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Abstract

J. Rhodes asked during the Chico conference in 1986 for the calculation of joins of
semigroup pseudovarieties. This paper proves that the join J∨V of the pseudovariety J

of J -trivial semigroups and of any 2-strongly decidable pseudovariety V of completely
regular semigroups is decidable. This problem was proposed by the first author for
V = G, the pseudovariety of finite groups.

1 Introduction

During the last thirty years, algorithmic questions coming from language theory have mo-
tivated an intensive study of semigroup pseudovarieties. Pseudovarieties (classes of finite
semigroups closed under taking subsemigroups, homomorphic images and finite direct prod-
ucts) were introduced by Eilenberg [12] to formalize the correspondence between finite
semigroups and rational languages. The main decision problem in this area is perhaps the
membership problem. It is said to be decidable for a pseudovariety V if there exists an algo-
rithm to test whether a given finite semigroup belongs to V. We shall say in the affirmative
case that V itself is decidable. Some advances in the knowledge of the behavior of operators
on pseudovarieties towards this notion were accomplished—with great effort—during the
last decade. Among these operators, the join is certainly the most disconcerting.

The join V ∨W of V and W is the smallest pseudovariety containing both V and W.
Since the intersection of two pseudovarieties is easily seen to be a pseudovariety, the set of
all pseudovarieties forms a lattice, and it is obvious that if V and W are decidable, then
so is V ∩W. A surprising result of Albert, Baldinger and Rhodes [1] states that V ∨W

might not be decidable even if V and W are. Rhodes [18] asked in 1986 during the Chico
conference for the calculation of certain joins, including the computation of the join of the
pseudovariety of finite J -trivial semigroups and of the pseudovariety G of finite groups.
This specific question was also proposed in [4] by the first author. It was shown by Trotter
and Volkov [21] that this join is not finitely based, but the question of its decidability was
still open. Our main result gives in particular a positive answer to this question.
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The proof is based on the notion of V-pointlike set developed by Henckell [13]. Rela-
tional morphisms play a central role in the definition of this notion, which measures “how
far from V” a finite semigroup is. A relational morphism between two semigroups S and T

is a relation τ from S to T such that sτ is never empty and satisfying (sτ)(s′τ) ⊆ (ss′)τ . A
subset R of a finite semigroup S is said to be V-pointlike if for every relational morphism
τ from S into a semigroup T of V, the intersection

⋂
r∈R rτ is not empty. A pseudovariety

is n-strongly decidable if there is an algorithm to test whether any subset of cardinality n

of a given finite semigroup is V-pointlike. It should be no surprise that if V is n-strongly
decidable for some n > 2, then it is also decidable.

The result we shall prove is a little more general than the decidability of J ∨ G: it
deals with any 2-strongly decidable pseudovariety of completely regular semigroups, that
is, semigroups whose H -classes are groups. The theorem is the following.

Theorem 1.1 Let V be a 2-strongly decidable pseudovariety of completely regular semi-
groups. Then the join J ∨V is also 2-strongly decidable.

When dealing with J, topological arguments have in general a combinatorial formu-
lation. We have favoured the combinatorial approach, and the topological point of view
will be frequently hidden behind compactness or denseness results. However, the proof is
constructive, and most of the time, we work directly on automata to make the involved
ideas visual. Much of the rest of this paper is now devoted to this proof. We shall first
remind the reader of some points of the theory of finite semigroups in Section 2, where the
terminology in use is also detailed. The proof of Theorem 1.1 occupies Section 3, and some
applications of this theorem are listed in the final section.

2 Preliminaries

In this section, we list those basic results on rational languages, automata and finite semi-
groups which will be assumed without proof. We presuppose a familiarity with this mate-
rial. Here is a selection of classical references the reader may refer to. The book of Hopcroft
and Ullman [14] gives an introduction to the theory of languages and to decision problems.
The books of Lallement [15] and Pin [16] both provide an overview of the links between
languages and finite semigroups. Finally, Almeida [4] shows more recent developments and
emphasizes the advantage of studying free profinite semigroups.

2.1 Languages and finite automata

We fix a finite alphabet A = {a1, . . . , as}. We denote by A∗ (resp. by A+) the free monoid
(resp. the free semigroup) generated by A. By a language, we mean a subset of the free
semigroup. By analogy with the number of elements |X| of a finite set X, the length of a
word u ∈ A∗ is denoted by |u|. The content c(u) of u is the set of all letters occurring in u.

All automata we shall consider will be finite and deterministic. Given an automaton A
recognizing a language on the alphabet A, the symbol qA

ini denotes its initial state, qA
fin one

of its final states, and QA its set of states. The state obtained from state q after reading
a word u ∈ A+ is denoted by q · u. For p, q ∈ QA , we denote by LA (p, q) the language
recognized by the automaton deduced from A by taking p for initial state and q for unique
final state. For a ∈ A, we denote a transition by p

a
−−→ q, or by p −−→ q when there is no
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ambiguity; here q = p · a. A path is a sequence of consecutive transitions. For u ∈ A+, we
denote by p

u
−−→ q the path labeled u going from p to q, but we may sometimes omit the

label; here q = p · u.
A strongly connected component of A is a maximal subset Q of QA such that there exists

a (possibly empty) path between any two states of Q. Strongly connected components form
a partition of the set of states. There is a natural order on the set of strongly connected
components, defined by Q1 4 Q2 if there is a path from a state of Q1 to a state of Q2.

The path p −−→ q is a loop if p = q. Two paths P = p −−→ q and P ′ = p′ −−→ q′

are consecutive if q = p′. In this case, we denote by PP ′ the path obtained by concate-
nating P and P ′. The content c(P) (resp. the length |P|) of a path P is the content
(resp. the length) of its label. A loop L is said to be acceptable if

for any factorization L = p
u1−−→ q

u2−−→ q
u3−−→ p, we have c(u2) 6⊆ c(u1u3). (1)

This term is used just for convenience in this paper. More precisely, it is introduced in
order to have a finite number of “test loops”.

Lemma 2.1 In any deterministic finite automaton, there is a finite number of acceptable
loops, and these loops can be determined.

Proof. Assume that the number of acceptable loops is infinite. Since the automaton
is finite, we can find a loop inside which a state q is repeated at least r = |A| + 2 times
between the first and the last state:

p
u0−−→ q

u1−−→ q · · · q
ur−1

−−→ q
ur−−→ p

Since the loop is acceptable, for i ∈ [1, r − 1], there is a letter in c(ui) \
⋃

j 6=i c(uj), which
makes at least |A| + 1 distinct letters. We thus have proved that the number of loops is
finite, by proving that a state cannot be repeated more than r times inside the loop. This
leads to a computable bound on the number of loops, and since it is easy to test whether
a given loop is acceptable, we can determine all acceptable loops.

A path P1 · · ·Pn is a subpath of P if there exist (possibly empty) paths Q0, . . . ,Qn, such
that P = Q0P1Q1 · · ·PnQn. The path P contains P ′ if the sequence of transitions of
P ′ is a subpath of P. This relation is transitive.

Lemma 2.2 Every loop L contains an acceptable loop which has the same content as L .

Proof. For |L | = 1, the assertion is plainly true. Assume that it holds for any loop of
length less than n− 1 and let L be a loop of length n. If it is acceptable, there is nothing
to do. Otherwise, we can write L = p

u1−−→ q
u2−−→ q

u3−−→ p with c(u2) ⊆ c(u1u3).

Therefore, L contains L ′ = p
u1−−→ q

u3−−→ p, which has the same content as L . Since
|L ′| < |L |, we can apply the induction hypothesis: L ′ contains an acceptable loop L ′′ of
content c(L ′) = c(L ). Since L contains L ′, it contains also L ′′.
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2.2 Semigroups

Given a semigroup S, we let S1 be the semigroup S itself if it is a monoid, or the disjoint
union S ] {1} where 1 acts as a neutral element otherwise. Given an element t of a finite
semigroup (resp. of a compact topological semigroup), the subsemigroup (resp. the closed
subsemigroup) generated by t contains a unique idempotent, that we denote by tω. A
completely regular semigroup is a semigroup whose H -classes are groups. It is easy to
check that S is completely regular if and only if tω+1 = t for all t in S.

A pseudovariety is a class of finite semigroups closed under formation of finite direct
products, subsemigroups and homomorphic images. For instance, the class of all finite
groups forms a pseudovariety denoted by G. The pseudovariety J of all finite J -trivial
semigroups is the other pseudovariety we are interested in. We recall in Section 2.4 its
main properties.

2.3 Free profinite semigroups

We now present without proofs some results of the theory of implicit operations. The con-
nection with the theory of finite semigroups comes from an analogue of Birkhoff’s theorem
identifying varieties of algebras as equational classes. This result is due to Reiterman [17]
and states that pseudovarieties are exactly the classes of finite semigroups defined by sets
of formal identities whose members are implicit operations. See [2, 4, 17] for details.

Let V be a pseudovariety. An A-ary implicit operation on V is a collection (πS)S∈V

where πS : S|A| → S is a function such that for any morphism ϕ : S → T between members
of V, the following diagram commutes:

S|A|
πS

//

ϕ|A|

��

S

ϕ

��

T |A|
πT

// T

The set of all A-ary implicit operations on V, denoted by FA(V), is also called the V-free
profinite semigroup. It may be viewed in a natural way as a projective limit of elements of
V and, as indicated below, endowed with the profinite topology.

We can associate to any word u = ai1 · · · aik of A+ the collection of functions (uS)S∈V

defined by uS(s1, . . . , s|A|) = si1 · · · sik . This clearly defines an implicit operation, which
we simply denote by u. Such an operation, induced by a word, is said to be explicit. The
set of A-ary explicit operations on V is denoted by FA(V).

The multiplicative law on FA(V) defined by (πS) ·(ρS) = (πS ·ρS) makes it a semigroup,
and FA(V) a subsemigroup of FA(V). We endow FA(V) with the initial topology for the
evaluation morphisms

eT : FA(V) −→ T T n

(πS)S∈V 7−→ πT

where T runs in V, and where each finite semigroup T T n

is endowed with the discrete
topology. This topology makes FA(V) a compact and 0-dimensional topological semigroup
in which FA(V) is dense.

Assume that V contains another pseudovariety W. If π = (πS)S∈V belongs to FA(V),
then (πS)S∈W belongs to FA(W). This implicit operation on W is called the projection of
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π onto W and is denoted by p
W(π). The projection p

W is a continuous homomorphism.
The case where W = Sl, the pseudovariety of finite semilattices, is of particular interest.
Indeed, FA(Sl) may be viewed as the semigroup (2A \ ∅,∪), and the projection onto Sl

coincides with the content morphism on explicit operations. This is why we will write c

instead of p
Sl.

Given an implicit operation π on V, it is easy to see that the sequence (πk!)k∈N converges
to an idempotent element of FA(V). This element is therefore the idempotent of the closed
subsemigroup generated by π, that is, πω. Note that in pseudovarieties containing Sl, we
have c(πk!) = c(π). By continuity of c, we therefore have c(πω) = c(π).

The join of two pseudovarieties V and W is the smallest pseudovariety containing
both V and W. From Reiterman’s theorem, we may deduce that if π and ρ belong to
FA(V ∨W), then π = ρ if and only if p

V π = p
V ρ and p

W π = p
W ρ. In other terms,

p
V× p

W : FA(V ∨W)→ FA(V)× FA(W) is an embedding. Let now ιV be the canonical
morphism from A+ into FA(V) defined by aiιV = ai. We shall say for convenience that a
sequence of words (um)m∈N converges in V to an operation π if the sequence (umιV)m∈N

converges to π.
Notice that FA(V ∨W) is a closed subspace of FA(V)×FA(W), so a sequence converges

in V ∨W if and only if it converges in both V and W. Furthermore, it is easy to see that
the limit of the sequence in V ∨W only depends on its limits in V and W.

For any language K over A, we denote by K̄V the closure of KιV in FA(V). We shall say
that K̄V is the V-closure of K. The first author expressed in terms of closures of rational
languages the notion of 2-strong decidability. He observed that the general definition of
2-strong decidability may be phrased as follows [5, Proposition 3.4]. A pseudovariety V is
2-strongly decidable if the following problem is decidable.

Data Two rational languages K and L over a finite alphabet.

Question Determine whether K̄V and L̄V are disjoint or not.

Eilenberg’s correspondence between pseudovarieties and varieties of rational languages links
the original definition and this new characterization. We shall also make use of the following
easy yet important property. It is shown for instance in [5].

Proposition 2.3 If V is 2-strongly decidable, then it is also decidable.

As indicated in [5], this result may be verified with the following argument, which is easy
to check: if L is a rational language, then the V-closures of L and A+ \ L are disjoint if
and only if L can be recognized by a semigroup of V.

2.4 An essential example: the pseudovariety J

The historical importance of the pseudovariety J comes from a nice syntactic character-
ization of the piecewise testable languages. It was discovered by Simon [20] and led to
one of the seminal papers of this theory. Furthermore, this pseudovariety is frequently
encountered in many fundamental problems of the theory.

Let us say that a word x = x1 · · · xl is a subword of an implicit operation π ∈ FA(J)
if π has a factorization of the form π0x1π1 · · · xlπl where πi ∈ FA(J)1. This definition
coincides with the usual one on words when π is explicit. A language L of A+ is piecewise
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testable when it is a boolean combination of languages of the form A∗b0A
∗ · · ·A∗bnA∗, with

b0, . . . , bn ∈ A. Simon’s theorem states that piecewise testable languages are exactly those
recognized by J -trivial semigroups.

For π and ρ in FA(J) and for each natural `, we write π ∼` ρ if π and ρ have the
same subwords of length at most `. Observe that ∼`+1 ⊆ ∼`. The characterization of
J-recognizable languages has a natural interpretation in terms of implicit operations [3, 4].
The structure of FA(J) is summarized in the following theorem [4, Theorem 8.2.8], which
is closely related to Simon’s result.

Theorem 2.4 Any idempotent implicit operation on J is of the form uω, where u is ex-
plicit. More generally, every implicit operation π on J has a factorization π = π1 · · · πk

such that:

cf.1) Each factor πi is either explicit or of the form uω
i where ui is explicit.

cf.2) If πi and πi+1 are idempotent, the sets c(πi) and c(πi+1) are incomparable.
cf.3) Two consecutive factors πi and πi+1 are not both explicit.
cf.4) If πi is explicit and πi+1 idempotent, then the last letter of πi is not in c(πi+1).

If πi is idempotent and πi+1 explicit, then the first letter of πi+1 is not in c(πi).

Furthermore, if π1 · · · πk is the factorization of π and if ρ1 · · · ρl is the factorization of ρ,
then the following conditions are equivalent:

i. π = ρ.
ii. k = l, and πj = ρj for 1 6 j 6 k.
iii. π and ρ have the same subwords.

The factorization of π satisfying the conditions cf.1) to cf.4) of Theorem 2.4 is its canonical
factorization. Simple reduction rules can be used in order to obtain the canonical form of an
implicit operation built from letters using multiplication and ω-powers (see [4, Section 8.2]
for details). Let us list these rules, with which the reader should be acquainted.

rr.1) Eliminate parentheses concerning the application of the operation of multiplication.

rr.2) Substitute any occurrence of tω by uω, where u is the product of the letters that occur
in t, say in increasing order of the indices.

rr.3) Absorb in factors of the form uω any adjacent factors in which only occur letters of u.

A direct consequence of Theorem 2.4 is that if u and v are two words with the same content,
then the implicit operations uω and vω of FA(J) are equal. In the sequel, if B = c(u), we
will often denote this operation by Bω. Another corollary is a characterization of converging
sequences in FA(J).

Corollary 2.5 Let π be an implicit operation on J. A sequence (πi)i∈N converges to π in
FA(J) if and only if for every ` ∈ N, there exists N ∈ N such that i > N implies π ∼` πi.

Define the length of a product π = x0B
ω
1 x1 · · ·B

ω
nxn of implicit operations on J, where

xi ∈ A∗ and ∅ 6= Bi ⊆ A, by |π| = n + |x0 · · · xn|. The length |π| of an implicit operation
π is by definition the length of its canonical factorization. In this way, the prefix of length
k 6 n of a product π1 · · · πn where πi is either a letter or an idempotent is by definition
π1 · · · πk. The suffix of length k of this product is defined symmetrically.
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3 A proof of the main theorem

In this section, we prove Theorem 1.1. For convenience, if K is a rational language, we
shall write K̄ instead of K̄J∨V. More generally, whenever not explicitly stated otherwise,
when referring to a topology, we mean the topology of FA(J ∨V). What we have to show
is that, given two rational languages K and L, and under the hypotheses of Theorem 1.1,
we can decide whether the intersection K̄ ∩ L̄ is empty.

Consider deterministic automata A and B recognizing K and L respectively. The
central argument of the algorithm deciding whether K̄ ∩ L̄ is empty is a reduction to a
finite number of decidable questions. The two steps of the proof rely upon similar ideas.

1) Proposition 3.2 below shows that if K̄ ∩ L̄ is not empty, then there exists an implicit
operation π in this intersection such that the length of p

J(π) is smaller than an integer
N (which we can compute) depending only on A and B.

Since there is a finite number of idempotents in FA(J), there is also only a finite number
of implicit operations in FA(J) whose length does not exceed N , which we can enumer-
ate. Thus, this step translates the problem into a finite number of questions: to check
that K̄ ∩ L̄ is not empty, it suffices to check that there exists an implicit operation
πJ ∈ FA(J) such that |πJ| < N which we can lift in K̄ ∩ L̄.

2) Proposition 3.7 shows that the latter question, where πJ is given, is decidable.

The following property is shown in [7]. It attempts to capture combinatorial properties of
converging sequences in FA(J). For a subset B of A and a natural number m, let C(B,m)
be the set of products of m words of content B.

Lemma 3.1 Let x0B
ω
1 x1 · · ·B

ω
nxn be the canonical factorization of an implicit operation π

on FA(J) where each xi is a (possibly empty) explicit operation. Let m > |π|, let ` > 2m,
and let w be a word such that w ∼` π. Then, w has a factorization x0y1x1 · · · ynxn such
that for all i ∈ [1, n], yi belongs to C(Bi,m).

We are now able to state and prove the first step of the proof.

Proposition 3.2 If K̄ ∩ L̄ is not empty, then there exists an integer N depending only on
A and B which we can compute and an implicit operation π ∈ K̄∩L̄ such that | pJ(π)| 6 N .

Proof. Let ρ ∈ K̄ ∩ L̄ be an implicit operation such that | pJ(ρ)| is minimal, and
set π = p

J(ρ) = x0B
ω
1 x1 · · ·B

ω
nxn. Take two sequences of words um ∈ K and vm ∈ L

converging to ρ in FA(J ∨V). Then um and vm converge to π in FA(J). From Corollary 2.5
and Lemma 3.1 we may assume that both um and vm have factorizations of the form

um = x0y1,mx1 · · · xn−1yn,mxn

vm = x0z1,mx1 · · · xn−1zn,mxn

with yk,m, zk,m ∈ C(Bk,m).

For 0 6 k 6 |π|, let π = πkπ
′
k where πk is the prefix of length k of π and π′

k its suffix of
length |π|−k. Let uk,m (resp. vk,m) be the prefix of um (resp. of vm) obtained by replacing
each Bω

i by yi,m (resp. by zi,m) in πk, and let um = uk,mu′
k,m (resp. vm = vk,mv′k,m).

7



The number of states in A (resp. in B) is finite. Hence, extracting subsequences if
necessary, we may assume that for every k ∈ [0, |π|], the states

pk = qA
ini · uk,m, qk = qB

ini · vk,m

do not depend on m. Moreover, the compactness of FA(J ∨V) allows us to assume that
each sequence (yi,m)m∈N and each sequence (zi,m)m∈N converges in both J and V. (Their
convergence in J was already known.)

Let nA (resp. nB) be the maximum number of states in a strongly connected component
of A (resp. of B) and let N1 = 2nA nB + 1. Let N2 be the maximal number of strongly
connected components in any chain of strongly connected components in A and B. Assume
first that there exists no j such that

pj+1, . . . , pj+N1
belong to the same strongly connected component of A ;

qj+1, . . . , qj+N1
belong to the same strongly connected component of B.

(2)

Let pγA (resp. pγB) be the strongly connected component of A (resp. of B) which con-
tains the state p. Then it would be impossible for N1 consecutive pairs of the form
(pj+1γA , qj+1γB), . . . , (pj+N1

γA , qj+N1
γB) to be identical. Therefore, the length of the

sequence (pk), and hence the length of π, would be bounded by 2N1N2, and this would
conclude the proof of Proposition 3.2.

Let us now prove that (2) is impossible. Assume that it holds. By the choice of N1,
there would exist j1, j2, j3 ∈ [j + 1, j + N1] such that pj1 = pj2 = pj3 and qj1 = qj2 = qj3 .
This is depicted in Figure 1, where the central state of the automaton A (resp. B) is pj1

(resp. qj1).

uj1,m u′

j3,m vj1,m v′

j3 ,m

u′

m

u′′

m

qA

finqA
ini

v′

m

v′′

m

qB

finqB
ini

Figure 1: The paths labeled um in A and vm in B

Let u′
m be the word labeling the path between pj1 and pj2 (so that uj1,m · u

′
m = uj2,m),

and let u′′
m be the word labeling the path between pj2 and pj3 (so that uj2,m · u

′′
m = uj3,m).

Similarly, let v′m be the word labeling the path between qj1 and qj2 . We have vj1,m · v
′
m =

vj2,m. Let v′′m be the word labeling the path between qj2 and qj3 . We have vj2,m ·v
′′
m = vj3,m.

Let Um = uj1,m · (u
′
mu′′

m)m!+1 · u′
j3,m and Vm = vj1,m · (v

′
mv′′m)m!+1 · v′j3,m. We have:

Fact 3.3 a. Um belongs to K and Vm belongs to L.

b. The words uj,m, u′
j,m, u′

m and u′′
m are concatenations of yi,m’s and of letters of the xi’s

in an order which does not depend on m.

c. The word vj,m (resp. v′j,m, resp. v′m, resp. v′′m) is obtained from uj,m (resp. from u′
j,m,

resp. from u′
m, resp. from u′′

m) by substituting each yi,m by the corresponding zi,m.
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We claim that the sequences (Um)m∈N and (Vm)m∈N converge to a common point in J ∨V.
To show this, it is plainly sufficient to prove that Um and Vm converge to a common point
in V and to a common point in J.

Since (yi,m)m∈N converges in V, so does (u′
mu′′

m) by Fact b. Since V is a pseudovariety
of completely regular semigroups, (u′

mu′′
m)ω+1 = u′

mu′′
m in FA(V). Hence, (u′

mu′′
m)m!+1

converges to the same limit as u′
mu′′

m in V. Therefore, (Um) and (um) converge to the same
limit in V, that is, to p

V(ρ); similarly, (Vm) also converges to p
V(ρ) in V.

To show that (Um)m∈N and (Vm)m∈N converge to a common point in J, it is enough
to show that c(u′

mu′′
m) = c(v′mv′′m). Using Fact c and the equality c(yi,m) = c(zi,m), this is

indeed true, and we have proved that (Um) and (Vm) have a common limit ζ in J ∨V.
To obtain p

J(ζ), we have replaced in π = p
J(ρ) the limit in J of u′

mu′′
m by the limit

in J of (u′
mu′′

m)ω. The limit in J of u′
mu′′

m was of length at least 2, since we started from
the canonical factorization; the limit in J of (u′

mu′′
m)ω has length 1. Hence | pJ(ζ)| < |π| =

| pJ(ρ)|, a contradiction of the minimality of | pJ(ρ)|. So (2) is impossible, as required.

To prove the second proposition, we first need a definition. Let A be an automaton. We
say that S = 〈P,L,X〉 is a sequence of stages of length n in A if

- P = ((−→p i)06i6n, (pi)16i6n, (←−p i)16i6n+1) is a finite sequence of states such that
−→p 0 is the initial state, ←−p n+1 is final, and for all i ∈ [1, n], there exists a path
←−p i −−→ pi −−→

−→p i.

- L = (L1, . . . ,Ln) is a finite sequence of acceptable loops such that the first state of
Li is pi.

- X = (x0, . . . , xn) is a finite sequence of words of A∗ such that −→p i · xi =←−p i+1.

We use the following convention: when the sequence of loops is denoted by L (resp. by K),
the corresponding acceptable loops are denoted by L1, . . . ,Ln (resp. by K1, . . . ,Kn).

From Lemma 2.1, we deduce immediately the following result.

Lemma 3.4 Let X = (x0, . . . , xn) be a finite sequence of words of A∗. In any deterministic
finite automaton, there is a finite number of sequences of stages of length n of the form
S = 〈P,L,X〉, and these sequences can be determined.

If S = 〈P,L,X〉 is given as above, we say that u is S-compliant, and we write u ∈ Comp(S),
if u has a factorization x0(

←−u 1u1
−→u 1)x1 · · · xn−1(

←−u nun
−→u n)xn that labels the following path

in A :

  
   

 

    

   

 

  

 
←−u 1

−→u 1
←−p 1 p1

−→p 1

x0
−→p 0

←−p n pn
−→p n

−→u n
←−u n xn

←−p n+1

u1 un

. . .

Figure 2: A S-compliant labeling

such that for i ∈ [1, n], c(←−u i
−→u i) ⊆ c(ui) = c(Li) and such that the loop pi

ui−−→ pi

contains Li. Observe that any word of Comp(S) is accepted by A by definition.
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Lemma 3.5 Let A be an automaton recognizing a language K, and let S be a sequence
of stages of length n in A . Then the language Comp(S) is rational and we can compute
an automaton recognizing it.

Proof. Let b1 · · · bk be the word labeling Li and Bi = c(Li). We drop the double
indices for clarity. Let q0 = pi, and qj = pi · b1 · · · bj for j > 1. Since Li is a loop, qk = q0.
The set of words of content Bi labeling a loop pi −−→ pi which contains Li is clearly
Li = B∗

i ∩ LA (q0, q0)b1LA (q1, q1) · · ·LA (qk−1, qk−1)bkLA (qk, qk), and thus is rational. Let

Xi = {xi} ∩ LA (−→p i,
←−p i+1),

←−
L i = B∗

i ∩ LA (←−p i, pi) and finally
−→
L i = B∗

i ∩ LA (pi,
−→p i).

By definition, we have Comp(S) = X0(
←−
L 1L1

−→
L 1)X1 · · ·Xn−1(

←−
L nLn

−→
L n)Xn, which is a

rational expression of Comp(S).

Lemma 3.6 Let A be an automaton recognizing a language K. Let π = x0B
ω
1 x1 · · ·B

ω
nxn

be canonical on J. Then, there is a sequence of words um ∈ K converging to π if and only
if there exists a sequence of stages S = 〈P,L,X〉 of length n in A with X = {x0, . . . , xn}
and c(Li) = Bi such that Comp(S) 6= ∅.

Furthermore, if there is a sequence of words um ∈ K converging to π, then it is possible
to extract a subsequence of um whose elements belong to Comp(S).

Proof. Assume that Comp(S) is not empty. Then it contains a word of the form

x0(
←−u 1u1

−→u 1)x1 · · · xn−1(
←−u nun

−→u n)xn

By definition, the words

x0(
←−u 1u

m!
1
−→u 1)x1 · · · xn−1(

←−u num!
n
−→u n)xn

are also in Comp(S) and their sequence converges to π, since (←−u iu
m!
i
−→u i)m∈N converges to

Bω
i in J.

Conversely, let um ∈ K be a sequence converging to π. From Corollary 2.5 and
Lemma 3.1 we may assume that um has a factorization of the form x0y1,mx1 · · · xn−1yn,mxn

with yk,m ∈ C(Bk,m). Since the number of states is finite, there exists a subsequence
umϕ of um such that the states ←−p i = qA

ini · x0y1,mϕx1 · · · yi−1,mϕxi−1 and −→p i = qA
ini ·

x0y1,mϕx1 · · · yi−1,mϕxi−1yi,mϕ do not depend on m. Since C(Bk,m) is the set of words
that are products of m words of content Bk, we may extract this subsequence so that the
path labeled by yi,mϕ contains a loop Li,mϕ, say around state pi. By Lemma 2.2, the
loop Li,mϕ contains itself an acceptable loop having the same content as Li,mϕ. After
extracting, we may assume that this acceptable loop Li does not depend on m, since by
Lemma 2.1 there is a finite number of such loops. We have extracted a subsequence of um

taking its values in Comp(S), as required. In particular, Comp(S) is not empty.

We finally state the last proposition. As seen before, it concludes the proof of the theorem.

Proposition 3.7 Let πJ ∈ FA(J) be an implicit operation, and let K and L be two rational
languages of A+. Then it is decidable whether there exists π ∈ K̄ ∩ L̄ such that p

J(π) = πJ.
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Proof. Let πJ = x0B
ω
1 x1 · · ·B

ω
nxn and set X = (x0, . . . , xn). Assume that there are

sequences um ∈ K and vm ∈ L converging to π ∈ K̄ ∩ L̄ such that p
J(π) = πJ. Apply

Lemma 3.6: there exists a sequence of stages of the form S = 〈P,K,X〉 in A and another
one T = 〈Q,L,X〉 in B such that c(Ki) = c(Li) = Bi and subsequences of um and vm

belonging to K ′ = Comp(S) and L′ = Comp(T) respectively. Therefore, π belongs to
K̄ ′ ∩ L̄′. Conversely, if π belongs to K̄ ′ ∩ L̄′, then it belongs also to K̄ ∩ L̄ since K ′ ⊆ K

and L′ ⊆ L.
There is a finite number of sequences of stages of length n in both A and B by

Lemma 3.4, and we can compute the associated languages K ′ and L′ by Lemma 3.5. We
have to decide whether there exists such a choice of sequences of stages such that K̄ ′ ∩ L̄′

is not empty. We compute all possible pairs (K ′, L′), and we shall show that for a given
pair, we can decide whether K̄ ′∩ L̄′ is empty. Let P = ((−→p i)06i6n, (pi)16i6n, (←−p i)16i6n+1)
and Q = ((−→q i)06i6n, (qi)16i6n, (←−q i)16i6n+1) be the sequences of states of S and T corre-
sponding to K ′ and L′ respectively.

Since V is supposed to be 2-strongly decidable, we can decide whether K̄ ′
V
∩ L̄′

V
is

empty. If so, then K̄ ′∩ L̄′ is also empty. If not, we claim that K̄ ′∩ L̄′ is not empty. Indeed,
there are in this case sequences um of K ′ and vm of L′ converging to π

V
in K̄ ′

V
∩ L̄′

V
. In

view of the definition of a compliant word, we may write um and vm as

um = x0
←−y 1,my1,m

−→y 1,mx1 · · · xn−1
←−y n,myn,m

−→y n,mxn

vm = x0
←−z 1,mz1,m

−→z 1,mx1 · · · xn−1
←−z n,mzn,m

−→z n,mxn

where ←−y i,myi,m
−→y i,m (resp. ←−z i,mzi,m

−→z i,m) labels the path from ←−p i to −→p i (resp. from ←−q i

to −→q i).
By construction of Comp(S) and Comp(T), both c(yi,m) and c(zi,m) are contained

in Bi. Furthermore, yi,m (resp. zi,m) labels a loop containing Ki (resp. Li), and since
c(Ki) = c(Li) = Bi, we have c(yi,m) = c(zi,m) = Bi exactly. Let

ũm = x0[
←−y 1,m(y1,m)m!+1−→y 1,m]x1 · · · [

←−y n,m(yn,m)m!+1−→y n,m]xn

ṽm = x0[
←−z 1,m(z1,m)m!+1−→z 1,m]x1 · · · [

←−z n,m(zn,m)m!+1−→z n,m]xn

By definition again, these words stay in K ′ and L′ respectively. (In Figure 2, reading
these words corresponds to iterating the reading of the loops.) Now, the limit in FA(V)
of ũm (resp. of ṽm) is the same as the limit of um (resp. of vm) in FA(V). Indeed, V is
a pseudovariety of completely regular semigroups, so for any u ∈ A∗, um!+1 converges to
uω+1 = u. On J, each factor [←−y i,m(yi,m)m!+1−→y i,m] converges to Bω

i since c(←−y i,m
−→y i,m) ⊆

c(yi,m) = Bi, so ũm converges to x0B
ω
1 x1 · · ·B

ω
nxn. In the same way, ṽm converges to

x0B
ω
1 x1 · · ·B

ω
nxn. So ũm and ṽm converge to a common point in J∨V, and K̄ ′ ∩ L̄′ is not

empty, as claimed.

4 Applications

The first corollary of Theorem 1.1 is the answer to Rhodes’s question. Take for V the
pseudovariety of finite groups. The fact that it is 2-strongly decidable comes from Ash’s
proof [8] of the type II conjecture, and was also provided by Ribes and Zalesskĭı [19].

Corollary 4.1 The pseudovariety J ∨G is decidable.
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Recall that Reiterman’s theorem gives a characterization of pseudovarieties as classes
of finite semigroups defined by sets of pseudoidentities (formal identities whose members
are implicit operations). A pseudovariety is finitely based if it can be defined by a finite
set of pseudoidentities. Trotter and Volkov [21] have proved that the pseudovariety J ∨G

is not finitely based. Corollary 4.1 does not provide any basis for J ∨ G. The second
author [9] proposed as a possible basis the following set of pseudoidentities, a guess which
was repeated by the third author [22]:

(xy)ω = (yx)ω, xω+1yω
1 · · · y

ω
p xω = xωyω

1 · · · y
ω
p xω+1, p > 0

After a more detailed study of this basis, we now think that the pseudovariety defined by
those pseudoidentities strictly contains J ∨G.

The second author [10] studied the joins of J with permutative pseudovarieties. He gave
in particular a pseudoidentity basis for the join J ∨Ab, where Ab is the pseudovariety of
finite abelian groups, which proves that J ∨Ab is decidable. Theorem 1.1 may also take
advantage of another hyperdecidability result due to Delgado [11], which states that Ab

is also hyperdecidable, a result which implies its 2-strong decidability. We thus get the
following corollary:

Corollary 4.2 The pseudovariety J ∨Ab is decidable.

Let us conclude by a final application. The first author proved that the pseudovariety
CS of completely simple semigroups is hyperdecidable. This is also a consequence of a
more general theorem proved by Silva and the first author [6]. Since a completely simple
semigroup is completely regular, we have:

Corollary 4.3 The pseudovariety J ∨CS is decidable.

Finally, note that Theorem 1.1 could be stated by replacing 2-strong decidability by
n-strong decidability. Since the arguments are essentially the same, we chose to formulate
them only for 2-strong decidability.
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