January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings

paper- Workshop-Lisboa-rerevised

THE EQUATIONAL THEORY OF w-TERMS FOR FINITE

R-TRIVIAL SEMIGROUPS*

JORGE ALMEIDA'

Centro de Matemdtica da Universidade do Porto and
Departamento de Matemdtica Pura

Faculdade de Ciéncias da Universidade do Porto

Rua do Campo Alegre, 687
4169-007 Porto, Portugal
E-mail: jalmeida@fc.up.pt

MARC ZEITOUN
Li1AFA

Université Paris 7 et CNRS, Case 7014

2, place Jussieu

75251 Paris Cedex 05, France
E-mail: mz@liafa. jussieu. fr

A new topological representation for free profinite R-trivial semigroups in terms
of spaces of vertex-labeled complete binary trees is obtained. Such a tree may be
naturally folded into a finite automaton if and only if the element it represents is an
w-term. The variety of w-semigroups generated by all finite R-trivial semigroups,
with the usual interpretation of the w-power, is then studied. A simple infinite
basis of identities is exhibited and a linear-time solution of the word problem for
relatively free w-semigroups is presented. This work is also compared with recent

work of Bloom and Choffrut on transfinite words.

*This work was started during the visit of both authors to the Centro Internacional de
Matemdtica, in Coimbra, Portugal. Financial support of Funda¢ao Calouste Gulbenkian
(FCQG), Fundagdo para a Ciéncia e a Tecnologia (FCT), Faculdade de Ciéncias da
Universidade de Lisboa (FCUL), and Reitoria da Universidade do Porto is gratefully
acknowledged. The work was also supported by the INTAS grant #99-1224.

TThis paper has been written during this author’s visit to the LIAFA with the sup-
port of the Université Paris 7. Work also supported by FCT through the Centro de
Matemdtica da Universidade do Porto, and by the project POCTI/32817/MAT /2000,
which is partially funded by the European Community Fund FEDER.

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

1. Introduction

Finite R-trivial semigroups form a pseudovariety R which appears naturally
as it is generated by the following classes of transformations of a finite
chain: full decreasing transformations [16] or partial decreasing and order-
preserving transformations [12]. The corresponding variety of languages
also appears naturally: it is the smallest variety of languages containing,
over a finite alphabet A, the languages BT with B C A, the letters a € A,
and which is closed under disjoint union and deterministic product [18].

Each regular D-class of a finite R-trivial semigroup forms a (left-zero)
band, which places R-trivial semigroups close enough to the well-known
variety of (left regular) bands [xyz = 2y, 22 = x]. Syntactical techniques
that work for R can often be extended to the pseudovariety DA, of all finite
semigroups whose regular D-classes are rectangular bands, which plays an
important role not only in finite semigroup theory but also in temporal
logic [22, 21].

The underlying question which motivated the work summarized in this
paper is whether R is “completely tame” for the canonical signature x =
{-- ., -“}. This signature is the most commonly used in finite semigroup
theory. The notation comes from [3] with a minor change resulting from the
fact that we are only interested here in aperiodic semigroups. For R, the
question of complete tameness roughly means the following: whether every
finite system of equations with clopen constraints which has a solution in
the free profinite semigroup modulo R also admits such a solution using
only terms of the signature x. From a simple yet rather useful solution of
the word problem for w-terms over the related pseudovariety J, of all finite
J-trivial semigroups, that is the identity problem in the signature &, it is
not hard to show that J is completely tame for the canonical signature [1].

Here we consider the related question of solving the word problem for w-
terms over the pseudovariety R and more generally studying the equational
theory of R in the signature x. With the tameness question in mind, we
aim at a good understanding of this equational theory as well as efficient
algorithms that may be used to test examples and allow us to deepen our
intuition.

One can raise a question of a much more general nature, thus abstracting
the word problem to a general pseudovariety and a suitable signature: under
what general conditions on a pseudovariety V and a signature ¢ can one
guarantee that the identity problem for V in the signature o is decidable?
This is of course a bit vague so we propose a restricted form of this question.

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

See [1] for undefined terms.

Question. Is there any recursively enumerable pseudovariety V for which
there exists a recursively enumerable signature o (consisting of computable
implicit operations) such that V7 has an unsolvable identity problem?

The results presented here are the following. We start with a new rep-
resentation of pseudowords over R, namely as certain binary trees. Such
trees are regular, that is they may be folded into finite automata by the
identification of isomorphic subtrees, if and only if the pseudowords they
represent are w-terms. The minimal such representation of an w-term is
constructible in O(mn)-time, where m is the number of letters and n is
the length of the term. This gives rise to an algorithm for solving the word
problem for w-terms over R which works in O(mn)-time where m is as above
and n is now the length of the longest of two w-terms whose equality over R
is to be tested.

We also describe a basis of identities for the variety of w-semigroups
generated by R, where w-semigroups means semigroups with an extra unary
w-power operation. Since no finite basis can be extracted from our basis,
this variety is not finitely based.

This paper is meant as an extended abstract of the forthcoming paper
with full details. Rather than presenting all technicalities which are re-
quired for the detailed account of the results, we concentrate on making
clear the underlying ideas at the expense of not being completely precise.
In particular, all proofs will be omitted. The reader interested in more
details is referred to the full paper [6].

2. R-trees and R-automata

Elements of free profinite semigroups will be generally called pseudowords.
We may also speak of pseudowords over V for a pseudovariety V to indi-
cate the natural projections of pseudowords in free pro-V semigroups. For
an introduction to relatively free profinite semigroups, see [1]. Recall in
particular that formal equalities between pseudowords are known as pseu-
doidentities and have full descriptive power for defining pseudovarieties of
semigroups. We write € = u = v to indicate that the class C of finite
semigroups satisfies the pseudoidentity u = v.

The basic ingredient in all our results is the following observation taken
from [2].

Lemma 2.1. Let u,v be pseudowords and suppose u = uiaus, v = v1bvg

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

where a,b are letters such that a ¢ c(u1), b & c¢(v1), and c(u1) = c(vy). If
REu=vthena=band REu;,=v; (i=1,2).

The same holds for the pseudovariety S of all finite semigroups using
Proposition 3.5 of [4] combined with simple arguments of language theory.
This leads to the left basic factorization of a pseudoword, which is well
defined over both S and R:

u = uyaug with ¢(u) = c(ura), a € c(u) \ c(u1). (1)

For instance, the left basic factorization of (ab“a)® is a-b-b*"ta(ab*a)* 1.

The idea explored in [5] is to iterate this factorization on both factors
w1 and usg, keeping in mind the observation that every infinite product of
pseudowords over R converges. In [5], this is carried out considering at the
same level factorizations going rightwards, leading to (in general) infinite
factorization trees of finite height.

For instance, for the w-term (ab“a)“ we have the representation in Fig-
ure 1. An alternative representation in terms of labeled ordinals was also

Figure 1. The Almeida-Weil tree representation of (ab“a)®

constructed in [5] which, for the same example, can be visualized as follows:

a bbbb--- aabbbb--- aa bbbb--- - - -
N—— —— —

w w w

w

We present here yet another representation, which focuses on the binary
flavor of the left basic factorization: each new factor u; lies either to the
left or to the right of the letter marker a which splits the previous factor
u according to (1). For the same example, (ab“a)®, we obtain the infinite
binary tree indicated in Figure 2, where ¢ stands for the empty word. In

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

view of the left basic factorization of (ab¥a)® = a - b - b la(ab*a)* 1,
the root is labeled by b, and the process is iterated on the left (with the
pseudoword a) and on the right (with b*~ta(ab“a)“~!). In this infinite tree

Figure 2. The R-tree of the pseudoword (ab”a)*

one recognizes immediately that certain subtrees are repeated in the sense
that isomorphic copies are found several times, where isomorphism stands
for topological isomorphism respecting labels. Rather than repeating a
subtree T', we may as well point to a node r at which T already appeared
with r as a root. This leads to a folding of the tree, in our example to the
finite graph indicated in Figure 3 where we use the edge labels 0 for left

Figure 3. The minimal R-automaton of the pseudoword (ab¥a)®

and 1 for right, the incoming arrow at the top represents the node coming
from the root and the double circle represents the node coming from the
leaves. Another example is given in Section 5.

Examining the procedure leading to the above representations of pseu-
dowords over R, one obtains first a characterization of all vertex-labeled

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

complete binary trees which appear in this way, which we call R-trees. More
generally, an R-automaton over an alphabet A is a deterministic {0,1}-
automaton which is complete, except for the terminal states which have no
arrows leaving from them, and which has the states labeled with elements
from A U {e} so that the following properties are satisfied:

(1) a state is labeled € if and only if it is terminal;

(2) for each state v, the labels of states which are accessible from v by
a path starting with the edge labeled 0 miss exactly one letter from
the labels of all the states accessible from v, namely the label of v.

In particular, R-trees are the acyclic R-automata. An isomorphism of R-
automata is an isomorphism of the underlying automata, in the usual sense
of automata theory [14], which respects the labeling of vertices. We will
not distinguish between isomorphic R-automata.

The R-tree constructed by iterated left basic factorization from a pseu-
doword w is denoted T(w) and is called the R-tree of w. From Lemma 2.1
one may easily deduce the characterization of equality of pseudowords
over R in terms of equality of their associated R-trees. Furthermore, there
is a natural topology on R-trees which is relevant for our characterization:
define the distance between two distinct R-trees to be 27" where r is the
smallest integer such that, chopping off all nodes and edges at distance from
the root greater than r, we obtain distinct vertex-labeled trees.

Theorem 2.2. Quer a finite alphabet, the correspondence associating to
each pseudoword w its R-tree T(w) induces a homeomorphism between the
free pro-R semigroup and the space of all R-trees.

In particular, to every R-tree T' corresponds at least one pseudoword w
such that T(w) = T. By Theorem 2.2, the value of such a pseudoword w
over R depends only on T'. We denote it by w(T).

We may translate an R-automaton A over an alphabet A into a usual au-
tomaton A’ by taking B = {0, 1} x A as the alphabet labeling the edges and
by transferring the labels of vertices to the labels of edges as second compo-
nents. This transformation is clearly reversible for B-automata which have
properties that are easily identified, such as: no edges leave from terminal
states, and all edges leaving from other vertices have labels with the same
second component.

The folding procedure may be described as taking the quotient automa-
ton under the congruence ~,,, according to which two nodes are equivalent
if the subtrees rooted at these nodes are identical. The resulting automaton

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

will be called the minimal R-automaton of the pseudoword and denoted
A(w). The language over the alphabet B recognized by the automaton
A(w)’ is denoted L(w), and it gives a trace history of how a specific empty
factor is eventually obtained by iterated left basic factorization. Note that
the R-tree T(w) may be reconstructed from the R-automaton A(w) by un-
folding it.

Corollary 2.3. The following conditions are equivalent for a pair u,v of
pseudowords:

(1) REu=wv;

(2) T(u) =T(v);
(3) Alu) = A(v);
(4) L(u) = L(v).

In case the congruence ~,, has finite index, the folding procedure is
nothing else than the minimization of the translated automaton followed
by the reverse translation, and this is consistent with naming A(w) the
minimal R-automaton of w. The natural question which this observation
raises is under what conditions on a pseudoword its minimal R-automaton
is finite. For a complete answer to this question, which will be given in
the next section, we introduce some pseudowords associated with a given
pseudoword.

The subtree T, of all descendants of a node p of the R-tree T' = T(w)
of a pseudoword w is itself an R-tree and therefore it uniquely determines
a pseudoword v = w(T,) over R which we call an R-factor of w and may
also call the value of the subtree T}, and the value of the node p. In view of
Theorem 2.2, we will usually identify the pseudoword v with the node p and
thus use the same notation for pseudowords and nodes in R-trees. Taking
into account how T(w) is constructed by iterated left basic factorization, in
case v is a direct right descendant of another node, such pseudowords are
called relative tails of w.

3. Periodicity and the word problem for w-terms

By an w-term we mean a well-formed expression in a set of letters using an
associative operation of multiplication and a unary operation of w-power.
The following result is a sort of periodicity theorem which answers the
question raised at the end of the previous section.

Theorem 3.1. The following conditions are equivalent for a pseudoword
w over R:

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

(1) w is represented by some w-term;

(2) the set of R-factors of w is finite;

(3) the set of relative tails of w is finite;
(4) the folded R-automaton of w is finite;
(5) the language L(w) is rational.

Thus, the word problem for w-terms over R will be solved if we find
a way to compute the folded R-automaton A(w) for each w-term w since
A(w) is finite and completely determines w. This may seem however a
rather strange way of solving the word problem. A seemingly more natural
approach would at first sight appear to be devising a finite confluent set
of reduction rules which, applied repeatedly in any order until no further
reduction is possible, leads to a canonical form of a given w-term such that
two w-terms are equal over R if and only if they have the same canonical
form. We have found no such system and we conjecture that there is none.

This motivates the construction of an algorithm that will efficiently
produce an R-automaton recognizing the language L(w) for an w-term w,
though not necessarily the minimal automaton A(w). Once this goal is
achieved, the computation of A(w) can then be concluded by minimization
of the R-automaton thus obtained. If the computed R-automaton is close
to being minimal and one can further optimize the minimization procedure,
then the computation of the minimal R-automaton may be close to being
optimal. One can then invoke Corollary 2.3 to deduce an efficient solution
of our word problem.

So, let us consider an w-term w. Note that, unless w is a finite word,
T(w) is an infinite tree and of course we do not want to use the word problem
to fold it by comparing the pseudowords corresponding to its subtrees. The
idea is to look closer at the syntactic structure of w and to relate the values
w(Tp) of subtrees of T' = T(w) with certain terms that can be syntactically
constructed from w.

The essential reason why the above idea works is best explained in a
picture which represents one of a few typical cases, as depicted in Figure 4.
The other cases are handled similarly. In it we consider a subtree S of
T(w) and we assume that its root is a descendant of a node along its left
line which in turn is the direct right descendant of some node. The value
of w(S) is then precisely the factor of w that can be found between the
positions in w determined by a and b:

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

Figure 4. A subtree of T(w)

The value of w(S) may be computed syntactically from the given w-term
w since the indicated b is the first occurrence of this letter to the right of
the indicated occurrence of a. Thus, by canonically splitting w-powers so
as to extract any required factors according to the formula

(uvw)® = wv(wuw)®,

which is valid in R, one can compute the successive values of subtrees until
no new values are obtained. More precisely, one may compute, for each
position 7 of a letter in w and each letter b which either occurs to the right
of that position in w, or occurs within the same base of an w-power as
the position 4, an w-term w(i, b) corresponding to the value of a subtree.
Moreover every such value may be obtained in this way. It is clear that

there are at most nm such w-terms, where n = |w| is the length of w
disregarding w-powers and m = |c¢(w)| is the number of letters occurring
in w.

By arranging appropriately the order in which the calculation of these
w-terms derived from w is performed, one may thus achieve the computa-
tion of all values of subtrees of T(w) in O(mn)-time. Moreover, from the
computation it is clear that the value of the left descendant of any node v
in T(w) with value w(i, b) is w(i, ¢), where ¢ is the only letter of w(i, b) such
that every other letter in w(i,b) also occurs in w(i, c); if j is the position
in w corresponding to the first occurrence of ¢ in w(i,b), the value of the
right descendant of v is w(j,b); finally the label of v is ¢. Thus basically,
for each new encountered pair (i, a), one computes the list of letters occur-
ring in w(i,a) and the reverse order in which they are found in terms of

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

10

the left basic factorization iterated on the left factors. For convenience of
calculation, one adds a position 0 corresponding to the beginning of w and
a letter # to mark the end of w.

Theorem 3.2. There is an algorithm which computes in time O(|w|-|c(w)])
an R-automaton recognizing L(w) for any given w-term w.

In our earlier example, w = (ab”a)¥, one starts with the initial state
w(0,#) and looks for the last letter to occur for the first time, namely b.
Its position is 2, so the state w(0, #) is labeled b and it has an edge labeled
0 leading to w(0,b) and an edge labeled 1 leading to w(2,#). More sys-
tematically, one computes successively each row in the next table, where
the last three columns are computed immediately from the previous two
and are only indicated to facilitate understanding the procedure. In the
second and third columns of a row (i,a) we indicate, for each letter, the
first position in w “after” position i and before the first occurrence of a
to the right of 7, where the letter is found, if such a position exists. The
term “after” here has to be understood in the sense that if the position ¢
is found within the base of an w-power, then we are allowed to read again
the whole base before leaving the w-power. Identifying all states labeled ¢,

(position, letter) | a b | label left right
(0, #) 1 b (0,0) (2,#)
(0,b) 1 =| a (0,a) (1,b)
(2, #) 321 a (2,0) 3,#)
(O,CL) - — £ — —
(1,b) - —| e _
(2,a) — 21 b (2,b) (2,0)
(3, #) L2 b (30 (2#)
(2,b) - —| € - -
(3,b) 1 =] a (3,a) (1,b)
(3,a) - =] ¢ — —

the resulting R-automaton is given in Figure 5 where we add as an index to
the state-label the pair (¢, a) which determines the state. The minimization
of this automaton identifies two pairs of states according to the equalities
w(0,b) = w(3,b), w(0, #) = w(3, #) and produces exactly the R-automaton
of Figure 3. We stress that the fact that we do get these equalities of w-

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

11

Figure 5. The computed R-automaton of the pseudoword (ab*a)“

terms over R comes from automata manipulations rather than by invoking
again the word problem.

For the minimization procedure for finite deterministic automata, there
is an algorithm due to Hopcroft [13] which works in O(£slog s)-time (see
[15] for a recent complete complexity analysis), where £ is the number of
letters and s stands for the number of states. Combining with Theorem 3.2,
we obtain the following result.

Theorem 3.3. There is an algorithm which computes in time
O(m?n log(mn)) the minimal R-automaton recognizing L(w) for any given
w-term w, where m = |c(w)| and n = |w|.

Since R-automata are so special one should be able to do better. The
R-automaton of a word is acyclic, and in this case, we already have a linear
algorithm due to Revuz [17]. If there are cycles (that is, if we started from
a term involving at least one w-power) then we will adapt this algorithm
to completely fold a finite R-automaton in time O(mn).

The additional difficulty for minimizing R-automata comes from the
cycles: in the acyclic version, a height function measuring the longest path
starting from each state is computed at the beginning of the algorithm.
The situation is then simple, in that the minimization can only identify
states having the same height.

If we do have cycles, such paths can be infinite. But, due to the specific
stucture of R-automata, all cycles are disjoint and 1-labeled. For that reason
we can, after a preprocessing phase, treat separately the states belonging
to cycles and the other states.

The analog of Revuz’s height function is the level, obtained by letting
edges in cycles have weight zero. Proceeding then bottom-up, the prepro-

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

12

cessing stage consists in rolling paths coming to a cycle, if this does not
change the language. Consider for example a usual automaton with a single
initial state gg, one simple path from ¢y to ¢; labeled v and one cycle around
q1 labeled u, as pictured in Figure 6. If v = v/u” with r > 0 and u’ a suffix

Pf}e’ui’:) RO :) :

(Before merging) (After merging)

Figure 6. Merging a path ending in a cycle

of u, then we do not change the language by rolling the simple path around
the cycle, that is, by only retaining the cycle and choosing as the new initial
state the unique state g of the cycle such that ¢s - v = ¢;. The next step
for cycles is to minimize them one by one, i.e., to find the primitive roots
of their labels. We then identify, at one level, all equal cycles and all states
which do not belong to a cycle. This is essentially Revuz’s algorithm.

Finally, notice that rolling paths around cycles may change the level
of states that lie above them. We therefore have to recompute this level.
The recomputation is local, we just update correctly levels of states we are
about to treat.

Here is a more detailed, but informal, commented sketch of the al-
gorithm (see [7] which will be devoted to a detailed presentation and a
correctness proof):

(1) Given a finite R-automaton A, compute its cycle structure. For this
one can use for instance Tarjan’s algorithm [20] which computes the
strongly connected components of a graph.

(2) Compute an initial level function that measures, for each state, the
maximum weight of a path to the terminal state, assigning weight 0
to edges in cycles and weight 1 to all other edges. This can be done
efficiently by a simple traversal of the graph that is further used
to assign a level value to each edge that is not in a cycle, a value
which is initialized to the level of the end state plus 1. Both these
level functions will be updated in the main loop of the algorithm
as a result of rolling paths with all edges labeled 1 around cycles
to which they lead. The level of edges serves as a mechanism to
propagate to higher levels changes coming from identifications done
at lower levels.

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings

(3)

13

From this point on, we construct successive equivalence relations
on sets of states which are approximations to the congruence on A
whose quotient determines the minimized R-automaton. We do so
level by level, at each stage suitably joining elements into equiva-
lence classes. The first step consists in putting the final state into
its own class.
This is the main cycle in the algorithm. Proceed by increasing level
n > 1, as in the following loop. At the end of level n, all vertices
processed in it will have level-value n and they will all be assigned
to an equivalence class, which remains unaltered at higher levels.
For each non-terminal state v, denote by 0,, 1, the edges starting
from v labeled 0,1, respectively. If level(0,) < m, then let ((v)
denote the pair consisting of label A(v) of the state v and the class
[v0] containing the state at the end of the edge 0,.

(a) Call subroutine Level(n) which returns the list S of states
whose current level-value is n.

(b) For each vertex in S which lies in a cycle, put it in its own
singleton class.

(c) Roll 1-labeled paths leading to cycles in S around the corre-
sponding cycles by testing for each successive vertex v away
from the cycle whether ((v) is defined and whether it co-
incides with {(w), where w is the unique state in the cycle
such that for all sufficiently large k, v1* = w1*. In the nega-
tive case, do not proceed with the test for states u such that
ul = v. In the affirmative case, add v to the class of w, as a
result of which the edge 1, becomes a cycle-edge and thus no
longer contributes to the level function; this leads us to re-
duce level(v) to n and level(e) to n+ 1 for every edge e which
ends at state v.

(d) Since the previous step may change the level functions, lower-
ing to level n states that were previously considered at higher
levels, we call subroutine Level(n) again. This will return
an updated value for S which contains the previous value
since the previous step only affects the level-values of states
at higher levels.

(e) For each cycle C in S, do the following steps which suitably
merges all equivalence classes of states in the cycle according
to their identification in the minimized R-automaton:

paper- Workshop-Lisboa-rerevised

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

14

i. compute the (circular) word W whose letters are the suc-
cessive ((w) with w in C;

ii. compute the primitive W(, root of W¢; this can be done
by computing the shortest border® u of W¢ such u ='W is
also a border; that this computation can be performed in
linear time in terms of the length of W¢ follows from the
fact that the list of all borders can be computed within this
time-complexity [11];

ili. compute the minimal conjugate Vo of W/,; this can be done
in linear time in terms of the length W, [9, 19];

iv. merge classes of states in C' according to the periodic rep-
etition of Vg in We.

(f) To merge classes of states in different cycles C' of S start by
lexicographically sorting the words V¢ using bucket sort [10].
This determines in particular which cycles have the same
words V' = V¢ and their classes associated with correspond-
ing positions in V are merged.

(g) To merge the remaining states v in S into classes start by
lexicographically sorting (by a bucket sort) the associated
triples (A(v), [v1], [v2]), where v1,v2 denote the ends of the
edges 0,, 1,, respectively. As in the previous step, this de-
termines in particular which states have the same associated
triples, and those that do are merged into the same class.

(h) Increment n by 1 and proceed until a subroutine call returns
the empty list.

To complete the description of the algorithm, it remains to indicate what
the subroutine Level(n) does. It starts by updating the level-value of the
beginning state v of each edge e such that level(e) = n according to the
formula

max{level(e), level(f)} if e is not in a cycle
level(v) = and {e, f} = {0,,1,}

max, level(z) otherwise

where the second maximum runs over all edges = with label 0 which start
in the cycle that contains v. Then return all states for which the new

2A border of a word w is a word which is both a prefix and a suffix of w.

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

15

level-value is n.

Theorem 3.4. The above algorithm minimizes a given R-automaton with
s states in time O(s).

Taking into account Corollary 2.3, this gives our solution of the word
problem:

Theorem 3.5. The word problem for w-terms over R can be solved in time
O(mn), where m is the number of letters involved and n is the mazimum
of the lengths of the w-terms to be tested.

4. Equations for w-terms

Consider the set ¥ consisting of the following identities:

w W

(zy)“z® = (zy)“z = z(yz)” = (zy)*

(@")* =2 (r=2)

It is immediately checked that R satisfies these identities (viewed as pseu-
doidentities).

Theorem 4.1. The set X is a basis for the variety R® of w-semigroups
generated by R.

The proof of this result depends on the construction of canonical forms
presented in the next section. There we will show that the canonical form
cf(w) of an w-term w uniquely determines the value of w over R and that
the equality w = cf(w) can be formally deduced from ¥. Hence, if two
w-terms v and w have the same value over R, then they have the same
canonical form and therefore the identity v = w may be formally deduced
from X. This will show that indeed ¥ is a basis of identities for R".

Using the completeness theorem for equational logic, it is now easy to
deduce that

Corollary 4.2. The variety R* is not finitely based.

The proof of Corollary 4.2 consists in verifying that the semigroup
S,={a,e,f:aP =1, ea=ef =e*=¢, fa=fe=f>=F,
ae=ce, af = f),

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

16

where p is a positive integer, with the unary operation o defined by taking

a(e) =e, o(f) = f, o(l) = e, o(a") = f (k € Z\pZ)

as the w-power, satisfies the identities in the basis 3 for r relatively prime
with p, but fails (zP)¥ = a%.

5. Canonical forms

From a finite R-automaton one can read off an w-term in a canonical way.
The definition is recursive in the number of states:

e for the trivial R-automaton, in which there is only one state, take
the empty pseudoword 1;

e for an R-automaton in which the initial state r, labeled a, is not the
end of an edge labeled 1, take uav where u and v are respectively the
w-terms canonically associated with the R-subautomata obtained by
changing the initial state respectively to r0 and r1;

e for an R-automaton in which the initial state r, labeled a, is the end
of an edge labeled 1, take (uav)* where u and v are respectively the
w-terms canonically associated with the R-subautomata obtained
by changing the initial state respectively to 70 and r1 and, in the
second case, changing the end of the edge labeled 1 pointing to r to
a terminal state.

We call the resulting w-term for A(w) the canonical form of a given w-
term w and denote it cf(w). For example, since the minimal R-automaton
of the w-term w = (ab¥a)* is that given by Figure 3, the canonical form is
cf(w) = (abb®a)®.

A factor u of an w-term w is fringy if there is a factorization u = va with
c(u) = c(w) and a a letter which is not in ¢(v). A X-fringy decomposition of
an w-term w is a finite sequence wy, . .., w, of w-terms such that each w; is
a fringy factor of w; - - - w, and the identity w = w; - - - w, is a consequence
of . The following technical result is used to compute the canonical form.

Proposition 5.1. Let w be an w-term.

(1) If w = uav, a is a letter, and the factor ua is fringy, then it is
possible to deduce the identity clw) = cflu) a cAv) from X.

(2) If w admits a 3-fringy decomposition, then the identity clw®) =
(cflw))¥ is a consequence of 3.

(3) Let wg and w be w-terms such that

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

17

o R}Ew=1w?
o c(uw) C c(w),
e cither c(wg) C c(w), or R = wy = w3.

=

Then, there are w-terms u,v such that uv = w is a consequence
of ¥ and there are positive integers r,s such that wow"u and (vu)®
admit X-fringy decompositions.

Rules (1) and (2) allow to “push” cf operators downwards in the term tree
of an w-term, while preserving equality modulo . However, they only can
be used starting from particular forms, namely where fringy factors occur.
To make fringy factors appear, we use item (3). For instance, we may
deduce from ¥ the following identities:

cf((ab¥a)*) = cf((ab- b“a)*) (note that ab and b“a are fringy)

In this example, fringy factors needed to apply Proposition 5.1 appear with
almost no extra work. As another example, consider w = (aabb)“, whose
automaton and wrapped automaton computed by our algorithms are shown
in Figure 7. Using A((aabb)¥) and the definition of the canonical form, we

1 1

@@ @ @

® @ &
1 aO

1

A (non wrapped) R-automaton The R-automaton A((aabb)“)

Figure 7. R-automata associated to (aabb)“

get cf((aabb)®) = aab(baab)”. On the other hand, one deduces from X,

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

18

using Proposition 5.1:

cf((aabb)*’) = cf(aab(ba - ab)*) using z(yx)” = (zy)*
= aab - cf((ba - ab)®) by Prop. 5.1 (1)
= aab - (cf(ba - ab)) by Prop. 5.1 (1)
= aab(baab)”

The first equality (aabb)® = aab(ba-ab)®” deduced by ¥ makes fringy factors
appear. Proposition 5.1 (3) essentially states that one can always produce
these fringy factors when they are needed.

These examples illustrate how Proposition 5.1 may be used to prove the
following theorem already announced in Section 4.

To prove that 3 implies cf(w) = w, we start with cf(w). Then, using
¥, one may split w-powers by bringing out of them fringy factors and push
inside the canonical form “calculation” at the cost of taking a power of a
conjugate of the original base of the w-power, and thus reduce the number
of nested w-powers. For fringy factors, we also use Proposition 5.1 to bring
out the last letter and thus reduce the content. In either type of step, a non-
negative integer parameter is reduced and therefore this process terminates
in a finite number of steps. Once no more canonical forms remain to be
“computed”, all transformations can be traced back without the cf operator
using ¥ to recover the w-term w.

Theorem 5.2. For every w-term w, the identity clw) = w is a conse-
quence of 3.

Note that we do not claim that the above procedure serves to com-
pute the canonical form of a given w-term. But, even if it would serve
that purpose, the algorithm to solve the word problem obtained by such a
computation followed by a test of graphical equality of the canonical forms
would not be efficient. This is shown by the following example in which the
canonical form computation has to take too long to perform.

Indeed the canonical form of an w-term may be exponentially longer
than the given w-term. This is so for the sequence of w-terms

WE = (. ((alalblbl)“agagbgbg)“’ o -akakbkbk)“’.

For instance, k = 1 corresponds to the w-term (aabb)®, whose canonical
form was previously computed using A((aabb)®). For k = 2, the automaton

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

19

is more involved. By the same method, one can compute its canonical form:

aab(baab)® ced - (daab(baab)“’c -cddaab - (baab)“’ccd) ’
— —

U2

uo U1 us

where a = a1, b = by, ¢ = ag, d = bs. Here, ug is a fringy factor of this
factorization, and uq, uo, us are fringy factors of the external w-power.

An w-term w is reduced if it has no subterm of the form (z")¥ with
r > 1, no subterm of the form y“z, with ¢(z) C ¢(y), and no subterm of
the form (zy“z)“, where x,z may be empty and c(zz) C ¢(y). Note that
3 may be used to deduce the equality of any w-term with a shorter one
in reduced form. Surprisingly, a canonical factorization is not necessarily
reduced. For instance, the w-term inside the w-power of cf(ws) is a square.

Coming back to the calculation of cf(wy), one can show that, in general:

wi| = 4k, |e(wy)| = 2k, |cflwy)] = (253571 —11)/2.
Another example is given by the sequence vy defined by
v = (ak(-- - (az(ar)®)” - -).

Here we can compute |vg| to be k, and the number of states of A(vy) to
be (k + 2)(k + 3)/2 — 5, while the number of states of the R-automaton
of v, computed by our algorithm is (k + 2)(k + 3)/2 — 3. This shows that
when we allow m and n to grow at equal rates, both the algorithm of Sec-
tion 3 to compute a finite R-automaton for an w-term and the minimization
algorithm have optimal complexity rate.

It is also possible to have an exponential decrease in length in going
from an w-term to its canonical form, even for w-terms for which there are
no obvious reductions, as shown by Proposition 5.3 below.

Let us examine next why the first strategy that comes to mind to reduce
w-terms does not work. It would consist in taking rules that result from
our proposed basis of identities for the variety of w-semigroups generated
by R by orienting the identities in the length-reducing direction:

rl. (
r2. (
r3. (x

(
5. x(yx)

In general, for any set of reduction rules, its use is the following: whenever
in a term w we find a subterm u which matches the pattern of the left

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

20

side of a rule ¢ — r, then we may replace in w an occurrence of u by the
resulting value of applying the rule to u to obtain a new w-term w’; we then
write w = w’. If none of the above reduction rules may be applied to an
w-term w then we say that w is irreducible.

Proposition 5.3. Consider the sequence z,, defined recursively by zo =
1, zn+1 = (znanzn)¥, where the a, are distinct letters. Then the z, are
irreducible w-terms such that |z,| = 2" — 1 and |cf(z,,)| = n.

In particular, it follows from Proposition 5.3 that the system of reduc-
tion rules (rl)—(r5) cannot be confluent since it is length-reducing. One
can try to apply the Knuth-Bendiz algorithm by adding rules to obtain
confluence without losing the Noetherian property. But, since our system
is essentially infinite (not only because of the parameter > 2, which does
not bother much here but because x,y stand for arbitrary terms, that is
they serve as a means of giving patterns for terms), this quickly becomes
an unmanageable task.

6. Comparison with related work of Bloom and Choffrut

Bloom and Choffrut [8] have established results which bare some similari-
ties with those reported in this paper. They consider posets labeled with
elements of a finite nonempty alphabet under two operations:

e series concatenation: PQ extends the orders of each factor by
declaring the elements in P to precede all elements in Q;
e w-power: P¥ = w x P under lexicographic order.

The finite or countable labeled posets over an alphabet A, considered up
to isomorphism, constitute an algebra P(A) which satisfies the following

identities:
e 2(yz) = (zy)z,
o (zy)” = z(yx)”,
o (z")¥ =g forn > 1.

The subalgebra generated by the singletons labeled with letters a from an
alphabet A is denoted W(A). Note that its elements are labeled ordinals
of length less than w*.

A tail of an ordinal a with labeling function f corresponding to an
ordinal 3 < « is the unique ordinal « such that §+~ = « with the labeling

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

21

function ¢g(d) = f(8+6). A labeled ordinal is tail-finite if it has only finitely
many tails.
The main results in the paper [8] are the following:

(1) A labeled ordinal belongs to W(A) if and only if it has length less
than w* and it is tail-finite, if and only if it is defined by an w-term.

(2) The variety V' generated by the P(A) is equal to the variety gener-
ated by the W(A) and it is defined by the above identities. More-
over, W(A) is free over A in this variety.

(3) The variety V' is not finitely based.

(4) The equality of two w-terms uq,ug in V' can be decided (with the
help of Choueka automata) in O(m?n2n3)-time, where n; denotes
the length of u; and m the maximum of their heights in terms of
nested w-powers.

Our results are similar, so the natural question is if they are connected
by some causal relationship. Our basis of identities for R* is obtained from
the above basis for V' by adding the identities

(@)% = 2%, (2y)“2" = (vy)“z = (2y)”.

In particular, we have the inclusion R® C V' which does not appear to be
obvious taking into account the rather different types of generators consid-
ered for the two varieties. That the inclusion is proper is easy to show: for
instance, the identity z%z = z* fails in the algebra P(A) since the ordinals
w + 1 and w labeled with only one letter are distinct.

Finally, since the two varieties are different, the solution of the word
problem for the free algebra in one of the varieties is insufficient to solve
the word problem for the other. A curious difference in the two algorithms
is that the complexity of our algorithm depends on the size of the alpha-
bet whereas that of Bloom and Choffrut does not depend directly on this
parameter and instead depends on the height of nested w-powers. Note
however that for reduced w-terms in the sense of Section 5, the indicated
height is bounded by the number of letters which appear in the term.

Acknowledgment.

The authors wish to thank the anonymous referees for their careful reading
of a preliminary version of the paper and for their comments.

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

22

References

1. J. Almeida. Finite semigroups: an introduction to a unified theory of pseu-
dovarieties. In G. M. S. Gomes, J.-E. Pin, and P. V. Silva, editors, Semi-
groups, Algorithms, Automata and Languages, pages 3—64, Singapore, 2002.
World Scientific.

2. J. Almeida and A. Azevedo. The join of the pseudovarieties of R—trivial and
L—trivial monoids. J. Pure Appl. Algebra, 60:129-137, 1989.

3. J. Almeida and B. Steinberg. On the decidability of iterated semidirect prod-
ucts and applications to complexity. Proc. London Math. Soc., 80:50-74,
2000.

4. J. Almeida and P. G. Trotter. Hyperdecidability of pseudovarieties of or-
thogroups. Glasgow Math. J., 43:67-83, 2001.

5. J. Almeida and P. Weil. Free profinite -trivial monoids. Int. J. Algebra Com-
put., 7:625-671, 1997.

6. J. Almeida and M. Zeitoun. An automata-theoretic approach of the word
problem for w-terms over R. In preparation.

7. J. Almeida and M. Zeitoun. A linear time minimization algorithm for disjoint
loop automata. In preparation.

8. S.L. Bloom and Ch. Choffrut. Long words: The theory of concatenation and
w-power. Theor. Comp. Sci., 259:533-548, 2001.

9. K. S. Booth. Lexicographically least circular substrings. Inform. Process.
Lett., 10:240-242, 1980.

10. Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiser-
son. Introduction to Algorithms. McGraw-Hill Higher Education, 2001.

11. M. Crochemore and W. Rytter. Text Algorithms. The Clarendon Press Ox-
ford University Press, New York, 1994. With a preface by Zvi Galil.

12. P. M. Higgins. Divisors of semigroups of order-preserving mappings of a finite
chain. Int. J. Algebra Comput., 5:725-742, 1995.

13. J. E. Hopcroft. An nlogn algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi, editor, Theory of machines and computations (Proc.
Internat. Sympos., Technion, Haifa, 1971), pages 189-196, New York, 1971.
Academic Press.

14. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, Mass., 1979.

15. T. Knuutila. Re-describing an algorithm by Hopcroft. Theor. Comp. Sci.,
250:333-363, 2001.

16. J.-E. Pin. Varieties of Formal Languages. Plenum, London, 1986. English
translation.

17. D. Revuz. Minimisation of acyclic deterministic automata in linear time.
Theor. Comp. Sci., 92:181-189, 1992.

18. M. P. Schiitzenberger. Sur le produit de concaténation non ambigu. Semi-
group Forum, 13:47-75, 1976.

19. Y. Shiloach. Fast canonization of circular strings. J. Algorithms, 2:107-121,
1981.

20. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal

January 17, 2005 23:35 WSPC/Trim Size: 9in x 6in for Proceedings paper- Workshop-Lisboa-rerevised

23

on Computing, 1(2):146-160, June 1972.

21. P. Tesson and D. Thérien. Diamonds are forever: the variety DA. In G. M. S.
Gomes, J.-E. Pin, and P. V. Silva, editors, Semigroups, Algorithms, Automata
and Languages, pages 475-499, Singapore, 2002. World Scientific.

22. D. Thérien and Th. Wilke. Over words, two variables are as powerful as one
quantifier alternation. In STOC ’98 (Dallas, TX), pages 234-240. ACM, New
York, 1999.

