
A look at the control of asynchronous automata

Anca Muscholl, Igor Walukiewicz and Marc Zeitoun

May 30, 2008

1 Introduction

In the simplest case, the controller synthesis problem asks to find a model
for a given specification. So it is just the satisfiability problem. In a more
refined version one is given a system, referred to as a plant, and is asked
to find a controller such that the controlled system satisfies a given speci-
fication. Here, we are interested in the case when both the plant and the
controller are distributed systems. More precisely, when they are modelled
by asynchronous automata.

There are numerous versions of the distributed synthesis problem [PR90,
LW90, RW92, KV01, MT01, AVW03, MW03, GLZ04, MTY05]. We focus
on two variants that are most rooted in the theory of Mazurkiewicz traces.
They correspond to two different, and quite intuitive, ways of controlling
a distributed system. The interest in these two control problems is also
motivated by the fact that their decidability is still open. This contrasts
with most of the other settings where one very quickly hits the undecidability
barrier [PR90, MT01, AW07].

In the two problems we consider, the goal is to control the behaviour of
an asynchronous automaton. This is an automaton with some fixed number
of components, or processes, executing in parallel. Each input letter has a
preassigned set of processes it acts on. In this way, if two letters have disjoint
sets of assigned processes we can consider that they can occur in parallel.
The objective is to control an asynchronous automaton so that every possible
run satisfies a given specification. The control consists in forbidding some
actions of the automaton, but not every action can be forbidden, and the
control has also to ensure that the system does not block completely.

In the context of asynchronous automata, it is not reasonable to consider
a controller that at every moment of the execution has a complete knowledge
of the state of all the processes. This would amount to eliminating all
concurrency in the automaton and controlling the resulting finite automaton.
Control of finite automata is well studied and much simpler than distributed
control [KG95, CL99]. It is much more interesting to try to control an
asynchronous automaton without forcing an ad hoc sequentialisation of its

1

behaviours. A natural assumption is that the controller has to use the same
communication architecture as the plant.

Here, we consider the following two ways of controlling an asynchronous
automaton. In the process-based version, each process declares which actions
it permits to execute. Then, an action can execute if all the processes
it involves permit it. In the action-based version, each action is declared
executable or not by regarding all its processes. This gives more power to
the controller as it can look at several processes at the same time.

The process-based version of control was introduced by Madhusudan,
Thiagarajan and Yang [MTY05]. The action-based variant was proposed by
Gastin, Lerman and Zeitoun [GLZ04]. Madhusudan et al. show the decid-
ability of the control problem for asynchronous automata communicating
connectedly (roughly speaking, this requires that if two processes do not
synchronise during a long amount of time, then they won’t synchronise ever
again). The proof proceeds by coding the problem into monadic second-
order theory of event structures and showing that this theory is decidable
when the criterion holds. Gastin et al. show the decidability of action-based
control for asynchronous automata, with a restriction on the form of depen-
dencies between letters of the input alphabet.

Although these two forms of control have been studied for some time,
they have never been put side by side. In this paper we have reworded their
definitions in order to underline their similarities. Based on this reformula-
tion, we give a reduction from process-based to action-based control. The
resemblance of the two definitions allows us also to examine to which extent
the above mentioned results can be transferred form one setting to the other.

2 Preliminaries

2.1 Traces and event structures

A trace alphabet is a pair (Σ, D), where Σ is a finite set of actions and
D ⊆ Σ×Σ is a dependence relation that is reflexive and symmetric. We will
use I = Σ× Σ \D to denote the independence relation.

This alphabet induces a congruence relation ∼I over the set of words Σ∗

over Σ. This is the smallest congruence such that ab ∼I ba for all a, b ∈ I.
An equivalence class of ∼I is called a (Mazurkiewicz) trace. We will use t
for denoting traces and write [u]I for the trace containing u ∈ Σ∗ (or simply
[u] if I is clear from the context).

A trace t is prime if all words it contains end with the same letter. A
prefix of a trace t′ is any trace t = [v] where v is a prefix of some u ∈ t′.
Write t ≤ t′ when t is a prefix of t′; in this case we also say that t′ is an
extension of t. For any two traces t, t′ that have some common extension,
we write tt t′ for their least common extension. For a detailed introduction
to the theory of traces, see the book [DR95].

2

Let L be a prefix closed set of traces. In the same way as a prefix closed
set of words forms a tree, a prefix closed set of traces forms an event structure
that we denote by ES (L). The latter is a tuple 〈E,≤,#, λ〉, where:

• E = {e ∈ L : e prime trace},

• e ≤ e′ if e is a prefix of e′,

• e # e′ if e and e′ do not have a common extension in L,

• λ(e) is the last letter of a word in e.

Observe that if λ(e) and λ(e′) are dependent then either e # e′, or the
two events are comparable with respect to the ≤ relation.

For an event e ∈ E we use e ↓= {e′ : e′ ≤ e} for the set of events
below e. More generally, for a set C ⊆ E we write C↓ for the set

⋃
e∈C e↓.

A configuration C of an event structure is a conflict-free, downward-closed
subset C ⊆ E. That is, C ↓= C and no events e, e′ ∈ C satisfy e # e′.
Notice that every configuration C corresponds to a trace. We can even have
a bijection between configurations of ES (L) and traces in L in the case when
L is both prefix and extension closed; the latter means that for every two
traces t, t′ ∈ L having some common extension, also t t t′ ∈ L.

2.2 Asynchronous automata

Let P be a finite set of processes. Consider an alphabet Σ and a function
loc : Σ→ (2P \ ∅). A (deterministic) asynchronous automaton is a tuple

A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 ,

where

• Sp is a finite set of (local) states of process p,

• sin ∈
∏
p∈P Sp is a (global) initial state,

• δa :
∏
p∈loc(a) Sp

·→
∏
p∈loc(a) Sp is a transition relation; so on a letter

a ∈ Σ it is a partial function on tuples of states of processes in loc(a).

The location mapping loc defines in a natural way an independence rela-
tion I: two actions a, b ∈ Σ are independent if they use different processes,
i.e., if loc(a) ∩ loc(b) = ∅. An asynchronous automaton can be seen as a se-
quential automaton with the state set S =

∏
p∈P Sp and transitions s a−→ s′

if ((sp)p∈loc(a), (s′p)p∈loc(a)) ∈ δa, and sq = s′q for all q /∈ loc(a). By L(A)
we denote the set of words labelling runs of this sequential automaton that
start from the initial state. This definition has an important consequence.
If (a, b) ∈ I then the same state is reached on the words ab and ba. More
generally, whenever u ∼I v and u ∈ L(A) then v ∈ L(A), too. This means
that L(A) is trace closed. By definition, L(A) is also prefix closed, thus it
defines an event structure ES (L(A)), which we also denote as ES (A).

3

3 Two variants of distributed control problems

As in the standard setting of Ramadge and Wonham [RW89] for finite se-
quential automata, we can divide the input alphabet of an asynchronous
automaton into controllable and uncontrollable actions. We can then ask if
there is a way of choosing controllable actions so that a given specification
is satisfied. The important parameter here is the mechanism of controlling
actions. A most general solution is to ask for a global controller that makes
decisions by looking at the global state of the system. This approach com-
pletely ignores the distributed aspect of the system. A more interesting
approach is to ask for a controller that respects the concurrency present in
the automaton. There are several ways of formalising this intuition. Here
we present two. The first one was proposed by Madhusudan et al. [MTY05],
the second one by Gastin et al. [GLZ04].

3.1 Process-based control

A plant is a deterministic asynchronous automaton together with a partition
of the input alphabet into actions controlled by the system and actions
controlled by the environment : Σ = Σsys ∪ Σenv.

A plant defines a game arena, with plays corresponding to initial runs of
A. Since A is deterministic, we can view a play as a word from L(A). Let
Plays(A) denote the set of traces associated with words from L(A).

The p-view of a play u, denoted viewp(u), is the smallest trace prefix of
u containing all the p-events of u (a p-event is an occurrence of some a ∈ Σ
with p ∈ loc(a)). We write Playsp(A) for the set of plays that are p-views:

Playsp(A) = {viewp(u) : u ∈ Plays(A)} .

A strategy for a process p is a function fp : Playsp(A)→ 2Σ. A process-
based strategy is a family of strategies {fp}p∈P, one for each process.

The set of plays respecting a strategy σ = {fp}p∈P, denoted Plays(A, σ),
is the smallest set containing the empty play ε, and such that for every
u ∈ Plays(A, σ):

• if a ∈ Σenv and ua ∈ Plays(A) then ua is in Plays(A, σ).

• if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, σ) provided that
a ∈ fp(viewp(u)) for all p ∈ loc(a).

Intuitively, the definition says that actions of the environment are always
possible, whereas actions of the system are possible only if they are allowed
by the strategies of all the involved processes.

Before defining specifications, we need to make it precise what are infinite
plays that are consistent with a given strategy σ. Let X be an infinite set of
traces from Plays(A, σ) such that for any two traces t, t′ in X, there is some

4

trace t′′ in X with t ≤ t′′ and t′ ≤ t′′ (such a set is called directed). The
limit of an infinite, directed set X, denoted tX, is the least ω-trace with
t ≤ tX for every t ∈ X (for the formal definition of ω-traces see [DR95]).
We write Playsω(A, σ) for the set of ω-traces of the form tX, where X is a
maximal, directed subset of Plays(A, σ).

Specifications for controllers are given by ω-regular languages of traces.
Such languages can be defined as ω-regular word languages L that are closed
under the equivalence ∼I : if ui ∼I vi for all i, then u0u1 · · · ∈ L iff v0v1 · · · ∈
L. A process-based controller satisfying a specification Spec is a process-
based strategy σ, such that Playsω(A, σ) ⊆ Spec.

In order to avoid trivial solutions we need also to impose another re-
striction. A strategy is non-blocking if every play in Plays(A, σ) that has
an extension in Plays(A) also has an extension in Plays(A, σ). Intuitively,
the system is not allowed to stop the execution of the plant by forbidding
all possible actions.

The process-based control problem is to determine for a given plant and
specification if there is a process-based controller for the plant that is non-
blocking and satisfies the specification.

Madhusudan et. al. introduced the notion of connectedly communicating
plants, meaning that in every prime trace of L(A), each of its events has at
most |A| many concurrent events. They showed:

Theorem 1 (Madhusudan & Thiagarajan & Yang)
The process-based control problem is decidable for connectedly communicat-
ing plants.

3.2 Action-based control

As in the process-based version, a plant is a deterministic1 asynchronous
automaton A with a partition of the input alphabet. The difference is that
with an action-based control we need to define the views of actions from Σ.
The a-view of a play u, denoted viewa(u), is the smallest trace prefix of u
that contains all p-events of u, for every p ∈ loc(a). Notice that a trace u
in Playsa(A) needs not be prime, in general, but ua is. We write Playsa(A)
for the set of plays which are a-views:

Playsa(A) =
{

viewa(u) : u ∈ Plays(A)
}
.

A strategy for an action a ∈ Σsys is a function ga : Playsa(A)→ {tt ,ff }.
An action-based strategy is a family of strategies {ga}a∈Σsys , one for each
action in Σsys.

1In [GLZ04], non-deterministic plants were admitted. Moreover, non-blocking con-
trolled behaviour was not required (but the specification could enforce it). These minor
differences with our presentation are motivated in order to present a unified framework.

5

The set of plays respecting a distributed strategy ρ = {ga}a∈Σsys is the
smallest set containing ε, and such that for every u ∈ Plays(A, ρ):

• if a ∈ Σenv and ua ∈ Plays(A) then ua is in Plays(A, ρ).

• if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, ρ) provided that
ga(viewa(u)) = tt .

The definitions of Playsω(A, ρ) and of non-blocking controllers are ex-
actly as before. The notion of a controller satisfying a specification is also
the same.

The action-based control problem is to determine for a given plant and
specification if there is a non-blocking action-based controller for the plant
satisfying the specification.

Gastin et. al. [GLZ04] have shown decidability of the action-based control
problem for plants over trace alphabets of a special form. A trace alphabet
(Σ, D) can be seen as a graph with letters from Σ as nodes and the edges
given by D. Since D is symmetric this graph is undirected; D is also reflexive
but we will not put self loops in the graph. A co-graph is a graph that can
constructed from singletons using parallel and sequential products. Another
characterisation is that it is a graph without an induced P4 subgraph, i.e.
without a graph of the form x1 − x2 − x3 − x4 as an induced subgraph.

Theorem 2 (Gastin & Lerman & Zeitoun)
The action-based control problem for plants over trace alphabets that are
co-graphs is decidable.

4 Reduction from process-based to action-based
control

Action-based strategies are more powerful than process-based ones. The
intuitive reason is that an action-based strategy has more information avail-
able, since it can read the state of every process involved in an action in
order to decide whether to take it or not. In contrast, process-based strate-
gies look at each process separately. It is easy to see that a process-based
controller for a given (A,Spec) can be converted into an action-based one.
The converse is not true, as the following simple example shows.

Consider two processes p1, p2. Process p1 has local actions a0, a1, whereas
process p2 has local actions b0, b1. Two other actions c0, c1 are located on
both p1 and p2. Thus, the trace alphabet ({a0, a1, b0, b1, c0, c1}, D) is such
that D is the smallest symmetric and reflexive relation containing (a0, a1),
(b0, b1), (ai, cj) and (bi, cj) for i, j = 0, 1. Consider an asynchronous au-
tomaton with the transition table:

s1 →{a0,a1} s
′
1 s2 →{b0,b1} s

′
2 (s′1, s

′
2)→{c0,c1} (s′′1, s

′′
2)

6

For the specification we take the trace language:

{aibjck, bjaick : k = (i+ j) mod 2}.

There is clearly an action-based controller: after ai, bj choose ck with the
correct k. But there is no process-based controller in this case. For process
p1 we should have fp1(ai) = {c0, c1} because both c’s should be possible.
Similarly, fp2(bi) = {c0, c1}. But then this strategy also allows the play
a0b0c1.

Below, we show that the process-based control problem can be reduced
to the action-based problem. Fix a plant A and a specification Spec. We
will construct A and Spec such that: there is a process-based controller for
(A,Spec) iff there is an action-based controller for (A,Spec). Informally,
the reduction works as follows: for each process we use additional local
system actions, one for every subset of Σsys. The execution of such an action
corresponds to a declaration of the value of the process-based strategy at
this process. Then we will have another set of actions, this time for the
environment, that will allow to choose one of the declared actions.

We set:

Qp = Qp ∪ (Qp × 2Σsys
) ∪ (Qp × Σsys),

Σsys = Σsys ∪ (P× 2Σsys
) ∪ {>},

Σenv = Σenv ∪ (P× Σsys) ∪ {⊥}.

We also need to specify the locations of the new letters:

loc
(
(p, θ)

)
= loc

(
(p, a)

)
= {p} for all p ∈ P, a ∈ Σsys and θ ∈ 2Σsys

,

loc(>) = loc(⊥) = P.

The idea is that by playing its local action (p, θp), process p declares that it
is willing to enable any action of θp. Later on, the environment will have to
pick some action a present in all sets θp with p ∈ loc(a). Thus, a move on
action a ∈ Σsys in A is simulated in A, up to commutation of independent
actions, by a sequence of the form (p1, θ1), . . . , (pi, θi), (p1, a), . . . , (pi, a), a,
where loc(a) = {p1, . . . , pi} and a ∈ θj for all j. Actions ⊥ and > will be
used to “punish” the system or the environment for an “unfair” behaviour
captured by the following definitions:

• We say that a global state
∏
p∈P(sp, θp) of A is s-blocking if there is

an action of A possible from
∏
p∈P sp but for every such action a we

have a 6∈ θp for some p ∈ loc(a).

• We say that a global state
∏
p∈P(sp, ap) of A is e-blocking if there is

an action of A possible from
∏
p∈P sp but for every such action a we

have a 6= ap for some p ∈ loc(a).

7

An s-blocking state represents a situation when some actions are possible
in the plant, but all of them are blocked due to the choice made by the
system. The e-blocking state is similar, but here the reason is that the
environment has not made a consistent choice of a next action.

Now we define the transition function of A:

δ(p,θ)(sp) = {(sp, θ)} if sp ∈ Sp, θ ∈ 2Σsys

δ(p,a)((sp, θ)) = {(sp, a)} if sp ∈ Sp, a ∈ θ

δa(
∏

p∈loc(a)

(sp, a)) = δa(
∏

p∈loc(a)

sp) if a ∈ Σsys

δa(s) = δa(s) if a ∈ Σenv and s ∈
∏

p∈loc(a)

Sp

δ>(s) = s if s ∈
∏
p∈P

(Sp × Σsys) is e-blocking

δ⊥(s) = s if s ∈
∏
p∈P

(Sp × 2Σsys
) is s-blocking

The specification Spec contains an ω-trace t if: (i) it does not have an
occurrence of ⊥, and (ii) either it has an occurrence of >, or its projection
t|Σ on Σ is in Spec. In general, a projection of a trace may not be a trace.
For example, the words a⊥b and b⊥a are not trace equivalent, but their
projections are if a and b are independent. Fortunately, in our case u|Σ is a
trace when u has neither > nor ⊥.

Lemma 3 If (A,Spec) has a process-based controller then (A,Spec) has an
action-based controller.

Proof
Given a process-based controller σ = {fp}p∈P for A, we construct an action-
based controller ρ = {ga}a∈Σ

sys for A as follows:

g(p,θ)(v) = tt iff θ = fp(v|Σ), for all v ∈ Plays(p,θ)(A),

ga(v) = tt and g>(v) = tt for every v in Playsa(A), and Plays>(A), resp.

We want to show that if v ∈ Plays(A, ρ) and contains neither > nor ⊥,
then v |Σ ∈ Plays(A, σ). This will show the same statement for infinite exe-
cutions: any v ∈ Playsω(A, ρ) either contains > or ⊥, or v |Σ ∈ Playsω(A, σ).
We will then get that ρ satisfies Spec if σ satisfies Spec. We also need to
show that ρ is non-blocking and that it avoids ⊥.

Let state(A, v) denote the global state reached by A after reading v.
Similarly for state(A, v). We write

∏
p∈P sp ∼

∏
p∈P sp if for every p ∈ P,

8

either sp = sp, or sp is the first component of sp. By induction on the
length of v ∈ Plays(A, ρ) we show that if v contains neither > nor ⊥ then
v |Σ ∈ Plays(A, σ) and state(A, v|Σ) ∼ state(A, v).

If v ends with a letter (p, a) or (p, θ) then the statement is immedi-
ate from the induction assumption. For the case of v = ua with a ∈
Σenv we use the induction hypothesis state(A, u) ∼ state(A, u |Σ). We
get u |Σ a ∈ Plays(A, σ) directly from the definition of the transition func-
tion; the constraint on states also obviously holds. Finally, we consider
v = ua with a ∈ Σsys. As Plays(A, ρ) is trace closed, we can assume that
u ends with the sequence (pi1 , θi1), . . . , (pik , θik), (pi1 , a), . . . , (pik , a), where
loc(a) = {pi1 , . . . , pik}. From the definition of the strategy ρ it follows that
fpij

(viewpij
(u|Σ)) = θij and a ∈ θij for all j = 1, . . . , k. This means that

u|Σa ∈ Plays(A, σ) and state(A, v) ∼ state(A, v|Σ).
We need also to ensure that if σ is non-blocking then ρ is also non-

blocking and that ⊥ is not reachable. Take v ∈ Plays(A, ρ) and suppose
that v|Σ has a prolongation in Plays(A, σ). From the above we know that
state(A, v) = state(A, v|Σ). The first case is when state(A, v) has at least
one component in a state from A, say sp ∈ Sp on the p-th component.
In this case it is possible to extend v either by an environment action or
by the system action (p, θp), where θp = fp(viewp(v|Σ)). The next case is
when all components are of the form (sp, θp), observe that we have to have
θp = fp(viewp(v|Σ)) as any execution needs to respect the strategy ρ. As σ
is non-blocking, A’s transition on ⊥ is not applicable (the state (sp, θp)p∈P
is not s-blocking). Next, suppose that there is at least one component in a
state of the form (sp, θp) with θp 6= ∅. Then (sp, a) with a ∈ θp is a possible
next action. Finally, assume that all components are in states of the form
(sp, ap) or (sp, ∅). Then either a letter from Σsys or > is possible. �

It remains to show the converse.

Lemma 4 If there is an action-based controller for (A,Spec) then there is
a process-based controller for (A,Spec).

Proof
We first need an observation about action-based controllers. We call a strat-
egy ρ = {ga}a∈Σ

sys deterministic if for all p ∈ P and v ∈ Plays(p,θ)(A), there
is at most one θ ∈ 2Σsys

such that g(p,θ)(v) is true. We claim that if there
is a controller then there is a deterministic one. To see this suppose that
we have a controller ρ such that g(p,θ1)(v) and g(p,θ2)(v) hold for some v,
p, and two distinct θ1, θ2. Then we modify the strategy into ρ′ where we
set g(p,θ2)(v) to false. Clearly Plays(A, ρ′) is not bigger than Plays(A, ρ).
So all the sequences admitted by ρ′ are in Spec. The new strategy is also
non-blocking if ρ was non-blocking.

Let us now suppose that ρ = {ga}a∈Σ
sys is a deterministic strategy.

9

Thanks to determinism, for every p ∈ P we can introduce an auxiliary
function Fp defined by Fp(v) = θ iff g(p,θ)(v) holds. For a trace u in Plays(A)
we define a trace u in the following way:

ua = ua for a ∈ Σenv,

ua = u
(
p1, Fp1(viewp1(u))

)
· · ·
(
pk, Fpk

(viewpk
(u))

)
(p1, a) · · · (pk, a)a

for a ∈ Σsys with, for the simplicity of notation, loc(a) = {p1, . . . , pk}.

We assume that ua is undefined if so is one of the expressions of the right
hand side. We construct the process-based strategy σ = {fp}p∈P:

fp(u) = Fp(viewp(u)) if u defined and in Plays(A).

By a simple induction on the size of u, one can show that if u ∈ Plays(A, σ)
then u ∈ Plays(A, ρ) and state(A, u) = state(A, u). This implies that if all
infinite plays consistent with ρ satisfy Spec, then all infinite plays consistent
with σ satisfy Spec. It remains to check that σ is non-blocking if ρ is. We
take u ∈ Plays(A, σ) and the corresponding word u ∈ Plays(A, ρ). Suppose
that A can do an action from state(A, u). As ρ is non-blocking and winning
(in particular, ρ can avoid ⊥), u has an extension uvb ∈ Plays(A, ρ) with
b ∈ Σ and v ∈ (Σ \ Σ)∗. Then ub ∈ Plays(A, σ). �

With these two lemmas we get:

Theorem 5
For every (A,Spec) one can construct (A,Spec) such that there is a process-
based controller for (A,Spec) iff there is an action-based controller for (A,Spec).

This theorem says that in general it is easier to solve process control
problems. Unfortunately, it is not universally applicable. For instance, we
cannot use Theorem 2 to get decidability of the process-based control for
trace alphabets that are co-graphs. Our reduction extends the alphabet,
and this extension does not preserve the property of being a co-graph. For
example, in the original alphabet we can have just two actions with locations
{p1, p2} and {p2, p3}. In the extended alphabet we add actions on each
process so we will have an action with location {p1} and one with location
{p3}. This results in a P4 induced subgraph.

5 Control problems and MSOL over event struc-
tures

In this section we encode the two control problems into the satisfiability
problem of monadic second order logic (MSOL) over event structures. This
encoding gives a decidability of the control problem for plants A such that

10

ES (A) has decidable MSOL theory. This is for example the case for con-
nectedly communicating processes. As we will see, while sufficient, the de-
cidability of the MSOL theory of ES (A) is not a necessary condition for the
decidability of control problems.

Monadic second order logic over event structures has two binary relations
< and #, and unary relations Ra, one for each letter in the alphabet. The
interpretation of a relation Ra is the set of events labelled with a. The
interpretation of < and # is, as expected: the partial order, and the conflict
relation between events.

5.1 Encoding for the process-based control

We describe in this section the reduction of the process-based control prob-
lem to the satisfiability problem of MSOL over event structures, as provided
in [MTY05]. For a given specification Spec we want to write a formula ϕSpec

such that for every plant A: the process-based control problem for (A,Spec)
has a solution iff ES (A) � ϕSpec .

As a preparation, let us see how one can talk about plays from A in-
side ES (A). A play is a trace and it corresponds to a configuration inside
the event structure. Such a configuration can be described by its maximal
events. We can also talk about viewp(u) inside the event structure, as it
is the smallest configuration containing all events from u that are labelled
with letters having p in their domain.

A process-based strategy σ = {fp}p∈P can be encoded into an event
structure with the help of second-order variables Zap , for every p ∈ P and
a ∈ Σsys such that p ∈ loc(a). Observe that elements of ES (A) are prime
traces, and that Playsp(A) are exactly the prime traces that end with an
action from p. We define Zap as the set of all u ∈ Playsp(A) such that
a ∈ fp(u). An event (prime trace) u = u′a may of course belong to more
than one Zap , ranging over processes p ∈ loc(a). Clearly there is a bijection
between strategies and such assignments to variables Zap .

Now we need to define Plays(A, σ) inside the event structure. The first
observation is that this set is determined by the prime traces in it. Indeed,
a configuration is in the set iff all its prime subconfigurations are in the
set. Then we write a constraint that an event (prime trace) ua with u ∈
Plays(A, σ) and a ∈ Σsys is in the set iff for all p ∈ loc(a) we have viewp(u) ∈
Zpa . Similarly for a ∈ Σenv.

Finally, we need to be able to talk about infinite traces in Playsω(A, σ)
and about satisfying the specification Spec. As for finite plays, an infinite
configuration X in Playsω(A, σ) is determined by its prime subconfigura-
tions. Moreover, we need to state that such a set X is maximal (no event
u ∈ Plays(A, σ) can be added to X such that a larger configuration is ob-
tained). Using [EM96], we can assume that the specification Spec is given by
a monadic second-order formula ψSpec over ω-traces. Then it suffices to en-

11

sure that any set X of events that describes an infinite trace in Playsω(A, σ)
satisfies ψSpec . We also need to say that a strategy is non-blocking. For this
it suffices to say that every configuration inside Plays(A, σ) that is not max-
imal in the event structure has a proper extension in Plays(A, σ).

5.2 Encoding for the action-based control

We show now how to adapt the encoding presented in the previous section
to action-based control:

Proposition 6 Given a ω-regular trace specification Spec, one can write an
MSOL formula ϕSpec such that for every plant A, the action-based control
problem for (A,Spec) has a solution iff ES (A) � ϕSpec .

Notice first that the a-views of configurations (resp., of traces in Plays(A))
can be described in a similar way as p-views. Namely, viewa(u) is the small-
est configuration containing every event of every process p ∈ loc(a).

The encoding of an action-based strategy ρ = {ga}a∈Σsys is even simpler
than in the process-based case. We use second-order variables Za, a ∈ Σsys,
with the following interpretation: an event e with label a belongs to Za iff the
prime trace ua associated with e satisfies ga(u) = tt . Now we describe the
set of finite plays Plays(A, ρ). As before, a configuration is in Plays(A, ρ)
iff all its prime subconfigurations are in this set. We write that a prime
configuration ua belongs to Plays(A, ρ) iff u ∈ Plays(A, ρ) and moreover
ua ∈ Za if a ∈ Σsys.

For the encodings of Playsω(A, ρ) and Spec we proceed exactly as in the
process-based case.

Madhusudan et al. [MTY05] showed that if A is a connectedly communi-
cating asynchronous automaton, then ES (A) has a decidable MSOL theory.
Together with the encoding above this gives decidability of the action-based
control for such plants.

Proposition 7 The action-based control problem for connectedly commu-
nicating plants is decidable.

We can now observe that the decidability of the MSOL theory of ES (A)
is not a necessary condition for the decidability of controller problems, nei-
ther for the process nor for the action variant. Indeed it suffices to take a
three letter alphabet {a, b, c} with dependencies induced by the pairs (a, c)
and (b, c). This alphabet is a co-graph so by Theorem 2 the action-based
control problem is decidable. It is not difficult to check that the extended
alphabet used in the translation from Section 4 is still a co-graph. Hence, by
Theorem 2, the process-based control problem for this three letter alphabet
is also decidable. Now, consider A that generates all the traces over this
alphabet. The MSOL theory of ES (A) is undecidable as it contains a grid
as a subgraph.

12

References

[AVW03] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthe-
sis of controllers with partial observation. Theoretical Computer
Science, 303(1):7–34, 2003.

[AW07] André Arnold and Igor Walukiewicz. Nondeterministic controllers
of nondeterministic processes. In J. Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata, volume 2 of Texts
in Logic and Games, pages 29–52. Amsterdam University Press,
2007.

[CL99] Christos G. Cassandras and Stéphane Lafortune. Introduction to
Discrete Event Systems. Kluwer Academic Publishers, 1999.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

[EM96] Werner Ebinger and Anca Muscholl. Logical definability on infi-
nite traces. Theoretical Computer Science, 154(3):67–84, 1996.

[GLZ04] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games
with causal memory are decidable for series-parallel systems. In
FSTTCS, volume 3328 of Lecture Notes in Computer Science,
pages 275–286, 2004.

[KG95] R. Kumar and V. K. Garg. Modeling and control of logical discrete
event systems. Kluwer Academic Pub., 1995.

[KV01] O. Kupferman and M.Y. Vardi. Synthesizing distributed systems.
In Proc. 16th IEEE Symp. on Logic in Computer Science, 2001.

[LW90] Feng Lin and Murray Wonham. Decentralized control and coor-
dination of discrete-event systems with partial observation. IEEE
Transactions on automatic control, 33(12):1330–1337, 1990.

[MT01] P. Madhusudan and P.S. Thiagarajan. Distributed control and
synthesis for local specifications. In ICALP’01, volume 2076 of
Lecture Notes in Computer Science, pages 396–407, 2001.

[MTY05] P. Madhusudan, P. S. Thiagarajan, and Shaofa Yang. The MSO
theory of connectedly communicating processes. In FSTTCS, vol-
ume 3821 of lncs, pages 201–212, 2005.

[MW03] Swarup Mohalik and Igor Walukiewicz. Distributed games. In
FSTTCS’03, volume 2914 of Lecture Notes in Computer Science,
pages 338–351, 2003.

13

[PR90] A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In 31th IEEE Symposium Foundations of Computer
Science (FOCS 1990), pages 746–757, 1990.

[RW89] P. J. G. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77(2):81–98, 1989.

[RW92] K. Rudie and W. Wonham. Think globally, act locally: Decen-
tralized supervisory control. IEEE Trans. on Automat. Control,
37(11):1692–1708, 1992.

14

	Introduction
	Preliminaries
	Traces and event structures
	Asynchronous automata

	Two variants of distributed control problems
	Process-based control
	Action-based control

	Reduction from process-based to action-based control
	Control problems and MSOL over event structures
	Encoding for the process-based control
	Encoding for the action-based control

