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1. Introduction

Finite R-trivial semigroups form a pseudovariety R which appears naturally

as it is generated by the following classes of transformations of a finite

chain: full decreasing transformations [16] or partial decreasing and order-

preserving transformations [12]. The corresponding variety of languages

also appears naturally: it is the smallest variety of languages containing,

over a finite alphabet A, the languages B+ with B ⊆ A, the letters a ∈ A,

and which is closed under disjoint union and deterministic product [18].

Each regular D-class of a finite R-trivial semigroup forms a (left-zero)

band, which places R-trivial semigroups close enough to the well-known

variety of (left regular) bands [xyx = xy, x2 = x]. Syntactical techniques

that work for R can often be extended to the pseudovariety DA, of all finite

semigroups whose regular D-classes are rectangular bands, which plays an

important role not only in finite semigroup theory but also in temporal

logic [22, 21].

The underlying question which motivated the work summarized in this

paper is whether R is “completely tame” for the canonical signature κ =

{ · , ω}. This signature is the most commonly used in finite semigroup

theory. The notation comes from [3] with a minor change resulting from the

fact that we are only interested here in aperiodic semigroups. For R, the

question of complete tameness roughly means the following: whether every

finite system of equations with clopen constraints which has a solution in

the free profinite semigroup modulo R also admits such a solution using

only terms of the signature κ. From a simple yet rather useful solution of

the word problem for ω-terms over the related pseudovariety J, of all finite

J-trivial semigroups, that is the identity problem in the signature κ, it is

not hard to show that J is completely tame for the canonical signature [1].

Here we consider the related question of solving the word problem for ω-

terms over the pseudovariety R and more generally studying the equational

theory of R in the signature κ. With the tameness question in mind, we

aim at a good understanding of this equational theory as well as efficient

algorithms that may be used to test examples and allow us to deepen our

intuition.

One can raise a question of a much more general nature, thus abstracting

the word problem to a general pseudovariety and a suitable signature: under

what general conditions on a pseudovariety V and a signature σ can one

guarantee that the identity problem for V in the signature σ is decidable?

This is of course a bit vague so we propose a restricted form of this question.
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See [1] for undefined terms.

Question. Is there any recursively enumerable pseudovariety V for which

there exists a recursively enumerable signature σ (consisting of computable

implicit operations) such that Vσ has an unsolvable identity problem?

The results presented here are the following. We start with a new rep-

resentation of pseudowords over R, namely as certain binary trees. Such

trees are regular, that is they may be folded into finite automata by the

identification of isomorphic subtrees, if and only if the pseudowords they

represent are ω-terms. The minimal such representation of an ω-term is

constructible in O(mn)-time, where m is the number of letters and n is

the length of the term. This gives rise to an algorithm for solving the word

problem for ω-terms over R which works in O(mn)-time where m is as above

and n is now the length of the longest of two ω-terms whose equality over R

is to be tested.

We also describe a basis of identities for the variety of ω-semigroups

generated by R, where ω-semigroups means semigroups with an extra unary

ω-power operation. Since no finite basis can be extracted from our basis,

this variety is not finitely based.

This paper is meant as an extended abstract of the forthcoming paper

with full details. Rather than presenting all technicalities which are re-

quired for the detailed account of the results, we concentrate on making

clear the underlying ideas at the expense of not being completely precise.

In particular, all proofs will be omitted. The reader interested in more

details is referred to the full paper [6].

2. R-trees and R-automata

Elements of free profinite semigroups will be generally called pseudowords.

We may also speak of pseudowords over V for a pseudovariety V to indi-

cate the natural projections of pseudowords in free pro-V semigroups. For

an introduction to relatively free profinite semigroups, see [1]. Recall in

particular that formal equalities between pseudowords are known as pseu-

doidentities and have full descriptive power for defining pseudovarieties of

semigroups. We write C |= u = v to indicate that the class C of finite

semigroups satisfies the pseudoidentity u = v.

The basic ingredient in all our results is the following observation taken

from [2].

Lemma 2.1. Let u, v be pseudowords and suppose u = u1au2, v = v1bv2
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where a, b are letters such that a /∈ c(u1), b /∈ c(v1), and c(u1) = c(v1). If

R |= u = v then a = b and R |= ui = vi (i = 1, 2).

The same holds for the pseudovariety S of all finite semigroups using

Proposition 3.5 of [4] combined with simple arguments of language theory.

This leads to the left basic factorization of a pseudoword, which is well

defined over both S and R:

u = u1au2 with c(u) = c(u1a), a ∈ c(u) \ c(u1). (1)

For instance, the left basic factorization of (abωa)ω is a ·b ·bω−1a(abωa)ω−1.

The idea explored in [5] is to iterate this factorization on both factors

u1 and u2, keeping in mind the observation that every infinite product of

pseudowords over R converges. In [5], this is carried out considering at the

same level factorizations going rightwards, leading to (in general) infinite

factorization trees of finite height.

For instance, for the ω-term (abωa)ω we have the representation in Fig-

ure 1. An alternative representation in terms of labeled ordinals was also

b

a

a

b b b
· · ·

b

a

a

b b b
· · ·

· · ·

Figure 1. The Almeida-Weil tree representation of (abωa)ω

constructed in [5] which, for the same example, can be visualized as follows:

a bbbb · · ·
︸ ︷︷ ︸

ω

aa bbbb · · ·
︸ ︷︷ ︸

ω

aa bbbb · · ·
︸ ︷︷ ︸

ω

· · ·

︸ ︷︷ ︸

ω

We present here yet another representation, which focuses on the binary

flavor of the left basic factorization: each new factor ui lies either to the

left or to the right of the letter marker a which splits the previous factor

u according to (1). For the same example, (abωa)ω, we obtain the infinite

binary tree indicated in Figure 2, where ε stands for the empty word. In
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view of the left basic factorization of (abωa)ω = a · b · bω−1a(abωa)ω−1,

the root is labeled by b, and the process is iterated on the left (with the

pseudoword a) and on the right (with bω−1a(abωa)ω−1). In this infinite tree

b

a a

ε ε b

ε b

ε · · · b

a

ε ε

a

b

ε b

· · ·ε

· · ·

Figure 2. The R-tree of the pseudoword (abωa)ω

one recognizes immediately that certain subtrees are repeated in the sense

that isomorphic copies are found several times, where isomorphism stands

for topological isomorphism respecting labels. Rather than repeating a

subtree T , we may as well point to a node r at which T already appeared

with r as a root. This leads to a folding of the tree, in our example to the

finite graph indicated in Figure 3 where we use the edge labels 0 for left

b

a
0

a1

1

ε

0
1

b
0

0

1

Figure 3. The minimal R-automaton of the pseudoword (abωa)ω

and 1 for right, the incoming arrow at the top represents the node coming

from the root and the double circle represents the node coming from the

leaves. Another example is given in Section 5.

Examining the procedure leading to the above representations of pseu-

dowords over R, one obtains first a characterization of all vertex-labeled
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complete binary trees which appear in this way, which we call R-trees. More

generally, an R-automaton over an alphabet A is a deterministic {0, 1}-

automaton which is complete, except for the terminal states which have no

arrows leaving from them, and which has the states labeled with elements

from A ∪ {ε} so that the following properties are satisfied:

(1) a state is labeled ε if and only if it is terminal;

(2) for each state v, the labels of states which are accessible from v by

a path starting with the edge labeled 0 miss exactly one letter from

the labels of all the states accessible from v, namely the label of v.

In particular, R-trees are the acyclic R-automata. An isomorphism of R-

automata is an isomorphism of the underlying automata, in the usual sense

of automata theory [14], which respects the labeling of vertices. We will

not distinguish between isomorphic R-automata.

The R-tree constructed by iterated left basic factorization from a pseu-

doword w is denoted T(w) and is called the R-tree of w. From Lemma 2.1

one may easily deduce the characterization of equality of pseudowords

over R in terms of equality of their associated R-trees. Furthermore, there

is a natural topology on R-trees which is relevant for our characterization:

define the distance between two distinct R-trees to be 2−r where r is the

smallest integer such that, chopping off all nodes and edges at distance from

the root greater than r, we obtain distinct vertex-labeled trees.

Theorem 2.2. Over a finite alphabet, the correspondence associating to

each pseudoword w its R-tree T(w) induces a homeomorphism between the

free pro-R semigroup and the space of all R-trees.

In particular, to every R-tree T corresponds at least one pseudoword w

such that T(w) = T . By Theorem 2.2, the value of such a pseudoword w

over R depends only on T . We denote it by w(T ).

We may translate an R-automaton A over an alphabet A into a usual au-

tomaton A′ by taking B = {0, 1}×A as the alphabet labeling the edges and

by transferring the labels of vertices to the labels of edges as second compo-

nents. This transformation is clearly reversible for B-automata which have

properties that are easily identified, such as: no edges leave from terminal

states, and all edges leaving from other vertices have labels with the same

second component.

The folding procedure may be described as taking the quotient automa-

ton under the congruence ∼w, according to which two nodes are equivalent

if the subtrees rooted at these nodes are identical. The resulting automaton



January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper-Workshop-Lisboa-rerevised

7

will be called the minimal R-automaton of the pseudoword and denoted

A(w). The language over the alphabet B recognized by the automaton

A(w)′ is denoted L(w), and it gives a trace history of how a specific empty

factor is eventually obtained by iterated left basic factorization. Note that

the R-tree T(w) may be reconstructed from the R-automaton A(w) by un-

folding it.

Corollary 2.3. The following conditions are equivalent for a pair u, v of

pseudowords:

(1) R |= u = v;

(2) T(u) = T(v);

(3) A(u) = A(v);

(4) L(u) = L(v).

In case the congruence ∼w has finite index, the folding procedure is

nothing else than the minimization of the translated automaton followed

by the reverse translation, and this is consistent with naming A(w) the

minimal R-automaton of w. The natural question which this observation

raises is under what conditions on a pseudoword its minimal R-automaton

is finite. For a complete answer to this question, which will be given in

the next section, we introduce some pseudowords associated with a given

pseudoword.

The subtree Tp of all descendants of a node p of the R-tree T = T(w)

of a pseudoword w is itself an R-tree and therefore it uniquely determines

a pseudoword v = w(Tp) over R which we call an R-factor of w and may

also call the value of the subtree Tp and the value of the node p. In view of

Theorem 2.2, we will usually identify the pseudoword v with the node p and

thus use the same notation for pseudowords and nodes in R-trees. Taking

into account how T(w) is constructed by iterated left basic factorization, in

case v is a direct right descendant of another node, such pseudowords are

called relative tails of w.

3. Periodicity and the word problem for ω-terms

By an ω-term we mean a well-formed expression in a set of letters using an

associative operation of multiplication and a unary operation of ω-power.

The following result is a sort of periodicity theorem which answers the

question raised at the end of the previous section.

Theorem 3.1. The following conditions are equivalent for a pseudoword

w over R:



January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper-Workshop-Lisboa-rerevised

8

(1) w is represented by some ω-term;

(2) the set of R-factors of w is finite;

(3) the set of relative tails of w is finite;

(4) the folded R-automaton of w is finite;

(5) the language L(w) is rational.

Thus, the word problem for ω-terms over R will be solved if we find

a way to compute the folded R-automaton A(w) for each ω-term w since

A(w) is finite and completely determines w. This may seem however a

rather strange way of solving the word problem. A seemingly more natural

approach would at first sight appear to be devising a finite confluent set

of reduction rules which, applied repeatedly in any order until no further

reduction is possible, leads to a canonical form of a given ω-term such that

two ω-terms are equal over R if and only if they have the same canonical

form. We have found no such system and we conjecture that there is none.

This motivates the construction of an algorithm that will efficiently

produce an R-automaton recognizing the language L(w) for an ω-term w,

though not necessarily the minimal automaton A(w). Once this goal is

achieved, the computation of A(w) can then be concluded by minimization

of the R-automaton thus obtained. If the computed R-automaton is close

to being minimal and one can further optimize the minimization procedure,

then the computation of the minimal R-automaton may be close to being

optimal. One can then invoke Corollary 2.3 to deduce an efficient solution

of our word problem.

So, let us consider an ω-term w. Note that, unless w is a finite word,

T(w) is an infinite tree and of course we do not want to use the word problem

to fold it by comparing the pseudowords corresponding to its subtrees. The

idea is to look closer at the syntactic structure of w and to relate the values

w(Tp) of subtrees of T = T(w) with certain terms that can be syntactically

constructed from w.

The essential reason why the above idea works is best explained in a

picture which represents one of a few typical cases, as depicted in Figure 4.

The other cases are handled similarly. In it we consider a subtree S of

T(w) and we assume that its root is a descendant of a node along its left

line which in turn is the direct right descendant of some node. The value

of w(S) is then precisely the factor of w that can be found between the

positions in w determined by a and b:

a bw(S)
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S

b

a

Figure 4. A subtree of T(w)

The value of w(S) may be computed syntactically from the given ω-term

w since the indicated b is the first occurrence of this letter to the right of

the indicated occurrence of a. Thus, by canonically splitting ω-powers so

as to extract any required factors according to the formula

(uvw)ω = uv(wuv)ω ,

which is valid in R, one can compute the successive values of subtrees until

no new values are obtained. More precisely, one may compute, for each

position i of a letter in w and each letter b which either occurs to the right

of that position in w, or occurs within the same base of an ω-power as

the position i, an ω-term w(i, b) corresponding to the value of a subtree.

Moreover every such value may be obtained in this way. It is clear that

there are at most nm such ω-terms, where n = |w| is the length of w

disregarding ω-powers and m = |c(w)| is the number of letters occurring

in w.

By arranging appropriately the order in which the calculation of these

ω-terms derived from w is performed, one may thus achieve the computa-

tion of all values of subtrees of T(w) in O(mn)-time. Moreover, from the

computation it is clear that the value of the left descendant of any node v

in T(w) with value w(i, b) is w(i, c), where c is the only letter of w(i, b) such

that every other letter in w(i, b) also occurs in w(i, c); if j is the position

in w corresponding to the first occurrence of c in w(i, b), the value of the

right descendant of v is w(j, b); finally the label of v is c. Thus basically,

for each new encountered pair (i, a), one computes the list of letters occur-

ring in w(i, a) and the reverse order in which they are found in terms of
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the left basic factorization iterated on the left factors. For convenience of

calculation, one adds a position 0 corresponding to the beginning of w and

a letter # to mark the end of w.

Theorem 3.2. There is an algorithm which computes in time O(|w|·|c(w)|)

an R-automaton recognizing L(w) for any given ω-term w.

In our earlier example, w = (abωa)ω, one starts with the initial state

w(0, #) and looks for the last letter to occur for the first time, namely b.

Its position is 2, so the state w(0, #) is labeled b and it has an edge labeled

0 leading to w(0, b) and an edge labeled 1 leading to w(2, #). More sys-

tematically, one computes successively each row in the next table, where

the last three columns are computed immediately from the previous two

and are only indicated to facilitate understanding the procedure. In the

second and third columns of a row (i, a) we indicate, for each letter, the

first position in w “after” position i and before the first occurrence of a

to the right of i, where the letter is found, if such a position exists. The

term “after” here has to be understood in the sense that if the position i

is found within the base of an ω-power, then we are allowed to read again

the whole base before leaving the ω-power. Identifying all states labeled ε,

(position, letter) a b label left right

(0, #) 1 2 b (0, b) (2, #)

(0, b) 1 − a (0, a) (1, b)

(2, #) 3 2 a (2, a) (3, #)

(0, a) − − ε − −

(1, b) − − ε − −

(2, a) − 2 b (2, b) (2, a)

(3, #) 1 2 b (3, b) (2, #)

(2, b) − − ε − −

(3, b) 1 − a (3, a) (1, b)

(3, a) − − ε − −

the resulting R-automaton is given in Figure 5 where we add as an index to

the state-label the pair (i, a) which determines the state. The minimization

of this automaton identifies two pairs of states according to the equalities

w(0, b) = w(3, b), w(0, #) = w(3, #) and produces exactly the R-automaton

of Figure 3. We stress that the fact that we do get these equalities of ω-
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b0,#

a0,b

0

a2,#

1

ε

0
1

b2,a

0

0
1

b3,#

1

1

a3,b
0

1

0

Figure 5. The computed R-automaton of the pseudoword (abωa)ω

terms over R comes from automata manipulations rather than by invoking

again the word problem.

For the minimization procedure for finite deterministic automata, there

is an algorithm due to Hopcroft [13] which works in O(`s log s)-time (see

[15] for a recent complete complexity analysis), where ` is the number of

letters and s stands for the number of states. Combining with Theorem 3.2,

we obtain the following result.

Theorem 3.3. There is an algorithm which computes in time

O(m2n log(mn)) the minimal R-automaton recognizing L(w) for any given

ω-term w, where m = |c(w)| and n = |w|.

Since R-automata are so special one should be able to do better. The

R-automaton of a word is acyclic, and in this case, we already have a linear

algorithm due to Revuz [17]. If there are cycles (that is, if we started from

a term involving at least one ω-power) then we will adapt this algorithm

to completely fold a finite R-automaton in time O(mn).

The additional difficulty for minimizing R-automata comes from the

cycles: in the acyclic version, a height function measuring the longest path

starting from each state is computed at the beginning of the algorithm.

The situation is then simple, in that the minimization can only identify

states having the same height.

If we do have cycles, such paths can be infinite. But, due to the specific

stucture of R-automata, all cycles are disjoint and 1-labeled. For that reason

we can, after a preprocessing phase, treat separately the states belonging

to cycles and the other states.

The analog of Revuz’s height function is the level, obtained by letting

edges in cycles have weight zero. Proceeding then bottom-up, the prepro-
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cessing stage consists in rolling paths coming to a cycle, if this does not

change the language. Consider for example a usual automaton with a single

initial state q0, one simple path from q0 to q1 labeled v and one cycle around

q1 labeled u, as pictured in Figure 6. If v = u′ur with r ≥ 0 and u′ a suffix

q0 q1 q2
v = u′ur

v
q1 q2

v

(Before merging) (After merging)

Figure 6. Merging a path ending in a cycle

of u, then we do not change the language by rolling the simple path around

the cycle, that is, by only retaining the cycle and choosing as the new initial

state the unique state q2 of the cycle such that q2 · v = q1. The next step

for cycles is to minimize them one by one, i.e., to find the primitive roots

of their labels. We then identify, at one level, all equal cycles and all states

which do not belong to a cycle. This is essentially Revuz’s algorithm.

Finally, notice that rolling paths around cycles may change the level

of states that lie above them. We therefore have to recompute this level.

The recomputation is local, we just update correctly levels of states we are

about to treat.

Here is a more detailed, but informal, commented sketch of the al-

gorithm (see [7] which will be devoted to a detailed presentation and a

correctness proof):

(1) Given a finite R-automaton A, compute its cycle structure. For this

one can use for instance Tarjan’s algorithm [20] which computes the

strongly connected components of a graph.

(2) Compute an initial level function that measures, for each state, the

maximum weight of a path to the terminal state, assigning weight 0

to edges in cycles and weight 1 to all other edges. This can be done

efficiently by a simple traversal of the graph that is further used

to assign a level value to each edge that is not in a cycle, a value

which is initialized to the level of the end state plus 1. Both these

level functions will be updated in the main loop of the algorithm

as a result of rolling paths with all edges labeled 1 around cycles

to which they lead. The level of edges serves as a mechanism to

propagate to higher levels changes coming from identifications done

at lower levels.
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(3) From this point on, we construct successive equivalence relations

on sets of states which are approximations to the congruence on A

whose quotient determines the minimized R-automaton. We do so

level by level, at each stage suitably joining elements into equiva-

lence classes. The first step consists in putting the final state into

its own class.

(4) This is the main cycle in the algorithm. Proceed by increasing level

n ≥ 1, as in the following loop. At the end of level n, all vertices

processed in it will have level-value n and they will all be assigned

to an equivalence class, which remains unaltered at higher levels.

For each non-terminal state v, denote by 0v, 1v the edges starting

from v labeled 0, 1, respectively. If level(0v) ≤ n, then let ζ(v)

denote the pair consisting of label λ(v) of the state v and the class

[v0] containing the state at the end of the edge 0v.

(a) Call subroutine Level(n) which returns the list S of states

whose current level-value is n.

(b) For each vertex in S which lies in a cycle, put it in its own

singleton class.

(c) Roll 1-labeled paths leading to cycles in S around the corre-

sponding cycles by testing for each successive vertex v away

from the cycle whether ζ(v) is defined and whether it co-

incides with ζ(w), where w is the unique state in the cycle

such that for all sufficiently large k, v1k = w1k. In the nega-

tive case, do not proceed with the test for states u such that

u1 = v. In the affirmative case, add v to the class of w, as a

result of which the edge 1v becomes a cycle-edge and thus no

longer contributes to the level function; this leads us to re-

duce level(v) to n and level(e) to n+1 for every edge e which

ends at state v.

(d) Since the previous step may change the level functions, lower-

ing to level n states that were previously considered at higher

levels, we call subroutine Level(n) again. This will return

an updated value for S which contains the previous value

since the previous step only affects the level-values of states

at higher levels.

(e) For each cycle C in S, do the following steps which suitably

merges all equivalence classes of states in the cycle according

to their identification in the minimized R-automaton:



January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper-Workshop-Lisboa-rerevised

14

i. compute the (circular) word WC whose letters are the suc-

cessive ζ(w) with w in C;

ii. compute the primitive W ′
C root of WC ; this can be done

by computing the shortest bordera u of WC such u−1WC is

also a border; that this computation can be performed in

linear time in terms of the length of WC follows from the

fact that the list of all borders can be computed within this

time-complexity [11];

iii. compute the minimal conjugate VC of W ′
C ; this can be done

in linear time in terms of the length W ′
C [9, 19];

iv. merge classes of states in C according to the periodic rep-

etition of VC in WC .

(f) To merge classes of states in different cycles C of S start by

lexicographically sorting the words VC using bucket sort [10].

This determines in particular which cycles have the same

words V = VC and their classes associated with correspond-

ing positions in V are merged.

(g) To merge the remaining states v in S into classes start by

lexicographically sorting (by a bucket sort) the associated

triples (λ(v), [v1], [v2]), where v1, v2 denote the ends of the

edges 0v, 1v, respectively. As in the previous step, this de-

termines in particular which states have the same associated

triples, and those that do are merged into the same class.

(h) Increment n by 1 and proceed until a subroutine call returns

the empty list.

To complete the description of the algorithm, it remains to indicate what

the subroutine Level(n) does. It starts by updating the level-value of the

beginning state v of each edge e such that level(e) = n according to the

formula

level(v) =







max{level(e), level(f)} if e is not in a cycle

and {e, f} = {0v, 1v}

maxx level(x) otherwise

where the second maximum runs over all edges x with label 0 which start

in the cycle that contains v. Then return all states for which the new

aA border of a word w is a word which is both a prefix and a suffix of w.
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level-value is n.

Theorem 3.4. The above algorithm minimizes a given R-automaton with

s states in time O(s).

Taking into account Corollary 2.3, this gives our solution of the word

problem:

Theorem 3.5. The word problem for ω-terms over R can be solved in time

O(mn), where m is the number of letters involved and n is the maximum

of the lengths of the ω-terms to be tested.

4. Equations for ω-terms

Consider the set Σ consisting of the following identities:

(xy)ωxω = (xy)ωx = x(yx)ω = (xy)ω

(xω)ω = xω

(xr)ω = xω (r ≥ 2)

It is immediately checked that R satisfies these identities (viewed as pseu-

doidentities).

Theorem 4.1. The set Σ is a basis for the variety Rκ of ω-semigroups

generated by R.

The proof of this result depends on the construction of canonical forms

presented in the next section. There we will show that the canonical form

cf(w) of an ω-term w uniquely determines the value of w over R and that

the equality w = cf(w) can be formally deduced from Σ. Hence, if two

ω-terms v and w have the same value over R, then they have the same

canonical form and therefore the identity v = w may be formally deduced

from Σ. This will show that indeed Σ is a basis of identities for Rκ.

Using the completeness theorem for equational logic, it is now easy to

deduce that

Corollary 4.2. The variety Rκ is not finitely based.

The proof of Corollary 4.2 consists in verifying that the semigroup

Sp = 〈a, e, f : ap = 1, ea = ef = e2 = e, fa = fe = f2 = f,

ae = e, af = f〉,
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where p is a positive integer, with the unary operation σ defined by taking

σ(e) = e, σ(f) = f, σ(1) = e, σ(ak) = f (k ∈ Z \ pZ)

as the ω-power, satisfies the identities in the basis Σ for r relatively prime

with p, but fails (xp)ω = xω .

5. Canonical forms

From a finite R-automaton one can read off an ω-term in a canonical way.

The definition is recursive in the number of states:

• for the trivial R-automaton, in which there is only one state, take

the empty pseudoword 1;

• for an R-automaton in which the initial state r, labeled a, is not the

end of an edge labeled 1, take uav where u and v are respectively the

ω-terms canonically associated with the R-subautomata obtained by

changing the initial state respectively to r0 and r1;

• for an R-automaton in which the initial state r, labeled a, is the end

of an edge labeled 1, take (uav)ω where u and v are respectively the

ω-terms canonically associated with the R-subautomata obtained

by changing the initial state respectively to r0 and r1 and, in the

second case, changing the end of the edge labeled 1 pointing to r to

a terminal state.

We call the resulting ω-term for A(w) the canonical form of a given ω-

term w and denote it cf(w). For example, since the minimal R-automaton

of the ω-term w = (abωa)ω is that given by Figure 3, the canonical form is

cf(w) = (abbωa)ω.

A factor u of an ω-term w is fringy if there is a factorization u = va with

c(u) = c(w) and a a letter which is not in c(v). A Σ-fringy decomposition of

an ω-term w is a finite sequence w1, . . . , wn of ω-terms such that each wi is

a fringy factor of w1 · · ·wn and the identity w = w1 · · ·wn is a consequence

of Σ. The following technical result is used to compute the canonical form.

Proposition 5.1. Let w be an ω-term.

(1) If w = uav, a is a letter, and the factor ua is fringy, then it is

possible to deduce the identity cf(w) = cf(u) a cf(v) from Σ.

(2) If w admits a Σ-fringy decomposition, then the identity cf(wω) =

(cf(w))ω is a consequence of Σ.

(3) Let w0 and w be ω-terms such that
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• R 6|= w = w2,

• c(w0) ⊆ c(w),

• either c(w0) ( c(w), or R 6|= w0 = w2
0.

Then, there are ω-terms u, v such that uv = w is a consequence

of Σ and there are positive integers r, s such that w0w
ru and (vu)s

admit Σ-fringy decompositions.

Rules (1) and (2) allow to “push” cf operators downwards in the term tree

of an ω-term, while preserving equality modulo Σ. However, they only can

be used starting from particular forms, namely where fringy factors occur.

To make fringy factors appear, we use item (3). For instance, we may

deduce from Σ the following identities:

cf((abωa)ω) = cf
(
(ab · bωa)ω

)
(note that ab and bωa are fringy)

=
(
cf(ab · bωa)

)ω
by (2)

=
(
cf(a) · b · cf(bωa)

)ω
by (1)

= (ab cf(bω)a)ω by (1)

= (ab cf(b)ωa)ω by (2)

= (abbωa)ω = (abωa)ω

In this example, fringy factors needed to apply Proposition 5.1 appear with

almost no extra work. As another example, consider w = (aabb)ω, whose

automaton and wrapped automaton computed by our algorithms are shown

in Figure 7. Using A((aabb)ω) and the definition of the canonical form, we

b

a

0

a

bb

a
1

1

1

1
0

0

b

a

0

a

bba

1

1

1

1

0

a

0

A (non wrapped) R-automaton The R-automaton A((aabb)ω)

Figure 7. R-automata associated to (aabb)ω

get cf((aabb)ω) = aab(baab)ω. On the other hand, one deduces from Σ,
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using Proposition 5.1:

cf((aabb)ω) = cf
(
aab(ba · ab)ω

)
using x(yx)ω = (xy)ω

= aab · cf
(
(ba · ab)ω

)
by Prop. 5.1 (1)

= aab ·
(
cf(ba · ab)

)ω
by Prop. 5.1 (1)

= aab(baab)ω

The first equality (aabb)ω = aab(ba·ab)ω deduced by Σ makes fringy factors

appear. Proposition 5.1 (3) essentially states that one can always produce

these fringy factors when they are needed.

These examples illustrate how Proposition 5.1 may be used to prove the

following theorem already announced in Section 4.

To prove that Σ implies cf(w) = w, we start with cf(w). Then, using

Σ, one may split ω-powers by bringing out of them fringy factors and push

inside the canonical form “calculation” at the cost of taking a power of a

conjugate of the original base of the ω-power, and thus reduce the number

of nested ω-powers. For fringy factors, we also use Proposition 5.1 to bring

out the last letter and thus reduce the content. In either type of step, a non-

negative integer parameter is reduced and therefore this process terminates

in a finite number of steps. Once no more canonical forms remain to be

“computed”, all transformations can be traced back without the cf operator

using Σ to recover the ω-term w.

Theorem 5.2. For every ω-term w, the identity cf(w) = w is a conse-

quence of Σ.

Note that we do not claim that the above procedure serves to com-

pute the canonical form of a given ω-term. But, even if it would serve

that purpose, the algorithm to solve the word problem obtained by such a

computation followed by a test of graphical equality of the canonical forms

would not be efficient. This is shown by the following example in which the

canonical form computation has to take too long to perform.

Indeed the canonical form of an ω-term may be exponentially longer

than the given ω-term. This is so for the sequence of ω-terms

wk = (· · · ((a1a1b1b1)
ωa2a2b2b2)

ω · · · akakbkbk)ω .

For instance, k = 1 corresponds to the ω-term (aabb)ω, whose canonical

form was previously computed using A((aabb)ω). For k = 2, the automaton
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is more involved. By the same method, one can compute its canonical form:

aab(baab)ωccd
︸ ︷︷ ︸

u0

·
(

daab(baab)ωc
︸ ︷︷ ︸

u1

· cddaab
︸ ︷︷ ︸

u2

· (baab)ωccd
︸ ︷︷ ︸

u3

)ω

where a = a1, b = b1, c = a2, d = b2. Here, u0 is a fringy factor of this

factorization, and u1, u2, u3 are fringy factors of the external ω-power.

An ω-term w is reduced if it has no subterm of the form (xr)ω with

r > 1, no subterm of the form yωz, with c(z) ⊆ c(y), and no subterm of

the form (xyωz)ω, where x, z may be empty and c(xz) ⊆ c(y). Note that

Σ may be used to deduce the equality of any ω-term with a shorter one

in reduced form. Surprisingly, a canonical factorization is not necessarily

reduced. For instance, the ω-term inside the ω-power of cf(w2) is a square.

Coming back to the calculation of cf(wk), one can show that, in general:

|wk| = 4k, |c(wk)| = 2k, |cf(wk)| = (25 · 3k−1 − 11)/2.

Another example is given by the sequence vk defined by

vk = (ak(· · · (a2(a1)
ω)ω · · · )ω .

Here we can compute |vk| to be k, and the number of states of A(vk) to

be (k + 2)(k + 3)/2 − 5, while the number of states of the R-automaton

of vk computed by our algorithm is (k + 2)(k + 3)/2 − 3. This shows that

when we allow m and n to grow at equal rates, both the algorithm of Sec-

tion 3 to compute a finite R-automaton for an ω-term and the minimization

algorithm have optimal complexity rate.

It is also possible to have an exponential decrease in length in going

from an ω-term to its canonical form, even for ω-terms for which there are

no obvious reductions, as shown by Proposition 5.3 below.

Let us examine next why the first strategy that comes to mind to reduce

ω-terms does not work. It would consist in taking rules that result from

our proposed basis of identities for the variety of ω-semigroups generated

by R by orienting the identities in the length-reducing direction:

r1. (xy)ωx → (xy)ω

r2. (xy)ωxω → (xy)ω

r3. (xω)ω → xω

r4. (xr)ω → xω (r ≥ 2)

r5. x(yx)ω → (xy)ω

In general, for any set of reduction rules, its use is the following: whenever

in a term w we find a subterm u which matches the pattern of the left
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side of a rule ` → r, then we may replace in w an occurrence of u by the

resulting value of applying the rule to u to obtain a new ω-term w′; we then

write w ⇒ w′. If none of the above reduction rules may be applied to an

ω-term w then we say that w is irreducible.

Proposition 5.3. Consider the sequence zn, defined recursively by z0 =

1, zn+1 = (znanzn)ω, where the an are distinct letters. Then the zn are

irreducible ω-terms such that |zn| = 2n − 1 and |cf(zn)| = n.

In particular, it follows from Proposition 5.3 that the system of reduc-

tion rules (r1)–(r5) cannot be confluent since it is length-reducing. One

can try to apply the Knuth-Bendix algorithm by adding rules to obtain

confluence without losing the Noetherian property. But, since our system

is essentially infinite (not only because of the parameter r ≥ 2, which does

not bother much here but because x, y stand for arbitrary terms, that is

they serve as a means of giving patterns for terms), this quickly becomes

an unmanageable task.

6. Comparison with related work of Bloom and Choffrut

Bloom and Choffrut [8] have established results which bare some similari-

ties with those reported in this paper. They consider posets labeled with

elements of a finite nonempty alphabet under two operations:

• series concatenation: PQ extends the orders of each factor by

declaring the elements in P to precede all elements in Q;

• ω-power : P ω = ω × P under lexicographic order.

The finite or countable labeled posets over an alphabet A, considered up

to isomorphism, constitute an algebra P (A) which satisfies the following

identities:

• x(yz) = (xy)z,

• (xy)ω = x(yx)ω ,

• (xn)ω = xω for n ≥ 1.

The subalgebra generated by the singletons labeled with letters a from an

alphabet A is denoted W (A). Note that its elements are labeled ordinals

of length less than ωω.

A tail of an ordinal α with labeling function f corresponding to an

ordinal β < α is the unique ordinal γ such that β +γ = α with the labeling
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function g(δ) = f(β+δ). A labeled ordinal is tail-finite if it has only finitely

many tails.

The main results in the paper [8] are the following:

(1) A labeled ordinal belongs to W (A) if and only if it has length less

than ωω and it is tail-finite, if and only if it is defined by an ω-term.

(2) The variety V generated by the P (A) is equal to the variety gener-

ated by the W (A) and it is defined by the above identities. More-

over, W (A) is free over A in this variety.

(3) The variety V is not finitely based.

(4) The equality of two ω-terms u1, u2 in V can be decided (with the

help of Choueka automata) in O(m2n2
1n

2
2)-time, where ni denotes

the length of ui and m the maximum of their heights in terms of

nested ω-powers.

Our results are similar, so the natural question is if they are connected

by some causal relationship. Our basis of identities for Rκ is obtained from

the above basis for V by adding the identities

(xω)ω = xω , (xy)ωxω = (xy)ωx = (xy)ω.

In particular, we have the inclusion Rκ ⊆ V which does not appear to be

obvious taking into account the rather different types of generators consid-

ered for the two varieties. That the inclusion is proper is easy to show: for

instance, the identity xωx = xω fails in the algebra P (A) since the ordinals

ω + 1 and ω labeled with only one letter are distinct.

Finally, since the two varieties are different, the solution of the word

problem for the free algebra in one of the varieties is insufficient to solve

the word problem for the other. A curious difference in the two algorithms

is that the complexity of our algorithm depends on the size of the alpha-

bet whereas that of Bloom and Choffrut does not depend directly on this

parameter and instead depends on the height of nested ω-powers. Note

however that for reduced ω-terms in the sense of Section 5, the indicated

height is bounded by the number of letters which appear in the term.
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