
Artifact or Process Guidance, an Empirical
Study

Marcos Aurélio Almeida da Silva1?, Alix Mougenot1??, Reda Bendraou1,
Jacques Robin1 and Xavier Blanc1

LIP6, UPMC Paris Universitas, France

Abstract. CASE tools provide artifact guidance and process guidance
to enhance model quality and reduce their development time. These two
types of guidance seem complementary since artifact guidance supports
defect detection after each iterative development step, while process guid-
ance supports defect prevention during each such step. But can this
intuition be empirically confirmed? We investigated this question by ob-
serving developers refactoring a UML model. This study attempted to
assess how general were the observations made by Cass and Osterweil on
the benefits of guidance to build such model from scratch. It turns out
that they do not generalize well: while their experiment observed a ben-
efit on quality and speed with process guidance (but none with artefact
guidance), we, in contrast, observed a benefit on quality at the expense
of speed with artefact guidance (but none with process guidance).

1 Introduction

CASE tools provide automated services that assist a development team to per-
form iterative artefact construction and revision more systematically, safely and
efficiently. Two key classes of such services are artifact guidance and process
guidance. The former assists developers to produce artifacts that conform to
some structural pattern, while the latter assists them in following a step-by-step
plan whose execution results in such pattern-conforming set of artefacts [?,?,?].

One key subclass of artifact guidance service is structural pattern violation
detection and diagnosis [?,?,?]1. One key subclass of process guidance consists
of plan deviation detection and diagnosis [?]. Intuitively, these respective sub-
classes of artefact guidance and process guidance seem to bring complementary
software quality gains, since the former focuses on defect detection after each
iterative development step, while the latter focuses on defect prevention during
each such step. But can this intuition be empirically confirmed? Do the two
together provide a quantitatively significative improvement over each of them
alone (and hopefully over no guidance whatsoever)? Beyond software quality,

? This work was partly funded by ANR project MOVIDA Convention N◦ 2008 SEGI
011.

?? This work was partly funded by the french DGA.
1 Another one is violation repair suggestion [?,?]



what are their respective and combined effects on development speed? Is the
time overhead involved in performing each of them alone or together clearly in-
ferior to the time they allow saving through artefact defect prevention and quick
correction?

Cass and Osterweil [?] pioneered the investigation of these crucial questions
through a first experiment in which 16 novice designers were asked to build
from scratch a UML class diagram that conformed to the MVC architectural
pattern[?]. The single quality metric used in this experiment was the degree of
conformance of the diagram to this pattern, as graded by a group of specialists;
and the single efficiency metric was the time spent building the diagram. These
parameters were measured for four subject subgroups that respectively used no
guidance, artifact guidance alone, process guidance alone and both guidance.
This experiment yielded one expected result, that following process guidance
alone significantly improved both the quality and efficiency metrics, and one
unexpected result, that no significative effect was measured for artifact guidance
on these metrics.

In this paper, we report on an experiment that furthers the Cass and Os-
terweil’s research by trying to generalize their results. In order to be able to
draw clear insights from our experiment, we designed it to differ from Cass and
Osterweil’s by a minimum two controlled features. The first is the starting point
of the experiment. We asked our subjects to refactor a given UML diagram that
did not conform to the MVC pattern into one that does, instead of building a
conform diagram from scratch. The second differing feature of our experiment
is the process guidance that we provided to the subjects. This was an unavoid-
able consequence of the first, since a refactor process obviously differs from a
construction one.

We kept the other features of our experiment, such as the dependent and
independent variables and the subject partitioning method, as similar as possi-
ble to those of the Cass-Osterweil experiment. While their experiment reported
significant benefits for process guidance but no effect for artifact guidance, ours
intriguingly reports completely different results: regarding artifact guidance, sig-
nificant negative effect in terms of efficiency but no significant effect in terms of
quality; regarding process guidance, no significant effect at all. It suggests that a
lot more experimental research is needed before we can clearly determine which
guidance is more beneficial under which circumstances.

For our experiment, we followed the empirical experiment protocol defined
in [?]. The rest of the paper follows the structure advocated by this protocol:
Section 2 presents the definition and planning of the empirical study. Section 3
presents its instrumentation. Section 4 presents our concrete realization of this
study and synthesizes our results. Finally, Section 5 we discuss our results before
concluding in Section 6.



2 Experiment definition and planning

In this section, we define the experiment following Wohlin’s approach [?]. Section
2.1 briefly defines the goal of our experiment. Section 2.2 presents the decisions
we took when planning this experiment. Then section 2.3 presents the experiment
null hypothesis. Finally, section 2.4 identifies potential threats to its validity.

2.1 Experiment overall definition

According to [?], an empirical study is essentially defined by five features: ob-
ject(s), purpose, quality focus, perspective and context. The essence of any ex-
periment can thus be summarized by a single sentence that briefly defines all
five of these features. Definition 1 summarizes our experiment this way.

Definition 1 (Goal of the empirical study). Analyze the refactoring of
a UML class diagram to turn it conformant to the MVC pattern for
the purpose of artifact and process guidance evaluation with respect to
efficiency and quality from the perspective of a software architect and
quality manager in the context of novice designers using a UML CASE
tool.

Each experiment feature is briefly elaborated below:

Object: the object of this study consisted in refactoring a UML class diagram
to make it follow the Model-View-Controller pattern[?].

Purpose: The general purpose of this empirical study was to measure whether
or not process and artifact guidance do provide efficiency and quality benefits
for developers.

Quality Focus: This study considered that benefits provided by process and
artifact guidance were efficiency and quality. Efficiency was measured as the
time needed to complete the object. Quality was measured as the degree of
conformance to the MVC design pattern.

Perspective: The intent of this study was to be interpreted by a software ar-
chitect and quality manager. These professionals have the skills necessary to
define both kinds of guidance and to evaluate the result of their respective
use.

Context: The subjects were master students, at the end of their course. To
refactor a UML class diagram into the MVC pattern, they used the UML
CASE tool Papyrus [?], extended by three plug-ins that we implemented
specially for the experiment.

Our experiment had a single object carried out by multiple subjects. It can
thus be classified as a muti-test within object experiment in the taxonomy
of empirical studies [?].



2.2 Experiment planning

Object As there are many flavors of MVC patterns, we used the one popularized
by Apple [?]. It requires the classes and interfaces of the model to be partitioned
into three components: the Model, the View and the Controller. The model
classes hold the persistent data structure of the system, the view classes hold the
visual elements of the GUI and the controller classes handle the events generated
by user interaction with the view classes into calls to business code in the model.
The pattern prohibits any direct coupling between model and view classes. All
interactions between them must be mediated through controller classes that
together also encapsulate the overall system’s control flow.

We decided to take the input class diagrams to refactor from an implemented
running application used as case study. This application is a toy maze game com-
posed of 16 classes. We chose this particular example because, on the one hand,
refactoring a significantly smaller system would be too simple. On the other
hand, a significant bigger system would make the input diagram to suffer from
another design defect, namely lack of cognitively manageable substructures, that
is orthogonal to the focus of our experiment, namely non-conformance to an ar-
chitectural pattern. It would thus have muddled the interpretation of our results.
The input class diagrams violated the MVC patterns in various ways. It con-
tained classes that grouped together features related to view and model aspects.
It also contained direct dependencies between classes that only contained fea-
tures related to view aspects and classes that only contained features related to
model aspects2.

Purpose We decided to specify the artefact guidance thanks to a set of in-
consistency rules[?]. These rules (see Figure 1) enforce: (i) the presence of the
correct packages in the expected pattern (rules 1–6); (ii) the fact that the classes
in the model (respectively view) should not depend on classes outside of it (rules
7 and 8); (iii) the fact that graphical classes3 should be in the view package and
that every class should be in one of the three packages (rules 9 and 10).

We decided to specify the process guidance as a software process that subjects
were asked to follow. Figure 2 represents this process. It consists of 6 tasks whose
objective is (i) create the model, view and controller packages (task 1); (ii) move
the classes that trivially belong to one of the packages to it (tasks 2–4) and then
(iii) breaking the responsibilities between the classes that would belong to more
than one package and then move the remaining classes to the controller (tasks
5–6).

Notice that this process neither intends to be a general solution for this
problem, nor will produce the most elegant solutions for it.

2 The complete set of artifacts used during this experimentation is available at
http://meta.lip6.fr/?page id=186.

3 To facilitate the identification of a graphical class by our subjects, who were all Java
programmers, all these class in the diagram to refactor extended a class from one of
Java’s graphical API.



1. The model should own exactly three packages.
2. Nesting packages is forbidden.
3. The Model package is missing.
4. The View package is missing.
5. The Controller package is missing.
6. Empty packages are forbidden.
7. Some class in the Model package references another class outside of this package.

Only classes in the Controller package can reference classes outside of it.
8. Some class in the View package references another class outside of this package.

Only classes in the Controller package can reference classes outside of it.
9. Some class is graphical and is not in the View Package.

10. Some class is not included in any package. All classes must be included in either
the Model, View or Controller.

Fig. 1. Artifact guidance

1. createMVCPackages: for this task, create three packages called Model, View
and Controller ;

2. movePureModelClassesToModel: for this task, move the classes with pure
model responsibilities (i.e., that represent persistent data and business rules) to
the model package;

3. movePureViewClassesToView: for this task, move the classes with pure view
responsibilities (i.e., that only contain GUI features) to the view package;

4. movePureControllerClassesToController: for this task, move the classes with
pure controller responsibilities (i.e., that define the control and data flow between
model and view classes) into the controller package;

5. extractMixedViewClasses: for this task, divide classes with mixed view and
controller responsibilities into one class with pure view responsibilities and one
class with pure controller responsibilities and link them an association (from the
controller one to the view one);

6. moveAllRemainingClassesToController: for this task, move the remaining
classes to the controller package;

Fig. 2. Process Guidance



Quality Focus We decided to measure the effects of the artefact and process
guidance with respect to design time and quality. Where “design time” is a ratio
variable measuring the time in minutes needed for a subject to carry out the
refactoring. Regarding quality, we decided to measure the quality of the final
models as a ratio measure, by giving 20 quality points to each model and then
decreasing this number by a fixed number of points for each common mistake
(see Table 14).

Mistake Points

Minor dependencies not broken -1
Forbidden dependencies partially handled -2
Operations or parameters missing in the final model -2
Ignored forbidden dependencies -5
Graphical classes in controller -6
Model classes in controller -7
Most controller classes not in controller -7
Out of scope -20

Table 1. The most common mistakes found in the students’ models

Our empirical study then defines two independent variables (Ga for artifact
guidance and Gp for process guidance) and two dependent variables (T for the
time needed to carry out the task and Q for the quality of the result). The ex-
periment thus follows a two factors with two treatments design. Table 2 presents
the four possibilities. Each of these possibilities represents a treatment of our
study.

Ga = false Ga = true

Gp = false A = no guidance B = artifact guidance

Gp = true C = process guidance D = both

Table 2. Two factors with two treatments experiment

Context We decided to choose software engineering master students at the end
of their cursus as our subjects. This choice was motivated by two factors: (1) the
low-cost availability of such subjects and (2) their level of experience in designing
that is comparable to the subjects of the Cass-Osterweil experiment (novice).

4 We defined “minor dependencies” as the ones generated by types of parameters of
operations that are harder to find on the model. Additionally, we defined“forbidden
dependencies” as dependencies between the MVC packages that are not allowed by
the pattern, e.g. a dependency from a Model class to a view class.



Regarding the subject set partitioning; our experiment used a stratified ran-
dom sampling. The 21 subjects of our experiment were partitioned into three
skill levels corresponding to their average grade in the MSc. program. Random
sampling was then applied over this skill partition to create treatment partitions
of equal average skill. One group with six students and three groups with five
were created and randomly assigned to our four treatments as represented in
Table 2.

2.3 Hypothesis

The following hypotheses are specified to evaluate the impact of artifact and pro-
cess guidance on design time and quality. These four hypotheses specify that the
use of artifact guidance and process guidance do not provide any improvement to
the dependent variables. If any of these hypotheses is rejected, the correspond-
ing guidance has a significant effect. Deciding whether such effect is positive or
negative is done by comparing the averages of the values of the variables in each
data set.

Definition 2 (Null Hypothesis).

H0(1) Design time without process guidance is equal to design time with process
guidance.

H0(2) Design time without artifact guidance is equal to design time with artifact
guidance.

H0(3) Design quality without process guidance is equal to design quality with
process guidance.

H0(4) Design quality without artifact guidance is equal to design quality with
artifact guidance.

2.4 Threats to Validity

Internal validity. We avoided selection and history bias by stratifying the
subjects by skills and then assign them to group of equal average skill. We
avoided instrument threats by having all subjects using the same tool (mod-
ulo the extra-views defining the independent guidance variable differences).

External validity. The results we obtained with masters students of our uni-
versity may not be generalizable to other groups of novice designers and even
less to expert designers. The specificity of the input class diagram to refac-
tor, as well as the artifact and process guidance services that we proposed
might also represent a threat to the external validity of our experiment.

Construct validity. Determining whether a class diagram follows or violates
the MVC pattern ultimately involves cognitive judgment calls made by sub-
jects based on their understanding of the contextual semantics of each class.
This judgment is thus in part subjective and cannot be fully automated. It
directly threatens the validity of the dependent variable Q. Since subjects
deliver their refactored diagram when they either judge it fully conform to



the MVC pattern or when they no longer can find a way to improve its level
of conformity, this partial subjectivity also indirectly threatens the validity
of the dependent variable T .

3 Instrumentation

Our experiment’s instrumentation consisted of an UML CASE tool built on
top of Eclipse. It provides four perspectives, one for each treatment. All those
perspectives include four basic views provided by the open-source Papyrus UML
editor5 (see Section 3.1). The perspectives for the artefact guidance treatments
(B and D) add the Artefact View (see Section 3.2), while the perspective for the
process guidance treatments (C and D) add the Process View (see Section 3.3).

3.1 Basic Views

Figure 3 shows the perspective with no guidance (treatment A). This perspective
is composed of the following four basic views :

1. Editor Area View: this view contains the UML class diagram to be refac-
tored. This diagram is displayed and edited with the Papyrus UML2 editor.

2. Property Pane View: this view allows the subjects to manipulate the
properties of the elements in the diagram.

3. Outline View: this view displays the model’s element tree. It provides
another representation of the model that complements the class diagram.

4. Birdview: this view displays an overview of the whole class diagram zoomed
out.

3.2 Artifact Guidance View

Figure 4 shows the Artifact Guidance View. The Artifact Guidance View shows
the number of inconsistencies found in the model (1) and the list of model
elements that violate each design rule (2).

3.3 Process Guidance View

The Process Guidance View is based on the Eclipse Cheatsheets [?] as shown
in Figure 5. It displays the process by the means of a tree of tasks (see area
numbered (1) in fig. 5). When executing a task, this view shows a detailed
textual description of it (see area numbered (2) in fig. 5), which explains the
concepts underlying the actions to perform and the expected state of the model
at the end of this task. Finally, at the bottom of the screen, a link reading
“Click here to finish” is provided (see area numbered (3) in fig. 5). A click on it
causes the model state to be validated against the task’s postcondition (e.g., at

5 http://www.papyrusuml.org/



Fig. 3. Basic Environment

the end of a task “Create X” the model is validated to make sure “X” exists).
A task postcondition can be seen as an finer grained form of artifact guidance
for intermediary model states). If it is violated, the tool gives the subject two
options: (i) going back to the task to correct the model or (ii) disregard the
tool’s warning and move on to the next tasks in the process.

4 Operation and results

4.1 Execution of the experiment

The experiment described in the last section was carried out by 21 subjects
over 2 consecutive hours. These two hours where divided in four periods: three
training periods lasting 10 minutes each, following by one 90 minutes period to
complete the task.

The first two training period consisting in viewing video tutorials: the first
on the Papyrus UML CASE tool and the second on the artifact and process
guidance plug-ins (each group saw only the parts of the videos relevant to its
assigned treatment). These videos remained available as a form of help, on each
machine while the subject refactored the input model. During the third training
period, the subjects were asked to experiment using with the CASE tool.



Fig. 4. Artifact Guidance View

After this 30 min of training, the subjects they received a textual description
of the MVC pattern together with the input model to refactor. As soon as the
last subject received this description, they started to work on it. The subjects
had autonomy to decide when they felt that they had completed refactoring. The
CASE tool stored the model that they submitted as refactored, together with
the log of the editing commands they executed to obtain it. The final model was
reviewed to assign it a quality measure. The log could be used to perform post-
mortem finer grained analysis. The impact of the subject’s degree of adherence
to the process guidance on both speed and final model quality was beyond the
scope of this study.

4.2 Results and Analysis

Figure 6 shows the results obtained by the subjects regarding the time needed
to perform the refactoring (T ) and the quality of the returned design (Q). A n/a
in the time column indicates that the subject has not finished the refactoring in
the time frame.

We used the ANOVA6 method against these results to asses the effect of the
guidance. This tests assumes normal distribution and interval scale data. We
confirmed the normality of our data set by executing the Shapiro-Wilk normality
test. We obtained respectively ρ = 0.01055 and ρ = 0.04667 for T and Q. In the
case of the subjects that had not completed the refactoring (T = n/a), only the
design quality of the produced models was considered.

The following observations were made:

– The H0(1) null hypothesis has neither been rejected nor accepted with
ρ = 0.602. As a consequence, the difference in the average design time of
the groups with process guidance (groups C and D, average design time =
50.8 min) and the groups without it (groups A and B, average design time
= 58.7 min) is not statistically significant.

6 This test is used to compare the variances of two data sets in order to determine
if they present statistically significative differences. The lower the obtained ρ-value
the more significative is the difference.



Fig. 5. Process Guidance View

– The H0(2) null hypothesis has been rejected with ρ = 0.001. As a conse-
quence, the difference in the average design time of the groups with artifact
guidance (groups B and D, average design time = 62.9 min) and the groups
without it (groups A and C, average design time = 49.3min) is statistically
significant.

– The H0(3) null hypothesis has neither been rejected nor accepted with
ρ = 0.488. As a consequence, the fact that the average design quality of
the groups with process guidance (groups C and D, average design quality
= 15.2) and the groups without it (groups A and B, average design time =
15.2) is the same is not statistically significant.

A B C D
(no guidance) (artefact guidance) (process guidance) (both guidances)

T (min) Q
47 8
34 15
66 13
68 14
60 15

n/a 0

T (min) Q
63 20
63 19
65 15
63 18
n/a 10

T (min) Q
47 15
40 13
32 15

n/a 4
n/a 0

T (min) Q
59 20

n/a 15
67 14
60 12

n/a 9

Fig. 6. Time (T ) and quality (Q) results for each treatment.



– The H0(4) null hypothesis has neither been rejected nor accepted with ρ =
0.523. As a consequence, the difference in the average design quality of the
groups with artifact guidance (groups B and D, average design quality =
16.7) and the groups without it (groups A and C, average design quality
= 13.6) is not statistically significant. However, upon finer analysis, when
considering one subject of group A as an outlier, due to the fact that the
quality of result s/he delivered is far off the average of other subjects, then
the H0(4) null hypothesis is rejected with ρ = 0.006 and the difference
becomes statistically significant.

5 Result interpretation

5.1 Result synthesis

The results we measured and that have been validated thanks to the ANOVA
method can be synthesized by the Definitions 3 and 4:

Definition 3 (Significant effects).

Subjects that used the artefact guidance took more time to perform the refac-
toring, but delivered design of better quality.

Definition 4 (Non significant effects).

No significant effects were measured for the design quality and time with process
guidance.

5.2 Discussion

Beyond the overall statistical results given above, we made a set of interesting
finer grained observations. Subjects provided with artefact guidance considered
their refactoring completed only when the error list displayed was empty. This
suggests that such guidance helps developers decide when they have completed
a refactoring task.

The initial model contained 5 initial errors. Therefore, at the beginning of the
study, five errors were displayed in the error list. During the study, we observed
that up to 20 errors could be detected by the artefact guidance and displayed in
the error list. Those errors obviously didn’t have the same complexity to solve.
At the end of the study, all of the subjects provided with artefact guidance were
impeded by a same error. This error targeted one of the UML class that had to
be split in two parts as it has a mixed responsibilities. Subjects spent much time
on resolving this error that were, indeed, more complex to correct. This suggests
that developers with artefact guidance took much more time than the others as
they all try to solve all the errors, including the difficult ones.

Subjects provided with process guidance complete process 1 to 4 quite quickly,
but they spend more time on tasks 5 and 6. This may be explained by the fact
that tasks 1-4 are defined in very prescriptive terms, easy to understand and can



be carried out with a very short editing action sequence. This was also the case
of the tasks in the Cass-Osterweil experiment that observed benefits to process
guidance. In contrast, the definition of tasks 5-6 are more descriptive. Mapped
them onto an editing action sequence require more design skills and a deeper
understanding of the class contextual semantics. This may explain why no effect
has been measured for the process guidance regarding efficiency and quality.

Since we designed our study to differ from Cass and Osterweil’s [?] by a min-
imal two controlled features, the fact that we observed almost opposite results
may suggest that the conclusion of both studies do not generalize well. As a con-
sequence, we argue that the benefits of the artefact and process guidance seem
to be not measurable in general. Rather, regarding a specific pair of artefact and
process guidance, it should be possible to statistically measure their respective
effects.

6 Conclusion

In this paper, we presented an empirical study that aimed at measuring the
effects of two types of services provided by advanced CASE tools: artefact guid-
ance and process guidance. More precisely, we measured the effects on the time
required to perform a model refactoring and on the quality of the resulting
model.

This is the first study of this kind, though a similar study was carried out for
the task of building a model from scratch [?]. This earlier study reported that
for such task, process guidance statistically significantly improved both design
time and quality, while artefact guidance had no statistically significant impact.
In contrast, for the present task, we report no statistically significant impact for
process guidance. We also report that artefact guidance statistically significantly
increases design time and that it only statistically significantly improves the
quality of the resulting models if we discard one subject as an outlier.

Our study shows that much further research needs to be carried out in this
field before we can answer, on strong statistical ground, to questions such as:

– For what tasks are artefact and process guidance complementary and for
what tasks are they redundant?

– Are there tasks for which neither guidance positively impact on development
speed and software quality?

– What subclasses of artefact and/or process guidance are more helpful than
others?


