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Abstract. A core problem in Model Driven Engineering is model consistency 
achievement: all models must satisfy relationships constraining them. Active 
consistency techniques monitor and control models edition for preventing in-
consistencies, e.g., using automatic errors correction. The main problem of 
these approaches is that strict enforcement of consistency narrows the mod-
eler’s possibilities for exploring conflicting or tradeoff solutions; this is just 
what temporaries inconsistencies enable. In this article, we propose a hybrid 
approach capitalizing on active consistency characteristics while allowing the 
user to edit inconsistent models in a managed mode: at any moment we are able 
to propose a sequence of modelling operations that, when executed, make the 
model consistent. The solution consists in defining a set of automatons captur-
ing a sufficient part of the model state space for managing any inconsistent 
situation. We illustrate this approach on a consistency relationship implied by 
the application of a security design pattern impacting both class and sequence 
diagrams of a UML2 model.  

1   Introduction 

A core problem in Model Driven Engineering is model consistency: all models must 
satisfy relationships constraining them [2, 9]. This generic definition emphasizes the 
fact that consistency is a context specific definition, depending on used models, their 
relationships and their intended uses. An inconsistency is defined as a situation in 
which models break a consistency rule [3]. 

There are many consistency techniques. Those techniques often analyze models 
and report inconsistencies in a static way letting the user trigger checks and correct 
errors [18, 16, 17]. In this paper we focus on active consistency techniques, enacting 
at model edition time and interacting with models edition. These techniques aims to 
make consistency management more “user friendly”, e.g., by automatically correcting 
some errors, forbidding operations or allowing consistency preserving operations. 

In the first section we introduce such consistency techniques and raise issues nar-
rowing their usage. Then we present an overview of our approach and illustrate it on a 
concrete scenario. After a few remarks we conclude the paper. 
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2   Consistency Techniques 

Consistency by monitoring outlined in [13] is an approach preventing inconsistencies 
thanks to a checking algorithm executed each time the user requests a model edition 
operation. Thus consistency rules encoded in the algorithm are impossible to be vio-
lated by the model editor. For example, the Objecteering modelling environment does 
not allow cross package references: each time the user edits a package referencing 
association, a check is performed and if this consistency rule is broken a dialog box 
informs the user that the requested operation is not allowed. It is then impossible to 
break this rule.  

The problem with this approach is the strict enforcement of consistency rules. In 
some cases it would be necessary to relax it. For instance cross package references are 
allowed in Java and when the user imports Java source code to a Java model (retro-
engineering) the user must inactivate consistency checks. In the opposite case the 
import will fail. But in such a situation, any kind of inconsistencies may be introduced 
in the model: there should be a balance between strict consistency enforcement and no 
consistency at all. 

Another consistency technique called consistency by construction is also intro-
duced in [13]. It enables automatic completion of models when specific operations are 
triggered by the user. For example when the user creates an “active class” the consis-
tency engine automatically creates a default state machine and associates it to the 
class. These methodological consistency rules are often implemented in the model 
edition user interface. As a consequence, if the user edits a XMI[10] version of its 
model, he/she can easily break a consistency rule and reload the model into the envi-
ronment, but without any inconsistency detected. 

Constructive approaches can be more complex. In Fujaba, models can be automati-
cally repaired. This works as follows: a background graph rewriting algorithm 
searches for negative patterns [15] (forbidden patterns) in the graph of objects repre-
senting the model. If there is a match (an inconsistency), then the rewriting engine 
replaces the negative pattern with another predefined correct pattern. This strategy 
automatically detects inconsistencies and then automatically corrects them. Once 
again, consistency is enforced, letting no places for inconsistencies, even temporarily. 
In this case detecting inconsistency and delaying its correction would enable the user 
to choose between different correct patterns. Furthermore this choice could be per-
formed at his/her convenience, postponing inconsistency resolution at will. 

Engels [6, 7] et al. introduce consistency preserving model evolution. Their solu-
tion consists in predefining a set of local model transformations rules that have been 
mathematically proven to preserve a consistency relationship, i.e., protocol consis-
tency and deadlock freedom in this article. The main idea is to preserve consistency 
incrementally at model edition time, avoiding checking the whole model at each 
modification. In this approach, no inconsistencies can be introduced if transformation 
rules are applied correctly, e.g., by respecting a specific order.  

The idea of consistency preserving model evolution is attractive since it claims that 
it is possible to build consistent models incrementally, without running global checks. 
Unfortunately, they do not describe any mechanisms for managing application  
order of local model transformations, depending on user awareness of this order. As a  



 Finding a Path to Model Consistency 103 

consequence, consistency is not guaranteed, likely resulting in incrementally intro-
duced inconsistencies and requiring an unwanted global model check. 

Furthermore enforcing consistency leads to overconstraining modelling activity, 
frustrating the modeler while he designs solutions, explores multiple alternatives, or 
does not model at a good precision degree. In [1] authors claim it is impossible, in 
general to maintain absolute consistency between all perspectives on the system 
(models) at all times. This position is adopted and reinforced in [5]. Spanoudakis et al. 
point out positive aspects of inconsistent models, like identification of parts of the 
system needing further analysis or assistance in specification of alternatives for the 
development. Finkelstein resumes this situation: “rather than thinking about removing 
inconsistencies, we need to think about managing inconsistency” [4]. 

It is clear that active consistency techniques lack such inconsistency management 
capabilities either by forbidding inconsistencies or by automatically correcting them. 
But inconsistency-driven correction and prevention reduces the amount of time the 
user spends in resolution activities. Furthermore, under certain circumstances the user 
might not have the skills for repairing complex errors. In such a situation those tech-
niques become critical. 

We propose to provide active consistency techniques with inconsistencies man-
agement capabilities. As a consequence, model edition monitoring and control should 
not only enable inconsistency prevention and automated correction but should also 
allow introducing inconsistencies in a managed mode. This implies that an inconsis-
tency no more needs to be repaired synchronously, i.e., blocking user model edition 
until it is resolved. Instead when an inconsistency is introduced, it is automatically 
detected but models can still be edited, delaying the automated resolution at will. 

3   Principles of Our Approach: Automata for Managing 
Inconsistencies 

Model evolutions are caused by modelling operations triggered by the user or by 
automated means (i.e., patterns engines, model transformation engines, wizards etc.). 
While these modifications are performed, models go through a potentially infinite 
number of different states that are either consistent or inconsistent with regards to a 
consistency relationship. Before detailing our approach, we introduce model states’ 
spaces and associated concepts. 

3.1   Model State Space 

We now introduce the theoretical concept of exhaustive model state space M, an 
infinite state transition systems [14] capturing all possible models and model evolu-
tions. In M, a state is a model and a transition is a modelling operation. 

The figure 1 illustrates the concept of model state space. As we can see it repre-
sents two complete (among multiple partial) potential model evolutions between an 
initial empty model and a model containing two classes linked by an association. 
Operation o1 means that the user creates a class named C1, operations o2 means that 
the user creates a class named C2 and operation o3 means that the user creates a  
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Fig. 1. A simple model state space representation 

default association named A1 between C1 and C2.  Example modelling operation 
sequences are <o1>, <o1,o2>, <o2,o1,o3> or <o1,o2,o3>. 

The interest of model states lies in their property to validate or not a consistency 
relationship. The core thesis of our approach is that, given a consistency relationship 
we are able to specify the sufficient subset of M for automatically managing inconsis-
tencies lifecycle. Notice that an inconsistency may exist inside a model (intra-model 
consistency) or between two or more models, i.e., inter-model consistency [12]. The 
first step of the solution is on-the-fly detection of transitions switching this model 
current state: 

• from consistent to inconsistent: a new inconsistency is introduced 
• from inconsistent to inconsistent: models evolve, but inconsistency remains 
• from inconsistent to consistent: an inconsistency is resolved 
• from consistent to consistent: models evolve but are consistent 

This raises the M subset specification issue. Specifying a subpart of M implies a 
clear understanding of M states and transitions. On the first hand, states, i.e., models, 
are commonly represented as in-memory object data structures, each object being an 
instance of a meta class defined in the metamodel. 

On the other hand transitions are defined as elementary operations on those ob-
jects, for instance instantiation of a metaclass, deletion of an object, linking of objects, 
setting values to object attributes. These operations are provided by the API meta-
model repository and are fine grained, in opposition to the o1 operation presented in 
figure 1. The latter is actually a composite of three “low level” transitions: instancia-
tion of the Class metaclass, setting the default “classname” attribute and linking the 
newly created object to the Model object. 

3.2   Specifying a Subset of M 

A direct specification of a subpart M is not conceivable. There are too many states 
and transitions. Thus it seems not feasible to directly represent a subpart of M. We 
propose three mechanisms for making such a specification feasible.  
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Transition abstractions save both transitions and states. We have explained that 
o1 replaces three low level elementary operations; o3 replaces about ten of them. 
Abstraction of transitions enables to avoid description of intermediate states and tran-
sitions. 

State abstractions enable description of the sufficient state subpart which might 
impact the consistency condition. For example we will see in the example introduced 
in section 4.2 that class attribute descriptions are not necessary since they do not im-
pact the consistency relationship. The language or technique for describing state con-
tent is out of the scope of this paper. 

State partitioning: we exploit a property of model evolutions that we have observed. 
From a given state, it is possible to identify and isolate model parts evolving inde-
pendently of each other. Thus independent model parts may be separated and each 
subpart evolutions be traced by one automaton. As a result we have a set of automata, 
each one being responsible for tracing evolution of an independent model part.  

In the following abstract example, two automata illustrate such a situation: 
 

 

Fig. 2. Two automatons capturing model parts evolutions 

Each automaton traces the evolution of a model state space part. For example, if the 
model is in a composite state given by the two automata states (sA,s1) and the user 
performs the sequence of model edition operation <o2, o1,o2’,o’1>, then only the left 
automaton will be affected and it will go through states s2, s4, s3 to finally return to 
s1 state. But at any moment the model can evolve with an oA operation resulting in 
the appropriate composite model state. We will exemplify it in section 4.3. 

3.3   Defining and Managing Inconsistencies with Automata 

These automata enable to define consistency or inconsistency in term of relationships 
over the Cartesian products of automata states. Thus we can mathematically define 
consistency as a subset C  of the Cartesian product of the sets of automata states 
{A1,…,AK} where Ai is the set of states of Automaton number i. We will illustrate a 
concrete consistency relation in the section 4.3. 

Once consistency defined, the second core idea of our approach is that these auto-
mata can be exploited by basic graph algorithms for managing consistent and incon-
sistent model editions:  
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• dynamically report to the user that he/she is entering or leaving consistent or in-
consistent states.  

• computing model edition operations sequences bringing models from inconsis-
tent states to consistent ones. Once this sequence computed it is possible to 
automatically execute it or propose it to the user. 

 

From an operational point of view our approach consists firstly in automated and 
incremental detection of inconsistent model states while the user edits models, i.e., on 
the fly. Secondly it provides users with automatable means for exiting such inconsis-
tent model states. From a theoretical perspective the approach is based on the concept 
of consistent or inconsistent model state.  

4   Running Example 

For illustrating our approach, we consider a consistency relationship between two 
diagrams of a design model constrained by the application of a security design  
pattern.  

4.1   A Security Design Pattern 

This security pattern constrains both behavioral and structural properties of the soft-
ware system. We choose the secure communication security design pattern published 
by the  open security group in their technical guide [8]. The goal of this pattern is to 
ensure a security policy when two parties need to communicate over a channel that 
may be subject to security threats. When this pattern is correctly implemented it se-
cures communications against threats by employing protection traffic mechanisms in 
the communication channel. The structure of this pattern involves three elements 
exposed in the following figure. 

 

Fig. 3. The secure Communication Design Pattern Structure 

The first element is a communication party, e.g., a client or a server. It is the source 
and/or the destination of messages that are delivered from the communication chan-
nel. The second element is the communication channel. It has a send method that, 
when invoked by parties, transports messages from the sender to the receiver. 
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Finally the last element is the communication protection proxy. It is responsible for 
protecting traffic over communication channels. It provides a protection method  
before sending the message on the channel and a verification method before deliver-
ing the message to the target communication party.  

 

Fig. 4. The Secure Communication Design Pattern Collaboration version 1 

This collaboration pattern describes a secured message exchange between a sender 
communication party and a receiver communication party. First the sender submits a 
message to its own proxy which protects the data by calling the protect() method. 
Then the proxy sends the message on the channel that delivers it to the receiver proxy. 
It checks the message by calling the verify() method and finally it delivers the 
message to the final recipient, i.e., the receiver.  

4.2   Consistency Scenario 

We define consistency of the two diagrams as a configuration in which security as-
pects of the system are both described in structural and behavioral diagrams. A con-
tradiction may occur if one diagram represents security properties and not the other 
one. When no one of them represents security properties, then they are consistent 
because they do not contradict each other [1]. 

Now suppose we wish to manually secure the simple client server design model 
below.  

 

Fig. 5. Unsecured Client Server Structure Diagram 
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Fig. 6. Unsecured Client Server Sequence Diagram 

We define two consistent model states. The first one is when the channel class is 
stereotyped with a “SecureComm” stereotype and the sequence diagram method calls 
are intercepted and secured by the proxies. The other one is when the channel class is 
not stereotyped and the communications are not secured, like in figures 5 and 6. 

The user could start introducing a “SecureComm” stereotype on the Channel class. 
As explained above, both diagrams are consistent if they do not contradict each other. 
Thus at the moment the user stereotyped the channel class the model is inconsistent 
and it will remain in this state until the sequence diagram is secured in accordance 
with the behavioral pattern. We have illustrated a possible model evolution of the 
sequence diagram from its initial state to its final fully secured state.  

 
Fig. 7. Initial state 

 
Fig. 8. State 1 of the automaton (cf. fig12.)  

 

Fig. 9. State 4 of the automaton (cf. fig12.)  
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Fig. 10. Secured State of the automaton (cf. fig12.) 

From the initial state to the one of figure 8 the user has added the submit method 
call between the client and the proxy. Then from state of figure 8 to the one of figure 
9 the user has added the protect method call. In the last step the user has added the 
send method call between the proxy and the communication channel. 

4.3   Automata Supporting Scenario 

In this section we define the automata supporting the scenario, and then we define the 
consistency relationship. 

There are two automata, one responsible for monitoring the evolution of the class 
diagram and the other monitoring the evolution of the sequence diagram. The first 
automaton is given in the following figure. 

 

Fig. 11. Automaton 1 for class diagram evolutions 

Following the abstraction and partitioning mechanisms this automaton defines two 
abstract, partial model states respectively representing a “SecureComm” stereotyped 
channel class and a channel class without this stereotype. The transitions between the 
two states represent application or deletion of the “SecureComm” stereotype. 

The following figure defines the automaton for tracing potential sequence diagram 
evolutions. Because the full automaton is huge, we have only represented the possible 
evolutions from the figure 7 to the figure 10. Its structure underlines multiple scenar-
ios for securing these model parts. Each method call addition between two life lines 
(or one in the case of the protect method call) can be applied independently. 

Now we define the consistency relationship. As previously explained the model 
has two consistent states: one before the application of the pattern and the other when 
the pattern has been completely applied in the two diagrams. It is possible to formu-
late this situation in terms of automata states. Indeed the model will be consistent if 
and only if both automata 1 and 2 are simultaneously in specific states.  



110 G. de Fombelle et al. 

 

Fig. 12. Automaton 2 for sequence diagram evolutions 

Thus we can mathematically define consistency as a subset C  of the Cartesian 
product of automata A1 and A2 state sets ( 21 AAC ×⊆ ). 

A1={UnstereotypedChannelClass,StereotypedChannelClass} 

A2={initialState,state1,state2,…,state6,SecuredState} 

C={(UnstereotypedChannelClass,initialState), 

(StereotypedChannelClass,SecuredState)} 

In the scenario we have illustrated a possible model evolution of the sequence dia-
gram through different states. This scenario is only one of the possible sequences of 
modelling operations for building the model. The second automaton illustrates this 
point clearly: we see that for going from “initialState” to “SecuredState” there are 
many paths (6 exactly). 

Imagine we are in the state where the class is stereotyped and the sequence dia-
gram is in the state illustrated on figure 7. Then, the composite model state captured 
by our automata is given by the couple (StereotypedChannelClass, InitialState). This 
state is not consistent since it does not belong to the previously defined consistent 
set C . Thus it is possible to detect an inconsistent state while models evolve. Fur-
thermore it is possible to compute a path in automata for reaching a consistent state; 
this path is a sequence of modeling operations. In our scenario such a path is for in-
stance <CreateSubmitClientToProxy, CreateProtectMethod, CreateSendProxyTo-
Channel>. If we execute this sequence of operations then it will switch the model to 
the consistent state (StereotypedChannelClass, SecuredState). 
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4.4   Remarks 

A first remark is that there are multiple paths to consistency: it is possible to undo the 
first modelling operation that leads to an inconsistent state. Here when the model 
evolves to the state where the channel class is stereotyped, the trivial path to consis-
tency is to undo the stereotyping action. 

Some will notice that no inconsistencies will be raised if the user draws a method 
call between the client and the channel, resulting in an unsecured method call. This is 
not because our approach cannot deal with this situation. The simple reason is that it 
is not specified as an inconsistency. But it is possible to specify new automata or to 
modify existing ones for taking into account this constraint. 

These automata have been manually produced following two main principles: ab-
straction and partitioning. But the complexity of this specification remains high. On 
this limited but concrete example there are still many states and transitions. We could 
then head toward automatic production of these automata from high level languages. 
For instance we believe feasible to generate these automata from simple QVT relation 
language[11] expressions. 

5   Conclusion and Further Works 

In this paper we have introduced active consistency techniques, an approach to model 
consistency enacting at model edition time, automatically correcting errors or prevent-
ing modelling operations when they break a consistency condition. Then we ex-
plained why their strict consistency enforcement policy should be relaxed. As a result 
we argued the need for a hybrid approach combining active consistency techniques 
and “live” inconsistency management capabilities. We detailed some issues of such 
an approach like how to determine inconsistent model states without running com-
plete model checks.  

Main contribution of our approach is to introduce the concept of model state space 
and to define mechanisms for producing automata tracing all model evolutions which 
might impact a consistency relationship. These automata enable on-the-fly detection 
of inconsistencies, specified as a subset of the Cartesian product of their states. Fur-
thermore at each current model state, it is possible to compute paths to consistent 
states. A path is a sequence of modelling operations and may be automatically exe-
cuted. But this execution may also be delayed enabling to edit the model while it is 
inconsistent. To the best of our knowledge this is the first time such an approach is 
proposed. However in this article this model of model evolution is not formally  
presented.  

Our future works can be divided into theoretical and experimental aspects. At the 
theoretical level we firstly plan to provide a formalization of this model, a precise 
definition of modelling operations and model states. Based on these core concepts, we 
wish to explore the relationships between the automata and the state space of models. 
At the experimental level we designed an initial architecture and implemented a basic 
model listener for tracing model evolutions. The latter detects events modifying the 
model data structure. In the next step we will be able to specify composite modelling 
operations from atomic ones and detect them while the user edits models. 
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