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Abstract

This article solves a problem proposed by Almeida: the computation

of the join of two well-known pseudovarieties of semigroups, namely the

pseudovariety of bands and the pseudovariety of locally trivial semigroups.

We use a method developed by Almeida, based on the theory of implicit

operations.

1. Introduction

The problem solved in this paper was originally motivated by the classifica-
tion of rational languages.

The description of the lattice of varieties of semigroups is a famous problem
in semigroup theory. Important results in this direction were given by Biryukov
[15], Fennemore [18, 19] and Gerhard [20], who described the lattice of varieties of
bands, and by Polák [26, 27, 28] who described the lattice of varieties of completely
regular semigroups.

There is an analogous problem for pseudovarieties, which is mainly moti-
vated by considerations of automata theory. Indeed, Eilenberg’s variety theorem
[31] gives a bijective correspondence between varieties of rational languages and
pseudovarieties of semigroups. In particular, the join V ∨ W of two pseudova-
rieties of semigroups V and W corresponds to the smallest variety of languages
containing the varieties corresponding to V and W .

Little is known on the join of two pseudovarieties, even when they are simple.
In contrast, its definition is straightforward, and it appears in a very natural way,
when considering parallel computations of automata.

Most results concerning this problem are recent. Several kinds of partial or
particular answers were given:

- Some computations can be done explicitly. The main technique to compute a join
is to use the theory of implicit operations. This theory was developed and used in
numerous applications by Almeida [7, 4]. Reiterman’s theorem [29] is the starting
point of the equational theory of pseudovarieties: it states that pseudovarieties are
defined by pseudoidentities, just as varieties are defined by identities. Using this
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theorem and some ad hoc facts, Almeida, Azevedo and Weil [3, 2, 8, 10, 11, 14, 13]
computed some non-trivial joins for which algebraic methods failed.

- Sometimes, one can only determine whether the join has a finite basis of pseu-
doidentities. For instance, Almeida [6] proved that the commutative pseudovari-
eties are finitely based, while Volkov [33], Trotter and Volkov [32] and the author
[35] gave examples of non finitely based joins.

- In most cases, however, nothing can be proved about the basis describing the
pseudovariety. The main problem is then the decidability of the pseudovariety V :
given a finite semigroup S , is the membership of S in V decidable? Once again,
the problem is very difficult. A recent result of Albert, Baldinger and Rhodes [1]
states that even the join of two decidable pseudovarieties might not be decidable.

Rhodes [30], Almeida [7] and Kharlampovich and Sapir [23] proposed a list
of problems on pseudovarieties, most of which are still open. In this article, we
solve problem 23 of Almeida [7]: “Compute LI∨B”, where LI is the pseudovariety
of semigroups whose local subsemigroups are trivial, and B is the pseudovariety
of bands. We give a basis and a simple algebraic characterization for this join. We
also give a description of the implicit operations on LI ∨ B.

The paper is organized as follows: after a brief section on basic definitions,
the main result: the computation of LI ∨ B (Theorem 3.1 below) is stated and
proved in section 3. Section 4 is devoted to the computation of some subpseudova-
rieties of LI ∨ B. Finally, in section 5, we analyse the structure of the implicit
operations on LI ∨ B.

2. Notations and background

We briefly review the main definitions and some useful facts about semi-
groups, pseudovarieties and implicit operations. For more details, the reader is
referred to the books of Almeida [7], Pin [25], to the original article of Almeida
[4] or for a brief introduction, to the surveys of Almeida and Weil [5, 10, 11, 34].
We assume the reader to be familiar with some basic notions of topology, universal
algebra and semigroup theory (see for instance [16, 17, 25]).

2.1.. Semigroups and pseudovarieties

In the sequel, An denotes the finite alphabet {x1, . . . , xn}. For a word
u ∈ A+

n , the content c(u) of u is the set of all letters appearing in u. The length

|u| of u is the number of letters of u.

The subset of idempotent elements of a semigroup S is denoted by E(S). If
S is finite, the exponent of S is the least integer k such that sk is idempotent for
every s ∈ S . Recall that the local subsemigroup of S associated to the idempotent
e is the subsemigroup eSe of S .

A pseudovariety of semigroups is a class of finite semigroups closed under
formation of finite direct product, homomorphic image and subsemigroup. Here is
a list of some important pseudovarieties:

- The pseudovariety of all finite semigroups is denoted by S.
- The pseudovariety of all finite aperiodic (or group-free) semigroups is denoted by
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A.
- An idempotent semigroup is called a band . The pseudovariety of finite bands is
denoted by B.
- The pseudovariety of finite commutative bands (that is, of finite semilattices) is
denoted by Sl .
- LI denotes the pseudovariety of all semigroups whose local subsemigroups are
trivial. It has some well-known subpseudovarieties:
- for every k ∈ N, LIk is the pseudovariety of all finite semigroups satisfying the
identity x1 . . . xkyz1 . . . zk = x1 . . . xkz1 . . . zk .
- K (resp. D) is the pseudovariety of all finite semigroups in which idempotents
are left zeros (resp. right zeros).
- for every k ∈ N, Kk (resp. Dk ) is the pseudovariety of all finite semigroups such
that every product of k elements of S is a left zero (resp. a right zero).
- N is the pseudovariety of all finite nilpotent semigroups, that is, semigroups with
a zero which is the unique idempotent.
- for every k ∈ N, Nk is the pseudovariety of all finite nilpotent semigroups S
such that every product of k elements of S is zero.
- Finally, for any pseudovariety V , DV is the pseudovariety of all semigroups
whose regular D-classes are semigroups of V . In particular, DS consists of all
finite semigroups whose regular D-classes are semigroups, and DA of all finite
semigroups whose regular D-classes are aperiodic semigroups.

It is important to keep in mind the fact that a pseudovariety containing N,
like LI , cannot satisfy any non-trivial identity. Indeed, Nk does not satisfy any
non-trivial identity u = v where |u| < k and |v| < k . This simple property will
be used several times in the sequel.

Recall that the free band over An is a finite semigroup, quotient of the free
semigroup A+

n by the congruence generated by x = x2 [22, 24]. We denote this
congruence over A+

n by ≡n .

A relational morphism τ from a semigroup S to a semigroup T is a relation
that associates to each s ∈ S a non empty subset sτ of T such that

∀ s, s′ ∈ S, (sτ)(s′τ) ⊆ (ss′)τ

The Mal’cev product V©mW of two pseudovarieties V and W is the pseudovariety
of all finite semigroups S satisfying the following property: there exists a relational
morphism τ from S into a semigroup of W such that the inverse image of every
idempotent of S lies in V .

2.2.. Implicit operations

Let V be a given pseudovariety. A semigroup S separates two words u and
v of A+

n if there exists a semigroup morphism ϕ : A+
n → S such that uϕ 6= vϕ.

One defines a pseudo-metric eV on A+
n as follows:

rV(u, v) = min{|S| | S ∈ V and separates u and v}

and
eV(u, v) = 2-rV(u, v)



4 Zeitoun

By convention, min Ø = ∞ and 2−∞ = 0.

Thus, eV(u, v) ≤ 2−k if and only if u and v have the same evaluation on
every semigroup of V whose size is less than k . It is not difficult to verify the
following, for all u, v, w ∈ A+

n :

1. eV(u, u) = 0,

2. eV(u, v) = eV(v, u),

3. eV(u, v) ≤ max (eV(u, w), eV(w, v)),

4. eV(uw, vw) ≤ eV(u, v) and eV(wu, wv) ≤ eV(u, v).

It is then straightforward to see that the relation ∼V defined by

u ∼V v ⇐⇒ eV(u, v) = 0

is a congruence. The quotient A+
n /∼V is a semigroup, denoted by Fn(V). In fact,

Fn(V) is the free semigroup of the variety generated by V . Furthermore, if V is
not trivial, there exists in V a semigroup with at least two elements that separates
xi and xj for i 6= j . Hence, the function xi 7→ xi/∼V is a bijection. We assume
now that V is not trivial and we identify xi with xi/∼V and An with An/∼V .

By properties 1. to 3., eV induces an ultrametric distance function dV over
Fn(V). By property 4., the multiplication in Fn(V) is uniformly continuous for
this metric, so that Fn(V) is a topological semigroup. The completion of the
metric space (Fn(V), dV) is denoted by Fn(V). Thus, Fn(V) is a compact totally
disconnected topological semigroup, and Fn(V) is dense in Fn(V). The elements
of Fn(V) are called the n-ary implicit operations. Implicit operations that lie in
fact in Fn(V) are said to be explicit .

When Fn(V) is finite, then Fn(V) = Fn(V). This happens for V = Sl

and for V = B, for instance. Fn(Sl) is the free semigroup of the variety of
semilattices: it is isomorphic to the semigroup (P(An),∪), where P(An) is the
power set of An . Thus, a subset of An determines a unique implicit operation on
Fn(Sl). For example, the operations x4x

3
3x1 and x1x3x4 are equal because they

have the same content: {x1, x3, x4}.

Every explicit operation u = u(x1, . . . , xn) ∈ Fn(V) defines for every semi-
group S ∈ V a function uS from Sn into S : uS(s1, . . . , sn) = u(s1, . . . , sn).
The function uS is called the evaluation of u over S . For instance, the eval-
uation of u = x1x

2
4x3 ∈ F4(V) is the function uS from S4 into S such that

uS(a, b, c, d) = ad2c. It is easy to see that one can define the evaluation πS of
an implicit operation π ∈ Fn(V) over a semigroup S ∈ V as follows: if (uk)k

is a sequence of explicit operations whose limit is π , then the sequence ((uk)S)k

converges to a value that does not depend on the sequence (uk)k . By definition,
πS is this limit value.

A pair (π, ρ) ∈ Fn(V) × Fn(V) is called a pseudoidentity . Let (π, ρ) be a
pseudoidentity. A semigroup S ∈ V satisfies (π, ρ) if and only if πS = ρS . We
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will then write S |== π = ρ. If Σ is a set of pseudoidentities on a pseudovariety V ,
S satisfies Σ if S satisfies every pseudoidentity of Σ, and a class C of semigroups
satisfies Σ if every semigroup of C satisfies Σ. We will then write C |== Σ. The
class [[Σ]]

V
of all semigroups of V satisfying Σ is a pseudovariety. In the sequel,

we shall write [[Σ]] instead of [[Σ]]
S
.

The following proposition comes from the definitions and will be used many
times:

Proposition 2.1. Let V be a pseudovariety, and (um)m a sequence of explicit

operations of Fn(V). Then, this sequence converges if and only if

∀S ∈ V, ∃m ∈ N, ∀p, q ≥ m, (up)S = (uq)S

and it converges to an implicit operation π if and only if

∀S ∈ V, ∃m ∈ N, ∀p ≥ m, (up)S = πS

This proposition has an important consequence: given an implicit operation
π , the sequence (πk!)k converges. The limit of this sequence is denoted by πω . For
any letter x, the evaluation of xω on an element s of a finite semigroup is the
unique idempotent of the subsemigroup generated by s.

The following characterization of pseudovarieties is the fundamental theo-
rem of the equational theory of pseudovarieties; notice the analogy with Birkhoff’s
completeness theorem:

Theorem 2.2. Reiterman [29] Let V be a pseudovariety of semigroups and let

W be a subclass of V . Then, W is a pseudovariety if and only if there exists a

set of pseudoidentities Σ ⊆ Fn(V) × Fn(V) such that W = [[Σ]]
V

.

For example, B is defined by the pseudoidentity x = x2 . In the same
way, Sl = [[x = x2, xy = yx]] = [[xy = yx]]

B
. More generaly, A is equal to

[[xω = xω+1]]. Let us now see some other examples. It is straightforward to check
that a semigroup belongs to K if and only if every idempotent is a left zero.
Therefore, the pseudovariety K can be defined by the pseudoidentity xωy = xω .
Similarly, D = [[yxω = xω]].

Notice also that if V1 (resp. V2 ) is defined by Σ1 (resp. Σ2 ), then V1∩V2

is defined by Σ1 ∪ Σ2 . Thus, N = K ∩ D is defined by xωy = xω = yxω . For
convenience, we will write π = 0 instead of πxi = xiπ = 0 if xi is a letter.
Thus, N = [[xω = 0]]. This example shows that the computation of a basis of an
intersection V1 ∩ V2 is straightforward when bases of V1 and V2 are known.

In contrast, it is difficult to find a basis for the join V1 ∨ V2 . Indeed, the
pseudoidentities satisfied by V1 ∨ V2 are exactly those satisfied by both V1 and
V2 . In general, this characterization does not give much information about the
exact form of these pseudoidentities. However, for LI = K∨D, it is easy to get such
a basis: LI is defined by xωyxω = xω , or alternatively by xωyzω = xωzω . Indeed,
to say that a semigroup S satisfies xωyxω = xω means that for every e ∈ E(S)
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and every s ∈ S , the elements ese and e are equal: the local subsemigroup eSe
is trivial.

Some definitions on words can now be extended for explicit or implicit
operations. For instance, let V be a pseudovariety containing N. Since V does
not satisfy any non-trivial identity, the length |u| of any explicit operation u can
again be defined as the number of letters of u.

One can also define the content of an implicit operation. For instance, it is
natural to say that the content of xωytω is {x, y, z}. Notice however that xωytω

is equal to xωtω on Fn(LI). In fact, the content can be defined in a satisfactory
way for pseudovarieties containing Sl .

Theorem 2.3. Almeida, Azevedo [7, 13] Let V be a pseudovariety containing

Sl. Then, two words representing an explicit operation u on Fn(V) have the same

content. We denote this content by c(u). Then, the function c : Fn(V) −→ Fn(Sl)
can be extended in a unique way in a continuous homomorphism from Fn(V) into

Fn(Sl).

Thus, for such a pseudovariety, the content of xωytω is {x, y, z}.

Implicit operations are in general very difficult to handle. An important
simplification has been discovered by Almeida and Azevedo: on DS , implicit
operations have a nice factorization. The structure of the J classes of Fn(DS)
plays an important role. It is described in the next statement:

Theorem 2.4. Azevedo [13] Let π and ρ be two regular elements of Fn(DS) .
Then, π J ρ ⇐⇒ c(π) = c(ρ). Furthermore, DS is the largest pseudovariety

satisfying this property.

The fundamental theorem is the following:

Theorem 2.5. Almeida, Azevedo [7, 9, 13, 12] Every implicit operation π ∈ Fn(S)
admits a factorization of the form π = π1 . . . πk where πi is either explicit or its

restriction to DS is regular.

Most non trivial computations of pseudovarieties obtained using the theory of
implicit operations were based on this theorem. See [7] for examples.

3. The pseudovariety LI ∨ B

This section is devoted to the proof of the main theorem:

Theorem 3.1. The pseudovariety LI ∨ B is determined by

LI ∨ B = [[(xωy) = (xωy)2, (yxω) = (yxω)2]] = B ©m N ∩ [[xωyzω = xωy2zω]]
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This statement consists of two equalities. The second one is easier, and will be
proved in Lemma 3.2. For the first equality, the inclusion from left to right is easy:
notice that if S is a semigroup that belongs to LI or B, the set E(S) of idem-
potents of S is an ideal. Therefore, the pseudovariety [[(xωy) = (xωy)2, (yxω) =
(yxω)2]] is a natural upper bound for LI ∨ B. The proof of the opposite inclusion
is based on Reiterman’s theorem.

Let us now show the second equality of the theorem:

Lemma 3.2. The pseudovariety [[(xωy) = (xωy)2, (yxω) = (yxω)2]] is equal

to the Mal’cev product B ©m N.

Proof. Let S be a semigroup and assume that E(S) is an ideal. Then, S/E(S)
is nilpotent and the canonical morphism τ : S −→ S/E(S) satisfies τ−1(0) ∈ B.
Conversely, if S is in B ©m N, there exists a nilpotent semigroup N of exponent
p and a relational morphism τ from S into N such that τ−1(0) is a band. Pick
then e ∈ E(S) and s ∈ S . Since τ(ex) = τ(epx) ⊇ τ(e)pτ(x) = {0}, one gets
ex ∈ τ−1(0), and therefore ex is idempotent. One would show in the same way
that xe is also idempotent.

Next, since LI and B are in DA, we shall check that B ©m N ⊆ DA. This
fact will be used later to apply the factorization theorem on DS .

Lemma 3.3. The pseudovariety B ©m N is included in DA.

Proof. Let S be a semigroup of B ©m N. We have to show that every regular
D-class of S is an aperiodic semigroup. In fact, S satisfies itself xω = xω+1 : it
suffices to take x = y in one of the pseudoidentities defining B ©m N.

Next, if z lies in a regular D-class, then there exists an idempotent e such
that e R z , and therefore ez = z . Since E(S) is an ideal, z is itself an idempotent.
Hence, for any y such that x D y , the H-class Ry ∩ Lx contains an idempotent;
therefore, xy ∈ Rx ∩Ly , and xy lies in the same D-class. Therefore, every regular
D-class is a semigroup.

Remark 3.4. The inclusion B ©m N ⊆ DA is strict, otherwise B ©m N would
contain for instance the pseudovariety J of J-trivial semigroups, but J does not
satisfy the pseudoidentity (xωy)2 = xωy (see Almeida [7]).

The rest of the proof follows the method developed by Almeida: Reiterman’s
theorem states that one can write LI ∨ B = [[Σ]]

B©mN
, where Σ is a set of

pseudoidentities on B ©m N. This implies in particular that if (π, π′) ∈ Σ2 , then
both LI and B satisfy π = π′ . All we have to show now is that π and π′ are
equal in Fn(B ©m N).

Therefore, we need some information on the implicit operations on B ©m N.
They take on a very particular form, as shown in the next proposition:
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Proposition 3.5. Let V be a pseudovariety such that N ⊆ V ⊆ B ©m N. The

three following facts hold in Fn(V):

1. Every implicit operation of Fn(V) is either explicit or idempotent.

2. An implicit operation of Fn(V) cannot be both explicit and idempotent.

3. If (um)m is a sequence of explicit operations such that lim
m→∞

|um| = +∞, then

(um)m cannot converge to an explicit operation.

Proof. If π is a regular implicit operation, then π is idempotent by aperiodicity.
Therefore, as B ©m N ⊆ DA ⊆ DS ∩ A, every implicit operation of Fn(B ©m N)
has a factorization in a product of explicit and idempotent operations by Theorem
2.5. But E(Fn(B ©m N)) is an ideal. Hence, such a product is idempotent as soon
as it contains one idempotent operation. This proves 1.

In order to prove 2, notice that if u ∈ Fn(V) is an idempotent, then N ⊆ V

would satisfy u = u2 . But N does not satisfy any non-trivial identity, so the words
u and u2 are identical, which is impossible.

Finally, for 3, assume that a sequence (um)m of explicit operations converges
to an explicit operation u, and let k = |u| + 1. Since Nk ⊆ V and since Fn(Nk)
is finite, Fn(Nk) is a semigroup of V . Since u is the limit of (um), Nk satisfies
um = u for m large enough. This is in contradiction with the fact that Nk does
not satisfy any non-trivial identity v = u where |u| < k and |v| < k . So the limit
of (um) cannot be explicit.

Our next lemma deals with the pseudoidentity xωyxω = xωy2xω . It is
immediate that this pseudoidentity is satisfied by LI and by B, and hence it is
satisfied by LI ∨ B. We show that it holds in B ©m N too.

Lemma 3.6. The pseudovariety B ©m N satisfies xωyxω = xωy2xω .

Proof. Let π = xωyxω and ρ = xωy2xω in Fn(B ©m N). By Lemma 3.2, these
implicit operations are both idempotent. Furthermore, Sl ⊆ B ©m N ⊆ DS . As
c(π) = c(ρ), π and ρ lie in the same J-class, by Theorem 2.4. By aperiodicity, it
suffices therefore to show that they lie in the same H-class. But

xωyxω · xωy2xω = (xωy)2yxω = xωy2xω

Similarly,
xωy2xω · xωyxω = xωy(yxω)2 = xωy2xω

Therefore, πρ = ρπ = ρ, and π and ρ are comparable for the relations R and L.
Since they lie in the same J-class, they have to be H-equivalent.

However, the next statement shows that one cannot simplify the intersection
in Theorem 3.1. Indeed, LI ∨ B obviously satisfies the pseudoidentity xωyzω =
xωy2zω which fails in B ©m N = [[(xωy) = (xωy)2, (yxω) = (yxω)2]] .
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Lemma 3.7. The pseudovariety B ©m N does not satisfy the pseudoidentity

xωyzω = xωy2zω .

Proof. Consider the free 3-generated semigroup F in the semigroup variety
defined by xy = (xy)2 . Gerhard proved in [21] that it is finite; therefore, it clearly
lies in B©m N. The word problem in F was also solved in [21]. Gerhard’s algorithm
easily shows that the words x2yz2 and x2y2z2 are different in F.

Let now U = B ©m N∩ [[xωyzω = xωy2zω]] and (π, π′) ∈ (Fn(U))2 be a non-
trivial pseudoidentity satisfied by LI ∨ B: that is, π 6= π′ and LI ∨ B |== π = π′ .
By Proposition 3.5, the operations π and π′ are either explicit or idempotent.
Since in particular N |== π = π′ (since N ⊆ LI), and since N does not satisfy
any non-trivial identity, π and π′ are not both explicit. For the same reason, if π′

is idempotent, then so is π : indeed, if π′ was idempotent and π explicit, we would
have N |== π2 = π′2 = π′ = π and therefore N |== π = π2 , which is impossible if
π is explicit. So let us suppose that π and π′ are both idempotent. A last lemma
is needed before we can conclude.

Lemma 3.8. Let (π, π′) ∈ (Fn(U))2 be a pseudoidentity satisfied by LI. Sup-

pose that π and π′ are idempotent. Then, there exist sequences of explicit opera-

tions (rm)m, (sm)m, (tm)m and (t′m)m such that

π = lim
m→∞

rmtmsm, π′ = lim
m→∞

rmt′msm

and, for every m ∈ N

|rm| ≥ m, |sm| ≥ m

Proof. Let (um)m and (vm)m be two sequences of explicit operations that
converge to π and π′ respectively. For any given k , LIk satisfies π = π′ .
As Fn(LIk) is finite, it lies in LI; thus, LIk satisfies the identity um = vm

for all m ≥ mk . One can assume for convenience that for these values of m,
|um| > 2k and |vm| > 2k : otherwise we could first extract a bounded sequence
from (|um|)m or (|vm|)m , and then a constant sequence from (um)m or (vm)m .
This is impossible since these subsequences converge to idempotent operations and
since an idempotent cannot be explicit, by Proposition 3.5.

To say that LIk satisfies um = vm is equivalent to say that um and vm

have the same prefix and same suffix of length k . As |um| > 2k and |vm| > 2k ,
we can write umk

= r̃mk
t̃mk

s̃mk
and vmk

= r̃mk
t̃′mk

s̃mk
with |r̃mk

| = |s̃mk
| = k . To

conclude, take rk = r̃mk
, sk = s̃mk

, tk = t̃mk
.

Let us conclude the proof of Theorem 3.1. We may write the implicit
operations π and π′ as limits of sequences (rmtmsm)m and (rmt′msm)m as in Lemma
3.8. By compactness of Fn(U), we may assume that (rm)m , (sm)m , (tm)m and
(t′m)m also converge, to ρ, σ , τ and τ ′ respectively. By Proposition 3.5, ρ and
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σ are idempotent since lim
m→∞

|rm| = lim
m→∞

|sm| = +∞. By aperiodicity, U satisfies

therefore
π = ρωτσω = ρω(ρτσ)σω

π′ = ρωτ ′σω = ρω(ρτ ′σ)σω

By hypothesis, Fn(B) satisfies π = π′ Hence, it satisfies also ρτσ = ρτ ′σ and it
suffices now to use the pseudoidentity (1) to conclude.

4. Some subpseudovarieties of LI ∨ B

In this section, we compute the joins V∨W where V ∈ {LI,K,D,N} and
W ∈ {B,Sl}.

Theorem 4.1. The pseudovarieties K ∨ B and D ∨ B are defined by

K∨B = [[xωy = xωy2, (xωy) = (xωy)2, (yxω) = (yxω)2]] = [[xωy = xωy2]]∩(B©m N)

D∨B = [[yxω = y2xω, (xωy) = (xωy)2, (yxω) = (yxω)2]] = [[yxω = y2xω]]∩(B©m N)

Proof. We just prove the first of these equalities. The second one is dual. Let
U be the pseudovariety defined by the pseudoidentities

(xωy) = (xωy)2, (yxω) = (yxω)2 and

xωy = xωy2 (2)

The containment K∨B ⊆ U is once again straightforward. We now prove that if
π, π′ ∈ Fn(U) and K∨B |== π = π′ , then π = π′ . We need to prove analogues of
Lemma 3.8. We first have:

Lemma 4.2. Let π and π′ be two implicit operations of Fn(U) that coincide

over Fn(B). Then, U satisfies xωπ = xωπ′ .

Proof. As before, we just prove this pseudoidentity for explicit operations, and
we deduce the general case by taking the limit. It suffices to show here that U

satisfies xωww′w′′ = xωww′2w′′ . But U satisfies

xωww′w′′ = (xωw)ωw′w′′ as E(Fn(U)) is an ideal

= (xωw)ωw′2w′′ by (2)

= xωww′2w′′

The natural version of Lemma 3.8 is the following:

Lemma 4.3. Let π and π′ be idempotent elements of Fn(U) such that K |==
π = π′ . Then, there exist sequences (rm)m, (tm)m and (t′m)m of explicit operations

such that

π = lim
m→∞

rmtm, π′ = lim
m→∞

rmt′m

with |rm| ≥ m for every m ∈ N.
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Proof. It is the same as that of Lemma 3.8, using Kk instead of LIk .

In order to complete the proof of Theorem 4.1, we apply the above lemma,
and assume furthermore that (rm)m , (tm)m , and (t′m)m converge to ρ, τ and τ ′

respectively: we have π = ρωτ and π′ = ρωτ ′ . By Proposition 3.5, ρ is idempotent
since lim

m→∞

|rm| = +∞. Therefore, by aperiodicity, U satisfies

π = ρωτ = ρω(ρτ)

π′ = ρωτ ′ = ρω(ρτ ′)

But by hypothesis, Fn(B) satisfies π = π′ , and therefore, it satisfies also ρτ = ρτ ′ .
The conclusion follows from Lemma 4.2.

The next computation is easier:

Theorem 4.4. The pseudovariety N ∨ B is defined by

N ∨ B = [[xωy = (xy)ω = xyω]]

Proof. Let U = [[xωy = (xy)ω = xyω]]. It is clear that, if S ∈ U, then
E(S) is an ideal of S , that is, U ⊆ B ©m N. Moreover, N and B clearly satisfy
xωy = (xy)ω = xyω , so N ∨ B ⊆ U. Let now π and π′ be two implicit operations
of Fn(U) such that N ∨ B |== π = π′ . We need to show that π = π′ . As in the
proof of Theorem 3.1, we verify that if one of π and π′ is explicit, then N satisfies
a non trivial identity. Since this is not the case, both π and π′ are idempotent.
Let (um)m and (vm)m be sequences of explicit operations on U that converge to
π and π′ respectively. Since Fn(B) is finite, um ≡n vm holds for m large enough.
Now, U satisfies

(ww′2w′′)ω = (ww′2)ωw′′

= w(w′2)ωw′′

= ww′ωw′′

and in the same way, (ww′w′′)ω = ww′ωw′′ . Therefore, U satisfies (ww′2w′′)ω =
(ww′w′′)ω . Hence, the explicit operations uω

m and vω
m are equal for m large enough.

Therefore, π = π′ .

The next result was first proved by Almeida [7]. Recall that Perm is the
pseudovariety of all finite semigroups that satisfy a non-trivial permutation iden-
tity. It is defined by xωyzxω = xωzyxω . It is the join of two other pseudovarieties,
Perm(+∞,2,0) = [[xωyz = xωzy]] and Perm(0,2,+∞) = [[yzxω = zyxω]] .

Theorem 4.5. Almeida [7] The pseudovariety LI ∨ Sl is defined by:

LI ∨ Sl = [[xωyzxω = xωzyxω]]
B©mN

= (B ©m N) ∩ Perm

which can be written as

LI ∨ (B ∩ Com) = (LI ∨ B) ∩ (LI ∨ Com)
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Proof. The second statement follows from the first and from the fact that
LI ∨ Com = Perm (Almeida, [2]). There remains to prove the first statement.
Let U be the pseudovariety (B ©m N) ∩ Perm. It is necessary to know a little
more about the structure of Fn(LI ∨ Sl) to conclude the proof:

Lemma 4.6. Let ρ, τ , τ ′ and σ be implicit operations of Fn(U) such that

c(ρτσ) = c(ρτ ′σ). Then the pseudovariety U satisfies ρωτσω = ρωτ ′σω .

Proof. It suffices to show the lemma for explicit operations u, v , v ′ , and w
instead of ρ, τ , τ ′ and σ respectively. The result follows by taking the limit,
since the content function is continuous. One can now show that U satisfies
the pseudoidentity (1) and also xωyztω = xωzytω . Now, if two words of A+

n

have the same content, one can pass from one to the other by using a finite
number of times the rewriting rules xyt → xy2t, xy2t → xyt and xyzt → xzyt.
Therefore, if r, s ∈ A+

n have the same content, U satisfies xωrtω = xωstω . So, if
c(uvw) = c(uv′w), U finally satisfies

uωvwω = uω(uvw)wω by aperiodicity

= uω(uv′w)wω since c(uvw) = c(uv′w)

= uωv′wω by aperiodicity

Now, Theorem 4.5 is a consequence of this lemma: let (π, π′) ∈ Fn(U)
2

such that
LI∨Sl |== π = π′ . We want to show that π = π′ . As in the proof of Theorem 3.1,
we can assume that both π and π′ are idempotent. By Lemma 3.8, π and π′ can
be written as limits of sequences (rmtmsm)m and (rmt′msm)m with |rk| = |sk| = k .
By compactness, we can suppose that (rm)m , (sm)m , (tm)m and (t′m)m converge
to ρ, σ , τ and τ ′ respectively. Furthermore, by fact 3 of Proposition 3.5, ρ and σ
have to be idempotent. Therefore, π = ρωτσω and π′ = ρωτ ′σω . Now, Sl satisfies
π = π′ , that is c(ρτσ) = c(ρτ ′σ). We then conclude using Lemma 4.6.

With the same techniques, one can compute the pseudovarieties K ∨ Sl,
D ∨ Sl and N ∨ Sl.

Theorem 4.7. The pseudovarieties K ∨ Sl and D ∨ Sl are defined by

K ∨ Sl = (K ∨ B) ∩ [[xωyz = xωzy]] = (K ∨ B) ∩ Perm(+∞,2,0)

D ∨ Sl = (D ∨ B) ∩ [[yzxω = zyxω]] = (D ∨ B) ∩ Perm(0,2,+∞)

which can be written as

K ∨ (B ∩ Com) = (K ∨ B) ∩ (K ∨ Com)

D ∨ (B ∩ Com) = (D ∨ B) ∩ (D ∨ Com)
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Proof. The statements regarding K and D are dual, and we prove only that
regarding K. The second part of the statement is a consequence of its first part
and from the fact that K∨Com = Perm(+∞,2,0) (Almeida, [2]). Let again U be
the pseudovariety (K ∨ B) ∩ Perm(+∞,2,0) . The following lemma is analogous to
Lemma 4.6:

Lemma 4.8. Let ρ, τ , and τ ′ be implicit operations of Fn(U) such that

c(ρτ) = c(ρτ ′). Then the pseudovariety U satisfies ρωτ = ρωτ ′ .

Proof. As usual, it suffices to show this lemma for explicit operations u, v ,
and v′ instead of ρ, τ and τ ′ respectively, and the result follows by taking the
limit. With the same proof as in Lemma 4.2, one shows that this pseudoidentity
holds in U and that xωyz = xωzy also holds. It is not difficult to check then, as
in Lemma 4.6, that U satisfies xωu = xωu′ if u and u′ have the same content.

As before, one can then write π = ρωτ and π′ = ρωτ ′ , and it suffices then to use
the same technique as for LI ∨ Sl .

The last result goes back to Almeida again. Recall that ZE is the pseudovariety
of semigroups in which idempotents are central.

Theorem 4.9. Almeida [7, 3] The pseudovariety N ∨ Sl is defined by

N ∨ Sl = (N ∨ B) ∩ ZE

On can also write

N ∨ (B ∩ Com) = (N ∨ B) ∩ (N ∨ Com)

Proof. The inclusion from left to right of each of the equalities is once again
clear. Let U be the pseudovariety (N ∨ B) ∩ ZE. The proof that U is contained
in N ∨ Sl follows the same pattern as the preceding proofs: it suffices to show that
U satisfies π = π′ if π and π′ are two idempotents which have the same content.

The proof of the second equality is easy: the inclusion from left to right is
straightforward, and the one from right to left comes from the inclusion N∨Com ⊆
ZE. Notice however that ZE is not permutative, so ZE 6= N ∨ Com.

5. Implicit operations of LI ∨ B

For comparison, recall that an implicit operation on LI that is not explicit
can be viewed as a pair of a left and a right infinite word [7, 34]. Indeed, as N,
which does not satisfy any non-trivial identity, is contained in LI, the semigroup
Fn(LI) is free over {x1, . . . xn}. If a sequence (up)p of Fn(LI) converges in Fn(LI),
then, this sequence converges in every (finite) semigroup Fn(LIk) ∈ LI . If it is
not a constant sequence, the prefixes (resp. the suffixes) of length k of up and uq

coincide if p and q are large enough.
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Conversely, since the semigroups Fn(LIk) generate LI, every sequence sat-
isfying this condition converges in Fn(LI). One can therefore view the non explicit
operations as pairs of Aω

n × ωAn where ωAn is the set of left infinite words and Aω
n

the set of right infinite words over the alphabet An . The product over Fn(LI) is
defined by

u · (π, ρ) = (uπ, ρ) if π ∈ Aω
n, ρ ∈ ωAn and u ∈ A+

n

(π, ρ) · u = (π, ρu) if π ∈ Aω
n, ρ ∈ ωAn and u ∈ A+

n

(π, ρ) · (π′, ρ′) = (π, ρ′) if π, π′ ∈ Aω
n and ρ, ρ′ ∈ ωAn

In other words, Fn(LI)\Fn(LI) is a rectangular band and Fn(LI) is a nilpotent
extension of a rectangular band.

The semigroup Fn(LI ∨ B) has quite a similar structure: since LI ∨ B

contains N, the semigroup Fn(LI ∨ B) is the free semigroup over {x1, . . . xn}
(equipped with the discrete topology). Furthermore, as an implicit operation
π ∈ Fn(B ©m N) is determined by its value over LI on one hand and by its value
over Fn(B) on the other hand, a non explicit operation over LI∨B can be viewed
as a triple of Aω

n × Fn(B) × ωAn . The product over Fn(LI) is now defined by

v · (π, u, ρ) = (vπ, vu, ρ) if π ∈ Aω
n, ρ ∈ ωAn and v ∈ A+

n and u ∈ Fn(B)

(π, u, ρ) · v = (π, uv, ρv) if π ∈ Aω
n, ρ ∈ ωAn and v ∈ A+

n and u ∈ Fn(B)

(π, u, ρ) · (π′, u′, ρ′) = (π, uu′, ρ′) if π, π′ ∈ Aω
n, ρ, ρ′ ∈ ωAn, u, u′ ∈ Fn(B)

where the product of u by v is evaluated in free band.

In other words, non explicit operations on LI ∨ B form a band, more
precisely the direct product of the rectangular band Aω

n × ωAn by the free band.
Therefore, the semigroup Fn(LI ∨ B) is a nilpotent extension of a band, which is
not surprising since LI ∨ B = B ©m N.
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