Figure 11. The goal of this
refactoring is to change the visibility of the name of a variable (from "public" to "pri-
vate"). In addition, we need to introduce a getter and setter method for this method.
The name of these methods depends on the name of the variable. This constraint
can be expressed by means of the Java expressions s.equals("set"+v) and
g.equals("get"+v) where v is the name of the variable, s the name of the set-
ter method, and g the name of the getter method. The graph production also contains
NACs, stating that the setter and getter methods introduced by the refactoring do not ex-
ist yet in the inheritance chain. One such NAC, called “noSetterInAncestors” is shown
in the upper left pane of Figure 11.

Graph transformations for model refactoring 17

Fig. 11. Encapsulate Variable refactoring expressed as a graph production. The NAC
in the left pane specifies that the name of the newly created setter method for the en-
capsulated variable should not exist in one of the ancestor classes. Note that this NAC
also requires an extra context condition stating a relation between the value v of the
name attribute of the variable and the value s of the name attribute of the method:
s.equals("set"+v)

Exercise 13. Go to the AGG website http://tfs.cs.tu-berlin.de/agg/,
download the latest version (in May 2005 this was version 1.2.6), and install it on your
machine. Run AGG, and open the file transrefactorings10.ggx that can be
found in the subdirectory ExamplesV126/Refactorings of the directory where
you installed AGG. After loading this file, you should get something like the screenshot
shown in Figure 12.

Exercise 14. The Encapsulate Variable refactoring explained in Figure 11 and Exam-
ple 8 is not complete. It does not express the fact that we still need to redirect all accesses
to the public variable by a call to its new setter method, and all updates to the public
variable by a call to its new getter method. Specify a graph production in AGG that does
exactly this.

Exercise 14 shows one of the shortcomings of AGG. It is not possible to specify a
complex graph transformation that is composed as a sequence of more primitive trans-
formations. This would require another mechanism, called programmed graph transfor-
mation, that has been explained in Section 3.4. Unfortunately, such a mechanism is not
available in AGG. It is, however, available in the Fujaba tool that will be explained in
the next subsection.

4.2 The Fujaba graph transformation tool

Fujaba is a graph transformation tool in Java that uses the UML notation for design and
realisation of software projects. It uses a combination of activity diagrams and a spe-

18 T. Mens

Fig. 12. Screenshot of the AGG version 1.2.6, after opening the Refactorings graph
grammar.

cific variant of collaboration diagrams (called story diagrams) for the specification of
operational behaviour. The semantics of these story diagrams are based on programmed
graph transformations such as the ones shown in Figure 8. Story diagrams offer many
powerful constructs of graph transformation such as multiobjects, non-injective match-
ing, negative application conditions, and many more. This makes it a powerful language
that allows to model even complex problems in an elegant way. The operational be-
haviour modeled with such story diagrams can then be tested using the graph-based
object browser DOBS.

Fujaba generates standard Java code that is easily integrated with other Java pro-
grams and that runs in a common Java runtime environment. This enables the use of
graph transformation concepts in all kinds of Java applications.

The way to specify refactorings in Fujaba is very similar to the way it is done in
AGG. The main difference is the notation used by Fujaba, which is closer to UML, and
hence more intuitive to users already acquainted with UML.

Example 9. As a concrete example to illustrate Fujaba’s story diagram notation, we
implemented the EncapsulateField refactoring in Fujaba as well. It is implemented by
means of two methods checkPreconditions and execute. This separation al-
lows us to check the precondition of a refactoring separately from its actual execution.

Graph transformations for model refactoring 19

The implementation of both methods is specified in Fujaba by means of a story diagram,
in Figure 13 and Figure 14, respectively.

Fig. 13. Encapsulate Variable refactoring in Fujaba - Preconditions check

Exercise 15. Go to the Fujaba website http://www.fujaba.de/, download the
latest version of the Fujaba Tool Suite (in March 2005 this was version 4.3.1), and
install it on your machine. Run Fujaba, and open the file Refactoring.fpr.gz
After loading this file, you should get something like the screenshot shown in Figure 15.

Exercise 16. The specification of the Encapsulate Field refactoring execution in Fig-
ure 14 is not complete. The story diagram does not specify that, after creating the
setter and getter methods, all direct accesses or updates to the (previously pub-
lic) attribute attr should be replaced by a method call to the getter and setter
method, respectively. Modify the story diagram to include this part of the refactoring.
Hint. For the sake of simplicity, you may assume in this exercise that attribute accesses,
attribute updates and message sends, are modelled in the same way as was the case in
the AGG type graph. (In fact, this is an oversimplification.)

Exercise 17. Try to specify the Pull Up Method refactoring as a graph transformation
in Fujaba, using the story diagram notation.
Hint. Take a look at the Encapsulate Field refactoring, whose specification is provided

20 T. Mens

Fig. 14. Encapsulate Variable refactoring in Fujaba - Execution

in the project as two activity diagrams for the class EncapsulateField. Also in-
spect the metamodel, which is provided as a class diagram called ASG.

Fig. 15. Screenshot of the Fujaba Tool Suite version 4.3.1, after opening the Refactoring
project.

An important feature of Fujaba is its very flexible plug-in mechanism. One such
plug-in has been developed by the University of Kassel to provide support for some
simple refactorings. When a refactoring is selected via the refactoring plug-in, the cor-

Graph transformations for model refactoring 21

responding refactoring will be executed. Currently, the following list of refactorings has
been implemented: Extract Method, Override Method, Implement Method, and Change
Method Signature. However, the implementation of these refactorings was hard-coded
in Java. Hence, this cannot be used as a proof of concept that graph transformation can
effectively be used to implement model refactorings in the way suggested above.

Fig. 16. Refactoring plugin for Fujaba

Therefore, in another experiment that has been documented in [28], Pieter Van Gorp
from the University of Antwerp (Belgium) tried to implement some class diagram refac-
torings, such as the Pull Up Method refactoring, in Fujaba using the story diagram nota-
tion. Figure 16 illustrates how the Pull Up Method refactoring is selected in the context
of the Local Area Network simulation. When this refactoring is applied, the Java code,
that was automatically generated by Fujaba from the graph production specification, is
executed. As such, the refactoring designer did not need to implement any Java code
himself.

The above case study had two important limitations that were overcome in later
experiments [29,30]:

– The refactoring specifications (transformation models) could not be exchanged with
other tools. This problem was overcome by designing a UML profile for Fujaba’s
graph transformation language.

22 T. Mens

– The code generated by Fujaba could only be executed on repositories conforming to
Fujaba’s API conventions. This limitation was resolved by building a tool that gen-
erates MOF compliant code from transformation models conforming to Fujaba’s
UML profile. The class diagram refactoring case study could consequently be re-
done with general purpose UML tools such as MagicDraw and Poseidon.

4.3 Comparison of AGG and Fujaba

When we compare the functionality of the graph transformation tools AGG and Fujaba,
we see that there are a lot of similarities. Both are implemented in Java, both make use
of attributed, labelled, directed graphs, both use a type graph, and both support negative
application conditions.

On the other hand, there are also a number of important differences. Probably the
most striking one is the way in which the application of graph productions is controlled.
AGG relies on a graph grammar approach. This means that the control structure is im-
plicit and non-deterministic: whenever a graph production is found that is applicable
in the context of the host graph, it is applied, and this process continues with the re-
sult graph as the new host graph. Fujaba takes the opposite approach. Since it relies on
programmed graph transformation, the control structure is explicit and deterministic:
the programmer needs to provide explicit sequencing, branching and loop constructs to
control the order of application of graph productions.

Another important difference is the kind of tool support and consistency checking
that can be provided in both tools. AGG provides support for critical pair analysis, in
the way explained in section 3.5. Fujaba does not provide such support, but is on the
other hand much better when it comes to round-trip engineering. In Fujaba, there is a
seamless integration between UML modeling and Java programming.1 As a result, the
user of the tool can simply express his design as a UML class diagram, or directly write
Java code and perform a reverse engineering step to automatically generate the class
diagrams. The only place where graph transformation comes in is at the level of method
implementations. In Fujaba, a method can be implemented as a graph production using
a story diagram. (An example of this was presented in Figure 13 and Figure 14.)

4.4 Refactorings experiments in AGG

In order to specify model refactorings by means of graph transformations, one first
needs to agree upon a metamodel that can be used to specify the models and model
refactorings while abstracting away from implementation-specific details. This meta-
model is specified as a type graph in AGG, and has already been introduced in Figure 5
of Section 3.2.

Note that not all possible well-formedness constraints can be expressed in the type
graph. In AGG, this problem can be resolved by adding additional global graph con-
straints. We used this mechanism to express the following well-formedness constraints:

– no two classes should have the same name
1 Remember that FUJABA is an acronym for "From Uml to Java And Back Again".

Graph transformations for model refactoring 23

– no two methods contained in the same class should have the same name
– no two variables contained in the same class should have the same name
– If there are multiple methods with the same name in the same class hierarchy, any

message sent to one of these methods should also be sent to all other methods
with the same name in the hierarchy (since it is impossible to determine the actual
receiver method statically due to the mechanism of dynamic method binding)

Refactoring transformations can be implemented in a straightforward way as AGG
graph productions. Obviously, these productions have to respect the constraints imposed
by the type graph of Figure 5, as well as the additional constraints mentioned above.

We already saw Pull Up Method, Move Method and Encapsulate Variable as con-
crete examples in Figures 7, 9 and 11. In a similar way, other refactorings can be im-
plemented. For all these refactoring specifications, the preconditions were specified as
NACs. For some refactorings, such as Pull Up Method and Encapsulate Variable, addi-
tional context conditions were needed for those constraints that could not be expressed
in terms of the type graph. These context conditions were specified as ordinary Java
expressions.

In Definition 11 of Section 3.5, we explained the notion of critical pairs and how
it can be used to detect conflicts between graph productions. A concrete example of
such a conflict was shown in Figure 10. AGG supports critical pair analysis for typed
attributed graph transformations. Given a graph grammar, AGG can compute a table
showing the number of conflicting situations for each critical pair of productions.

Example 10. We applied AGG’s critical pair analysis algorithm to a representative se-
lection of refactorings. The results are shown in the table of Figure 17. Among others,
we can see in this table that four critical pairs are reported between Pull Up Method
and Move Method. Two of the critical graphs computed by AGG for this situation are
shown in Figure 18. Both critical graphs report similar conflict situations that corre-
spond to the conflict illustrated in Figure 10. The additional two conflicts not depicted
are less interesting, since they report possible conflicts that cannot occur in our setting.
This is due to the fact that AGG’s critical pair algorithm abstracts away from concrete
attribute interrelations. Since arbitrary Java expressions can be used for attribute condi-
tions and computations, it just reports general conflicts on attribute usage, i.e., one rule
application changes an attribute that another rule application uses. Acting in this way,
it happens that some of the possible conflicts reported can never become real conflicts.

Exercise 18. Give some concrete examples of critical pairs, and visualise them in the
same way as done in Figure 10.

In AGG it is also possible to check which of the refactorings are applicable to a
concrete input graph: A refactoring is applicable if there exists at least one match of its
left-hand side (taking into account the NACs). Figure 19 gives an example that shows
that certain refactorings are not applicable in a particular situation. It is obtained by
using AGGs menu item “Check Rule Applicability”. Pull Up Variable and Remove
Parameter are reported as non-applicable because, in the considered input graph, none
of the subclasses had variables, and because all methods having parameters are called
by others, thus prohibiting their removal.

24 T. Mens

Fig. 17. Critical pair analysis

Fig. 18. Posible conflicts of Move Method and Pull Up Method

While the critical pair table of Figure 17 shows all potential conflicting situations
that can occur between any pair of refactoring productions, the number of actual con-
flicts in the context of concrete input graph is of course much lower, since not all refac-
torings may be applicable to this concrete input graph. Therefore, AGG can also show
the conflicts in concrete input graphs by selecting only the relevant critical pairs and
showing how the corresponding conflict graphs are matched to the instance graph. An
example is given in Figure 20.

For a more detailed discussion of the analysis we performed on the critical pairs of
refactoring productions, we refer to [31].

Graph transformations for model refactoring 25

Fig. 19. Applicability of refactoring productions. Those that are applicable in the con-
text of the given input graph are shown in black, the others are shown in gray.

Fig. 20. Critical pairs reported in the context of a concrete input graph.

5 Benefits and drawbacks of graph transformation

In this section we briefly sketch some other reasons why graph transformation is a
good underlying foundation for refactoring technology, and point out some references
to relevant literature for the interested reader.

26 T. Mens

5.1 Guaranteeing behaviour preservation

In order to determine whether a refactoring preserves the correctness or the behaviour,
we can also rely on graph transformation theory. Mens et al. [32] showed that graph
transformation is a promising formalism to do this, but also indicated a number of lim-
itations with respect to the expressiveness of existing graph transformation formalisms.
Therefore, Van Eetvelde and Janssens [33] proposed to extend graph transformations
with new mechanisms to enhance their expressive power.

5.2 Composition of refactorings

Another very important question in refactoring research is how to compose primitive
refactorings into more complex, composite refactorings [34,35,36]. An essential ques-
tion in this context is how, given a sequence of refactorings, one can compute the pre-
conditions of the composite refactoring without needing to apply each refactoring in
the sequence. As a partial answer to this question, in his masters thesis, Reiko Heckel
theoretically showed how a sequence of graph transformations with application pre-
and postconditions could be transformed into an equivalent composite graph transfor-
mation with pre- and postconditions [37]. Kniesel [36] explored this idea in the context
of refactoring, and showed how it can be used to build tools that facilitate the static
composition of refactoring transformations.

5.3 Co-evolution and consistency maintenance

To be able to focus on different aspects of a program, software engineers usually em-
ploy different views on the software. For example, a UML model usually consists of
a class diagram, a set of use case diagrams, a set of interaction diagrams, and a set of
state transition diagrams. All these diagrams represent a different view that is repre-
sented using a different modeling notation. Hence techniques are required to maintain
the consistency between all these different views when one of them evolves (e.g., by
means of a refactoring).

When we also take the source code into account, we even need to maintain the con-
sistency between the models and the corresponding program. To ensure that both views
remain consistent when applying refactorings, Bottoni et al. [38] proposed a framework
based on distributed graphs to maintain consistency between the code (represented as a
flow graph) and the model (given by several UML diagrams of different kinds). Each
refactoring is specified as a set of distributed graph transformations, structured and or-
ganized into transformation units.

Other formal approaches based on graph transformations that seem promising to
address the consistency problem are pair grammars and triple graph grammars.

5.4 Graph rewriting versus tree rewriting

During our experiments in AGG as well as Fujaba we encountered an issue that has
to do with the expressiveness of graphs and graph transformations. When trying to

Graph transformations for model refactoring 27

specify certain class diagram refactorings, in particular those that have to perform non-
trivial manipulations of method bodies (e.g., Extract Method, Move Method and Push
Down Method), the graph transformations quickly become very complex. This issue
has already been acknowledged in [32,10,33].

Because a method body is essentially an abstract syntax tree, probably a better ap-
proach would be to make use of tree rewriting techniques [39,40], as they are much
better suited for these kinds of manipulations. In practice, this implies that the ideal
refactoring specification language would probably need to incorporate the best of both
worlds: graph transformation for those parts of the model that are essentially graphical
in nature (e.g., the class structure of a class diagram, including all inheritance, typing
and association relationships), and tree transformation for those parts of the model that
are essentially tree-based in nature (e.g., method parse trees).

6 Relation to the other tutorials

6.1 Model-Driven Engineering (Bézivin)

The relation between model-driven engineering (MDE), as introduced by Jean Bézivin
in his tutorial, and model refactoring, as treated in this tutorial, is very straightforward
and has already been explained in the introduction of this tutorial. Indeed, model trans-
formation is an essential activity of model-driven engineering, and model refactoring is
a particular kind of model transformation.

6.2 Database tranformations (Hainaut)

The notions of program transformation, program refactoring and model refactoring are
clearly related to the transformational approach to database reengineering proposed by
Jean-Luc Hainaut in his tutorial. In fact, one can even say that the research domain
of software refactoring is a natural and logical successor of the research on database
schema restructuring that has been going on (and still is, as a matter of fact) in the
1980s [41].

If we consider a database to be a model, the database schema is its metamodel that
imposes certain well-formedness and other constraints on the database. Given such a
database schema, we can define a schema restructuring as a transformation that prov-
ably preserves certain important properties that were imposed on the databases by the
original schema. The properties to be preserved can be very diverse, ranging over data-
and constraint preserving [42], correctness preserving, semantics preserving. The lat-
ter notion of semantics preservation, also known as reversibility, indicates the extent to
which the target schema can be substituted by the source one without loosing informa-
tion. For more details, we refer to Hainaut’s tutorial.

It is based on the idea of schema restructurings being semantics-preserving schema
transformations, that the notion of software refactoring was first introduced by John
Opdyke in his seminal dissertation [6] as being a semantics-preserving object-oriented
program transformation. In hindsight, the step from schema restructuring to program

28 T. Mens

restructuring was a logical one, given the close analogy between an object-oriented pro-
gram and a (object-oriented) database schema. Indeed, a class diagram essentially rep-
resents the structure of an object-oriented program, much in the same way as a schema
represents the structure of a database. Seen in this light, it makes perfect sense to ap-
ply restructuring techniques to programs. Even the techniques that have been used to
specify schema transformations (typically in terms of pre- and postconditions) can be
reused to a certain extent for program refactorings.

Unfortunately, if one wants to reason about the behaviour-preserving properties of a
program transformation, this is extremely hard, and even undecidable in most practical
situations. The main reason is that an object-oriented program, and even an object-
oriented design model, not only contains data, but behaviour as well! Therefore, current
results on schema restructuring do not suffice to prove the preservation of behaviour of
program refactorings. For more details, we refer to a survey on software refactoring
[43].

To conclude this discussion, it is interesting to note that the recent shift to model
refactoring (as opposed to program refactoring) seems to bring the database research
community and the software engineering community closer together again. Especially
in the context of model-driven engineering, it makes perfect sense to consider a database
schema as a special kind of model, and to use the same set of tools to manipulate and
restructure these models.

6.3 Feature Oriented Programming (Batory)

As indicated by Don Batory in the introduction of his tutorial on feature-oriented pro-
gramming, one of the crucial challenges of software engineering is to manage and con-
trol the ever-growing complexity of software systems. The problem is that the imple-
mentation level is too low-level to address this challenge, since it exposes too much
detail to make it easy o design, construct and modify programs. This is the reason why
we need to abstract away from this implementation detail, and start designing and mod-
ifying systems at the modeling level.

In addition, according to Batory, advancement on at least three fronts is needed: gen-
erative programming, domain-specific languages, and automated programming. While
we tend to agree with this view, the current tutorial addresses an orthogonal and com-
plementary issue. Even when a software system is designed or modeled at a high level
of abstraction (possibly using a domain-specific language), we still require formalisms,
techniques and tools that allow us to restructure or refactor the designs or models with-
out affecting their functional behaviour. Therefore, our tutorial focusses on this issue
of model refactoring, and suggests graph transformation as a possible implementation
technology.

6.4 Reflective and Aspect-Oriented Program Transformation (Chiba)

In his tutorial, Shigeru Chiba presents the techniques of reflection and aspect-oriented
programming (AOP) to support program transformation. More specifically, he shows
how these techniques can be used to write program translators that facilitate the way in

Graph transformations for model refactoring 29

which software developers can use complicated application frameworks or component
libraries.

Seen from a refactoring point of view, such a program translation can effectively be
seen as a dedicated, domain-specific, program refactoring. The main difference with the
traditional refactorings proposed in literature (e.g. Martin Fowler’s refactoring catalog
[7]) is that such program translators are not applicable outside the application frame-
work for which they are built.

Seen from a technological point of view, it is true that reflective capabilities of pro-
gramming languages are crucial to build tools that support program refactoring (such
as, for example, the Smalltalk refactoring browser [44]). The kind of refactoring support
that can be provided depends of course on specific properties of the programming lan-
guage of interest, such as which kind of reflection is supported by the language. Even
within the same programming language, different variants of refactoring techniques
can be envisioned. For example, Smalltalk’s refactoring browser can be considered as
a static tool in the sense that it only modifies the static class structure. However, with
the same reflective techniques, and considerably more effort, it is also possible to build
tools that support dynamic (in the sense of runtime) evolution and refactoring. As an
illustration of this, we refer to [45,46,47].

Concerning the technology of AOP, it remains to be seen if and how it can provide
support for program refactoring. In addition, the introduction of AOP languages such
as AspectJ [48] also raises new important questions, such as:

aspect identification or aspect mining: how can one detect croscutting concerns in
the program that are good candidates for turning them into aspects?

aspect introduction: how can one transfrom (read: refactor) a traditional program into
a program containing aspects

aspect refactoring: how can one apply refactoring techniques to aspect-oriented pro-
grams?

For more details on these issues, we refer to [49].
Let us conclude this discussion with a final important question: can reflective tech-

niques also be used to support model refactoring (as opposed to program refactoring).
In principle, the answer to this question would be positive, provided that the model-
ing language is reflective. A prerequisite for this seems to be that models should be
first-class entities in the language, and model transformations should be models too [2].

7 Conclusion

In this tutorial we explored the idea of model refactoring (using a simplified version
of UML class diagrams as our metamodel), and we explained how the formalism of
graph transformation can be used as an underlying foundation. More in particular, we
provided some concrete experiments to show how graph transformation technology can
be used to support model refactoring.

Using the graph transformation tool Fujaba, we explained how a refactoring plug-in
can be developed to refactor UML class diagrams, where each refactoring is expressed
as a graph production. Using the graph transformation tool AGG, we explained how to

30 T. Mens

use the built-in technique or critical pair analysis to detect potential conflicts between
refactorings, and to help the developer decide which refactoring should be selected
when different choices are applicable.

References

1. S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-driven
software development. IEEE Software, 20(5):42–45, September-October 2003. Special Issue
on Model-Driven Software Development.

2. Jean Bézivin. Model driven engineering: Principles, scope, deployment and applicability.
In Proceedings of 2005 Summer School on Generative and Transformation Techniques in
Software Engineering, 2005.

3. Jonathan Sprinkle, Aditya Agrawal, Tíhamer Levendovszky, Feng Shi, and Gabor Karsai.
Domain model translation using graph transformations. In Proc. Int’l Conf. Engineering of
Computer-Based Systems, pages 159–168. IEEE Computer Society, 2003.

4. A. Kalnins, J. Barzdins, and E. Celms. Model transformation language MOLA. In Proc.
Model-Driven Architecture: Foundations and Applications, pages 14–28, 2004.

5. György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza, and Dániel
Varró. VIATRA - visual automated transformations for formal verification and validation of
UML models. In Proc. 17th Int’l Conf. Automated Software Engineering, pages 267–270.
IEEE Computer Society, 2002.

6. William F. Opdyke. Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Frameworks. PhD thesis, University of Illinois at Urbana-Champaign,
1992.

7. Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
8. G. Sunyé, D. Pollet, Y. LeTraon, and J.-M. Jézéquel. Refactoring UML models. In Proc.

UML 2001, volume 2185 of Lecture Notes in Computer Science, pages 134–138. Springer-
Verlag, 2001.

9. Marko Boger, Thorsten Sturm, and Per Fragemann. Refactoring browser for UML. In Proc.
3rd Int’l Conf. on eXtreme Programming and Flexible Processes in Software Engineering,
pages 77–81, 2002. Alghero, Sardinia, Italy.

10. Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards automating source-
consistent UML refactorings. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,
UML 2003 - The Unified Modeling Language, volume 2863 of Lecture Notes in Computer
Science, pages 144–158. Springer-Verlag, 2003.

11. Ragnhild Van Der Straeten, Viviane Jonckers, and Tom Mens. Supporting model refac-
torings through behaviour inheritance consistencies. In Ana Moreira Thomas Baar, Al-
fred Strohmeier, editor, UML 2004 - The Unified Modeling Language, volume 3273 of Lec-
ture Notes in Computer Science, pages 305–319. Springer-Verlag, October 2004.

12. Jing Zhang, Yuehua Lin, and Jeff Gray. Generic and domain-specific model refactoring
using a model transformation engine. In Model-driven Software Development - Research
and Practice in Software Engineering. Springer Verlag, 2005.

13. Gabriele Taentzer. AGG: A tool environment for algebraic graph transformation. In Proc.
AGTIVE 99, volume 1779 of Lecture Notes in Computer Science, pages 481–488. Springer-
Verlag, 1999.

14. Jörg Niere and Albert Zündorf. Testing and simulating production control systems using
the Fujaba environment. In Proc. AGTIVE 99, volume 1779 of Lecture Notes in Computer
Science, pages 449–456. Springer-Verlag, 1999.

Graph transformations for model refactoring 31

15. Jörg Niere and Albert Zündorf. Using Fujaba for the development of production control
systems. In M. Nagl, A. Schürr, and M. Münch, editors, Proc. Int. Workshop Agtive 99,
volume 1779 of Lecture Notes in Computer Science, pages 181–191. Springer-Verlag, 2000.

16. Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Technical report,
Université de Mons-Hainaut, 2005.

17. Claudia Werner Alexandre Correa. Applying refactoring techniques to uml/ocl models. In
Ana Moreira Thomas Baar, Alfred Strohmeier, editor, UML 2004 - The Unified Modeling
Language, volume 3273 of Lecture Notes in Computer Science, pages 173–187. Springer-
Verlag, October 2004.

18. Ivan Porres. Model refactorings as rule-based update transformations. In Perdita Stevens, Jon
Whittle, and Grady Booch, editors, UML 2003 - The Unified Modeling Language, volume
2863 of Lecture Notes in Computer Science, pages 159–174. Springer-Verlag, 2003.

19. G. Spanoudakis and A. Zisman. Handbook of Software Engineering and Knowledge Engi-
neering, chapter Inconsistency management in software engineering: Survey and open re-
search issues, pages 329–380. World scientific, 2001.

20. Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jonckers. Using
description logics to maintain consistency between UML models. In Perdita Stevens, Jon
Whittle, and Grady Booch, editors, UML 2003 - The Unified Modeling Language, volume
2863 of Lecture Notes in Computer Science, pages 326–340. Springer-Verlag, 2003.

21. Serge Demeyer, Dirk Janssens, and Tom Mens. Simulation of a LAN. Electronic Notes in
Theoretical Computer Science, 72(4), 2002.

22. Andrea Corradini, Ugo Montanari, and F. Rossi. Graph processes. Fundamenta Informati-
cae, 26(3 and 4):241–265, 1996.

23. Hartmut Ehrig and Michael Löwe. Parallel and distributed derivations in the single-pushout
approach. Theoretical Computer Science, 109:123–143, 1993.

24. Hartmut Ehrig and Annegret Habel. Graph grammars with application conditions. In
G. Rozenberg and A. Salomaa, editors, The Book of L, pages 87–100. Springer-Verlag, 1986.

25. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with negative ap-
plication conditions. Fundamenta Informaticae, 26(3,4):287–313, June 1996.

26. A. Schürr, A.J. Winter, and A. Zündorf. Handbook of Graph Grammars and Graph Transfor-
mation, chapter PROGRES: Language and Environment, pages 487–550. World scientific,
1999.

27. Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of typed attributed
graph transformation systems. In Proc. 1st Int’l Conf. Graph Transformation, volume 2505
of Lecture Notes in Computer Science, pages 161–176. Springer-Verlag, 2002.

28. Pieter Van Gorp, Niels Van Eetvelde, and Dirk Janssens. Implementing refactorings as graph
rewrite rules on a platform independent metamodel. In Proc. Fujaba Days, 2003.

29. Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Leveraging UML profiles to generate
plugins from visual model transformations. In Proc. Int’l Workshop Software Evolution
through Transformations (SETra), 2004. To appear in ENTCS.

30. Hans Schippers and Pieter Van Gorp. Standardizing sdm for model transformations. In Proc.
2nd Int’l Fujaba Days, September 2004.

31. Tom Mens, Gabriele Taentzer, and Olga Runge. Analyzing refactoring dependencies using
graph transformation. Software and System Modeling, February 2005. Submitted.

32. Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour preserving program
transformations. In Proc. 1st Int’l Conf. Graph Transformation, volume 2505 of Lecture
Notes in Computer Science, pages 286–301. Springer-Verlag, 2002.

33. Niels Van Eetvelde and Dirk Janssens. Extending graph rewriting for refactoring. In Proc.
2nd Int’l Conf. Graph Transformation, volume 3526 of Lecture Notes in Computer Science,
pages 399–415. Springer-Verlag, 2004.

32 T. Mens

34. Don Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois
at Urbana-Champaign, 1999.

35. Mel Ó Cinnéide and Paddy Nixon. Composite refactorings for java programs. Technical
report, Department of Computer Science, University College Dublin, 2000.

36. Günter Kniesel and Helge Koch. Static composition of refactorings. Science of Computer
Programming, 52(1-3):9–51, 2004.

37. Reiko Heckel. Algebraic graph transformations with application conditions. Master’s thesis,
Technische Universität Berlin, 1995.

38. Paolo Bottoni, Francesco Parisi Presicce, and Gabriele Taentzer. Specifying integrated
refactoring with distributed graph transformations. Lecture Notes in Computer Science,
3062:220–235, 2003.

39. Eelco Visser. A language for program transformation based on rewriting strategies. In
A. Middeldorp, editor, Rewriting Techniques and Applications, volume 2051 of Lecture
Notes in Computer Science, pages 357–. Springer-Verlag, 2001.

40. Mark van den Brand, Paul Klint, and Jurgen Vinju. Term rewriting with traversal functions.
Transactions on Software Engineering and Methodology, 12:152–190, 2003.

41. J. Banerjee and W. Kim. Semantics and implementation of schema evolution in object-
oriented databases. In Proc. ACM SIGMOD Conference, 1987.

42. R. Fagin. Multivalued dependencies and a new normal form for relational databases. ACM
Transactions on Database Systems, 2(3), 1977.

43. Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE Transactions on
Software Engineering, 30(2):126–162, February 2004.

44. Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk. Theory
and Practice of Object Systems, 3(4):253–263, 1997.

45. Peter Ebraert, Theo D’Hondt, and Tom Mens. Enabling dynamic software evolution through
automatic refactoring. In Ying Zhou and James R. Cordy, editors, Proc. 1st Int’l Workshop
on Software Evolution Transformations, pages 3–6, November 2004.

46. R. Hirschfeld, K. Kawamura, and H. Berndt. Dynamic service adaptation for runtime system
extensions. In M. Conti R. Battiti, R. lo Cigno, editor, Wireless On-Demand Network Sys-
tems, volume 2928 of Lecture Notes in Computer Science, pages 225–238. Springer-Verlag,
February 2004.

47. Robert Hirschfeld and Ralf LŁmmel. Reflective designs. IEE Journal on Software, Special
Issue on Reusable Software Libraries, 152(1), February 2005.

48. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors, Proc. European Conf.
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science, pages
220–242. Springer-Verlag, 1997.

49. Tom Mens, Kim Mens, and Tom Tourwé. Aspect-oriented software evolution. ERCIM News,
(58):36–37, July 2004.

	On the Use of Graph Transformations for Model Refactoring
	Tom Mens

