

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 661-675, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Metamodel Reuse with MOF

Xavier Blanc, Franklin Ramalho1 and Jacques Robin2

Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie (LIP6-UMPC)
8, Rue du Capitaine Scott, 75015 Paris, France

xavier.blanc@lip6.fr, franklin.ramalho@gmail.com,
robin.jacques@gmail.com

Abstract. As model-driven development promotes metamodels as key assets it
raises the issue of their reuse throughout a model-driven product line life cycle.
One recurrent reuse need occurs when metamodeling integrated multi-language
platforms: one construct from one language is integrated to constructs from
other languages by generalizing it, making it more expressive. None of the
metamodel assembly facilities provided by MOF and UML (import, merge
and combine) or others proposed in previous work adequately addresses this
need. We thus propose a new reuse and generalize facility for such
purpose.

1 Introduction

Model Driven Development (MDD) raises the level of abstraction of the development
life cycle by shifting its emphasis from code to models, metamodels and model
transformations. It views any software artifact produced at any step of the
development process as a valuable asset by itself to reuse across different applications
and implementation platforms so as to cut the cost of future development efforts.
Since they drive much of the MDD process, metamodels are the first artifact to reuse
when an MDD team extends its portfolio of application domains, product
requirements or target implementation platforms. However, the issue of metamodel
reuse has not yet received much attention in the MDD literature. The reuse facilities
provided by standards such as MOF 2.0 [11] and UML 2.0 [12] [13] or proposed in
previous research on the topic [5][6][9][10] are essentially limited to two simple reuse
needs. The first is reuse as is through inter-package visibility facilities such as
package import in MOF or copy and paste transformations such as package
combine in MOF. The second is reuse as specialization through inheritance
facilities such as package merge in UML 2.0. As larger, more complex metamodels
get constructed and then incrementally extended during their lifecycle, a diversity of

1 Now at Departamento de Sistemas de Computação, Universidade Federal de Campina Grande (DSC-

UFCG) Campina Grande, PB, Brazil and Centro de Informática, Universidade Federal de Pernambuco
(CIn-UFPE), Recife, PE, Brazil.

2 Now at Centro de Informática, Universidade Federal de Pernambuco (CIn-UFPE), Recife, PE, Brazil.

mailto:xavier.blanc@lip6.fr
mailto:franklin.ramalho@gmail.com
mailto:robin.jacques@gmail.com

662 Xavier Blanc, Franklin Ramalho, and Jacques Robin

more sophisticated metamodel reuse needs is emerging. They prompt the definition of
new metamodeling assembly facilties to address them and proposals to incorporate
these facilities in MOF.

In this paper, we identify one such more sophisticated metamodel reuse need that
we call reuse and generalize, and we propose a new metamodeling assembly facility
that addresses it. This need is pervasive for various classes of metamodeling tasks.
One such class is metamodeling multi-paradigm languages that historically result
from successive extensions of a mono-paradigm core with constructs imported from
other paradigms and adapted from integration. Another such class is metamodeling
integrated multi-language platforms that support development in several languages
that are conceptually integrated (as opposed to just loosely coupled through
communication interfaces). In such cases, constructs from different languages have
been extended or integrated by generalizing them so as to subsume constructs from
other languages. Historically, such situation occurred many times over for example
when defining concurrent or object-oriented extensions of imperative, functional or
logic programming languages. It is currently occurring again as distributed, XML-
based extensions of many languages are being defined.

The paper is organized as follows. In the next section, we advocate a compositional
approach to metamodeling multi-paradigm languages or integrated multi-language
platforms. With such an approach, metamodels of minimal size with potential for
reuse are first built separately and then assembled in a way that mirrors how
constructs from each paradigm or language are reused in the integrated whole. We
identify and discuss five general benefits of such an approach in subsection 2.3. To
make our points concrete, we illustrate these benefits, as well as all the subsequent
points we make throughout the paper, on a specific case study: metamodeling the
Flora platform [18]. Prior to discussing these points, we thus have to introduce the
necessary background on Flora and then motivate having chosen it for the case study.
We respectively do so in subsections 2.1 and 2.2. Briefly, metamodeling Flora is an
interesting illustrative case study because it supports in an integrated way several
languages and paradigms and it is a versatile platform that supports programming,
meta-programming, reasoning, meta-reasoning as well as data and metadata
definition, updates and queries.

Since Flora is such a comprehensive platform that results from a long, multi-step
integration process, starting from section 3, we focus the scope of our illustrative
examples on only one such step: the integration of first-order logic programming in
Prolog with meta-programming based on high-order variables, resulting in HiLog.
Subsections 3.1 and 3.2 thus respectively present simplified metamodels of these two
languages supported by Flora. Subsection 3.3 then further zooms on only the relevant
elements of theses two metamodels that we use to illustrate the general need to reuse
and generalize metamodel elements. This example involves reusing elements
metamodeling first-order predicates to metamodel their generalization as high-order
predicates. In the subsequent subsections 3.4 to 3.6 we explain in detail why none of
the three package assembly facilities provided the MOF 2.0 and UML 2.0 standard
(import, merge and combined) can be used to address such reuse need. In
subsection 3.7, we propose a fourth package assembly specifically designed for such
need that we thus call reuse and generalize. In section 4, we review the

Metamodel Reuse with MOF 663

literature in metamodel reuse and show that none of the proposals put forward to date
address such a need. In section 5, we conclude by summarizing our contributions.

2 Metamodeling Integrated Multi-language Platforms

In this section, we first present the main characteristics and historical genesis of the
Flora multi-language, multi-paradigm and multi-purpose platform. Metamodeling
Flora is the larger case study from which we extracted the examples that we use
throughout the paper to illustrate the general points that we make on metamodel
reuse. We then motivate the choice of such metamodeling task as illustrative case
study. We take the opportunity to point out the mutual synergy that exists between
MDD and platforms integrating multiple concepts and services such as Flora. Finally,
we advocate a compositional approach to metamodeling such platforms by identifying
five benefits that it provides and illustrating each of them on the Flora metamodeling
case study.

2.1 Flora: An Integrated Multi-language, Multi-purpose Platform

Flora implements a subset of the language Concurrent Transaction Frame Logic
(CTFL). Syntactically, CTFL integrates constructors from: (a) logic programming, (b)
object-oriented programming, (c) imperative programming and (d) concurrent
programming. Semantically, it provides declarative formal accounts of all these
constructs by way of logical model theories. Historically, CTFL and Flora result from
a 15 year research effort to overcome the failings of ISO Prolog to fulfill the original
logic programming ideal: a language with declarative logical semantics that is
simultaneously (a) a practical Turing-complete programming language, (b) an
expressive knowledge representation language and (c) a concise data definition,
update and query language. From its root in Prolog, CTFL evolved incrementally, as
a series of largely orthogonal extensions, each one providing a semantically well-
founded logical alternative to the extra-logical predicates of Prolog that betrayed the
original logic programming ideal. This evolution had six main steps:

1. Extending Prolog with the logically Well-Founded Negation as Failure
(WFNAF) connective;

2. HiLog (HL), extending Prolog with high-order syntax inspired from functional
programming for meta-level programming, reasoning and querying but with first-
order logical semantics [4]

3. Transaction Logic (TL), extending Prolog with logically well-founded
backtrackable knowledge base updates and procedural constructs such as
conditionals and loops [2];

4. Frame Logic (FL), extending HiLog with an object-oriented syntax [8] and
logical semantics for single-source multiple structural and behavioral inheritance
integrated with deduction [17];

5. Concurrent Transaction Logic (CTL), extending Transaction Logic with multiple
threads, critical sections and inter-thread messages [3].

664 Xavier Blanc, Franklin Ramalho, and Jacques Robin

The Flora platform implements extensions 1-4 above, i.e., Sequential Transaction
Frame Logic (STFL). It does so reusing the XSB Prolog platform that already
implements extensions 1-2. Flora has two main components: the Flora Compiler that
transforms an STFL program onto an optimized XSB Prolog program, and the Flora
Shell, a front-end for queries in STFL that transforms STFL queries into semantically
equivalent XSB queries, calls XSB to answer them and passes the answers back to the
user in STFL syntax.

2.2 The Synergy Between MDD and Integrated Multi-language Platform

From an MDD perspective, a platform such as Flora that is multi-language, multi-
paradigm and multi-purpose is very interesting in that it raises the possibility to rely
on a single platform to (a) run a prototype to validate functional requirements of an
application with the users, (b) run the same prototype to test its correctness on a set of
specific cases, but also (c) query the same prototype to formally verify general
properties that abstract from any set of specific cases, thus providing stronger
robustness guarantees. Performing such verification on an implementation allows
circumventing the major loophole of traditional formal development that relies on two
different languages (one formal but non-executable for modeling and one executable
but with no clear semantics for programming) and two different platforms (one for
model validation and verification, and one for implementation execution and testing):
namely the reintroduction of semantic errors while programming a verified model.
We are currently exploring this possibility in the on-going MODELOG project [15]
which investigates the development of a CASE tool for MDD providing a variety of
services. Chief among these services is the fully automated generation of Flora code
from UML models that consist of OCL annotated class and activity diagrams linked
together through object flows. In order to develop this CASE tool for MDD using
MDD itself, the first two steps of the MODELOG project are (1) developing a
metamodel of the target platform Flora and (2) specify model transformations as
QVT[14] relations between elements of this target metamodel and the source UML
and OCL metamodels made available by the OMG. It is while carrying out the first
task that we identified and addressed the metamodeling reuse issues presented in this
paper.

2.3 Compositional Metamodeling and Its Benefits

For metamodeling languages and platforms that tightly integrate multiple paradigms
and purposes, we advocate a compositional approach that faithfully mirrors their
structure as a simple core and a set of largely orthogonal and complementary
extensions. With such an approach, one starts by independently metamodeling the
core and each extension in a separate package, to then assemble them together. So for
example, when we applied this approach to the case of Flora, we developed one
separate metamodel package for (1) First-order logical terms that are common to
Prolog and many other logic and rule-based languages, (2) Prolog programs and
clauses that reuses the logical terms package, and (3) each orthogonal extension of
either logical terms or Prolog clauses used in CTFL programs. From such minimal

Metamodel Reuse with MOF 665

metamodel units, larger metamodels for HL, STL, CTL, FL, SFTL (i.e., for Flora) and
CTFL can then be obtained through assembly. This compositional approach brings
five clear benefits. The first is cognitive complexity management for such large meta-
modeling tasks. For example, the fully assembled Flora metamodel contains over 275
elements. Hence, much simplicity was gained by decomposing it into nine packages.
The second benefit is the creation of valuable course didactic assets that visually
contrast basic language concepts and platform services and clarify the many different
ways in which they can be integrated. For example, the compositional Flora
metamodel is such an asset for teaching the distinct principles and complementary
strengths of logic, object-oriented and imperative language concepts for
programming, knowledge representation and data manipulation. The third benefit is
the reusability of minimal metamodel units for other languages or platforms. For
example, we have already reused the first-order logical term package of the Flora
metamodel to build a metamodel of the language Constraint Handling Rules [7]. The
fourth benefit is to provide a sound basis for representing integration semantics in
UML and OCL which are more accessible than the mathematical notations generally
used for such task. In the case of Flora, while each of its sub-language possesses
denotational and operational semantics, the unification of theses into a single
framework is still incomplete; metamodeling the semantics of each sub-language
should bring valuable insights towards such unification. The fifth benefit of
compositional metamodeling is compiler MDD based on model transformations. For
example the Flora to XSB compiler could be specified as a set of declarative QVT
relations [14] between elements of the STFL and HiLog metamodels.

These benefits are pervasive since many modern, powerful languages result, like
Flora does, from successive and partially orthogonal extensions from an initial simple
core. For example, the semantic web language standards put forward by the World
Wide Web consortium (W3C) also evolved this way: an initial core, RDF [1] was
successively extended to yield RDFS, DAML, DAML-OIL, and finally OWL [16]. In
addition, all these languages reuse the syntactic core XML syntax, and DAML-OIL
itself resulted from the integration of DAML with OIL.

3 Illustrative Case-Study: HiLog as an Extension of Prolog

While we assembled the minimal unit metamodel packages into the whole Flora
metamodel, we were confronted several times with the need to reuse metamodel
elements from one package while generalizing them in the package assembly. We
now explain why such reuse need cannot be addressed by the facilities currently
provided by the MOF 2.0 and UML 2.0 standards by focusing on a single assembly
step: the one that takes as input the Prolog metamodel and a metamodel of high-order
predicates and that results in the HiLog metamodel. We first present (simplified) non-
compositional versions of the Prolog and HiLog metamodels and explain their main
concepts. We then further zoom on only the relevant elements in these metamodels
necessary to illustrate the reuse and generalize need, and successively show that
elements from the Prolog metamodel for first-order predicates cannot be reused and
generalized to define high-order predicates in the HiLog metamodel by using either

666 Xavier Blanc, Franklin Ramalho, and Jacques Robin

import, merge or combine. We then specify a new reuse and generalize
package facility and illustrate its use for such case.

3.1 A Non-compositional Simplified Metamodel of Prolog

The non-compositional, simplified Prolog metamodel is shown in Fig. 1. It shows that
a Prolog program is a set of clauses, with each clause consisting of a premise that is a
Prolog query and a single conclusion that is a first-order logic atom. A Prolog query is
a tree of arbitrary depth which leaves are first-order logic atoms and which non-leaf
nodes are one of the two logical connectives and or or. A first-order logic atom is
also a tree of arbitrary depth which leaves are either constant symbols or first-order
variables, and which non-leaf nodes can only be constant symbols. Each sub-tree is a
called a logical term, which root is called the functor of the term and which depth one
sub-trees are called its arguments. Non-functional terms are depth zero sub-trees and
opposed to functional terms which depth is at least one. A ground term is a sub-tree of
arbitrary depth that is free of variables.

3.2 A Non-compositional, Simplified Metamodel of HiLog

High-Order Logic (HiLog) extends Prolog with high-order syntactic sugar while
semantically remaining first-order. At the program, clause and query levels, HiLog
follows exactly the same construction rules as Prolog. The former extends the latter
only at the lower logical atom level. The extension is twofold: (1) HiLog, allows
programs in addition to terms as arguments, and (2) HiLog allows arbitrary terms
(functional or not, ground or not) as functors instead of restricting them to constant
symbols (i.e., non-functional ground terms) as Prolog does.

For example, P(f(X))(G(Y), (G, c :- X, p(Y(P)))). is a valid HiLog term but not a
Prolog term for three reasons: (1) its functor is a compound term P(f(X)), (2) its first
argument's functor is a variable G and (3) its second argument is a program made of
two clauses, G. and c :- X, p(Y(P)). HiLog extends Prolog with meta-programming,
meta-reasoning and metadata definition and query facilities within the logical
paradigm under well-defined first-order declarative semantics. It brings to logic
programming the high-order syntax that is key to the versatility of functional
programming. In the HiLog metamodel of Fig. 2 the first of the two ways in which
HiLog extends Prolog is reflected by the fact that the functor meta-association
outgoing from the FunctionalTerm meta-class targets the Term meta-class,
instead of the Constant meta-class as in the Prolog metamodel. The second
extension is reflected by the introduction of the new meta-class LogicalArgument
as the target of the arg meta-association outgoing from the LogicalAtom meta-
class. This new LogicalArgument meta-class generalizes the two meta-classes
FunctionalTerm and Program.

Metamodel Reuse with MOF 667

3.3 Reusing and Generalizing Metamodel Elements from Prolog in HiLog

The relation between HiLog and Prolog can be summarized as follows: “A HiLog
program is a Prolog program, except that, (a) the functor of the atoms of its clauses
can recursively be compound and/or non-ground terms and (b) the arguments of the
atoms of its clauses can recursively be HiLog programs.” As a language, HiLog thus

Fig. 1. Non-compositional, simplified Prolog metamodel

Fig. 2.Non-compositional simplified HiLog metamodel.

668 Xavier Blanc, Franklin Ramalho, and Jacques Robin

reuses Prolog in three ways. First it reuses its lexical categories constant and
variable. Second it reuses its functional roles functor, argument and
connective. Third it reuses its syntactic rules to build clauses from terms and
connectives and to build programs from clauses. However, HiLog reuses Prolog by
generalizing it: the HiLog syntactic rules to build terms from constants, variables and
programs fulfilling the functor and argument roles of a term are less restrictive than
the corresponding rules in Prolog. Thus, every Prolog term (respectively clause and
program) is also a HiLog term (respectively clause and program), but the converse is
false. Focusing for the sake of clarity at the term level, this reuse and generalize
relation between HiLog and Prolog is summarized in Fig. 3. What we want to
precisely capture is the following:

1. Each element E (meta-class or meta-association) in the Prolog metamodel
package that represents a construct that is exactly the same in Prolog and HiLog
shall be available from the HiLog metamodel without need for redefinition;

2. Each element E (meta-class or meta-association) defined in the HiLog metamodel
package that was already defined in the Prolog package is a new element
HiLog::E that generalizes Prolog::E.

3. A new element G (meta-class or meta-association) defined in the Hilog
metamodel package can generalize an element S (meta-class or meta-association)
already defined in the Prolog package, i.e, HiLog::G can generalize
Prolog::S.

So in the example of Fig. 3, we want:

 The Term, NonFunctionalTerm, Constant and Program3 meta-
classes of the Prolog package to be reusable “as is” by elements of the HiLog
package;

 The LogicalAtom meta-class and the arg and functor meta-associations
of the Prolog package to be become specializations of the new LogicalAtom
meta-class and the arg and functor meta-associations of the HiLog package
(respectively).

 The LogicalArgument meta-class can generalize the meta-classes Term and
Program already defined in Prolog package.

In the following subsections, we examine whether any of the three metamodel
package composition facilities provided by MOF 2.0 can capture such relation.

3.4 Should the HiLog Metamodel Import the Prolog Metamodel?

In the MOF standard [11] the package import mechanism is defined as “a
relationship that allows the use of unqualified names to refer to package members
from other namespaces”. It is a one-way relationship: when a package P imports a

3 Omitted from Fig. 3 but linked to LogicalAtom through association navigation in Fig. 1

and Fig. 2.

Metamodel Reuse with MOF 669

package Q, the elements of P can be linked to the elements of Q but not vice-versa.
In our case, since we want to reuse Prolog package elements in the HiLog package,
the only possible direction is to import the Prolog package from the HiLog
package. In that direction, import fulfills the reuse part of our reuse and generalize
need. However it then also prevents the fulfillment of the generalize part. This is
illustrated in Fig. 4. The Term meta-class of the Prolog package cannot be linked as
needed to the LogicalArgument of the HiLog package meta-class by a
specialization association, for it would break the unidirectionality of the import
dependency between the two packages.

TermLogicalAtom

Constant

1

+functor

1

1

+arg

*

NotFunctionalTerm

LogicalArgumentLogicalAtom

1

+arg

1
1

+functor

*

Term Program

Prolog

Hilog

Reuse and Generalize

Fig. 3. Reuse and Generalize relationship between HiLog and Prolog

Fig. 4. Import cannot stand for reuse and generalize.

670 Xavier Blanc, Franklin Ramalho, and Jacques Robin

3.5 Should the Prolog Metamodel Be Merged Within the HiLog Metamodel?

The merge mechanism has been first defined in the UML2.0 Infrastructure [12].
Merging a package Q within a package P can be understood as an “alias” equivalent
to the following action sequence: (1) for each element (meta-class or meta-
association) E of the merged package Q, create a copy E’ of E in the merging package
P; (2) Import Q from P; and (3) for each copied element E, create an inheritance
association that states that its copy E’ specializes E.

In our case, since we want to reuse the Prolog package in the HiLog package, our
only option is to merge the Prolog package within the HiLog package. The result of
doing so is illustrated in Fig. 5. Let us now examine whether it fulfills the two
requisites for our reuse and generalize need. Just as import (that merge in effect
extends), merge fulfills the reuse part but it fails to fulfill the generalize part. For
example, in the merged metamodel, the HiLog::Term meta-class specializes the
Prolog::Term meta-class. But in fact it should generalize it since everywhere a HiLog
term can appear in a HiLog program, a Prolog term is also valid, but some HiLog
terms are not valid in some places where a Prolog term can appear in a Prolog
program. In fact, merge can only be used to fulfill a reuse and specialize need, but not
a reuse and generalize need as in the case of Prolog and HiLog.

3.6 Should the Prolog Metamodel Be Combined with the HiLog Metamodel?

As the merge relationship defined in the UML2.0 Infrastructure brings a lot of
inheritance between elements of the merging and merged packages, MOF2.0 defined
a variant relationship, historically named combine [11]. This relationship is also
defined in the latest UML2.0 Superstructure [13], under a different name: package
merged. To distinguish it more clearly from merge, we will use its historical
combined name in the rest of the paper. In the previous section, we saw that merge
is a complex operation that can be decomposed in three basic steps: (a) copy, (b)
import and (c) inherit. Combine differs from merge in that it only performs the first
“copy” step. At first, it seems adequate to fulfill our reuse and generalize need, since
we saw that with merge, the reuse part was fulfilled by the “copy” step but the
generalize part was made impossible by the “inherit” step that was in the wrong
direction. However, consider the situation where a meta-association A occurs both (a)
between meta-classes C and D in the package Q to reuse and (b) between C and a
generalization G of D in receiving package P. This a standard situation when using
combine to fulfill a reuse and generalize need. It is illustrated in Fig. 6. where the
same meta-association arg links the meta-class LogicalAtom to the meta-class
Term in the Prolog package to reuse, while it links the same meta-class
LogicalAtom to the meta-class LogicalArgument that generalizes Term in the
receiving HiLog package. In such cases, the package resulting from combining Q
with P is not a valid MOF 2.0 metamodel since it includes two meta-associations with
the same name A that links the same meta-class C to two distinct meta-classes G and
D. This is illustrated in Fig. 7 that shows the package resulting from combining the
Prolog and HiLog packages. In this example, two copies of the arg meta-association
link the meta-class LogicalAtom to two distinct meta-classes,

Metamodel Reuse with MOF 671

LogicalArgument and Term, and two copies of the functor meta-association
also link of LogicalAtom to both the Term and Constant meta-classes. The
resulting metamodel is thus invalid.

3.7 Our Proposal: A New Metamodel Assembly Facility

Since none of the three metamodel package assembly facilities currently provided
either MOF 2.0 or UML 2.0 can satisfactorily fulfill a pervasive need for
compositional metamodeling, we propose a fourth one that we call reuse and
generalize. It is based on combine but corrects the flaw that we identified in the
latter for reusing while generalizing elements of a metamodel package Q into another
package P. This facility creates a new resulting package that assembles elements from
P and Q by the following action sequence:

1. For each element (meta-class or meta-association) E appearing in either packages
Q and P, create a copy E’ of E in the resulting package R.

2. Whenever this results in conflicting pairs of meta-associations with the same
name, one linking a meta-class C to a meta-class G and another linking a meta-
class C to specialization D of G, delete the latter.

TermLogicalAtom

Constant

1

+functor

1

1

+arg

*

NotFunctionalTerm

LogicalArgumentLogicalAtom

1

+arg

1
1

+functor *

Term

Program

Prolog

Hilog

« import »

1

+arg

1

Constant

NotFunctionalTerm

1

+functor

*

Fig. 5. Merge cannot stand for reuse and generalize.

672 Xavier Blanc, Franklin Ramalho, and Jacques Robin

Fig. 6. Input packages of combine and of reuse and generalize.

LogicalArgumentLogicalAtom

1

+arg

11

+functor

*
Term Program

Hilog

Constant

NotFunctionalTerm

1

+arg *

1

+functor

1

Fig. 7. Resulting package of combine and of reuse and generalize.

Metamodel Reuse with MOF 673

The result of reuse and generalize the Prolog package in the HiLog
package in shown in the same Fig. 7, together with the result of combined. The
difference is the crossed-over links, present with combined but absent with reuse
and generalize. The latter thus contains only a single arg meta-association that
links the LogicalAtom meta-class to the LogicalArgument meta-class and a
single functor meta-association that links LogicalAtom to the Term meta-class.
It is thus a valid MOF 2.0 metamodel that reuses the Prolog metamodel while
generalizing it elements in the resulting HiLog metamodel. Note that the HiLog
package that forms the second input to this reuse and generalize
transformation is not a HiLog metamodel for it captures only the constructs proper to
HiLog that define how it extends Prolog. The current version of the whole Flora
metamodel was assembled from nine packages and sub-packages linked together by
two instances of import and seven instances of reuse and generalize.

4 Related Work

Using a subset of the UML structural infrastructure similar to MOF, Clark et al. [5]
proposed two new package assembly facilities. The first that they call “merge”, but
that is distinct from the merge of MOF, addresses the case of the same meta-class
occurring in the two packages to assemble. In the “merging” package, the meta-
attributes and meta-associations of such meta-class becomes the union of those in its
occurrences in the two “merged” packages. The second facility, called renaming
allows equating the names of two elements with two distinct names in the two
packages prior to a “merge”. Later, the same authors [6] proposed a Metamodeling
Framework using a language that is distinct from MOF and that allows the definition
of parametric model elements templates. This framework includes package
specialization assembly facilities that deal with such templates.

Addressing the same issue, Ledeczi [9] proposed three assembly facilities: one that
is much similar to Clark et al.’s “merge”, one that restricts the union of the meta-class
elements in the “merging” package to its attributes and containment associations in
the “merged” package, and one that restricts it to its complementary non-containment
associations.

Mens et al. [10] proposed package assembly facilities for collaborative diagrams.
Since such diagrams are not used at the metamodeling level, these facilities do not
seem to be easily applicable to metamodel assembly issues.

In short, none of the facilities proposed in these works addresses the specific reuse
and generalize need that we identified.

5 Conclusion

Many powerful computational languages and platforms result from a historical
process of gradually extending an initial core with largely orthogonal and
complementary constructs inspired from other languages. There are great benefits to
metamodeling such languages and platforms in a compositional way that reflects this

674 Xavier Blanc, Franklin Ramalho, and Jacques Robin

historical maturation and clearly separates concerns. When doing so, one immediately
feels the need for a metamodel package assembly facility that allows both reusing the
elements of two basic packages, each one focused on a single concern, and
generalizing them in a resulting package that captures their integration. In this paper,
we have shown that none of the three metamodel assembly facilities currently
provided by MOF and UML fulfills such need:

 Import because it prohibits imported elements to specialize elements of the
importing package;

 Merge because it implicitly makes the reused elements generalizations instead of
specializations of the new ones;

 Combine because when a reused meta-class is generalized, its meta-associations
are not generalized, but instead duplicated at the level of its generalization,
resulting in an invalid model.

We thus proposed a new reuse and generalize facility that is inspired
from combine but that correctly generalizes instead of duplicating meta-associations
in such cases. The ever widening scope of MDD is likely to reveal many other
metamodel reuse needs beyond the “reuse as is” and “reuse and specialize” currently
provided by MOF and the “reuse and generalize” addressed in this paper. In future
work, we intend to create a catalog of metamodel reuse needs and to identify how
these needs can be addressed by a minimal set of primitive reuse operators together
with an algebra that defines semantically sound complex compositions of such
operators.

Acknowledgements

The research presented in this paper was sponsored by research grant 371/01 from CAPES-
COFECUB, by one doctoral research fellowship from CNPq, by the ModelWare project co-
funded by the European Commission under the "Information Society Technologies" Sixth
Framework Programme (2002-2006), and by the “Model Driven Development Integration”
(MDDi) project from the Eclipse Foundation. We would like to thank Marie-Pierre Gervais for
her insightful feedback on a preliminary version of this paper.

References

[1] Birbeck, M., Ozu, N. et al.: Professional XML. 2nd Ed. Wrox (2001)
[2] Bonner, A. and Kifer, M.: Transaction Logic Programming. Technical Report CSRI-323.

Computer Systems Research Institute, University of Toronto (1995)
[3] Bonner, A. and Kifer, M.: Concurrency and Communication in Transaction Logic. Joint

International Conference and Symposium on Logic Programming. Bonn, MIT Press (1996).
[4] Chen, W., Kifer, M. and Warren, D.S.: HiLog: A Foundation for High-Order Logic

Programming. Journal of Logic Programming. 15(3) (1993) 187-230
[5] Clark, T., Evans, A. and Kent, S.: A Metamodel for Package Extension with Renaming.

International Conference on the Unified Modeling Language (2002) 305-320

Metamodel Reuse with MOF 675

[6] Clark, T., Evans, A. and Kent, S.: Engineering Modelling Languages: A Precise
Metamodeling Approach. Fundamental Approaches to Software Engineering (FASE)
International Conference. Lecture Notes in Computer Science, Vol. 2306. Springer-Verlag
(2002) 159-173

[7] Frühwirth, T. and Abdennadher, S.: Essentials of Constraint Programming. Series:
Cognitive Technologies.Springer. (2003)

[8] Kifer, M., Lausen, G. and Wu, J.: Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM 42(4). (1995) 741-843.

[9] Ledeczi A, Nordstrom, G., Karsai, G., Volgyesi, P. And Maroti, M.: On Metamodel
Composition. Conference Control Applications, IEEE Press. Mexico City, Mexico (2001)
84-90

[10] Mens, T., Lucas, C. and Steyart, P.: Supporting Disciplined Reuse and Evolution of UML
Models. PSMT – Workshop on Precise Semantics for Software Modeling Techniques in
UML Conference. (1998) 378-392

[11] OMG.: The MOF 2.0 specification. http://www.omg.org/mof (2003)
[12] OMG.: The UML 2.0 Infrastructure specification. http://www.omg.org/uml (2003)
[13] OMG.: The UML 2.0 Superstructure specification. http://www.omg.org/uml (2003)
[14] The QVT-Merge Group. QVT 1.8.: Revised submission for OMG MOF 2.0

Query/Views/Transformations Request For Proposal. 2004.
[15] Ramalho, F., Robin, J. and Schiel, U.: Concurrent Transaction Frame Logic Formal

Semantics for UML Activity and Class Diagrams. Electronic Notes in Theoretical Computer
Science, 95(17). (2004)

[16] The World-Wide Web Consortium. Web Ontology Language.
http://www.w3.org/2004/OWL. 2004 (2004)

[17] Yang, G.: A Model Theory for Nonmonotonic Multiple Value and Code Inheritance in
Object-Oriented Knowledge Bases. PhD. Thesis, Computer Science Department, Stony
Brook University of New York. (2002)

[18] Yang, G., Kifer, M. and Zhao, C. FLORA-2: A Rule-Based Knowledge Representation
and Inference Infrastructure for the Semantic Web. 2nd International Conference on
Ontologies, Databases and Applications of Semantics (ODBASE), Catania, Italy. (2003)
671-688.

http://www.omg.org/mof
http://www.omg.org/uml
http://www.omg.org/uml
http://www.w3.org/2004/OWL. 2004

	1 Introduction
	2 Metamodeling Integrated Multi-language Platforms
	3 Illustrative Case-Study: HiLog as an Extension of Prolog
	4 Related Work
	5 Conclusion
	Acknowledgements
	References

