
Infinite-State High-Level MSCs:

Model-Checking and Realizability
(Extended abstract)

Blaise Genest1?, Anca Muscholl1?, Helmut Seidl2, and Marc Zeitoun1?

1 LIAFA, Université Paris VII
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Abstract. We consider three natural classes of infinite-state HMSCs:
globally-cooperative, locally-cooperative and local-choice HMSCs. We
show first that model-checking for globally-cooperative and locally-cooper-
ative HMSCs is of the same complexity as for the class of finite state
HMSCs. Surprisingly, model-checking local-choice HMSCs turns out to
be exponentially more efficient in space than for locally-cooperative HMSCs.
We also show that locally-cooperative and local-choice HMSCs can be
implemented by communicating finite states machines with additional
(constant) message data. Moreover, the implementation of local-choice
HMSCs is deadlock-free and of linear-size.

1 Introduction

Message sequence charts (MSC) is a visual notation for asynchronously commu-
nicating processes and a standard of the ITU [1]. The usual application of MSCs
in telecommunication is for capturing requirements of communication protocols
in form of scenarios at early design stages. MSCs usually represent incomplete
specifications, obtained from a preliminary view of the system that abstracts
away several details such as variables or message contents. High-level MSCs
(HMSCs) combine basic MSCs using choice and iteration, thus describing possi-
bly infinite collections of scenarios. From the viewpoint of automatic verification,
high-level MSCs are infinite-state systems. Moreover, certain basic questions as
model-checking against HMSC properties [5, 14] are undecidable.

A preliminary specification of a communication protocol can suffer from sev-
eral deficiencies, either related to the partial order of events (e.g. race conditions
[4, 14]) or to the violation of user-defined properties specified in some logics or
HMSCs (model-checking [5]). The detection of possible failures in early design
stages is of critical importance, and the utility of HMSCs can be greatly en-
hanced by automatic validation methods. A natural validation for HMSC spec-
ifications is to test whether the specification is implementable (or realizable) [2]
by a communication protocol. Since an abstract protocol is usually described
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by a communicating finite state machine (CFM), our implementation model are
CFMs. Opposed to HMSC specifications, no global control is available in CFMs.
In order to install a distributed control, the CFM realization therefore may add
further data to messages or even exchange additional (synchronization) mes-
sages. Our goal is to exhibit general techniques for synthesizing such distributed
control. Once an implementation is available, one can easily simulate executions
of the HMSC using the ITU-standard model SDL (Specification and Description
Language) and use SDL tools for model-checking the HMSC specification.

For the implementation problem we adopt a moderate view: we allow addi-
tional message contents while ruling out extra control messages. The reason is
that additional messages mean additional process synchronization, which is not
desirable (or even not realizable) in a given environment. Still, our implemen-
tation semantics by CFMs is more general than the one introduced in [2] and
used in [3, 12] where a parallel product of finite-state automata communicating
over FIFO channels is employed to realize the (linear) behavior of each process
of the given HMSC. In particular, the possibility of adding information through
messages is explicitly ruled out in [2]. Other notions of implementation are [12],
[13], [8],[7].

We consider in this paper three natural classes of infinite-state HMSCs:
globally-cooperative locally-cooperative and local-choice HMSCs. Both locally-
cooperative and local-choice HMSCs are subclasses of globally-cooperative HMSCs.
The two subclasses are syntactically incomparable. The crucial property of globally-
cooperative HMSCs is that although buffers are unbounded (making the system
infinite-state), one can still work with a regular set of representative behav-
iors. Globally-cooperative HMSCs have been introduced independently in [12],
whereas locally-cooperative HMSCs are defined in this paper. The local-choice
property we use here has been considered in [8].

In the first part of the paper (Section 3) we consider the model-checking
problem and we show that it is decidable for globally-cooperative HMSCs. The
model-checking problem is stated as intersection (negative property) or inclu-
sion (positive property) of HMSCs, that is, the property to be tested is also de-
scribed by an HMSC. Recall that both questions are undecidable for unrestricted
HMSCs, which has been the motivation for considering regular (finite-state)
HMSCs [5, 14, 10]. Here, we show that negative and positive model-checking
are PSPACE- and EXPSPACE-complete, respectively, for both globally-cooper-
ative and locally-cooperative HMSCs — thus generalizing the complexity bounds
for regular HMSCs to a much larger class of infinite-state HMSCs. For local-
choice HMSCs we obtain better algorithms, specifically negative model-checking
is quadratic time whereas positive model-checking is PSPACE-complete.

In the second part of the paper we consider the synthesis of communicating
finite-state machines from locally-cooperative , resp. local-choice HMSCs (Sec-
tions 5 and 6). We show that both HMSCs classes are always implementable by
CFMs. Moreover, the CFM implementation of local-choice HMSCs is deadlock-
free and of linear-size. Note that implementation w.r.t. the weaker notion of [?]
is undecidable. In the last part of the paper (Section 7) we show how to decide
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whether a CFM implementation of an HMSC is deadlock-free or not. Note that
this problem is undecidable for CFMs, in general [6].

The proofs use standard techniques from Mazurkiewicz trace theory as well as
specific partial orders methods. Proofs are in most cases omitted in this abstract,
due to lack of space.

2 Preliminaries

In this section we recall the specification formalism of message sequence charts
(MSC) and high-level message sequence charts (HMSC) based on the ITU stan-
dard Z.120 [1]. An MSC describes a scenario or an execution of a communication
protocol in which processes communicate with each other over point-to-point
channels. Such a scenario is given by a description of the messages sent and
received, the local events, and the ordering between them. The event ordering is
based on a process ordering and a message ordering. In the visual description of
MSCs, each process is represented by a vertical line, which shows the total order
on the events belonging to that process. Messages are represented by horizontal
or slanted arrows from the sending process to the receiving one.

MSC. An MSC over process set P is a tuple M = 〈E, <,P , t, C, m〉 where:

– E = ·
⋃

p∈P Ep is a finite set of events, each located on some process from the
set P , with Ep 6= ∅ denoting the set of events of process p. We denote by
P (e) ∈ P the process to which event e belongs.

– Every event is either a communication event (send or receive) or a local
event. We write E = S ·∪R ·∪L as a disjoint union, with S denoting the
sends, R the receives and L the local events.

– C is a finite set of message contents (names) and local action names.
– t : E → A = {p!q(a), p?q(a), lp(a) | p, q ∈ P , p 6= q, a ∈ C} labels each event

by its type t(e), with t(e) = p!q(a) if e ∈ Ep ∩S is a send event of message a
from p to q, t(e) = p?q(a) if e ∈ Ep ∩ R is a receive event of message a by p
from q and t(e) = lp(a) if e ∈ Ep ∩ L is a p-local event describing the local
action a.

– m : S −→ R is a bijection that pairs up send and receive events (matching
function). We have that m(e) = f only if t(e) = p!q(a), t(f) = q?p(a) for
some p, q ∈ P and a ∈ C.

– < ⊆ E × E is an acyclic relation generated by the following requirements:
• The restriction of < to Ep is a total order, for every process p ∈ P .
• For all e, f ∈ E, m(e) = f implies e < f .

A message (e, f) is a pair of matching send and receive events, i.e., m(e) = f .
Often one assumes that channels are FIFO, that is, there is no overtaking of mes-
sages in the channel from p to q, for every p 6= q. The results of this paper are
depending on this assumption. For non-FIFO channels we just have to add some
information in the type t(e) of an event e. Formally, we extend the type of each
event by an integer. We require that m(e) = f only if t(e) = (p!q(a), k) and
t(f) = (q?p(a), k) for some p, q, a and k ∈ N.
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Since < is required to be acyclic, its reflexive-transitive closure <∗ is a partial
order on E. For sake of simplicity we will use the same notation ≤ for the partial
order <∗. A linearization of < is defined as usual, as a total order � extend-
ing ≤, i.e., ≤ ⊆ �. For any MSC M we denote by Lin(M) the set of labeled
linearizations of M : Lin(M) = {t(e1) · · · t(ek) | e1 · · · ek is a linearization of M}.
Note that any x ∈ Lin(M) suffices to reconstruct the MSC M , since the type
mapping t : E → A encodes all the relevant information about M . If the match-
ing m is a partial function then we speak about a partial MSC. For every x ∈ A∗

we denote by msc(x) the (partial) MSC defined by x, if it exists. The size of an
MSC is the number of events it contains.

Since the specification of a communication protocol includes many scenarios,
a high-level description is needed for combining them together and defining in-
finite sets of (finite or infinite) scenarios. The standard description of the norm
Z.120 uses non-deterministic branching, concatenation and iteration for defining
finite or infinite sets of MSCs. Formally, a high-level MSC G = 〈V, R, v0, vf , λ〉
(HMSC for short) is a finite transition system (V, R, v0, vf ) with transition set
R ⊆ V × V , initial node v0 (with no ingoing edge) and terminal node vf

(with no outgoing edge). Each node v is labeled by the finite MSC λ(v). We
let P (v) = P (λ(v)), and we assume that P (v) 6= ∅, except possibly for v = vf .
We also assume that every node is accessible from v0 and from each node there is
a path to vf . An execution of G is the labeling λ(v0)λ(v1) · · ·λ(vk) of some path
v0 = v0, v1, . . . , vk = vf in G, i.e., (vi, vi+1) ∈ R for every 0 ≤ i < k. The set of
executions of G is denoted by L(G), the set of linearizations of executions of G
is denoted by Lin(G). The size of an HMSC is the sum of the sizes of its nodes.

The semantics of HMSCs depends on the definition of the MSC product.
We consider the usual weak product of MSCs, as defined in the following. Let
M1 = 〈E1, <1,P , t1 , C1 , m1〉 and M2 = 〈E2, <2,P , t2, C2 , m2〉 be MSCs over
the same set of processes P . Their product M1M2 is defined as the MSC 〈E1 ∪
E2, <, P , t1 ∪ t2, C1 ∪ C2 , m1 ∪ m2〉 over the disjoint union of events E1 ·

⋃
E2,

with the visual order given by:

< = <1 ∪ <2 ∪{(e, f) ∈ E1 × E2 | P (e) = P (f)} .

That is, events of M1 precede the events of M2 for each process, respectively.
Note that there is no synchronization between different processes when moving
from one node to the next one (this is called weak sequencing). Hence, it is
possible that one process is still involved in some actions of M1, while another
process has advanced to an event of M2. We also say that M1 is a prefix of M1M2.

3 Model-Checking Cooperative HMSCs

In this section we introduce globally-cooperative HMSCs and the subclass of
locally-cooperative HMSCs and we show that the model-checking problem for
these infinite-state HMSCs is decidable.

For MSCs M1, M2 with P (M1) ∩ P (M2) = ∅, we write M1 ‖ M2 and we say
that M1, M2 are independent. Observe that M1 ‖ M2 implies M1M2 = M2M1.
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An MSC M is called linked if it cannot be written as M = M1M2 with M1 ‖ M2

both non empty MSCs. If v1, v2 are nodes of an HMSC G = 〈V, R, v0, vf , λ〉,
we write v1 ‖ v2 if λ(v1) ‖ λ(v2). The relation Sync = V × V \ ‖ is called the
synchronization relation.
Globally-cooperative and locally-cooperative HMSCs

Let G = 〈V, R, v0, vf , λ〉 be an HMSC with nodes labeled by linked MSCs.

1. G is called globally-cooperative if no strongly connected R-component U ⊆ V
can be partitioned as U = U1 ·

⋃
U2 such that U1, U2 6= ∅ and v1 ‖ v2 for all

v1 ∈ U1, v2 ∈ U2.
2. G is called locally-cooperative if R ⊆ Sync.

In particular, any MSC labeling a loop of a globally-cooperative HMSC is linked.
We will assume in the sequel that all nodes of an HMSC are labeled by linked
MSCs. This is not a restriction, since any non-linked node can be split in a
sequence of linked nodes. Note that this transformation preserves both classes
of regular and and globally-cooperative HMSCs.

The motivation behind the definition of globally-cooperative HMSCs comes
from Mazurkiewicz trace theory. Let ‖ ⊆ V × V be a symmetric, irreflexive
independence relation on V . A set K ⊆ V ∗ is called ‖-closed when σuvσ′ ∈
K ⇔ σvuσ′ ∈ K for all σ, σ′ ∈ V ∗ and u ‖ v. The ‖-closure of K ⊆ V ∗ is
the smallest ‖-closed set containing K and is denoted clos‖(K). In general, the
closure does not preserve regularity. A sufficient condition for clos‖(L(A)) being
regular is that the set of edge labels U ⊆ V occurring in any strongly connected
component of A induces a connected subgraph of (V, Sync) [11, 15]. Moreover,
the size of a non-deterministic automaton recognizing clos‖(L(A)) is at most

2O(n·℘) [5, 14], where n = |A| and ℘ is the minimal number of cliques covering
the graph (V, Sync). Testing that an automaton A satisfies the above condition
is co-NP-complete, [5, 14]. This yields:

Proposition 1. Checking whether an HMSC is globally-cooperative is co-NP-
complete, whereas checking whether it is locally-cooperative is in P.

Notice that globally-cooperative and locally-cooperative HMSCs have in gen-
eral an infinite state space, thus they are not bounded in the sense of [5, 14].
Formally, the set of linearizations of executions cannot be described by finite au-
tomata. However, although globally-cooperative HMSCs are more general than
bounded HMSCs, we are still able to do automata-based model-checking. The
underlying idea is that the executions of a globally-cooperative HMSC can be
captured by a regular set of representatives. As an example consider the HMSC

sqprqp

M2M1

Fig. 1. A locally-cooperative HMSC

G of Figure 1. The set Lin(G) of lin-
earizations of executions of G is ob-
viously non-regular (consider e.g. lin-
earizations in the set A∗

p(Ar + As)
∗A∗

q ,
where Ap = {t(e) | P (e) = p} is the set
of types of events located on p). A regu-
lar set of representatives is given by the
set Lin(M1)(Lin(M1) + Lin(M2))

∗Lin(M2).
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A non empty MSC is called atomic (atom, for short) if it cannot be written
as M = M1M2 for non empty MSCs M1, M2. It is not hard to see that any
MSC M can be written as M = M1 · · ·Mk where each Mi is a non empty atom,
and that this factorization is unique up to commutation of adjacent independent
atoms. In [9], it is shown how to compute this factorization in linear time. Note
that any atomic MSC is linked.

Let G = 〈V, R, v0, vf , λ〉 be an HMSC. We define Atom(G) as the set of atoms
occurring in the decomposition of MSCs from λ(V ). Let Lina(G) = Lin(G) ∩
Lin(Atom(G))∗, where Lin(Atom(G)) =

⋃
M∈Atom(G) Lin(M).

Theorem 1. Let G be a globally-cooperative HMSC. Then msc(Lina(G)) =
L(G). Let s denote the size of G, ℘ the number of processes, and let µ be the
maximal number of events on the same process in an MSC from Atom(G). Then:

1. Lina(G) is recognized by a non-deterministic finite automaton of size in
2O(℘s)(µ + 1)℘.

2. Moreover, if G is locally-cooperative, then the size of the automaton is in
sO(℘)(µ + 1)℘(℘ + 1)℘.

The lower bounds below follow constructions similar to [14]:

Corollary 1. Model-checking globally-cooperative HMSCs is decidable. Precisely,
let G1, G2 be globally-cooperative HMSCs, then we have:

1. Deciding whether L(G1) ∩ L(G2) 6= ∅ is a PSPACE-complete problem.
2. Deciding whether L(G1) ⊆ L(G2) is an EXPSPACE-complete problem.

Both lower bounds hold also when G1, G2 are locally-cooperative.

We can reduce the model-checking problems for locally-cooperative HMSCs
with atomic nodes to questions on finite automata. This uses the unicity of the
decomposition of an MSC into atoms.

Proposition 2. Let G1, G2 be locally-cooperative HMSCs such that each node
is labeled by an atomic MSC. Then:

1. Deciding whether L(G1) ∩ L(G2) 6= ∅ is a NLOGSPACE-complete problem.
2. Deciding whether L(G1) ⊆ L(G2) is an PSPACE-complete problem.

3.1 Local-choice HMSCs

An important aspect of implementation is the absence of deadlocks. So we are
led to consider HMSCs satisfying the local-choice property [8]. Roughly speaking,
local-choice ensures that branching between executions is always controlled by
a unique process.

Local-choice HMSCs. An HMSC N = 〈V, R, v0, vf , λ〉 is called local-choice if
the following conditions are satisfied:

1. Every path starting in v0 has a unique minimal event.
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2. For each node v ∈ V having at least two outgoing edges, there is a process
root(v) such that every path w1w2 · · · , starting in a node w1 successor of v,
has a unique minimal event located on root(v).

It is easy to see that locally-cooperative and local-choice HMSCs are syn-
tactically incomparable. However, local-choice HMSCs are globally-cooperative.
Actually we can transform local-choice HMSCs into locally-cooperative, local-
choice HMSCs of quadratic size, as shown in Proposition 3 below.

We call a node with at least two outgoing edges a branching node. Notice
that every path v0 · · · vl in N where all of v1, . . . , vn are non-branching, is of
length l + 1 ≤ |V |. Such a path will be called a non-branching path. Moreover,
if the non-branching path σ = v0 · · · vl is maximal, then it is determined by
v0 and vl is either branching or the terminal node vf . We denote the maximal
non-branching path starting in v by NPath(v). Consider now an accepting path
σ of N . We decompose σ as σ = σ0σ1 · · ·σk+1 where each σi is a maximal non-
branching path (note that this decomposition is unique). Let vi be the last node
of σi−1 (see Figure 2, where the triangles illustrate the partial order graphs of
the subpaths σi). Note that vi is branching for all i ≤ k. Let also wi be the first
node of σi, hence σi = NPath(wi). By definition, pi = root(vi) ∈ P (wi) is the
process on which the minimal event of σi is located (which is the unique minimal
event of the path σi · · ·σk). Moreover, the local choice condition applied to the
branching node vi−1 ensures that pi also belongs to P (σi−1). If pi 6= pi−1 then
the first action of pi in σi−1 is a receive action.
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Fig. 2. Path decomposition in a local-choice HMSC.

The above decomposition of paths in a local-choice HMSC will be used by
the implementation algorithm (Section 6).

Proposition 3. For every local-choice HMSC we can construct an equivalent
locally-cooperative, local-choice HMSC of quadratic size.

The main technical argument establishing the model-checking algorithm for
local-choice HMSCs is based on the following property. Consider an equality
M1 · · ·Mk = M ′

1 · · ·M
′
l , where every Mi · · ·Mk, resp. M ′

j · · ·M
′
l has a unique

minimal event, for all i, j. Then we can show that either M1 is a prefix of M ′
1

(or vice-versa) or M1 = XM ′
2 · · ·M

′
l , M ′

1 = XM2 · · ·Mk hold for some MSC X .
This observation allows to consider only configurations with a unique minimal

event (instead of arbitrary configuration, which would require polynomial space).

Theorem 2. Let G and G′ be two local-choice HMSCs. Then we have:
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1. Deciding whether L(G) ∩ L(G′) 6= ∅ is NLOGSPACE-complete. Moreover,
this question can be decided in time O(|G| · |G′|).

2. Deciding whether L(G) ⊆ L(G′) is PSPACE-complete.

4 Communicating Finite-State Machines

The most natural implementation model for HMSCs are communicating finite
state machines (CFM), as used for instance in the ITU standard specification
language SDL.

A CFM A consists of a network of finite state machines A = (Ap)p∈P

that communicate over unbounded, error-free buffers. In general we assume that
buffers are FIFO (if for instance the given HMSC is FIFO), but we can modify
the semantics of receives if the MSCs contain overtaking of messages. The con-
tent of a buffer is a word over a finite alphabet C. With each pair (p, q) ∈ P2

of distinct processes we associate a buffer Bp,q. Each finite state machine Ap

is described by a tuple Ap = (Sp, Ap,→p, Fp) consisting of a set of local states
Sp, a set of actions Ap, a set of local final states Fp and a transition relation
→p⊆ Sp × Ap × Sp. The computation begins in an initial state s0 ∈

∏
p∈P Sp.

The actions of Ap are either local actions or sending/receiving a message. We
use the same notations as for MSCs. Sending message a ∈ C from process p to
process q is denoted by p!q(a) and it means that a is appended to the buffer
Bp,q . Receiving message a by p from q is denoted by p?q(a) and it means that a
must be the first message in buffer Bq,p, which will be then removed from Bq,p

(supposing FIFO). In the non-FIFO case we specify the type of the message
that can be received next (cf. the semantics of a receive in the message queue of
UNIX system V). A local action m is denoted by lp(a). We denote a run of the
CFM as successful, if each process p finishes the execution in some final state Fp

and all buffers are empty. The set of successful runs (i.e., MSCs) of A is denoted
L(A). The size of A is

∑
p |Ap|.

A CFM implementation of an HMSC N will add in general data to the
message contents of N . We will call A a CFM implementation of N if the MSCs
defined by the successful runs of A with the additional data removed, correspond
precisely to the executions of N .

5 Implementing Locally-Cooperative HMSCs by CFMs

The simplest realization of an HMSC N by a CFM is the one where the automa-
ton Ap corresponding to process p generates the projection of L(N) on p. This
approach is used in [3, 12]. Consider again the HMSC G1 of Figure 1 (page 5), and
let M be the MSC given by the projections πp(M) = p!r p!r p!s p!s, πq(M) =
q?r q?s q?r q?s, πr(M) = r?p r!q r?p r!q and πs(M) = s?p s!q s?p s!q. Then M
does not belong to L(G1). However, it is easy to verify that πt(M) ∈ πt(L(G1))
for all t ∈ {p, q, r, s}. Hence G1 is not realizable according to [3].

We describe our implementation of locally-cooperative HMSCs first on our
example G1. One can observe that G1 can be implemented if process p anticipates
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the next choice and sends the prediction with the current message. Processes r
and s then forward the prediction to q. In this way, process q knows whether
the next message should be received from r or from s. The general solution will
involve a leader process (p in the example) for each transition, i.e., a process that
occurs in both nodes and decides about certain nodes in the future (prediction),
as described below.

For a node v ∈ V of N = 〈V, R, v0, vf , λ〉, let P (v) denote the processes
occurring in λ(v). For a path σ = v0v1 · · · vk of N let P (σ) =

⋃
i P (vi) be

the processes occurring in σ. Moreover, we define first(σ, p) for all p ∈ P as
the first node containing p in σ: first(σ, p) = ⊥ if p /∈ P (σ), and first(σ, p) =
vj , where j = min{k ≥ 0 | p ∈ P (vk)} otherwise. Similarly, if σ has at least
i + 1 nodes, let last(σ, i, p) be the last node among the first (i + 1) nodes of σ
containing process p (resp., first(σ, p) = ⊥ if p /∈ P (v0 · · · vi)).

Let N = 〈V, R, v0, vf , λ〉 be a locally-cooperative HMSC. A triple (v, ν, l) ∈
V × (V ∪ {⊥})P × P is a realizable prediction if either ν(p) = ⊥ for all p ∈ P
and v = vf , or if all conditions below hold:

1. There exists a path σ = v0v1 · · · in N such that v0 = ν(l) and ν(p) =
first(σ, p) for each process p;

2. (v, ν(l)) ∈ R;
3. l ∈ P (v) ∩ P (ν(l)).

The process l is called the leader of the transition (v, ν(l)) with respect to (v, ν, l).
From a locally-cooperative HMSC N = 〈V, R, v0, vf , λ〉, we build a communi-

cating automaton AN as follows. Each process is initialized with the same input
i0 = (v0, ν0, l0) which is some realizable prediction with v0 = v0. The algorithm
for process p is described below:

(v,ν,`) = (v0,ν0,`0);

while (true)

{ m = (v,ν,`);
if (p ∈ P(v)) // test useful only for the first node of p

execute(v,m);

v’ = ν(p);
if (v’ == ⊥)

halt();

if (v’ == ν(`)) // v’ is the successor of v

(ν’,`’) = guess_next(v’,ν);
else (ν’,`’) = guess(v’);

v = v’; ν = ν’; ` = `’;}

The call guess next(v′, ν) guesses nondeterministically a prediction and a
leader (ν′, `′) for the next node v′, such that (v′, ν′, `′) is realizable and the new
prediction ν′ is compatible with the old prediction ν for processes not occurring
in v′, that is, ν|P\P (v′) = ν′

|P\P (v′). The call guess(v’) guesses nondeterministi-

cally a pair (ν′, `′) such that (v′, ν′, `′) is realizable. In this case, process p makes
a prediction about a node p′ that is not a direct R-successor of v. This prediction
is needed since all processes of a node must agree on some future information.
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The call halt() terminates the execution of p in an accepting state. Finally, the
call execute(v,m) consists in executing the actions of p of the MSC labeling v,
but overloading the messages to be sent or received with m. Note that if two com-
municating processes do not choose the same value for m, then a deadlock occurs.
By transitivity and weak connectivity of each MSC, the deadlock-free execution
of a node means that all processes in the node have chosen the same value for m.

Proposition 4. Let N be a locally-cooperative HMSC. Then AN is a CFM
implementation of L(N) of size nO(℘), where n is the number of nodes of N and
℘ is the number of processes.

Remark 1. Note that we can fix a leader for each transition of the HMSC be-
forehand. This would decrease the degree of non-determinism and deadlocks.

6 Implementing Local-Choice HMSCs

The implementation algorithm described in the previous section cannot avoid
deadlocks for the resulting CFM, since the future predictions are chosen by each
process separately. One reason is that branching in an HMSC is not controlled
by a single process, as it is the case for local-choice HMSCs. The results of [8]
give a sufficient condition (called reconstructibility) for a local-choice HMSC to
be implementable with no addition of extra message data.

Recall from Section 3.1 that any accepting path σ of a local-choice HMSC
has a canonical decomposition σ = σ0 · · ·σk in subpaths σi, such that the MSC
execution of σi has an unique minimal process located in the first node wi of
σi (recall Figure 2 in Section 3.1). We can use the minimal nodes wi as future
predictions in the CFM implementation. Each process q ∈ P (σi) transmits wi

with each send action. Recall that pi+1 is the minimal process of wi+1. When
process pi+1 ∈ P (σi) finishes σi then it has to choose the starting node wi+1

of the next non-branching path σi+1 such that (vi+1, wi+1) ∈ R (if vi+1 6= vf ).
Process pi+1 will be the only process in σi that knows the next node (wi+1) to
be executed. Every other process q ∈ P (σi) will execute πq(σi) and then get
into a polling state in which it accepts any incoming message. The first message
received by q will inform it about a node wj , j > i. Knowing N and wj , process
q determines the path σj = NPath(wj) that it is executed.

The algorithm A′
p

for process p is given below. The call execute path(w)
means that p has to execute πp(σ), where σ = NPath(w). Note that p must only
remember w and its current node in σ. The call execute1 path(w) is similar,
except for the fact that p executes πp(σ) without its first action. The call guess(w)
guesses w′ such that w′ is a successor node of the last node of NPath(w). The
call poll() means that process p is waiting for an incoming message from an
arbitrary process. By receiving a message, process p gets the current node w′

and also executes its first action in σ′ = NPath(w′) (a receive action).

w = v0; not_polling = true;

while (true)
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{ if (p ∈ P(NPath(w)) // test useful only when starting

if (not_polling) execute_path(w);

else execute1_path(w);

v = last node of NPath(w);

if (p = pmin(v))
{ w’ = guess(w); not_polling = true; }
else { w’ = poll(); not_polling = false; }
w = w’;}

Proposition 5. Let N be a local-choice HMSC. Then A′
N is a deadlock-free

CFM implementation of N . Moreover, the size of A′
N is linear in the size of N .

7 Channel-Bounded CFM and Deadlock Detection

In this section we consider a subclass of communicating finite state machines,
called channel-bounded CFM. Intuitively, a CFM is bounded if every execution
can be simulated by an execution using bounded buffers. Since implementations
of HMSCs yield channel-bounded CFMs, it is natural to ask whether a channel-
bounded CFM is deadlock-free.

A configuration C = (q, B) of a CFM A = (Ap)p∈P is described by a global
state q of S =

∏
p∈P Sp and the contents B ∈ (C∗)P×P of all buffers. The

transition relation of the CFM is denoted by →, its transitive-reflexive closure
is denoted as usual by

∗
→. The configuration with global state s0 and empty

buffers is the initial configuration. An execution σ = C1
a1→ C2

a2→ · · ·
am−1

→ Cm of
A is a finite →-path. The labeling of the execution σ is the sequence a1 · · · am−1.
Note that the labeling of an execution σ defines in a natural way a partial
MSC msc(σ). Recall that an execution is successful if it ends with empty buffers
and each process reaches some local final state. A configuration C is a deadlock
if there is no successful execution starting from C. Let A =

⋃
p∈P Ap be the

set of possible actions of a CFM over process set P . Two executions σ, σ′ are
equivalent (and we write σ ∼ σ′) if msc(σ) = msc(σ′) and σ, σ′ start in the same
configuration.

An execution σ of a CFM is called b-bounded, if every configuration of σ is
such that the size of every buffer is bounded by b. If C

∗
→ C ′ is b-bounded, then

we say that C ′ is b-reachable from C.
A CFM is b-bounded if every successful execution σ starting in the initial con-

figuration admits some successful, b-bounded equivalent execution σ′ ∼ σ. Let
A be a b-bounded CFM and let C be b-reachable from the initial configuration
of A. Then C is not a deadlock if and only if there is some b-bounded, successful
execution starting from C. This allows to show the following proposition.

Proposition 6. Reachability and deadlock detection for b-bounded CFMs are
both PSPACE-complete (with b in unary representation).

The last proposition allows to connect the model-checking problem and the
implementation by CFMs.
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Theorem 3. Let C be a class of HMSCs that are CFM implementable. Then the
model-checking problem for C (intersection and inclusion, resp.) is decidable.

Conclusion. We have shown that model-checking a natural class of infinite-
state HMSCs, globally-cooperative HMSCs, is decidable and of the same com-
plexity as for regular (finite-state) HMSCs. For a natural subclass (local-choice
HMSCs) the complexity of model-checking is the same as in the sequential case.
The implementation of locally-cooperative HMSCs raises the question whether
we can decide for a given HMSC if it can be implemented without deadlocks in
our framework (with finite additional message contents).
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