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Abstract

Tameness is a strong property of semigroup pseudovarieties related
to the membership problem. Let κ be the signature comprising semi-
group multiplication and the omega implicit operation. We prove the
κ-tameness of the pseudovarieties N, D, K and LI.

1 Introduction

Given a class V of finite semigroups, solving the membership problem for
V consists in devising an algorithm to test whether a given semigroup lies
in V. The class is said to be decidable when such an algorithm exists. The
motivation of this notion originates from a seminal result of Eilenberg [1]
which states a correspondence between certain classes of semigroups, named
pseudovarieties, and varieties of formal languages. In this way, syntactic
properties of a rational language can be tested algorithmically on its syntac-
tic semigroup by solving a membership problem. Several connections also
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link pseudovarieties to other domains of mathematics and computer science:
twenty years after Eilenberg’s theorem, fruitful correspondences between fi-
nite semigroups, rational languages, first order logic, second order monadic
logic and temporal logic still motivate intensive work. See [2, 3, 4, 5, 6] for
different presentations of these relationships.

Pseudovarieties are frequently defined by means of unary or binary op-
erators. Three of these operators, the join, the semidirect product and
the Mal’cev product do not preserve decidability: Albert, Baldinger and
Rhodes [7] exhibited two decidable pseudovarieties whose join is not decid-
able; in the same paper, they announced that their result could be translated
to prove that the semidirect product does not preserve decidability, a task
achieved by Rhodes [8]. Rhodes also gave in this paper an example of two
decidable pseudovarieties whose Mal’cev product is undecidable. The proofs
rely on ad hoc constructions and coding of Minsky machines. For other oper-
ators (such as the power), there is no such result at present. Still, it is often
a challenge to show that a pseudovariety constructed from decidable pseu-
dovarieties is decidable, even if it is very unlikely that usual pseudovarieties
give rise to undecidable ones. See [9].

To overcome this problem, a new idea which emerged quite recently is to
study stronger conditions, expecting them to be more robust than decidabil-
ity. Ideally, such a condition

- should imply decidability,

- should provide ways to show that, at least in particular cases, it is
preserved by operators,

- should be reasonable: most of the interesting, useful pseudovarieties
should enjoy it.

With the introduction of pointlike sets, Henckell [10] proposed in 1988 such
an approach. He proved that the pseudovariety A of aperiodic (group-free)
semigroups has a strong property which implies decidability. Shortly after, in
1991, Ash introduced in an outstanding paper [11] another concept involving
graphs to answer Rhodes’s type II conjecture. His definition was well-suited
for this purpose, but unfortunately, it was designed to fit the very particu-
lar framework of finite groups. The first author [12] found an appropriate
generalization of Ash’s definition which makes sense for all semigroup pseu-
dovarieties. This generalization still implies decidability, and he proposed
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to name it hyperdecidability. It has in fact several variations, depending on
which operators and pseudovarieties are involved. It turns out that Henckell’s
definition is also a particular case of hyperdecidability.

Hyperdecidability already proved to be very helpful. The intent of the
first author was primarily to decide semidirect products, but results concern-
ing joins can also be obtained using hyperdecidability [12, 13, 14]. Steinberg
and the first author [15] refined the notion of hyperdecidability to what they
called tameness [16], a property in which the essential decidability component
is a word problem.

A drawback of the notion of tameness is that it involves elaborate tech-
niques. Proving tameness of a simple pseudovariety might be difficult (at
least with the currently available tools), while decidability of any usual pseu-
dovariety is trivial. Yet, some important pseudovarieties are already known
to be tame (for instance G, the pseudovariety of all finite groups: this is
Ash’s result) and it is expected that most common pseudovarieties are tame.
Thus, proving tameness of pseudovarieties is a nontrivial and useful endeavor.

Here we address the question of the tameness of N, D, K and LI, four
well-known and simple pseudovarieties. They are defined as follows: N is
the class of all nilpotent semigroups (whose unique idempotent is a zero); D
(resp. K), is the class of all semigroups in which any idempotent is a right
(resp. a left) zero, and LI is the smallest pseudovariety containing both D
and K. We prove that they are all tame.

The paper is organized as follows. In Section 2, we lay down some notation
which will be helpful in the proofs, we set up the terminology and we recall
definitions concerning words, semigroups, graphs and pseudovarieties. We
next prove that the word problem involved in the definition of κ-tameness is
decidable for N, D, K and LI in Section 3. Finally, we prove that N, K, D
and LI are κ-tame in Subsections 4.1, 4.2, 4.3, and 4.4 respectively.

2 Prerequisites, notation

We assume that the reader is acquainted with finite semigroup theory. He
is referred to [17] for an introduction to pseudovarieties, and to [15, 16] for
connections between decidability and tameness.
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Words

In the sequel, A denotes a finite alphabet. The free semigroup (resp. the
free monoid, the free group) generated by A is denoted by A+ (resp. by A∗,
by FG(A)). The length of a word x is denoted by |x|. The empty word is
denoted by 1.

The set of all right (resp. left) infinite words is denoted by Aω (resp. by
ωA). We let A∞ = A+ ∪Aω and ∞A = A+ ∪ ωA. A word of Aω ∪ ωA is infinite,
whereas a word of A∗ is finite. By convention, we index the first letter of any
word by 1. Of course, the first letter of a left infinite word is its rightmost
letter. The kth letter of x will be denoted by (x)k, or by xk for short.

The product of two elements x, y of A∞ is defined as follows: if x, y ∈ A+,
then xy is defined in the usual way; right infinite words are left zeros; finally,
if x is finite and y is infinite, then xy is the right infinite word defined by

(xy)k =

{
xk if k 6 |x|
yk−|x| otherwise

The multiplication of elements of ∞A is defined symmetrically. It is a straight-
forward observation that Aω, ωA, A∞ and ∞A are semigroups.

Recall that u ∈ A∗ is a prefix of v ∈ A∞ if there exists w such that
v = uw. Symmetrically, u ∈ A∗ is a suffix of v ∈ ∞A if there exists w such
that v = wu.

A right infinite word is ultimately periodic if it is of the form yxω =
yxxx · · · , with x ∈ A+ and y ∈ A∗. Ultimately periodic left infinite words
are defined symmetrically.

Semigroups

Given a semigroup S, we let S1 be the semigroup S itself if it is a monoid,
or the disjoint union S ] {1} where 1 acts as a neutral element otherwise.
Given an element s of a finite semigroup (resp. of a compact topological
semigroup), the subsemigroup (resp. the closed subsemigroup) generated by
s contains a unique idempotent, denoted by sω. The set of idempotents of a
semigroup S is denoted by E(S).

Pseudovarieties, implicit operations

A semigroup pseudovariety is a class of finite semigroups closed under
taking subsemigroups, homomorphic images and finite direct products. In
what follows, V denotes a pseudovariety.
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By a profinite semigroup, we mean a compact semigroup which is resid-
ually finite. Equivalently, profinite semigroups are projective limits of finite
semigroups. For a pseudovariety V, a pro-V semigroup is a profinite semi-
group which is residually in V. The semigroup ΩAV is defined to be a pro-V
semigroup which is relatively free with respect to V in the sense that, for
every mapping ξ : A → S into a pro-V semigroup S, there is a unique con-
tinuous homomorphism ξ̂ : ΩAV → S extending ξ. This leads to a natural
interpretation of every π ∈ ΩAV as an operation πS : SA → S which maps
ξ ∈ SA to πξ̂. Elements of ΩAV are called implicit operations on V. Ele-
ments of the subsemigroup of ΩAV generated by A are said to be explicit.
The reader is referred to [17, 18] for more information on pseudovarieties and
implicit operations.

For π ∈ ΩAV, one can check that πS : SA → S commutes with continuous
homomorphisms between pro-V semigroups, in the sense that if ϕ : S → T is
such a continuous homomorphism, then πSϕ = ϕAπT (where ϕA : SA → TA

maps (x1, . . . , xn) to (x1ϕ, . . . , xnϕ)). Conversely, any collection (πS)S pro-V

of such mappings commuting with continuous homomorphisms uniquely de-
termines an implicit operation of ΩAV. Now, for any π ∈ ΩAV, the mapping
πω

S : S → S which associates to each s ∈ S the idempotent (πS(s))ω com-
mutes with continuous homomorphisms. Thus, the collection (πω

S) defines
an implicit operation denoted by πω. One can also verify that πω is the
idempotent of the closed subsemigroup generated by π in ΩAV.

The pseudovariety of all finite semigroups is denoted by S. We denote by
qV : ΩAS → ΩAV the continuous homomorphism mapping the generators of
ΩAS to the generators of ΩAV.

Graphs

In this paper, all graphs considered are finite and directed. This will be
understood in the sequel. More precisely, a finite graph Γ = V ]E is given by
two disjoint finite sets V and E , together with two mappings α, ω : E −→ V .
Elements of V are the vertices of Γ, elements of E are its edges, and for any
e ∈ E , eα (resp. eω) is the beginning (resp. the end) of the edge e. We shall
also write Γ = (V ,E ) and V = V (Γ),E = E (Γ).

A path is a sequence of edges e1, . . . , ek such that eiω = ei+1α for 1 6
i 6 k− 1. Two paths e1, . . . , ek and f1, . . . , f` are coterminal if e1α = f1α and
ekω = f`ω.

A graph is strongly connected if for any of its vertices v and w, there is a
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path from v to w and a path from w to v. It is connected if for any two vertices,
there is a non-oriented path between them. The connected component (resp.
strongly connected component) of a vertex is the largest connected subgraph
(resp. strongly connected subgraph) containing that vertex.

κ-reducibility

We recall in this subsection some fundamental notions due to Steinberg
and the first author [15].

An implicit signature is a set σ of implicit operations containing the basic
semigroup multiplication, · . In this paper, we consider a canonical such
signature, namely:

κ = { · , ω}

Via the natural interpretation of implicit operations as operations on
profinite semigroups, every profinite semigroup S has a natural structure
of a σ-semigroup. For a pseudovariety V, we denote by Ωσ

AV the free σ-
semigroup in the variety of σ-semigroups generated by V. This turns out
to be the σ-subsemigroup of ΩAV generated by A. The σ-word problem for
V is the word problem for the relatively free σ-semigroup Ωσ

AV, that is, the
problem of deciding equality of σ-terms in V.

A relational morphism of semigroups µ : S → T is a relation µ ⊆ S × T
with domain S which is a subsemigroup. For a finite A-generated semigroup
S, the canonical σ-relational morphism with respect to V is the composite
µσ

V = ϕ−1pV where ϕ : Ωσ
AS → S and pV : Ωσ

AS → Ωσ
AV are the homomor-

phisms of σ-semigroups determined by the choice of generators. In the same
setting, the canonical relational morphism with respect to V is the composite
µV = ψ−1qV where ψ : ΩAS → S and qV : ΩAS → ΩAV are the continuous
homomorphisms determined by the choice of generators.

A labeling of a graph Γ by a semigroup S is a mapping γ from Γ into
S1 such that E (Γ)γ ⊆ S. The label of a path e1, . . . , ek is by definition
e1γ · · · ekγ. A labeling γ is said to be consistent if eαγ · eγ = eωγ holds for
every edge e. Following Ash [11], if η : E (Γ) → A+ is a function, we define
the label of a non-oriented path e1, . . . , ek to be the reduced form of the group
word (e1η)

ε1 · · · (ekη)
εk ∈ FG(A) where εi = 1 if the edge ei is read in the

direction of the path and εi = −1 otherwise. We say that such a function η
commutes if the label of any non-oriented cycle is 1. If η is the restriction to
edges of a labeling γ of Γ, then we also say that γ commutes if η commutes.

We say that two labelings γ and δ of a graph Γ respectively by semigroups
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S and T are µ-related, where µ : S → T is a relational morphism, if for every
g ∈ Γ the pair (gγ, gδ) belongs to µ ∪ {(1, 1)}. A labeling of a graph Γ by S
is said to be µ-inevitable if there is a µ-related consistent labeling of Γ by T .

For a pseudovariety V, we say that a labeling of a graph by a finite
semigroup S is V-inevitable if it is µ-inevitable for every relational morphism
µ : S → T into a semigroup T from V. By a compactness result due to the
first author [19], a labeling of a finite graph by a finite semigroup S is V-
inevitable if and only if it is µV-inevitable. In other words:

Proposition 2.1 A labeling γ of a finite graph Γ by a finite A-generated
semigroup S is V-inevitable if and only if there exists a labeling δ of Γ by
ΩAS such that δψ = γ, where the homomorphism ψ : ΩAS → S respects the
choice of generators and δqV is consistent. �

We say that V is σ-reducible if every V-inevitable labeling of a finite
graph by a finite semigroup S is µσ

V-inevitable.

γ
SΓ

Ωσ
AS

Ωσ
AVΩAV ⊃

δ′
ΩAS

ψ
δ

pV

qV

µV

⊃

Figure 1: A commuting diagram expressing σ-reducibility

A recursively enumerable pseudovariety V is said to be σ-tame if it is
σ-reducible and the σ-word problem for V is decidable. We say that V is
tame if it is σ-tame for some recursively enumerable implicit signature σ
consisting of computable implicit operations.

Basic lemmas

This section gathers elementary statements that we use in the paper.
Reiterman’s theorem [20] states that a pseudovariety is defined by pseu-

doidentities — formal identities whose members are implicit operations. It is
analogous to Birkhoff’s theorem on varieties. See [18] for full developments.
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A finite semigroup S satisfies a pseudoidentity π = ρ if πS = ρS. The class
of finite semigroups satisfying a set of pseudoidentities Σ is denoted by [[Σ]].
We are interested in several pseudovarieties:

• N = [[xyω = yω = yωx]]: the class of all finite nilpotent semigroups.

• D = [[xyω = yω]]: the class of all finite semigroups in which any idem-
potent is a right zero.

• K = [[yωx = yω]]: the class of all finite semigroups in which any idem-
potent is a left zero.

• LI = [[yωxzω = yωzω]]: the class of all finite locally trivial semigroups.

Note that LI is the join of K and D (that is, the smallest pseudovariety
containing both K and D). Another important fact is that N = K∩D, and
so each of these pseudovarieties contains N. The following lemma summarizes
basic algebraic properties of our pseudovarieties. See [21] for details.

Lemma 2.2 Let V be one of the pseudovarieties N, K, D or LI.

1. The semigroup of explicit operations on V is isomorphic to A+.

2. An element of ΩAV is either explicit or idempotent. �

We now describe the idempotents, how they multiply and how they relate
with explicit operations.

Lemma 2.3 Let V be one of the pseudovarieties N, K, D or LI. Then
E(ΩAV) is an ideal. In particular, it is a semigroup. Furthermore,

1. The unique idempotent of ΩAN is a zero.

2. E(ΩAK) is isomorphic to Aω, and ΩAK is isomorphic to A∞.

3. E(ΩAD) is isomorphic to ωA, and ΩAD is isomorphic to ∞A.

4. E(ΩALI) is isomorphic to Aω × ωA. �
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In view of statement 1 of Lemma 2.2, we shall identify explicit operations
(on N, K, D or LI) with words. In view of Lemma 2.3 (statements 2 and
3), we may also identify idempotents of K (resp. of D) with right infinite
words (resp. with left infinite words). Note that in ΩAK, the right infinite
word yxxx · · · (y ∈ A∗, x ∈ A+) corresponds to the implicit operation yxω.
We can therefore use the notation xω safely. The dual remark holds for D.

The next result follows immediately from [17, Corollary 5.6.2 (c)] and
from the fact that A+ is dense in ΩAS:

Lemma 2.4 Let π ∈ ΩAS be non-explicit and let S be a finite semigroup.
Then there exist x, y, z ∈ A∗ with y 6= 1 such that S satisfies π = xyωz. �

There is a partial action of FG(A) on ∞A = ΩAD defined by π · a = πa
and (πa) · a−1 = π (a ∈ A, π ∈ ΩAD).

Lemma 2.5 Let Γ be a connected graph, and let δ be a labeling of Γ by ΩAD
such that

1. δ is consistent,

2. δ maps edges to explicit operations,

3. δ does not commute.

Then, δ maps any vertex to an implicit operation of the form uωv, where
u 6= 1 and v are words, with u fixed.

Proof. Let e1, . . . , ek be a non-oriented cycle having a label h 6= 1. Let
v0, v1, . . . , vk = v0 be the sequence of vertices along this cycle. By consistency
of δ, we have vi+1δ = viδ · (eiδ)

εi , where εi = 1 if the edge ei is read in the
direction of the path and εi = −1 otherwise. Hence, x = x ·h, where x = v0δ.
Set h = aε1

1 · · · aεn
n , with ai ∈ A and εi ∈ {−1, 1}.

We first show that x is ultimately periodic. If h or h−1 belongs to A+,
then there is a word u ∈ A+ such that x = x · u, hence x = uω. Otherwise,
let i = min{` | ε`ε`+1 = −1}. Since h is reduced, we have ai 6= ai+1. Observe
that there exists no ` such that ε` = 1, ε`+1 = −1, since otherwise the action
of a−1

`+1 on x · aε1
1 · · · a

ε`
` would not be defined. So ε1 = · · · = εi = −1, and

εi+1 = · · · = ε` = 1. Therefore, ai · · · a1 is a suffix of x, so let x = x′ai · · · a1.
We then have x · h = x, so

x′ai · · · a1 = x′ai+1 · · · an
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We cannot have i = n − i, otherwise ai would be equal to ai+1. Therefore,
the previous equality implies that there exists u ∈ A+ such that x′ = x′u, so
x′ = uω and x = uωv where v = ai · · · a1.

Suppose now that a vertex v is labeled by an implicit operation of the
form uωv. If there is an oriented path from v to a vertex v′ labeled w, then
v′δ = uωvw. On the other hand, if there is an oriented path from a vertex v′

to v labeled w, then v′δ ·w = uωv, which implies that w is a suffix of umv for
a sufficiently large m, and therefore, by canceling w, that v′δ is also of the
form uωt for some word t.

Since Γ is connected, all vertices are labeled by implicit operations of the
form uωv with the same u. �

Lemma 2.6 Let π, ρ ∈ ΩAS be non-explicit operations such that πqD = ρqD.
Then there exist factorizations π = π1π2 and ρ = ρ1π2 where π2 is non-
explicit. Moreover, if πqD = uωv where u 6= 1 and v are explicit operations,
then one can choose π2 = uωv.

Proof. Since π and ρ are non-explicit, there exist sequences (un) and
(vn) of words of increasing length converging respectively to π and ρ. Since
πqD = ρqD, we can assume that the words un and vn have the same suffix
of length n. Furthermore, if πqD = ρqD = uωv, then one can assume that
unv is a suffix of both un and vn. Both statements follow then by a standard
compactness argument. �

3 The κ-word problem

In this section, we observe that the solution of the κ-word problem for N,
K, D and LI is very easy.

Let V be one of the pseudovarieties N, K, D and LI. We first observe that
a κ-term which involves the operation ω is an idempotent over V. Secondly,
by Lemma 2.2, two κ-terms which do not involve the operation ω are equal
over V if and only if they are the same term. Thirdly, by the same lemma, if
two κ-terms are equal over V, then they either both involve the operation ω

or neither does. This reduces the κ-word problem for V to κ-terms involving
the operation ω. In the case V = N, all such κ-terms are equal over N,
namely equal to 0. Since LI is the join of K and D, the κ-word problem for
LI reduces to that for K and for D. Moreover, since K and D are dual, it
suffices to solve the κ-word problem for D.
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To solve the κ-word problem for D, we consider the following reduction
rules, where u, v and w denote elements of A∗:

vuω → uω u, v 6= 1, (1)

(vuωw)ω → vuωw u 6= 1, (2)

(un)ω → uω u 6= 1, (3)

(uv)ωu→ (vu)ω u 6= 1. (4)

This is clearly a Nœtherian system since the rules reduce the length of terms.
Say that a term is irreducible if it is not possible to apply a reduction rule to
it. By rules 1 and 2, irreducible terms are of the form uωv or v. By rule 3, u
has to be a primitive word. By rule 4, no nontrivial prefix of v in uωv can be
a prefix of u. By associativity, and since idempotents are right zeros in D,
the two sides of any of the above rules clearly coincide over D. To conclude,
it suffices to show that two irreducible terms uω

1 v1, u
ω
2 v2 are equal over D if

and only if u1 = u2 and v1 = v2. This follows from Lemma 2.3 (3).

4 κ-reducibility

In this section, we show that the pseudovarieties N, K, D and LI are κ-
reducible.

Throughout this section, whenever S is a finite A-generated semigroup,
we let ψ denote the unique homomorphism from ΩAS to S which respects
the choice of generators.

4.1 The case of N

Let γ be an N-inevitable labeling of a finite graph Γ by a finite A-generated
semigroup S. By Proposition 2.1, there is a labeling δ of Γ by ΩAS such that
δψ = γ and δqN is consistent. We have to construct a labeling δ′ : Γ → Ωκ

AS
such that δ′ψ = γ and δ′pN is consistent (see Figure 1). Note that by
Lemma 2.4, the following conditions are equivalent for an element s ∈ S:

- s = πψ for some π ∈ ΩAS which is not explicit;

- s = πψ for some π ∈ Ωκ
AS which is not explicit.
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From here it follows that for any edge and vertex whose label under δ is
non-explicit, we can relabel it by a non-explicit κ-term without affecting the
equality δψ = γ or the consistency of δqN. This proves the following theorem:

Theorem 4.1 The pseudovariety N is κ-tame. �

4.2 The case of K

Let γ be a K-inevitable labeling of a finite graph Γ by a finite A-generated
semigroup S. By Proposition 2.1, there is a labeling δ of Γ by ΩAS such that
δψ = γ and δqK is consistent. We have to construct a labeling δ′ : Γ → Ωκ

AS
such that δ′ψ = γ and δ′pK is consistent (see Figure 1).

Let Vω be the subset of V (Γ) consisting of all vertices labeled under δ by
a non-explicit operation. Let θ be the equivalence relation on Vω generated
by the relation

{(v,w) | v,w ∈ Vω and there is an edge from v to w}

and denote by vθ the θ-class of v. Finally, let Evθ be the set of all edges such
that eα /∈ Vω and eω θ v.

Let v ∈ Vω. For any edge e ∈ Evθ, eαδ is explicit and eδ is not. Let

mvθ = max{|eαδ| | e ∈ Evθ}

and let uvθ be the prefix of length mvθ of vδqK. Then by consistency of δqK
and by the choice of mvθ, the non-explicit operation πvθ = u−1

vθ (vδqK) is a
suffix which is common to vδqK and to all eδqK such that e ∈ Evθ, so that

vδqK = uvθπvθ; (5)

moreover, for each e ∈ Evθ, there is a factorization

eδqK = ueπvθ (6)

such that
eαδ · ue = uvθ for every edge e ∈ Evθ. (7)

In view of (5) and (6), and by the dual of Lemma 2.6, there exist implicit
operations ρe, ρvθ and a non-explicit operation σvθ such that

vδ = uvθ · σvθ · ρvθ

eδ = ue · σvθ · ρe for every edge e ∈ Evθ.
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By Lemma 2.4, there exist words wvθ, we, xvθ, yvθ and zvθ such that S satisfies
σvθ = xvθy

ω
vθzvθ, ρvθ = wvθ and ρe = we. We define δ′ to be the labeling of Γ

by Ωκ
AK as follows :

• δ′ coincides with δ on vertices and edges labeled by explicit operations,

• vδ′ = uvθxvθy
ω
vθzvθwvθ for any vertex v ∈ Vω,

• eδ′ = uexvθy
ω
vθzvθwe for any edge e ∈ Evθ,

• eδ′ is any explicit operation which coincides with eδ over S, for any e
such that eα ∈ Vω.

By construction, δ′ψ = γ and, by (7), δ′qK is consistent. This proves the
following theorem:

Theorem 4.2 The pseudovariety K is κ-tame. �

Remark 4.3 Observe that by construction, for any g ∈ Γ, gδ′ is explicit if
and only if gδ is. In this case, gδ = gδ′. This remark will be used in Sec. 4.4.

4.3 The case of D

For any two labelings δ, δ′ of the same graph Γ = (V ,E ) define the condition
C (δ, δ′) as:

∀v ∈ V , (vδ is explicit ⇐⇒ vδ′ is explicit) C (δ, δ′)

Let γ be a D-inevitable labeling of a finite graph Γ by a finite A-generated
semigroup S. By Proposition 2.1, there is a labeling δ of Γ by ΩAS such that
δψ = γ and δqD is consistent. We have to construct a labeling δ′ : Γ → Ωκ

AS
such that δ′ψ = γ and δ′pD is consistent (see Figure 1). In fact, for a technical
reason, we want to construct δ′ which also satisfies C (δ, δ′).

We first reduce to the case in which edges are labeled by explicit op-
erations under δ. If an edge e is labeled by a non-explicit operation, then
by consistency of δqD, we have eδqD = eωδqD. By Lemma 2.6, there are
factorizations eδ = πρ and eωδ = π′ρ with ρ non-explicit. Drop the edge e
and replace the labels under γ and δ of the vertex eω by ρψ and ρ, respec-
tively, to obtain labelings γ1 and δ1 of Γ \ {e} such that δ1ψ = γ1 and δ1qD
is consistent. Assume that there is a labeling δ′1 of Γ \ {e} by Ωκ

AS such that

a) δ′1ψ = γ1,
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b) δ′1qD is consistent,

c) C (δ1, δ
′
1) holds.

Let δ′ be the extension of δ′1|Γ\{e,eω} to Γ obtained by letting eδ′ = u(eωδ′1)
and eωδ′ = u′(eωδ′1), where u and u′ are words such that uψ = πψ and
u′ψ = π′ψ. Then, δ′ satisfies

a) δ′ψ = γ,

b) δ′qD is consistent

c) C (δ, δ′) holds.

Indeed, δ′ψ = γ is straightforward from the choices of u and u′. Since
eωδ1 = ρ is non-explicit and since C (δ1, δ

′
1) holds, eωδ′1 is also non-explicit.

This implies immediately the consistency of δ′qD, as well as the validity of
C (δ, δ′).

By induction on the number of edges labeled by non-explicit operations
under δ, we may therefore assume that all edges are labeled by explicit op-
erations.

Since every edge is labeled by an explicit operation, if eαδ (resp. eωδ)
is labeled by a non-explicit operation for a certain edge e ∈ E (Γ) then,
by consistency of δqD, we also have eωδ (resp. eαδ) non-explicit. Since we
may assume that Γ is connected, it follows that either all vertices of Γ are
labeled under δ by explicit operations, or they are all labeled by non-explicit
operations. If they are labeled by explicit operations, then δ is already a
labeling of Γ by Ωκ

AS which is µκ
D-related to γ, such that δqD is consistent,

and C (δ, δ) holds trivially. So assume that all vertices are labeled by non-
explicit operations under δ.

The next step reduces to the case where δ (in fact, the restriction of δ
to edges) commutes. If there is a non-oriented cycle labeled by an element
h 6= 1 of FG(A), then by Lemma 2.5 the labels by δqD of all vertices are
of the form uωv (u 6= 1). By Lemma 2.6 and by the fact that, over a finite
semigroup, every implicit operation coincides with an explicit one, we can set
vδ′ = wuωv ∈ Ωκ

AS, where vδqD = uωv, so that vδ′ψ = vγ. Since δqD = δ′qD,
clearly δ′qD is consistent and by construction δ′ψ = γ. Since for any v ∈ V ,
neither vδ′ nor vδ′ is explicit, the condition C (δ, δ′) clearly holds.

Let now Γ be a graph and δ be a commuting labeling. Let m be the
maximal length of labels of paths of a spanning tree of Γ. Since δ commutes,
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the label of a non-oriented path only depends on its initial and terminal
vertices. Therefore, the length of the label of any path in Γ is at most m.

Lemma 4.4 Under the above assumptions and with the above notation, there
exist a fixed π ∈ ΩAD which is not explicit and words uv ∈ A+ (v ∈ V (Γ))
such that vδqD = πuv and such that the labeling η of Γ by A∗ defined by
vη = uv (v ∈ V (Γ)) and eη = eδ (e ∈ E (Γ)) is consistent.

Proof. Select a vertex v0. Since v0δ is not explicit by assumption, we can
factorize the implicit operation v0δqD as π · uv0 , where |uv0| = m and where
π is not explicit. For any other vertex v, select a non-oriented path from v0

to v, and let h be the label of this path; put uv = uv0h. Since the length of
h is at most m, and since the action of h on uv0 is defined, uv belongs to A∗.
Note that the equality uv = uv0h shows that η is consistent. Finally, observe
that by consistency of δqD, the image of v under δqD is precisely πuv. �

It follows by Lemma 2.6 that each vδ has a factorization of the form ρvπ
′uv,

where π′ is a fixed non-explicit operation, and uv is given by Lemma 4.4. Now,
by Lemma 2.4, there exist words wv, x, y and z such that S satisfies ρv = wv

and π′ = xyωz. We define δ′ to coincide with δ on edges, and vδ′ = wvxy
ωzuv.

By construction, we have δ′ψ = γ and δ′pD is consistent because the labeling
η of Lemma 4.4 is consistent. Again, δ′ maps any vertex to a non-explicit
operation and C (δ, δ′) holds. This proves the following theorem:

Theorem 4.5 The pseudovariety D is κ-tame. �

Remark 4.6 Again, gδ′ is explicit (and equal to gδ) if and only if gδ is.

4.4 The case of LI

Let γ be an LI-inevitable labeling of a finite graph Γ by a finite A-generated
semigroup S. By Proposition 2.1, there is a labeling δ of Γ by ΩAS such
that δψ = γ and δqLI is consistent. Since LI is the join of K and D, this
is equivalent to δqK and δqD being both consistent. Again, we just have to
construct a labeling δ′ : Γ → Ωκ

AS such that δ′ψ = γ and δ′pLI is consistent.
For any g ∈ Γ such that gδ is not explicit, we choose a factorization

gδ = (gδ)K(gδ)D of gδ in two non-explicit operations on S. Since δψ = γ,
this induces a factorization (gγ)K(gγ)D of gγ, with (gγ)K = (gδ)Kψ and
(gγ)D = (gδ)Dψ.
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The S-labeling γK of Γ defined by gγK = gγ if gδ is explicit and gγK =
(gγ)K otherwise is K-inevitable. Indeed, let δK be the labeling of Γ by
ΩAS which maps g to gδ if gδ is explicit and to (gδ)K otherwise. Then, by
definition of γK and δK, the equality δψ = γ yields δKψ = γK; and δKqK
is consistent, since K satisfies gδ = gδK by the choice of δK, and since δqK
is consistent by hypothesis. By Theorem 4.2, there is a labeling δ′K of Γ by
Ωκ

AS such that δ′KpK is consistent and such that δ′Kψ = γK.
Dually, we can define γD, δD and by Theorem 4.5, there exists a labeling

δ′D of Γ by Ωκ
AS such that δ′DpD is consistent and such that δ′Dψ = γD.

By remarks 4.3 and 4.6, δ′K and δ′D both coincide with δ on elements sent
to explicit operations by δ, and map other elements of Γ on non-explicit
operations. We can now define the labeling δ′ by Ωκ

AS as follows: gδ′ = gδ if
gδ is explicit and gδ′ = gδ′K · gδ′D otherwise.

We claim that δ′ψ = γ: if gδ is explicit, then gδ′ψ = gδψ = gγ. Other-
wise, gδ′ψ = (gδ′K · gδ′D)ψ = gδ′Kψ · gδ′Dψ = gγK · gγD = gγ. Finally, the
consistence of δ′KpK = δ′pK and of δ′DpD = δ′pD implies the consistence of
δ′pLI. This proves the following theorem:

Theorem 4.7 The pseudovariety LI is κ-tame. �
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