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Abstract. Keeping the consistency between design models is paramount
in complex contexts. It turns out that the underlying Model Representa-
tion Strategy has an impact on the inconsistency detection activity. The
Operation Based strategy represents models as the sequence of atomic
editing actions that lead to its current state. Claims have been made
about gains in time and space complexity and in versatility by using this
kind of representation when compared to the traditional object based
one. However, this hypothesis has never been tested in an industrial
context before. In this paper, we detail our experience evaluating an Op-
eration Based consistency engine (Praxis) when compared with a legacy
system based on EMF. We evaluated a set of industrial models under
inconsistency rules written in both Java (for EMF) and PraxisRules (the
DSL – Domain Specific Language – for describing inconsistency rules in
Praxis). Our results partially confirm the gains claimed by the Operation
Based engines.

1 Introduction

Current large scale software projects involve hundreds of developers working in
a distributed environment over several models that need to conform to several
meta-models (e.g. SysML, UML, Petri nets, business process) [1]. In such context
keeping the consistency between models and with their respective meta-models
is mandatory[2].

Models are usually represented as sets of objects along with their attributes
and mutual associations [3, 4]. A model is considered to be inconsistent if and
only if it contains undesirable patterns, which are specified by the so called
inconsistency rules [5]. Even if these rules may be represented in many different
ways, such as the well-formedness rules of [6], the structural rules of [7], the
detection rules of [4], the syntactic rules of [8], and the inconsistency detection
rules of [9], approaches that deal with detection of inconsistencies irremediably
consist in browsing the model in order to detect undesirable patterns.

The underlying strategy used to represent the model is then very likely to
have significant effects on the performance of inconsistency detection algorithms.



Under the Operation Based model representation strategy[9, 10], instead of keep-
ing track of the current configuration of the objects, their attributes and associ-
ations, one records the sequence of atomic editing actions that were performed
in order to obtain the current configuration.

Operation Based checkers claim to be as efficient as Object Based ones, and
very adequate for Incremental inconsistency detection mode[11]. This mode, con-
sists in, instead of checking every inconsistency rule over the complete model
every time the model has been modified, limiting the search to a subset of this
problem. The search for inconsistencies is performed on the subset of the model
that was modified since the last check and using the subset of the inconsistency
rules that are concerned by this modification. The efficiency gains claimed by
these checkers would come from the fact that identifying the scope of an incre-
mental check reduces to looking at the sequences of actions appended to the
current model by the uses (these sequences are called increments)[12].

Unfortunately, none of these claims has ever been tested in an industrial
context before, specially on non-UML models. In this paper we report our ex-
periences on the impact of the underlying strategy for model representation to
the overall performance of the inconsistency checker. These experiences have
been synthesized in a case study in which we compare an operation based con-
sistency checker (Praxis [9]) with the one provided by the Eclipse Modeling
Framework (EMF)5. Our tests included industrial models ranging from 1.000
to 50.000 model elements. We have carried out the approach on the engineer-
ing meta-model defined by Thales composed of about 400 meta-classes. This
meta-model contains 114 inconsistency rules implemented in Java, from which
30 mandatory ones were selected, re-implemented and checked in models com-
ing from operational contexts. Our results partially confirm the gains claimed by
Operation Based consistency engines: the overall performance gains were identi-
fied in the incremental mode but no significant gains were identified in the batch
mode.

This paper is organized as follows: Section 2 details the operation model rep-
resentation strategy used in Praxis and compares it to the object based one used
in EMF. Section 3 presents the design and results of our case study. Section 4
concludes.

2 Praxis: An Operation Based Model Representation
Strategy

The objective of this section is introducing Praxis, an operation based model
representation strategy and PraxisRules, the rule based DSL – Domain Specific
Language – for representing consistency rules in Praxis. Our objective is not pre-
senting them in details, but to present their basics in comparison to traditional
object based model representation and consistency rules as provided by EMF,
for example.

5 The Eclipse Modeling Framework, http://eclipse.org/emf



2.1 Praxis

Praxis[9] is a meta-model independent consistency checking strategy whose inter-
nal model representation is based on the operation based model representation.
In Praxis, a model is represented as the sequence of atomic editing actions that
lead to its current state. This approach uses 6 kinds of atomic actions which
were inspired on the MOF reflective API [3].

The create(me,mc, t) and delete(me, t) actions respectively create and delete
a model element me, that is an instance of the meta-class mc at the time-stamp
t. The time-stamp which indicates the moment when it was executed by the
user. The actions addProperty(me, p, value, t) and remProperty(me, p, value, t)
add or remove the value value to or from the property p of the model element
me at time-stamp t. Similarly, the actions addReference(me, r, target, t) and
remReference(me, r, target, t) add or remove the model element target as a
reference r from the model element me.

Fig. 1. Sample model

create(a,logicalActor,1)
addProperty(a,name, ‘ActorName’,2)
create(b,systemActorRealization,3)
addProperty(b,name, ‘BName’,4))
create(c,systemActorRealization,5)
addProperty(c,name,‘CName’,6)
addReference(a,systemActorRealization,b,7)
addReference(a,systemActorRealization,c,8)
create(d,allocatedComponent,10)
addProperty(d,name, ‘dName’, 11)
addReference(b, allocatedComponent, d, 12)
addReference(c, allocatedComponent, d, 13)

Fig. 2. Model construction operation se-
quence

Figures 1 and 2 represent the same model in the form of respectively a set of
objects along with attributes and associations and a sequence of editing actions.
Both represent the LogicalActor a, the SystemActorRealizations b and c and
the AllocatedComponent d. They also represent the name attribute of each
object. The actions in timestamps 1 and 2 create the a object and set its name.
The actions 3 − 6 create the b and c objects and set their name attributes.
The actions in timestamps 7 and 8 create the associations between a, b and c.
Finally, the actions in timestamps 10− 13 create the c object and associate it as
the allocatedComponent of b and c.



2.2 PraxisRules: The Consistency Rules DSL for Praxis

PraxisRules is a rule-based logical DSL used to define consistency rules over
Praxis sequences. This language is able to represent constraints over the order
of the actions in a sequence or over the configuration of objects implied by it.

The Java code snippet below represents a consistency rule over the model in
Figure 1. This rule makes sure that every ActorRealization of a LogicalActor is
an instance of Actor. This is done by navigating through a logical actor (repre-
sented by the logicalActor variable whose declaration is not shown), obtaining
the list of its realizations (line 4) and iterating through it (lines 5−8) and check-
ing if every realization has an associated allocated component that is an instance
of Actor (lines 9 − 13).

1 /* Ensures that the Actor Realization of a Logical Actor always

2 * realizes an Actor (at the system analysis level).

3 */

4 EList<SystemActorRealization> actorRealisations =

logicalActor.getSystemActorRealizations();

5 Iterator<SystemActorRealization> iterator =

actorRealisations.iterator();

6

7 while (iterator.hasNext()) {

8 SystemActorRealization next = iterator.next();

9 Component allocatedComponent =

next.getAllocatedComponent();

10

11 if (null == allocatedComponent ||

!(allocatedComponent instanceof Actor)) {

12 return createFailureStatus(ctx_p,

new Object[] { logicalActor.getName() });

13 }

14 }

15 }

The following PraxisRule code snippet illustrates the definition of the same
rule under an operation based model representation strategy. This code defines
a rule called check_LogicalActor_ActorRealization which detects logical ac-
tors realized by a system realization that is allocated to an object that is not an
actor or that is not realized by any system actor realization.

First of all, notice that this rule defines a logical expression based on logical
connectives (and{} for conjunction, or{} for disjunction and not{} for negation).
Capitalized terms represent variables and terms starting with the # sign represent
meta-classes or associations. Another important fact is that Praxis actions are
used as predicates in this logical expression.

1 ["Ensures that the Actor Realization of a Logical Actor always

realizes an Actor (at the system analysis level)"]

2 public check_LogicalActor_ActorRealization(A, R)

3 <=>



4 and {

5 create(A, #LogicalActor),

6 addReference(A, #systemActorRealizations, R),

7 or {

8 not {addReference(R, #allocatedComponent, _)},

9 and {

10 addReference(R, #allocatedComponent, A),

11 create(A, #Actor)

12 }

13 }

14 }.

The most important difference between this rule and the previous one is
that this one is not based on navigating through the objects in the current
configuration, but in looking for actions in the sequence that represents the
current model.

The main advantage of this kind of rule is that it is possible to identify which
rules need to be rechecked (and which parameters need to be rechecked) by a
simple inspection of the rules. For example, every time an action addReference
for the association systemActorRealization is performed this rule needs to be
rechecked, because if a new system actor realization is being added to a logical
actor, it is necessary to verify if it does not violate this rule.

3 Case Study

The advantages of the operation based model representation presented in the last
section have been empirically validated on randomly generated UML models in
[12]. However they have never been investigated in real industrial models. That
is then the main motivation for the present study.

This section is organized as follows: Section 3.1 details the industrial con-
text in which this study has been realized; Section 3.2 lists its main objectives
and planning. Finally, Section 3.3 describes the environment in which it was
effectively performed and Section 3.4 discusses its results.

3.1 Industrial Context

In order to build an architecture of a software intensive system, many stake-
holders contribute to the description of the system architecture. Following a
model-based engineering approach, the different stakeholders will use modelling
tools to describe the architecture and analysis tools to evaluate some properties
of the architecture.

Thales has defined a model-based architecture engineering approach for soft-
ware intensive systems, the ARCADIA method [13]. It defines a model organi-
zation of five abstraction levels (viewpoints) for mainstream engineering and a
set of others viewpoints for speciality engineering, depending typically on non-
functional constraints applied on the system to be engineered. The views con-
forming to these viewpoints are used by different stakeholders during the system



definition process. Therefore, techniques and tools to manage the consistency
of an information bulk made of several views on a system are necessary. The
ARCADIA method adopts a viewpoint-based architectural description such as
described in the conceptual foundations of ISO/IEC 42010, Systems and Soft-
ware Engineering - Architecture Description [2].

This ongoing standard attempts to specify the manner in which architec-
ture descriptions of systems are expressed. This standard provides key concepts
and their relationships to document an architecture. Its key concepts (Architec-
tureFramework, ArchitectureDescription, Viewpoint, View and Correspondence
rule) are defined thanks to the conceptual model illustrated by the Figure 3. This
conceptual model defines the semantics of the different concepts we overview
here. An architecture description aggregates several Architecture Views. A view
addresses one or more system concerns that are relevant to some of the system’s
stakeholders. A view aggregates one or more Architecture Models. Each view
is defined following the conventions of an Architecture Viewpoint. The view-
point defines the Model Kinds used for that view to represent the architecture
addresses stakeholders’ concerns.

As stated in this standard, in architecture descriptions, one consequence of
employing multiple views is the need to express and maintain the consistency
between these views. The standard introduces the Correspondence Rule concept
that states a constraint that must be enforced on a correspondence to express
relation between architecture description elements (Views, Architectural Model,
etc.). Correspondences can be used to express consistency, traceability, composi-
tion, refinement and model transformation, or dependencies of any type spanning
more than a single model kind.

Fig. 3. ISO-IEC 42010 Architecture Framework overview



Considering this industrial context, it can be considered that there are 3
major types of model coherency to be managed:

– The first one aims at ensuring that a model conforms to its metamodel,
i.e. that it addresses the well-formedness of the model. Since the modeling
environment is DSL based (i.e. not profile based using a general purpose
language), the well-formedness can be de facto ensured.

– The second one aims at ensuring that a model conforms to a coherent set
of engineering rules; i.e. that the engineer conforms to a defined engineer-
ing method; in order to capitalize and reuse standard and domain specific
engineering best practices.

– The third one aims at ensuring information consistency between distributed
engineering environments, i.e. when there is not a unique centralized data
reference. The main purpose here is to ensure coherency of all engineering
activities across engineering domains, typically mainstream architecting and
speciality engineering activities.

3.2 Objectives & Planning

Our experimentation focused on the second type of model coherency which con-
sists in determining if a given configuration of set of views (models) are coherent
with a set of consistency rules or not. This study consisted in detecting the in-
consistencies between views conforms to the engineering meta-model defined by
Thales and composed of a set of 20 meta-models and about 400 meta-classes
involved in the five viewpoints defined in ARCADIA. The purpose of this study
was assessing the benefits of Praxis Rules over Praxis strategy when compared to
the traditional Java over EMF one. In terms of benefits, we study the efficiency
to compute the set of inconsistencies in a given model and the usability of the
approach.

In order to evaluate the effectiveness of the operation-based approach, we
have validated the approach against our case study and the experiment envi-
ronment with one Prolog expert and two Java developers from Thales. A set
of 30 existing consistency rules initially implemented in Java over EMF have
translated in Praxis Rules thanks to the praxis rule editor. We validated the
consistency engine with models coming from operational contexts. We used three
different models (ranging from 1.000 to 50.000 model elements) to determine the
performance of the consistency engine tool for different model sizes.

3.3 Environment

Our experiment environment consisted of the Praxis consistency engine and a
System engineering tool dedicated to this industrial context. This latter tool
has been built on the top on the Eclipse Obeo Designer tool6 and exposes a
dedicated engineering language providing user-friendly ergonomics.

6 http://obeo.fr/pages/obeo-designer



It allows engineers to define the architecture description of a software system
by providing the five following views:

– The “Operational Analysis” model level, where the customer needs are de-
fined and/or clarified in terms of tasks to accomplish by the System/Soft-
ware, in its environment, for its users.

– The “System Analysis” model level, that provides a “black box” view of
the System where the System limits are defined and/or clarified in terms of
actors and external interfaces, the System capabilities and functional and
non-functional needs and expectations; allowing to identify the more con-
straining/impacting requirements.

– The “Logical Architecture” model level, which provides a “white box” view
of the System. It defines a technical and material independent decomposition
of the System into components, and where the non-functional constraints are
refined and allocated.

– The “Physical Architecture” model level, which is defined by the structuring
architecture of the System. It takes into account non-functional constraints,
reuses legacy assets and applies product policies.

– The “EPBS (End Product Breakdown Structure)” model level is an organi-
zational view identifying the configuration items for development contracts
and further Integration, Verification and Validation.

The Praxis Consistency engine has been integrated on top of this tool. It has
been written in Java and is coupled with SWI-Prolog. From any given model, a
equivalent sequence of editing operations is generated and passed to SWI Prolog.
The Prolog engine then executes a set of queries representing consistency rules
(also described in Prolog) and returns the list of detected inconsistencies to the
user.

In the point of view of users, the Praxis Consistency engine provides two main
components or features: the ConsistencyRule editor and the Consistency View.
The first one allows the description of consistency rules using the PraxisRules
DSL. These rules are then compiled into Prolog and are used by the Consistency
engine. The Consistency View shows the number of inconsistencies found in the
model and the model information that are not conform to the engineering rules.

A screen shot of the integrated tool is displayed in Figure 4. It shows an
architecture description model that is being edited by an engineer (on the top)
and the set of detected inconsistencies (the list on the bottom right). The only
modification on this tool needed to this experiment was the inclusion of a timer
that precisely indicated the time needed to perform each consistency verification.

3.4 Results & Evaluation

This section details the results of our experiments and the evaluation of the
usability and applicability of Praxis in the industrial context under study. This
section is divided into three parts, in the first one we analyze the comparison
of the performance results obtained by Praxis and EMF. In the second part we



Fig. 4. Experiment Environment

analyze the adaptation of the rules written in the first part to the incremental
checking model provided by Praxis. Finally, the third part describes our overall
evaluation about the difficulty of rewriting part of our existing Java consistency
rules in PraxisRules.

Detecting model inconsistency Table 1 describes the different metrics of
the models used in our experiment. The model A is a toy model provided with
the environment and the two others (B and C) are realistic models. The first
three lines describe respectively the number of model elements in each model;
the size of the model as represented as an EMF model and as a Praxis sequence
of actions. Notice that the Praxis representation is in average four times more
verbose than the EMF one. That happens because much more information is
stored in Praxis, namely the order and the time-stamp of execution of each
action.

The fourth, fifth, sixth and seventh lines display respectively the time needed
to generate the actions file from the EMF model; the time needed to load it
along with the translated consistency rules into the SWI Prolog engine and the
amount of memory in MB necessary for the Eclipse process and the Prolog
process to open each representation of it. These memory related numbers have
been obtained by subtracting the amount of memory used by the process before
and after loading the model. The amount of memory used before loading the
EMF file averaged in 261 MB and before loading the Praxis sequences of actions
averaged in 6MB.



Finally, the two last lines compare the time taken by each consistency engine
to verify each model. Notice that, the “Java Overall check time” is always lesser
than the “Praxis Overall check time”.Nevertheless, we consider that the ”Praxis
Overall check time ” is acceptable for the set of rules in this context.

Model A Model B Model C

Number of model elements 986 48 616 52 703

EMF model file size (KB) 326 11 282 13 724
Praxis action file size (KB) 1 398 37 589 66 562

Time to generate actions file (ms) 265 7 625 9 610
Loading time (ms) 1 516 11 968 12 031
eclipse.exe (MB) 41 63 62
plcon.exe (MB) 0,6 85,4 89,6

Praxis Overall check time(ms) 63 1 172 1 640
Java Overall check time (ms) 13 292 332

Table 1. Experimentation metrics

As an overall evaluation, the main limitation of the Praxis consistency engine
lies in the fact that it works with another model representation, a file containing
the sequence of editing actions represented as Prolog facts. This file has to be
generated and loaded into the Prolog engine every time the model has been
modified. For the two realistic models (B and C), the time to generate the
praxis actions file is about 7 to 10 seconds and the time taken to load this file
is about 12 sec. The performance penalty thus induced means that it would be
impractical to use Praxis in an industrial usage by generating the action file
from scratch and to load the actions files for each check.

Incremental detection of model inconsistencies Since testing the incre-
mental mode in EMF would require the adaptation of the existing Java rules to
this mode we decided to evaluate only the usability of the Praxis consistency
engine, without comparing it to EMF.

After having opened the model in incremental mode, the user needs to wait
for a batch mode check that computes the initial set of inconsistencies in the
model. From this point on, when any modification is made to the model the
incremental check is executed, taking into consideration only the subset of the
models and of the inconsistency rules that is concerned by the modification that
was performed. We evaluated both the time necessary to perform the initial
batch verification and the time needed to verify the increments. The performance
obtained by the former was equivalent to the performance of the batch checker
already displayed in Table 1. The performance for the later averaged in 100ms.

As an overall evaluation, we concluded that the time needed to perform the
initial batch verification to be reasonable and comparable to the time already
needed to load the model on Eclipse. With respect to the incremental checking



time, we considered it to be quite transparent and independent of the number
of rules that need to be re-checked. We consider that the main drawbacks of the
praxis approach can be mitigated with the incremental mode.

Inconsistency rules Thanks to the consistency rule editor, 30 rules have been
written by two Java developers without knowledge of Prolog in the beginning
of the study and one Logic Programming expert. Java and PraxisRules are lan-
guages built on very different paradigms. Java is imperative in nature, and query-
ing or checking a model typically consists in iteratively navigating and inspecting
the model elements with the explicit use of loops and collections. PraxisRules,
being built on top of Prolog, inherits its declarative nature, which means that
the typical querying or checking code consists of a pattern to be identified in the
sequence of actions.

In the present study, 60% of the inconsistency rules were dedicated to verify
some realization relationship between the five views (i.e. verifying if an element
in a view correctly realizes other elements in other views). This kind of rule is
easy to write with the PraxisRule syntax. Nevertheless, the rules that have been
written by the Prolog expert were more efficient in terms of performance than
the ones written by the Java programmers. 4 rules could not be written without
the Prolog expert because they required to use of language constructs that were
not available in the basic PraxisRules library. These constructs needed to be
implemented in Prolog and added to that library by the Prolog expert. In spite
of the language not being typed, the Consistency Rule editor helped to overcome
this limitation by adding warnings to the references in the PraxisRule code that
were not found of the imported metamodels.

As an overall evaluation, we considered that knowledge of Prolog is a very
important prerequisite to write PraxisRules consistency rules. Furthermore, for
more advanced cases it could become difficult to translate rules from Java to
Praxis, especially for complex engineering rules which were considered to be hard
to implement. This difference is counterbalanced by the fact that no rules needed
to be rewritten in order to use Praxis on the incremental mode. Our evaluation
is that for some classes of rules (like the ones detecting simple patterns between
different views) it is worth to write the them in PraxisRules.

4 Conclusion

This paper described our experiences on the impact of the Operation based
underlying model representation strategy to the efficiency of the inconsistency
detection task. We use the Eclipse Modeling Framework (EMF) as the reference
for our study, which consisted in testing Praxis, an operation based consistency
management, by reimplementing a set of 30 consistency rules from the engineer-
ing meta-model defined by Thales and comparing the time necessary to compute
its consistency with the time needed by EMF. This case study was executed in
an industrial context, with non-UML models.



Our results show that, in terms of computation time, the operation based
approach is not better than the object based on. The difficulty of adapting these
rules to being used in the incremental verification was also compared. Our results
show that the work necessary to write the consistency rules is reduced by the use
of the operation based approach, since they usually do not need to be rewritten
to work on incremental mode.

As future works, we intend to compare the Praxis incremental model with
the EMF one. We also intend to repeat this evaluation in non-EMF contexts.
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