
Supporting Transparent Model Update
in Distributed CASE Tool Integration1

Prawee Sriplakich, Xavier Blanc, Marie-Pierre Gervais
Laboratoire d'lnformatique de Paris 6

8, rue du Capitaine Scott, 7501 5,
Paris, France

{ Prawee.Sriplakich, Xavier.Blanc, Marie-Pierre.Gewais}@lip6.fr

ABSTRACT
Model Driven Architecture (MDA) is a software development
approach that focuses on models. In order to support MDA, a lot
of CASE tools have emerged; each of them provides a different
set of modeling services (operations for automating model
manipulation). We have proposed an open environment called
ModelBus, which enables the integration of heterogeneous and
distributed CASE tools. ModelBus enables tools to invoke the
modeling services provided by other tools. In this paper, we focus
on supporting a particular kind of modeling services: services that
update models (i.e. they have inout parameters). Our contribution
is to enable a tool to update models owned by another tool. We
propose a parameter passing mechanism that hides the complexity
of model update from tools. First, it enables a tool to update
models transparently to heterogeneous model representations.
Second, it enables a tool to update models located in the memory
of another remote tool transparently, as if the models were local.
Third, it ensures the integrity between the updated models and the
tool that owns the models.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments -
Integrated Environments; D.2.12 [Software Engineering]:
Interoperability.

Keywords
Middleware, CASE Tool, Interoperability, Integration, Graph,
Data Structure, RPC, Call-by-copy-restore

1. INTRODUCTION
Model Driven Architecture (MDA) [25] is a software
development approach that focuses on models. It aims at
automating steps in software development, in order to reduce
development cost and to increase software quality. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission andor a fee.
SAC'O6, April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1 -59593 - 1 OS-2/06/0004.. .$5 .OO .

automation is realized by a set of modeling services - operations
for automating model manipulation such as model storage [6],
model edition [9], model transformation [l l] [7], model
verification [28] and model execution [191.
Therefore, an environment supporting MDA software
development must offer modeling services to software developers.
It must also ensure the interoperability between them [30]. Such
environments have already been implemented in a form of CASE
(Computer-Aided Software Engineering) tools, for instance,
Rational Software Architect [161 and Objecteering [29]. However,
existing environments only provide a limited set of modeling
services. Consequently, the users of one environment (i.e.
software developers) can meet the interoperability problem in
using the modeling services offered by other environments. An
open environment for integrating CASE tools is a solution to this
problem. The goal is to enable users to take advantages of all
modeling services provided by different CASE tools. Those
CASE tools can be heterogeneous in terms of implementation
technologies and can be executed in different locations/ operating
systems.
Our previous works [4] [5] has contributions in realizing such an
open environment, called ModelBus. ModelBus uses Remote
Procedure Call (RPC) techniques to realize the communication
between heterogeneous, distributed CASE tools. It enhances basic
RPC by providing supports for model representation and model
transmission. ModelBus enables a tool to invoke a modeling
service that is provided by another tool. For example, it enables a
UML editor to invoke the model transformation service provided
by a model transformation engine [7]. ModelBus is available in
the Eclipse open source project Model Driven Development
integration (MDDi, http://www.eclipse.org/mddi/). It also has an
important role in the MODELWARE project
(http://www.modelware-ist.org) for integrating academic and
industrial CASE tools.
Parameter passing mechanism is an important part of ModelBus:
It enables the exchange of models between the caller tool (which
invokes a modeling service) and the c a k e tool (which provides a
modeling service). This mechanism must support three kinds of
modeling service parameters: input, output and inout. An input is
a model the caller sends to the callee. An output is a model
returned from the callee as a result of the service invocation. An
inout is a model that the caller sends to the callee and that is
expected to be updated by the callee. This definition is well-

' The work presented in this paper is supported by the project MODELWARE, co-funded by the European Commission under the
"Information Society Technologies" Sixth Framework Programme (2002-2006).

1759

mailto:Marie-Pierre.Gewais}@lip6.fr
http://www.eclipse.org/mddi
http://www.modelware-ist.org

known. The new aspect is that we apply the notion of services to
software development tools.
Prior to this work, ModelBus only supported input and output
parameter passing. To complete this functionally, we propose a
solution for inout parameter passing in this paper. Our
contribution is to enable a CASE tool to update models owned by
another CASE tool. This need is made evident by the emergence
of several modeling services, such as in-place model
transformation [l 11, model refactoring [24], and application of
design patterns [13], which need the ability to update models
passed as parameters.
The paper is organized as follows. Section 2 briefly presents the
background about tools and modeling services to facilitate the
further explanation. Section 3 presents our design objectives for
enabling model update in tool integration. Then we illustrate those
objectives through a concrete example. Section 4 presents the
parameter passing approach in general and discusses the problems
for applying those approaches to realize model update. Section 5
explains our solution and explains why it meets the objectives.
Section 6 shows our experience in using the proposed solution.
Section 7 discusses about related works. The last section
concludes this work and discuses about future works.

2. BACKGROUND: MODEL, MODELING
SERVICE, AND MODEL UPDATE
A model is a set of model elements. For instance, in a UML class
diagram, each UML class, attributes, associations are model
elements. Each model element is an instance of a metaclass
(defined in the Meta Object Facility standard [26]). It can have
properties conforming to the metaclass (e.g. a UML attribute has
properties name, visibility, multiplicity etc.). The model
elements can be linked together according to the associations
between metaclasses.
A modeling service is an operation that has models as parameters.
A parameter of modeling services can be input, output or inout. In
this paper, we focus on a particular kind of modeling services:
modeling services that have inout parameters (e.g. in-place model
transformation [l 11, model refactoring [23], and application of
design patterns [131).
We present here an example of a modeling service:
pullupMembers(inout ClassDiagramModel). This service has
one inout parameter which is a UML class diagram. It serves for
improving a structure of a class diagram. It updates the class
diagram. The update is performed as follows: It examines the class
hierarchy in the class diagram. If it detects two conditions: 1)
there are two classes C 1, C2 sharing the same superclass C3 and
2) C1 and C2 have equivalent attributes (same name and same
type). If such conditions are detected, it removes such attributes
from C1 and C2 and creates equivalent attributes at C3 instead.
This service is inspired by the work in [31]. Figure 1 illustrates an
example of the application of this modeling service. The left side
is the model before service application and the right side is the
result. Please note that the purpose of this example is to illustrate
that model update can be realized with the parameter passing of
modeling services. This paper does not focus on the logics inside
the modeling services (e.g. techniques of model refactoring).

Person
*add r S til ng Person

Student Teacher

Figure 1. pullupMembers modeling service
Model update is the action of modifying the content of a model.
Model update can be realized with any techniques such as model
manipulation with APT [26], in-place model transformation [111
and graph transformation [2]. By using whatever model update
techniques, the result is equivalent to applying the following
elementary actions to the model:
- Model element creationhemoval: Creating/ removing a model

element in the model.
- Property update: Setting a property value of a model element

- Link update: Creating/ removing a link between two model
elements.

These actions can be identified from the example in figure 1 as
follows. Model element creationhemoval: creating a new attribute
for Person, removing attributes addr of Student and Teacher.
Property update: setting the name of the new attribute of Person
(addr). Link update: linking the new attribute with Person
(meaning that the attribute is owned by the class).

3. MODEL UPDATE IN TOOL
INTEGRATION
3.1 Objectives
Our main goal is to enable a tool to ‘update’ a model ‘owned by’
another tool. ‘Owned by’ means that models are stored in the
tool’s memory so that the tool can manipulate them. For example,
a UML editor stores a model in the memory in order to visualize
it. Therefore, our main goal aims to enable a tool to change the
memory content of another tool where the model is stored.
We aim to integrate distributed, heterogeneous tools. This means
that tools can execute in heterogeneous machines. Each tool has
its own memory space and it is free to choose any memory
representation for storing models (e.g. Java objects, C++ objects).
In order to update a model of another tool, the updater tool needs
1) remote communication enabling it to access the remote model
and 2) the adaptation of memory representation enabling it to
understand the model structure in the memory of the remote tool.
For the facility of tool integration, these functionalities should be
provided at middleware level. In other words, middleware should
enable the tool to update the remote model as if the model were
local.
Figure 2 illustrates an invocation of a modeling service having an
inout parameter. In order to perform the service, the callee tool
needs to update the model (passed as parameter), which is located
at the caller tool’s memory. However, the model in the caller tool
is represented as Java objects while the callee tool program view
models as C structured data. Therefore, the middleware is required
for providing the remote communication and adapting different
memory representations used in the two tools.

1760

Java obiects
View models as
C structured data

I

I
I I I

& f Modeling service
n

Figure 2. Model update in tool integration
We have the following objectives in the designs of this
middleware:
Supporting heterogeneous memory representation. As
heterogeneous tools are implemented with different technologies,
the memory representations they manipulate can be different. In
order to support this heterogeneity, the middleware must enable
tools to update models regardless the memory representation of
the models.
Preserving pointers to model elements. In order to manipulate
models, a tool program needs to have pointers to the model
elements in the memory. These pointers enable the tool to, for
example, read the properties of each model element.
Afier the model update performed by the callee tool, it is desirable
that the pointers to model elements in the caller tool program
remain valid (except pointers to removed elements). Otherwise,
the caller tool will lose access the model elements that were
previously pointed by those pointers.
Notifying of model element creation/removal. During model
update, the callee tool can create or remove model elements. This
action causes changes in the memory of the caller tool (i.e.
allocating an address for a newly created element, or freeing the
address of a removed element). To enable the caller tool adapt to
such changes, middleware must notify it. This notification allows
the caller tool to adapt itself as follows.
- Creation case: the caller tool needs to h o w the memory

address where the new element is created in order to gain
access to this new element.

- Removal case: the caller tool needs to eliminate all the pointers
to the memory address of the removed element in order to
avoid accessing it (as this element does not exist anymore).

3.2 Illustration in an Example
We present an example of tool integration that requires model
update. Two CASE tool are integrated, a UML editor and a model
transformation (MT) engine. The UML editor allows the users to
create UML diagrams. The MT engine offers a set of model
transformation services including pullupMem bers. The objective
of this integration is to enable the user to apply pullupMembers
to the model elaborated inside the UML editor.
Based on our objectives, the integration is expected to produce the
following results.
Supporting heterogeneous memory representation. The fact
that two tools uses different memory representations (the UML
editor uses Eclipse Modeling Framework: EMF [12], while the
MT engine uses Java Metadata Interface: JMI [17]) will not

prevents the MT engine to update the model owned by the UML
editor.
Preserving pointers to model elements. Suppose that the user
elaborates the class diagram in figure 1 (left) on the UML editor.
Therefore, the UML editor’s memory contains a set of Java
objects corresponding to the model elements. The UML editor has
pointers to those model elements as the model is “in use”, c.f.
figure 3 (left).

Then the user applies pullupMembers. As a result, the model is
updated. The pointer preservation keeps the updated model
elements accessible by the UML editor. In the updated model
showed in figure 3 (right), the pointers to UML classes Person,
Student, Teacher, and UML data type String still remain valid.
Notifying of model element creation/removal. As the result of
the pullupMembers application, the attributes named addr of the
class Student and Teacher (denoted by addrl, addr2) are
removed. The equivalent attribute (denoted by addr3) is created
for the class Person. The notification ofthese changes enables the
UML editor to gain access to addr3, and avoid accessing addrl,
addr2. In figure 3 (right), thanks to the notification, the UML
editor creates a pointer to addr3, removes the pointers to addl,
addr2 and frees the memory associated to addl, addr2.

I

Figure 3. Original model and updated model

4. PARAMETER PASSING AND
MODELING SERVICES
Two basic approaches for parameter passing are pass-by-reference
and pass-by-copy [23]. We discuss them in the context of inout
parameter passing.
Pass-by-reference. In this approach, distributed objects (Le. stubs
and servants) are used to represent parameter values. The servants
hold the real data (parameter values) while the stubs serve for
delegating data access to the servants. More precisely, the callee
accesses the content of parameter values by invoking local
operations on the stubs. Behind the scene, the stubs perform the
remote communication (callback) to the servants in order to
access the remote memory content.
Pass-by-copy. In this approach, a copy of a parameter value is
made at the callee side, so the callee can update the parameter
value in this copy. At the end of the invocation, the updated copy
is sent back to the caller as a new value. Therefore, after the
invocation, the caller has two versions of the parameter value, the
original one and the updated one.
The previously presented approaches can be applied to models as
follows:

1761

Pass-by-reference. In this approach, models are represented as a
graph of distributed objects, which offer remote access to tools.
Model repositories [3] [101 have been implemented for enabling
tools to represent models as distributed CORBA objects. By using
such repositories, a caller tool can transmit, as modeling service
parameters, C O M A object references to the callee tool. At the
callee side, those references are used for constructing C O M A
stubs which enable the callee tool to update models by invoking
their callback operations.
This approach supports pointer preservation. The pointers (Le.
object references) to CORBA objects remain valid all the object
life time (until the objects are destroyed).
However, it has a restriction on the memory representations:
model elements must be represented as distributed objects. As
most existing tools have not been planned for this kind of
integration, they usually represent models as local data structures.
Consequently, to apply this approach, the model representations
need to migrate from local data structures to distributed objects.
This causes inefficiency and requires a lot of tool integration
efforts.
- Inefficiency. The distributed objects are much more complex

than regular local objects as they need to handle the callback
mechanism. This approach forces tools to abandon the simple
light-weight data structures and to use more costly
representations.

- Tool integration efforts. In order to migrate from local data
structures to distributed objects, we need to adapt the tool
programs with the interfaces provided by the distributed object
stubs. This adaptation causes the following efforts. First, the
data structures of models are complex and they vary with each
kind of models (e.g. UML models or domain-specific models);
therefore, implementing stubs for representing each kind of
models causes a considerable effort. Second, as the
manipulation of local data structures is based on local memory
access (e.g. creatingiremoving model elements using local
memory allocatioddeallocation; accessing non-encapsulated
model element content), it is not compatible with distributed
object paradigm, where all access must be done through
encapsulating interfaces. Therefore, migrating from local data
structures to stubs requires a considerable modification in tool
programs: all access to local data structures must be changed to
stub operation call.

Consequently, we can conclude that this approach does not satisfy
our objective as it does not support tool integration without
changing the existing model representations of tools.
Moreover, this approach does not deal with the way the caller gets
notified of element creation/removal. Consequently, the caller
may fail to adapt its program to model element creatiodremoval
which is performed by the remote callee.
Pass-by-copy. This approach has no restriction in memory
representation. Each tool has total freedom in choosing memory
representation of models. During service invocation, the
marshaling and unmarshaling techniques [8] [15] are applied for
converting models form one memory representation to another.
Most commonly used RPC middleware, such as Java API for
XML-Based RPC (JAX-RPC) [l8], CORBA (passing value
types), offers a similar solution for inout parameter passing by
using the holder (an object that points to the parameter value).

Before the invocation, the caller tool make the holder point the
original value. After the invocation, the holder is modified by
middleware so that it points to the updated value.
However, the holder approach implies that the updated value does
not replace the original value in the same memory address (a new
memory address is allocated for storing the updated value), as
illustrated in figure 4. Consequently, all the pointers to model
elements in the caller tool become obsolete after the invocation
(i.e. they point to the old version of model elements). Therefore,
we argue that this approach does not support pointer preservation.
Moreover, this approach does not support the notification of
model element creation/removal. The caller only observes a new
version of the model. It does not know which elements are newly
created or removed.

Figure 4. Inout parameter passing by using holder

5. OUR APPROACH: PASS-BY-COPY,
WITH UPDATE PROPAGATION
5.1 Overview
As we have identified that the pass-by-copy approach supports the
heterogeneous memory representations but it does not provide in-
place update mechanism for preserving pointer validity, we extend
this approach by adding the missing update mechanism. Our
parameter passing mechanism follows the following steps. 1) The
original model is transmitted to the callee side as a copy. 2) Afier
the callee performed the update on the copy, the copy is
transmitted back to the caller side. This copy is stored in a new
memory address. 3) The update automatically propagates from the
copy to the original model. This last step is the added-value of our
approach. The tree steps are illustrated in figure 5 (top).
For making this mechanism totally transparent to tools, we
propose a middleware layer that manages it. This layer consists of
components called stubs. As illustrated in figure 5 (bottom), the
caller tool invokes the modeling service by invoking the API of
the caller stub. The caller stub marshals and transmits the model
(parameter) to the callee stub. The callee stub performs
unmarshaling. Then it asks the callee tool to perform the modeling
service on this model copy. Next, it marshals and transmits the
updated copy back to the caller stub. The caller stub then
unmarshals the copy and propagates the update to the original
model.

1762

Figure 5. Pass-by-copy with update propagation

5.2 Model Element Correspondence
The main problem to solve is how the caller stub performs update
propagation. We have identified that the information about model
element correspondence is necessary for solving this problem. If a
callee tool updates the element E l in its local copy, in order to
propagate the update to the original model, it is necessary to
identify which element in the original model corresponds to El ,
i.e., the element from which El was copied.

However, the classical marshaling/unmarshaling techniques [8]
[151 do not preserve this correspondence information.
Consequently, when the result model is copied back to the caller
side, the caller stub will face difficulties in matching the model
elements in the transmitted-back model and the ones in the
original model in order to perform update propagation. For this
reason, we propose a new marshalingiunmarshaling mechanism
that preserves the correspondence information in order to enable
update propagation.
This mechanism is manipulated by the caller and callee stubs. The
stubs maintain the correspondence information by attaching an ID
to each model element. Two model elements (in two different
copies) are correspondent if they have the same ID. Before
transmitting the original model to callee side, the caller stub
assign a unique ID to each model element of the original model.
The IDS are transmitted with the model to the callee stub. After
service execution, the IDS are transmitted back with the result
model to the caller stub. The caller stub then compares the IDS of
the model elements in the received copy with the IDS of the model
elements in the original model to find model element
correspondence.
The manipulation of IDS is totally transparent to caller and callee
tools, Le., the tools are not aware that the IDS are assigned to
model elements. The IDS are assigned to model elements stored in
the memory using the ID table, which is managed by the stub, c.f.
figure 6 (top). The ID table only points to the model elements
without modifying them, so it is transparent to tools. When the
model is marshaled, the stub serializes the IDS together with
model elements. When the model is unmarshaled, the ID table is
reconstructed.

<uml.Class xmi:id="Student" name="Student" supertype="Person">
CownedAttribute xmi.type="uml.Attribute" xmi:id="addrl I' name="addr" type="String" i s

Figure 6. Maintaining model element correspondence using
IDS

We have chosen XML Metadata Interchange (XMT) format [27],
which is the OMG standard, as the model transmission format. In
this format, the ID can be attached to a model element with the
XML attribute xmi:id, which is assigned to each XML element
representing a model element. We illustrate a part of a serialized
model in figure 6 (bottom).
It is worth nothing that the use of IDS is already proposed in XMI
standard. However, our novel contribution deals with how to
preserve the same IDS when models are transmitted multiple times
(from the caller to the callee and backwards) in order to keep
correspondence information.

5.3 Realizing the Objectives
Supporting heterogeneous memory representation. Our
mechanism includes the marshaling and unmarshaling technique.
This enables models to be heterogeneously represented in
different tools. During transmission, models are converted from
one representation to another in a tool-transparent way.
Preserving pointers to model elements. Based on the model
element correspondence information as described, we propose
here an update algorithm that the caller stub performs for
propagating update. This algorithm modifies the content of the
existing model elements while they remain in the same memory
addresses. Consequently, it keeps the model element pointers of
the caller tool program valid.
The algorithm consists of three rules according to the update
actions, i.e., model element creation/removal, property update,
and link update, as expressed in table 1. Rules R2 and R3 intend
to update the properties and links of existing model elements
without re-allocating new memory addresses. The stub only
allocates new memory addresses for the model elements that did
not exist before (by using rule Rl). The created element list and
the removed element list are created for the notification purpose,
as will be explained next.

1763

Table 1. Update propagation algorithm

,et O E i be a model element in the original model; E i be a
iodel element in the copied model; and O E i corresponds E i .
vhere i, j are 1, 2, 3...

11: Creating/removing model elements.
- For all E i in the copy: If no element in the original model

corresponds to E i (Le. O E i does not exist), then the stub
creates O E i in a new memory address. It also adds this
address to the created element list.

- For all O E i in the original model: If no element in the copy
corresponds to O E i (Le. E i does not exist), then the stub
adds O E i ' s address to the removed element list.

12: Property update.
- For all E i in the copy: The stub updates all the properties 01

O E i according the E i . In other words, the new values of the
properties are copied from E i to O E i .

13: Link update.
- For all links < E i ,

link < O E i ,
exists).

link < E l ,
< O E i , O E j > .

E j > in the copy: The stub creates the
OE j> in the original model (unless already

- For all links < O E i , OE j> in the original model: If the
E j > does not exist, then the stub removes

Notifying of model element creation/removal. At the end of the
invocation, the caller stub returns two collections of pointers to
the caller tool: a collection of the pointers to the newly created
model elements (created element list) and to the removed model
elements (removed element list). The created element list allows
the caller tool to locate newly created elements. The removed
element list allows the caller tool to eliminate the pointers to the
removed elements. The caller tool may need to free the memory
associating with those removed elements, depending on the
programming languages used (not required in languages with
garbage collection).

6. EXPERIENCE IN A CONCRETE
EXAMPLE
We have realized the example presented in section 3.2 with the
UML editor, provided by the EMF toolkit, and the MT engine,
which is implemented ourselves using the Java programming
language.
The integration of both tools consist in building the caller and
callee stubs. Both stubs are hand-written in the moment. However,
we aim to generate them automatically in the future. The caller
stubs provides an interface to the UML editor to invoke
pullupMembers (interface MTEngineCallerStub). The MT
engine needs to implements an interface for receiving service
execution request from the callee stub (interface MTEngine). Both
interfaces are illustrated in table 2.

MTEngineCallerStub provides method invoke-pullupMembers
allowing the UML editor to apply the modeling service as if it
were local. The UML editor specifies the modeling service
parameter (i.e. a model) with argument diagram. A model is

represented by as collection of Java objects (class Model); each
object corresponds to a model element contained in the model.

As the result of invoke-pullupMembers, the model will be in-
place updated, i.e., the content of the objects contained in the
Model's collection will be modified, and the collection is
modified according to the newly created model elements or
removed model elements. This method also returns the
notification of model element creation/ removal (class
UpdateNotification).
MTEngine provides the method exec-pullupMem bers allowing
the MT engine to receive the model and to update it. This method
enables the MT engine to manipulate the remote model (specified
as argument diagram) in the same way as manipulating local
models (in fact, the MT engine manipulates the copy of the
remote model). After exec-pullupMembers ends, the callee stub
transmits the updated model back to the caller stub for update
propagation.
The mechanism proposed in the paper is generic. We have
implemented a library that can be shared by the stubs of several
tools. This library including the following functionalities: 1)
model marshaling/ unmarshaling with preservation of model
element correspondence, 2) model transmission via RPC and 3)
model update propagation.
The model marshaling/ unmarshaling part has been developed for
Eclipse Modeling Framework (EMF) and Java Metadata Interface
(MI) representations, which are widely used in current MDA-
based tools.
The model transmission part has been implemented in our
previous work [5]. It is based on the Web Services RPC
mechanism, which is widely used for large scale software
integration. As Web Services are platform-independent and
domain-independent, they enable the transmission of any kinds of
models between any tools.
The model propagation part has been developed for the EMF
representation. It enables models represented as EMF Java objects
to be remotely updated by any tools, which can uses other model
representations (not necessarily EMF).
Table 2. Interfaces for stubs

public interface MTEngine {

public class UpdateNotification {

void exec-pullupMembers(Mode1 diagram)

public Collection createdModelElements;
public Collection removedModelElements;

public Collection modelElements;
public class Model {

7. RELATED WORKS
Our work concerns two domains: CASE Tool integration and
parameter passing techniques in RPC.
As regards tool integration, Kath and al. [20] proposes a
framework for integrating CASE tools with a shared repository.
All models are stored in the same repository; therefore they can be
accessed by all tools. This repository is based on CORBA, so it

1764

provides remote access to the tools. Our approach is different in
the following points. First, our approach preserves the existing
model representations of tools, which include local data
structures. Therefore, it enables the integration of tools which
have not been planned for integration. Second, our approach
supports the notion of services, i.e., tools can invoke the services
of other tools to extend their functionalities. On the other hand,
their approach supports only data integration: tools can exchange
models but can not request the services of other tools.
Another approach for tool integration is based on the exchange of
XMI difference file [21]. XMT difference is a part of the XMT
standard that proposes the representation of changes to models. In
this approach, a tool can update the model of another tool but
sending it an XMI difference file. This approach is different from
ours as follows. 1) No transparency to the updater tool: The tool
needs to calculate difference in order to produce the XMT
difference file. Our approach enables tools to update remote
models as if they were local. The tools have no extra tasks such as
calculating difference. 2) No transparency to model-owner tool:
The tool needs to parse the XMI difference file and apply update
to the model in its memory. In our approach, the in-memory
model update is directly performed at middleware layer.
As regards the parameter passing, Kono and al. [22] has proposed
a mechanism for transmitting pointers (to parameter values) as
parameters in RPC. The data referenced by those pointers are
transmitted and copied automatically to the callee side when the
pointers are dereferenced (accessed). At the end of the invocation,
the copied data is transmitted back to the caller side, and replaces
the same address as the original data. However, this approach is
not transparent to the callee when it wants to create new elements
or remove elements. The callee must use the special operations for
allocating and freeing remote memory (extended-malloc,
extended-free). Moreover, this approach does not enable the
caller to get notified of model element creationiremoval. Our
approach enables the callee to use local memory allocatiodfreeing
operations and also supports the notification to the caller.

8. CONCLUSION AND FUTURE WORKS
We have presented the technique for integrating CASE tools, in
order to support MDA software development. Our idea is based
on RPC, enabling a CASE tool to extend its functionalities by
invoking the modeling services provided by other CASE tools.
This paper focuses on the inout parameter passing mechanism,
which allows tools to update models owned by other tools. This
mechanism hides the complexity of model update from tools.
First, it enables a tool to update models regardless heterogeneous
model representations. Second, it enables a tool to update models
located in the memory of another remote tool transparently, as if
the models were local. Third, it ensures the integrity between the
updated models and the tool that owns the models.
This work has been realized in the environment for tool
integration called ModelBus. The implementation consists in
creating a stub of each tool that is responsible for managing
parameter passing in service invocation. Our parameter passing
mechanism is generic. It has been implemented as a shared library
that is reusable by the stubs of several tools. The current
implementation is based on the Web Services RPC mechanism,
which is widely used for large scale software integration.

ModelBus is a part the MODELWARE project, which aims to
provide an environment for MDA software development. As
future works, we aim to apply this technique for integrating the
tools provided by the project partners, such as Objecteering [29],
the OCL engine from Kent Modeling Framework [11, ATL model
transformation engine [7]. This integration will prove the usability
of our solution.
From the technical points of view, we also consider the following
future works. Tn this work, we assume that the model update is
done in synchronous RPC (The caller is blocked until receiving
responses). In order to extend our work, we want to apply our
approach in asynchronous context. For example, a tool T1 sends a
model to another tool T2. T2 updates this model asynchronously.
Then, T1 reconnects to T2 in order to receive the update.
Another future work concerns the transmission of partial models.
It is inspired by the fact that a model usually contains a large
volume of data; however, when it is transferred to another tool,
only a part of it is actually used by the tool. Therefore, we would
like to take advantages of this fact for optimizing tool integration.

REFERENCES
Akehurst, D., Patrascoiu, 0. OCL: Implementing the
Standard for Multiple Metamodels, In OCL2.0- Industry
standard or scientific playground?, Proc. of UMZ’03
workshop, 2003.
Assmann, U. Graph rewrite systems for program
optimization, ACM Transactions on Programming
Languages and Systems (TOPLAS), 22(4), July 2000.
Blanc, X., Bouzitouna, S. & Gervais, M.-P. A Critical
Analysis of MDA Standards through an Implementation: the
ModFact Tool, In Proc. of 1st European Workshop on Model
Driven Architecture with Emphasis on Industrial
Application, 2004.
Blanc, X., Gervais, M.-P., Sriplakich, P. Model Bus:
Towards the Interoperability of Modeling Tools, In Proc. of
the European Workshop MDAFA 2004, LNCS 3599,
Springer, 2005.
Blanc, X., Gervais, M.-P., Sriplakich, P. Modeling Services
and Web Services: Application of ModelBus, In Proc. ofthe
Int ’I Conf on Software Engineering Research and Practice,
2005.
Bernstein, P. A. & al. Microsoft Repository Version 2 and
the Open Information Model, Information Systems 24(2),
1999.
BCzivin, J., Hammoudi, S., Lopes, D., and Jouault, F.
Applying MDA Approach for Web Service Platform, In
Proc. of the 8th Int’l IEEE Enterprise Distributed Object
Computing Conj, 2004.
Cao, F. & al. Marshaling and unmarshaling models using the
entity-relationship model, In Proc. of the 20th Annual ACM
Symposium on Applied Computing, 2005.
Costagliola, G., Deufemia, V., Polese, G. A Framework for
Modeling and Implementing Visual Notations With
Applications to Software Engineering, ACM Transactions on
Software Engineering and Methodology 13(4), 2004.

1765

[101 Crawley, S . , Davis, S., Indulska, J., McBride, S., Raymond,
K. Meta-Meta is Better-Better, In Proc. of the IFIP WG 6.1
Int '1 Working Con$ on Distributed Applications and
Interoperable Systems, 1997.

Transformation Approaches, In Proc. of the 2nd OOPSLA
Workshop on Generative Techniques in the context of MDA,
2003.

http://www.eclipse.org/emf

Automatic Application of Design Patterns, Tn Proc. of the
Int ' I Conf: on Automated Software Engineering, IEEE, 1997.

[l 11 Czarnecki K., Helsen S. Classification of Model

[121 Eclipse, Eclipse Modeling Framework,

[131 Eden, A,, Yehudai, A,, Gil, J. Precise Specification and

[141 A Value Transmission Method for Abstract Data Types
[15] Herlihy, M.P., Liskov B. A Value Transmission Method for

Abstract Data Types, ACM Transactions on Programming
Languages and Systems, 1982.

[161 TBM, Rational Software Architect,
http://www.i bm.com/software/awdtools/architect/swarchitect

[171 Java Community Process, Java Metadata Interface (JM)
Specijication version 1.0, http://www.jcp.org, 2002.

[181 Java Community Process, The Java APIfor XML Based RPC
(JAX-RPC) 2.0, http://ww.jcp.org , 2004.

[19] Jsrgensen, J., Christensen, S . Executable Design Models for
a Pervasive Healthcare Middleware System, In Proc. ofthe
5th Int ' I Conf: on the Unijied Modeling Language, 2002.

[20] Kath, 0. & al. An Open Modeling Infrastructure integrating
EDOC and CCM, In Proc. of the 7th IEEE Int ' I Enterprise
Distributed Object Computing Conf:, 2003.

Supported Evolution of UML Models, In Proc. ofthe 34th
[21] Keienburg, F., Rausch, A. Using XML/XMI for Tool

Annual Hawaii Int'l Conf on System Sciences, IEEE CS,
2001.

[22] Kono, K., Kato, K., Masuda, T. Smart Remote Procedure
Calls: Transparent Treatment of Remote Pointers, In Proc. of
the Int '1 Conference on Distributed Computing Systems,
IEEE CS, 1994.

[23] Mira da Silva, M., Atkinson, M. P., Black, A. P. Semantics
for Parameter Passing in a Type-complete Persistent RPC, In
Proc. of the 16th Int'l Conf: on Distributed Computing
Systems, IEEE, 1996.

Transformations, In Proc. of the 6th h t ' l Conf on the
Unified Modeling Language, 2003.

[25] OMG, MDA Guide Version 1.0.1, document no: omgl2003-

[26] OMG, Meta Object Facility version 1.4, document no:
forma1/2002-04-03, 2002.

[27] OMG, XML Metadata Interchange (XM) Specification
version 2.0, document no: forma1/03-05-02,2003.

[28] Richters, M., Gogolla, M. Validating UML Models and OCL
Constraints, In Proc ofthe 3rd Int ' I Con$ on the Unijied
Modeling Language, 2000.

[24] Porres, 1. Model Refactorings as Rule-Based Update

06-01,2003,

[291 So fteam, Obj ecteering, hui~: ;~wvv; . obi zcteori rg&x.c~~

[30] Thomas, I., Nejmeh, B. Definitions of Tool Integration for
Environments, IEEE Sof iare , pp. 29-34, 1992.

[31] Tokuda, L., Batory, D. Automating Three Modes of
Evolution for Object-Oriented Software Architectures, In
Proc of the 5th USENIX Conf: on Object-Oriented
Technologies and Systems, 1999.

1766

http://www.eclipse.org/emf
http://www.i
http://www.jcp.org
http://ww.jcp.org

