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Abstract. As model-driven development promotes metamodels as key assets it 
raises the issue of their reuse throughout a model-driven product line life cycle. 
One recurrent reuse need occurs when metamodeling integrated multi-language 
platforms: one construct from one language is integrated to constructs from 
other languages by generalizing it, making it more expressive. None of the 
metamodel assembly facilities provided by MOF and UML (import, merge 
and combine) or others proposed in previous work adequately addresses this 
need. We thus propose a new reuse and generalize facility for such 
purpose. 

1 Introduction 

Model Driven Development (MDD) raises the level of abstraction of the development 
life cycle by shifting its emphasis from code to models, metamodels and model 
transformations. It views any software artifact produced at any step of the 
development process as a valuable asset by itself to reuse across different applications 
and implementation platforms so as to cut the cost of future development efforts. 
Since they drive much of the MDD process, metamodels are the first artifact to reuse 
when an MDD team extends its portfolio of application domains, product 
requirements or target implementation platforms. However, the issue of metamodel 
reuse has not yet received much attention in the MDD literature. The reuse facilities 
provided by standards such as MOF 2.0 [11] and UML 2.0 [12] [13] or proposed in 
previous research on the topic [5][6][9][10] are essentially limited to two simple reuse 
needs. The first is reuse as is through inter-package visibility facilities such as 
package import in MOF or copy and paste transformations such as package 
combine in MOF. The second is reuse as specialization through inheritance 
facilities such as package merge in UML 2.0. As larger, more complex metamodels 
get constructed and then incrementally extended during their lifecycle, a diversity of 
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more sophisticated metamodel reuse needs is emerging. They prompt the definition of 
new metamodeling assembly facilties to address them and proposals to incorporate 
these facilities in MOF. 

In this paper, we identify one such more sophisticated metamodel reuse need that 
we call reuse and generalize, and we propose a new metamodeling assembly facility 
that addresses it. This need is pervasive for various classes of metamodeling tasks. 
One such class is metamodeling multi-paradigm languages that historically result 
from successive extensions of a mono-paradigm core with constructs imported from 
other paradigms and adapted from integration. Another such class is metamodeling 
integrated multi-language platforms that support development in several languages 
that are conceptually integrated (as opposed to just loosely coupled through 
communication interfaces). In such cases, constructs from different languages have 
been extended or integrated by generalizing them so as to subsume constructs from 
other languages. Historically, such situation occurred many times over for example 
when defining concurrent or object-oriented extensions of imperative, functional or 
logic programming languages. It is currently occurring again as distributed, XML-
based extensions of many languages are being defined.  

The paper is organized as follows. In the next section, we advocate a compositional 
approach to metamodeling multi-paradigm languages or integrated multi-language 
platforms. With such an approach, metamodels of minimal size with potential for 
reuse are first built separately and then assembled in a way that mirrors how 
constructs from each paradigm or language are reused in the integrated whole. We 
identify and discuss five general benefits of such an approach in subsection 2.3. To 
make our points concrete, we illustrate these benefits, as well as all the subsequent 
points we make throughout the paper, on a specific case study: metamodeling the 
Flora platform [18]. Prior to discussing these points, we thus have to introduce the 
necessary background on Flora and then motivate having chosen it for the case study. 
We respectively do so in subsections 2.1 and 2.2. Briefly, metamodeling Flora is an 
interesting illustrative case study because it supports in an integrated way several 
languages and paradigms and it is a versatile platform that supports programming, 
meta-programming, reasoning, meta-reasoning as well as data and metadata 
definition, updates and queries.  

Since Flora is such a comprehensive platform that results from a long, multi-step 
integration process, starting from section 3, we focus the scope of our illustrative 
examples on only one such step: the integration of first-order logic programming in 
Prolog with meta-programming based on high-order variables, resulting in HiLog. 
Subsections 3.1 and 3.2 thus respectively present simplified metamodels of these two 
languages supported by Flora. Subsection 3.3 then further zooms on only the relevant 
elements of theses two metamodels that we use to illustrate the general need to reuse 
and generalize metamodel elements. This example involves reusing elements 
metamodeling first-order predicates to metamodel their generalization as high-order 
predicates. In the subsequent subsections 3.4 to 3.6 we explain in detail why none of 
the three package assembly facilities provided the MOF 2.0 and UML 2.0 standard 
(import, merge and combined) can be used to address such reuse need. In 
subsection 3.7, we propose a fourth package assembly specifically designed for such 
need that we thus call reuse and generalize. In section 4, we review the 
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literature in metamodel reuse and show that none of the proposals put forward to date 
address such a need. In section 5, we conclude by summarizing our contributions. 

2 Metamodeling Integrated Multi-language Platforms  

In this section, we first present the main characteristics and historical genesis of the 
Flora multi-language, multi-paradigm and multi-purpose platform. Metamodeling 
Flora is the larger case study from which we extracted the examples that we use 
throughout the paper to illustrate the general points that we make on metamodel 
reuse. We then motivate the choice of such metamodeling task as illustrative case 
study. We take the opportunity to point out the mutual synergy that exists between 
MDD and platforms integrating multiple concepts and services such as Flora. Finally, 
we advocate a compositional approach to metamodeling such platforms by identifying 
five benefits that it provides and illustrating each of them on the Flora metamodeling 
case study. 

2.1 Flora: An Integrated Multi-language, Multi-purpose Platform 

Flora implements a subset of the language Concurrent Transaction Frame Logic 
(CTFL). Syntactically, CTFL integrates constructors from: (a) logic programming, (b) 
object-oriented programming, (c) imperative programming and (d) concurrent 
programming. Semantically, it provides declarative formal accounts of all these 
constructs by way of logical model theories. Historically, CTFL and Flora result from 
a 15 year research effort to overcome the failings of ISO Prolog to fulfill the original 
logic programming ideal: a language with declarative logical semantics that is 
simultaneously (a) a practical Turing-complete programming language, (b) an 
expressive knowledge representation language and (c) a concise data definition, 
update and query language. From its root in Prolog, CTFL evolved incrementally, as 
a series of largely orthogonal extensions, each one providing a semantically well-
founded logical alternative to the extra-logical predicates of Prolog that betrayed the 
original logic programming ideal. This evolution had six main steps: 

1. Extending Prolog with the logically Well-Founded Negation as Failure 
(WFNAF) connective; 

2. HiLog (HL), extending Prolog with high-order syntax inspired from functional 
programming for meta-level programming, reasoning and querying but with first-
order logical semantics [4] 

3. Transaction Logic (TL), extending Prolog with logically well-founded 
backtrackable knowledge base updates and procedural constructs such as 
conditionals and loops [2]; 

4. Frame Logic (FL), extending HiLog with an object-oriented syntax [8] and 
logical semantics for single-source multiple structural and behavioral inheritance 
integrated with deduction [17]; 

5. Concurrent Transaction Logic (CTL), extending Transaction Logic with multiple 
threads, critical sections and inter-thread messages [3]. 



664           Xavier Blanc, Franklin Ramalho, and Jacques Robin 

The Flora platform implements extensions 1-4 above, i.e., Sequential Transaction 
Frame Logic (STFL). It does so reusing the XSB Prolog platform that already 
implements extensions 1-2. Flora has two main components:  the Flora Compiler that 
transforms an STFL program onto an optimized XSB Prolog program, and the Flora 
Shell, a front-end for queries in STFL that transforms STFL queries into semantically 
equivalent XSB queries, calls XSB to answer them and passes the answers back to the 
user in STFL syntax. 

2.2 The Synergy Between MDD and Integrated Multi-language Platform 

From an MDD perspective, a platform such as Flora that is multi-language, multi-
paradigm and multi-purpose is very interesting in that it raises the possibility to rely 
on a single platform to (a) run a prototype to validate functional requirements of an 
application with the users, (b) run the same prototype to test its correctness on a set of 
specific cases, but also (c) query the same prototype to formally verify general 
properties that abstract from any set of specific cases, thus providing stronger 
robustness guarantees. Performing such verification on an implementation allows 
circumventing the major loophole of traditional formal development that relies on two 
different languages (one formal but non-executable for modeling and one executable 
but with no clear semantics for programming) and two different platforms (one for 
model validation and verification, and one for implementation execution and testing): 
namely the reintroduction of semantic errors while programming a verified model. 
We are currently exploring this possibility in the on-going MODELOG project [15] 
which investigates the development of a CASE tool for MDD providing a variety of 
services. Chief among these services is the fully automated generation of Flora code 
from UML models that consist of OCL annotated class and activity diagrams linked 
together through object flows. In order to develop this CASE tool for MDD using 
MDD itself, the first two steps of the MODELOG project are (1) developing a 
metamodel of the target platform Flora and (2) specify model transformations as 
QVT[14] relations between elements of this target metamodel and the source UML 
and OCL metamodels made available by the OMG. It is while carrying out the first 
task that we identified and addressed the metamodeling reuse issues presented in this 
paper.  

2.3 Compositional Metamodeling and Its Benefits 

For metamodeling languages and platforms that tightly integrate multiple paradigms 
and purposes, we advocate a compositional approach that faithfully mirrors their 
structure as a simple core and a set of largely orthogonal and complementary 
extensions. With such an approach, one starts by independently metamodeling the 
core and each extension in a separate package, to then assemble them together. So for 
example, when we applied this approach to the case of Flora, we developed one 
separate metamodel package for (1) First-order logical terms that are common to 
Prolog and many other logic and rule-based languages, (2) Prolog programs and 
clauses that reuses the logical terms package, and (3) each orthogonal extension of 
either logical terms or Prolog clauses used in CTFL programs. From such minimal 
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metamodel units, larger metamodels for HL, STL, CTL, FL, SFTL (i.e., for Flora) and 
CTFL can then be obtained through assembly. This compositional approach brings 
five clear benefits. The first is cognitive complexity management for such large meta-
modeling tasks. For example, the fully assembled Flora metamodel contains over 275 
elements. Hence, much simplicity was gained by decomposing it into nine packages. 
The second benefit is the creation of valuable course didactic assets that visually 
contrast basic language concepts and platform services and clarify the many different 
ways in which they can be integrated. For example, the compositional Flora 
metamodel is such an asset for teaching the distinct principles and complementary 
strengths of logic, object-oriented and imperative language concepts for 
programming, knowledge representation and data manipulation. The third benefit is 
the reusability of minimal metamodel units for other languages or platforms. For 
example, we have already reused the first-order logical term package of the Flora 
metamodel to build a metamodel of the language Constraint Handling Rules [7]. The 
fourth benefit is to provide a sound basis for representing integration semantics in 
UML and OCL which are more accessible than the mathematical notations generally 
used for such task.  In the case of Flora, while each of its sub-language possesses 
denotational and operational semantics, the unification of theses into a single 
framework is still incomplete; metamodeling the semantics of each sub-language 
should bring valuable insights towards such unification. The fifth benefit of 
compositional metamodeling is compiler MDD based on model transformations. For 
example the Flora to XSB compiler could be specified as a set of declarative QVT 
relations [14] between elements of the STFL and HiLog metamodels.  

These benefits are pervasive since many modern, powerful languages result, like 
Flora does, from successive and partially orthogonal extensions from an initial simple 
core. For example, the semantic web language standards put forward by the World 
Wide Web consortium (W3C) also evolved this way: an initial core, RDF [1] was 
successively extended to yield RDFS, DAML, DAML-OIL, and finally OWL [16]. In 
addition, all these languages reuse the syntactic core XML syntax, and DAML-OIL 
itself resulted from the integration of DAML with OIL.  

3 Illustrative Case-Study: HiLog as an Extension of Prolog 

While we assembled the minimal unit metamodel packages into the whole Flora 
metamodel, we were confronted several times with the need to reuse metamodel 
elements from one package while generalizing them in the package assembly. We 
now explain why such reuse need cannot be addressed by the facilities currently 
provided by the MOF 2.0 and UML 2.0 standards by focusing on a single assembly 
step: the one that takes as input the Prolog metamodel and a metamodel of high-order 
predicates and that results in the HiLog metamodel. We first present (simplified) non-
compositional versions of the Prolog and HiLog metamodels and explain their main 
concepts. We then further zoom on only the relevant elements in these metamodels 
necessary to illustrate the reuse and generalize need, and successively show that 
elements from the Prolog metamodel for first-order predicates cannot be reused and 
generalized to define high-order predicates in the HiLog metamodel by using either 
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import, merge or combine. We then specify a new reuse and generalize 
package facility and illustrate its use for such case.  

3.1 A Non-compositional Simplified Metamodel of Prolog 

The non-compositional, simplified Prolog metamodel is shown in Fig. 1. It shows that 
a Prolog program is a set of clauses, with each clause consisting of a premise that is a 
Prolog query and a single conclusion that is a first-order logic atom. A Prolog query is 
a tree of arbitrary depth which leaves are first-order logic atoms and which non-leaf 
nodes are one of the two logical connectives and or or. A first-order logic atom is 
also a tree of arbitrary depth which leaves are either constant symbols or first-order 
variables, and which non-leaf nodes can only be constant symbols. Each sub-tree is a 
called a logical term, which root is called the functor of the term and which depth one 
sub-trees are called its arguments. Non-functional terms are depth zero sub-trees and 
opposed to functional terms which depth is at least one. A ground term is a sub-tree of 
arbitrary depth that is free of variables.  

3.2 A Non-compositional, Simplified Metamodel of HiLog 

High-Order Logic (HiLog) extends Prolog with high-order syntactic sugar while 
semantically remaining first-order. At the program, clause and query levels, HiLog 
follows exactly the same construction rules as Prolog. The former extends the latter 
only at the lower logical atom level. The extension is twofold: (1) HiLog, allows 
programs in addition to terms as arguments, and (2) HiLog allows arbitrary terms 
(functional or not, ground or not) as functors instead of restricting them to constant 
symbols (i.e., non-functional ground terms) as Prolog does. 

For example, P(f(X))(G(Y), (G, c :- X, p(Y(P)))). is a valid HiLog term but not a 
Prolog term for three reasons:  (1) its functor is a compound term P(f(X)), (2) its first 
argument's functor is a variable G and (3) its second argument is a program made of 
two clauses, G. and c :- X, p(Y(P)). HiLog extends Prolog with meta-programming, 
meta-reasoning and metadata definition and query facilities within the logical 
paradigm under well-defined first-order declarative semantics. It brings to logic 
programming the high-order syntax that is key to the versatility of functional 
programming. In the HiLog metamodel of Fig. 2 the first of the two ways in which 
HiLog extends Prolog is reflected by the fact that the functor meta-association 
outgoing from the FunctionalTerm meta-class targets the Term meta-class, 
instead of the Constant meta-class as in the Prolog metamodel. The second 
extension is reflected by the introduction of the new meta-class LogicalArgument 
as the target of the arg meta-association outgoing from the LogicalAtom meta-
class. This new LogicalArgument meta-class generalizes the two meta-classes 
FunctionalTerm and Program.  
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3.3 Reusing and Generalizing Metamodel Elements from Prolog in HiLog 

The relation between HiLog and Prolog can be summarized as follows: “A HiLog 
program is a Prolog program, except that, (a) the functor of the atoms of its clauses 
can recursively be compound and/or non-ground terms and (b) the arguments of the 
atoms  of  its clauses can recursively be HiLog programs.” As a language, HiLog thus 

 

Fig. 1. Non-compositional, simplified Prolog metamodel   

Fig. 2.Non-compositional simplified HiLog metamodel. 
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reuses Prolog in three ways. First it reuses its lexical categories constant and 
variable. Second it reuses its functional roles functor, argument and 
connective. Third it reuses its syntactic rules to build clauses from terms and 
connectives and to build programs from clauses. However, HiLog reuses Prolog by 
generalizing it: the HiLog syntactic rules to build terms from constants, variables and 
programs fulfilling the functor and argument roles of a term are less restrictive than 
the corresponding rules in Prolog. Thus, every Prolog term (respectively clause and 
program) is also a HiLog term (respectively clause and program), but the converse is 
false. Focusing for the sake of clarity at the term level, this reuse and generalize 
relation between HiLog and Prolog is summarized in Fig. 3. What we want to 
precisely capture is the following: 

1. Each element E (meta-class or meta-association) in the Prolog metamodel 
package that represents a construct that is exactly the same in Prolog and HiLog 
shall be available from the HiLog metamodel without need for redefinition; 

2. Each element E (meta-class or meta-association) defined in the HiLog metamodel 
package that was already defined in the Prolog package is a new element 
HiLog::E that generalizes Prolog::E.  

3. A new element G (meta-class or meta-association) defined in the Hilog 
metamodel package can generalize an element S (meta-class or meta-association) 
already defined in the Prolog package, i.e, HiLog::G can generalize 
Prolog::S.  

 
So in the example of Fig. 3, we want: 

 The Term, NonFunctionalTerm, Constant and Program3 meta-
classes of the Prolog package to be reusable “as is” by elements of the HiLog 
package; 

 The LogicalAtom meta-class and the arg and functor meta-associations 
of the Prolog package to be become specializations of the new LogicalAtom 
meta-class and the arg and functor meta-associations of the HiLog package 
(respectively). 

 The LogicalArgument meta-class can generalize the meta-classes Term and 
Program already defined in Prolog package.  

In the following subsections, we examine whether any of the three metamodel 
package composition facilities provided by MOF 2.0 can capture such relation.  

3.4 Should the HiLog Metamodel Import the Prolog Metamodel? 

In the MOF standard [11] the package import mechanism is defined as “a 
relationship that allows the use of unqualified names to refer to package members 
from other namespaces”. It is a one-way relationship: when a package P imports a 

                                                 
3 Omitted from Fig. 3 but linked to LogicalAtom through association navigation in Fig. 1 

and Fig. 2. 
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package Q, the elements of P can be linked to the elements of Q but not vice-versa.  
In our case, since we want to reuse Prolog package elements in the HiLog package, 
the only possible direction is to import the Prolog package from the HiLog 
package. In that direction, import fulfills the reuse part of our reuse and generalize 
need. However it then also prevents the fulfillment of the generalize part. This is 
illustrated in Fig. 4. The Term meta-class of the Prolog package cannot be linked as 
needed to the LogicalArgument of the HiLog package meta-class by a 
specialization association, for it would break the unidirectionality of the import 
dependency between the two packages.   
 

TermLogicalAtom

Constant

1

+functor

1

1

+arg

*

NotFunctionalTerm

LogicalArgumentLogicalAtom

1

+arg

1
1

+functor

*

Term Program

Prolog

Hilog

Reuse and Generalize

 
Fig. 3. Reuse and Generalize relationship between HiLog and Prolog 

 
Fig. 4.  Import cannot stand for reuse and generalize. 
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3.5 Should the Prolog Metamodel Be Merged Within the HiLog Metamodel?  

The merge mechanism has been first defined in the UML2.0 Infrastructure [12]. 
Merging a package Q within a package P can be understood as an “alias” equivalent 
to the following action sequence: (1) for each element (meta-class or meta-
association) E of the merged package Q, create a copy E’ of E in the merging package 
P; (2) Import Q from P; and (3) for each copied element E, create an inheritance 
association that states that its copy E’ specializes E. 

In our case, since we want to reuse the Prolog package in the HiLog package, our 
only option is to merge the Prolog package within the HiLog package. The result of 
doing so is illustrated in Fig. 5. Let us now examine whether it fulfills the two 
requisites for our reuse and generalize need. Just as import (that merge in effect 
extends), merge fulfills the reuse part but it fails to fulfill the generalize part. For 
example, in the merged metamodel, the HiLog::Term meta-class specializes the 
Prolog::Term meta-class. But in fact it should generalize it since everywhere a HiLog 
term can appear in a HiLog program, a Prolog term is also valid, but some HiLog 
terms are not valid in some places where a Prolog term can appear in a Prolog 
program. In fact, merge can only be used to fulfill a reuse and specialize need, but not 
a reuse and generalize need as in the case of Prolog and HiLog.  

3.6 Should the Prolog Metamodel Be Combined with the HiLog Metamodel?  

As the merge relationship defined in the UML2.0 Infrastructure brings a lot of 
inheritance between elements of the merging and merged packages, MOF2.0 defined 
a variant relationship, historically named combine [11]. This relationship is also 
defined in the latest UML2.0 Superstructure [13], under a different name: package 
merged. To distinguish it more clearly from merge, we will use its historical 
combined name in the rest of the paper. In the previous section, we saw that merge 
is a complex operation that can be decomposed in three basic steps: (a) copy, (b) 
import and (c) inherit. Combine differs from merge in that it only performs the first 
“copy” step. At first, it seems adequate to fulfill our reuse and generalize need, since 
we saw that with merge, the reuse part was fulfilled by the “copy” step but the 
generalize part was made impossible by the “inherit” step that was in the wrong 
direction. However, consider the situation where a meta-association A occurs both (a) 
between meta-classes C and D in the package Q to reuse and (b) between C and a 
generalization G of D in receiving package P. This a standard situation when using 
combine to fulfill a reuse and generalize need. It is illustrated in Fig. 6. where the 
same meta-association arg links the meta-class LogicalAtom to the meta-class 
Term in the Prolog package to reuse, while it links the same meta-class 
LogicalAtom to the meta-class LogicalArgument that generalizes Term in the 
receiving HiLog package. In such cases, the package resulting from combining Q 
with P is not a valid MOF 2.0 metamodel since it includes two meta-associations with 
the same name A that links the same meta-class C to two distinct meta-classes G and 
D.  This is illustrated in Fig. 7 that shows the package resulting from combining the 
Prolog and HiLog packages. In this example, two copies of the arg meta-association 
link the meta-class LogicalAtom to two distinct meta-classes, 
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LogicalArgument and Term, and two copies of the functor meta-association 
also link of LogicalAtom to both the Term and Constant meta-classes. The 
resulting metamodel is thus invalid. 

3.7 Our Proposal: A New Metamodel Assembly Facility 

Since none of the three metamodel package assembly facilities currently provided 
either MOF 2.0 or UML 2.0 can satisfactorily fulfill a pervasive need for 
compositional metamodeling, we propose a fourth one that we call reuse and 
generalize. It is based on combine but corrects the flaw that we identified in the 
latter for reusing while generalizing elements of a metamodel package Q into another 
package P. This facility creates a new resulting package that assembles elements from 
P and Q by the following action sequence: 

1. For each element (meta-class or meta-association) E appearing in either packages 
Q and P, create a copy E’ of E in the resulting package R. 

2. Whenever this results in conflicting pairs of meta-associations with the same 
name, one linking a meta-class C to a meta-class G and another linking a meta-
class C to specialization D of G, delete the latter. 

 

TermLogicalAtom

Constant

1

+functor

1

1

+arg

*

NotFunctionalTerm

LogicalArgumentLogicalAtom

1

+arg

1
1

+functor *
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Hilog
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1
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1
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1

+functor
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Fig. 5.  Merge cannot stand for reuse and generalize. 
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Fig. 6.  Input packages of combine and of reuse and generalize. 

LogicalArgumentLogicalAtom
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1
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Fig. 7. Resulting package of combine and of reuse and generalize. 
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The result of reuse and generalize the Prolog package in the HiLog 
package in shown in the same Fig. 7, together with the result of combined. The 
difference is the crossed-over links, present with combined but absent with reuse 
and generalize. The latter thus contains only a single arg meta-association that 
links the LogicalAtom meta-class to the LogicalArgument meta-class and a 
single functor meta-association that links LogicalAtom to the Term meta-class. 
It is thus a valid MOF 2.0 metamodel that reuses the Prolog metamodel while 
generalizing it elements in the resulting HiLog metamodel. Note that the HiLog 
package that forms the second input to this reuse and generalize 
transformation is not a HiLog metamodel for it captures only the constructs proper to 
HiLog that define how it extends Prolog. The current version of the whole Flora 
metamodel was assembled from nine packages and sub-packages linked together by 
two instances of import and seven instances of  reuse and generalize. 

4 Related Work 

Using a subset of the UML structural infrastructure similar to MOF, Clark et al. [5] 
proposed two new package assembly facilities. The first that they call “merge”, but 
that is distinct from the merge of MOF, addresses the case of the same meta-class 
occurring in the two packages to assemble. In the “merging” package, the meta-
attributes and meta-associations of such meta-class becomes the union of those in its 
occurrences in the two “merged” packages. The second facility, called renaming 
allows equating the names of two elements with two distinct names in the two 
packages prior to a “merge”. Later, the same authors [6] proposed a Metamodeling 
Framework using a language that is distinct from MOF and that allows the definition 
of parametric model elements templates. This framework includes package 
specialization assembly facilities that deal with such templates. 

Addressing the same issue, Ledeczi [9] proposed three assembly facilities: one that 
is much similar to Clark et al.’s “merge”, one that restricts the union of the meta-class 
elements in the “merging” package to its attributes and containment associations in 
the “merged” package, and one that restricts it to its complementary non-containment 
associations. 

Mens et al. [10] proposed package assembly facilities for collaborative diagrams. 
Since such diagrams are not used at the metamodeling level, these facilities do not 
seem to be easily applicable to metamodel assembly issues.  

In short, none of the facilities proposed in these works addresses the specific reuse 
and generalize need that we identified.  

5 Conclusion 

Many powerful computational languages and platforms result from a historical 
process of gradually extending an initial core with largely orthogonal and 
complementary constructs inspired from other languages. There are great benefits to 
metamodeling such languages and platforms in a compositional way that reflects this 



674           Xavier Blanc, Franklin Ramalho, and Jacques Robin 

historical maturation and clearly separates concerns. When doing so, one immediately 
feels the need for a metamodel package assembly facility that allows both reusing the 
elements of two basic packages, each one focused on a single concern, and 
generalizing them in a resulting package that captures their integration. In this paper, 
we have shown that none of the three metamodel assembly facilities currently 
provided by MOF and UML fulfills such need: 

 Import  because it prohibits imported elements to specialize elements of the 
importing package; 

 Merge because it implicitly makes the reused elements generalizations instead of 
specializations of the new ones; 

 Combine because when a reused meta-class is generalized, its meta-associations 
are not generalized, but instead duplicated at the level of its generalization, 
resulting in an invalid model.  

We thus proposed a new reuse and generalize facility that is inspired 
from combine but that correctly generalizes instead of duplicating meta-associations 
in such cases. The ever widening scope of MDD is likely to reveal many other 
metamodel reuse needs beyond the “reuse as is” and “reuse and specialize” currently 
provided by MOF and the “reuse and generalize” addressed in this paper. In future 
work, we intend to create a catalog of metamodel reuse needs and to identify how 
these needs can be addressed by a minimal set of primitive reuse operators together 
with an algebra that defines semantically sound complex compositions of such 
operators.  
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