
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 101 – 112, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Finding a Path to Model Consistency

Gregory de Fombelle1,2, Xavier Blanc2, Laurent Rioux1, and Marie-Pierre Gervais2

1 Thales Research and Technology
RD 128 F-91767 Palaiseaux Cedex

{gregory.defombelle, laurent.rioux}@thalesgroup.com
2 Laboratoire d’informatique de Paris 6, Université Paris 6

8 rue de Capitaine Scott – F75015 Paris
{fombelle, xavier.blanc, marie-pierre.gervais}@lip6.fr

Abstract. A core problem in Model Driven Engineering is model consistency
achievement: all models must satisfy relationships constraining them. Active
consistency techniques monitor and control models edition for preventing in-
consistencies, e.g., using automatic errors correction. The main problem of
these approaches is that strict enforcement of consistency narrows the mod-
eler’s possibilities for exploring conflicting or tradeoff solutions; this is just
what temporaries inconsistencies enable. In this article, we propose a hybrid
approach capitalizing on active consistency characteristics while allowing the
user to edit inconsistent models in a managed mode: at any moment we are able
to propose a sequence of modelling operations that, when executed, make the
model consistent. The solution consists in defining a set of automatons captur-
ing a sufficient part of the model state space for managing any inconsistent
situation. We illustrate this approach on a consistency relationship implied by
the application of a security design pattern impacting both class and sequence
diagrams of a UML2 model.

1 Introduction

A core problem in Model Driven Engineering is model consistency: all models must
satisfy relationships constraining them [2, 9]. This generic definition emphasizes the
fact that consistency is a context specific definition, depending on used models, their
relationships and their intended uses. An inconsistency is defined as a situation in
which models break a consistency rule [3].

There are many consistency techniques. Those techniques often analyze models
and report inconsistencies in a static way letting the user trigger checks and correct
errors [18, 16, 17]. In this paper we focus on active consistency techniques, enacting
at model edition time and interacting with models edition. These techniques aims to
make consistency management more “user friendly”, e.g., by automatically correcting
some errors, forbidding operations or allowing consistency preserving operations.

In the first section we introduce such consistency techniques and raise issues nar-
rowing their usage. Then we present an overview of our approach and illustrate it on a
concrete scenario. After a few remarks we conclude the paper.

102 G. de Fombelle et al.

2 Consistency Techniques

Consistency by monitoring outlined in [13] is an approach preventing inconsistencies
thanks to a checking algorithm executed each time the user requests a model edition
operation. Thus consistency rules encoded in the algorithm are impossible to be vio-
lated by the model editor. For example, the Objecteering modelling environment does
not allow cross package references: each time the user edits a package referencing
association, a check is performed and if this consistency rule is broken a dialog box
informs the user that the requested operation is not allowed. It is then impossible to
break this rule.

The problem with this approach is the strict enforcement of consistency rules. In
some cases it would be necessary to relax it. For instance cross package references are
allowed in Java and when the user imports Java source code to a Java model (retro-
engineering) the user must inactivate consistency checks. In the opposite case the
import will fail. But in such a situation, any kind of inconsistencies may be introduced
in the model: there should be a balance between strict consistency enforcement and no
consistency at all.

Another consistency technique called consistency by construction is also intro-
duced in [13]. It enables automatic completion of models when specific operations are
triggered by the user. For example when the user creates an “active class” the consis-
tency engine automatically creates a default state machine and associates it to the
class. These methodological consistency rules are often implemented in the model
edition user interface. As a consequence, if the user edits a XMI[10] version of its
model, he/she can easily break a consistency rule and reload the model into the envi-
ronment, but without any inconsistency detected.

Constructive approaches can be more complex. In Fujaba, models can be automati-
cally repaired. This works as follows: a background graph rewriting algorithm
searches for negative patterns [15] (forbidden patterns) in the graph of objects repre-
senting the model. If there is a match (an inconsistency), then the rewriting engine
replaces the negative pattern with another predefined correct pattern. This strategy
automatically detects inconsistencies and then automatically corrects them. Once
again, consistency is enforced, letting no places for inconsistencies, even temporarily.
In this case detecting inconsistency and delaying its correction would enable the user
to choose between different correct patterns. Furthermore this choice could be per-
formed at his/her convenience, postponing inconsistency resolution at will.

Engels [6, 7] et al. introduce consistency preserving model evolution. Their solu-
tion consists in predefining a set of local model transformations rules that have been
mathematically proven to preserve a consistency relationship, i.e., protocol consis-
tency and deadlock freedom in this article. The main idea is to preserve consistency
incrementally at model edition time, avoiding checking the whole model at each
modification. In this approach, no inconsistencies can be introduced if transformation
rules are applied correctly, e.g., by respecting a specific order.

The idea of consistency preserving model evolution is attractive since it claims that
it is possible to build consistent models incrementally, without running global checks.
Unfortunately, they do not describe any mechanisms for managing application
order of local model transformations, depending on user awareness of this order. As a

 Finding a Path to Model Consistency 103

consequence, consistency is not guaranteed, likely resulting in incrementally intro-
duced inconsistencies and requiring an unwanted global model check.

Furthermore enforcing consistency leads to overconstraining modelling activity,
frustrating the modeler while he designs solutions, explores multiple alternatives, or
does not model at a good precision degree. In [1] authors claim it is impossible, in
general to maintain absolute consistency between all perspectives on the system
(models) at all times. This position is adopted and reinforced in [5]. Spanoudakis et al.
point out positive aspects of inconsistent models, like identification of parts of the
system needing further analysis or assistance in specification of alternatives for the
development. Finkelstein resumes this situation: “rather than thinking about removing
inconsistencies, we need to think about managing inconsistency” [4].

It is clear that active consistency techniques lack such inconsistency management
capabilities either by forbidding inconsistencies or by automatically correcting them.
But inconsistency-driven correction and prevention reduces the amount of time the
user spends in resolution activities. Furthermore, under certain circumstances the user
might not have the skills for repairing complex errors. In such a situation those tech-
niques become critical.

We propose to provide active consistency techniques with inconsistencies man-
agement capabilities. As a consequence, model edition monitoring and control should
not only enable inconsistency prevention and automated correction but should also
allow introducing inconsistencies in a managed mode. This implies that an inconsis-
tency no more needs to be repaired synchronously, i.e., blocking user model edition
until it is resolved. Instead when an inconsistency is introduced, it is automatically
detected but models can still be edited, delaying the automated resolution at will.

3 Principles of Our Approach: Automata for Managing
Inconsistencies

Model evolutions are caused by modelling operations triggered by the user or by
automated means (i.e., patterns engines, model transformation engines, wizards etc.).
While these modifications are performed, models go through a potentially infinite
number of different states that are either consistent or inconsistent with regards to a
consistency relationship. Before detailing our approach, we introduce model states’
spaces and associated concepts.

3.1 Model State Space

We now introduce the theoretical concept of exhaustive model state space M, an
infinite state transition systems [14] capturing all possible models and model evolu-
tions. In M, a state is a model and a transition is a modelling operation.

The figure 1 illustrates the concept of model state space. As we can see it repre-
sents two complete (among multiple partial) potential model evolutions between an
initial empty model and a model containing two classes linked by an association.
Operation o1 means that the user creates a class named C1, operations o2 means that
the user creates a class named C2 and operation o3 means that the user creates a

104 G. de Fombelle et al.

o1

o2 o1

o2

o3

Fig. 1. A simple model state space representation

default association named A1 between C1 and C2. Example modelling operation
sequences are <o1>, <o1,o2>, <o2,o1,o3> or <o1,o2,o3>.

The interest of model states lies in their property to validate or not a consistency
relationship. The core thesis of our approach is that, given a consistency relationship
we are able to specify the sufficient subset of M for automatically managing inconsis-
tencies lifecycle. Notice that an inconsistency may exist inside a model (intra-model
consistency) or between two or more models, i.e., inter-model consistency [12]. The
first step of the solution is on-the-fly detection of transitions switching this model
current state:

• from consistent to inconsistent: a new inconsistency is introduced
• from inconsistent to inconsistent: models evolve, but inconsistency remains
• from inconsistent to consistent: an inconsistency is resolved
• from consistent to consistent: models evolve but are consistent

This raises the M subset specification issue. Specifying a subpart of M implies a
clear understanding of M states and transitions. On the first hand, states, i.e., models,
are commonly represented as in-memory object data structures, each object being an
instance of a meta class defined in the metamodel.

On the other hand transitions are defined as elementary operations on those ob-
jects, for instance instantiation of a metaclass, deletion of an object, linking of objects,
setting values to object attributes. These operations are provided by the API meta-
model repository and are fine grained, in opposition to the o1 operation presented in
figure 1. The latter is actually a composite of three “low level” transitions: instancia-
tion of the Class metaclass, setting the default “classname” attribute and linking the
newly created object to the Model object.

3.2 Specifying a Subset of M

A direct specification of a subpart M is not conceivable. There are too many states
and transitions. Thus it seems not feasible to directly represent a subpart of M. We
propose three mechanisms for making such a specification feasible.

 Finding a Path to Model Consistency 105

Transition abstractions save both transitions and states. We have explained that
o1 replaces three low level elementary operations; o3 replaces about ten of them.
Abstraction of transitions enables to avoid description of intermediate states and tran-
sitions.

State abstractions enable description of the sufficient state subpart which might
impact the consistency condition. For example we will see in the example introduced
in section 4.2 that class attribute descriptions are not necessary since they do not im-
pact the consistency relationship. The language or technique for describing state con-
tent is out of the scope of this paper.

State partitioning: we exploit a property of model evolutions that we have observed.
From a given state, it is possible to identify and isolate model parts evolving inde-
pendently of each other. Thus independent model parts may be separated and each
subpart evolutions be traced by one automaton. As a result we have a set of automata,
each one being responsible for tracing evolution of an independent model part.

In the following abstract example, two automata illustrate such a situation:

Fig. 2. Two automatons capturing model parts evolutions

Each automaton traces the evolution of a model state space part. For example, if the
model is in a composite state given by the two automata states (sA,s1) and the user
performs the sequence of model edition operation <o2, o1,o2’,o’1>, then only the left
automaton will be affected and it will go through states s2, s4, s3 to finally return to
s1 state. But at any moment the model can evolve with an oA operation resulting in
the appropriate composite model state. We will exemplify it in section 4.3.

3.3 Defining and Managing Inconsistencies with Automata

These automata enable to define consistency or inconsistency in term of relationships
over the Cartesian products of automata states. Thus we can mathematically define
consistency as a subset C of the Cartesian product of the sets of automata states
{A1,…,AK} where Ai is the set of states of Automaton number i. We will illustrate a
concrete consistency relation in the section 4.3.

Once consistency defined, the second core idea of our approach is that these auto-
mata can be exploited by basic graph algorithms for managing consistent and incon-
sistent model editions:

106 G. de Fombelle et al.

• dynamically report to the user that he/she is entering or leaving consistent or in-
consistent states.

• computing model edition operations sequences bringing models from inconsis-
tent states to consistent ones. Once this sequence computed it is possible to
automatically execute it or propose it to the user.

From an operational point of view our approach consists firstly in automated and
incremental detection of inconsistent model states while the user edits models, i.e., on
the fly. Secondly it provides users with automatable means for exiting such inconsis-
tent model states. From a theoretical perspective the approach is based on the concept
of consistent or inconsistent model state.

4 Running Example

For illustrating our approach, we consider a consistency relationship between two
diagrams of a design model constrained by the application of a security design
pattern.

4.1 A Security Design Pattern

This security pattern constrains both behavioral and structural properties of the soft-
ware system. We choose the secure communication security design pattern published
by the open security group in their technical guide [8]. The goal of this pattern is to
ensure a security policy when two parties need to communicate over a channel that
may be subject to security threats. When this pattern is correctly implemented it se-
cures communications against threats by employing protection traffic mechanisms in
the communication channel. The structure of this pattern involves three elements
exposed in the following figure.

Fig. 3. The secure Communication Design Pattern Structure

The first element is a communication party, e.g., a client or a server. It is the source
and/or the destination of messages that are delivered from the communication chan-
nel. The second element is the communication channel. It has a send method that,
when invoked by parties, transports messages from the sender to the receiver.

 Finding a Path to Model Consistency 107

Finally the last element is the communication protection proxy. It is responsible for
protecting traffic over communication channels. It provides a protection method
before sending the message on the channel and a verification method before deliver-
ing the message to the target communication party.

Fig. 4. The Secure Communication Design Pattern Collaboration version 1

This collaboration pattern describes a secured message exchange between a sender
communication party and a receiver communication party. First the sender submits a
message to its own proxy which protects the data by calling the protect() method.
Then the proxy sends the message on the channel that delivers it to the receiver proxy.
It checks the message by calling the verify() method and finally it delivers the
message to the final recipient, i.e., the receiver.

4.2 Consistency Scenario

We define consistency of the two diagrams as a configuration in which security as-
pects of the system are both described in structural and behavioral diagrams. A con-
tradiction may occur if one diagram represents security properties and not the other
one. When no one of them represents security properties, then they are consistent
because they do not contradict each other [1].

Now suppose we wish to manually secure the simple client server design model
below.

Fig. 5. Unsecured Client Server Structure Diagram

108 G. de Fombelle et al.

Fig. 6. Unsecured Client Server Sequence Diagram

We define two consistent model states. The first one is when the channel class is
stereotyped with a “SecureComm” stereotype and the sequence diagram method calls
are intercepted and secured by the proxies. The other one is when the channel class is
not stereotyped and the communications are not secured, like in figures 5 and 6.

The user could start introducing a “SecureComm” stereotype on the Channel class.
As explained above, both diagrams are consistent if they do not contradict each other.
Thus at the moment the user stereotyped the channel class the model is inconsistent
and it will remain in this state until the sequence diagram is secured in accordance
with the behavioral pattern. We have illustrated a possible model evolution of the
sequence diagram from its initial state to its final fully secured state.

Fig. 7. Initial state

Fig. 8. State 1 of the automaton (cf. fig12.)

Fig. 9. State 4 of the automaton (cf. fig12.)

 Finding a Path to Model Consistency 109

Fig. 10. Secured State of the automaton (cf. fig12.)

From the initial state to the one of figure 8 the user has added the submit method
call between the client and the proxy. Then from state of figure 8 to the one of figure
9 the user has added the protect method call. In the last step the user has added the
send method call between the proxy and the communication channel.

4.3 Automata Supporting Scenario

In this section we define the automata supporting the scenario, and then we define the
consistency relationship.

There are two automata, one responsible for monitoring the evolution of the class
diagram and the other monitoring the evolution of the sequence diagram. The first
automaton is given in the following figure.

Fig. 11. Automaton 1 for class diagram evolutions

Following the abstraction and partitioning mechanisms this automaton defines two
abstract, partial model states respectively representing a “SecureComm” stereotyped
channel class and a channel class without this stereotype. The transitions between the
two states represent application or deletion of the “SecureComm” stereotype.

The following figure defines the automaton for tracing potential sequence diagram
evolutions. Because the full automaton is huge, we have only represented the possible
evolutions from the figure 7 to the figure 10. Its structure underlines multiple scenar-
ios for securing these model parts. Each method call addition between two life lines
(or one in the case of the protect method call) can be applied independently.

Now we define the consistency relationship. As previously explained the model
has two consistent states: one before the application of the pattern and the other when
the pattern has been completely applied in the two diagrams. It is possible to formu-
late this situation in terms of automata states. Indeed the model will be consistent if
and only if both automata 1 and 2 are simultaneously in specific states.

110 G. de Fombelle et al.

Fig. 12. Automaton 2 for sequence diagram evolutions

Thus we can mathematically define consistency as a subset C of the Cartesian
product of automata A1 and A2 state sets (21 AAC ×⊆).

A1={UnstereotypedChannelClass,StereotypedChannelClass}

A2={initialState,state1,state2,…,state6,SecuredState}

C={(UnstereotypedChannelClass,initialState),

(StereotypedChannelClass,SecuredState)}

In the scenario we have illustrated a possible model evolution of the sequence dia-
gram through different states. This scenario is only one of the possible sequences of
modelling operations for building the model. The second automaton illustrates this
point clearly: we see that for going from “initialState” to “SecuredState” there are
many paths (6 exactly).

Imagine we are in the state where the class is stereotyped and the sequence dia-
gram is in the state illustrated on figure 7. Then, the composite model state captured
by our automata is given by the couple (StereotypedChannelClass, InitialState). This
state is not consistent since it does not belong to the previously defined consistent
set C . Thus it is possible to detect an inconsistent state while models evolve. Fur-
thermore it is possible to compute a path in automata for reaching a consistent state;
this path is a sequence of modeling operations. In our scenario such a path is for in-
stance <CreateSubmitClientToProxy, CreateProtectMethod, CreateSendProxyTo-
Channel>. If we execute this sequence of operations then it will switch the model to
the consistent state (StereotypedChannelClass, SecuredState).

 Finding a Path to Model Consistency 111

4.4 Remarks

A first remark is that there are multiple paths to consistency: it is possible to undo the
first modelling operation that leads to an inconsistent state. Here when the model
evolves to the state where the channel class is stereotyped, the trivial path to consis-
tency is to undo the stereotyping action.

Some will notice that no inconsistencies will be raised if the user draws a method
call between the client and the channel, resulting in an unsecured method call. This is
not because our approach cannot deal with this situation. The simple reason is that it
is not specified as an inconsistency. But it is possible to specify new automata or to
modify existing ones for taking into account this constraint.

These automata have been manually produced following two main principles: ab-
straction and partitioning. But the complexity of this specification remains high. On
this limited but concrete example there are still many states and transitions. We could
then head toward automatic production of these automata from high level languages.
For instance we believe feasible to generate these automata from simple QVT relation
language[11] expressions.

5 Conclusion and Further Works

In this paper we have introduced active consistency techniques, an approach to model
consistency enacting at model edition time, automatically correcting errors or prevent-
ing modelling operations when they break a consistency condition. Then we ex-
plained why their strict consistency enforcement policy should be relaxed. As a result
we argued the need for a hybrid approach combining active consistency techniques
and “live” inconsistency management capabilities. We detailed some issues of such
an approach like how to determine inconsistent model states without running com-
plete model checks.

Main contribution of our approach is to introduce the concept of model state space
and to define mechanisms for producing automata tracing all model evolutions which
might impact a consistency relationship. These automata enable on-the-fly detection
of inconsistencies, specified as a subset of the Cartesian product of their states. Fur-
thermore at each current model state, it is possible to compute paths to consistent
states. A path is a sequence of modelling operations and may be automatically exe-
cuted. But this execution may also be delayed enabling to edit the model while it is
inconsistent. To the best of our knowledge this is the first time such an approach is
proposed. However in this article this model of model evolution is not formally
presented.

Our future works can be divided into theoretical and experimental aspects. At the
theoretical level we firstly plan to provide a formalization of this model, a precise
definition of modelling operations and model states. Based on these core concepts, we
wish to explore the relationships between the automata and the state space of models.
At the experimental level we designed an initial architecture and implemented a basic
model listener for tracing model evolutions. The latter detects events modifying the
model data structure. In the next step we will be able to specify composite modelling
operations from atomic ones and detect them while the user edits models.

112 G. de Fombelle et al.

References

[1] Anthony Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer and Bashar Nuseibeh,
Inconsistency Handling in Multiperspective Specifications IEEE Transactions on Soft-
ware Engineering, 20 (1994), pp. 569-577.

[2] Bashar Nuseibeh, Jeff Kramer and Anthony Finkelstein, A framework for expressing the
relationships between multiple views in requirements specification, IEEE Transactions
on Software Engineering, 20 (1994).

[3] Gregor Engels, Jochen M.Küster, Consistency Management Within Model-Based Ob-
ject-Oriented Development of Components, FMCO 2003 proc., LNCS 3188 (2003), pp.
157-176.

[4] Anthony Finkelstein, A Foolish consistency: Technical challenges in Consistency Man-
agement, 11th International Conference on Database and Expert Systems Applications
DEXA 2000, LNCS, London, UK, 2000, pp. 1-5.

[5] George Spanoudakis, Andre Zisman, Inconsistency Management in Software Engineer-
ing: Survey and Open Research Issues, in W. S. P. C. Chang S. K., ed., Handbook of
Software Engineering and Knowledge Engineering, 2001.

[6] Gregor Engels, Jochen Kuster and Reiko Heckel, Toward Consistency preserving model
evolution, in ACM, ed., IWPSE Orlando, 2002.

[7] Gregory Engels, Reiko Heckel, Jochen Kuster and Luuk Groenewegen, Consistency-
Preserving Model Evolution through Transformations, UML 2002, 2002.

[8] Heath, Bob Blakley, Security Design Patterns, 2004.
[9] Jean-Louis Sourrouille, Guy Caplat., Checking UML Model Consistency, Workshop on

Consistency Problems in UML based software development I, Dresden, Germany, 2002.
[10] OMG, MOF 2.0 / XMI Mapping Specification, v2.1, (2005).
[11] OMG, MOF 2.0 Query/View/Transformation, 2005.
[12] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, Maintaining Consistency

between UML models using description logics, Workshop on Consistency Problems in
UML based software development II, San Francisco, USA, 2003.

[13] Snoeck M, Michiels C and Dedene G, Consistency by construction: the case of
MERODE, Workshops ECOMO, OWCMQ, AOIS and aXSD, 2814 (2003), pp. 105-
117.

[14] Tel, Gerard, Introduction to Distributed Algorithms, Cambridge University Press, 2001.
[15] Wagner, Robert, A Plug-in for flexible and incremental consistency management, Work-

shop on Consistency Problems in UML based software development II, San Francisco,
USA, 2003.

[16] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Regio, Jean Louis Sourrouille, Consistency
Problems in UML-based Software Development - Workshop proceedings, Fifth Interna-
tional Conderence on the Unified Modeling Language and its applications - UML 2002,
2002.

[17] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Regio, Jean Louis Sourrouille, Consistency
problems in UML-based Software Development II - Workshop proceedings, Sixth Inter-
national Conference on the Unified Modelling Language - the Language and its applica-
tions UML 2003, 2003.

[18] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Regio, Jean Louis Sourrouille, Consistency
Problems in UML-based Software Development III - Understanding and Usage of De-
pendency Relationships - Workshop proceedings, Seventh International Confoerence on
UML Modeling Languages and Applications - UML 2004, Lisbon, Portugal, 2004.

	Introduction
	Consistency Techniques
	Principles of Our Approach: Automata for Managing Inconsistencies
	Model State Space
	Specifying a Subset of M
	Defining and Managing Inconsistencies with Automata

	Running Example
	A Security Design Pattern
	Consistency Scenario
	Automata Supporting Scenario
	Remarks

	Conclusion and Further Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

