
Detecting Model Inconsistency
through Operation-Based Model Construction

Xavier Blanc, Isabelle Mounier, Alix Mougenot
LIP6

104 av. Président Kennedy
75016 Paris, France

+33 1 44 27 73 22
firstname.name@lip6.fr

Tom Mens
UMH

6 av. du Champ de Mars
7000 Mons, Belgique

+32 65 37 3453
tom.mens@umh.ac.be

ABSTRACT
Nowadays, large-scale industrial software systems may involve
hundreds of developers working on hundreds of different but
related models representing parts of the same system
specification. Detecting and resolving structural inconsistencies
between these models is then critical. In this article we propose to
represent models by sequences of elementary construction
operations, rather than by the set of model elements they contain.
Structural and methodological consistency rules can then be
expressed uniformly as logical constraints on such sequences. Our
approach is meta-model independent, allowing us to deal with
consistency between different models whatever their kind. We
have validated our approach by building a Prolog engine that
detects violations of structural and methodological constraints
specified on UML 2.1 models and requirement models. This
engine has been integrated into two contemporary UML-based
modelling environments, Eclipse EMF and Rational Software
Architect (RSA).

Categories and Subject Descriptors
D.2 [Software Engineering]: Design Tools and Techniques

I.6 [Simulation and Modeling]: Model Development; Model
Validation and Analysis

General Terms
Design, Verification.

Keywords
Model, Meta-model, Consistency, Logic

1. INTRODUCTION
The more complex a system is, the more its development requires
a collection of different models. Large-scale industrial software
systems may involve hundreds of developers working on
hundreds of different but related models representing parts of the
whole system specification [16]. Ensuring consistency between

those models becomes critical as even a minor inconsistency can
lead to serious faults in the system and be the source of project
failure.
In [6] and [7], Finkelstein et al. define an approach, called the
Viewpoints Framework, where each developer has her own
viewpoint composed only of models that are relevant to her. The
main insight is that model consistency cannot and should not be
preserved at all times between all viewpoints. The Viewpoints
Framework proposes to allow for temporary model
inconsistencies rather than to enforce model consistency at all
times [2]. Spanoudakis and Zisman [17] define six inconsistency
management activities that should be undertaken. The first
activity, inconsistency detection, is of special interest as it defines
the foundation of the whole process. Considering this activity,
two families of approaches are identified: the logic-based
approaches and the model checking approaches. The logic-based
approaches are defined by the use of some formal inference
techniques to detect any kind of model inconsistency. The model
checking approaches deploy dedicated model verification
algorithms that are well suited to detect specific behavioural
inconsistencies but are not well adapted to other kinds of
inconsistencies.
With the appearance of MDA [11], models are now more
formally defined as their structures are specified conforming to a
meta-model. A review of UML-based approaches dealing with
model consistency is presented in [5]. It should be noted that most
approaches follow the idea presented in [2][6] and fall into the
logic-based approach family of [17] for addressing model
inconsistency. However, their two major drawbacks are, firstly,
that they only target structural constraints, and secondly, that they
only deal with UML models.
In this paper, we argue that structural and methodological
inconsistency detection should be supported uniformly.
Methodological rules constrain the overall construction process,
whereas structural rules only constrain the model obtained at the
end of this process [17]. Regarding the model life cycle, those two
kinds of rules are complementary as structural rules constrain
model states whereas methodological rules constrain model
changes. We stress the fact that, to our knowledge, no existing
approach allows to define methodological consistency rules.
Moreover, we also argue that inconsistency detection should be
supported uniformly for any model regardless its meta-model. On
the one hand, complex models may become very large, requiring
the need to fragment them in different smaller pieces. On the
other hand, a wide variety of models is needed for building large-
scale industrial software systems. Therefore, inconsistency rules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’08, May 10-18, 2008, Leipzig, Germany
Copyright 2008 ACM 978-1-60558-079-1/08/05…$5.00.

should be considered as multi-model rules as they may target
several meta-models and may have to be detected on sets of
models.
The key idea of the approach that we present in this paper to
uniformly detect structural and methodological inconsistencies is
that it relies on elementary model construction operations instead
of the model elements themselves. Any model, regardless its
meta-model, can be represented as a sequence of operations
performed to construct it rather than by the set of model elements
it contains. Based on this key idea, both structural and
methodological rules can be expressed uniformly as logical
formulae on the sequence of construction operations.
The remainder of this paper is structured as follows. Section 2
presents the foundation of our approach, illustrating the definition
and detection of structural and methodological inconsistencies on
model construction sequences. Section 3 presents the prototype
we built and section 4 presents the validation of our approach.
Related work is given in section 5, and we conclude in the last
section.

2. DETECTION OF INCONSISTENCIES
BASED ON MODEL CONSTRUCTION
2.1 Model construction
A model is defined by a set of model elements, which are
instances of meta-classes [12]. Independently from meta-models,
a model can be considered as a set of model elements that own
values and refer to each other. Each model element is an instance
of a meta-class that defines the properties it can own and the
references it can have [12]. Every model can be expressed as a
sequence of elementary construction operations. The sequence of
operations that produces a model is composed of the operations
performed to define each model element. The four elementary
operations we defined are inspired from the MOF reflective API
[12]:
- create(me,mc) corresponds to the creation of a model

element instance me of the meta-class mc. A model element
can be created if and only if it does not already exist in the
model. A newly created model element doesn’t own values
and doesn’t refer to any other model element;

- delete(me) corresponds to the deletion of the model element
instance me. A model element can be deleted if and only if it
exists in the model and it is not referenced by any other
model element. If it is, these references should be removed
first using setReference;

- setProperty(me,p,Values) corresponds to the assignment of a
set of Values to the property p of the model element me.
Values can be assigned to the property p of a model element
me if and only if me exists in the model, it is an instance of a
meta-class mc, the property p is defined in mc or in a meta-
class it inherits from, p and the assigned values have the
same type, and the set of Values is consistent with the
multiplicity of p;

- setReference(me,r,References) corresponds to the assignment
of References to the reference r of the model element me. A
set of model elements references can be assigned to the
reference r of a model element if and only if the model
element me exists in the model, it is an instance of a meta-
class mc, the reference r is defined in mc or in a meta-class it
inherits from, r and the assigned references have the same

type and correspond to created model elements, and the set
of References is consistent with the multiplicity of r.

Figure 1 presents a simplified part of the UML 2.1 meta-model
that concerns the use cases [13]. It will be referred to as UCMM
for Use Case Meta Model in the remainder of this article.

Figure 1. The UCMM meta-model.

Figure 2 represents a model instance of the use case part of the
UCMM meta-model. This model is used as a running example to
demonstrate our approach. It is composed of an actor (named
“Customer”) that is associated with three use cases (named
“Create eBasket”, “Buy eBasket” and “Cancel eBasket”)
belonging to a class (named “PetStore”) representing the system.

Figure 2. A use case model instance of UCMM.

The following construction sequence σuc can be used to produce
the model of Figure 2:
1. create(c1,Class)
2. setProperty(c1,name, {‘PetStore’})
3. create(uc1,UseCase)
4. setProperty(uc1,name, {‘Buy eBasket’}))
5. create(uc2,UseCase)
6. setProperty(uc2,name,{‘Create eBasket’})
7. create(uc3,UseCase)
8. setProperty(uc3,name,{‘Cancel eBasket’})
9. setReference(c1,ownedUseCase,{uc1,uc2,uc3})
10. create(a1,Actor)
11. setProperty(a1,name, {‘Customer’})
12. setReference(a1, usecase, {uc1,uc2,uc3})

Operation 1 corresponds to the creation of the class that owns use
cases. Operations 3, 5 and 7 correspond to the creation of the
three use cases. Operations 4, 6 and 8 correspond to the
assignment of the name of the three use cases. Operation 9 links
the three use cases with the class. Operations 10 and 11
correspond to the creation of the actor and to the assignment of its
name. Operation 12 links the actor with the three use cases. This
arbitrary sequence is used in the next sections to exhibit our
consistency rules examples.
Figure 3 presents our proposal for a requirements meta-model.
Note that this meta-model is only used here to exemplify our
approach; it should not be considered as a contribution to the
requirement management domain. Our requirements meta-model
defines concepts usually used for elaborating requirements
specifications. A requirements specification (Specification meta-
class) is composed of two parts: issues (IssueSet and Issue meta-
classes) and term definitions (Glossary and Entry meta-classes).
An issue has a priority (low, medium, high), an id, a status (Status
enumeration), a title and a definition. An issue refers to term
definitions.

Specification IssueSet

+priority : Priority
+id : Integer
+status : Status
+title : String
+definition : String

Issue

Glossary

+term : String
+definition : String

Entry

+assigned
+resolved
+closed

«enumeration» Status0..1

+issueset

0..1
0..1

+glossary0..1

0..1

+entry*

0..1

+issue*

+used

* *

+low
+medium
+high

«enumeration» Priority

Figure 3. Requirements meta-model

The following sequence σreq produces an example of a model
instance of the requirements meta-model. It is composed of one
issue (id 1253345) that makes use of two term definitions (e1:
‘Customer’ and e2: ‘Basket’). This issue defines that a customer
of the PetStore system has to either buy his opened eBasket or to
cancel it before opening a new one:
1. create(spec,Specification)
2. create(is,IssueSet)
3. setReference(spec,issueset,{is})
4. create(gl,Glossary)
5. setReference(spec,glossary,{gl})
6. create(e1,Entry)
7. setProperty(e1,term, {‘customer’})
8. setProperty(e1,definition, {‘human connected and

authentified. He/she has been registered in the PetStore
system.’})

9. create(e2,Entry)
10. setProperty(e2,term, {‘eBasket’})
11. setProperty(e2,definition, {‘electronic representation of a

classical basket’})
12. setReference(gl,entry,{e1,e2})
13. create(iss1,Issue)

14. setProperty(iss1,title, {‘only one opened eBasket per
customer’})

15. setProperty(iss1,id, {‘1253345’})
16. setProperty(iss1,definition, {‘If a customer has an opened

eBasket, he/she has to either cancel it or buy it before
opening another one’})

17. setProperty(iss1,priority, {‘low’})
18. setProperty(iss1,status, {‘assigned’})
19. setReference(iss1, used, {e1,e2})
20. setReference(is, issue, {iss1})

2.2 Detection of Inconsistencies
Several classifications of consistency rules have been provided in
the literature [17][18][5]. Our goal is not to define yet another
consistency rule classification but rather to propose a uniform
mechanism for dealing with model inconsistency whatever the
kind of consistency. For the sake of simplicity, we only consider
two kinds of inconsistencies in this article: structural and
methodological inconsistencies.
Structural consistency rules define relationships that should hold
between model elements regardless of the way they have been
constructed. These rules can be compared with well-formedness
rules of [17], structural rules of [18] and syntactic, static rules of
[5]. Methodological consistency rules are constraints over the
construction process itself. They impose a certain order of
operations that should be respected by the different developers
that edit the models. These rules can be compared with
development process compliance rules of [17].
For both structural and methodological consistency rules, we
propose to define them as logic formulae over the sequence of
model construction operations. For structural consistency rules,
constraints mainly target operations of the sequence that impact
the resulting model. For methodological consistency rules,
formulae mainly target the order between operations of special
interest (key operations of the construction process).
Using predicate logic has as main advantage to be based on well-
defined sound semantics. Moreover, existing logical inference
engines such as SWI-Prolog can be used. In the related work
section, the advantages and limitations of logic reasoning
compared to other approaches will be discussed.
The following subsections present representative examples of
both structural and methodological inconsistency rules. For both
kinds of inconsistency we present three examples, one for each
meta-model (UCMM and Requirement) and one that spreads
across both meta-models.

2.3 Structural Inconsistency
Structural inconsistency rules only concern the model obtained
after executing the sequence of construction operations. Thus,
only operations of the sequence that really impact the resulting
model have to be taken into account while evaluating structural
inconsistency rules. In other words, operations whose effects are
cancelled by following operations in the sequence should not be
taken into account.
More precisely, the following rules apply in order to identify
operations whose effects are not cancelled:

• create(me,mc) has an effect if there is no following
delete(me) operation appearing later in the sequence. This
assures that the created model element me is not deleted.

• setProperty(me,p,Values) has an effect if there is no
following operation in the sequence that is either a
setProperty(me,p,OtherValues) operation targeting the same
model element and the same property or a delete(me)
operation targeting the same model element. This assures
that the values are never changed and the model element is
not deleted.

• setReference(me,r,References) has an effect if there is no
following operation in the sequence that is either a
setReference(me,r,OtherReferences) operation targeting the
same model element and the same reference or a delete(me)
operation targeting the same model element. This assures
that the references are never changed and the model element
is not deleted.

• delete(me) should never be considered while evaluating
structural inconsistency rules as it only cancels the effect of
other operations.

In the remainder of the paper, we will use operations such as
lastCreate, lastSetProperty and lastSetReference. The ‘last’ prefix
indicates that those operations are not followed by operations
cancelling their effects, as explained in the above. Structural
inconsistency rules therefore only use those ‘last’ operations.

2.3.1 UCMM example
The structural inconsistency example we choose on UCMM is
inspired from the UML 2.1 specification. It specifies that an actor
should not own a use case even if the meta-model permits it.
Operations concerned by this rule are creation of actors
(lastCreate(me,Actor)) and assignment of owned use cases to
them (lastSetReference(me,ownedUseCase,References)). A
construction sequence produces a consistent model if and only if
it does not assign owned use cases to actors. In other words, for
all created actors (lastCreate(me,Actor)) there should be no
assignment of owned use cases
(lastSetReference(me,ownedUseCase,R)). Formally, this rule can
be expressed by the following logical formula:

ActorsDoNotOwnUseCase (σ) = true iff
 ∀ a ∈ σ,
 if a = lastCreate (meac, Actor) then

 / ∃ o ∈ σ,
 o = lastSetReference(meac,ownedUseCase, R)

 and R ≠ ∅.

Regarding this structural inconsistency rule, sequence σuc
presented in section 2.1 produces a consistent model. Indeed, it
contains only one lastCreate(me,Actor) (line 10) and no
lastSetReference(me,ownedUseCase, R) for this actor.

2.3.2 Requirements example
An example of a structural inconsistency for the requirements
meta-model is based on our own experience in requirements
management. An issue should not use an entry if the issue’s
definition does not mention the entry’s term.

Operations concerned by this rule are creation of issue
(lastCreate(me,Issue)), assignment of their definition
(lastSetProperty(me,definition,Values)) and assignment of their
used entries (lastSetReference(me,used,References)). A
construction sequence produces a consistent model if and only if
for all created issues, the term of their assigned entries is
mentioned in their definition. Formally, this rule can be expressed
by the following logical formula1:

IssuesDoNotUseUselessEntry(σ) = true iff
 ∀ a ∈ σ,
 if a = lastCreate (meis, Issue) and

 ∃ u ∈ σ, u = lastSetProperty(meis,definition, DefVal) and

 ∃ v ∈ σ, v = lastSetReference(meis,used, UE) with UE≠ ∅
 then

 ∀ metd ∈ UE

 ∃ td ∈ σ, td = lastSetProperty(metd,term, TermVal) and

 ∀ t ∈ TermVal, ∃ d ∈ DefVal, substring(t,d)

Regarding this structural inconsistency rule, sequence σreq
presented in section 2.1 produces a consistent model. Indeed, it
contains only one lastCreate(me,Issue) (line 13), one
lastSetProperty(me,definition,DefVal) (line 16) and one
lastSetReference(me,used,UE) (line 19). Moreover, for each
referenced entry e1 and e2, the sequence contains one
lastSetProperty(e,term,ValTerm) (lines 7 and 10) that satisfies the
substring comparison requirement in the last line of the formula:
‘customer’ and ‘eBasket’ are indeed substrings of ‘If a customer
has an opened eBasket,…’.

2.3.3 UCCM and Requirement example
Our example for a cross-model structural inconsistency aims at
defining a dynamic (i.e., non-persistent) link between use case
and requirements models. We express this dynamic link as
follows: “each actor should have a corresponding entry in the
glossary (i.e., the actor name and the term of the entry are the
same)”.
The particularity of this example is that it is based on two
sequences, one for each model. Operations concerned by this rule
are creation of actors (lastCreate(me,Actor)), assignment of their
name value (lastSetProperty(me,name,Value)) and assignment of
term values of entries (lastSetProperty(me,term,Value)). Two
sequences produce a consistent pair of models if and only if for
all created actors with an assigned name, there is a created term
definition with a corresponding name value. Formally, this rule
can be expressed by the following logical formula:

1 The expression substring(t,d) in the last line of the formula is

not an elementary construction operation, but simply a substring
comparison predicate that is offered by the underlying logic
programming language.

ActorNameCorrespondsToEntry (σuc,σrq) = true iff
 ∀ a ∈ σuc,
 if a = lastCreate (meac, Actor) and

 ∃ n ∈ σuc, n = lastSetProperty(meac,name, NameVal) then

 ∃ t ∈ σrq, t = lastSetProperty(metd,term, NameVal)

Regarding this structural inconsistency rule, the sequences
presented in section 2.1 produce a consistent pair of models.
Indeed, they contain only one lastCreate(me,Actor) (sequence σuc,
line 10), one lastSetProperty(me,name,NameVal) (sequence σuc,
line 11) and one lastSetProperty(me,term,NameVal) (sequence
σreq, line 7).

2.4 Methodological Inconsistency
As methodological inconsistency rules constrain the construction
process, the order between operations should be taken into
account during the evaluation of the rules. Therefore, in the rest of
this paper we use the following notation:

Let σ = a1; …; am-1; am; am+1; …; an be a construction sequence.
We denote by ai <σ aj the occurrence of operation ai before aj in
sequence σ. We define the subsequences of σ preceding and
following operation am as Pred(σ,am) = a1; …; am-1 and
Succ(σ,am) = am+1; …; an

2.4.1 UCMM example
An example of a methodological inconsistency on UCMM
corresponds to the following methodological guidance: (1) Never
unassign use case name; and (2) Assign a name just after the
creation of a use case. Such guidance is automatically supported
by nearly all UML case tool editors. Our framework provides
more flexibility by allowing the user to define which
methodological inconsistencies he needs, as well as when and
how to enforce them.
Operations concerned by this rule are creation of use cases
(create(me,UseCase)) and assignment of their name
(setProperty(me,name,Name)). Indeed, a sequence is correct if
and only if (1) there is no setProperty(me,name,{””}) and (2)
each create(me,UseCase) is immediately followed by a
setProperty(me,name,Name). Formally, these rules can be
expressed by the following logical formulae:

UCNaming1(σ) = true iff
 ∀ a ∈ σ, a ≠ setProperty(me,name,{””})

UCNaming2(σ) = true iff
 ∀ a ∈ σ, if a = create(me,UseCase) then
 ∃ c ∈ σ, c = setProperty(me,name, NameVal)
 and / ∃ b ∈ σ, a <σ b <σ c

Regarding these methodological inconsistency rules, sequence σuc
presented in section 2.1 is consistent. Indeed, it contains no
setProperty(me,name,{””}) and the three create(me,UseCase)
operations (lines 3, 5 and 7) are all immediately followed by the
corresponding setProperty(me,name,NameVal) operation (lines 4,
6, 8).

2.4.2 Requirement example
A methodological inconsistency example for the requirement
meta-model is a constraint on the issue life cycle. Indeed, in a
requirements model, the status of an issue can only change in a
predefined way. First, it must be set to “assigned”, after which it
can change to “resolved”. Then it can change to “closed” after
which it cannot be changed any longer.
Operations concerned by this rule are only the creation of issues
(create(me,Issue)) and assignments of their status
(setProperty(me,status,Value)). Indeed, a sequence is correct if
and only if for all created issues (1) the first value of the status
should be ‘assigned’; (2) if the status is set to ‘assigned’ the next
assignment has to be ‘resolved’; (3) if the status is set to
‘resolved’ the next assignment has to be ‘closed’ and (4) if the
status is set to ‘closed’ it cannot be changed anymore. Formally
this rule can be expressed by the following mathematical formula:

IssueLifeCyle(σ) = true iff
 ∀ i ∈ σ, if i = create(me,Issue) then
 (1) if ∃ snn ∈ σ, snn = setProperty(me,status, val),

val≠{’assigned’} then
 ∃ sr ∈ Pred(σ,snn), sr = setProperty(me,status, {‘assigned’})
 (2) if ∃ sr ∈ σ, sr = setProperty(me,status, {‘assigned’}) then
 ∀ snc ∈ Succ(σ,sr), snc = setProperty(me,status, val)
 and val≠{'resolved'}
 ∃ sc ∈ σ, sr <σ sc <σsnc
 and sc = setProperty(me,status, {‘resolved’})
 (3) if ∃ sr ∈ σ, sr = setProperty(me,status, ‘resolved’) then
 ∀ snc ∈ Succ(σ,sr), if snc = setProperty(me,status, val)
 then val={’closed’}
 (4) if ∃ sr ∈ σ, sr = setProperty(me,status, {‘closed’}) then
 / ∃ s ∈ Succ(σ,sr), s = setProperty(me,status, val)

Regarding this methodological inconsistency rule, sequence σreq
presented in section 2.1 is consistent. Indeed, it contains a
create(me,Issue) (line 13) and the first status assignment
setProperty(me,status,{‘assigned’}) (line 18) is correct w.r.t. (1).
Moreover, the sequence is also correct w.r.t. (2), (3) and (4) as
there is no setProperty(me,status, {‘resolved’}) and no
setProperty(me,status, ‘closed’).

2.4.3 UCCM and Requirement example
In section 2.3.3, the structural inconsistency rule we defined
constrains actor names to be mentioned by entries in the glossary.
The methodological inconsistency rule we chose constrains this
link (between actors and entries) to be realized only after issues
using the entries have been set to the ‘assigned’ status. Indeed,
before having been set to the ‘assigned’ status, no developer is
responsible of their realization. Therefore, no new actor
corresponding to these issues should be created. In other words,
new actors corresponding to issues can be created only after
issues have been set to the ‘assigned’ status.
The particularity of this example is that it is based on two
sequences, one for each model. Moreover, it defines order
constraints between construction operations of both sequences.
Therefore, a total order needs to be computed when evaluating the
rule.

Operations concerned by this rule are creations of name
assignments to actors (setProperty(me,name,NVal)) and term
assignments to entries (setProperty(me,term,TVal)).

ActorNameWithEntriesOfAssignedIssues(σ) = true iff
 ∀ sn ∈ σ,
 if sn = setProperty(me,name,NVal) and
 ∃ a ∈ σ, a = create(me,Actor)
 then
 ∃ i, sr, st ∈ Pred(σ,sn),
 i = setProperty(mi,status,’assigned’)
 sr = setReference(mi,used,Entries)
 st = setProperty(entry,term,NVal), entry ∈ Entries

When evaluating this methodological inconsistency rule, a total
order has to be computed between the operations of the two
sequences presented in section 2.1. The way in which the total
order is computed will affect the result of this inconsistency rule.
If we decide to put σreq before σuc then the total ordered sequence
will be consistent. However, if we decide to put σuc before σreq
then the total ordered sequence will be inconsistent. The other
combinations depend on the order between the name assignment
of the actor on one hand and the status assignment and its
association to an entry on the other hand. In our particular
example, this means that lines 7, 18, 19 of σreq should precede line
11 of σuc for the total ordered sequence to be consistent.

3. REALIZATION
As a proof of concept of our approach, we have built a prototype
in the logic programming language Prolog. The key idea is that
inconsistency rules are translated to Prolog queries and model
construction operations to Prolog facts. This Prolog engine has
been integrated into the modeling environments Eclipse EMF and
Rational Software Architect. Thanks to this integration, users can
ask to the Prolog engine to perform the inconsistency check.

3.1 Architecture
Our prototype is composed of two main components: the
Sequence Builder and the Check Engine (see Figure 4). The
Sequence Builder is responsible for building a totally ordered
sequence of construction operations from actions performed by
developers, and storing it into a Prolog fact base. The Check
Engine is responsible for detecting inconsistencies. It analyses the
sequence computed by the sequence builder in the fact base and
produces an inconsistency detection report.

3.2 Sequence Builder
We have defined two kinds of Sequence Builders. One is a file
reader and the other is an event listener. The file reader can parse
an XMI file containing a model and outputs the corresponding
model construction sequence. The event listener can receive
distributed events raised by developers while they edit their
models in the Eclipse EMF editor or in Rational Software
Architect (RSA). This enables the incremental checking of
inconsistencies. A screenshot illustrating this approach is given in
Figure 5. This screenshot shows a requirement model edited
within Eclipse/EMF that is monitored by an event listener
sequence builder.

XMI

Prolog fact base

Sequence Builder Check Engine

event

Inconsistency
Rules

User with
CASE tool

Figure 4. Tool architecture.

Figure 5. Screenshot of the event listener sequence builder

integrated into the Eclipse EMF framework.

The file reader sequence builder has been developed in Java on
top of the EMF framework. It opens an EMF XMI file containing
the model and it traverses this model through the containment
association (in EMF, all models are organized as trees thanks to
this containment association). Whenever a new model element is
visited, a corresponding create operation is appended to the
model construction sequence and, for each of its properties, a
corresponding setProperty operation is appended to the sequence.
If the model element has references and if the referenced model
elements have already been visited, a setReference operation is
appended to the sequence; otherwise the reference is flagged in
order to be appended as soon as the referenced model elements
are visited. This algorithm always builds a minimal sequence of
construction operations as there is no operation that cancels

previous operations in the sequence. Moreover, many different
sequences can be obtained from a same model as the iteration is
only based on the aggregation association and is therefore non
deterministic.

We have used the EMF reflective API in order to parse all models
regardless their metamodel. The file reader sequence builder was
used to build construction operation sequences of huge UML 2.1
models (containing around 70000 model elements). The length of
the resulting construction sequence exceeded 1 billion operations
in some cases.

The event listener sequence builder has been developed in Java
RMI on top of the EMF notification framework. It is composed of
two subcomponents: the event sender and the event receiver
components. This architecture has been defined to be deployed on
distributed environments (with multiple distributed developers).
However, we have only deployed and tested it so far with one
event sender and one event receiver.

The event sender is an Eclipse plugin that makes use of the EMF
notification framework (for UML 2.1, it makes use of the EMF
transactional notification system). It is deployed on the
developers Eclipse workbench. Each time a developer modifies
his models, the event sender is notified and makes an RMI call to
the event receiver. There is only one deployed event receiver that
receives RMI calls made by the event senders. It builds a
corresponding sequence of construction operations. Up till now,
no special strategy has been elaborated to compute the total order;
it is simply based on the order of receptions of RMI calls.

Both kinds of sequence builder output the computed sequence in a
Prolog fact base. This fact base contains create, delete,
setReference and setProperty facts corresponding to the
operations presented in section 2. In addition to the arguments of
the construction operations, these facts hold a time stamp that is
used to define the total order.

3.3 Check engine
We chose to build our Check Engine on top of Prolog. Our
approach consists in detecting elementary operations violating
inconsistency rules within a model construction sequence. The
idea is that, for a given inconsistency rule, a set of operations
describes the cause of its violation. If such operations are detected
within a sequence then the rule is violated. As we chose to encode
elementary operations as facts, this approach fits the Prolog
paradigm which is very efficient to gather facts. Moreover, a first
diagnostic can be obtained automatically by returning all
operations violating the inconsistency rules. Therefore, in our
approach, an inconsistency rule is a Prolog query that detects
operations causing inconsistencies. Such Prolog queries can be
seen as negations of the formal consistency rules presented in
section 2. We chose to express inconsistency rules using the full
Prolog language (not limited to first-order logic), as it offers a lot
of convenient facilities such as manipulation of primitive types
(including lists) and result sets.

For structural inconsistency rules, we have defined queries
corresponding to lastCreate, lastSetProperty and lastSetReference
operations presented in section 2. Those queries make use of time
stamps to return the last operation. Note that, lastSetProperty and
lastSetReference will also return false if the third parameter of the
last operation is an empty list. As an example, the following

Prolog query corresponds to the UCMM structural inconsistency
example of subsection 2.3.1, expressing that an actor should not
own use cases:
analysis(X,Y) :-
 lastCreate(X,actor),
 lastSetReference(X,ownedusecase,Y).

This query computes all pairs (X,Y) where X is an actor and Y is
a non-empty list of use cases owned by X. Prolog will find all X
such that lastCreate(X,actor) is true in the sequence; therefore all
actors present in the resulting model will be detected. For each
identified actor, Prolog will evaluate whether
lastSetReference(X,ownedusecase,Y) is true, implying that the
actor references uses cases (Y) in the resulting model. If the query
returns an X, then the rule is violated since there are actors in the
resulting model that own use cases.

For methodological inconsistency rules, we have defined queries
based on the time stamp for detecting if an operation occurs
before or after another one within a given model construction
sequence2. For example, the following Prolog query corresponds
to the first part of the Requirement methodological inconsistency
example rule of subsection 2.4.2, expressing that the first status
assignment to an issue should be to the ‘assigned’ value:
requirementM(X,TSX) :-
 setProperty(X,status,Val,TSX),
 Val \= 'assigned',
 not((setProperty(X,status,'assigned',TSnew)
 ,before(TSnew,TSX))).

This query computes all pairs (X,TSX) where X is an issue and
TSX a time stamp. Prolog will find all X such that
setProperty(X,status,Val,TSX) is true in the sequence and where
Val is different from ‘assigned’; therefore all issues whose status
is not set to the ‘assigned’ value will be detected. For each
detected issue, Prolog will return those whose status has not been
set to the ‘assigned’ value before. If the query returns an X, then
the rule is violated since there are issues with status not initially
set to the ‘assigned’ value. For those X, the time stamp of the
status assignment violating the rule (TSX) will be returned.

4. Validation
Our prototype has been validated on the examples presented in
section 2, and stress-tested on a real, large-scale UML model.
To achieve the latter, 58 UML 2.1 OCL constraints were
translated into Prolog queries. We chose to not build an automatic
transformation from OCL to Prolog queries. The reason was
mainly because this would require us to formally define the
semantic bridge between OCL (including the whole OCL library)
and our formalism. We have translated “by hand” all the OCL
constraints targeting the class diagram part of the UML 2.1
standard. For instance, there is an OCL constraint that defines
that, for Operations, “An operation can have at most one return
parameter (i.e., an owned parameter with the direction set to
‘return’)”:

2 This corresponds to the use of Pred and Succ in section 2.4.

In OCL, this constraint is expressed as follows:
Context Operation:
 ownedParameter -> select(par |
 par.direction = #return)->size() <= 1

We have translated this OCL constraint as follows:
operationOCL1(X) :-
 lastSetReference(
 X,ownedparameter,OwnedParameters),
 member(OP, OwnedParameters),
 lastSetProperty(OP,direction,'return'),
 member(OP2,OwnedParameters),
 OP2 \== OP,
 lastSetProperty(OP2,direction,'return').

This query computes all (X) where X is an operation that violates
the inconsistency structural rule. Prolog will find all X such that
lastSetReference(X,ownedparameter,OwnedParameters) is true in
the sequence, therefore all operations in the resulting model will be
detected. For each identified operation, Prolog will evaluate if it
owns two different parameters (OP and OP2) that have a ‘return’
direction. If the query returns an X, then the rule is violated since
there are operations in the resulting model that own at least two
‘return’ parameters.

A huge UML model was obtained by reverse engineering the
Azureus project [1], which is known to possess a messy
architecture. The model construction sequence for this UML model
contained about 1.3 million construction operations. The engine
needed about 45 seconds to load the entire model into memory and
less than 3 minutes for checking the 58 consistency rules on this
model. Only 9 consistency rules returned inconsistent model
elements. Two of them returned 16000 model elements. This huge
amount is probably due to the reverse engineering which certainly
produces errors. The seven other rules return 50 inconsistent model
elements which are probably due to human errors. These results are
encouraging but cannot be considered as an evidence that our
prototype can really manage models represented by billions of
elementary operations. The validation test was done using SWI-
Prolog version 5.6.32 for i386-linux, and SUN's HotSpot(TM) JVM
build 1.6.0_01-b06. The machine used for the test is a i686 Bicore
Intel(R) Pentium(R) D CPU 3.00GHz with 3 GB Ram memory
running under Linux Kernel 2.6.17-5mdv.

Although 3 minutes seems quite a long time, the average time
needed for checking a rule was less than 3 seconds, and 25 of the
rules were checked in less than 100 milliseconds each. This time
could be reduced even further by optimizing the Prolog rules. The
constraint that was most expensive was the one to detect cycles in
the containment relation. This rule, that did not reveal any
inconsistency, required 2 minutes and 7 seconds to compute,
thereby representing about 80% of the total checking time.

This test has also shown that it takes more time to prove that a rule
is respected than finding the elements engaged in an inconsistency.
This is mainly due to the way in which we have written the
consistency rules, the checker will have to test all the possible
elements and run all the test code before assessing that the rule is
never violated.

5. RELATED WORK
The underlying idea to represent models as sequences of
construction operations rather than a set of model elements is based
on earlier work in software versioning systems. In particular, Lippe
and Van Oosterom [8] proposed an operation-based approach to

software merging. They showed that representing software versions
as operation sequences significantly facilitates the process of
detecting and resolving merge conflicts. In the future, we will
exploit this benefit by applying our technique in the context of
distributed modeling, where there is a need to merge parallel
changes that have been performed to models in a distributed way.
In [15], Saito stressed that approaches based on elementary
operations are the most adapted for large-scale environments. In a
distributed large scale environment, only operations of interest, and
not the complete model, have to be exchanged between pairs for
checking inconsistencies. This reduces considerably the number of
exchanged messages as well as their sizes.
OCL (Object Constraint Language) is the OMG standard that is
mainly used to specify model structural inconsistency rules [14].
However, it is not possible to define methodological constraints
with just OCL. In addition, OCL constraints are not allowed to have
multiple contexts. Thus, they are not well suited to constrain a set of
models.
In [9], a framework for inconsistency management was proposed.
This framework also follows a logic-based approach but only for
UML models. The approach is not based on construction operations
but on model elements. It is not adapted to express methodological
inconsistency rules. However, the framework not only offers
inconsistency detection but also inconsistency resolution based on
graph transformation. We think that our approach for detection of
inconsistencies can be integrated with the proposed approach for
inconsistency resolution and we envisage this integration as a short-
term perspective.
In [10], another framework for inconsistency management has been
proposed. This framework considers all resources as XML
documents and proposes an extension to XPath for expressing
consistency rules. Based on these rules, a checker can then detect
inconsistencies between a set of distributed XML documents. This
framework is well suited to detect structural inconsistency rules and
does not seem to be applicable to methodological constraints.
One of the problems of logic programming concerns decidability. If
the full power of Prolog is used, it is easily possible to run into
infinite loops. It is our view that it is the responsibility of the
developer of inconsistency rules to avoid such problems. The
alternative would be to resort to a decidable variant of logic, such as
description logics. This approach has been investigated, among
others, in [18].

6. CONCLUSION
Both structural and methodological model inconsistency detection
has to be performed on any model whatever its meta-model. This
includes for instance, inconsistency detection between a
requirement model and a design model in order to manage
traceability. Inconsistencies have to be detected while developers
elaborate the models in collaboration.
Our approach (1) is based on model construction operations, (2)
uses logical constraints to define inconsistency rules and (3) is meta-
model independent. We have shown in this article that structural and
methodological inconsistencies can be expressed and verified in a
uniform way using logical formulae. As highlighted with our
examples, both intra-model and inter-model inconsistency rules can
be defined and checked. Even if we have stress-tested our approach

only for UML models, it has been validated on different and
independent meta-models as well.
It is worthwhile to note that, in our approach, all checks were
executed in batch mode. The entire model was loaded in memory,
and the rules were verified one after the other on the entire model.
This is clearly not the most effective way to check model
consistencies with our approach. An incremental consistency
checking would be much more effective. It allows reusing results
from previous checking phases, and requires testing only the
necessary set of rules and elementary operations engaged in model
modifications that occurred in between two consistency check
phases. Egyed proposed a framework dedicated to instant
inconsistency detection [3][4]. It dynamically instantiates particular
rules each time an inconsistency is detected. Thanks to these rules,
whenever an element is modified in the model, the framework is
able to determine if some inconsistency rules are concerned by the
change and need to be re-verified or not. In our approach, we are
able to compute how rules access the sequence of elementary
operations using the introspection facilities of Prolog. From this
static knowledge it is possible to generate an incremental checker
for a set of rules following the spirit of Eyged's framework. This
incremental checker inputs one elementary operation, determines
which inconsistency rules are concerned by this operation and, if
any rule needs to be rechecked, an instantiated query call for this
particular change is used to check if the rule is violated by this
particular operation. This incremental checker is generated only
once as the information needed to build it can be obtained in a static
way from the set of inconsistency rules. We plan to experiment with
the generation of the incremental checker for the 58 OCL
constraints targeting the UML class diagrams

Finally, from its definition, our approach promises to scale up to
inconsistency detection of large-scale distributed models as the
detection only requires to exchange a limited number of operations
as opposed to the complete model. A detailed analysis of this
advantage, however, is left for future work.

7. ACKNOWLEDGMENTS
This work is supported in part by the IST European project
“MODELPLEX” (contract no IST-3408) and by the FNRS FRFC
project 2.4519.05 “Centre de Recherche en Restructuration
Logicielle.”

8. REFERENCES
[1] Azureus Java Open Source Project,

http://azureus.sourceforge.net/
[2] Balzer, R. Tolerating inconsistency. In: Proc. Int’l Conf.

Software Engineering (ICSE) , ACM (1991) 158–165
[3] Egyed, A. Instant Consistency Checking for the UML. Proc.

Int’l Conf. Software Engineering (ICSE), pp. 381-390, ACM,
2006

[4] Egyed. A. Fixing Inconsistencies in UML Design Models.
Proc. Int'l Conf. Software Engineering (ICSE), pp. 292-301,
ACM, 2007

[5] Elaasar, M. Briand, L. An Overview of UML Consistency
Management, Carleton Technical Report SCE-04-18, August
2004.

[6] Finkelstein, A. Spanoudakis, G. Till, D. Managing
Interference, Joint Proc. Sigsoft `96 Workshops --
Specifications `96, ACM Press, pp. 172-174.

[7] Finkelstein, A. et al. Inconsistency Handling in
Multiperspective Specifications, IEEE Transactions on
Software Engineering, Vol.20, N°8, August 1994, pp569-577

[8] Lippe, E. Van Oosterom, N. Operation-Based Merging. Proc.
ACM SIGSOFT Symp. Software Development Environments.
17(5). 1992, pp. 78-87

[9] Mens, T. Van Der Straeten, R. D’Hondt, M. Detecting and
Resolving Model Inconsistencies Using Transformation
Dependency Analysis, Proc. Models 2006, Volume 4199 of
Lecture Notes in Computer Science., Springer-Verlag (2006),
pp. 200-214.

[10] Nentwich, C. Capra, L. Emmerich, W. Finkelstein, A. xlinkit: a
Consistency Checking and Smart Link Generation Service.
ACM Transactions on Internet Technology, 2 (2). pp. 151-185.
ISSN 15335399.

[11] OMG, MDA Guide v1.0.1, 2003, omg/03-06-01
[12] OMG, MOF 2.0, 2006, formal/06-01-01
[13] OMG, UML 2.1 Superstructure, 2006, ptc/06-01-02
[14] OMG, OCL Object Constraint Language v2.0, formal/06-05-

01
[15] Saito, Y. Shapiro, M. Optimistic Replication, ACM Computing

Surveys, Vol. 37, No. 1, March 2005, pp. 42–81.
[16] Selic, B. The Pragmatics of Model-Driven Development, IEEE

Software, Volume 20, Issue 5 (September 2003), pp. 19-24.
[17] Spanoudakis, G. Zisman, A. Inconsistency Management in

Software Engineering: Survey and Open Research Issues,
World Scientific Publishing, Handbook of SE & KE, Volume
1 (2001), pp. 329-380.

[18] Van Der Straeten, R. Mens, T. Simmonds, J. Jonckers, V.
Using description logics to maintain consistency between UML
models. Proc. UML 2003. Volume 2863 of Lecture Notes in
Computer Science., Springer-Verlag (2003) pp. 326-340.

