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Abstract. We study the synthesis problem for external linear or branch-
ing specifications and distributed, synchronous architectures with arbi-
trary delays on processes. External means that the specification only re-
lates input and output variables. We introduce the subclass of uniformly
well-connected (UWC) architectures for which there exists a routing al-
lowing each output process to get the values of all inputs it is connected
to, as soon as possible. We prove that the distributed synthesis problem
is decidable on UWC architectures if and only if the output variables
are totally ordered by their knowledge of input variables. We also show
that if we extend this class by letting the routing depend on the output
process, then the previous decidability result fails. Finally, we provide a
natural restriction on specifications under which the whole class of UWC
architectures is decidable.

1 Introduction

Synthesis is an essential problem in computer science considered by Church in [5].
It consists in translating a system property, relating input and output events,
into a low-level model which has to compute the output from the input, so that
the property is met. The property may be given in a high level specification
language (such as monadic second order logic) while the low-level model can
be a finite state machine. More generally, the problem can be parametrized by
the specification language and the target model. It extends naturally to the
controller synthesis problem, for which a system is also part of the input. The
goal is to synthesize a controller such that the system, synchronized with the
controller, meets a given specification.

Early works consider centralized open systems, i.e., systems interacting with
an unpredictable environment, ([21,1]). The analogy between synthesis of re-
active programs and two-player infinite games is classical: in [25], two-player
games in an automata-theoretic setting are studied in the context of the synthe-
sis problem. In these papers, it was assumed that the controller has complete
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information. Algorithms for solving synthesis problem with incomplete informa-
tion are presented in [10,11,3]. For synchronous distributed systems, where the
different processes have only a partial view of the system, the situation is more
involved: the problem is undecidable in general, and only a few cases have been
identified as decidable (see [22,12] where the problem is studied for temporal
logic specifications). For local specifications, constraining only variables local to
processes, the general problem is still undecidable [14] (though doubly flanked
pipelines become decidable). The game-theoretic framework is also useful for
solving the distributed case (see e.g. [4]). Realizability of specifications in the
logic of knowledge and linear time has been studied in [26] for systems with a
single agent, and in a distributed setting in [27].

For asynchronous communication, synthesis has first been studied in [20] for
single-process implementations and linear-time specifications. In [15], the exis-
tence of a specific class of controllers in the distributed setting is proved decidable
for trace-closed specifications. This result has been strengthened in [16], where
the restricitions on the communication patterns of the controllers have been re-
duced. Another subclass of decidable systems, incomparable with the latter, has
been identified in [8], in which causal memories for the controllers were con-
sidered. The synthesis of asynchronous distributed systems in the general case
of µ-calculus specifications was studied in [7]. Also, the theory of asynchronous
automata has been applied in [24] to solve the synthesis problem of closed dis-
tributed systems. Finally, unifying several formalisms, [17] proposed the frame-
work of distributed games, which is a specialized version of multi-player games,
to reason about distributed synthesis, both in the synchronous and asynchronous
semantics.

In this paper, we address the synthesis problem for distributed open syn-
chronous systems and temporal logic specifications. This specific question has
been first studied in [22], where synthesis has been proved undecidable for LTL
specifications and arbitrary architectures, whereas if we restrict to pipeline ar-
chitectures, synthesis becomes non elementarily decidable for LTL specifications.
The lower bound follows from a former result on multiplayer games [19].

The pipeline architecture has been shown decidable for CTL∗ full specifica-
tions [12], that is, specifications allowed to constrain all variables of the system.
In this case, where decidability of the distributed synthesis is obtained, full
specifications strengthen the result.

A decision criterion, established in [6] for full specifications, implies that the
architecture of Figure 1 is undecidable. The reason is that full specifications
make it possible to enforce a constant value on variable t, breaking the link
between processes p0 and p1. For the undecidability part of the criterion, allowing
specifications on all variables weakens the result by yielding easy reductions to
the basic undecidable architecture of Pnueli and Rosner [22], for instance by
breaking communication links at will.

In the seminal paper [22], specifications were assumed to be external, or
input-output : only variables communicating with the environment could be con-
strained. The way processes of the system communicate was only restricted by
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the communication architecture, not by the specification. This is very natural
from a practical point of view: when writing a specification, we are only con-
cerned by the input/output behavior of the system and we should leave to the
implementation all freedom on its internal behavior. For that reason, solving
the problem for external specifications is more relevant and useful - albeit more
difficult - than a decidability criterion for arbitrary specifications. We will show
that the architecture of Figure 1 is decidable for external specifications, that is,
if we do not constrain the internal variable t.

Contributions. We consider the synthesis problem for synchronous semantics,
where each process is assigned a nonnegative delay. The delays can be used to
model latency in communications, or slow processes. This model has the same
expressive power as the one where delays sit on communication channels, and it
subsumes both the 0-delay and the 1-delay classical semantics [22,12].

To rule out unnatural properties yielding undecidability, the specifications we
consider are external, coming back to the original framework of [22,5]. We first
determine a sufficient condition for undecidability with external specifications,
that generalizes the undecidability result of [22]. We next introduce uniformly
well-connected (UWC) architectures. Informally, an architecture is UWC if there
exists a routing allowing each output process to get, as soon as possible, the val-
ues of all inputs it is connected to. Using tree automata, we prove that for such
architectures and external specifications, the sufficient condition for undecidabil-
ity becomes a criterion. As already pointed out, some architectures undecidable
for general specifications become decidable for external specifications. We also
propose a natural restriction on specifications, called robust, for which all UWC
architectures become decidable.

Finally, we introduce the larger class of well-connected architectures, in which
the routing of input variables to an output process may depend on that process.
We show that our criterion is not necessary anymore for this larger class. The
undecidability proof highlights the surprising fact that in Figure 1, blanking out
a single information bit in the transmission of x0 to p1 through t suffices to
yield undecidability. This is a step forward in understanding decidability limits
for distributed synthesis. Whether the robust external specifications are always
decidable for this class remains open.

An extended abstract of this work appeared in [9].

x0 x1

p0 p1

y0 y1

t

Fig. 1. Architecture decidable for external/undecidable for full specifications.
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2 Preliminaries

Trees and tree automata. Given two finite sets X and Y , a Y -labeled (full) X-
tree is a (total) function t : X∗ → Y where elements of X are called directions,
and elements of Y are called labels. A word σ ∈ X∗ defines a node of t and t(σ)
is its label. The empty word ε is the root of the tree. A word σ ∈ Xω is a branch.
In the following, a tree t : X∗ → Y will be called an (X,Y )-tree.

A non-deterministic tree automaton (NDTA) A = (X,Y,Q, q0, δ, α) runs on
(X,Y )-trees. It consists of a finite set of states Q, an initial state q0, a transition
function δ : Q × Y → P(QX) and an acceptance condition α ⊆ Qω. A run ρ
of such an automaton over an (X,Y )-tree t is an (X,Q)-tree ρ such that for all
σ ∈ X∗, (ρ(σ · x))x∈X ∈ δ(ρ(σ), t(σ)). A run tree is accepting if all its branches
s1s2 · · · ∈ Xω are such that ρ(ε)ρ(s1)ρ(s1s2) · · · ∈ α. The specific acceptance
condition chosen among the classical ones is not important in this paper.

Architectures. An architecture A = (V ⊎ P,E, (Sv)v∈V , s0, (dp)p∈P ) is a finite
directed acyclic bipartite graph, where V ⊎ P is the set of vertices, and E ⊆
(V × P ) ∪ (P × V ) is the set of edges, such that |E−1(v)| ≤ 1 for all v ∈ V .
Elements of P will be called processes and elements of V variables. Intuitively,
an edge (v, p) ∈ V × P means that process p can read variable v, and an edge
(p, v) ∈ P × V means that p can write on v. Thus, |E−1(v)| ≤ 1 means that
a variable v is written by at most one process. Input and output variables are
defined, respectively, by

VI = {v ∈ V | E−1(v) = ∅},

VO = {v ∈ V | E(v) = ∅}.

Variables in V \ (VI ∪ VO) will be called internal. We assume that no process is
minimal or maximal in the graph: for p ∈ P , we have E(p) 6= ∅ and E−1(p) 6= ∅.

Each variable v ranges over a finite domain Sv, given with the architecture.
For U ⊆ V , SU will denote

∏

v∈U S
v. A configuration of the architecture is given

by a tuple s = (sv)v∈V ∈ SV describing the value of all variables. For U ⊆ V ,
we denote by sU = (sv)v∈U the projection of the configuration s to the subset
of variables U . The initial configuration is s0 = (sv

0)v∈V ∈ SV .
We will assume that |Sv| ≥ 2 for all v ∈ V , because a variable v for which

|Sv| = 1 always has the same value and may be ignored. It will be convenient in
some proofs to assume that {0, 1} ⊆ Sv and that sv

0 = 0 for all v ∈ V .
Each process p ∈ P is associated with a delay dp ∈ N that corresponds to the

time interval between the moment the process reads the variables v ∈ E−1(p)
and the moment it will be able to write on its own output variables. Note that
delay 0 is allowed. In the following, for v ∈ V , we will often write dv for dp where
E−1(v) = {p}.

An example of an architecture is given in Figure 2, where processes are
represented by boxes and variables by circles.

Runs. A run of an architecture is an infinite sequence of configurations, i.e.,
an infinite word over the alphabet SV , starting with the initial configuration
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Fig. 2. An architecture

s0 ∈ SV given by the architecture. If σ = s0s1s2 · · · ∈ (SV )ω is a run, then
its projection on U ⊆ V is σU = sU

0 s
U
1 s

U
2 · · · . Also, we denote by σ[i, j] the

factor si . . . sj and by σ[i] the prefix of length i of σ (by convention, σ[i] = ε
if i ≤ 0). A run tree is a full tree t : (SVI)∗ → SV , where t(ε) = s0 and for
ρ ∈ (SVI)∗, r ∈ SVI , we have t(ρ · r)VI = r. The projection of t on U ⊆ V is the
tree tU : (SVI)∗ → SU defined by tU (ρ) = t(ρ)U .

Specifications. Specifications over a set U ⊆ V of variables can be given, for
instance, by a µ-calculus, CTL∗, CTL, or LTL formula, using atomic propositions
of the form (v = a) with v ∈ U and a ∈ Sv. We then say that the formula is in
L(U) where L is the logic used. A specification is external if U ⊆ VI ∪ VO. The
validity of an external formula on a run tree t (or simply a run) only depends
on its projection tVI∪VO onto VI ∪ VO.

Programs, strategies. We consider a discrete time, synchronous semantics. In-
formally, at step i = 1, 2, . . ., the environment provides new values for input
variables. Then, each process p reading values written by its predecessors or by
the environment at step i − dp, computes values for the variables in E(p), and
writes them. Let v ∈ V \VI and let R(v) = E−2(v) be the set of variables read by
the process writing to v. Intuitively, from a word σR(v) in (SR(v))+ representing
the projection on R(v) of some run prefix, a program (or a strategy) advices a
value to write on variable v. But, since the process may have a certain delay dv,
the output of the strategy must not depend on the last dv values of σR(v).

Formally, a program (or local strategy) for variable v is a mapping fv :
(

SR(v)
)+
→ Sv compatible with the delay dv, i.e., such that for all σ, σ′ ∈

(SR(v))i, if σ[i − dv] = σ′[i − dv], then fv(σ) = fv(σ′). This condition – called
delay-compatibility or simply d-compatibility – ensures that the delay dv is re-
spected when computing the next value of variable v. A distributed program
(or distributed strategy) is a tuple F = (fv)v∈V \VI

of local strategies. A run

σ ∈ (SV )ω is an F -run (or F -compatible) if for all v ∈ V \ VI, s
v
i = fv(σR(v)[i]).

Given an input sequence ρ ∈ (SVI)ω, there is a unique run σ ∈ (SV )ω which is
F -compatible and such that σVI = ρ.

The F -run tree is the run tree t : (SVI)∗ → SV such that each branch is
labeled by a word s0s1s2 · · · ∈ (SV )ω which is an F -run. Note that, in an F -run
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σ ∈ (SV )ω, the prefix σ[i] only depends on the prefix σVI [i]. This shows that the
F -run tree is unique.

Distributed synthesis problem. Let L be a specification language. The distributed
synthesis problem for an architecture A is the following: given a formula ϕ ∈
L, decide whether there exists a distributed program F such that every F -
run (or the F -run tree) satisfies ϕ. We will then say that F is a distributed
implementation for the specification ϕ. If for some architecture the synthesis
problem is undecidable, we say that the architecture itself is undecidable (for
the specification language L).

Memoryless strategies. The strategy fv is memoryless if it does not depend on the
past, that is, if there exists g : SR(v) → Sv such that fv(s1 · · · si · · · si+dv

) = g(si)
for s1 · · · si+dv

∈ (SR(v))+. In case dv = 0, this corresponds to the usual definition
of a memoryless strategy.

Summaries. For a variable v ∈ V , we let View(v) = (E−2)∗(v) ∩ VI be the set
of input variables v might depend on. Observe that if σ is an F -run, then for
all v ∈ V \ VI, for all i ≥ 0, sv

i only depends on σView(v)[i]. This allows us

to define the summary f̂v : (SView(v))+ → Sv such that f̂v(σView(v)[i]) = sv
i ,

corresponding to the composition of all local strategies used to compute v.

Remark 1. The compatibility of the strategies F = (fv)v∈V \VI
with the delays

extends to the summaries F̂ = (f̂v)v∈V \VI
. Formally, a map h : (SView(v))+ →

Sv is d-compatible (or compatible with the delays (dv)v∈V \VI
) if for all ρ ∈

(SView(v))i, h(ρ) only depends on the prefixes (ρu[i − d(u, v)])u∈View(v) where
d(u, v) is the smallest cumulative delay of transmission from u to v and is defined
by d(u, u) = 0 and

d(u, v) = dv + min{d(u,w) | w ∈ R(v) and there is a path from u to w},

with min ∅ = +∞ so that d(u, v) = +∞ if there is no path from u to v.

3 Architectures with incomparable information

In this section, we state a sufficient condition for undecidability, which is an easy
generalization of the undecidable architecture presented in [22].

Definition 2. An architecture has incomparable information if there exist vari-
ables x, y ∈ VO such that View(x) \ View(y) 6= ∅ and View(y) \ View(x) 6= ∅.
Otherwise the architecture has linearly preordered information.

For instance, the architectures of Figures 1, 2, 4 and 5 have linearly pre-
ordered information, while the architecture A′ of Figure 3 has incomparable in-
formation. The following proposition extends the undecidability result of [22,6].

Proposition 3. Architectures with incomparable information are undecidable
for LTL or CTL external specifications.
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In [22], the architecture A′ shown in Figure 3 is proved undecidable, both
for LTL and CTL specifications. We will reduce the synthesis problem of A′ to
the synthesis problem of an architecture with incomparable information. This
reduction is rather natural but not completely straightforward, for instance the
specification needs to be changed in the reduction. For the sake of completeness,
we give a precise proof of the reduction in the rest of this section.

Let A = (P ⊎ V,E, (Sv)v∈V , s0, (dp)p∈P ) be an architecture with incompara-
ble information. Recall that we can assume without loss of generality that sv

0 = 0
for all v ∈ V . By definition, there are two (disjoint) sets of variables {x0, . . . , xn}
and {y0, . . . , ym} with x0, y0 ∈ VI, xn, ym ∈ VO, x0 /∈ View(ym), y0 /∈ View(xn),
x0 E

2 x1 E
2 . . . E2 xn, and y0 E

2 y1 E
2 . . . E2 ym.

Let A′ = (P ′ ∪ V ′, E′, (S′v)v∈V ′ , s′0, (d
′
p)p∈P ′) be the architecture of Figure 3

with VI
′ = {x0, y0}, VO

′ = {xn, ym}, S′x0 = S′y0 = {0, 1}, S′xn = Sxn , S′ym =
Sym , s′v0 = 0 for all v ∈ V ′, d′xn

= d′p = dx1 + · · · + dxn
and d′ym

= d′q =
dy1 + · · ·+ dym

.

The architecture A′ is undecidable for LTL or CTL specifications (it suffices
to adapt the proofs of [22,6] taking into account different delays on the processes).
We reduce the distributed synthesis problem for A′ to the same problem for A.
We first consider CTL specifications.

Note that we do need to modify the specification when reducing the dis-
tributed synthesis problem from A′ to A. Indeed, observe that the specification

ψ = EG((x0 = 0) ∧ (xn = 0)) ∧ EG((x0 = 0) ∧ (xn = 1))

is not implementable over A′ while it is implementable over A – provided
View(xn) \ {x0} 6= ∅ and assuming no delays.

To define an implementation F ′ over A′ given an implementation F over A,
we simulate the behavior of F when all the variables in VI \VI

′ are constantly set
to 0. This will be enforced when defining the reduction of the specification from
A′ to A, using the formula χ = (x0 ∈ {0, 1}) ∧ (y0 ∈ {0, 1}) ∧

∧

v∈VI\VI
′(v = 0).

We define a reduction that maps a formula ψ of CTL(V ′) into a formula ψ in

x0 y0

xn ym

A

x0 y0

p q

xn ym

A′

Fig. 3. Architectures A and A′
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CTL(VO ∪ VI) by

(x = s) = (x = s)

¬ψ = ¬ψ

ϕ ∨ ψ = ϕ ∨ ψ

EXψ = EX(χ ∧ ψ)

Eϕ U ψ = E(χ ∧ ϕ) U (χ ∧ ψ)

and EGψ = EG(χ ∧ ψ).

For r ∈ S′VI
′

, we define r̄ ∈ SVI by r̄VI
′

= r and r̄v = 0 for all v ∈ VI \ VI
′,

and we extend this definition to words. For a run tree t : (SVI)∗ → SV , we
define t̄ : (S′VI

′

)∗ → SV ′

by t̄(ρ) = t(ρ̄)V ′

for ρ ∈ (S′VI
′

)∗. We need the following
lemma:

Lemma 4. For every formula ψ ∈ CTL(V ′), every tree t : (SVI)∗ → SV , and
every ρ ∈ (S′VI

′

)∗ we have t, ρ̄ |= ψ if and only if t̄, ρ |= ψ.

Proof. By induction on ψ. Let t : (SVI)∗ → SV and ρ ∈ (S′VI
′

)∗.

– Let x ∈ V ′ and s ∈ Sx. Then, t̄, ρ |= (x = s) if and only if t̄(ρ)x = s if and
only if, by definition, t(ρ̄)x = s, if and only if t, ρ̄ |= (x = s).

– The cases ¬ϕ and ϕ ∨ ψ are trivial.
– t̄, ρ |= E Xϕ if and only if t̄, ρ · r |= ϕ for some r ∈ S′VI

′

, if and only if, by
induction hypothesis, t, ρ̄·r̄ |= ϕ for some r ∈ S′VI

′

, if and only if t, ρ̄·s |= χ∧ϕ
for some s ∈ SVI , if and only if t, ρ̄ |= EX(χ ∧ ϕ) = E Xϕ.

– t̄, ρ |= Eϕ U ψ if and only if there exists r1 · · · rn ∈ (S′VI
′

)∗ such that t̄, ρ ·
r1 · · · rn |= ψ and t̄, ρ · r1 · · · ri |= ϕ for all 0 ≤ i < n, if and only if, by
induction hypothesis, there exists r1 · · · rn ∈ (S′VI

′

)∗ such that t, ρ̄·r1 · · · rn |=
ψ and t, ρ̄ ·r1 · · · ri |= ϕ for all 0 ≤ i < n, if and only if there exists s1 · · · sn ∈
(SVI)∗ such that t, ρ̄ · s1 · · · sn |= χ ∧ ψ and t, ρ̄ · s1 · · · si |= χ ∧ ϕ for all
0 ≤ i < n, if and only if t, ρ̄ |= Eϕ U ψ.

– t̄, ρ |= EGϕ if and only if there exists r1r2 · · · ∈ (S′VI
′

)ω such that t̄, ρ ·
r1 · · · rn |= ϕ for all n ≥ 0, if and only if by induction hypothesis, there
exists r1r2 · · · ∈ (S′VI

′

)ω such that t, ρ̄ · r1 · · · rn |= ϕ for all n ≥ 0, if and
only if there exists s1s2 · · · ∈ (SVI)ω , such that t, ρ̄ · s1 · · · sn |= χ ∧ ϕ for all
n ≥ 0, if and only if t, ρ̄ |= EGϕ. ⊓⊔

Lemma 5. If there is a distributed program F ′ over A′ that satisfies ψ, then
there is a distributed program F over A that satisfies ψ.

Proof. Let F ′ = (f ′xn , f ′ym) be a distributed implementation for ψ over A′.
The variables x1, . . . , xn−1 will be used to transmit the value of x0 so that the
strategy fxn can simulate f ′xn . Formally, for 0 < k < n, σ ∈ (SR(xk))+, let

fxk(σ) =

{

sxk−1 if σ = σ1sσ2 with |σ2| = dxk
and sxk−1 ∈ {0, 1},

0 otherwise.
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The last variable xn simulates f ′xn : for σ ∈ (SR(xn))+, we let

fxn(σ) =



















f ′xn(0|σ|) if |σ| ≤ d′xn
,

f ′xn(σ
xn−1

2 0d′

xn ) if
σ = σ1σ2σ3 with |σ1| = d′xn

− dxn
, |σ3| = dxn

,
and σ

xn−1

2 ∈ {0, 1}+,

0 otherwise.

We first check that fxn is d-compatible. Let σ, σ′ ∈ (SR(xn))i such that
σ[i − dxn

] = σ′[i − dxn
]. If i ≤ d′xn

, then fxn(σ) = fxn(σ′) = f ′xn(0i) by
the first case of the definition of fxn . Otherwise, one can write σ = σ1σ2σ3 and
σ′ = σ1σ2σ

′
3, with |σ1| = d′xn

−dxn
and |σ3| = |σ

′
3| = dxn

. If σ
xn−1

2 ∈ {0, 1}+, then

fxn(σ) = fxn(σ′) = f ′xn(σ
xn−1

2 0d′xn), and otherwise, fxn(σ) = fxn(σ′) = 0.
We define similarly fyk , 0 < k ≤ m. For every other variable v, we set fv = 0.

Let F be the resulting distributed strategy. We show that F is a distributed
implementation for ψ over A.

Let t′ : (S′VI
′

)∗ → SV ′

be the F ′-run tree over A′ and t : (SVI)∗ → SV the
F -run tree over A. We show that t̄ = t′. Let ρ = r1 · · · ri ∈ (S′VI

′

)+ and let

σ = (t(r̄1)t(r̄1 r̄2) · · · t(ρ̄))R(xn). We have t̄(ρ)VI
′

= t(ρ̄)VI
′

= rVI
′

i = t′(ρ)VI
′

.
If |ρ| ≤ d′xn

then t̄(ρ)xn = t(ρ̄)xn = fxn(σ) = f ′xn(0|σ|) = f ′xn(ρx0) =
t′(ρ)xn , where the fourth equality follows from the d′-compatibility of f ′xn . Sim-
ilarly, t̄(ρ)ym = t′(ρ)ym and we have shown t̄(ρ)VO

′

= t′(ρ)VO
′

when |ρ| ≤ d′xn
.

Finally, if |ρ| > d′xn
, then write ρ = ρ2ρ3ρ4 with |ρ3| = dxn

and |ρ4| =
d′xn
− dxn

. Let δk = dx1 + · · ·+ dxk
. By induction on 0 < k < n, and using the

definition of fxk , we obtain t(ρ̄[i])xk = rx0

i−δk
with the convention that rx0

j = 0

if j ≤ 0. Therefore, σxn−1 = 0d′

xn
−dxnρx0

2 ρx0
3 and ρx0

2 ∈ {0, 1}+. We obtain

t̄(ρ)xn = t(ρ̄)xn = fxn(σ) = f ′xn(ρx0
2 0d′

xn ) = f ′xn(ρx0) = t′(ρ)xn , where the
fourth equality follows from the d′-compatibility of f ′xn . Similarly, t̄(ρ)ym =
t′(ρ)ym and we have shown t̄(ρ)VO

′

= t′(ρ)VO
′

when |ρ| > d′xn
.

We have shown t̄ = t′ and since F ′ is a distributed implementation of ψ, we
have t′, ε |= ψ, i.e., t̄, ε |= ψ. Now, Lemma 4 implies that t, ε |= ψ. Hence F is a
distributed implementation of ψ. ⊓⊔

Lemma 6. If there is a distributed program F over A that satisfies ψ, then there
is a distributed program F ′ over A′ that satisfies ψ.

Proof. Suppose F = (fv)v∈V \VI
is a distributed implementation of ψ over A. We

need to define the strategies f ′xn : (S′x0)+ → Sxn and f ′ym : (S′y0)+ → Sym of
the variables in A′. Intuitively, the processes of A′ will behave like the processes
of A writing respectively on xn and ym when the values of input variables other
than x0 and y0 are always 0.

For ρ ∈ (S′VI
′

)+ we set f ′xn(ρx0) = f̂xn(ρ̄View(xn)). Observe that, due to

incomparable information, f̂xn does not depend on ρ̄y0 . Hence f ′xn only depends
on ρx0 and is a correct strategy for variable xn in the architecture A′. Moreover,
f̂xn is d-compatible and so f ′xn is d-compatible. We define f ′ym similarly. Let
t be the F -run tree. Since t, ε |= ψ, Lemma 4 implies that t̄, ε |= ψ. We have
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t′(ρ)xn = f ′xn(ρx0) = f̂xn(ρ̄View(xn)) = t(ρ̄)xn = t̄(ρ)xn and similarly, t′(ρ)ym =
t̄(ρ)ym . Hence t′ = t̄ and F ′ is a distributed implementation of ψ on A′. ⊓⊔

For LTL specifications, we use

ψ = (G ξ)→ ψ

where the formula ξ is defined by ξ = (x0 ∈ {0, 1})∧ (y0 ∈ {0, 1}).
The same constructions as the ones described in the proofs of Lemma 5 and

Lemma 6 yield the reduction. Indeed, suppose F ′ given and F defined as in the
proof of Lemma 5. Let ρ ∈ (SVI)

ω

and σ ∈ (SV )ω the induced F -run. If ρx0 /∈
{0, 1}ω or ρy0 /∈ {0, 1}ω then σ, ε |= ψ. Otherwise, let σ′ = F ′(ρ{x0,y0}). As in the
proof of Lemma 5 we show σ′ = σV ′

. We have σ′, ε |= ψ and since ψ ∈ LTL(V ′)
we deduce σ, ε |= ψ. Then σ, ε |= ψ and F is a distributed implementation of ψ
over A.

Conversely, given F define F ′ as in the proof of Lemma 6. Let ρ ∈ (S′VI
′

)ω,
σ′ = F ′(ρ) and σ = F (ρ̄). Then, σ, ε |= G ξ and since F is a distributed imple-
mentation of ψ we get σ, ε |= ψ. We can show as in the proof of Lemma 6 that
σ′ = σV ′

and since ψ ∈ LTL(V ′) we deduce σ′, ε |= ψ. Hence, F ′ is a distributed
implementation of ψ over A′.

We have defined a reduction of the distributed synthesis problem over ar-
chitecture A′ to the distributed synthesis problem over an architecture with
incomparable information for an LTL or CTL specification. The problem being
undecidable for both logics over A′ we obtain undecidability for architectures
with incomparable information.

4 Uniformly well-connected architectures

This section introduces the new class of uniformly well-connected (UWC) archi-
tectures and provides a decidability criterion for the synthesis problem on this
class. It also introduces the notion of robust specifications and shows that UWC
architectures are always decidable for external and robust specifications.

4.1 Definition

A routing for an architecture A = (V ⊎ P,E, (Sv)v∈V , s0, (dp)p∈P ) is a family
Φ = (fv)v∈V \(VI∪VO) of memoryless local strategies. Observe that a routing
does not include local strategies for output variables. Informally, we say that an
architecture is uniformly well connected if there exists a routing Φ that makes
it possible to transmit with a minimal delay to every process p writing to an
output variable v, the values of the variables in View(v).

Definition 7. An architecture A is uniformly well-connected (UWC) if there
exist a routing Φ and, for every v ∈ VO and u ∈ View(v), a decoding function

gu,v :
(

SR(v)
)+
→ Su that can reconstruct the value of u, i.e., such that for any

Φ-compatible sequence σ = s0s1s2 · · · ∈
(

SV \VO

)+
, we have for i ≥ 0

su
i = gu,v(σR(v)[i+ d(u, v)− dv]) (1)

10



In case there is no delay, the uniform well-connectedness refines the notion of
adequate connectivity introduced by Pnueli and Rosner in [22], as we no longer
require each output variable to be communicated the value of all input variables,
but only those in its view. In fact, this gives us strategies for internal variables,
that are simply to route the input to the processes writing on output variables.

Observe that, whereas the routing functions are memoryless, memory is re-
quired for the decoding functions. Indeed, consider the architecture of Figure 4.
The delays are written next to the processes, and all variables range over the
domain {0, 1}. Observe first that this architecture is UWC: process p writes to
t the xor of u1 and u2 with delay 1. This could be written t = Y u1 ⊕ Y u2

where Y x denotes the previous value of variable x. In order to recover (decode)
Y u2, process q1 memorizes the previous value of u1 and makes the xor with t:
Y u2 = t ⊕ Y u1. But if we restrict to memoryless decoding functions, then we
only know u1 and t and we cannot recover Y u2.

u1 u2

p 1

t

q1 0 q20

v1 v2

Fig. 4. A uniformly well-connected architecture

4.2 Decision criterion for UWC architectures

We first show that distributed programs are somewhat easier to find in a UWC
architecture. As a matter of fact, in such architectures, to define a distributed
strategy it suffices to define a collection of input-output strategies that respect
the delays given by the architecture.

Lemma 8. Let A = (V ⊎ P,E, (Sv)v∈V , s0, (dp)p∈P ) be a UWC architecture.
For each v ∈ VO, let hv : (SView(v))+ → Sv be an input-output mapping which
is d-compatible. Then there exists a distributed program F = (fv)v∈V \VI

over A

such that hv = f̂v for all v ∈ VO.

Proof. Let Φ = (fv)v∈V \(VI∪VO) and (gu,v)v∈VO,u∈View(v) be respectively the
routing and the decoding functions giving the uniform well-connectedness of the
architecture A. We use the routing functions fv as memoryless strategies for the
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internal variables v ∈ V \ (VI ∪ VO). It remains to define fv for v ∈ VO. Let
ρ ∈ (SVI)i for i > 0 and let σ ∈ (SV \VO)i be the corresponding Φ-compatible
sequence. For v ∈ VO, we want to define fv such that fv(σR(v)) = hv(ρView(v)).
We need to verify that this is well-defined.

Let i > 0 and ρ, ρ′ ∈ (SVI)i. Let σ, σ′ ∈ (SV \VO)i be the corresponding Φ-
compatible sequences, and assume σR(v)[i − dv] = σ′R(v)[i − dv]. Then, for all
u ∈ View(v), ρu[i− d(u, v)] = ρ′u[i− d(u, v)]. Indeed, for all 0 ≤ j ≤ i− d(u, v),
we have su

j = gu,v(σR(v)[j+ d(u, v)− dv]) and s′uj = gu,v(σ′R(v)[j+ d(u, v)− dv])

by (1). Using σR(v)[i− dv] = σ′R(v)[i− dv] and j+ d(u, v) ≤ i we get su
j = s′uj as

desired. Since hv is d-compatible, we deduce that hv(ρView(v)) = hv(ρ′View(v)).
Hence for τ ∈ (SR(v))i with i > 0, we can define

fv(τ) =







hv(σView(v))
if τ [i− dv] = σR(v)[i− dv]
for some Φ-compatible sequence σ

0 otherwise

By the above, fv is well-defined and obviously it depends only on τ [i−dv]. Thus,
it is indeed d-compatible.

Now, let ρ ∈ (SVI)i, and let σ be the F -run induced by ρ. We get, by defini-

tion, f̂v(ρView(v)) = fv(σR(v)). Since σV \VO is also a Φ-compatible sequence for

ρ, we have f̂v(ρView(v)) = fv(σR(v)) = hv(ρView(v)). ⊓⊔

We now give a decision criterion for this specific subclass of architectures.

Theorem 9. A UWC architecture is decidable for external (linear or branching)
specifications if and only if it has linearly preordered information.

We have already seen in Section 3 that incomparable information yields un-
decidability of the synthesis problem for LTL or CTL external specifications. We
prove now that, when restricted to the subclass of UWC architectures, this also
becomes a necessary condition.

We assume that the architecture A is UWC and has linearly preordered
information, and therefore we can order the output variables VO = {v1, . . . , vn}
so that View(vn) ⊆ · · · ⊆ View(v1) ⊆ VI.

In the following, in order to use tree-automata, we extend a local strategy
f : (SX)+ → SY by letting f(ε) = sY

0 , so that it becomes an (SX , SY )-tree. We
proceed in two steps. First, we build an automaton accepting all the global input-
output 0-delay strategies implementing the specification. A global input-output
0-delay strategy for A is an (SView(v1), SVO)-tree h satisfying h(ε) = sVO

0 . This
first step is simply the program synthesis for a single process with incomplete
information (since we may have View(v1) ( VI). This problem was solved in [13]
for CTL∗ specifications.

Proposition 10 ([13, Th. 4.4]). Given an external specification ϕ ∈ CTL∗(VI∪
VO), one can build a NDTA A1 over (SView(v1), SVO)-trees such that h ∈ L(A1)
if and only if the run tree induced by h satisfies ϕ.
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If L(A1) is empty then we already know that there are no distributed im-
plementations for the specification ϕ over A. Otherwise, thanks to Lemma 8,
we have to check whether for each v ∈ VO there exists an (SView(v), Sv)-tree
hv which is d-compatible and such that the global strategy

⊕

v∈VO
hv induced

by the collection (hv)v∈VO is accepted by A1. Formally, the sum of strategies
is defined as follows. Let X = X1 ∪ X2 ⊆ VI and Y = Y1 ⊎ Y2 ⊆ VO, and for
i = 1, 2 let hi be an (SXi , SYi)-tree. We define the (SX , SY )-tree h = h1⊕h2 by
h(σ) = (h1(σ

X1 ), h2(σ
X2 )) for σ ∈ (SX)∗.

To check the existence of such trees (hv)v∈VO , we will inductively eliminate
the output variables following the order v1, . . . , vn. It is important that we start
with the variable that views the largest set of input variables, even though,
due to the delays, it might get the information much later than the remaining
variables. Let Vk = {vk, . . . , vn} for k ≥ 1. The induction step relies on the
following statement.

Proposition 11. Let 1 ≤ k < n. Given a NDTA Ak accepting (SView(vk), SVk)-
trees, we can build a NDTA Ak+1 accepting (SView(vk+1), SVk+1)-trees, such that
a tree t is accepted by Ak+1 if and only if there exists an (SView(vk), Svk)-tree
hvk which is d-compatible and such that hvk ⊕ t is accepted by Ak.

The proof of Proposition 11 divides in two steps. Since Vk = {vk} ⊎ Vk+1,
for each (SView(vk), SVk)-tree t we have t = tvk ⊕ tVk+1 (recall that tU is the
projection of t on U). So one can first transform the automaton Ak into A

′
k that

accepts the trees t ∈ L(Ak) such that tvk is d-compatible (Lemma 12). Then,
one can build an automaton that restricts the domain of the directions and the
labeling of the accepted trees to SView(vk+1) and SVk+1 respectively.

Lemma 12. Let v ∈ U ⊆ VO. Given a NDTA A over (SView(v), SU )-trees one
can build a NDTA A′ = compatv(A) also over (SView(v), SU )-trees such that
L(A′) = {t ∈ L(A) | tv is d-compatible}.

Proof. Intuitively, to make sure that the function tv is d-compatible, the au-
tomaton A

′ will guess in advance the values of tv and then check that its guess
is correct. The guess has to be made K = max{d(u, v), u ∈ View(v)} steps
in advance and consists in a d-compatible function g : (SView(v))K → Sv that
predicts what will be K steps later the values of variable v. During a transi-
tion, the guess is sent in each direction r ∈ SView(v) as a function r−1g defined
by (r−1g)(σ) = g(rσ) which is stored in the state of the automaton. Previous
guesses are refined similarly and are also stored in the state of the automaton
so that the new set of states is Q′ = Q × F where F is the set of d-compatible
functions f : (SView(v))<K → Sv, where Z<K =

⋃

i<K Zi. The value f(ε) is the
guess that was made K steps earlier and has to be checked against the current
value of v in the tree.

Transitions of A′ will be defined using the function ∆ : F ×SView(v) → P(F)
given by ∆(f, r) = {f ′ | f ′(σ) = f(rσ) for |σ| < K − 1}. Note that the values
f ′(σ) for |σ| = K − 1 do not depend on f and correspond to the new guess g

13



refined by r as intuitively described above. Now, the transition function of A′ is
defined for (q, f) ∈ Q′ and s ∈ SU with sv = f(ε) by

δ′
(

(q, f), s
)

=

{

(qr, fr)r∈SView(v)

∣

∣

∣

(qr)r∈SView(v) ∈ δ(q, s) and
fr ∈ ∆(f, r) for all r ∈ SView(v)

}

.

Finally, the set of initial states of A′ is I ′ = {q0} × F and α′ = π−1(α) where
π : (Q × F)ω → Qω is the projection on Q, i.e., a run of A′ is accepted if and
only if its projection on Q is an accepted run of A.

Let t be an (SView(v), SU )-tree accepted by A and suppose that tv is d-
compatible. Let ρ : (SView(v))∗ → Q be an accepting run of A over t. For
τ ∈ (SView(v))∗, we define (τ−1tv)<K : (SView(v))<K → Sv by (τ−1tv)<K(σ) =
tv(τσ). It is easy to see that (τ−1tv)<K is d-compatible, hence it belongs to F .
Then we set ρ′ : (SView(v))∗ → Q×F the full tree such that for all τ ∈ (SView(v))∗,
ρ′(τ) =

(

ρ(τ), (τ−1tv)<K
)

.
Since ρ is a run of A over t, we get

(ρ(τr))r∈SView(v) ∈ δ(ρ(τ), t(τ)).

By construction, ρ′(τr) = (ρ(τr), ((τr)−1tv)<K). Also, for σ ∈ (SView(v))<K−1,
we have ((τr)−1tv)<K(σ) = tv(τrσ) = (τ−1tv)<K(rσ). Thus, ((τr)−1tv)<K ∈
∆((τ−1tv)<K , r) for all r ∈ SView(v). Then (ρ′(τr))r∈SView(v) ∈ δ′(ρ′(τ), t(τ)) and
ρ′ is a run of A′ over t. The run ρ′ is accepting since its projection on Q is ρ
which is accepting.

Conversely, suppose there is an accepting run ρ′ of A′ over t. We need to
show that tv is d-compatible and that t ∈ L(A). Let ρ′ :

(

SView(v)
)∗
→ Q × F

be an accepting run of A′ over t. We have ρ′ = (ρ,H) with ρ :
(

SView(v)
)∗
→ Q

and H : (SView(v))∗ → F . By definition of δ′, we immediately get that ρ is a run
of A, which is accepting since ρ′ is accepting.

It remains to prove that tv is d-compatible. Since the transition function
δ′ is only defined on ((q, f), s) when sv = f(ε), we obtain tv(τ) = H(τ)(ε)
for all τ ∈ (SView(v))∗. Hence, we need to show that the map τ 7→ H(τ)(ε) is
d-compatible.

Let τ, τ ′ ∈ (SView(v))i be such that τu[i − d(u, v)] = τ ′u[i − d(u, v)] for all
u ∈ View(v). If |τ | = |τ ′| > K then we write τ = τ1τ2, and τ ′ = τ ′1τ

′
2 with

|τ2| = |τ ′2| = K. Then, since K ≥ d(u, v) for u ∈ View(v), we deduce from
τu[i−d(u, v)] = τ ′u[i−d(u, v)] that τ1 = τ ′1 and τu

2 [K−d(u, v)] = τ ′u2 [K−d(u, v)]
for all u ∈ View(v). By successive applications of the transition function δ′ and by
definition of ∆, we obtain that H(τ)(ε) = H(τ1)(τ2) and H(τ ′)(ε) = H(τ1)(τ

′
2).

By construction, H(τ1) is d-compatible. Then we get H(τ1)(τ2) = H(τ1)(τ
′
2) and

therefore, H(τ)(ε) = H(τ ′)(ε).
If |τ | < K, then in an analogous manner we obtain H(τ)(ε) = H(ε)(τ) =

H(ε)(τ ′) = H(τ ′)(ε) since H(ε) is d-compatible. ⊓⊔

Proof (of Proposition 11). We consider the NDTA compatvk
(Ak). It remains

to project away the Svk component of the label and to make sure that the
SVk+1 component of the label only depends on the SView(vk+1) component of
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the input. The first part is the classical projection on SVk+1 of the automaton
and the second part is the narrowing construction introduced in [13]. The au-
tomaton Ak+1 fulfilling the requirements of Proposition 11 is therefore given by
narrowView(vk+1)(projVk+1

(compatvk
(Ak))). Note that, even when applied to a

NDTA, the narrowing construction of [13] yields an alternating tree automaton.
Here we assume that the narrowing operation returns a NDTA using a classical
transformation of alternating tree automata into NDTA [18]. The drawback is
that this involves an exponential blow up. Unfortunately, this is needed since
Lemma 12 requires a NDTA as input. ⊓⊔

We can now conclude the proof of Theorem 9. Using Proposition 11 induc-
tively starting from the NDTA A1 of Proposition 10, we obtain a NDTA An ac-
cepting an (SView(vn), Svn)-tree hvn if and only if for each 1 ≤ i < n, there exists
an (SView(vi), Svi)-tree hvi which is d-compatible and such that hv1⊕· · ·⊕hvn is
accepted by A1. Therefore, using Remark 1 and Lemma 8, there is a distributed
implementation for the specification over A if and only if L(compatvn

(An)) is
nonempty. The overall procedure is non-elementary due to the exponential blow-
up of the inductive step in Proposition 11. ⊓⊔

4.3 Decidability for UWC architectures and robust specifications

We now show that we can obtain decidability of the synthesis problem for the
whole subclass of UWC architectures by restricting ourselves to specifications
that only relate output variables to their own view.

Definition 13. A specification ϕ ∈ L with L ∈ {LTL,CTL,CTL∗} is robust
if it is a (finite) disjunction of formulas of the form

∧

v∈VO
ϕv where ϕv ∈

L(View(v) ∪ {v}). Note that a robust formula is always external.

Proposition 14. The synthesis problem for robust CTL∗ specifications is de-
cidable over UWC architectures.

Proof. Let A = (V ⊎ P,E, (Su)u∈V , s0, (dp)p∈P ) be a UWC architecture and
ϕ be a robust CTL∗ specification. Without loss of generality, we may assume
that ϕ =

∧

v∈VO
ϕv where ϕv ∈ CTL∗(View(v)∪ {v}). Using Proposition 10, for

each v ∈ VO we find a NDTA Av accepting a strategy h : (SView(v))∗ → Sv if
and only if the induced run tree t : (SView(v))∗ → SView(v)∪{v} satisfies ϕv. The
proposition then follows from the

Claim. There exists a distributed implementation of ϕ over A if and only if for
each v ∈ VO, the automaton compatv(Av) is nonempty.

First, let F be a distributed implementation of ϕ over A and let t : (SVI)∗ →

SV be the induced run-tree. Fix some v ∈ VO. The map f̂v : (SView(v))∗ → Sv

is d-compatible by Remark 1. Let t′ : (SView(v))∗ → SView(v)∪{v} be the run-

tree induced by f̂v. For each σ ∈ (SVI)∗ we have t(σ)View(v)∪{v} = t′(σView(v)).
Since F implements ϕ, we have t |= ϕ and then t |= ϕv. We can prove by
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structural induction on the formula that for any ψ ∈ CTL∗(View(v) ∪ {v}),
any branch σ ∈ (SVI)ω and any position i we have t, σ, i |= ψ if and only if
t′, σView(v), i |= ψ. Since ϕv ∈ CTL∗(View(v) ∪ {v}), we deduce that t′ |= ϕv.

Therefore, f̂v is accepted by Av and also by compatv(Av).
Conversely, for each v ∈ VO, let hv : (SView(v))∗ → Sv be a strategy accepted

by compatv(Av). By Lemma 12, hv is d-compatible. Let tv : (SView(v))∗ →
SView(v)∪{v} be the run-tree induced by hv. We have tv |= ϕv by definition of
Av and Proposition 10. Now, using Lemma 8 we find a distributed program
F = (fv)v∈V \VI

such that f̂v = hv for each v ∈ VO. let t : (SVI)∗ → V VI∪VO

be the run-tree induced by F . For each σ ∈ (SVI)∗ we have t(σ)View(v)∪{v} =
tv(σ

View(v)) and we obtain as above that t |= ϕv. Therefore, t |= ϕ and F
implements ϕ on A. ⊓⊔

5 Well-connected architectures

It is natural to ask whether the decision criterion for UWC architectures can
be extended to a larger class. In this section, we relax the property of uniform
well-connectedness and show that, in that case, linearly preordered information
is not anymore a sufficient condition for decidability.

Definition 15. An architecture is said to be well-connected, if for each output
variable v ∈ VO, the sub-architecture consisting of (E−1)∗(v) is uniformly well-
connected.

Intuitively this means that for each output variable v there is a routing
making it possible to transmit the values of the input variables in View(v) to
the process that writes on v, but such a routing may vary from one output
variable to another, contrary to the UWC where a single routing is used for all
output variables. For instance, the architecture of Figure 2 is well-connected.
Indeed, to transmit the values of u and v to zij , it is enough to write u on
zi and v on zj. Note that this does not give a uniform routing. Actually, the
architecture of Figure 2 is not UWC assuming that variables values range over
{0, 1} (see Proposition 17). Hence, the subclass of UWC architectures is strictly
contained in the subclass of well-connected architectures.

In the proof of Proposition 17, we use the following lemma, established in
[23] for solving the network information flow problem introduced in [2].

We say that two functions f and g from S2 to S are independent if (f, g) :
S2 → S2 is invertible.

Lemma 16 ([23, Lemma 3.1]). If f1, . . . , fn are pairwise independent func-
tions from S2 to S then n ≤ |S|+ 1.

This lemma asserts that over a small alphabet, one cannot build a large set
of pairwise independent functions. In our setting, it implies the following result:

Proposition 17. Assuming that all variables are Boolean, the architecture of
Figure 2 is well-connected but not uniformly well-connected.
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Proof. It is easy to see that the architectureA of Figure 2 is well-connected. How-
ever, it is not uniformly well-connected. Indeed, suppose it is. Then there would
exist a routing Φ = (fz1 , fz2 , fz3, fz4) consisting of four memoryless strategies,
and for all v ∈ VO, a decoding function gv : {0, 1}2 → {0, 1}2. Therefore, uniform
well-connectedness of A implies that every pair (fzi , fzj ) would be invertible,
the inverse being gzij . Lemma 16 implies that for Boolean variables, there is
at most three pairwise independent functions. Hence the architecture cannot be
uniformly well-connected. ⊓⊔

Interestingly enough, the size of the alphabet has an influence on the possi-
bility to have a uniform routing and Lemma 16 helps to understand why. In our
setting, this means that by enlarging the domains of internal variables, we may
obtain uniform well-connectedness from a well-connected architecture.

The following theorem asserts that, unfortunately, the decision criterion can-
not be extended to well-connected architectures.

Theorem 18. The synthesis problem for LTL specifications and well-connected,
linearly preordered architectures is undecidable.

Let A be the architecture of Figure 5, in which all the delays are set to 0,
and which is clearly well-connected and linearly preordered. To show its unde-
cidability, fix a deterministic Turing machine M with tape alphabet Γ and state
set Q. We reduce the non halting problem of M starting from the empty tape to
the distributed implementability of an LTL specification over A. Let Sz = {0, 1}
for z ∈ V \ {x, y} and Sx = Sy = Γ ⊎ Q ⊎ {#} where # is a new symbol. As
usual, the configuration of M defined by state q and tape content γ1γ2, where
the head scans the first symbol of γ2, is encoded by the word γ1qγ2 ∈ Γ ∗QΓ+

(we require that γ2 6= ε for technical reasons, including in it some blank symbols
if necessary). An input word u ∈ 0∗1p0{0, 1}ω encodes the integer n(u) = p and
similarly for v. We construct an LTL specification ϕM forcing any distributed
implementation to output on variable x the n(u)-th configuration of M starting
from the empty tape. Processes p0 and p6 play the role of the two processes of the
undecidable architecture of Pnueli and Rosner (A′ in Figure 3). The difficulty is
to ensure that process p6 cannot receive relevant information about u.

The specification ϕM = α∧β∧γM ∧δ∧ψM is a conjunction of five properties
described below that can all be expressed in LTL(VI ∪ VO).

1. The processes pi for 1 ≤ i ≤ 5 have to output the current values of (u,w)
on (ui, wi) until (including) the first 1 occurs on w. Afterwards, they are
unconstrained. Process p6 must always output the value of w on w6. Moreover,
after the first 1 on w, it also has to output the current value of u on u6.
Formally, this is defined by the LTL formula α:

α
def
= G(w6 = w) ∧

[

(

(w = 0) ∧ α′
)

W
(

(w = 1) ∧ α′ ∧ XG(u6 = u)
)

]

, where

α′
def
=

∧

1≤k≤5

(uk = u) ∧ (wk = w)
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2. If the input word on u (resp. v) is in 0q1p0{0, 1}ω, then the corresponding
output word x (resp. y) is in #q+pΓ ∗QΓ+#ω .
This is expressed by β = βu,x ∧ βv,y, where

βz,t
def
= ((z = 0) ∧ (t = #)) W

(

(z = 1) ∧
(

((z = 1) ∧ (t = #)) W ((z = 0) ∧ (t ∈ Γ ∗QΓ+#ω))
)

)

where

(t ∈ Γ ∗QΓ+#ω)
def
= (t ∈ Γ ) U ((t ∈ Q) ∧ X(t ∈ Γ ) U ((t ∈ Γ ) ∧ X G(t = #)))

3. We next express with a formula γM that if n(u) = 1 then x has to output
the first configuration C1 of M starting from the empty tape. That is, if the
input is in 0q10{0, 1}ω, then the corresponding output is #q+1C1#ω . The LTL
formula is

γM
def
= (u = 0) W ((u = 1) ∧ X((u = 0)→ (x ∈ C1#

ω)))

where (x ∈ C1#ω) can be expressed easily.
4. We say that the input words are synchronized if u, v ∈ 0q1p0{0, 1}ω or if
u ∈ 0q1p+10{0, 1}ω and v ∈ 0q+11p0{0, 1}ω. We use a formula δ to express
the fact that if u and v are synchronized and n(u) = n(v), then the outputs
on x and y are equal. We first define the LTL formula

(n(u) = n(v))
def
= (u = v = 0) U ((u = v = 1) ∧ (u = v = 1) U (u = v = 0))

to express the fact that the input words u and v are synchronized and n(u) =
n(v). Then the formula δ is defined by:

δ
def
= (n(u) = n(v))→ G(x = y)

5. Finally, one can express with an LTL formula ψM that if the input words
are synchronized and n(u) = n(v) + 1 then the configuration encoded on x is

u w v

x

z0p0 q

z1 z2 z3 z4

p1 p2 p3 p4 p5 p6

u1 w1 u2 w2 u3 w3 u4 w4 u5 w5 u6 w6 y

Fig. 5. Undecidable, well-connected and linearly preordered architecture
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obtained by a computation step of M from the configuration encoded on y.
We use the LTL formula (n(u) = n(v) + 1) defined by

(u = v = 0) U

(

(u = 1) ∧ (v = 0) ∧ X((u = v = 1) ∧ (u = v = 1) U (u = v = 0))
)

to express the fact that u and v are synchronized and n(u) = n(v) + 1. The
formula ψM is defined by

ψM = (n(u) = n(v) + 1)→
(

(x = y) U
(

Trans(y, x) ∧ X
3
G(x = y)

)

)

where Trans(y, x) expresses the fact that the factor of length 3 of x is obtained
from the one of y by a transition of the Turing machine M . We have

Trans(y, x) =
∨

(p,a,q,b,←)∈T,c∈Γ

(y = cpa) ∧ (x = qcb)

∨
∨

(p,a,q,b,→)∈T,c∈Γ

(y = pac) ∧ (x = bqc)

∨
∨

(p,a,q,b,→)∈T

(y = pa#) ∧ (x = bq�)

Here (x = abc) is an abbreviation for (x = a)∧X(x = b)∧X
2(x = c). Further-

more, � is the blank symbol of the tape and T is the set of transitions of M
(the transition (p, a, q, b, dir), taken when M is in state p and scans symbol
a, switches the state to q, writes symbol b and moves the head according to
the direction dir ∈ {←,→}).

We first show that there exists a distributed implementation of ϕM over A.
Let ⊕ be the addition modulo 2 (xor). Process p0 forwards u to z0. Process q
forwards u to z1, u⊕w to z2 and w to z3. The strategy for z4 is not memoryless.
Process q forwards w to z4 until (including) the first 1 on w and then it forwards
u ⊕ w to z4. Formally, fz4(u, 0qb) = b and fz4(ua, 0q1wb) = a ⊕ b. We also use
memoryless strategies for the processes pi so that α is satisfied. For instance, the
strategy for p1 is f1(b1, b2) = (b1, b1 ⊕ b2) and the strategy for p6 (y excluded)
is f6(b3, b4) = (b3 ⊕ b4, b3). It is easy to see that with these strategies, the first
property α of the specification is satisfied. Note that, until the first 1 on w, p6

outputs 0 on u6, and after this first 1, p5 cannot decode u and w anymore.
The strategy fx (respectively fy) is to output the p-th configuration of M

starting from the empty tape when u (respectively v) encodes p. Then, the rest
of the specification, β ∧ γM ∧ δ ∧ ψM , is satisfied.

Remark 19. Actually, one can define another distributed implementation by
changing only the strategy fz4 : at each step, process q transmits to p6 the value
of u at the preceding step as the mod 2 difference between z3 and z4, until the
first 1 occurs on w. Formally, fz4(a, b) = b, fz4(u · a1 · a2, 0

qb) = a1 ⊕ b and
fz4(ua, 0q1wb) = a ⊕ b. We also adapt the strategies of p1, . . . , p6 so that α
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is satisfied. Note that these strategies are no longer memoryless, they have to
remember the last bit if u. By xoring its two arguments, process p6 can then
recover the whole history of u, except the bit occurring simultaneously with the
first 1 of w. Hence, we are almost in the situation of the decidable architecture
of Figure 1, but surprisingly, missing only one bit of information suffices to yield
undecidability.

Let now F = (fv)v∈V \VI
be a distributed implementation of ϕM on the

architecture A of Figure 5. We prove that fx must simulate the computation of
M starting from the empty tape.

Step 1: relating the strategies for z3 and z4.

Lemma 20. Let g1, g2, g3 : {0, 1}2 → {0, 1} be pairwise independent functions.
Then, there exists ε ∈ {0, 1} such that for all a, b ∈ {0, 1}:

g3(a, b) = ε⊕ g1(a, b)⊕ g2(a, b)

Proof. We first note that each function gk is two to one, i.e., |g−1
k (c)| = 2 for

c ∈ {0, 1}. Indeed, if this is not the case then we have for instance |g−1
k (0)| ≥ 3

and the map (gk, gℓ) for ℓ 6= k cannot be injective.
For the same reason, if gk(a, b) = gk(a′, b′), then gℓ(a, b) 6= gℓ(a

′, b′). There-
fore, permuting indices if necessary, we may assume that g1(0, 0) = g1(0, 1),
g2(0, 0) = g2(1, 0) and g3(0, 0) = g3(1, 1), so that each gk is completely deter-
mined by its value on (0, 0). A simple computation then shows that g1⊕ g2⊕ g3
is constant. For instance, we have (g1⊕ g2⊕ g3)(1, 0) = (¬g1⊕ g2⊕¬g3)(0, 0) =
(g1 ⊕ g2 ⊕ g3)(0, 0). ⊓⊔

Applying Lemma 20 both to (f̂z1 , f̂z2, f̂z3) and (f̂z1 , f̂z2 , f̂z4) after an input
(0q, 0q) on (u,w), we get:

Corollary 21. For all q ≥ 0, there exists ε ∈ {0, 1} such that

∀a, b ∈ {0, 1}, f̂z3(0qa, 0qb) = ε⊕ f̂z4(0qa, 0qb).

Proof. Fix q ≥ 0. Let gi : {0, 1}2 → {0, 1} be defined by gi(a, b) = f̂zi(0qa, 0qb).
The conjunct α of the specification ϕM imposes to p1, p2 and p4 to output the
current value of (u,w), hence they must distinguish the four possible values of
(u,w). Therefore, g1, g2 and g3 are pairwise independent. Applying Lemma 20,
we obtain ε3 ∈ {0, 1} such that g3(a, b) = ε3 ⊕ g1(a, b)⊕ g2(a, b) for all (a, b) ∈
{0, 1}2. Similarly, considering outputs of processes p1, p3, p5, we deduce that g1,
g2 and g4 are also pairwise independent and that g4(a, b) = ε4⊕g1(a, b)⊕g2(a, b).

Therefore, for all (a, b) ∈ {0, 1}2, we have g3(a, b) ⊕ g4(a, b) = ε3 ⊕ ε4 = ε

and we obtain f̂z3(0qa, 0qb) = ε⊕ f̂z4(0qa, 0qb) as desired. ⊓⊔

Step 2: masking one bit of u to p6.
Let q ≥ 0. For u = 0q1u′, we define u0 = 0q0u′. Observe that if u ∈

0q1p+10{0, 1}ω encodes p+ 1 > 1 then u0 ∈ 0q+11p0{0, 1}ω encodes p. The next
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lemma states that strategies fz3 (resp. fz4) must output the same sequence for
u and u0 if the input word w is suitable, so that p6 cannot distinguish between
encodings of p and p+ 1 on input variable u.

Lemma 22. Let u,w ∈ 0q1{0, 1}ω. For k ∈ {3, 4}, we have for all n > 0:

f̂zk(u0[n], w[n]) = f̂zk(u[n], w[n]). (2)

Proof. We prove the lemma by induction on n. If n ≤ q, then u0[n] = u[n] so
(2) trivially holds.

Next, assume n = q + 1, so u0[n] = 0q0 and u[n] = 0q1 = w[n]. As-

sume f̂z3(0q0, 0q0) = f̂z3(0q0, 0q1) then we have f̂z4(0q0, 0q0) = f̂z4(0q0, 0q1)
by Corollary 21. Fixing some v ∈ {0, 1}n, we deduce that process p6 has ob-
served exactly the same history on the input triples (0q0, 0q0, v) and (0q0, 0q1, v),
therefore it would write at step n the same value on w6, a contradiction with re-
quirement α. Therefore, f̂z3(0q0, 0q0) 6= f̂z3(0q0, 0q1). Similarly, f̂z3(0q0, 0q0) 6=

f̂z3(0q1, 0q1). Since the map f̂z3 may only take two values, we get f̂z3(0q0, 0q1) =

f̂z3(0q1, 0q1). Applying again Corollary 21, we deduce that f̂z4(0q0, 0q1) =

f̂z4(0q1, 0q1) and (2) is proved for n = q + 1.
Finally, assume that n > q + 1. By induction hypothesis, for k ∈ {3, 4},

we have f̂zk(u0[i], w[i]) = f̂zk(u[i], w[i]) for all i < n. Therefore, the history
z3[n− 1] and z4[n− 1] is the same for the input (u,w) and (u0, w). Fixing some
v ∈ {0, 1}n, we deduce that process p6 has observed exactly the same history on
the input triples (u0[n− 1], w[n− 1], v[n− 1]) and (u[n− 1], w[n− 1], v[n− 1]).

Consider now the 3 mappings from {0, 1}2 to {0, 1}2 defined by

h(c, d) = (fu6 , fw6)(z3[n− 1]c, z4[n− 1]d, v)

h1(a, b) = (f̂z3 , f̂z4)(u[n− 1]a,w[n− 1]b)

h0(a, b) = (f̂z3 , f̂z4)(u0[n− 1]a,w[n− 1]b)

We deduce from the requirement α that h is an inverse of h1 and also an inverse
of h0. Therefore, h0 = h1 and we obtain f̂zk(u0[n], w[n]) = f̂zk(u[n], w[n]) for
k ∈ {3, 4} as required. ⊓⊔

Step 3: enforcing output of the n(u)-th configuration of M on x.

Lemma 23. If x is computed by fx from the input word u then for all p > 0
we have

∀q ≥ 0, u ∈ 0q1p0{0, 1}ω =⇒ x = #p+qCp#
ω (3)

where Cp is the p-th configuration reached by M starting from the empty tape.

Proof. The proof is by induction on p. The case p = 1 follows from the spec-
ification γM . Let now p > 1 and assume that u ∈ 0q1p+10{0, 1}ω. Let v =
0q+11p0ω and w = 0q1ω. By induction, for u0 ∈ 0q+11p0{0, 1}ω the output is
x = #q+1+pCp#ω. Using δ, we deduce that on the input triple (u0, w, v) the
output is y = x = #q+1+pCp#ω . Now, by Lemma 22, on the input pairs (u0, w)
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and (u,w), the outputs on z3 and z4 are the same. Hence, on the input triples
(u0, w, v) and (u,w, v) the outputs on y must be y = #q+1+pCp#ω by the above.
Using ψM , we deduce that on the input triple (u,w, v) the output on x must be
x = #q+1+pCp+1#

ω . This concludes the proof since x only depends on u. ⊓⊔

By masking one bit of u to p6, we cause uncertainty with respect to the value
of n(u), preventing this process to “cheat”. In turn, process p0, which has no
information about the other input values, only knows that p6 is not always able to
cheat, and has then to always output the correct Turing machine configuration.

Proof of Theorem 18. Starting from a Turing machine M , we have built a
specification ϕM such that its distributed implementation forces x to output the
n(u)-th configuration of M . Therefore, there is a distributed implementation on
this architecture for the formula ϕM ∧G(x 6= halt) if and only if M does not halt
starting from the empty tape. We have thus reduced the non halting problem of
a Turing machine on the empty tape to the LTL distributed synthesis problem
over a well-connected linearly preordered architecture, proving that this latter
problem is undecidable (more precisely not co-RE). ⊓⊔

6 Conclusion

In this paper, we have shown that every decidable architecture is linearly pre-
ordered, and that this condition is sufficient for deciding external specifications
on UWC architectures. On the other hand, we have exhibited a linearly pre-
ordered, yet undecidable well-connected architecture for external LTL specifica-
tions, by simulating the loss of a single information bit on the UWC architecture
of Figure 1.

Finally, we have shown that all UWC architectures are decidable for ro-
bust specifications, i.e., specifications constraining external variables which are
causally related by a communication path. A challenging problem is to find
whether this still holds for well-connected architectures.
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