

Supporting Collaborative Development in
an Open MDA Environment1

Prawee Sriplakich, Xavier Blanc, Marie-Pierre Gervais
Laboratoire d’Informatique de Paris 6

8, rue du Capitaine Scott, 75015, Paris, France
Tel: +33 1 44 27 88 61, Fax : +33 1 44 27 87 71

{Prawee.Sriplakich, Xavier.Blanc, Marie-Pierre.Gervais}@lip6.fr

1 The work presented in this paper is supported by the project MODELWARE, co-funded by the European
Commission under the "Information Society Technologies" Sixth Framework Programme (2002-2006).

Abstract

The MDA approach aims to ease software
maintenance faced with platform and business
evolution. In this approach, main development
artifacts, i.e. models, are defined with the Meta Object
Facility (MOF) standard. To support collaborative
development in MDA, we propose a mechanism for
merging concurrent changes to MOF models. Our
approach has the following novel functionality. First,
as MOF models can have ordered relations, our
mechanism can identify the order changes in MOF
models, detect the conflicts caused by concurrent order
changes, and integrate those changes. Second, as
MOF models must respect multiplicity constraints, our
mechanism detects the concurrent modifications that
result in multiplicity violations. Therefore, it ensures
the consistency of the merge result. Third, we offer a
framework for building conflict resolution programs
dedicated to developers’ particular requirements. This
framework offers a flexible and automated way for
resolving conflicts.

This work is a part of ModelBus, an open
environment for CASE tool interoperability. Its
contribution is to enable models to be concurrently
modified by several developers and with different tools.
ModelBus implementation is available as the Eclipse
open source project, Model Driven Development
integration (MDDi).

Keywords: Merging, Software Configuration
Management, Collaboration, CASE tool, MDA, MOF,
Metamodel, Model

1. Introduction

The development and maintenance of complex

software requires the collaboration of several
developers. A well-known approach to support this
collaboration is copy-modify-merge [20], which
enables several developers to concurrently edit
software documents (e.g. code, models and
documentation). In this approach, a developer copies a
document from the repository to his (her) environment
for editing it locally. Once he finishes editing, he
merges this local copy with the original copy located at
the repository. Merging enables his modification to be
integrated with other concurrent modifications that
have been made by other developers.

The copy-modify-merge approach requires two
main steps. The first step, delta calculation, enables the
extraction of the modification (or delta) made locally
to a document copy. The second step, delta integration,
enables the integration of the delta with the repository-
side document. The delta integration must be aware of
the conflicts between this delta and other deltas that
may have been integrated by other developers. These
conflicts need to be solved either manually or
automatically by software merge tools.

In this work, we aim to apply the copy-modify-
merge approach in the context of Model Driven
Architecture (MDA) [14]. In MDA, models are main
development artifacts that are used for describing
various aspects of software and for automating code
generation. Not only are they used for producing new
software but also for maintaining existing one, faced
with platform and business evolution. The structures of
models are defined by the Meta Object Facility (MOF)
standard [15]. MOF is similar to the graph formalism: a

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

model is a graph consisting of nodes and links.
Moreover, MOF offers two features that enhance the
expressivity of model structures:

1) A node can have an ordered association end that
refers to a sequence of other nodes. The order of this
sequence has meanings in the model’s semantic.

2) Multiplicity is used for restricting the number of
links between nodes.

To apply the copy-modify-merge approach to MDA,
we adapt delta calculation and delta integration
mechanisms to those MOF features. Compared to
existing works, our mechanisms offer the following
novel functionality:

- Supporting ordered association ends. Delta
calculation mechanisms for software diagrams (i.e.
models) have already been proposed by [12] [13].
However, their mechanisms do not propose the
manipulation of ordered association ends in models. On
the other hand, our mechanism can extract changes to
link sequences, e.g. inserting links to a specific position
or reordering links.

Moreover, if link sequences’ orders were ignored,
delta integration could produce arbitrary link orders in
the result model. Our delta integration mechanism
manages properly order changes according to the
developer’s intent. It enables the same link sequence to
be concurrently edited (if those modifications affect
different elements of the sequence). Otherwise, it also
detects the conflicts caused when the concurrent
modifications affect the same elements in the sequence.

- Ensuring the result’s consistency. Inconsistency
has been recognized as a problem of concurrent
modifications [10]. In this work, our delta integration
mechanism solves the inconsistency problem for MOF
models, in particular, as regards multiplicity
constraints.

- Flexible and automated conflict resolution. One
way to solve conflicts is to drop/alter a subset of
conflicting modifications [8]. Performing this task
manually can be time-consuming. We offer a
framework to build programs for automating conflict
resolution according to the developer-specific rules.
This approach reduces manual work on conflict
resolution while accommodating developers’ different
requirements.

This work is a part of ModelBus [2], an open
environment for CASE tool interoperability. Its
contribution is to enable several developers to use
different CASE tools to realize a collaborative
development (i.e. they can concurrently integrate their
contributions to the shared models). ModelBus
implementation is available as the Eclipse open source

project, Model Driven Development integration
(MDDi, http://www.eclipse.org/mddi).

This paper is organized as follows. Section 2
presents an illustrative example of MOF model
merging to which we refer throughout the paper. The
difficulties dedicated to MOF model merging that we
aim to solve are presented in section 3. In section 4, we
describe our approach and its application in ModelBus
for tool interoperability. Section 5 discusses related
works, before conclusion.

2. A MOF model merging

2.1. MOF metamodels

MOF is a language for defining structures of any

kinds of models. Those structures are called
metamodels. A metamodel contains a set of
metaclasses and associations. A metaclass defines the
structure of a node type and the information that can be
contained in each node of this type. It contains a set of
properties that define the primitive data (e.g. string,
integer, boolean) contained in a node.

An association defines the links between nodes. It
has two ends, each of which corresponds to a
metaclass. An association relating metaclasses C1, C2
means that a node of type C1 contains a set of
references to nodes of type C2 (and vice versa). MOF
semantic requires that the values of two opposite
association ends be kept consistent. E.g. if C1 refers to
C2 then C2 must refer back to C1 via the opposite
association end.

MOF allows one of the two opposite association
ends to be specified as ordered, meaning that the
reference set for this end is ordered (i.e. this set
becomes a sequence). An association can also have a
multiplicity constraint specifying the admissible size of
the reference set, in terms of upper and lower bounds.

2.2. An illustrative example

Throughout this paper, we will illustrate the

problem and our solution through a merging example.
The models to be merged are Java Platform Specific
Models (Java PSM), which can be used to generate
Java code, according to the MDA principles.

A simplified version of the Java metamodel, which
defines the Java model structure, is showed fig. 1. This
metamodel captures Java concepts (e.g. Class, Field,
Method, Statement) and their relations (e.g. a class
contains methods and fields; a field is typed by a class;
a method contains a sequence of statements).

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Please note that our approach is not specific to this
metamodel. This metamodel has been chosen for its
simplicity, yet, it illustrates the MOF features that we
highlight: 1) the multiplicity, which ensures the
consistency of models (e.g., a field must be contained
by exactly one class), and 2) the expression of orders in
models (e.g. order of statements in a method).

We also show three Java models corresponding to
the metamodel. They represent a base version and its
two variants, which are result of concurrent changes by
two developers. We represent Java models with the
UML class diagram notation. A Java field is presented
either by an attribute inside a UML class (e.g. field
name) or by a one-way association (e.g. field p1). A
note attached to a Java class represents its methods’
contents (statements).

Fig 1. Java metamodel and three versions of Java
models

3. MOF model merging: objectives

3.1. Delta calculation: comparing models

Extracting the modification from a model can be

done in two manners. First, the tool that a developer
uses to edit/modify models generates the log
information of the modification he makes to the model
 [12]. Second, the modification is extracted by
comparing the current version of the model and the
version prior to the modification (base version) [13]

 [7]. The first way limits its application to tools that can
write log. The second way does not have this
limitation; hence, it can be applied with any tool.
Therefore, we aim to propose a model comparison
mechanism that inputs two model versions (base one
and modified one) and extracts modifications from
them.

According to MOF model structures, which consist
of nodes, node contents (primitive property values) and
links, the model comparison mechanism must identify
the following changes to models: 1) creating/deleting
nodes, 2) modifying node contents, and 3)
inserting/removing links between nodes.

Moreover, MOF models can have ordered
association ends. The value of an ordered association
end is a sequence of node references. A tool can insert
new sequence members, remove existing members or
reorder existing members (i.e. inserting them to a new
position in the sequence). Therefore, the mechanism
must also detect changes to this order.

Extracting changes to a sequence means finding
operations for transforming an old sequence and a new
sequence. We require that change extraction be
“optimal”, i.e. the extracted operations must affect as
few sequence members as possible, so that unaffected
members can be concurrently modified.

For example, if a developer only moves one member
in a sequence, these change operations are not optimal:
“all elements are removed and then reinserted with a
new order”. The extracted operations would conflict
with other concurrent modifications to this sequence,
even if the latter does not affect the moved member. On
the other hand, an optimal operation: “move the
specified element to a new position”, would allow other
developers to concurrently manipulate other members
than the moved one without conflicts.

3.2. Delta integration

3.2.1. Conflicts to be detected
Before integrating the calculated delta with the
repository-side model, we need to detect and handle the
conflicts that might occur if this repository-side model
includes concurrent modifications. For example, a
developer A and B concurrently edit their local copy of
the same model, producing deltas d1 and d2
respectively. Supposing that A integrates his delta,
before B, the first integration (by A) will cause no
conflict as the repository observes no concurrent
modification. On the other hand, the second integration
(by B) can cause conflicts between d1 and d2, as B
integrates d2 to the model that already includes d1.

StatementMethod 0..*1

+ownedStatement

0..*

{ordered}

+ownerMethod

1

ClassMember
name : string

Class
name : string

0..*1

+ownedMember

0..*

+ownerClass
1

Field

1

0..*

+type 1

+typedElement

0..*

Java metamodel

Panel2

Panel1Window
color : String

open()
close()

p1

open() {
s1; s2; s3; s4; s5; }
close() {
s10; s11; s12; }

open() {
s1; s3; s2; s5; }
close() {
s14; s10; s11; s12; }

Panel1
color : String

Window

open()
close()

p1

open() {
s3; s4; s1; s2; s5; }
close() {
s10; s11; s12; s13; }

Panel2
color : String

Panel1Window

open()
close()

p2

p1

Base version

Modified by developer2 Modified by developer1

Java models

variant1 variant2

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

The integration of conflicting deltas causes two
problems. First, lost update is the problem that one
delta forbids another delta’s effects. Second,
inconsistency is the fact that the integration of both
deltas make the result model syntactically incorrect (i.e.
not conforming to its metamodel). Our objective is to
detect these problems so that developers can get aware
of them and take actions for solving them.

We have studied the effect of applying delta
operations (described in 3.1) concurrently. We identify
the following cases that cause lost update.

- Lost node content change can be caused by two
sub-cases. First, concurrent modifications to the same
property of the same node result in one modification
canceling another. Second, if a modification to a
node’s property is concurrent with the deletion of this
node, then the modification will be lost.

- Lost link creation occurs when a link’s creation is
concurrent with the deletion of nodes representing the
link’s ends. Consequently, the link can not be created
because its ends are missing.

- Lost link order change occurs when a link sequence
(representing ordered association end value) is
concurrently modified. This can happen in two sub-
cases. First, the same sequence members are
concurrently moved to different positions. Second, the
same members are moved to a new position by one
developer, and concurrently removed by another
developer.

Solutions for detecting the first two problems (lost
node content change, lost link creation) have already
been proposed in [9] [11]. Therefore, in this work, we
focus on detecting the third case, which concerns the
specific characteristic of MOF models, i.e. ordered
association end.

For the inconsistency problem, this work focus on
detecting the inconsistency that is specific to MOF
models: multiplicity violation. This checking can
ensure several model characteristics expressed with
multiplicity. First, it ensures that models are completed.
For example, the Java metamodel forbids untyped
fields by having the multiplicity of association end type
(in metaclass Field) set to 1.

Moreover, it ensures the consistency of containment
relationship, i.e., multiplicity can specify that a child
node must have no more than one parent. For example,
in the Java metamodel, the association end ownerClass
(in metaclass ClassMember) is set to 1, which means that
a class member must be owned by no more than one
class.

3.2.2. Conflict resolution
In the case where conflicts are detected, a subset of

conflicting operations must be dropped or altered. For
example, if two developers concurrently move a Java
field to two different classes, then one of the
modifications must be dropped. Since the decision how
to resolve conflicts depends on the developers’ intent, a
unique conflict resolution mechanism can not satisfy
different requirements of each developer.

For this reason, we aim to offer a framework
enabling conflict resolution programs to be built with
little effort. To reduce this effort, we aim to offer the
following key features in the framework:

1) Reporting the operations causing conflicts to the
conflict resolution programs.

2) Enabling the programs to drop or alter conflicting
operations.

These features enable programs to focus on the
extracted information (i.e. in terms of conflicting
operations), rather than letting programs directly
manipulate raw information (i.e. models to be merged:
base version and variants).

4. Our approach

4.1. Delta metamodel

Since our objective is to capture model

modifications as deltas, first we need to define the delta
representation. We propose the delta metamodel,
shown in fig. 2, to represent the deltas themselves as
models. A delta contains a set of modification
operations, which are described by the following
metaclasses.

- CreateNode /DeleteNode indicate the nodes that are
created /deleted.

- ModifyPrimitive expresses the change to a primitive
property: it specifies the new value of the property.

- ModifyLink expresses link insertion and removal. In
other words, it expresses the change to the value of an
association end (i.e. a reference set contained by a
node). It specifies the insertion/ removal of node
references to/from a reference set. This is represented
by sub-metaclasses InsertLink and RemoveLink.

This metamodel can express changes to ordered
association end values. InsertLink enables the insertion
of references to both ordered and unordered reference
sets. For an ordered link set (link sequence), the
insertion position (positionAfter) needs to be specified in
terms of the node reference to insert after (null value
means the first position). E.g. inserting <d e> to <a b c>
at postionAfter=a results in <a d e b c>.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Fig 2. Delta metamodel

Compared to the XMI standard [17], which

proposes the encoding of the delta between two MOF
models, our approach offers an advantage of
supporting concurrent modifications to the same
reference sequence. In XMI, the expression of link
insertion expresses with the absolute position (number
index); therefore, when two concurrent modifications
are applied to the same sequence at the same time, the
index position of one of the modifications can become
invalid [19]. Our approach uses relative positions, so it
can avoid this problem.

For example, in the Java merging example, one
developer inserts a statement s14 at the beginning of
method close() and another inserts s13 at the end. By
using relative positions, both modifications do not
interfere with each other. On the other hand, by using
indexes to specify insertion positions, inserting s14
before inserting s13 would make s13 be inserted to a
wrong position.

4.2. Delta calculation

The delta calculation is a function that inputs a

model variant (var) and its base version (base) and
produces a delta model (conforming to the delta
metamodel). Our mechanism uses node IDs to match
nodes in two models in an accurate manner: if a node
n1 in var has the same ID as the node n2 in base, then n1
has been copied from n2. The delta operations are
produced with the following rules.

CreateNode/DeleteNode. The newly created nodes in
var are the nodes that have no corresponding node in
base. Similarly, the deleted nodes are the nodes in base
that have no corresponding node in var.

ModifyPrimitive. Given two corresponding nodes in var
and base, if their property values are different, then a
ModifyPrimitive operation is generated.

ModifyLink. Changes to an association end value are
extracted by comparing an old reference set with a new
one. For an unordered association end, InsertLink and

RemoveLink operations can be extracted by comparing
the members of the two sets.

For an ordered association end, we also need to take
into account changes to the sequence order. As stated
the objectives, the change operations, which transform
an old sequence to a new old, must be optimal. We use
the following mechanism to extract these operations.

- Identifying removed members, similarly to the
unordered case.

- Applying the Longest Common Subsequence
algorithm [5] to find the members that are not affected
by changes (i.e. the members in the common
subsequence remain in the same order but the other
members can be inserted between them).

- Examining members in the new sequence. The
members that are not in the common subsequence
either are new ones or have been moved. Therefore,
InsertLink operations are generated for representing
these changes. They refer to members in the common
subsequence as insertion positions.

It is worth nothing that two ends of an association
are redundant representation of the same information,
e.g., a Field node contains a reference to its container
Class node and vice-versa. To avoid this redundant
information in the calculated delta, we choose to
compare only one end of the association. If an
association has an ordered end, then this end is chosen
(so that changes to orders can be expressed).
Otherwise, any of the two ends can be chosen.

Example. By applying our mechanism to extract
modifications between each variant and the base
version from the Java merging example, we obtain two
delta models, d1 and d2, which contain the
modifications in variant1 and variant2 respectively. We
illustrate those models with a textual syntax, cf. the
following code. In this syntax, each node ID, which
allows the delta model to refer to a node, is underlined.
Metaclasses’ properties and association ends are
written in italic. For example, CreateNode(s13,

Statement) means that a Statement node with ID ‘s13’ is
created. InsertLink(close, ownedStatement, <s13> after s12)
means that the node s13 is inserted in the
ownedStatement association end value of the node close
at the position after the node s12.

d1:

1. //deleting Panel2
2. DeleteNode(Panel2)
3. // moving the field color from Window to Panel1
4. RemoveLink(Window, ownedMember, <color>)
5. InsertLink(Panel1, ownedMember, <color>)
6. // moving s3 and deleting s4 in open()
7. InsertLink(open, ownedStatement, <s3> after s1)
8. RemoveLink(open, ownedStatement, <s4>)
9. DeleteNode(s4)
10. // inserting s14 to close()
11. CreateNode(s14, Statement)

DeleteNode
elem : ID

CreateNode
elem : ID
type : MofClass

RemoveLink
refs : ID[]

InsertLink
refs : ID[]
<<nullable>> positionAfter : ID

ModifyPrimitive
elem : ID
prop : String
value : PrimitiveType

Delta

**

**

*

ModifyLink
elem : ID
assoEnd : String

*

*

*

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

12. InsertLink(close, ownedStatement, <s14> @begin)
d2:

1. // moving the field color from Window to Panel2
2. RemoveLink(Window, ownedMember, <color>)
3. InsertLink(Panel2, ownedMember, <color>)
4. // creating a field p2 and typing it with Panel2
5. CreateNode(p2, Field)
6. ModifyPrimitive(p2, name, “p2”)
7. InsertLink(p2, type, <Panel2>)
8. InsertLink(Window, ownedMember, <p2>)
9. // moving s3, s4 in open()
10. InsertLink(open, ownedStatement, <s3, s4> @begin)
11. // inserting s13 to close()
12. CreateNode(s13, Statement)
13. InsertLink(close, ownedStatement, <s13> after s12)

4.3. Conflict detection

Our conflict detection mechanism is a function that

inputs two deltas (referred to as d1, d2) and returns the
conflicts detected. It finds matching operations from
both deltas (according to conflict detection rules) and
reports them as a conflict. Therefore, a conflict
detection rule is a condition for matching two groups of
delta operations. As explained in 3.2.1, we focus, in
this paper, on the detection of two problems: 1) lost
link order change, and 2) multiplicity violation.

Detecting lost link order change. This problem is
caused in two cases: conflict between two concurrent
InsertLink operations, and conflict between InsertLink and
RemoveLink operations. These conflicts can be detected
by the following functions.

1. Conflict detectLostLinkOrderChange(InsertLink i1, InsertLink i2) {
2. if(i1 and i2 insert same references to different positions)
3. return new Conflict(i1, i2);
4. else return null; }
5. Conflict detectLostLinkOrderChange(InsertLink i, RemoveLink r) {
6. if(i inserts references that are removed by r)
7. return new Conflict(i, r);
8. else return null; }

By applying those functions to the Java merging
example, we can detect two conflicts concerning the
concurrent modifications to the open method’s content.
First conflict: s3 are inserted to different positions, i.e.,
InsertLink(open, ownedStatement, <s3> after s1) vs.
InsertLink(open, ownedStatement, <s3, s4> @begin). Second
conflict: in d2, <s3, s4> are moved to a new position
but, in d1, s4 is removed from the method.

Please note that we do not consider as a conflict the
case where RemoveLink deletes the reference
represented by InsertLink’s positionAfter. Applying the
InsertLink operation before the RemoveLink operation can
preserve the effect of both operations. For example, let
<a b c d e f g> be the original sequence and an InsertLink
operation aims to move g to the position after c while a
RemoveLink operation aims to remove c. Applying the

insertion before the removal yields the result <a b g d e f

>, which preserves both modifications.
Detecting multiplicity violation. Multiplicity

violation of a reference set (i.e. an association end
value) can be detected by testing the application of all
concurrent operations affecting this reference set. This
test is performed on the reference set copied from the
original model, rather than on the model itself, to avoid
side-effects.

This detection is shown in the following algorithm.
This algorithm inputs: 1) an association end value to be
checked, which is specified by a tuple <n, e>, where n is
a node and e is an association end (defined at the
metamodel), and 2) two concurrent deltas (d1 and d2).
It begins by identifying the operations, in each delta,
that affect <n, e> (lines 3-10). Those operations are:

- The InsertLink and RemoveLink operations that
directly modify <n, e> or indirectly modify <n, e> at the
opposite end;

- The DeleteNode operations that prevent the
InsertLink operations previously identified. I.e., they
delete the nodes that are the ends of the links to be
inserted.

Once all the affecting operations are identified, they
are tested on the reference set copy (line 11-12). The
InsertLink operations result in adding references to the
set, while the RemoveLink and DeleteNode operations
result in removing references from the set.

Next, the result is tested whether its cardinality is in
the range specified by the multiplicity. If so, no conflict
is return; otherwise, all the operations affecting <n, e>
are reported as a conflict (lines 13-14).

1. Conflict checkMultiplicity(Node n, AssociationEnd e,
2. Delta d1, Delta d2) {
3. Set insertLinks1 = getInsertLinks (d1, n, e);
4. Set affectingOps1 = insertLinks1
5. .union(getRemoveLinks(d1, n, e))
6. .union(getDeleteNodes(d1, insertLinks1));
7. Set insertLinks2 = getInsertLinks (d2, n, e);
8. Set affectingOps2 = insertLinks2
9. .union(getRemoveLinks(d2, n, e))
10. .union(getDeleteNodes(d2, insertLinks2));
11. Set value = getValueCopy(n, e);
12. apply(n, e, affectingOps1.union(affectingOps2));
13. if(multiplicityOK(ae, value)) return null;
14. else return new Conflict(affectingOps1, affectingOps2); }

This algorithm can detect the following conflicts in

the Java merging example:
- Model incompleteness. One developer removes the

class Panel2, while another creates a field (p2) and types
it by this class, the deletion result in this field being
untyped, which violates type’s multiplicity (exactly
one). The detected conflict reports conflicting
operations: DeleteNode(Panel2) from d1 vs. InsertLink(p2,

type, <Panel2>) from d2.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

- Containment relationship violation. Two
developers put the field color to two different classes,
applying both modifications causes the field to be
contained by two classes, which violates ownerClass’s
multiplicity (exactly one). The detected conflict reports
conflicting operations: RemoveLink(Window,
ownedMember, <color>), InsertLink(Panel2, ownedMember,
<color>) from d1 vs. RemoveLink(Window, ownedMember,

<color>), InsertLink(Panel1, ownedMember, <color>) from
d2.

4.4. Flexible conflict resolution framework

Our framework enables a conflict resolution program

to be realized as a function having the following
parameters:

- A set of detected conflicts. This parameter enables
the program to examine each detected conflict and to
resolve it.

- Two deltas (d1 and d2) to be merged. These
parameters enable the program to drop or alter the
operations in those deltas.

This framework offers the following programming
facilities:

1) An API for examining and modifying delta
operations. As deltas themselves are represented as
models, manipulating deltas is done in the same way as
models.

2) An API for examining conflicts. It enables a
program to obtain a conflict description (e.g. lost link
order change, multiplicity violation) and the delta
operations from the d1 and d2 sides that involve the
conflict.

3) A conflict detection function to recalculate the
conflicts. This function refreshes the conflicts that still
remain, once both deltas have been altered.

The following code shows how our framework APIs
can be used by conflict resolution programs. We show
two functions that can apply two different policies to
resolve conflicts:

P1: The latest delta integrated (i.e. d2) is priority. If
conflicts occur, the operations in this delta will be
chosen, and the conflicting ones in the other delta will
be dropped. This mechanism is showed in line 1-3.

P2: Node deletions are less priority. This policy
aims to avoid lost information. It can only solve a
conflict involving a node deletion at one side. It drops
the DeleteNode operation causing conflict, in order to
keep the modifications by the other operations, cf. lines
4-9.

1. void resolve_p1(Conflict c, Delta d1, Delta d2) {
2. d1.drops(c.getOpsFromD1Side());
3. }
4. void resolve_p2(Conflict c, Delta d1, Delta d2) {

5. if(isDeleteNode(c.getOpsFromD1Side())) {
6. d1.drops (c.getOpsFromD1Side());
7. } else if(isDeleteNode(c.getOpsFromD1Side())) {
8. d2.drops(c.getOpsFromD2Side());
9. } else { throw “cannot resolve” }
10. }

4.5. Implementation and application for CASE

tool interoperability

We have applied this merging mechanism in

ModelBus, a platform for CASE tool interoperability.
ModelBus enables several developers to use different
CASE tools to realize a collaborative development. I.e.
they can concurrently use different tools to update the
shared models. The ModelBus architecture for
supporting this collaboration is composed of the
following components.

Repository. We reuse the basic functionalities of
existing Software Configuration Management (SCM)
repositories (e.g. CVS or Subversion [21]) for storing
models that are shared among several tools and for
keeping track of the modification history on those
models. In our approach, shared models are stored in a
repository as XMI files [17]. Therefore, any file-based
repository can be used for storing XMI files and the
modification history on those files. In our ModelBus
prototype, we have chosen the CVS repository, which
is widely used in practice.

This repository enables several tools to modify
shared models as follows. A tool (T1) can check out a
model (an XMI file) from the repository, then modify it
locally, and finally commit the new version of this
model to the repository for replacing the previous
version. In this committing process, the repository
checks whether the model has been concurrently
modified by another tool (i.e., the other tool has
committed its version before). If so, then the repository
informs T1 that it needs to merge its modification with
the other tool’s modification, before committing.

In this case, the tool will perform the merging
mechanism that we propose. To do so, the tool needs
three versions of the model (base version and two
variants). One of the two variants is the tool’s local
version. Since the repository keeps track of
modification history on models, it can provide the tool
with the base version (in the case that the tool has not
kept it since last check-out) and the other variant, i.e.
the repository version, which contains the concurrent
modification of another tool. Our merging mechanism
will produce the unified version, which includes the
modifications in both variants. The tool can then
commit this unified version to the repository.

Please note that, in the case that more than two tools
perform concurrent modification on the same model,

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

each tool can do merging/committing one by one, in
order to accumulate the modifications of all tools.

Merging framework. This component contains the
implementation of our merging mechanism. In this
implementation, we use the Eclipse Modeling
Framework (EMF) technology [4] for manipulating
models. EMF offers an API for allowing model nodes
to be manipulated (created, deleted and modified) in
the same way as Java objects. Based on this API, we
have implemented the delta calculation, conflict
detection and delta integration mechanisms. We use the
reflective programming technique, which enable our
framework to manipulate models whose structures are
unknown in advances (i.e. their metamodels are
unknown). For this reason, our framework supports the
merging of any kinds of models (UML and Domain
Specific Models).

The CASE tool can use our merging framework as
follows. The framework offers to CASE tools the
following API for starting the merging mechanism:

MergeModel merge(InputStream base, InputStream
variant1, InputStream variant2)

This operation inputs three model versions (base,

variant1, variant2) encoded in the XMI format, and
produces the result (MergeModel object) which informs
whether or not conflicts occur. If no conflict occurs,
then the MergeModel object (the result) will provide the
tool with the unified version.

In the case that conflicts are detected, our framework
enables tools to solve this problem with any conflict
resolution programs that can apply different conflict
resolution policies (described in 4.4). To do so, the tool
sends MergeModel object the conflict resolution program
by called the following interface operation, which is
expected to be implemented by all conflict resolution
programs:

void resolveConflict(MergeModel mergeModel,

OutputStream unifiedVersion)

A conflict resolution program can obtain the conflict

information, the deltas, and the base model from the
MergeModel object in order to perform its conflict
resolution logics and produce the unified version.
Depending on its logics, it can either solve the conflicts
in a completely automatic way or ask for the
developer’s decisions. We have implemented two
sample conflict resolution programs that any tools can
use (if they do not have their customized ones). The
first one uses the policy of giving the priority the latest
delta integrated. It performs conflict resolution in a
completely automatic way.

The second one is developer-interactive. It offers a
simple GUI showing the deltas and the conflicts to the
developer, and allowing the developer to select the
conflicting delta operations to be dropped or altered. In
an example of this GUI (fig. 3), the left part (local diff)
shows the modification in the local version (compared
with the base version), and the right part (remote diff)
shows the modification in the repository version. When
a node in the left or right part is selected, the bottom
part (properties) will show the details of modifications
to this node and the related conflicts. This GUI enables
the developer to locate the conflicting delta operations
in the local and repository versions, and to selectively
drop or alter them.

Management of node IDs. Our merging mechanism
requires the existence of node IDs. Therefore, we
require that the XMI files in the repository contain not
only model information but also node IDs. However,
not all CASE tools preserve node IDs. Node IDs can be
lost when those tools load models from XMI files to an
object representation (for manipulating them) and save
them back to files. For this reason, ModelBus proposes
an ID management mechanism, which allows tools to
load, save and manipulate models without worrying
about ID preservation. Our previous work [18] presents
an approach to assign IDs to nodes and to preserve
them when loading and saving models in a tool-
transparent way. This approach consists in providing
tools with the loadModel and saveModel operations which
mask the ID management mechanism from tools. The
loadModel operation creates an in-memory table
associating node objects with their IDs obtained from
the loaded XMI file. The saveModel operation saves the
IDs in this table together with the model to an XMI
file. This operation is also responsible for assigning
new IDs to newly created nodes.

So far we have implemented the loadModel and
saveModel operations for converting between XMI and
the EMF object representation, which is becoming a
popular object representation for new generation CASE
tools. The same principle can be used for realizing
those operations for other object representations.

5. Related works

Delta calculation. As explained, model comparison

requires matching nodes in two model versions. Rather
than using node IDs, an alterative way to match nodes
is to observe node similarity, e.g. comparison of UML
class diagrams [23], XML files [22], and Abstract
Syntax Tree [6] [24] [3]. In these approaches, two
nodes that have similar contents and similar neighbor
nodes are matched. These approaches support delta

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

extraction even if node IDs are unavailable. However,
their result is only the estimation of matching and can
contain errors (error rate study is reported in [23]).

Lindholm has proposed a XML document merging
mechanism [7], which shares the two points with our
work. First, it considers changes to the children’s order
in a parent XML node. Second, it ensures that a node
has exactly one parent (except root). Our work is more
generic. First, the ordered relation in MOF is not
necessarily parent-child. Second, it supports any kind
of multiplicity (not only parent-child constraint).

Conflict detection & resolution. A delta integration
mechanism for graphs has been proposed in [12]. Its
uses a predefined conflict detection mechanism: The
operations are applied according to the order of delta
integration (e.g. d1 then d2). An operation can be

applied only if its precondition holds; otherwise it is
dropped. The applied operation can cancel the effects
of previous operations. The authors did not propose the
way to prevent lost update problems. In our work, we
offer a mechanism to detect the problems and enable
developers to solve them automatically and with
flexibility.

Munson & Dewan has suggested the use for merge
matrix as a conflict detection and resolution framework
 [11]. This matrix indicates a pair of operations that are
conflicting and the resolution action. On the other
hand, our mechanism can detect a conflict that involves
more than two operations (e.g. multiplicity conflict).
We also suggest representing deltas as models to
facilitate their manipulation (analyzing, dropping or
altering them).

Fig 3. A simple interactive conflict resolution program

6. Conclusion and future works

We presented a mechanism to merge MOF models,

main software artifacts in the MDA approach. This
mechanism takes into account MOF features (ordered

association end and multiplicity). Its contribution is to
support collaboration in an open tool integration
environment.

For future works, we consider the following
improvements:

Legend

 Unchanged node
 Created node
Modified node
Deleted node

 Node containing
conflicts

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

- Extending consistency check. Besides multiplicity,
MOF enables metamodel designers to define model-
specific constraints in an expressive way with Object
Constraint Language (OCL) [16]. These constraints
can express that, for example, in a Java model, method
call expressions must have valid arguments (must
conform to method signatures). We consider extending
our conflict detection mechanism to ensure that the
merge result is consistent as regards these constraints.

- Visual support for conflict resolution. Not all
conflicts can be automatically resolved by programs.
Developers may require the ability to visualize them
for reflecting on what to do. In this work, we have
proposed a simple user interface enabling developers to
do so. However, this user interface does not take into
account the dedicated notation of each model kind
(UML diagram notations or Domain Specific Model
notations), which is more intuitive to developers. In
future works, we would like to study about how to
provide a more user-friendly interface for supporting
conflict resolution. This interface should be adaptable
to different model notations. We will also consider
integration of semi-automated conflict resolution
programs with this user interface.

7. References

[1] Adams, E.W., Honda, M. and Miller, T.C., Object

Management in a CASE Environment, Proc. of the 11th
Int’l Conf. on Software Engineering, 1989.

[2] Blanc, X., Gervais, M-P. and Sriplakich, P., Model Bus:
Towards the Interoperability of Modeling Tools, Proc. of
the European MDA Workshop: Foundations and
Applications, LNCS 3599, 2005.

[3] Buffenbarger J., Syntactic Software Merging, Proc. of
the Software Configuration Management Workshop:
selected papers, LNCS 1005, 1995.

[4] Eclipse, Eclipse Modeling Framework Project,
http://www.eclipse.org/emf/.

[5] Hirschberg D. S., Algorithms for the Longest Common
Subsequence Problem, J. of the ACM, 24(4), 1977.

[6] Hunt, J.J. and Tichy, W.F., Extensible Language-Aware
Merging, Proc. of ICSM’02, 2002.

[7] Lindholm, T., A Threeway Merge for XML Documents,
Proc. of the 2004 ACM Sym. on Document Engineering,
2004.

[8] Lippe, E., and van Oosterom N., Operation Based
Merging, Proc. of the 5th ACM SIGSOFT Sym. on Software
Development Environments, 1992.

[9] Mens, T., Conditional Graph Rewriting as a Domain-
Independent Formalism for Software Evolution, Proc. of the
Int’l Workshop AGTIVE'99, LNCS 1779, 2000.

[10] Mens, T., A state-of-the-art survey on software merging,
IEEE Trans. on Software Engineering, 28(5), 2002.

[11] Munson J.P. and Dewan P., A Flexible Object Merging
Framework, Proc. of the 1994 ACM Conf. on Computer
Supported Cooperative Work, 1994.

[12] Oda, T. and Saeki, M., Generative Technique for
Version Control Systems for Software Diagrams, Proc. of
ICSM’05, 2005.

[13] Ohst, D., Welle, M., and Kelter, U., Difference Tools for
Analysis and Design Documents, Proc. of ICSM’03, 2003.

[14] OMG, MDA Guide Version 1.0.1, document no:
omg/2003-06-01, 2003.

[15] OMG, Meta Object Facility version 2.0, document no:
formal/06-01-01, 2006.

[16] OMG, Object Constraint Language (OCL) Specification
version 2.0, document no: ptc/2005-06-06, 2005.

[17] OMG, XML Metadata Interchange (XMI) Specification
version 2.0, document no: formal/03-05-02, 2003.

[18] Sriplakich, P., Blanc, X. and Gervais, M.P., Supporting
transparent model update in distributed CASE tool
integration, Proc. of the ACM Sym. on Applied Computing,
2006.

[19] Sun, C. et al., Achieving Convergence, Causality
Preservation and Intention Preservation in Real-Time
Cooperative Editing Systems, ACM Trans. on Computer-
Human Interaction, 5(1), 1998.

[20] Tichy, W.F., RCS - A System for Version Control,
Software Practice and Experience, 15(7): 637-654, 1985.

[21] Tigris, Subversion project, http://subversion.tigris.org.
[22] Wang Y., Dewitt D.J. and Cai J-Y., X-Diff: An Effective

Change Detection Algorithm for XML Documents, Proc. of
19th IEEE Int’l Conf. on Data Engineering, 2003.

[23] Xing, Z. and Eleni, S., UMLDiff: an Algorithm for
object-oriented design differencing, Proc. of the 20th
IEEE/ACM Int'l Conf. on Automated Software Engineering,
2005.

[24] Yang. W, Identifying Syntactic Differences Between
Two Programs, Software Practice and Experience, 21(7),
1991.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

