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ABSTRACT 
Nowadays, large-scale industrial software systems may involve 
hundreds of developers working on hundreds of different but 
related models representing parts of the same system 
specification. Detecting and resolving structural inconsistencies 
between these models is then critical. In this article we propose to 
represent models by sequences of elementary construction 
operations, rather than by the set of model elements they contain. 
Structural and methodological consistency rules can then be 
expressed uniformly as logical constraints on such sequences. Our 
approach is meta-model independent, allowing us to deal with 
consistency between different models whatever their kind. We 
have validated our approach by building a Prolog engine that 
detects violations of structural and methodological constraints 
specified on UML 2.1 models and requirement models. This 
engine has been integrated into two contemporary UML-based 
modelling environments, Eclipse EMF and Rational Software 
Architect (RSA).  

Categories and Subject Descriptors 
D.2 [Software Engineering]: Design Tools and Techniques 

I.6 [Simulation and Modeling]: Model Development; Model 
Validation and Analysis 

General Terms 
Design, Verification. 

Keywords 
Model, Meta-model, Consistency, Logic 

1. INTRODUCTION 
The more complex a system is, the more its development requires 
a collection of different models. Large-scale industrial software 
systems may involve hundreds of developers working on 
hundreds of different but related models representing parts of the 
whole system specification [16]. Ensuring consistency between 

those models becomes critical as even a minor inconsistency can 
lead to serious faults in the system and be the source of project 
failure.  
In [6] and [7], Finkelstein et al. define an approach, called the 
Viewpoints Framework, where each developer has her own 
viewpoint composed only of models that are relevant to her. The 
main insight is that model consistency cannot and should not be 
preserved at all times between all viewpoints. The Viewpoints 
Framework proposes to allow for temporary model 
inconsistencies rather than to enforce model consistency at all 
times [2]. Spanoudakis and Zisman [17] define six inconsistency 
management activities that should be undertaken. The first 
activity, inconsistency detection, is of special interest as it defines 
the foundation of the whole process. Considering this activity, 
two families of approaches are identified: the logic-based 
approaches and the model checking approaches. The logic-based 
approaches are defined by the use of some formal inference 
techniques to detect any kind of model inconsistency. The model 
checking approaches deploy dedicated model verification 
algorithms that are well suited to detect specific behavioural 
inconsistencies but are not well adapted to other kinds of 
inconsistencies.  
With the appearance of MDA [11], models are now more 
formally defined as their structures are specified conforming to a 
meta-model. A review of UML-based approaches dealing with 
model consistency is presented in [5]. It should be noted that most 
approaches follow the idea presented in [2][6] and fall into the 
logic-based approach family of [17] for addressing model 
inconsistency. However, their two major drawbacks are, firstly, 
that they only target structural constraints, and secondly, that they 
only deal with UML models.  
In this paper, we argue that structural and methodological 
inconsistency detection should be supported uniformly. 
Methodological rules constrain the overall construction process, 
whereas structural rules only constrain the model obtained at the 
end of this process [17]. Regarding the model life cycle, those two 
kinds of rules are complementary as structural rules constrain 
model states whereas methodological rules constrain model 
changes. We stress the fact that, to our knowledge, no existing 
approach allows to define methodological consistency rules. 
Moreover, we also argue that inconsistency detection should be 
supported uniformly for any model regardless its meta-model. On 
the one hand, complex models may become very large, requiring 
the need to fragment them in different smaller pieces. On the 
other hand, a wide variety of models is needed for building large-
scale industrial software systems. Therefore, inconsistency rules 
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should be considered as multi-model rules as they may target 
several meta-models and may have to be detected on sets of 
models.  
The key idea of the approach that we present in this paper to 
uniformly detect structural and methodological inconsistencies is 
that it relies on elementary model construction operations instead 
of the model elements themselves. Any model, regardless its 
meta-model, can be represented as a sequence of operations 
performed to construct it rather than by the set of model elements 
it contains. Based on this key idea, both structural and 
methodological rules can be expressed uniformly as logical 
formulae on the sequence of construction operations. 
The remainder of this paper is structured as follows. Section 2 
presents the foundation of our approach, illustrating the definition 
and detection of structural and methodological inconsistencies on 
model construction sequences. Section 3 presents the prototype 
we built and section 4 presents the validation of our approach. 
Related work is given in section 5, and we conclude in the last 
section. 

2. DETECTION OF INCONSISTENCIES 
BASED ON MODEL CONSTRUCTION 
2.1 Model construction 
A model is defined by a set of model elements, which are 
instances of meta-classes [12]. Independently from meta-models, 
a model can be considered as a set of model elements that own 
values and refer to each other. Each model element is an instance 
of a meta-class that defines the properties it can own and the 
references it can have [12]. Every model can be expressed as a 
sequence of elementary construction operations. The sequence of 
operations that produces a model is composed of the operations 
performed to define each model element. The four elementary 
operations we defined are inspired from the MOF reflective API 
[12]: 
- create(me,mc) corresponds to the creation of a model 

element instance me of the meta-class mc. A model element 
can be created if and only if it does not already exist in the 
model. A newly created model element doesn’t own values 
and doesn’t refer to any other model element; 

- delete(me) corresponds to the deletion of the model element 
instance me. A model element can be deleted if and only if it 
exists in the model and it is not referenced by any other 
model element. If it is, these references should be removed 
first using setReference; 

- setProperty(me,p,Values) corresponds to the assignment of a 
set of Values to the property p of the model element me. 
Values can be assigned to the property p of a model element 
me if and only if me exists in the model, it is an instance of a 
meta-class mc, the property p is defined in mc or in a meta-
class it inherits from, p and the assigned values have the 
same type, and the set of Values is consistent with the 
multiplicity of p; 

- setReference(me,r,References) corresponds to the assignment 
of References to the reference r of the model element me. A 
set of model elements references can be assigned to the 
reference r of a model element if and only if the model 
element me exists in the model, it is an instance of a meta-
class mc, the reference r is defined in mc or in a meta-class it 
inherits from, r and the assigned references have the same 

type and correspond to created model elements, and the set 
of References is consistent with the multiplicity of r. 

 
Figure 1 presents a simplified part of the UML 2.1 meta-model 
that concerns the use cases [13]. It will be referred to as UCMM 
for Use Case Meta Model in the remainder of this article. 

 

 
Figure 1. The UCMM meta-model. 

Figure 2 represents a model instance of the use case part of the 
UCMM meta-model. This model is used as a running example to 
demonstrate our approach. It is composed of an actor (named 
“Customer”) that is associated with three use cases (named 
“Create eBasket”, “Buy eBasket” and “Cancel eBasket”) 
belonging to a class (named “PetStore”) representing the system. 

 

Figure 2. A use case model instance of UCMM. 

The following construction sequence σuc can be used to produce 
the model of Figure 2: 
1. create(c1,Class) 
2. setProperty(c1,name, {‘PetStore’}) 
3. create(uc1,UseCase)  
4. setProperty(uc1,name, {‘Buy eBasket’}))  
5. create(uc2,UseCase)  
6. setProperty(uc2,name,{‘Create eBasket’})  
7. create(uc3,UseCase)  
8. setProperty(uc3,name,{‘Cancel eBasket’})  
9. setReference(c1,ownedUseCase,{uc1,uc2,uc3})  
10. create(a1,Actor)  
11. setProperty(a1,name, {‘Customer’})  
12. setReference(a1, usecase, {uc1,uc2,uc3})  
 



Operation 1 corresponds to the creation of the class that owns use 
cases. Operations 3, 5 and 7 correspond to the creation of the 
three use cases. Operations 4, 6 and 8 correspond to the 
assignment of the name of the three use cases. Operation 9 links 
the three use cases with the class. Operations 10 and 11 
correspond to the creation of the actor and to the assignment of its 
name. Operation 12 links the actor with the three use cases. This 
arbitrary sequence is used in the next sections to exhibit our 
consistency rules examples.  
Figure 3 presents our proposal for a requirements meta-model. 
Note that this meta-model is only used here to exemplify our 
approach; it should not be considered as a contribution to the 
requirement management domain. Our requirements meta-model 
defines concepts usually used for elaborating requirements 
specifications. A requirements specification (Specification meta-
class) is composed of two parts: issues (IssueSet and Issue meta-
classes) and term definitions (Glossary and Entry meta-classes). 
An issue has a priority (low, medium, high), an id, a status (Status 
enumeration), a title and a definition. An issue refers to term 
definitions. 
 

Specification IssueSet

+priority : Priority
+id : Integer
+status : Status
+title : String
+definition : String

Issue

Glossary

+term : String
+definition : String

Entry

+assigned
+resolved
+closed

«enumeration» Status0..1

+issueset

0..1
0..1

+glossary0..1

0..1

+entry*

0..1

+issue*

+used

* *

+low
+medium
+high

«enumeration» Priority

 
Figure 3. Requirements meta-model 

 

The following sequence σreq produces an example of a model 
instance of the requirements meta-model. It is composed of one 
issue (id 1253345) that makes use of two term definitions (e1: 
‘Customer’ and e2: ‘Basket’). This issue defines that a customer 
of the PetStore system has to either buy his opened eBasket or to 
cancel it before opening a new one: 
1. create(spec,Specification)  
2. create(is,IssueSet)  
3. setReference(spec,issueset,{is})  
4. create(gl,Glossary)  
5. setReference(spec,glossary,{gl})  
6. create(e1,Entry)  
7. setProperty(e1,term, {‘customer’})  
8. setProperty(e1,definition, {‘human connected and 

authentified. He/she has been registered in the PetStore 
system.’})  

9. create(e2,Entry)  
10. setProperty(e2,term, {‘eBasket’})  
11. setProperty(e2,definition, {‘electronic representation of a 

classical basket’})  
12. setReference(gl,entry,{e1,e2})  
13. create(iss1,Issue)  

14. setProperty(iss1,title, {‘only one opened eBasket per 
customer’})  

15. setProperty(iss1,id, {‘1253345’})  
16. setProperty(iss1,definition, {‘If a customer has an opened 

eBasket, he/she  has to either cancel it or buy it before 
opening another one’})  

17. setProperty(iss1,priority, {‘low’})  
18. setProperty(iss1,status, {‘assigned’})  
19. setReference(iss1, used, {e1,e2})  
20. setReference(is, issue, {iss1})  
 

2.2 Detection of Inconsistencies 
Several classifications of consistency rules have been provided in 
the literature [17][18][5]. Our goal is not to define yet another 
consistency rule classification but rather to propose a uniform 
mechanism for dealing with model inconsistency whatever the 
kind of consistency. For the sake of simplicity, we only consider 
two kinds of inconsistencies in this article: structural and 
methodological inconsistencies.  
Structural consistency rules define relationships that should hold 
between model elements regardless of the way they have been 
constructed. These rules can be compared with well-formedness 
rules of [17], structural rules of [18] and syntactic, static rules of 
[5]. Methodological consistency rules are constraints over the 
construction process itself. They impose a certain order of 
operations that should be respected by the different developers 
that edit the models. These rules can be compared with 
development process compliance rules of [17]. 
For both structural and methodological consistency rules, we 
propose to define them as logic formulae over the sequence of 
model construction operations. For structural consistency rules, 
constraints mainly target operations of the sequence that impact 
the resulting model. For methodological consistency rules, 
formulae mainly target the order between operations of special 
interest (key operations of the construction process).  
Using predicate logic has as main advantage to be based on well-
defined sound semantics. Moreover, existing logical inference 
engines such as SWI-Prolog can be used. In the related work 
section, the advantages and limitations of logic reasoning 
compared to other approaches will be discussed. 
The following subsections present representative examples of 
both structural and methodological inconsistency rules. For both 
kinds of inconsistency we present three examples, one for each 
meta-model (UCMM and Requirement) and one that spreads 
across both meta-models. 

2.3 Structural Inconsistency 
Structural inconsistency rules only concern the model obtained 
after executing the sequence of construction operations. Thus, 
only operations of the sequence that really impact the resulting 
model have to be taken into account while evaluating structural 
inconsistency rules. In other words, operations whose effects are 
cancelled by following operations in the sequence should not be 
taken into account. 
More precisely, the following rules apply in order to identify 
operations whose effects are not cancelled: 



• create(me,mc) has an effect if there is no following 
delete(me) operation appearing later in the sequence. This 
assures that the created model element me is not deleted.  

• setProperty(me,p,Values) has an effect if there is no 
following operation in the sequence that is either a 
setProperty(me,p,OtherValues) operation targeting the same 
model element and the same property or a delete(me) 
operation targeting the same model element. This assures 
that the values are never changed and the model element is 
not deleted.  

• setReference(me,r,References) has an effect if there is no 
following operation in the sequence that is either a 
setReference(me,r,OtherReferences) operation targeting the 
same model element and the same reference or a delete(me) 
operation targeting the same model element. This assures 
that the references are never changed and the model element 
is not deleted. 

• delete(me) should never be considered while evaluating 
structural inconsistency rules as it only cancels the effect of 
other operations. 

 
In the remainder of the paper, we will use operations such as 
lastCreate, lastSetProperty and lastSetReference. The ‘last’ prefix 
indicates that those operations are not followed by operations 
cancelling their effects, as explained in the above. Structural 
inconsistency rules therefore only use those ‘last’ operations. 

2.3.1 UCMM example 
The structural inconsistency example we choose on UCMM is 
inspired from the UML 2.1 specification. It specifies that an actor 
should not own a use case even if the meta-model permits it.  
Operations concerned by this rule are creation of actors 
(lastCreate(me,Actor)) and assignment of owned use cases to 
them (lastSetReference(me,ownedUseCase,References)). A 
construction sequence produces a consistent model if and only if 
it does not assign owned use cases to actors. In other words, for 
all created actors (lastCreate(me,Actor)) there should be no 
assignment of owned use cases 
(lastSetReference(me,ownedUseCase,R)). Formally, this rule can 
be expressed by the following logical formula: 

ActorsDoNotOwnUseCase (σ) = true iff  
    ∀ a ∈ σ, 
        if a = lastCreate (meac, Actor) then  

          / ∃   o ∈ σ,  
              o = lastSetReference(meac,ownedUseCase, R) 

              and R ≠ ∅. 
 

Regarding this structural inconsistency rule, sequence σuc 
presented in section 2.1 produces a consistent model. Indeed, it 
contains only one lastCreate(me,Actor) (line 10) and no 
lastSetReference(me,ownedUseCase, R) for this actor.  

2.3.2 Requirements example 
An example of a structural inconsistency for the requirements 
meta-model is based on our own experience in requirements 
management. An issue should not use an entry if the issue’s 
definition does not mention the entry’s term.  

Operations concerned by this rule are creation of issue 
(lastCreate(me,Issue)), assignment of their definition 
(lastSetProperty(me,definition,Values)) and assignment of their 
used entries (lastSetReference(me,used,References)). A 
construction sequence produces a consistent model if and only if 
for all created issues, the term of their assigned entries is 
mentioned in their definition. Formally, this rule can be expressed 
by the following logical formula1: 

IssuesDoNotUseUselessEntry(σ) = true iff  
    ∀ a ∈ σ,  
        if a = lastCreate (meis, Issue) and 

         ∃ u ∈ σ, u = lastSetProperty(meis,definition, DefVal) and 

         ∃ v ∈ σ, v = lastSetReference(meis,used, UE) with UE≠ ∅ 
    then  

        ∀ metd ∈ UE  

            ∃ td ∈ σ, td = lastSetProperty(metd,term, TermVal) and 

            ∀ t ∈ TermVal, ∃ d ∈ DefVal, substring(t,d) 
 

Regarding this structural inconsistency rule, sequence σreq 
presented in section 2.1 produces a consistent model. Indeed, it 
contains only one lastCreate(me,Issue) (line 13), one 
lastSetProperty(me,definition,DefVal) (line 16) and one 
lastSetReference(me,used,UE) (line 19). Moreover, for each 
referenced entry e1 and e2, the sequence contains one 
lastSetProperty(e,term,ValTerm) (lines 7 and 10) that satisfies the 
substring comparison requirement in the last line of the formula: 
‘customer’ and ‘eBasket’ are indeed substrings of ‘If a customer 
has an opened eBasket,…’. 

2.3.3 UCCM and Requirement example 
Our example for a cross-model structural inconsistency aims at 
defining a dynamic (i.e., non-persistent) link between use case 
and requirements models. We express this dynamic link as 
follows: “each actor should have a corresponding entry in the 
glossary (i.e., the actor name and the term of the entry are the 
same)”. 
The particularity of this example is that it is based on two 
sequences, one for each model. Operations concerned by this rule 
are creation of actors (lastCreate(me,Actor)), assignment of their 
name value (lastSetProperty(me,name,Value)) and assignment of 
term values of entries (lastSetProperty(me,term,Value)). Two 
sequences produce a consistent pair of models if and only if for 
all created actors with an assigned name, there is a created term 
definition with a corresponding name value. Formally, this rule 
can be expressed by the following logical formula: 

                                                                 
1 The expression substring(t,d) in the last line of the formula is 

not an elementary construction operation, but simply a substring 
comparison predicate that is offered by the underlying logic 
programming language. 



ActorNameCorrespondsToEntry (σuc,σrq) = true iff  
    ∀ a ∈ σuc,  
    if a = lastCreate (meac, Actor) and 

       ∃ n ∈ σuc, n = lastSetProperty(meac,name, NameVal) then 

        ∃ t ∈ σrq, t = lastSetProperty(metd,term, NameVal) 
 
Regarding this structural inconsistency rule, the sequences 
presented in section 2.1 produce a consistent pair of models. 
Indeed, they contain only one lastCreate(me,Actor) (sequence σuc, 
line 10), one lastSetProperty(me,name,NameVal) (sequence σuc, 
line 11) and one lastSetProperty(me,term,NameVal) (sequence 
σreq, line 7). 

2.4 Methodological Inconsistency 
As methodological inconsistency rules constrain the construction 
process, the order between operations should be taken into 
account during the evaluation of the rules. Therefore, in the rest of 
this paper we use the following notation: 

Let σ  = a1; …; am-1; am; am+1; …; an be a construction sequence. 
We denote by ai <σ aj the occurrence of operation ai before aj in 
sequence σ. We define the subsequences of σ preceding and 
following operation am as Pred(σ,am) = a1; …; am-1 and 
Succ(σ,am) = am+1; …; an 

2.4.1 UCMM example 
An example of a methodological inconsistency on UCMM 
corresponds to the following methodological guidance: (1) Never 
unassign use case name; and (2) Assign a name just after the 
creation of a use case. Such guidance is automatically supported 
by nearly all UML case tool editors. Our framework provides 
more flexibility by allowing the user to define which 
methodological inconsistencies he needs, as well as when and 
how to enforce them. 
Operations concerned by this rule are creation of use cases 
(create(me,UseCase)) and assignment of their name 
(setProperty(me,name,Name)). Indeed, a sequence is correct if 
and only if (1) there is no setProperty(me,name,{””}) and (2) 
each create(me,UseCase) is immediately followed by a 
setProperty(me,name,Name). Formally, these rules can be 
expressed by the following logical formulae: 

UCNaming1(σ) = true iff  
    ∀ a ∈ σ, a ≠ setProperty(me,name,{””}) 
 
UCNaming2(σ) = true iff  
    ∀ a ∈ σ, if a = create(me,UseCase) then 
        ∃ c ∈ σ, c = setProperty(me,name, NameVal)  
        and / ∃  b ∈ σ, a <σ b <σ c 
 
Regarding these methodological inconsistency rules, sequence σuc 
presented in section 2.1 is consistent. Indeed, it contains no 
setProperty(me,name,{””}) and the three create(me,UseCase) 
operations (lines 3, 5 and 7) are all immediately followed by the 
corresponding setProperty(me,name,NameVal) operation (lines 4, 
6, 8). 

2.4.2 Requirement example 
A methodological inconsistency example for the requirement 
meta-model is a constraint on the issue life cycle. Indeed, in a 
requirements model, the status of an issue can only change in a 
predefined way. First, it must be set to “assigned”, after which it 
can change to “resolved”. Then it can change to “closed” after 
which it cannot be changed any longer. 
Operations concerned by this rule are only the creation of issues 
(create(me,Issue)) and assignments of their status 
(setProperty(me,status,Value)). Indeed, a sequence is correct if 
and only if for all created issues (1) the first value of the status 
should be ‘assigned’; (2) if the status is set to ‘assigned’ the next 
assignment has to be ‘resolved’; (3) if the status is set to 
‘resolved’ the next assignment has to be ‘closed’ and (4) if the 
status is set to ‘closed’ it cannot be changed anymore. Formally 
this rule can be expressed by the following mathematical formula: 

IssueLifeCyle(σ) = true iff  
  ∀ i ∈ σ, if i = create(me,Issue) then 
  (1) if ∃ snn ∈ σ, snn = setProperty(me,status, val), 

val≠{’assigned’} then  
        ∃ sr ∈ Pred(σ,snn), sr = setProperty(me,status, {‘assigned’}) 
  (2) if ∃ sr ∈ σ, sr = setProperty(me,status, {‘assigned’}) then 
                ∀ snc ∈ Succ(σ,sr), snc = setProperty(me,status, val) 
                                                  and val≠{'resolved'} 
                        ∃ sc ∈ σ, sr <σ  sc <σsnc  
                                 and sc = setProperty(me,status, {‘resolved’}) 
  (3) if ∃ sr ∈ σ, sr = setProperty(me,status, ‘resolved’) then 
               ∀ snc ∈ Succ(σ,sr ), if snc = setProperty(me,status, val) 
                                                 then val={’closed’}  
  (4) if ∃ sr ∈ σ, sr = setProperty(me,status, {‘closed’}) then 
            / ∃  s ∈ Succ(σ,sr), s = setProperty(me,status, val) 
 
Regarding this methodological inconsistency rule, sequence σreq 
presented in section 2.1 is consistent. Indeed, it contains a 
create(me,Issue) (line 13) and the first status assignment 
setProperty(me,status,{‘assigned’}) (line 18) is correct w.r.t. (1). 
Moreover, the sequence is also correct w.r.t. (2), (3) and (4) as 
there is no setProperty(me,status, {‘resolved’}) and no 
setProperty(me,status, ‘closed’). 

2.4.3 UCCM and Requirement example 
In section 2.3.3, the structural inconsistency rule we defined 
constrains actor names to be mentioned by entries in the glossary. 
The methodological inconsistency rule we chose constrains this 
link (between actors and entries) to be realized only after issues 
using the entries have been set to the ‘assigned’ status. Indeed, 
before having been set to the ‘assigned’ status, no developer is 
responsible of their realization. Therefore, no new actor 
corresponding to these issues should be created. In other words, 
new actors corresponding to issues can be created only after 
issues have been set to the ‘assigned’ status. 
The particularity of this example is that it is based on two 
sequences, one for each model. Moreover, it defines order 
constraints between construction operations of both sequences. 
Therefore, a total order needs to be computed when evaluating the 
rule.  



Operations concerned by this rule are creations of name 
assignments to actors (setProperty(me,name,NVal)) and term 
assignments to entries (setProperty(me,term,TVal)). 
 

ActorNameWithEntriesOfAssignedIssues(σ) = true iff  
    ∀ sn ∈ σ,  
      if sn = setProperty(me,name,NVal) and 
                      ∃ a ∈ σ, a = create(me,Actor) 
      then 
        ∃ i, sr, st ∈ Pred(σ,sn),  
          i = setProperty(mi,status,’assigned’) 
          sr = setReference(mi,used,Entries) 
          st = setProperty(entry,term,NVal), entry ∈ Entries 
 

When evaluating this methodological inconsistency rule, a total 
order has to be computed between the operations of the two 
sequences presented in section 2.1. The way in which the total 
order is computed will affect the result of this inconsistency rule. 
If we decide to put σreq before σuc then the total ordered sequence 
will be consistent. However, if we decide to put σuc before σreq 
then the total ordered sequence will be inconsistent. The other 
combinations depend on the order between the name assignment 
of the actor on one hand and the status assignment and its 
association to an entry on the other hand. In our particular 
example, this means that lines 7, 18, 19 of σreq should precede line 
11 of σuc for the total ordered sequence to be consistent.  

3. REALIZATION 
As a proof of concept of our approach, we have built a prototype 
in the logic programming language Prolog. The key idea is that 
inconsistency rules are translated to Prolog queries and model 
construction operations to Prolog facts. This Prolog engine has 
been integrated into the modeling environments Eclipse EMF and 
Rational Software Architect. Thanks to this integration, users can 
ask to the Prolog engine to perform the inconsistency check. 

3.1 Architecture 
Our prototype is composed of two main components: the 
Sequence Builder and the Check Engine (see Figure 4). The 
Sequence Builder is responsible for building a totally ordered 
sequence of construction operations from actions performed by 
developers, and storing it into a Prolog fact base. The Check 
Engine is responsible for detecting inconsistencies. It analyses the 
sequence computed by the sequence builder in the fact base and 
produces an inconsistency detection report.  

3.2 Sequence Builder 
We have defined two kinds of Sequence Builders. One is a file 
reader and the other is an event listener. The file reader can parse 
an XMI file containing a model and outputs the corresponding 
model construction sequence. The event listener can receive 
distributed events raised by developers while they edit their 
models in the Eclipse EMF editor or in Rational Software 
Architect (RSA). This enables the incremental checking of 
inconsistencies. A screenshot illustrating this approach is given in 
Figure 5. This screenshot shows a requirement model edited 
within Eclipse/EMF that is monitored by an event listener 
sequence builder.  

 

XMI

Prolog fact base

Sequence Builder Check Engine
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Inconsistency 
Rules

User with 
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Figure 4. Tool architecture. 

 

 
Figure 5. Screenshot of the event listener sequence builder 

integrated into the Eclipse EMF framework. 
 

The file reader sequence builder has been developed in Java on 
top of the EMF framework. It opens an EMF XMI file containing 
the model and it traverses this model through the containment 
association (in EMF, all models are organized as trees thanks to 
this containment association). Whenever a new model element is 
visited, a corresponding create operation is appended to the 
model construction sequence and, for each of its properties, a 
corresponding setProperty operation is appended to the sequence. 
If the model element has references and if the referenced model 
elements have already been visited, a setReference operation is 
appended to the sequence; otherwise the reference is flagged in 
order to be appended as soon as the referenced model elements 
are visited. This algorithm always builds a minimal sequence of 
construction operations as there is no operation that cancels 



previous operations in the sequence. Moreover, many different 
sequences can be obtained from a same model as the iteration is 
only based on the aggregation association and is therefore non 
deterministic.  

We have used the EMF reflective API in order to parse all models 
regardless their metamodel. The file reader sequence builder was 
used to build construction operation sequences of huge UML 2.1 
models (containing around 70000 model elements). The length of 
the resulting construction sequence exceeded 1 billion operations 
in some cases. 

The event listener sequence builder has been developed in Java 
RMI on top of the EMF notification framework. It is composed of 
two subcomponents: the event sender and the event receiver 
components. This architecture has been defined to be deployed on 
distributed environments (with multiple distributed developers). 
However, we have only deployed and tested it so far with one 
event sender and one event receiver.  

The event sender is an Eclipse plugin that makes use of the EMF 
notification framework (for UML 2.1, it makes use of the EMF 
transactional notification system). It is deployed on the 
developers Eclipse workbench. Each time a developer modifies 
his models, the event sender is notified and makes an RMI call to 
the event receiver. There is only one deployed event receiver that 
receives RMI calls made by the event senders. It builds a 
corresponding sequence of construction operations. Up till now, 
no special strategy has been elaborated to compute the total order; 
it is simply based on the order of receptions of RMI calls.  

Both kinds of sequence builder output the computed sequence in a 
Prolog fact base. This fact base contains create, delete, 
setReference and setProperty facts corresponding to the 
operations presented in section 2. In addition to the arguments of 
the construction operations, these facts hold a time stamp that is 
used to define the total order.  

3.3 Check engine 
We chose to build our Check Engine on top of Prolog. Our 
approach consists in detecting elementary operations violating 
inconsistency rules within a model construction sequence. The 
idea is that, for a given inconsistency rule, a set of operations 
describes the cause of its violation. If such operations are detected 
within a sequence then the rule is violated. As we chose to encode 
elementary operations as facts, this approach fits the Prolog 
paradigm which is very efficient to gather facts. Moreover, a first 
diagnostic can be obtained automatically by returning all 
operations violating the inconsistency rules. Therefore, in our 
approach, an inconsistency rule is a Prolog query that detects 
operations causing inconsistencies. Such Prolog queries can be 
seen as negations of the formal consistency rules presented in 
section 2. We chose to express inconsistency rules using the full 
Prolog language (not limited to first-order logic), as it offers a lot 
of convenient facilities such as manipulation of primitive types 
(including lists) and result sets.  

For structural inconsistency rules, we have defined queries 
corresponding to lastCreate, lastSetProperty and lastSetReference 
operations presented in section 2. Those queries make use of time 
stamps to return the last operation. Note that, lastSetProperty and 
lastSetReference will also return false if the third parameter of the 
last operation is an empty list. As an example, the following 

Prolog query corresponds to the UCMM structural inconsistency 
example of subsection 2.3.1, expressing that an actor should not 
own use cases: 
analysis(X,Y) :- 
  lastCreate(X,actor), 
  lastSetReference(X,ownedusecase,Y). 
 
This query computes all pairs (X,Y) where X is an actor and Y is 
a non-empty list of use cases owned by X. Prolog will find all X 
such that lastCreate(X,actor) is true in the sequence; therefore all 
actors present in the resulting model will be detected. For each 
identified actor, Prolog will evaluate whether 
lastSetReference(X,ownedusecase,Y) is true, implying that the 
actor references uses cases (Y) in the resulting model. If the query 
returns an X, then the rule is violated since there are actors in the 
resulting model that own use cases. 

For methodological inconsistency rules, we have defined queries 
based on the time stamp for detecting if an operation occurs 
before or after another one within a given model construction 
sequence2. For example, the following Prolog query corresponds 
to the first part of the Requirement methodological inconsistency 
example rule of subsection 2.4.2, expressing that the first status 
assignment to an issue should be to the ‘assigned’ value: 
requirementM(X,TSX) :- 
  setProperty(X,status,Val,TSX), 
  Val \= 'assigned', 
  not((setProperty(X,status,'assigned',TSnew) 
       ,before(TSnew,TSX))). 
 
This query computes all pairs (X,TSX) where X is an issue and 
TSX a time stamp. Prolog will find all X such that 
setProperty(X,status,Val,TSX) is true in the sequence and where 
Val is different from ‘assigned’; therefore all issues whose status 
is not set to the ‘assigned’ value will be detected. For each 
detected issue, Prolog will return those whose status has not been 
set to the ‘assigned’ value before. If the query returns an X, then 
the rule is violated since there are issues with status not initially 
set to the ‘assigned’ value. For those X, the time stamp of the 
status assignment violating the rule (TSX) will be returned. 

4. Validation 
Our prototype has been validated on the examples presented in 
section 2, and stress-tested on a real, large-scale UML model.  
To achieve the latter, 58 UML 2.1 OCL constraints were 
translated into Prolog queries. We chose to not build an automatic 
transformation from OCL to Prolog queries. The reason was 
mainly because this would require us to formally define the 
semantic bridge between OCL (including the whole OCL library) 
and our formalism. We have translated “by hand” all the OCL 
constraints targeting the class diagram part of the UML 2.1 
standard. For instance, there is an OCL constraint that defines 
that, for Operations, “An operation can have at most one return 
parameter (i.e., an owned parameter with the direction set to 
‘return’)”: 
 
 
 
                                                                 
2 This corresponds to the use of Pred and Succ in section 2.4. 



In OCL, this constraint is expressed as follows:  
Context Operation: 
  ownedParameter -> select(par |  
       par.direction = #return)->size() <= 1 
 
We have translated this OCL constraint as follows: 
operationOCL1(X) :- 
  lastSetReference( 
      X,ownedparameter,OwnedParameters), 
  member(OP, OwnedParameters), 
  lastSetProperty(OP,direction,'return'), 
  member(OP2,OwnedParameters), 
  OP2 \== OP, 
  lastSetProperty(OP2,direction,'return'). 
 
This query computes all (X) where X is an operation that violates 
the inconsistency structural rule. Prolog will find all X such that 
lastSetReference(X,ownedparameter,OwnedParameters) is true in 
the sequence, therefore all operations in the resulting model will be 
detected. For each identified operation, Prolog will evaluate if it 
owns two different parameters (OP and OP2) that have a ‘return’ 
direction. If the query returns an X, then the rule is violated since 
there are operations in the resulting model that own at least two 
‘return’ parameters. 

A huge UML model was obtained by reverse engineering the 
Azureus project [1], which is known to possess a messy 
architecture. The model construction sequence for this UML model 
contained about 1.3 million construction operations. The engine 
needed about 45 seconds to load the entire model into memory and 
less than 3 minutes for checking the 58 consistency rules on this 
model. Only 9 consistency rules returned inconsistent model 
elements. Two of them returned 16000 model elements. This huge 
amount is probably due to the reverse engineering which certainly 
produces errors. The seven other rules return 50 inconsistent model 
elements which are probably due to human errors. These results are 
encouraging but cannot be considered as an evidence that our 
prototype can really manage models represented by billions of 
elementary operations. The validation test was done using SWI-
Prolog version 5.6.32 for i386-linux, and SUN's HotSpot(TM) JVM 
build 1.6.0_01-b06. The machine used for the test is a i686 Bicore 
Intel(R) Pentium(R) D CPU 3.00GHz with 3 GB Ram memory 
running under Linux Kernel 2.6.17-5mdv. 

Although 3 minutes seems quite a long time, the average time 
needed for checking a rule was less than 3 seconds, and 25 of the 
rules were checked in less than 100 milliseconds each. This time 
could be reduced even further by optimizing the Prolog rules. The 
constraint that was most expensive was the one to detect cycles in 
the containment relation. This rule, that did not reveal any 
inconsistency, required 2 minutes and 7 seconds to compute, 
thereby representing about 80% of the total checking time.  

This test has also shown that it takes more time to prove that a rule 
is respected than finding the elements engaged in an inconsistency. 
This is mainly due to the way in which we have written the 
consistency rules, the checker will have to test all the possible 
elements and run all the test code before assessing that the rule is 
never violated.  

5. RELATED WORK 
The underlying idea to represent models as sequences of 
construction operations rather than a set of model elements is based 
on earlier work in software versioning systems. In particular, Lippe 
and Van Oosterom [8] proposed an operation-based approach to 

software merging. They showed that representing software versions 
as operation sequences significantly facilitates the process of 
detecting and resolving merge conflicts. In the future, we will 
exploit this benefit by applying our technique in the context of 
distributed modeling, where there is a need to merge parallel 
changes that have been performed to models in a distributed way. 
In [15], Saito stressed that approaches based on elementary 
operations are the most adapted for large-scale environments. In a 
distributed large scale environment, only operations of interest, and 
not the complete model, have to be exchanged between pairs for 
checking inconsistencies. This reduces considerably the number of 
exchanged messages as well as their sizes.  
OCL (Object Constraint Language) is the OMG standard that is 
mainly used to specify model structural inconsistency rules [14]. 
However, it is not possible to define methodological constraints 
with just OCL. In addition, OCL constraints are not allowed to have 
multiple contexts. Thus, they are not well suited to constrain a set of 
models.  
In [9], a framework for inconsistency management was proposed. 
This framework also follows a logic-based approach but only for 
UML models. The approach is not based on construction operations 
but on model elements. It is not adapted to express methodological 
inconsistency rules. However, the framework not only offers 
inconsistency detection but also inconsistency resolution based on 
graph transformation. We think that our approach for detection of 
inconsistencies can be integrated with the proposed approach for 
inconsistency resolution and we envisage this integration as a short-
term perspective. 
In [10], another framework for inconsistency management has been 
proposed. This framework considers all resources as XML 
documents and proposes an extension to XPath for expressing 
consistency rules. Based on these rules, a checker can then detect 
inconsistencies between a set of distributed XML documents. This 
framework is well suited to detect structural inconsistency rules and 
does not seem to be applicable to methodological constraints. 
One of the problems of logic programming concerns decidability. If 
the full power of Prolog is used, it is easily possible to run into 
infinite loops. It is our view that it is the responsibility of the 
developer of inconsistency rules to avoid such problems. The 
alternative would be to resort to a decidable variant of logic, such as 
description logics. This approach has been investigated, among 
others, in [18].  

6. CONCLUSION 
Both structural and methodological model inconsistency detection 
has to be performed on any model whatever its meta-model. This 
includes for instance, inconsistency detection between a 
requirement model and a design model in order to manage 
traceability. Inconsistencies have to be detected while developers 
elaborate the models in collaboration.  
Our approach (1) is based on model construction operations, (2) 
uses logical constraints to define inconsistency rules and (3) is meta-
model independent. We have shown in this article that structural and 
methodological inconsistencies can be expressed and verified in a 
uniform way using logical formulae. As highlighted with our 
examples, both intra-model and inter-model inconsistency rules can 
be defined and checked. Even if we have stress-tested our approach 



only for UML models, it has been validated on different and 
independent meta-models as well. 
It is worthwhile to note that, in our approach, all checks were 
executed in batch mode. The entire model was loaded in memory, 
and the rules were verified one after the other on the entire model. 
This is clearly not the most effective way to check model 
consistencies with our approach. An incremental consistency 
checking would be much more effective. It allows reusing results 
from previous checking phases, and requires testing only the 
necessary set of rules and elementary operations engaged in model 
modifications that occurred in between two consistency check 
phases. Egyed proposed a framework dedicated to instant 
inconsistency detection [3][4]. It dynamically instantiates particular 
rules each time an inconsistency is detected. Thanks to these rules, 
whenever an element is modified in the model, the framework is 
able to determine if some inconsistency rules are concerned by the 
change and need to be re-verified or not. In our approach, we are 
able to compute how rules access the sequence of elementary 
operations using the introspection facilities of Prolog. From this 
static knowledge it is possible to generate an incremental checker 
for a set of rules following the spirit of Eyged's framework. This 
incremental checker inputs one elementary operation, determines 
which inconsistency rules are concerned by this operation and, if 
any rule needs to be rechecked, an instantiated query call for this 
particular change is used to check if the rule is violated by this 
particular operation. This incremental checker is generated only 
once as the information needed to build it can be obtained in a static 
way from the set of inconsistency rules. We plan to experiment with 
the generation of the incremental checker for the 58 OCL 
constraints targeting the UML class diagrams 

Finally, from its definition, our approach promises to scale up to 
inconsistency detection of large-scale distributed models as the 
detection only requires to exchange a limited number of operations 
as opposed to the complete model. A detailed analysis of this 
advantage, however, is left for future work. 
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